JP5855291B1 - Heat exchanger for power generation system, binary power generation system including the heat exchanger, and control method for heat exchanger for power generation system - Google Patents
Heat exchanger for power generation system, binary power generation system including the heat exchanger, and control method for heat exchanger for power generation system Download PDFInfo
- Publication number
- JP5855291B1 JP5855291B1 JP2015018293A JP2015018293A JP5855291B1 JP 5855291 B1 JP5855291 B1 JP 5855291B1 JP 2015018293 A JP2015018293 A JP 2015018293A JP 2015018293 A JP2015018293 A JP 2015018293A JP 5855291 B1 JP5855291 B1 JP 5855291B1
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- power generation
- generation system
- fluid
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 107
- 238000000034 method Methods 0.000 title claims description 35
- 239000012530 fluid Substances 0.000 claims abstract description 124
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 72
- 238000004140 cleaning Methods 0.000 claims description 36
- 239000007788 liquid Substances 0.000 claims description 31
- 230000008569 process Effects 0.000 claims description 24
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 6
- 239000011707 mineral Substances 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 claims description 3
- 230000006837 decompression Effects 0.000 claims description 2
- 230000004048 modification Effects 0.000 description 25
- 238000012986 modification Methods 0.000 description 25
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 23
- 238000010586 diagram Methods 0.000 description 22
- 238000005406 washing Methods 0.000 description 10
- 238000009835 boiling Methods 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000000746 purification Methods 0.000 description 7
- 101100058739 Arabidopsis thaliana BZR2 gene Proteins 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 239000003673 groundwater Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- -1 ferrous metals Chemical class 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
【課題】高効率で低コストな熱交換器およびこの熱交換器を用いた発電システムを提供する。【解決手段】本発明の熱交換器は、第1流体が流通可能な第1流路と、前記第1流体との間で熱交換を行う第2流体が流通する第2流路を有し、電源から所定の電位が付与される陽極板と陰極板により前記第1流路および前記第2流路の少なくとも一部が区画された電解槽と、所定の周期毎に、前記陽極板と前記陰極板に前記所定の電位を付与するとともに前記電位を付与した後に前記陽極板と前記陰極板の極性を反転する制御を行う制御部と、を含むことを特徴とする。【選択図】 図1A highly efficient and low-cost heat exchanger and a power generation system using the heat exchanger are provided. A heat exchanger according to the present invention includes a first flow path through which a first fluid can flow and a second flow path through which a second fluid that exchanges heat with the first fluid flows. An electrolytic cell in which at least a part of the first flow path and the second flow path is partitioned by an anode plate and a cathode plate to which a predetermined potential is applied from a power source, and the anode plate and the And a control unit that applies the predetermined potential to the cathode plate and performs control to reverse the polarity of the anode plate and the cathode plate after the potential is applied. [Selection] Figure 1
Description
本発明は、熱交換器およびこの熱交換器を用いたバイナリー発電システムおよびその熱交換器の制御方法に関するものである。 The present invention relates to a heat exchanger, a binary power generation system using the heat exchanger, and a control method for the heat exchanger.
世界的な地球環境保護の高まりを受け、地熱や産業製品の生産過程から生じる産業排熱を利用した発電は、二酸化炭素の排出量が極めて少ないことから注目度が増している。
このうち地熱発電方式では、以下の2つの方式が存在する。すなわち、1つ目の方式は、地下深部で加圧・加熱された気液二相状態の熱流体を用い、この熱流体を地上へ井戸を介して噴出させたときの地熱蒸気をタービンに導いて発電を行うフラッシュサイクル方式である。また、2つ目の方式は、熱流体を熱交換器にいったん導いてこの熱交換器で作動流体と熱交換を行い、この熱流体で加熱された作動流体の蒸気をタービンに導いて発電を行うバイナリーサイクル方式である。
Due to the global protection of the global environment, power generation using industrial waste heat generated from the production process of geothermal and industrial products is gaining attention because of its extremely low carbon dioxide emissions.
Among these, the following two methods exist in the geothermal power generation method. That is, the first method uses a gas-liquid two-phase thermal fluid pressurized and heated in the deep underground, and the geothermal steam when this thermal fluid is ejected to the ground through a well is guided to the turbine. This is a flash cycle system that generates electricity. In the second method, the thermal fluid is once guided to the heat exchanger, the heat exchanger exchanges heat with the working fluid, and the steam of the working fluid heated by the thermal fluid is guided to the turbine for power generation. This is a binary cycle method.
バイナリーサイクル方式を用いた発電では、近年では熱流体の一例として例えば温泉水などの地熱水を用いたバイナリー発電システムの開発が進められている。
地熱水は地下においても相対的に浅い深度に存在することが多く、従来の地熱発電に比して発電システムの導入コストやリスクが高くないといった利点がある。なお地熱水は通常100℃以下の温度を有するものも多く存在するため、沸点が低い代替フロン(HFE)やペンタン(C5H12)、あるいはアンモニア等のような低沸点媒体が作動流体として用いられている。
In the power generation using the binary cycle method, in recent years, a binary power generation system using geothermal water such as hot spring water as an example of a thermal fluid has been developed.
Geothermal water often exists at a relatively shallow depth even underground, and has the advantage that the introduction cost and risk of a power generation system are not high compared to conventional geothermal power generation. Since geothermal water usually has a temperature of 100 ° C. or less, a low boiling point medium such as alternative chlorofluorocarbon (HFE), pentane (C 5 H 12 ) or ammonia is used as a working fluid. It is used.
このバイナリー発電システムにおいては、地熱水を地上に備えられた熱交換器へ導入し、別途この熱交換器へ導入された低沸点媒体と熱交換を行って低沸点媒体の蒸気を発生させる。そしてこの低沸点媒体の蒸気を蒸気タービンに導入してタービンを回転させ、この回転を利用して発電機で発電が行われる。
蒸気タービンから排出された低沸点媒体の蒸気は、凝縮器において冷却されて液化された後に、再び熱交換器に送られて地熱水により加熱されて低沸点媒体の蒸気として蒸気タービンに導入されることが繰り返される。
In this binary power generation system, geothermal water is introduced into a heat exchanger provided on the ground, and heat is exchanged with a low boiling point medium separately introduced into the heat exchanger to generate low boiling point medium vapor. The steam of the low boiling point medium is introduced into the steam turbine to rotate the turbine, and power is generated by the generator using this rotation.
The low-boiling medium steam discharged from the steam turbine is cooled and liquefied in the condenser, then sent again to the heat exchanger, heated by geothermal water, and introduced into the steam turbine as low-boiling medium steam. Is repeated.
上記したバイナリー方式の発電システムについては、下記特許文献1に例示されるごとき熱流体が持つエネルギーの利用効率を高めることに着目された技術が提案されている。
例えばこの特許文献1によれば、熱流体の蒸発温度などを変えたり、蒸発器と予熱器等の組み合わせを変えたり、あるいは作動流体にアンモニアと水の混合液を用いるなどして、発電システムの効率を高めることが開示されている(例えば、特許文献1参照)。
As for the above-described binary power generation system, there has been proposed a technique focused on enhancing the energy use efficiency of the thermal fluid as exemplified in Patent Document 1 below.
For example, according to this Patent Document 1, by changing the evaporation temperature of a thermal fluid, changing the combination of an evaporator and a preheater, or using a mixed liquid of ammonia and water as a working fluid, Increasing efficiency is disclosed (for example, see Patent Document 1).
しかしながら、地熱水を用いた場合には以下の課題が生ずることが想定される。すなわち温泉水にはカルシウムなどのミネラル分や硫黄分などの成分が含まれており、熱交換器を含んだ循環系における配管の内壁や熱交換器内部に析出する。この析出物が例えば熱交換器表面に付着した場合、熱流体(地熱水)と作動流体(ペンタンなど)の熱交換効率を著しく低下させてしまい、最悪のケースでは配管の詰まりや熱交換器の故障に繋がる恐れもある。 However, when geothermal water is used, it is assumed that the following problems occur. That is, the hot spring water contains components such as minerals such as calcium and sulfur, and is deposited on the inner wall of the piping and inside the heat exchanger in the circulation system including the heat exchanger. If this deposit adheres to the surface of the heat exchanger, for example, the heat exchange efficiency between the thermal fluid (geothermal water) and the working fluid (pentane, etc.) is significantly reduced. There is also a risk of failure.
一方で熱交換器や配管を定期的に人海戦術で清掃すれば配管の詰まりや熱交換器の故障は低減されることになるが、そのためのコストが上昇することでバイナリー発電の利点が損なわれてしまうことは避けねばならない。
また、薬剤を熱交換器や配管に導入して洗浄することも考えられるが、近年では環境汚染防止という観点からこのような薬剤の使用が自粛されるようになっている。
なお、この問題は不純物を含む熱流体に留まらず熱交換器等に流入する流入液体に等しく生じ得ることであり、如何にしてコストを抑制しつつ流体間のエネルギー伝達効率を低下させないかが今後重要となってくる。
On the other hand, if the heat exchangers and piping are regularly cleaned by human naval tactics, clogging of piping and failure of the heat exchanger will be reduced, but the benefits of binary power generation will be lost due to the increase in costs. It must be avoided.
In addition, it is conceivable to introduce a chemical into a heat exchanger or piping for cleaning, but in recent years, the use of such a chemical has been restrained from the viewpoint of preventing environmental pollution.
Note that this problem can occur not only in the thermal fluid containing impurities but also in the inflowing liquid flowing into the heat exchanger or the like, and how to reduce the energy transfer efficiency between the fluids while reducing the cost will be discussed in the future. It becomes important.
本発明は、上記した問題を鑑みて、たとえ不純物を含有する流入液体が用いられたとしても、低コストで高効率な発電を持続することが可能な熱交換器などの浄化システムを提供することを目的とする。 In view of the above problems, the present invention provides a purification system such as a heat exchanger that can maintain high-efficiency power generation at low cost even when an inflowing liquid containing impurities is used. With the goal.
上記課題を解決するため、本発明の一実施形態にかかる発電システム用の熱交換器は、第1流体が流通可能な第1流路と、前記第1流体との間で熱交換を行う第2流体が流通する第2流路を有し、電源から所定の電位が付与される陽極板と陰極板により前記第1流路および前記第2流路の少なくとも一部が区画された電解槽と、前記陽極板と前記陰極板に対して通電を開始して前記所定の電位を付与した後に当該所定の電位とは極性が反転した電位を付与し、その後に前記通電を解除する洗浄処理を、所定の周期毎に繰り返す制御を行う制御部と、を含み、前記制御部は、前記所定の電位及び前記極性が反転した電位を付与する期間よりも、前記通電を解除した後に再び通電を開始して前記所定の電位を付与するまでの期間の方が長くなるように、前記陽極板と前記陰極板に対してそれぞれ電位を付与する制御を行うことを特徴とする。 In order to solve the above-described problem, a heat exchanger for a power generation system according to an embodiment of the present invention is configured to perform heat exchange between a first flow path through which a first fluid can flow and the first fluid. An electrolytic cell having a second flow path through which two fluids circulate, wherein at least a part of the first flow path and the second flow path is partitioned by an anode plate and a cathode plate to which a predetermined potential is applied from a power source; Then, after applying the predetermined potential by starting energization to the anode plate and the cathode plate, applying a potential whose polarity is reversed with respect to the predetermined potential, and then performing a cleaning process for releasing the energization, look including a control unit that performs control to repeat a predetermined cycle, the control unit, rather than period in which the potential which the predetermined potential and the polarity is inverted, starts again energized after releasing the energization The period until the predetermined potential is applied is longer To, and performs the control for imparting respective potential to the cathode plate and the anode plate.
