JP2010125353A - Water softening method and water softener - Google Patents

Water softening method and water softener Download PDF

Info

Publication number
JP2010125353A
JP2010125353A JP2008299765A JP2008299765A JP2010125353A JP 2010125353 A JP2010125353 A JP 2010125353A JP 2008299765 A JP2008299765 A JP 2008299765A JP 2008299765 A JP2008299765 A JP 2008299765A JP 2010125353 A JP2010125353 A JP 2010125353A
Authority
JP
Japan
Prior art keywords
electrode
water
electrodes
treated
predetermined value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008299765A
Other languages
Japanese (ja)
Inventor
Takayuki Nakano
崇行 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koganei Corp
Original Assignee
Koganei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koganei Corp filed Critical Koganei Corp
Priority to JP2008299765A priority Critical patent/JP2010125353A/en
Publication of JP2010125353A publication Critical patent/JP2010125353A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for softening water by which the consumption of an electrode material is suppressed, so that maintenance cost for a water softener can be reduced, and to provide the water softener. <P>SOLUTION: In the water softening method where the water to be treated is made to flow between confronted electrodes, and D.C. voltage is applied between the electrodes so as to electrolytically deposit metal ions in the water to be treated on the electrode on the cathode side, a titanium based alloy electrode containing 0.1 to 5 mass% nickel is used at least as the electrode on the anode side. Further, the water softener includes: an electrolytic cell receiving and exhausting the water to be treated; a first electrode installed in the electrolytic cell; a second electrode installed at prescribed intervals with the first electrode in the electrolytic cell; and a D.C. power source applying D.C. voltage to the space between the first electrode and the second electrode, and in which at least the electrode to form into the electrode on the anode side between the first electrode and the second electrode is made of a titanium based alloy electrode containing 0.1 to 5 mass% nickel. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電気分解により被処理水を軟水化する方法及びその装置に関する。更に詳しくは、電気分解により被処理水中のイオンを電極表面又はその近傍に析出させることを含む、軟水化方法及びその装置に関する。   The present invention relates to a method and an apparatus for softening water to be treated by electrolysis. More specifically, the present invention relates to a water softening method and an apparatus therefor, which include depositing ions in water to be treated on the surface of an electrode or in the vicinity thereof by electrolysis.

対向する電極板を備えた電解槽内に被処理水を供給し、電極板間に直流電圧を印加して、被処理水中の陽イオン及び陰イオンを電極板の表面で酸化又は還元して除去することを含む、被処理水を軟水化する方法及びそのような装置が知られている。   Water to be treated is supplied into an electrolytic cell equipped with opposing electrode plates, and a DC voltage is applied between the electrode plates to remove cations and anions in the water to be treated by oxidation or reduction on the surface of the electrode plates. There are known methods for softening water to be treated and such devices.

そのような装置を長期間運転すると、被処理水中に含まれるアルカリ金属イオン、アルカリ土類金属イオン、イオン状シリカなどの成分が、スケールとしてカソード側の電極板表面に析出し付着して次第に電流が流れなくなり、被処理水の軟水化が困難になる場合があった。   When such an apparatus is operated for a long period of time, components such as alkali metal ions, alkaline earth metal ions and ionic silica contained in the water to be treated are deposited on the surface of the cathode side electrode plate as a scale, and gradually become current. May not flow, making it difficult to soften the water to be treated.

そのため、従来は、カソード側の電極板表面に付着したスケールが一定量以上になって電流が流れにくくなったときに、電極板を電解槽から取り外し、電極板表面からスケールを物理的に除去し、電極板を再び電解槽に取り付けていた。しかしながら、これらの一連の作業は手間がかかり、装置の維持管理にかなりのコストがかかるという問題があった。   For this reason, conventionally, when the scale attached to the surface of the electrode plate on the cathode side exceeds a certain amount and it becomes difficult for current to flow, the electrode plate is removed from the electrolytic cell and the scale is physically removed from the surface of the electrode plate. The electrode plate was again attached to the electrolytic cell. However, there is a problem that these series of operations are time-consuming and require considerable cost for maintenance of the apparatus.

そのような問題に対処するため、電極板として純チタン板を使用し、電極板間に印加される電圧の極性を定期的に反転することにより、電極板表面に付着しているスケールを自動的に剥落させることが可能な軟水化装置が提案されている(特許文献1)。   In order to deal with such problems, a pure titanium plate is used as the electrode plate, and the scale attached to the electrode plate surface is automatically reversed by periodically reversing the polarity of the voltage applied between the electrode plates. A water softening device that can be peeled off is proposed (Patent Document 1).