なお、前記した熱交換器においては、前記電解槽内では前記陽極板と陰極板が対向して交互に複数配置されることが好ましい。
また、上記課題を解決するため、本発明の一実施形態にかかるバイナリー発電システムは、前記した熱交換器と、前記電源を制御する制御装置と、を備え、前記制御装置は、所定のタイミングで前記陽極板と前記陰極板の極性を反転させることを特徴とする。
In the heat exchanger described above, it is preferable that a plurality of anode plates and cathode plates are alternately arranged in the electrolytic cell so as to face each other.
In order to solve the above-described problem, a binary power generation system according to an embodiment of the present invention includes the above-described heat exchanger and a control device that controls the power supply, and the control device has a predetermined timing. The polarity of the anode plate and the cathode plate is reversed.
なお、前記したバイナリー発電システムでは、前記陽極板と前記陰極板の間を流れる電流を計測する電流計を備え、前記制御装置は、前記電流計の計測値に基づいて前記極性を反転させることが好ましい。
また、前記した各バイナリー発電システムでは、前記第2流体から生じる蒸気の圧力を計測する圧力計を備え、前記制御装置は、前記圧力計の計測値に基づいて前記極性を反転させることが好ましい。
また、前記電解槽へ流入する前記第1液体の温度と、前記電解槽から流出した前記第1液体の温度とを検出する温度計を備え、前記制御装置は、前記温度計の計測値に基づいて前記極性を反転させることが好ましい。
The binary power generation system described above preferably includes an ammeter that measures a current flowing between the anode plate and the cathode plate, and the control device reverses the polarity based on a measured value of the ammeter.
Each of the binary power generation systems described above preferably includes a pressure gauge that measures the pressure of the vapor generated from the second fluid, and the control device preferably reverses the polarity based on a measurement value of the pressure gauge.
A thermometer for detecting the temperature of the first liquid flowing into the electrolyzer and the temperature of the first liquid flowing out of the electrolyzer; and the control device is based on a measured value of the thermometer. It is preferable to reverse the polarity.
また、前記した各バイナリー発電システムでは、前記第2流体が蒸発して生じた媒体蒸気によって駆動される第1蒸気タービンと、前記第1蒸気タービンと、前記陽極板および前記陰極板とを電気的に接続する電力供給系とを備え、前記制御装置は、前記第1蒸気タービンにより発電された電力の少なくとも一部を前記電源として利用することが好ましい。
また、前記したバイナリー発電システムでは、前記第1流体を減圧して水蒸気と熱水に分離する減圧気液分離器と、前記減圧気液分離器により分離された前記水蒸気によって駆動される第2蒸気タービンと、をさらに含むことが好ましい。
Further, in each of the binary power generation systems described above, the first steam turbine driven by the medium steam generated by evaporation of the second fluid, the first steam turbine, the anode plate, and the cathode plate are electrically connected. It is preferable that the control device uses at least a part of the power generated by the first steam turbine as the power source.
In the above binary power generation system, the first steam is decompressed and separated into steam and hot water, and the second steam driven by the steam separated by the decompressed gas-liquid separator. And a turbine.
また、前記した各バイナリー発電システムでは、前記熱交換器又は前記熱交換器を経た前記第1流体が流通する第1配管に接続されるとともに、前記陽極板と前記陰極板の極性が反転した後の前記第1流体が流通可能な排出管をさらに備えることが好ましい。
また、前記したバイナリー発電システムでは、前記排出管と前記第1配管とを切り替えるバルブを備え、前記制御装置は、前記陽極板と前記陰極板の極性を反転させるときに前記バルブを切り替えて前記熱交換器に導入された前記熱流体を前記排出管へ流入させる制御を行うことが好ましい。
Further, in each of the binary power generation systems described above, after being connected to the heat exchanger or the first pipe through which the first fluid passed through the heat exchanger flows, the polarity of the anode plate and the cathode plate is reversed. It is preferable to further include a discharge pipe through which the first fluid can flow.
The binary power generation system includes a valve that switches between the discharge pipe and the first pipe, and the control device switches the valve when reversing the polarity of the anode plate and the cathode plate to switch the heat. It is preferable to perform control to cause the thermal fluid introduced into the exchanger to flow into the discharge pipe.
また、前記した各バイナリー発電システムでは、前記第1流体として、ミネラル分又は硫黄分を含む温泉水が適用可能である。
また、上記課題を解決するため、本発明の一実施形態にかかる発電システム用の熱交換器の制御方法は、電源から所定の電位が付与される陽極板と陰極板が配置された熱交換器内へ、前記陰極板と接触するように第1配管を介して第1流体を流通させることと、前記熱交換器内で前記第1流体とは隔離されるように、前記第1流体と熱交換を行う第2流体を前記熱交換器内へ第2配管を介して流通させることと、前記陽極板と前記陰極板に対して通電を開始して前記所定の電位を付与した後に当該所定の電位とは極性が反転した電位を付与し、その後に前記通電を解除する洗浄処理を、所定の周期毎に繰り返すことと、を含み、前記所定の電位及び前記極性が反転した電位を付与する期間よりも、前記通電を解除した後に再び通電を開始して前記所定の電位を付与するまでの期間の方が長くなるように、前記陽極板と前記陰極板に対してそれぞれ電位が付与されることを特徴とする。
In each of the binary power generation systems described above, hot spring water containing a mineral content or a sulfur content can be applied as the first fluid.
Moreover, in order to solve the said subject, the control method of the heat exchanger for power generation systems concerning one Embodiment of this invention is the heat exchanger with which the anode plate and cathode plate which a predetermined electric potential is provided from a power supply are arrange | positioned The first fluid is circulated through the first pipe so as to be in contact with the cathode plate, and the first fluid and the heat are isolated from the first fluid in the heat exchanger. The second fluid to be exchanged is circulated through the second pipe into the heat exchanger, energization is started to the anode plate and the cathode plate, and the predetermined potential is applied. grant potential polarity is inverted potential, followed by a cleaning process for releasing the energization look-containing and a repeating at predetermined intervals, to impart a potential said predetermined potential and said polarity is reversed More than the period, after turning off the energization, start energizing again Serial As better time to impart a predetermined potential is increased, the potentials relative to the cathode plate and the anode plate is characterized in that it is applied.
本発明によれば、発電システムなどに流入する流入液体としての第1液体に含まれて能力低下の原因となる成分(カルシウムイオン、マグネシウムイオンなどのミネラル分など)を除去することができ、これにより例えば発電能力の低下を抑制しつつ熱交換処理などを実行できる。さらに、このような電解処理によって、環境負荷の大きな薬液を使用することなく第1液体が流れる配管などの汚染も防止でき、低コストで高効率なシステムを実現することができる。 According to the present invention, it is possible to remove components (such as minerals such as calcium ions and magnesium ions) that are included in the first liquid as the inflowing liquid flowing into the power generation system or the like and cause a reduction in capacity. Thus, for example, heat exchange processing or the like can be executed while suppressing a decrease in power generation capacity. Furthermore, such electrolytic treatment can prevent contamination of the piping or the like through which the first liquid flows without using a chemical solution with a large environmental load, and can realize a low-cost and high-efficiency system.
以下、本発明を実施するための実施形態を、バイナリー発電システムを一例にして説明する。なお、説明の便宜上、以下の説明中において適宜X方向、Y方向、およびZ方向をそれぞれ規定したが、本発明の権利範囲を減縮するものでないことは言うまでもない。 Hereinafter, an embodiment for carrying out the present invention will be described taking a binary power generation system as an example. For convenience of explanation, the X direction, the Y direction, and the Z direction are respectively defined as appropriate in the following explanation, but it goes without saying that the scope of rights of the present invention is not reduced.
≪第1実施形態≫
図1(a)は、本発明の第1実施形態に係るバイナリー発電システム1Aの全体構成図である。
本実施形態のバイナリー発電システムBES1は、第1配管L1、熱交換器(蒸発器)1、第2配管L2、蒸気タービン2、発電機3、凝縮器4、および全体制御装置5を含んで構成されている。なお、以下で詳述する構成以外については、例えば特開2013−170553号等の公知の地熱発電システムを適宜参照してもよい。
<< First Embodiment >>
FIG. 1A is an overall configuration diagram of a binary power generation system 1A according to the first embodiment of the present invention.
The binary power generation system BES1 of the present embodiment includes a first pipe L 1 , a heat exchanger (evaporator) 1, a second pipe L 2 , a steam turbine 2, a generator 3, a condenser 4, and an overall control device 5. It consists of In addition, you may refer suitably for well-known geothermal power generation systems, such as Unexamined-Japanese-Patent No. 2013-170553, except the structure explained in full detail below.
第1配管L1は、地下に存在する熱流体源と熱交換器1、さらには熱交換器1と河川などとを結ぶパイプである。この第1配管L1と、図示しないポンプなどを介して、熱流体源から熱流体を汲み上げて熱交換器1へ流通させるとともに、熱交換器1で熱交換された熱流体を河川などへ還元(排水)させる。なお、熱交換器1で熱交換された熱流体を排水せずに再び熱流体として再利用してもよい。 First pipe L 1 is thermal fluid source and the heat exchanger 1 existing underground, even at a pipe connecting such a heat exchanger 1 and rivers. This first pipe L 1, via a pump (not shown), reducing the thermal fluid source with circulating pumping up the thermal fluid to the heat exchanger 1, the heat exchange thermal fluid in the heat exchanger 1 to the rivers (Drain). In addition, you may reuse the thermal fluid heat-exchanged with the heat exchanger 1 again as a thermal fluid, without draining.
後述する実施形態でも説明されるとおり、本発明が適用可能な「第1流体」は熱流体に限られないが、以下ではまず熱流体を一例として説明する。この熱流体としては種々適用が可能であるが、本実施形態では例えば50℃〜150℃程度の温泉水を熱流体として用いる。なお、本実施形態で適用が可能な熱流体としては、温泉水以外にも例えば産業廃棄水(温水洗浄など工業生産の過程で生じた廃棄温水)や従来の地熱発電で用いられている高圧地下水など(これらを総称して適宜「熱水」と称する)がある。
熱交換器1は、電解槽11、電極板12、および制御部13を含んで構成され、第1配管L1を介して熱流体源から汲み上げられた熱流体と後述する作動流体との熱交換を行う。
As will be described later in the embodiments, the “first fluid” to which the present invention can be applied is not limited to a thermal fluid, but first, a thermal fluid will be described as an example. Although various applications are possible as this thermal fluid, in this embodiment, for example, hot spring water of about 50 ° C. to 150 ° C. is used as the thermal fluid. In addition to the hot spring water, the thermal fluid applicable in the present embodiment includes, for example, industrial waste water (waste hot water generated in the process of industrial production such as hot water washing) and high-pressure groundwater used in conventional geothermal power generation. (These are collectively referred to as “hot water” as appropriate).
The heat exchanger 1, the electrolytic cell 11 is configured to include an electrode plate 12 and the control unit 13, the heat exchange with the working fluid first through the pipe L 1 will be described later with hot fluid pumped up from the thermal fluid source I do.
図2に熱交換器1の構成図を示す。電解槽11は、熱流体を電解処理しつつ作動流体と熱流体とが熱交換されるための電解槽体であり、複数(4枚)の電極板12が所定の距離だけ隔てて対向して配置される。そして、この電解槽11中に配置される電極板12には、図示しない電源から配線(e1、e2)を介して所定の電位が付与される。電源は公知の機器を使用することができ、例えば所定の電位として、電極板12の間に例えば50V以下の直流電圧を印加することができる。 FIG. 2 shows a configuration diagram of the heat exchanger 1. The electrolytic cell 11 is an electrolytic cell for exchanging heat between the working fluid and the thermal fluid while electrolytically treating the thermal fluid, and a plurality of (four) electrode plates 12 face each other with a predetermined distance therebetween. Be placed. A predetermined potential is applied to the electrode plate 12 disposed in the electrolytic cell 11 from a power source (not shown) via wirings (e1, e2). As the power source, a known device can be used. For example, a DC voltage of, for example, 50 V or less can be applied between the electrode plates 12 as a predetermined potential.
なお、必要に応じて電極間の距離を一定に保つための絶縁体を電極板12の間に配置してもよい。
また、交互に配置される陰極板と陽極板は2枚ずつ計4枚配置する例に限られず、例えばそれぞれ3枚以上ずつを交互に配置してもよいし、1枚ずつそれぞれ配置してもよい。また、陰極板と陽極板を同数ずつ配置しなくともよく、例えば陰極板の枚数を陽極板よりも多くして交互に配置してもよい。
An insulator for keeping the distance between the electrodes constant may be disposed between the electrode plates 12 as necessary.
In addition, the number of the cathode plates and the anode plates that are alternately arranged is not limited to an example in which a total of four cathode plates and two anode plates are arranged. For example, three or more each may be alternately arranged, or each may be arranged one by one. Good. Further, it is not necessary to arrange the same number of cathode plates and anode plates. For example, the number of cathode plates may be greater than that of the anode plates and alternately arranged.
そして電解槽11内では、電解槽11の壁面と電極板12とによって熱流体又は作動流体が流通する流路が形成されている。図2においては、電解槽11の壁面と陰極板121、および陽極板122と陰極板123、陽極板124と電解槽11の壁面によって、それぞれ作動流体が流通する第2流路R2が形成されている。また、陰極板121と陽極板122、陰極板123と陽極板124によって、それぞれ熱流体が流通する第1流路R1が形成されている。このように、電源から所定の電位が付与される電極板12(陽極板と陰極板)によって、熱流体または作動流体が流通する流路の少なくとも一部が電解槽11内に区画される。 In the electrolytic cell 11, a flow path through which a thermal fluid or a working fluid flows is formed by the wall surface of the electrolytic cell 11 and the electrode plate 12. In FIG. 2, the second flow path R <b> 2 through which the working fluid circulates by the wall surface of the electrolytic cell 11 and the cathode plate 12 1 , the anode plate 12 2 and the cathode plate 12 3 , and the anode plate 12 4 and the wall surface of the electrolytic cell 11. Is formed. The cathode plate 12 1 and the anode plate 12 2, the cathode plate 12 3 and the anode plate 12 4, the first flow path R1 which thermal fluid respectively flows are formed. Thus, at least a part of the flow path through which the thermal fluid or the working fluid flows is partitioned in the electrolytic cell 11 by the electrode plate 12 (anode plate and cathode plate) to which a predetermined potential is applied from the power source.
これにより、熱流体と作動流体とが隔離されて熱交換器1内をそれぞれ流通することになる。
なお、図2においては、第1流路R1と第2流路R2をそれぞれ流れる流体の向きは互いに逆向きであるが、第1流路R1と第2流路R2をそれぞれ流れる流体の向きを同じ方向としてもよい。また、電解槽11の壁面と電極板12との境界に公知のシール材を介在させて、隣り合う流路間での流体漏出を防止してもよい。この場合、シール材の材質は、絶縁性樹脂などが好ましい。
制御部13は、熱交換処理時に図示しない商用電源などから電極板12へ所定の電位を付与する制御を行うとともに、陰極板(図2では陰極板121と陰極板123)表面の洗浄処理(後述)を行う。
As a result, the thermal fluid and the working fluid are isolated from each other and circulate in the heat exchanger 1.
In FIG. 2, the directions of the fluids flowing through the first channel R1 and the second channel R2 are opposite to each other, but the directions of the fluids flowing through the first channel R1 and the second channel R2 are different. The same direction may be used. Further, a known sealing material may be interposed at the boundary between the wall surface of the electrolytic cell 11 and the electrode plate 12 to prevent fluid leakage between adjacent flow paths. In this case, the sealing material is preferably an insulating resin.
The control unit 13 performs control for applying a predetermined potential to the electrode plate 12 from a commercial power source (not shown) during the heat exchange process, and also cleans the surface of the cathode plates (the cathode plate 12 1 and the cathode plate 12 3 in FIG. 2). (Described later).
第2配管L2は、「第2流体」の一例としての作動流体が流通する配管であり、本実施形態では熱交換器1内、蒸気タービン2内、凝縮器4内を作動流体が循環するために用いられる。すなわち、作動流体は、これらの装置間を閉ループとして循環する。なお、作動流体としては、熱流体よりも沸点が低い流体が用いられる以外に特に限定はなくブタン(C4H10)や代替フロン(HFE)など種々の流体が適用可能である。本実施形態では、作動流体として沸点が約36℃のペンタン(C5H12)を用いている。
作動流体としてのペンタンは、熱交換器1内で温泉水から伝熱を受けて蒸発(気化)して作動気体に変換され、第2配管L2を介して蒸気タービン2に導入される。
The second pipe L 2 is a pipe through which a working fluid as an example of a “second fluid” flows. In this embodiment, the working fluid circulates in the heat exchanger 1, the steam turbine 2, and the condenser 4. Used for. That is, the working fluid circulates between these devices as a closed loop. The working fluid is not particularly limited except that a fluid having a boiling point lower than that of the thermal fluid is used, and various fluids such as butane (C 4 H 10 ) and alternative chlorofluorocarbon (HFE) are applicable. In the present embodiment, pentane (C 5 H 12 ) having a boiling point of about 36 ° C. is used as the working fluid.
Pentane as the working fluid is evaporated by receiving heat transfer from hot spring water in the heat exchanger 1 (vaporized) and is converted into the operating gas is introduced into the steam turbine 2 through the second pipe L 2.
蒸気タービン2は、第2配管L2を介して熱交換器1と蒸気タービン2とに接続され、熱交換器1から第2配管L2を介して導入された蒸気状態のペンタンを用いて仕事を行う。
発電機3は、蒸気タービンと接続されており、蒸気タービン2の仕事に応じて発電を行う。発電機3により発電された電力は、例えば図示しない変圧器を介して電力会社の変電所や家屋などへ供給される。
凝縮器4は、第2配管L2を介して蒸気タービン2と熱交換器1に接続されている。そして凝縮器4では、水または空気などを用いて蒸気タービン2を経た蒸気状態のペンタンを凝縮して(熱交換を行って)液状のペンタンに変換する。そして変換した液状のペンタンを、作動流体として第2配管L2や図示しないポンプなどを介して再び熱交換器1へ導入させる。
The steam turbine 2, the second through the pipe L 2 is connected to the heat exchanger 1 and the steam turbine 2, the work from the heat exchanger 1 with pentane second vapor state, which is introduced through a pipe L 2 I do.
The generator 3 is connected to the steam turbine and generates power according to the work of the steam turbine 2. The electric power generated by the generator 3 is supplied to, for example, a substation or a house of an electric power company through a transformer (not shown).
Condenser 4 is connected to the steam turbine 2 and the heat exchanger 1 through the second pipe L 2. In the condenser 4, the pentane in a vapor state that has passed through the steam turbine 2 is condensed using water or air (heat exchange is performed) and converted into liquid pentane. The pentane converted liquid is reintroduced into the heat exchanger 1 via a second pipe L 2 and a pump (not shown) as the working fluid.
<熱交換器1内における析出について>
本実施形態のバイナリー発電システムBESでは、熱流体として熱水が第1配管L1内および熱交換器1内の一部を流通している。
例えば熱水が温泉水の場合、通常、マグネシウム、カリウム、ナトリウム、カルシウムなどのミネラル分や、硫黄分などの成分が含まれている。
<Deposition in the heat exchanger 1>
In binary power generation system BES of the present embodiment, hot water is flowing through the portion of the first and in the heat exchanger 1 pipe L 1 as the heat fluid.
For example, when hot water is hot spring water, components such as minerals such as magnesium, potassium, sodium, calcium, and sulfur are usually included.
例えばカルシウムを多く含む炭酸水素塩泉の場合、温度やpHなどの諸条件が変化すると、下記式1に示される化学反応によって温泉水内の溶解成分の一部が固形物(CaCO3など)となって第1配管L1や熱交換器1内に析出する。
Ca2+ + 2HCO3− → CaCO3↓ + H2O + CO2↑ ・・・(1)
したがって、本実施形態では、温泉水を熱流体として用いた地熱発電を長時間行う場合においても、上述した析出物による熱交換効率の低下が抑制できる機能を熱交換器1に備えることとした。
For example, in the case of a bicarbonate spring containing a large amount of calcium, when various conditions such as temperature and pH change, a part of the dissolved components in the hot spring water is converted into solids (C a CO 3 ) and it turned to be deposited on the first pipe L 1 and the heat exchanger 1.
Ca 2+ + 2HCO 3 − → CaCO 3 ↓ + H 2 O + CO 2 ↑ (1)
Therefore, in this embodiment, even when performing geothermal power generation using hot spring water as a thermal fluid for a long time, the heat exchanger 1 is provided with a function capable of suppressing a decrease in heat exchange efficiency due to the precipitates described above.