純チタン電極板を用いた電気分解により被処理水を処理する場合、アノード側の電極表面に陽極酸化被膜(TiO2)が次第に生成する。この陽極酸化被膜は、アノード側の電極の過電圧が高いほど生成しやすい。また、一般に電極板間に約15〜18Vの電圧が印加されると、生成した陽極酸化被膜が絶縁破壊されて電極表面から剥落する。このように、純チタン電極板は装置の運転に伴って消耗するため、定期的に新品の電極と交換する必要があった。また、電極板として、Ptなどの高価な貴金属材料や、Al、SUS、Feなどのすぐに消耗する材料を使用する場合も、純チタン板を用いた場合と同様に、電極板自体のコストや装置の維持管理に関連するコストの低減が困難であった。 When water to be treated is treated by electrolysis using a pure titanium electrode plate, an anodic oxide coating (TiO 2 ) is gradually formed on the electrode surface on the anode side. This anodic oxide film is more easily generated as the overvoltage of the anode-side electrode is higher. In general, when a voltage of about 15 to 18 V is applied between the electrode plates, the generated anodic oxide film breaks down and peels off from the electrode surface. As described above, since the pure titanium electrode plate is consumed as the apparatus is operated, it is necessary to periodically replace it with a new electrode. In addition, when an expensive noble metal material such as Pt or a material that is quickly consumed such as Al, SUS, or Fe is used as the electrode plate, as in the case of using a pure titanium plate, the cost of the electrode plate itself It was difficult to reduce the costs associated with the maintenance of the equipment.

国際公開WO2008/018316号パンフレットInternational Publication WO2008 / 018316 Pamphlet

本発明は、電極材料の消耗を抑制することによって電極材料や装置の維持管理に関連するコストを低減し、効率的に被処理水の軟水化処理を行うことを可能にする、軟水化方法及びその装置を提供することを目的とする。   The present invention relates to a water softening method capable of reducing the costs associated with the maintenance of electrode materials and apparatuses by suppressing the consumption of the electrode materials and efficiently performing the water softening treatment of the water to be treated. An object is to provide such a device.

本発明の一実施態様によれば、対向する電極間に被処理水を配置し、電極間に直流電圧を印加して、被処理水中の金属イオンをカソード側の電極に電解析出させることを含む、被処理水の軟水化方法であって、ニッケルを0.1〜5質量%含有するチタン系合金電極を少なくともアノード側の電極に使用することを特徴とする、被処理水の軟水化方法が提供される。   According to one embodiment of the present invention, the water to be treated is disposed between the opposing electrodes, a DC voltage is applied between the electrodes, and the metal ions in the water to be treated are electrolytically deposited on the cathode side electrode. A method for softening water to be treated, comprising using a titanium-based alloy electrode containing 0.1 to 5% by mass of nickel as an electrode on at least the anode side Is provided.

本発明の他の実施態様では、ニッケルを0.1〜5質量%含有するチタン系合金電極をカソード側とアノード側の両方の電極に使用し、電極間に印加する電圧の極性を所定時間毎に反転させてもよい。   In another embodiment of the present invention, a titanium-based alloy electrode containing 0.1 to 5% by mass of nickel is used for both the cathode side and anode side electrodes, and the polarity of the voltage applied between the electrodes is changed every predetermined time. May be reversed.

本発明の他の実施態様では、電極間に流す電流がアノード側の電極の単位面積1m2当たり0.1〜30Aであってもよい。 In another embodiment of the present invention, the current flowing between the electrodes may be 0.1 to 30 A per 1 m 2 of the anode-side electrode area.

本発明の他の実施態様では、電極間に流す電流が定電流であってもよい。   In another embodiment of the present invention, the current flowing between the electrodes may be a constant current.

本発明の他の実施態様では、被処理水の電気伝導率が所定値Aより高い場合は、電極間に流す電流を増加させ、被処理水の電気伝導率が所定値Bより低い場合は、電極間に流す電流を減少させ、所定値Aと所定値BをA≧Bの関係としてもよい。このとき、被処理水の電気伝導率の所定値Aを30〜150mS/m、所定値Bを30〜150mS/mとすることが好ましい。   In another embodiment of the present invention, when the electrical conductivity of the treated water is higher than the predetermined value A, the current flowing between the electrodes is increased, and when the electrical conductivity of the treated water is lower than the predetermined value B, The current flowing between the electrodes may be reduced so that the predetermined value A and the predetermined value B have a relationship of A ≧ B. At this time, it is preferable that the predetermined value A of the electric conductivity of the water to be treated is 30 to 150 mS / m and the predetermined value B is 30 to 150 mS / m.

また、本発明の一実施態様によれば、被処理水を受け入れて排出する電解槽と、電解槽内に設置されている1又は複数の第一電極と、電解槽内で第一電極と所定間隔をおいて設置されている1又は複数の第二電極と、第一電極と第二電極の間に直流電圧を印加する直流電源とを備える軟水化装置であって、第一電極と第二電極のうち少なくともアノード側の電極となる電極が、ニッケルを0.1〜5質量%含有するチタン系合金電極であることを特徴とする、軟水化装置が提供される。   Further, according to one embodiment of the present invention, an electrolytic cell that receives and discharges water to be treated, one or more first electrodes installed in the electrolytic cell, and the first electrode and a predetermined value in the electrolytic cell A water softening device comprising one or a plurality of second electrodes arranged at intervals, and a DC power source for applying a DC voltage between the first electrode and the second electrode, wherein the first electrode and the second electrode Provided is a water softening device in which at least an electrode serving as an anode side electrode is a titanium alloy electrode containing 0.1 to 5% by mass of nickel.