<熱交換時における浄化処理>
すなわち本実施形態では、図3(a)および(b)に示すとおり、熱交換器1の制御部13は、所定のタイミングで陽極板と陰極板の極性を反転させる反転処理を行う。
より具体的には図3(a)に示される通り、制御部13により陽極板と陰極板の極性が反転されると、陰極板に付着していた付着物(カルシウムなど)が洗浄水中に溶け出す。このとき陰極板となった電極板には新たにカルシウムなどの成分が付着し始めるが、反転処理を含めた洗浄処理を工夫することで陰極板に付着物が付着する量よりも相対的に洗浄水に溶け出す付着物の方を多くすることができ、トータルで見た場合に電極板は浄化されることになる。
<Purification treatment during heat exchange>
That is, in this embodiment, as shown in FIGS. 3A and 3B, the control unit 13 of the heat exchanger 1 performs an inversion process of inverting the polarity of the anode plate and the cathode plate at a predetermined timing.
More specifically, as shown in FIG. 3A, when the polarity of the anode plate and the cathode plate is reversed by the control unit 13, deposits (calcium, etc.) adhering to the cathode plate are dissolved in the washing water. put out. At this time, calcium and other components begin to adhere to the electrode plate that has become the cathode plate, but cleaning is performed more than the amount of deposits attached to the cathode plate by devising a cleaning process including reversal processing. The amount of deposits that dissolve in water can be increased, and the electrode plate is purified when viewed in total.
この反転処理の際、制御部13は、第1配管L1に設置された三方弁などのバルブVbを用いて温泉水から洗浄水へ供給系統を切り替え、熱交換器1へ洗浄水を供給する制御を行ってもよい。また、洗浄に使用した洗浄水は、熱交換器1に別途接続される排出管を介して河川等で排水してもよいし、温泉設備へ供給してもよい。所定期間だけ洗浄水を供給した後は、熱交換器1前後の第1配管L1に設けられた三方弁等のバルブVbを元に戻して発電を再開する制御を行ってもよい。 During this reversal process, the control unit 13 switches the supply system from the spring water to the wash water using the valve Vb such the installed three-way valve to the first pipe L 1, supplies the washing water to the heat exchanger 1 Control may be performed. Moreover, the wash water used for washing | cleaning may be drained in a river etc. via the discharge pipe separately connected to the heat exchanger 1, and may be supplied to a hot spring facility. After supplying a predetermined period only wash water may be performed to resume controlling the generator Replace the valve Vb three-way valve or the like provided in the heat exchanger 1 first pipe L 1 of about.
洗浄で用いた洗浄水は高濃度のミネラル分を含み、基本的には有害な物質が添加されるわけではないため、商用の温泉水として活用することや飲料水として使用してもよい。なお、洗浄水としては特に限定はないが、本実施形態では例えば水道水などの水を用いている。また、洗浄水を排出する排出管は省略が可能であり、この場合は上述した熱交換器1と河川などを結ぶ第1配管L1をそのまま用いてもよい。 Since the washing water used for washing contains a high concentration of minerals and basically no harmful substances are added, it may be used as commercial hot spring water or used as drinking water. In addition, although there is no limitation in particular as washing water, in this embodiment, water, such as a tap water, is used, for example. The discharge pipe for discharging wash water is can be omitted, this may be used as the first pipe L 1 connecting a heat exchanger 1 and river described above when.
また、所定のタイミングとしては、例えば1時間置き、1日置き、1週間置き、一カ月や半年置きなど任意のタイミングを設定してもよく、熱交換器1への温泉水の供給流量や流速なども考慮することが好ましい。例えば温泉水を約1m/sの速度で第1配管L1内に流した場合、およそ30分で0.1mm厚の析出が確認された。
また、洗浄水の供給期間についても、所定のタイミングに応じて決定してもよく、反転処理の間が長期間空く場合は洗浄水の供給期間も長時間取ることが好ましい。
Further, as the predetermined timing, any timing such as every hour, every day, every week, every month or every six months may be set, and the supply flow rate or flow rate of hot spring water to the heat exchanger 1 may be set. It is preferable to consider the above. For example in passing in the first pipe L 1 the spring water at a speed of about 1 m / s, 0.1 mm thick precipitate was observed in approximately 30 minutes.
Further, the cleaning water supply period may be determined according to a predetermined timing, and when the inversion process is long for a long time, it is preferable that the cleaning water supply period is also long.
一例として、各電極における具体的な洗浄処理時間と反転処理との関係を図3(b)に示す。なお、図3(b)では例えば陰極板121における通電状態を示している。
図示されるとおり、本実施形態では陰極板には常時通電がなされておらず、消費電力削減と洗浄効率向上の観点から所定の周期T1ごとに洗浄処理が行われる。なお周期T1としては、上述した通り特に制限はないが、本例では例えば3時間毎として説明する。この例では一回の洗浄処理において、まず期間T2だけ+の電圧が陰極板121に加わり、その後に極性が反転して期間T3だけ−の電圧が陰極板121に加わる。
なお本実施形態では、期間T2および期間T3は同じ30秒間としているが、とくにその長さに制限はなく30秒以外の時間でもよいし、期間T2と期間T3とで異なる時間を設定してもよい。また、期間T2の後で直ちに期間T3が開始されているが、これに限らず期間T2と期間T3の間に電圧が加わらない期間があってもよい。
As an example, FIG. 3B shows a specific relationship between the cleaning process time and the reversal process in each electrode. Also shows an energized state in FIG. 3 (b) in example cathode plate 12 1.
As shown, in this embodiment not been made always energized in the cathode plate, the cleaning power reduction from the viewpoint of cleaning efficiency for each predetermined period T 1 is performed. The period T 1 is not particularly limited as described above, but in this example, the period T 1 is described as being every 3 hours, for example. In the cleaning process once in this example, applied to the period T 2 by + voltage cathode plate 12 1 is first, followed by the period T 3 in the polarity is reversed - voltage is applied to the cathode plate 12 1.
In the present embodiment, the period T 2 and the period T 3 are set to the same 30 seconds, but the length is not particularly limited, and may be a time other than 30 seconds, or different times may be used for the period T 2 and the period T 3. It may be set. Although immediately period T 3 after a period T 2 has been started, there may be a period in which a voltage is not applied between the period T 2 and time T 3 is not limited thereto.
本実施形態によれば、熱交換器1の電極板12へ付与する電位を制御して所望の電解処理を実行することで、温泉水から電極板表面に析出する量、電極板表面から洗浄水へ溶解する析出物の量、およびこれらが発生するタイミングを制御することができる。また、上記した析出物を特別な薬品を使用せずに安価な洗浄水で浄化することができる。したがって、温泉水を用いたバイナリー発電システムを低コスト且つ高効率で実現することが可能となる。 According to this embodiment, by controlling the potential applied to the electrode plate 12 of the heat exchanger 1 and executing a desired electrolytic treatment, the amount deposited from the hot spring water on the electrode plate surface, the washing water from the electrode plate surface It is possible to control the amount of precipitates dissolved in the solution and the timing at which these occur. Moreover, the above-described precipitate can be purified with inexpensive washing water without using a special chemical. Therefore, a binary power generation system using hot spring water can be realized at low cost and high efficiency.
≪第2実施形態≫
図4は、本発明の第2実施形態に係るバイナリー発電システムBES2の全体構成図である。バイナリー発電システムBES2は、上記第1実施形態のバイナリー発電システムBES1に比べて発電機3と熱交換器1の構成が主として異なるので、以下相違点のみについて説明し、バイナリー発電システムBES1と同じ構成及び機能を有する要素については第1実施形態と同一の符号を付して説明を省略する。
<< Second Embodiment >>
FIG. 4 is an overall configuration diagram of a binary power generation system BES2 according to the second embodiment of the present invention. Since the binary power generation system BES2 is mainly different from the binary power generation system BES1 of the first embodiment in the configuration of the generator 3 and the heat exchanger 1, only the differences will be described below, and the same configuration and the same as the binary power generation system BES1. Elements having functions are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted.
図4に示すとおり、第2実施形態のバイナリー発電システムBES2は、発電機3で発電した電力の一部を、配線e3を介して熱交換器1へ導く。より具体的には、熱交換器1の制御部13は、発電機3で発電した電力の一部を受けて電極板12(陰極板と陽極板)の電位付与に用いる制御を行う。 As shown in FIG. 4, the binary power generation system BES2 of the second embodiment guides a part of the power generated by the generator 3 to the heat exchanger 1 via the wiring e3. More specifically, the control unit 13 of the heat exchanger 1 performs control for receiving a part of the electric power generated by the generator 3 and applying the potential to the electrode plate 12 (cathode plate and anode plate).
本実施形態によれば、熱交換器1の電極板12への電位付与のため特別の電源を用意することなく発電機3で発電した電力を使用するので装置システムを簡略化できるだけでなく装置コストやエネルギーコストも抑制することが可能となる。 According to the present embodiment, since the electric power generated by the generator 3 is used without preparing a special power source for applying a potential to the electrode plate 12 of the heat exchanger 1, not only the apparatus system can be simplified but also the apparatus cost. And energy costs can be reduced.
≪第3実施形態≫
図5は、本発明の第3実施形態に係るバイナリー発電システムBES3の全体構成図である。バイナリー発電システムBES3は、上記第1実施形態のバイナリー発電システムBES1および第2実施形態のバイナリー発電システムBES2に比べ、減圧気液分離器6、蒸気加減弁7、第2蒸気タービン8および第2発電機9の構成が主として異なるので、以下相違点のみについて説明し、既述した各バイナリー発電システムと同じ構成及び機能を有する要素については同一の符号を付してその説明を省略する。
«Third embodiment»
FIG. 5 is an overall configuration diagram of a binary power generation system BES3 according to the third embodiment of the present invention. Compared to the binary power generation system BES1 of the first embodiment and the binary power generation system BES2 of the second embodiment, the binary power generation system BES3 is a decompressed gas-liquid separator 6, a steam control valve 7, a second steam turbine 8 and a second power generation. Since the configuration of the machine 9 is mainly different, only the differences will be described below, and elements having the same configuration and function as those of the binary power generation systems described above will be denoted by the same reference numerals and description thereof will be omitted.
図5に示すとおり、第3実施形態のバイナリー発電システムBES3は、いわゆるフラッシュ方式の地熱発電システムとバイナリー発電システムとを結合した発電システムとなっている。
より具体的には、第1液体としての熱流体を汲み上げる第3配管L3が減圧気液分離器6に接続され、この減圧気液分離器6には更に第1配管を介して熱交換器1と、第4配管L4を介して蒸気加減弁7が接続される。このうち、蒸気加減弁7は第4配管L4を介して第2蒸気タービン8と接続される。
As shown in FIG. 5, the binary power generation system BES3 of the third embodiment is a power generation system in which a so-called flash type geothermal power generation system and a binary power generation system are combined.
More specifically, the third pipe L 3 for pumping thermal fluid as the first fluid is connected to a vacuum gas-liquid separator 6, the heat exchanger via a further first pipe to the vacuum gas-liquid separator 6 1, steam control valve 7 is connected via a fourth pipe L 4. Among these, the steam control valve 7 is connected to the second steam turbine 8 through the fourth pipe L 4 .
また、第2蒸気タービン7は、第2発電機9、および排出管としての第4配管L4にそれぞれ接続されている。なお、本実施形態では熱流体として地下の比較的深部に存在する高圧地下水を用いている。
まず第3配管L3を介して減圧気液分離器6に供給された高圧地下水は、そこで減圧されて高圧水蒸気と高圧熱水とに分離される。減圧気液分離器6で分離した高圧水蒸気は、蒸気加減弁7を介して第2蒸気タービン8に送られて仕事を行うことにより第2発電機9で所望の電力が生成される。第2蒸気タービン8で仕事をした後の低圧蒸気は、配管などを介して河川等へ還元(排出)される。
The second steam turbine 7 is connected to the fourth pipe L 4 as a second generator 9, and the discharge pipe. In this embodiment, high-pressure groundwater existing in a relatively deep underground is used as the thermal fluid.
First third high pressure groundwater through a pipe L 3 is supplied to the vacuum vapor-liquid separator 6, where it is reduced in pressure and separated into a high-pressure steam and high-pressure heat water. The high-pressure steam separated by the decompression gas-liquid separator 6 is sent to the second steam turbine 8 through the steam control valve 7 to perform work, whereby desired power is generated by the second generator 9. The low-pressure steam after working in the second steam turbine 8 is reduced (discharged) to a river or the like via a pipe or the like.
一方、減圧気液分離器6で分離した高圧熱水は、第1配管L1を介して熱交換器1へ送られることで、上記各実施形態で説明したバイナリー発電が実行される。
蒸気加減弁7を介して第2蒸気タービン8に送られて仕事を行うことにより第2発電機9で所望の電力が生成される。発電機3で発電した電力の一部を、配線e3を介して熱交換器1へ導く。より具体的には、熱交換器1の制御部13は、発電機3で発電した電力の一部を受けて電極板12(陰極板と陽極板)の電位付与に用いる制御を行う。
On the other hand, high-pressure hot water separated in the vacuum vapor-liquid separator 6, since the first through the pipe L 1 is sent to the heat exchanger 1, binary power generation described in the above embodiment is performed.
Desired electric power is generated by the second generator 9 by being sent to the second steam turbine 8 through the steam control valve 7 and performing work. Part of the electric power generated by the generator 3 is guided to the heat exchanger 1 via the wiring e3. More specifically, the control unit 13 of the heat exchanger 1 performs control for receiving a part of the electric power generated by the generator 3 and applying the potential to the electrode plate 12 (cathode plate and anode plate).
本実施形態で用いる高圧地下水は、地下に存在するマグマの成分の一部がイオンとして存在していることもあり、上記した熱交換器1の電極12表面でマグマに含まれるレアメタルが析出することも考えられる。
したがって、熱交換器1の電極12表面でレアメタルなどの非鉄金属が析出する場合には洗浄水を用いて河川へ排出せずに、非鉄金属(レアメタル)が付着した陰極板を交換するとともに、採取したレアメタルを産業用途に利用してもよい。
In the high-pressure groundwater used in this embodiment, a part of the magma component existing underground may be present as ions, and the rare metal contained in the magma is deposited on the surface of the electrode 12 of the heat exchanger 1 described above. Is also possible.
Therefore, if non-ferrous metal such as rare metal deposits on the surface of the electrode 12 of the heat exchanger 1, the cathode plate to which the non-ferrous metal (rare metal) is attached is exchanged without being discharged into the river using the washing water and collected. The rare metal may be used for industrial purposes.
本実施形態によれば、洗浄のために特別な薬品を使用せずに熱交換器1や配管の詰まりを抑制できるので熱交換効率の低下を抑制できる。さらに、二段階の熱交換を用いた発電を行うので比較的大きな電力を生成することができる。また、場合によってはレアメタルなどの貴重な非鉄金属も採取することができる。 According to this embodiment, since the clogging of the heat exchanger 1 and the piping can be suppressed without using a special chemical for cleaning, a decrease in heat exchange efficiency can be suppressed. Furthermore, since power generation using two-stage heat exchange is performed, relatively large power can be generated. In some cases, valuable non-ferrous metals such as rare metals can also be collected.
≪第4実施形態≫
図6(a)は、本発明の第4実施形態に係るバイナリー発電システムBES4を示す図である。バイナリー発電システムBES4は、上記の各バイナリー発電システムに比べて洗浄装置が熱交換器1としてではなく別体としてバイナリー発電システムに組み込まれている点が異なっている。すなわち、上記各実施形態では熱交換器1が浄化機能を有していたが、本実施形態では熱交換器と浄化装置が別体で構成されて互いに接続されている。
よって、以下相違点のみについて説明し、既述したバイナリー発電システムと同じ構成及び機能を有する要素については第1実施形態と同一の符号を付して説明を省略する。なお、本実施形態の洗浄装置が組み込まれるシステムは、バイナリー発電システム以外の発電システムでもよく、さらには発電システム以外の流体を用いる他の公知のシステムを適用してもよい。
<< Fourth Embodiment >>
FIG. 6A is a diagram showing a binary power generation system BES4 according to the fourth embodiment of the present invention. The binary power generation system BES4 differs from the binary power generation systems described above in that the cleaning device is incorporated in the binary power generation system as a separate body, not as the heat exchanger 1. That is, in each of the above embodiments, the heat exchanger 1 has a purification function, but in this embodiment, the heat exchanger and the purification device are configured separately and connected to each other.
Therefore, only differences will be described below, and elements having the same configuration and functions as those of the binary power generation system described above are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted. Note that the system in which the cleaning device of this embodiment is incorporated may be a power generation system other than the binary power generation system, or may be another known system using a fluid other than the power generation system.
図6(a)に示す通り、本実施形態のバイナリー発電システムBES4は、熱交換器100と、洗浄装置101を含んで構成されている。このうち熱交換器100には、第1流体として例えば地下から吸い上げた地熱水が第1配管L1および洗浄装置101を介して流入される。換言すれば、第1配管L1を介して接続される熱水源と熱交換器100との間には洗浄装置101が介在しており、この洗浄装置101によって洗浄された第1流体(本例では地熱水)が熱交換器100へと流入される。 As shown in FIG. 6A, the binary power generation system BES4 of the present embodiment includes a heat exchanger 100 and a cleaning device 101. The out heat exchanger 100, geothermal water sucked up from the first fluid for example groundwater is introduced through the first pipe L 1 and the cleaning device 101. In other words, the cleaning device 101 is interposed between the thermal water source and a heat exchanger 100 which is connected to the first via a pipe L 1, a first fluid (in this example that has been cleaned by the cleaning device 101 Then, geothermal water) flows into the heat exchanger 100.
図6(b)に本実施形態の洗浄装置101の詳細構成を示す。
洗浄装置101は、電解槽としての容器102内に、電極板12aおよび電極板12bがそれぞれ配置されており、これら電極板12aおよび電極板12bとにより地熱水が流通する流路の少なくとも一部が形成されている。このうち、初期状態では例えば電極板12aが陽極として、電極板12bが陰極として機能している。そしてシステム稼働から所定時間が経過した後は、第1実施形態で説明した洗浄処理(電極の極性反転動作など)が実施される。なお、洗浄処理の際は、熱交換器100へ地熱水を送出せずにバルブVbを介して系外に排出してもよい。また、洗浄処理の際は地熱水以外の水道水などを洗浄水として用いてもよい。また、本実施形態では2枚の電極板12を用いたが、既述した上記各実施形態のように、例えば4枚など2枚以外の電極板12を用いてもよいことは言うまでもない。
FIG. 6B shows a detailed configuration of the cleaning apparatus 101 of this embodiment.
In the cleaning apparatus 101, an electrode plate 12a and an electrode plate 12b are respectively disposed in a container 102 as an electrolytic cell, and at least a part of a flow path through which geothermal water flows through the electrode plate 12a and the electrode plate 12b. Is formed. Among these, in the initial state, for example, the electrode plate 12a functions as an anode and the electrode plate 12b functions as a cathode. Then, after a predetermined time has elapsed since the system operation, the cleaning process (such as the electrode polarity reversal operation) described in the first embodiment is performed. In the cleaning process, the geothermal water may be discharged out of the system via the valve Vb without sending the geothermal water to the heat exchanger 100. In addition, tap water other than geothermal water may be used as cleaning water during the cleaning process. Further, in the present embodiment, two electrode plates 12 are used, but it goes without saying that electrode plates 12 other than two such as four may be used as in the above-described embodiments.
≪第5実施形態≫
図7は、本発明の第5実施形態に係るバイナリー発電システムBES5を示す図である。バイナリー発電システムBES5は、上記の各バイナリー発電システムに比べ、熱交換器が一次熱交換器200と二次熱交換器201の二段構成となっている点が主として異なっている。
よって、以下相違点のみについて説明し、既述したバイナリー発電システムと同じ構成及び機能を有する要素については第1実施形態と同一の符号を付して説明を適宜省略する。なお、本実施形態の二次熱交換器201を含むバイナリー発電システムは、公知のバイナリー発電システムをそのまま適用してもよく、さらにはバイナリー以外の他の公知のシステムを適用してもよい。
«Fifth embodiment»
FIG. 7 is a diagram showing a binary power generation system BES5 according to the fifth embodiment of the present invention. The binary power generation system BES5 is mainly different from the binary power generation systems described above in that the heat exchanger has a two-stage configuration of a primary heat exchanger 200 and a secondary heat exchanger 201.
Therefore, only differences will be described below, and elements having the same configuration and function as the binary power generation system described above are denoted by the same reference numerals as in the first embodiment, and description thereof will be omitted as appropriate. Note that the binary power generation system including the secondary heat exchanger 201 of the present embodiment may be a known binary power generation system as it is, or may be a known system other than the binary.
図7に示すとおり、本実施形態の発電システムは、二次熱交換器201を含むバイナリー発電システムBES5に加え、一次熱交換器200をさらに有している。このうち、二次熱交換器201と一次熱交換器200との間は、第6配管L6を介して中間流体(例えば純水)が循環する構成となっている。この第6配管L6は閉ループ構造となっているので、外部から異物などが混入しにくい。
また、二次交換機201には第2配管L2を介して上述した第2流体(例えばペンタンなど)が流入され、第6配管L6を流入する中間流体(純水)と第2流体(ペンタン)との間で熱交換が行われる。
As shown in FIG. 7, the power generation system of the present embodiment further includes a primary heat exchanger 200 in addition to the binary power generation system BES5 including the secondary heat exchanger 201. Of these, between the secondary heat exchanger 201 and the primary heat exchanger 200, an intermediate fluid through the sixth pipe L 6 (e.g., pure water) it has a structure to circulate. Since the sixth pipe L 6 has a closed loop structure, foreign matter from the outside it is unlikely to be mixed.