本発明の他の実施態様では、第一電極及び第二電極の両方が、ニッケルを0.1〜5質量%含有するチタン系合金電極であって、軟水化装置が、第一電極と第二電極の間に印加されている電圧の極性を所定時間毎に反転させる極性切替装置を更に備えてもよい。   In another embodiment of the present invention, both the first electrode and the second electrode are titanium-based alloy electrodes containing 0.1 to 5% by mass of nickel, and the water softening device includes the first electrode and the second electrode. You may further provide the polarity switching apparatus which reverses the polarity of the voltage applied between the electrodes for every predetermined time.

本発明の他の実施態様では、直流電源が、アノード側の電極の単位面積1m2当たり0.1〜30Aの定電流を流すことが可能な直流安定化電源であってもよい。 In another embodiment of the present invention, the direct current power source may be a direct current stabilized power source capable of flowing a constant current of 0.1 to 30 A per 1 m 2 of the electrode area on the anode side.

本発明の他の実施態様では、軟水化装置が、被処理水の電気伝導率を計測する電気伝導率計と、電気伝導率計によって得られた電気伝導率が所定値Aより高い場合は、直流電源の出力電圧を高くして電極間を流れる電流を増加させ、電気伝導率計によって得られた電気伝導率が所定値Bより低い場合は、直流電源の出力電圧を低くして電極間を流れる電流を減少させ、所定値Aと所定値BをA≧Bの関係とする、電流制御装置とを備えていてもよい。このとき、被処理水の電気伝導率の所定値Aを30〜150mS/m、所定値Bを30〜150mS/mとすることが好ましい。   In another embodiment of the present invention, when the water softener is an electrical conductivity meter that measures the electrical conductivity of the water to be treated, and the electrical conductivity obtained by the electrical conductivity meter is higher than a predetermined value A, When the output voltage of the DC power supply is increased to increase the current flowing between the electrodes, and the electrical conductivity obtained by the electric conductivity meter is lower than the predetermined value B, the output voltage of the DC power supply is lowered to reduce the gap between the electrodes. You may provide the electric current control apparatus which reduces the electric current which flows and makes the predetermined value A and the predetermined value B the relationship of A> = B. At this time, it is preferable that the predetermined value A of the electric conductivity of the water to be treated is 30 to 150 mS / m and the predetermined value B is 30 to 150 mS / m.

本発明によれば、ニッケルを含有するチタン系合金を電極として使用することにより、被処理水中のスケール成分の除去能力を純チタン電極と同等に維持しながら、絶縁破壊により失われる電極材料の量を純チタン電極と比べて非常に減らすことができる。従って、本発明によれば、電極の寿命を大幅に延ばすことができ、電極材料自体のコスト及び軟水化装置の維持管理(例えば電極交換作業)に関するコストを大幅に削減できる。   According to the present invention, by using a titanium-based alloy containing nickel as an electrode, the amount of electrode material lost due to dielectric breakdown while maintaining the ability to remove scale components in the water to be treated equivalent to that of a pure titanium electrode Can be greatly reduced as compared with a pure titanium electrode. Therefore, according to this invention, the lifetime of an electrode can be extended significantly and the cost regarding the maintenance of a water softening apparatus (for example, electrode replacement | exchange operation | work) can be reduced significantly.

特に、電流密度の大きい条件では、従来の純チタン電極が絶縁破壊によって大量に失われるのに対し、ニッケル含有チタン系合金電極はほとんど減少しない。従って、本発明によれば、従来の軟水化装置では実現が困難であった運転条件、すなわち電流密度の大きい運転条件を用いて、軟水化処理の速度を高めることができる。   In particular, under conditions where the current density is large, the conventional pure titanium electrode is lost in large quantities due to dielectric breakdown, whereas the nickel-containing titanium-based alloy electrode hardly decreases. Therefore, according to the present invention, it is possible to increase the speed of the water softening process using operating conditions that have been difficult to achieve with conventional water softeners, that is, operating conditions with a large current density.

また、本発明によれば、ニッケル含有チタン系合金電極は、純チタン電極と比べて電気分解に要する電圧が低いため、軟水化処理に必要な消費電力を低減できる。   In addition, according to the present invention, the nickel-containing titanium-based alloy electrode has a lower voltage required for electrolysis than the pure titanium electrode, so that it is possible to reduce the power consumption required for the water softening treatment.

また、必要に応じて、電極間に印加された電圧の極性を反転させることにより、カソード側の電極表面に付着したスケールをメンテナンスフリーで除去することもできる。このようにして、軟水化装置の維持管理コスト、特に作業者によるスケール除去作業に関するコストをさらに削減することができる。   Further, if necessary, the scale attached to the electrode surface on the cathode side can be removed maintenance-free by inverting the polarity of the voltage applied between the electrodes. In this way, it is possible to further reduce the maintenance cost of the water softening device, particularly the cost related to the scale removal work by the operator.

また、電極間に印加された電圧の極性を所定時間毎に反転させる場合、対向する両方の電極について、陽極酸化被膜の絶縁破壊に由来する電極の消耗量を同程度にできるため、電極材料をさらに有効に利用できる。   In addition, when the polarity of the voltage applied between the electrodes is reversed every predetermined time, the electrode consumption due to the dielectric breakdown of the anodic oxide coating can be made the same for both opposing electrodes. It can be used more effectively.

また、必要に応じて、被処理水の電気伝導率を監視しながら軟水化処理を行うことにより、軟水化処理を効率的に行いつつ電極の消耗をさらに抑制できる。例えば、被処理水の電気伝導率が所定値Aより高くなった場合は、軟水化処理を促進するのに必要な電流が被処理水中に流れることを確実にし、一方で被処理水の電気伝導率が所定値Bより低くなった場合は、電極間を流れる電流を減少させて電極の消耗を抑制し消費電力を低減できる。   Further, if necessary, by performing the water softening process while monitoring the electrical conductivity of the water to be treated, it is possible to further suppress the electrode consumption while performing the water softening process efficiently. For example, when the electrical conductivity of the treated water becomes higher than a predetermined value A, it is ensured that the current necessary for promoting the water softening treatment flows in the treated water, while the electrical conductivity of the treated water. When the rate is lower than the predetermined value B, the current flowing between the electrodes can be reduced to suppress the consumption of the electrodes and reduce the power consumption.

なお、上述の記載は、本発明の全ての実施態様及び本発明に関する全ての利点を開示したものとみなしてはならない。   The above description should not be construed as disclosing all embodiments of the present invention and all advantages related to the present invention.

以下、図を参照しながら、本発明の代表的な実施態様を例示する目的でより詳細に説明するが、本発明はこれらの実施態様に限定されない。   Hereinafter, the present invention will be described in more detail with reference to the drawings for the purpose of illustrating representative embodiments of the present invention. However, the present invention is not limited to these embodiments.

図1は、本発明の一実施態様による軟水化装置10の概略図である。軟水化装置10は電解槽12と、電解槽12の中に収容された電極ユニット14と、電極ユニット14に直流電流を供給する直流電源16と、制御盤17とを備えている。   FIG. 1 is a schematic view of a water softening device 10 according to an embodiment of the present invention. The water softening device 10 includes an electrolytic cell 12, an electrode unit 14 accommodated in the electrolytic cell 12, a DC power supply 16 that supplies a DC current to the electrode unit 14, and a control panel 17.

電解槽12は箱状の容器からなり、電解槽12の底部18で電解槽12の側部に近い位置には給水ポンプ20を介して原水(被処理水)を「IN」と示された配管から受け入れる給水口22が設けられている。電解槽12及び給水ポンプ20の大きさ(容量)は供給される原水の量に応じて設計される。   The electrolytic cell 12 is a box-shaped container, and the raw water (treated water) is indicated as “IN” via a water supply pump 20 at a position near the side of the electrolytic cell 12 at the bottom 18 of the electrolytic cell 12. A water supply port 22 is provided. The size (capacity) of the electrolytic cell 12 and the feed water pump 20 is designed according to the amount of raw water supplied.

電極ユニット14は、所定間隔をおいて交互に配置された、1又は複数の第一電極及び1又は複数の第二電極から構成される。電極ユニット14の第一電極及び第二電極はそれぞれ、板状、丸棒状、角棒状など任意の形状とすることができる。一般に使用される角形の電解槽に収容しやすいことや単位質量当たりの有効処理面積が大きいことなどから、板状電極を使用することが好ましい。電極ユニット14の大きさは、必要とされる軟水化処理能力に応じて設計される。   The electrode unit 14 includes one or more first electrodes and one or more second electrodes that are alternately arranged at a predetermined interval. The first electrode and the second electrode of the electrode unit 14 can each have any shape such as a plate shape, a round bar shape, and a square bar shape. It is preferable to use a plate-like electrode because it can be easily accommodated in a rectangular electrolytic cell that is generally used and the effective treatment area per unit mass is large. The size of the electrode unit 14 is designed according to the required water softening capacity.

図2は、本発明の一実施態様による、複数の板状電極24、26から構成される電極ユニット14の概略図を示す。電極ユニット14は、複数の板状の第一電極24と複数の板状の第二電極26とから構成され、第一電極24と第二電極26は所定間隔をおいて交互に平行に配置されている。   FIG. 2 shows a schematic diagram of an electrode unit 14 composed of a plurality of plate-like electrodes 24, 26 according to one embodiment of the present invention. The electrode unit 14 includes a plurality of plate-like first electrodes 24 and a plurality of plate-like second electrodes 26, and the first electrodes 24 and the second electrodes 26 are alternately arranged in parallel at predetermined intervals. ing.

図2では、電極ユニット14の第一電極24は直流電源16の正極側の出力端子に接続され、第二電極26は直流電源16の負極側の出力端子に接続されており、直流電源16によって、第一電極と第二電極との間に直流電圧が印加される。   In FIG. 2, the first electrode 24 of the electrode unit 14 is connected to the positive output terminal of the DC power supply 16, and the second electrode 26 is connected to the negative output terminal of the DC power supply 16. A DC voltage is applied between the first electrode and the second electrode.

本発明によれば、少なくともアノード側の電極に、チタンをベースとしてニッケルを約0.1〜約5質量%、好ましくは約0.2〜約3質量%、より好ましくは約0.3〜約2質量%含有するチタン系合金を使用する。ニッケルの含有量が約5質量%を超えると、合金時の温度によっては、ニッケル含有チタン合金の相が電気分解活性を示すβTiからαTiへ変化して、軟水化処理を行うのに適当な電気分解活性を示さなくなり、一方でニッケルの含有量が約0.1質量%より少ないと、陽極酸化被膜の生成を十分に抑制できなくなる。ニッケル含有チタン系合金は、チタンをベースとしてニッケルのみを含有するチタン−ニッケル二元系合金であることが好ましい。ニッケル含有チタン系合金電極を使用すると、アノード側の電極表面における陽極酸化被膜の生成が抑制されるため、陽極酸化被膜の絶縁破壊及び剥落による電極の消耗を低減できる。また、陽極酸化被膜の抵抗に起因する電圧降下が小さくなるため電極間に印加する電圧を低くでき、結果的に消費電力を低減できる。   According to the present invention, at least about 0.1 to about 5 wt.%, Preferably about 0.2 to about 3 wt.%, More preferably about 0.3 to about 3 wt. A titanium-based alloy containing 2% by mass is used. When the nickel content exceeds about 5% by mass, depending on the temperature at the time of alloying, the phase of the nickel-containing titanium alloy changes from βTi, which shows electrolysis activity, to αTi, which is suitable for water softening treatment. On the other hand, when the content of nickel is less than about 0.1% by mass, the formation of the anodized film cannot be sufficiently suppressed. The nickel-containing titanium-based alloy is preferably a titanium-nickel binary alloy containing only nickel based on titanium. When the nickel-containing titanium-based alloy electrode is used, the generation of an anodized film on the electrode surface on the anode side is suppressed, so that electrode consumption due to dielectric breakdown and peeling off of the anodized film can be reduced. Further, since the voltage drop due to the resistance of the anodic oxide coating is reduced, the voltage applied between the electrodes can be lowered, and as a result, the power consumption can be reduced.

チタン−ニッケル合金の特性(例えば状態図)及び製造方法は、例えば、Max Hansen and Kurt Anderko, "Constitution of Binary Alloys", McGraw-Hill Book Co., New York (1958) に、多数の引用文献と併せて記載されている。   Titanium-nickel alloy properties (eg, phase diagrams) and methods of manufacture are described in, for example, Max Hansen and Kurt Anderko, “Constitution of Binary Alloys”, McGraw-Hill Book Co., New York (1958), with numerous references and It is also described.

本発明の他の実施態様による軟水化装置は、第一電極と第二電極の間に印加されている電圧を反転させる、極性切替装置(不図示)をさらに備えていてもよい。この極性切替装置は、所定時間毎に極性反転を行う動作機構を備えていてもよい。この場合、第一電極及び第二電極はいずれも、交互にアノード側の電極及びカソード側の電極として機能するため、両方の電極が、ニッケルを約0.1〜約5質量%、好ましくは約0.2〜約3質量%、より好ましくは約0.3〜約2質量%含有するチタン系合金電極であることが好ましい。   The water softening device according to another embodiment of the present invention may further include a polarity switching device (not shown) that reverses the voltage applied between the first electrode and the second electrode. The polarity switching device may include an operation mechanism that performs polarity inversion every predetermined time. In this case, since both the first electrode and the second electrode alternately function as an anode-side electrode and a cathode-side electrode, both electrodes contain about 0.1 to about 5% by mass of nickel, preferably about A titanium-based alloy electrode containing 0.2 to about 3 mass%, more preferably about 0.3 to about 2 mass% is preferable.

直流電源16は、アノード側となる電極の単位面積1m2当たり約0.1〜約30Aの定電流を流すことが可能な直流安定化電源とすることができる。この場合、電極を板状としてもよく、図2に示すようにそれらの表面を対向させることにより、電極間の電流密度分布をより均一にできる。 The direct current power source 16 can be a direct current stabilized power source capable of flowing a constant current of about 0.1 to about 30 A per 1 m 2 of the electrode area on the anode side. In this case, the electrodes may be plate-shaped, and the current density distribution between the electrodes can be made more uniform by making their surfaces face each other as shown in FIG.

電解槽12の側部28と電極ユニット14の間で、給水口22の反対側になる場所には2枚の平行なオーバーフロー仕切り30が上下に若干ずれた状態で略垂直に所定間隔をおいて設置されている。電解槽12の側部28で、オーバーフロー仕切り30が設けられている側の上方には軟水化処理された水を流出させる流出口32が設けられている。   Between the side portion 28 of the electrolytic cell 12 and the electrode unit 14, at a place opposite to the water supply port 22, two parallel overflow partitions 30 are slightly perpendicularly spaced apart at a predetermined interval. is set up. On the side portion 28 of the electrolytic cell 12, an outlet 32 is provided above the side where the overflow partition 30 is provided to allow the water subjected to softening treatment to flow out.