Further, the secondary switch 201 the second fluid (e.g., pentane, etc.) are flowed described above through a second pipe L 2, an intermediate fluid (pure water) and a second fluid flowing the sixth pipe L 6 (pentane ) And heat exchange.
一方で、一次熱交換器200の構造は、例えば図2において既述した熱交換器11の構造を応用することができる。すなわち、例えば図2に示したように、第1配管L1から流路R1に第1流体(地熱水など)が流れる一方で、電極121〜124で流路R1と区画された流路R2に第6配管L6を介して中間流体(純水など)が流れる構造を採用してもよい。これにより、一次熱交換器200内では、第1配管L1を介して流入した第1流体(地熱水など)と、第6配管L6を介して流入した中間流体(純水など)との間で熱交換が行われることになる。 On the other hand, as the structure of the primary heat exchanger 200, for example, the structure of the heat exchanger 11 described in FIG. 2 can be applied. For example, as shown in FIG. 2, while the first pipe L 1 from the flow path R1 through the first fluid (such as geothermal water), flow that is partitioned from the flow path R1 in the electrode 12 1 to 12 4 the road R2 sixth (such as pure water) intermediate fluid through a pipe L 6 may adopt a flow configuration. Thus, within the 200 primary heat exchanger, the first fluid flowing through the first pipe L 1 (such as geothermal water), and an intermediate fluid that has flowed through the sixth pipe L 6 (pure water) Heat exchange between the two.
なお、第6配管L6内に流通させる中間流体は純水に限られず、少なくとも沸点が第2流体よりも高く第1流体より低い流体であれば適宜公知の他の液体や気体を用いてもよい。
また、電極121〜124を用いた洗浄処理については上述した洗浄処理と同様であるので、その説明は省略する。
また、本実施形態ではバイナリー発電システムBES5と一次熱交換器200とを別体として説明したが、一次熱交換器200を含んではバイナリー発電システムBES5と称してもよいことは言うまでもない。
本実施形態によれば、析出の可能性のある第1流体はバイナリー発電システムBES5内を流通せずに、バイナリー発電システムBES5内を流通する流体(本実施形態では純水およびペンタン)は常に清浄な状態が保たれている。よって、比較的小規模な一次熱交換器200だけをクリーニングすればよいので、メンテナンス性の優れた発電システムを実現することができる。
The intermediate fluid to be circulated in the sixth pipe L6 is not limited to pure water, and any other known liquid or gas may be used as long as the fluid has at least a boiling point higher than the second fluid and lower than the first fluid. .
Further, the cleaning process using the electrodes 12 1 to 12 4 is the same as the cleaning process described above, and thus the description thereof is omitted.
Further, in the present embodiment, the binary power generation system BES5 and the primary heat exchanger 200 have been described as separate bodies. However, it is needless to say that the primary heat exchanger 200 may be referred to as a binary power generation system BES5.
According to the present embodiment, the first fluid that may be precipitated does not circulate in the binary power generation system BES5, and the fluid (pure water and pentane in the present embodiment) that circulates in the binary power generation system BES5 is always clean. The state is maintained. Therefore, since only the relatively small primary heat exchanger 200 needs to be cleaned, a power generation system with excellent maintainability can be realized.
上記した各実施形態は、本発明の趣旨を逸脱しない範囲で種々の変形が可能である。以下、各実施形態に適宜適用が可能な変形例について説明する。なお、以下の変形例においては既述の構成と同じ機能・作用を奏するものは同じ参照番号を付し、その説明は適宜省略する。
≪変形例1≫
図8は変形例1を説明する図であり、熱交換器1内の電極12を流れる電流を計測する電流計Iを備えている。この変形例1では、熱交換器1と制御部13との間の配線上に電流計Iが設置されている。
そして全体制御装置5は、電流計Iにより計測される電流値をモニターしており、検出した電流値に基づいて熱交換器1の制御部13を介して電極板12の極性反転動作を制御する。
Each of the above-described embodiments can be variously modified without departing from the spirit of the present invention. Hereinafter, modifications that can be appropriately applied to each embodiment will be described. In the following modifications, the same reference numerals are assigned to the same functions and operations as those described above, and the description thereof will be omitted as appropriate.
<< Modification 1 >>
FIG. 8 is a diagram for explaining the first modification, and includes an ammeter I for measuring the current flowing through the electrode 12 in the heat exchanger 1. In the first modification, an ammeter I is installed on the wiring between the heat exchanger 1 and the control unit 13.
The overall control device 5 monitors the current value measured by the ammeter I, and controls the polarity inversion operation of the electrode plate 12 via the control unit 13 of the heat exchanger 1 based on the detected current value. .
例えば電流計Iで計測された計測値(電流値)が所定の閾値より低下した場合、全体制御装置5は電極板12の極性を反転させる制御を行う。このとき、全体制御部5は、作動流体の流通を停止して上記した洗浄処理を行う制御も実行してもよい。
なお本変形例1では電流計を用いたが、陰極板と陽極板の間の電圧値を計測してこの電圧値に基づいて電極板12の極性を反転させる制御を行ってもよい。
For example, when the measured value (current value) measured by the ammeter I falls below a predetermined threshold, the overall control device 5 performs control to reverse the polarity of the electrode plate 12. At this time, the overall control unit 5 may also execute control for stopping the circulation of the working fluid and performing the above-described cleaning process.
In addition, although the ammeter was used in this modification 1, you may perform control which measures the voltage value between a cathode plate and an anode plate, and reverses the polarity of the electrode plate 12 based on this voltage value.
≪変形例2≫
図9は変形例2を説明する図であり、熱交換器1から蒸気タービン2へ送られる作動流体の蒸気の圧力を計測する圧力計Pを備えている。この変形例2では、熱交換器1と蒸気タービン2との間の配管上に圧力計Pが設置されている。
そして全体制御装置5は、圧力計Pにより計測される圧力値をモニターしており、検出した圧力値に基づいて熱交換器1の制御部13を介して電極板12の極性反転動作を制御する。
<< Modification 2 >>
FIG. 9 is a diagram for explaining the second modification, and includes a pressure gauge P for measuring the pressure of the steam of the working fluid sent from the heat exchanger 1 to the steam turbine 2. In the second modification, a pressure gauge P is installed on a pipe between the heat exchanger 1 and the steam turbine 2.
The overall control device 5 monitors the pressure value measured by the pressure gauge P, and controls the polarity reversal operation of the electrode plate 12 via the control unit 13 of the heat exchanger 1 based on the detected pressure value. .
例えば圧力計Pで計測された計測値(圧力値)が所定の閾値(例えば凝縮器4から熱交換器1内へ流入する際の圧力値を基準とした値)より低下した場合、全体制御装置5は電極板12の極性を反転させる制御を行う。このとき、全体制御部5は、作動流体の流通を停止して上記した洗浄処理を行う制御も実行してもよい。 For example, when the measured value (pressure value) measured by the pressure gauge P falls below a predetermined threshold value (for example, a value based on the pressure value when flowing from the condenser 4 into the heat exchanger 1), the overall control device 5 performs control to reverse the polarity of the electrode plate 12. At this time, the overall control unit 5 may also execute control for stopping the circulation of the working fluid and performing the above-described cleaning process.
≪変形例3≫
図10は変形例3を説明する図である。変形例3では、温度計TGを用いて、熱交換器1に流入する第1流体(例えば熱水)の温度と、熱交換器1から出る第1流体(熱水)の温度とを検出する。全体制御装置5は、温度計TGにより計測される圧力値をモニターしており、検出したそれぞれの温度を比較して、両者の差異が所定値以下となったときに熱交換器1の制御部13を介して電極板12の極性反転動作を制御する。
<< Modification 3 >>
FIG. 10 is a diagram for explaining the third modification. In the third modification, the temperature of the first fluid (for example, hot water) flowing into the heat exchanger 1 and the temperature of the first fluid (hot water) flowing out from the heat exchanger 1 are detected using the thermometer TG. . The overall control device 5 monitors the pressure value measured by the thermometer TG, compares the detected temperatures, and when the difference between the two becomes a predetermined value or less, the control unit of the heat exchanger 1 The polarity inversion operation of the electrode plate 12 is controlled via 13.
より具体的には、図10に示すとおり熱交換器1の前後における第1配管L1上に温度計TGが配置され、熱交換器1から見て上流側の温度計TGと下流側の温度計TGとの温度が比較される。
例えば下流側で検出された温度が、上流側で検出された温度に比してさほど降下していない場合、熱交換器1の熱交換効率が低下しているものと推測される。よって全体制御装置5は、上流側の温度計TGと下流側の温度計TGの温度計TGでそれぞれ測った温度の差に応じて、熱交換器1の制御部13を介して電極板12の極性反転動作を制御する。例えばこの差分が所定の値以下であれば、電極板12の極性反転動作を行って洗浄処理に入ってもよい。このとき、全体制御部5は、作動流体の流通を停止して上記した洗浄処理を行う制御も実行してもよい。
なお、本変形例3では第1流体の温度を検出する例を用いて説明したが、熱交換器1に流入して当該熱交換器1から流出する第2流体の温度を検出するようにしてもよい。
More specifically, a thermometer TG is disposed on a first pipe L 1 before and after the heat exchanger 1 as shown in FIG. 10, the temperature of the thermometer TG and the downstream side of the upstream from the heat exchanger 1 The temperature with the total TG is compared.
For example, when the temperature detected on the downstream side is not so much lower than the temperature detected on the upstream side, it is estimated that the heat exchange efficiency of the heat exchanger 1 is lowered. Therefore, the overall control device 5 controls the electrode plate 12 via the control unit 13 of the heat exchanger 1 according to the temperature difference measured by the thermometer TG of the upstream thermometer TG and the downstream thermometer TG. Controls the polarity reversal operation. For example, if this difference is equal to or less than a predetermined value, the polarity reversing operation of the electrode plate 12 may be performed to start the cleaning process. At this time, the overall control unit 5 may also execute control for stopping the circulation of the working fluid and performing the above-described cleaning process.
In the third modification, the example of detecting the temperature of the first fluid has been described. However, the temperature of the second fluid flowing into the heat exchanger 1 and flowing out of the heat exchanger 1 is detected. Also good.
≪変形例4≫
図11は変形例4を説明する図であり、上述した第1実施形態のバイナリー発電システムBES1に比べて凝縮器4の構成が異なっている。すなわち、変形例4の凝縮器41は、上述した電極板121〜124に対応する電極板125〜128が電解槽としての容器内にそれぞれ配置されており、これらの電極板12によって冷たい流体が流通する流路と作動流体(概ね気液二層状態となっている)が流通する流路がそれぞれ区画されている。
本変形例が上記実施形態あるいは変形例と大きく異なる点は、浄化処理に適用される液体(第1液体)が、凝縮器4に流入する冷たい流体(例えば冷水)であることである。すなわち本発明の「第1流体」には、比較的温度の高い流体(温水・熱水など)に限られず、比較的温度の低い流体も含まれる。
<< Modification 4 >>
FIG. 11 is a diagram for explaining the fourth modification, and the configuration of the condenser 4 is different from that of the binary power generation system BES1 of the first embodiment described above. That is, in the condenser 41 of Modification 4 , the electrode plates 12 5 to 12 8 corresponding to the electrode plates 12 1 to 12 4 described above are arranged in containers as electrolytic cells, respectively. A flow path through which a cold fluid flows and a flow path through which a working fluid (generally in a gas-liquid two-layer state) flows are partitioned.
The main difference between the present modification and the above-described embodiment or modification is that the liquid (first liquid) applied to the purification process is a cold fluid (for example, cold water) flowing into the condenser 4. That is, the “first fluid” of the present invention is not limited to a fluid having a relatively high temperature (hot water, hot water, etc.), and includes a fluid having a relatively low temperature.
凝縮器4に第5配管L5を介して流入する冷たい液体は、バイナリー発電においては例えば冷却塔と凝縮器との間で循環される。この冷たい液体は、例えば冷水(冷却水)や公知の冷媒(HFEなど)が適用可能である。よって、使用する冷たい液体の種類によっては、何らかの成分が析出する可能性も想定できる。
したがって、本変形例によれば、凝縮器4に流入する冷たい液体に対しても浄化処理を行うことができ、システム全体の効率を更に押し上げることが可能となる。
Cold liquid flowing through the fifth pipe L 5 to the condenser 4, in binary power generation is circulated between the example cooling tower and the condenser. As this cold liquid, for example, cold water (cooling water) or a known refrigerant (HFE or the like) can be applied. Therefore, depending on the type of the cold liquid used, it is possible to assume a possibility that some components are deposited.
Therefore, according to this modification, it is possible to perform the purification process on the cold liquid flowing into the condenser 4 and further increase the efficiency of the entire system.
上述した各実施形態および各変形例では、熱交換器1内の少なくとも一部の流路を電極板によって形成したが、これに限られず例えば熱交換器1に接続される第1配管L1をそのまま熱交換器1内に延伸させてもよいし、第1配管L1よりも熱伝導性が高い材質の配管を熱交換器1内に配置してもよい。
また、電極板12は図12(a)に示すごとき平板状である必要は必ずしもなく、例えば図12(b)や図12(c)に示すような、蛇行する曲面を持った波面状の板でもよいし、凹部と凸部が連続して連なる凹凸状の板を電極板12として適用してもよい。なお、図12(b)又は図12(c)に示す電極板12を複数枚並べて採用する場合には、各々の電極間距離が、電極板12の面内においてなるべく均一となるように同種・同形状の電極板12を並行に配置することが望ましい。また、電極板12の凹部や凸部が、第1流体や第2流体の流れの方向に沿って延びるように電極板12が電解槽内に配置されることが望ましい。
In each of the above-described embodiments and modifications, at least a part of the flow path in the heat exchanger 1 is formed by the electrode plate. However, the present invention is not limited to this. For example, the first pipe L 1 connected to the heat exchanger 1 is provided. it may also be drawn into the heat exchanger 1, the first pipe material has high thermal conductivity than the pipe L 1 may be disposed in the heat exchanger 1.
The electrode plate 12 does not necessarily have a flat plate shape as shown in FIG. 12A. For example, the wave plate having a meandering curved surface as shown in FIG. 12B or 12C. Alternatively, an uneven plate in which concave and convex portions are continuously connected may be applied as the electrode plate 12. When a plurality of electrode plates 12 shown in FIG. 12 (b) or FIG. 12 (c) are used side by side, the same type of electrode plate 12 is used so that the distance between the electrodes is as uniform as possible in the plane of the electrode plate 12. It is desirable to arrange the electrode plates 12 having the same shape in parallel. In addition, it is desirable that the electrode plate 12 is disposed in the electrolytic cell so that the concave portion or the convex portion of the electrode plate 12 extends along the flow direction of the first fluid or the second fluid.
以上で説明した各実施形態および各変形例は適宜組み合わせて地熱発電システムを構成してもよい。
また、上記ではバイナリー発電システムを例にして説明したが、他の方式の地熱発電システムに本発明を適用してもよい。さらには地熱発電システムに留まらず、流体を用いて熱交換を行う他の発電方式に本発明を適用してもよい。
Each embodiment and each modification described above may be combined as appropriate to constitute a geothermal power generation system.
In the above description, the binary power generation system has been described as an example. However, the present invention may be applied to other types of geothermal power generation systems. Furthermore, the present invention may be applied to other power generation systems that perform heat exchange using a fluid, not limited to a geothermal power generation system.
以上説明したように、本発明の熱交換器および発電システムは、低コストで高効率なシステムを構築するのに適している。 As described above, the heat exchanger and the power generation system of the present invention are suitable for constructing a low-cost and high-efficiency system.
BES バイナリー発電システム
I 電流計
P 圧力計
TG 温度計
L1〜L6 配管
e1〜e3 配線
1 熱交換器
2 蒸気タービン(第1蒸気タービン)
3 発電機(第1発電機)
4 凝縮器
5 全体制御装置
6 減圧気液分離器
7 蒸気加減弁
8 蒸気タービン(第2蒸気タービン)
9 発電機(第2発電機)
11 電解槽
12 電極板(陰極板または陽極板)
13 制御部
41 凝縮器
100 熱交換器
101 洗浄装置
102 容器
200 一次熱交換器
201 二次熱交換器
BES binary power generation system I ammeter P Pressure gauge TG thermometers L 1 ~L 6 pipe e 1 to e 3 lines 1 heat exchanger 2 the steam turbine (first steam turbine)
3 Generator (1st generator)
4 Condenser 5 Overall Control Device 6 Depressurized Gas-Liquid Separator 7 Steam Control Valve 8 Steam Turbine (Second Steam Turbine)
9 Generator (second generator)
11 Electrolysis cell 12 Electrode plate (cathode plate or anode plate)
13 Control Unit 41 Condenser 100 Heat Exchanger 101 Cleaning Device 102 Container 200 Primary Heat Exchanger 201 Secondary Heat Exchanger
Claims (12)
前記陽極板と前記陰極板に対して通電を開始して前記所定の電位を付与した後に当該所定の電位とは極性が反転した電位を付与し、その後に前記通電を解除する洗浄処理を、所定の周期毎に繰り返す制御を行う制御部と、
を含み、
前記制御部は、前記所定の電位及び前記極性が反転した電位を付与する期間よりも、前記通電を解除した後に再び通電を開始して前記所定の電位を付与するまでの期間の方が長くなるように、前記陽極板と前記陰極板に対してそれぞれ電位を付与する制御を行うことを特徴とする発電システム用の熱交換器。 An anode plate having a first flow path through which the first fluid can flow and a second flow path through which the second fluid for exchanging heat between the first fluid flows and to which a predetermined potential is applied from a power source And an electrolytic cell in which at least a part of the first flow path and the second flow path is partitioned by a cathode plate,
After applying the predetermined potential to the anode plate and the cathode plate and applying the predetermined potential, a cleaning process for applying a potential whose polarity is reversed from the predetermined potential and then canceling the energization is performed. A control unit that performs control repeated every period of
Only including,
The control unit is longer than the period of applying the predetermined potential and the inverted potential of the polarity until the predetermined potential is applied after the energization is started again after the energization is canceled. Thus, the heat exchanger for the power generation system is characterized by performing control to apply potentials to the anode plate and the cathode plate, respectively .
前記電源を制御する制御装置と、を備え、
前記制御装置は、所定のタイミングで前記陽極板と前記陰極板の極性を反転させることを特徴とするバイナリー発電システム。 A heat exchanger for a power generation system according to claim 1 or 2,
A control device for controlling the power source,
The binary power generation system, wherein the controller reverses the polarity of the anode plate and the cathode plate at a predetermined timing.
前記制御装置は、前記電流計の計測値に基づいて前記極性を反転させる請求項3に記載のバイナリー発電システム。 An ammeter for measuring the current flowing between the anode plate and the cathode plate;
The binary power generation system according to claim 3, wherein the control device reverses the polarity based on a measurement value of the ammeter.
前記制御装置は、前記圧力計の計測値に基づいて前記極性を反転させる請求項3又は4に記載のバイナリー発電システム。 A pressure gauge for measuring the pressure of the vapor generated from the second fluid;
The binary power generation system according to claim 3 or 4, wherein the control device reverses the polarity based on a measurement value of the pressure gauge.
前記制御装置は、前記温度計の計測値に基づいて前記極性を反転させる請求項3〜5のいずれか一項に記載のバイナリー発電システム。 A thermometer for detecting the temperature of the first liquid flowing into the electrolytic cell and the temperature of the first liquid flowing out of the electrolytic cell;
The binary power generation system according to any one of claims 3 to 5, wherein the controller reverses the polarity based on a measurement value of the thermometer.
前記第1蒸気タービンと、前記陽極板および前記陰極板とを電気的に接続する電力供給系とを備え、
前記制御装置は、前記第1蒸気タービンにより発電された電力の少なくとも一部を前記電源として利用する請求項3〜6のいずれか一項に記載のバイナリー発電システム。 A first steam turbine driven by medium steam generated by evaporation of the second fluid;
A power supply system that electrically connects the first steam turbine and the anode plate and the cathode plate;
The binary power generation system according to any one of claims 3 to 6, wherein the control device uses at least a part of the electric power generated by the first steam turbine as the power source.
前記減圧気液分離器により分離された前記水蒸気によって駆動される第2蒸気タービンと、をさらに含む請求項7に記載のバイナリー発電システム。 A reduced-pressure gas-liquid separator that depressurizes the first fluid and separates it into water vapor and hot water;
The binary power generation system according to claim 7, further comprising: a second steam turbine driven by the steam separated by the decompression gas-liquid separator.
前記制御装置は、前記陽極板と前記陰極板の極性を反転させるときに前記バルブを切り替えて前記熱交換器に導入された前記熱流体を前記排出管へ流入させる制御を行う請求項9に記載のバイナリー発電システム。 A valve for switching between the discharge pipe and the first pipe;
10. The control device according to claim 9, wherein when the polarities of the anode plate and the cathode plate are reversed, the control device performs control for switching the valve to flow the thermal fluid introduced into the heat exchanger into the discharge pipe. Binary power generation system.