電解槽12の側部28とオーバーフロー仕切り30の間で、流出口32の近くには被処理水の電気伝導率を測定する電気伝導率計34が設置されている。電気伝導率計34によって測定された被処理水の電気伝導率を、例えば制御盤17にデータとして送って、直流電源16から供給される電流を制御するために利用してもよい。例えば、本発明の一実施態様によれば、被処理水の電気伝導率が所定値Aより高い場合は、直流電源の出力電圧を高くして電極間を流れる電流を増加させ、被処理水の電気伝導率が所定値B(A≧B)より低い場合は、直流電源の出力電圧を低くして電極間を流れる電流を減少させるように、直流電源16の出力を制御することが可能な、電流制御装置(不図示)をさらに設けることができる。   Between the side portion 28 of the electrolytic cell 12 and the overflow partition 30, an electric conductivity meter 34 for measuring the electric conductivity of the water to be treated is installed near the outlet 32. For example, the electrical conductivity of the water to be treated measured by the electrical conductivity meter 34 may be sent as data to the control panel 17 and used to control the current supplied from the DC power supply 16. For example, according to one embodiment of the present invention, when the electrical conductivity of the water to be treated is higher than the predetermined value A, the output voltage of the DC power supply is increased to increase the current flowing between the electrodes, When the electrical conductivity is lower than a predetermined value B (A ≧ B), it is possible to control the output of the DC power supply 16 so as to reduce the current flowing between the electrodes by lowering the output voltage of the DC power supply. A current control device (not shown) can be further provided.

電解槽12の上部にはフロートスイッチ36が設置されている。受けタンク44の濾過部60にスケール70が蓄積して、電解槽12から流出口32を介して流出する水の抵抗が上昇した場合、フロートスイッチ36が作動して制御盤17に信号が送られる。   A float switch 36 is installed in the upper part of the electrolytic cell 12. When the scale 70 accumulates in the filtration unit 60 of the receiving tank 44 and the resistance of water flowing out from the electrolytic cell 12 through the outlet 32 increases, the float switch 36 is activated and a signal is sent to the control panel 17. .

電解槽12の下方には電解槽12で軟水化処理した水を一時的に蓄える受けタンク44が設けられ、流出口32は流出配管46を介して受けタンク44につながっている。受けタンク44の近傍には受けタンク44に収容された処理水(軟水)を排出する排出ポンプ48が設置されている。受けタンク44内には、処理水(軟水)の水面が所定高さに到達したときに、排出ポンプ48を作動させて受けタンク44内の処理水を排出するためのフロートスイッチ50が設けられている。   A receiving tank 44 for temporarily storing water softened in the electrolytic cell 12 is provided below the electrolytic cell 12, and the outlet 32 is connected to the receiving tank 44 through an outflow pipe 46. A discharge pump 48 for discharging treated water (soft water) stored in the receiving tank 44 is installed in the vicinity of the receiving tank 44. A float switch 50 is provided in the receiving tank 44 for operating the discharge pump 48 to discharge the treated water in the receiving tank 44 when the surface of the treated water (soft water) reaches a predetermined height. Yes.

電解槽12の底部18の中央付近には堆積したスケールを排出させる排出口52が設けられている。電解槽12の底部18は排出口52に向けて低くなるように傾斜し、その傾斜角αは一般に約25度〜約35度とすることができる。   Near the center of the bottom 18 of the electrolytic cell 12, a discharge port 52 for discharging the accumulated scale is provided. The bottom portion 18 of the electrolytic cell 12 is inclined so as to become lower toward the discharge port 52, and the inclination angle α can be generally about 25 degrees to about 35 degrees.

排出口52の下方には排出装置54が設けられている。排出装置54は開閉装置である排出バルブ及び排出用タイマーを備えており、排出用タイマーによって、堆積したスケールを排出するタイミング及び排出バルブの開放時間が制御される。   A discharge device 54 is provided below the discharge port 52. The discharge device 54 includes a discharge valve and a discharge timer which are open / close devices, and the discharge timer controls the timing of discharging the accumulated scale and the open time of the discharge valve.

排出装置54の出側は別の配管に接続されることなく開放状態になっており、排出装置54の直下で受けタンク44の上方には電解槽12内部の水とともに排出されたスケール70を分離する濾過部60が設けられている。   The outlet side of the discharge device 54 is open without being connected to another pipe, and the scale 70 discharged together with the water in the electrolytic cell 12 is separated directly below the discharge device 54 and above the receiving tank 44. A filtering unit 60 is provided.

排出装置54の排出能力は電解槽12の大きさに応じて設定される。例えば、電解槽12に水が所定高さまで入れられていて排出バルブ56が全開状態になったときに排出される水の最大流量が約30リットル/分以上となるように、排出装置54を設定してもよい。   The discharge capacity of the discharge device 54 is set according to the size of the electrolytic cell 12. For example, the discharge device 54 is set so that the maximum flow rate of water discharged when the water is put in the electrolytic cell 12 to a predetermined height and the discharge valve 56 is fully opened is about 30 liters / minute or more. May be.

次に、図3を参照しながら、本発明の一実施態様による軟水化方法を説明する。図3は本発明の一実施態様による軟水化装置の制御機構の説明図である。   Next, a water softening method according to an embodiment of the present invention will be described with reference to FIG. FIG. 3 is an explanatory diagram of the control mechanism of the water softening device according to one embodiment of the present invention.

最初に被処理水の流れを説明する。給水ポンプ20を作動させると、図中、「IN」と示された配管から原水(被処理水)が電解槽12の給水口22から電解槽12の内部に供給される。供給された被処理水は電極ユニット14を浸漬する。低い方のオーバーフロー仕切り30の上端から溢れた処理水(軟水)は、2枚のオーバーフロー仕切り30の間を通って、流出口32から電解槽12の外部に流出し、流出配管46を介して受けタンク44に入る。   First, the flow of water to be treated will be described. When the water supply pump 20 is operated, raw water (treated water) is supplied from the water supply port 22 of the electrolytic cell 12 to the inside of the electrolytic cell 12 through a pipe indicated as “IN” in the drawing. The supplied water to be treated immerses the electrode unit 14. The treated water (soft water) overflowing from the upper end of the lower overflow partition 30 flows between the two overflow partitions 30, flows out of the electrolytic cell 12 from the outlet 32, and is received through the outlet pipe 46. Enter tank 44.

受けタンク44のフロートスイッチ50は、処理水(軟水)の水面が所定高さに到達したときにスイッチが入るように設定してある。受けタンク44の処理水(軟水)の水面がその設定した高さになると、フロートスイッチ50が入って排出ポンプ48が作動し、受けタンク44中の処理水(軟水)は排出ポンプ48によって「OUT」と示された配管を通って排出される。   The float switch 50 of the receiving tank 44 is set to be switched on when the surface of the treated water (soft water) reaches a predetermined height. When the water level of the treated water (soft water) in the receiving tank 44 reaches the set height, the float switch 50 is turned on and the discharge pump 48 is activated, and the treated water (soft water) in the receiving tank 44 is “OUT” by the discharge pump 48. It is discharged through a pipe indicated as “.

電解槽12に被処理水が満たされた状態で直流電源16をオンにすると、アノード側の電極に正電圧が印加され、カソード側の電極に負電圧が印加される。その結果、それら電極間に配置された被処理水中に含まれているカルシウムイオン、マグネシウムイオンなどの金属イオンおよびイオン状シリカは、例えば、カソード側の電極に引き寄せられてその表面で還元される、カソード側の電極近傍のpHが高いために飽和濃度に達するなど、様々な機構によりカソード側の電極の表面又は表面近傍にスケールとして析出する。その結果、被処理水に含まれるこれらのイオンは次第に減少する。   When the DC power supply 16 is turned on while the electrolytic cell 12 is filled with the water to be treated, a positive voltage is applied to the anode side electrode and a negative voltage is applied to the cathode side electrode. As a result, for example, metal ions such as calcium ions and magnesium ions and ionic silica contained in the water to be treated arranged between the electrodes are attracted to the electrode on the cathode side and reduced on the surface thereof. It deposits as a scale on or near the surface of the cathode side electrode by various mechanisms such as reaching a saturation concentration due to the high pH in the vicinity of the cathode side electrode. As a result, these ions contained in the water to be treated are gradually reduced.

アノード側の電極とカソード側の電極の間に電流を流すと、アノード側の電極表面に陽極酸化被膜が生成して電極表面の抵抗値が上昇する。陽極酸化被膜は、ある程度の電圧が印加されると絶縁破壊して剥落し、その結果、アノード側の電極が消耗する。また、陽極酸化被膜の抵抗により電圧降下が生じるため、電極間に印加する電圧を高める必要が生じる場合もある。本発明では、少なくともアノード側の電極に、チタンをベースとしてニッケルを約0.1〜約5質量%、好ましくは約0.2〜約3質量%、より好ましくは約0.3〜約2質量%含有するチタン系合金電極を使用することにより、このような陽極酸化被膜の生成を最小限に留めることができる。このように、本発明によれば、陽極酸化被膜の絶縁破壊及び剥落による電極の消耗を低減でき、電極間に印加する電圧を低くして消費電力を低減できる。   When a current is passed between the anode-side electrode and the cathode-side electrode, an anodic oxide film is formed on the anode-side electrode surface, and the resistance value on the electrode surface increases. When a certain voltage is applied, the anodized film breaks down due to dielectric breakdown, and as a result, the electrode on the anode side is consumed. Moreover, since a voltage drop occurs due to the resistance of the anodic oxide coating, it may be necessary to increase the voltage applied between the electrodes. In the present invention, at least about 0.1 to about 5% by weight of nickel based on titanium, preferably about 0.2 to about 3% by weight, more preferably about 0.3 to about 2% by weight, at least on the anode side electrode. By using a titanium-based alloy electrode containing 1%, the generation of such an anodized film can be minimized. As described above, according to the present invention, it is possible to reduce the consumption of the electrodes due to the dielectric breakdown and peeling off of the anodic oxide coating, and it is possible to reduce the voltage applied between the electrodes and reduce the power consumption.

ニッケル含有チタン系合金電極をカソード側とアノード側の両方の電極に使用し、電極間に印加する電圧の極性を所定時間毎に反転させてもよい。電圧の極性反転は、上述したような極性切替装置を用いて行うことができる。印加電圧の極性反転を行うと、反転前にカソード側の電極であった、スケールが表面に付着した電極がアノード側の電極となり、上述したような陽極酸化被膜の絶縁破壊及び剥落と同時にスケールが電極表面から除去される。そのため、軟水化装置を運転しながら電極表面からのスケール除去を行うことができ、スケール除去に関するメンテナンス作業が不要になる。また、電極の消耗は主に陽極酸化被膜の絶縁破壊及び剥落に起因するため、印加電圧の極性反転を行うと、対向する両方の電極の消耗を同程度に調節できて電極材料をさらに有効に使用できる。   Nickel-containing titanium-based alloy electrodes may be used for both the cathode and anode electrodes, and the polarity of the voltage applied between the electrodes may be reversed every predetermined time. The polarity inversion of the voltage can be performed using the polarity switching device as described above. When the polarity of the applied voltage is reversed, the electrode on the cathode side, which was the cathode side electrode before the inversion, becomes the anode side electrode, and the scale is removed simultaneously with the dielectric breakdown and peeling of the anodic oxide coating as described above. It is removed from the electrode surface. Therefore, scale removal from the electrode surface can be performed while operating the water softening device, and maintenance work relating to scale removal becomes unnecessary. In addition, since electrode wear is mainly due to dielectric breakdown and peeling of the anodized film, if the polarity of the applied voltage is reversed, the wear of both opposing electrodes can be adjusted to the same level, making the electrode material more effective. Can be used.

アノード側となる電極の単位面積1m2当たり約0.1〜約30Aの電流、好ましくは約0.5〜約25Aの電流を電極間に流してもよい。アノード側の電極の単位面積(1m2)当たりの電流、すなわちアノード側の電極表面における電流密度が約0.1A/m2未満では被処理水を十分に軟水化できず、一方で約30A/m2を超えると電極が腐食して過度に消耗する。また、この場合に電極を板状にしてもよい。電極を板状にすると、電極間の電流密度分布がより均一になり、軟水化処理を電極ユニット全体で均一に行うことができる。 A current of about 0.1 to about 30 A, preferably about 0.5 to about 25 A, may be passed between the electrodes per 1 m 2 of the electrode area on the anode side. If the current per unit area (1 m 2 ) of the electrode on the anode side, that is, the current density on the surface of the electrode on the anode side is less than about 0.1 A / m 2 , the water to be treated cannot be sufficiently softened. If it exceeds m 2 , the electrode corrodes and is excessively consumed. In this case, the electrode may be plate-shaped. When the electrodes are plate-shaped, the current density distribution between the electrodes becomes more uniform, and the water softening treatment can be performed uniformly throughout the electrode unit.

電極間に流す電流を定電流としてもよい。定電流の供給は、上述したような直流安定化電源を用いて行うことができる。このようにすると、アノード側の電極表面での陽極酸化被膜の生成量にかかわらず、軟水化処理を一定速度で行うことができる。   The current flowing between the electrodes may be a constant current. The constant current can be supplied using a DC stabilized power supply as described above. In this way, the water softening treatment can be performed at a constant rate regardless of the amount of anodic oxide film formed on the anode-side electrode surface.

電気分解による被処理水の軟水化処理を継続すると、カソード側の電極の表面又は表面近傍にスケールが析出し、その一部は電解槽12の底部18に泥状物質として次第に堆積する。また、上述したように、電極間に印加する電圧の極性を所定時間毎に反転させて、スケールの付着している電極表面の陽極酸化被膜を絶縁破壊した場合も、剥落したスケールが同様に底部18に堆積する。被処理水の供給速度、スケールの堆積速度などに合わせて動作タイミングと開放時間が予め設定された排出用タイマー58によって、その設定した作動タイミングで排出バルブ56が開放し、電解槽12内の処理水(軟水)は底部18に堆積していたスケールとともに排出される。   When the water-softening treatment of the water to be treated by electrolysis is continued, scale deposits on the surface of the electrode on the cathode side or in the vicinity of the surface, and a part thereof gradually accumulates as a muddy substance on the bottom 18 of the electrolytic cell 12. In addition, as described above, when the polarity of the voltage applied between the electrodes is reversed every predetermined time, and the anodic oxide film on the surface of the electrode to which the scale is attached breaks down, the peeled scale is also the bottom 18 is deposited. The discharge valve 58 is opened at the set operation timing by the discharge timer 58 whose operation timing and release time are set in advance according to the supply speed of the water to be treated, the deposition speed of the scale, etc. Water (soft water) is discharged together with the scale deposited on the bottom 18.

排出された処理水(軟水)中のスケールは濾過部60で濾過されて除かれ、処理水は受けタンク44に入る。排出用タイマー58に設定された開放時間が経過した時点で排出バルブは閉止し、電解槽12が再び被処理水で満たされる。濾過部60に残されたスケールはある程度溜まった時点で順次搬出除去される。   The scale in the discharged treated water (soft water) is filtered and removed by the filtration unit 60, and the treated water enters the receiving tank 44. When the opening time set in the discharge timer 58 has elapsed, the discharge valve is closed, and the electrolytic cell 12 is again filled with the water to be treated. The scale remaining in the filtration unit 60 is sequentially carried out and removed when it accumulates to some extent.

電解槽12の流出口の近くに設置されている電気伝導率計34は、被処理水の電気伝導率を常時計測している。被処理水の電気伝導率が所定値以上になった場合、警報装置38が作動して、警報ランプ40を点灯させ警報ブザー42を鳴らす。   An electrical conductivity meter 34 installed near the outlet of the electrolytic cell 12 constantly measures the electrical conductivity of the water to be treated. When the electrical conductivity of the water to be treated becomes a predetermined value or more, the alarm device 38 is activated, the alarm lamp 40 is turned on, and the alarm buzzer 42 is sounded.

電気伝導率計34を使用して被処理水の電気伝導率を測定し、被処理水の電気伝導率が所定値Aより高い場合は、電極間を流れる電流を増加させ、被処理水の電気伝導率が所