前記熱交換器内で前記第1流体とは隔離されるように、前記第1流体と熱交換を行う第2流体を前記熱交換器内へ第2配管を介して流通させることと、
前記陽極板と前記陰極板に対して通電を開始して前記所定の電位を付与した後に当該所定の電位とは極性が反転した電位を付与し、その後に前記通電を解除する洗浄処理を、所定の周期毎に繰り返すことと、
を含み、
前記所定の電位及び前記極性が反転した電位を付与する期間よりも、前記通電を解除した後に再び通電を開始して前記所定の電位を付与するまでの期間の方が長くなるように、前記陽極板と前記陰極板に対してそれぞれ電位が付与されることを特徴とする発電システム用の熱交換器の制御方法。 Flowing a first fluid through a first pipe so as to contact the cathode plate into a heat exchanger in which an anode plate and a cathode plate to which a predetermined potential is applied from a power source is disposed;
Circulating a second fluid that exchanges heat with the first fluid into the heat exchanger via a second pipe so as to be isolated from the first fluid in the heat exchanger;
After applying the predetermined potential to the anode plate and the cathode plate and applying the predetermined potential, a cleaning process for applying a potential whose polarity is reversed from the predetermined potential and then canceling the energization is performed. Repeating every cycle,
Only including,
The anode is longer than the period in which the predetermined potential and the potential in which the polarity is inverted are applied, and the period from when the energization is released to when the predetermined potential is applied after the energization is started again. A method of controlling a heat exchanger for a power generation system , wherein a potential is applied to each of the plate and the cathode plate .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015018293A JP5855291B1 (en) | 2015-02-02 | 2015-02-02 | Heat exchanger for power generation system, binary power generation system including the heat exchanger, and control method for heat exchanger for power generation system |
CN201510763405.5A CN105836852A (en) | 2015-02-02 | 2015-11-10 | Heat exchanger, a purifier, an electrode-containing pipe, a power generation system, a control method for heat exchanger and a scale removing method |
US14/953,416 US9657600B2 (en) | 2015-02-02 | 2015-11-29 | Heat exchanger, a purifier, an electrode-containing pipe, a power generation system, a control method for heat exchanger and a scale removing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015018293A JP5855291B1 (en) | 2015-02-02 | 2015-02-02 | Heat exchanger for power generation system, binary power generation system including the heat exchanger, and control method for heat exchanger for power generation system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015239072A Division JP5932125B1 (en) | 2015-12-08 | 2015-12-08 | Scale removing apparatus and scale removing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5855291B1 true JP5855291B1 (en) | 2016-02-09 |
JP2016142451A JP2016142451A (en) | 2016-08-08 |
Family
ID=55269180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015018293A Active JP5855291B1 (en) | 2015-02-02 | 2015-02-02 | Heat exchanger for power generation system, binary power generation system including the heat exchanger, and control method for heat exchanger for power generation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5855291B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017198142A (en) * | 2016-04-27 | 2017-11-02 | 株式会社Ihi回転機械 | Binary power generating system and binary power generating method |
CN115449819A (en) * | 2022-10-26 | 2022-12-09 | 江苏金卫星能源科技有限公司 | Wide input power's alkaline electrolysis water hydrogen plant |
US11692530B2 (en) * | 2018-06-20 | 2023-07-04 | David Alan McBay | Method, system and apparatus for extracting heat energy from geothermal briny fluid |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60138212A (en) * | 1983-12-26 | 1985-07-22 | Toshiba Corp | Geothermal steam binary cycle plant |
JPH1087381A (en) * | 1996-06-28 | 1998-04-07 | Konica Corp | Treatment of porous carbonaceous electrode, carbonaceous fixed bed type three-dimensional electrode electrolytic cell and treatment of water |
JPH10128334A (en) * | 1996-10-31 | 1998-05-19 | Konica Corp | Method and apparatus for treating water, double electrode fixed bed type electrode electrolytic cell, and method for installing grounding electrode |
JP2001246378A (en) * | 2000-03-06 | 2001-09-11 | Kyushu Hitachi Maxell Ltd | Water treatment device |
JP2001246382A (en) * | 2000-03-06 | 2001-09-11 | Kyushu Hitachi Maxell Ltd | Water treatment device |
JP2002018442A (en) * | 2000-07-06 | 2002-01-22 | Sanyo Electric Co Ltd | Water treatment apparatus |
JP2006098003A (en) * | 2004-09-30 | 2006-04-13 | Kurita Water Ind Ltd | Electrolytic treating method and electrolytic treating device for circulating type cooling water system |
JP4334205B2 (en) * | 2002-11-25 | 2009-09-30 | 株式会社片山化学工業研究所 | Plate type heat exchanger and its antifouling device |
JP4444001B2 (en) * | 2004-05-28 | 2010-03-31 | 株式会社日阪製作所 | Heat exchanger |
JP2010069366A (en) * | 2008-09-16 | 2010-04-02 | Innovative Design & Technology Inc | Device for removing scale in cooling water and method for removing scale using this device |
JP2010125353A (en) * | 2008-11-25 | 2010-06-10 | Koganei Corp | Water softening method and water softener |
JP4999030B1 (en) * | 2011-11-28 | 2012-08-15 | イノベーティブ・デザイン&テクノロジー株式会社 | Scale removal device electrode structure |
WO2012144277A1 (en) * | 2011-04-19 | 2012-10-26 | 富士電機株式会社 | Scale inhibition method and geothermal power generating device |
JP2014173800A (en) * | 2013-03-11 | 2014-09-22 | Toshiba Corp | Heat exchanger and geothermal power generation system |
JP2014202150A (en) * | 2013-04-07 | 2014-10-27 | 廣明 松島 | Hot spring heat power generation system |
-
2015
- 2015-02-02 JP JP2015018293A patent/JP5855291B1/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60138212A (en) * | 1983-12-26 | 1985-07-22 | Toshiba Corp | Geothermal steam binary cycle plant |
JPH1087381A (en) * | 1996-06-28 | 1998-04-07 | Konica Corp | Treatment of porous carbonaceous electrode, carbonaceous fixed bed type three-dimensional electrode electrolytic cell and treatment of water |
JPH10128334A (en) * | 1996-10-31 | 1998-05-19 | Konica Corp | Method and apparatus for treating water, double electrode fixed bed type electrode electrolytic cell, and method for installing grounding electrode |
JP2001246378A (en) * | 2000-03-06 | 2001-09-11 | Kyushu Hitachi Maxell Ltd | Water treatment device |
JP2001246382A (en) * | 2000-03-06 | 2001-09-11 | Kyushu Hitachi Maxell Ltd | Water treatment device |
JP2002018442A (en) * | 2000-07-06 | 2002-01-22 | Sanyo Electric Co Ltd | Water treatment apparatus |
JP4334205B2 (en) * | 2002-11-25 | 2009-09-30 | 株式会社片山化学工業研究所 | Plate type heat exchanger and its antifouling device |
JP4444001B2 (en) * | 2004-05-28 | 2010-03-31 | 株式会社日阪製作所 | Heat exchanger |
JP2006098003A (en) * | 2004-09-30 | 2006-04-13 | Kurita Water Ind Ltd | Electrolytic treating method and electrolytic treating device for circulating type cooling water system |
JP2010069366A (en) * | 2008-09-16 | 2010-04-02 | Innovative Design & Technology Inc | Device for removing scale in cooling water and method for removing scale using this device |
JP2010125353A (en) * | 2008-11-25 | 2010-06-10 | Koganei Corp | Water softening method and water softener |
WO2012144277A1 (en) * | 2011-04-19 | 2012-10-26 | 富士電機株式会社 | Scale inhibition method and geothermal power generating device |
JP4999030B1 (en) * | 2011-11-28 | 2012-08-15 | イノベーティブ・デザイン&テクノロジー株式会社 | Scale removal device electrode structure |
JP2014173800A (en) * | 2013-03-11 | 2014-09-22 | Toshiba Corp | Heat exchanger and geothermal power generation system |
JP2014202150A (en) * | 2013-04-07 | 2014-10-27 | 廣明 松島 | Hot spring heat power generation system |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017198142A (en) * | 2016-04-27 | 2017-11-02 | 株式会社Ihi回転機械 | Binary power generating system and binary power generating method |
US11692530B2 (en) * | 2018-06-20 | 2023-07-04 | David Alan McBay | Method, system and apparatus for extracting heat energy from geothermal briny fluid |
CN115449819A (en) * | 2022-10-26 | 2022-12-09 | 江苏金卫星能源科技有限公司 | Wide input power's alkaline electrolysis water hydrogen plant |
CN115449819B (en) * | 2022-10-26 | 2023-07-25 | 江苏金卫星能源科技有限公司 | Alkaline water electrolysis hydrogen production device with wide input power |
Also Published As
Publication number | Publication date |
---|---|
JP2016142451A (en) | 2016-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alawad et al. | Renewable energy systems for water desalination applications: A comprehensive review | |
CN103058336B (en) | Direct-current electrolytic treatment process and equipment for circulating cooling water | |
CN102123952B (en) | Hot-water supply device | |
Xu et al. | Research and application progress of electrochemical water quality stabilization technology for recirculating cooling water in China: A short review | |
JP5855291B1 (en) | Heat exchanger for power generation system, binary power generation system including the heat exchanger, and control method for heat exchanger for power generation system | |
He et al. | Synergies and potential of hybrid solar photovoltaic-thermal desalination technologies | |
JPH0791361A (en) | Device for electric generation by temperature difference | |
CN105253939A (en) | High-temperature sulfur-containing nitrogen-containing flue gas waste heat type multi-effect distillation seawater desalination system | |
KR20110075384A (en) | Method of multi-purpose seawater utilization in industrial usage | |
JP5375908B2 (en) | Heat pump water heater | |
US9657600B2 (en) | Heat exchanger, a purifier, an electrode-containing pipe, a power generation system, a control method for heat exchanger and a scale removing method | |
Jiang et al. | A critical review on the electrochemical water softening technology from fundamental research to practical application | |
Li et al. | Facilitating removal efficiency of electrochemical descaling system using confined crystallization membranes | |
JP5932125B1 (en) | Scale removing apparatus and scale removing method | |
Luo et al. | Enhanced electrochemical softening of cooling water with three-dimensional cathodes | |
JP5946563B1 (en) | Purification device and heat exchange system using the purification device | |
EA200700522A3 (en) | METHOD OF ELECTRICALLY STABILIZATION ANTI-STYLE WATER PREPARATION, SYSTEM AND INSTALLATION FOR ITS IMPLEMENTATION | |
CN102553857B (en) | Method for removing deposited sludge | |
JP2007263419A (en) | Exhaust heat recovering system from industrial waste water | |
CN1141255C (en) | Process and equipment for supercritical desalination of sea water while providing energy | |
CN101955277A (en) | Method for treating water in process of thermal power generation | |
JP2013007547A (en) | Power generation system and method of generating power | |
RU100069U1 (en) | DEVICE FOR PREVENTING SALT SEDIMENTS IN HEAT EXCHANGE UNITS | |
CN203286921U (en) | Heat exchange system with high-chlorine water as heat-transfer medium | |
CN209857026U (en) | Steam generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5855291 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |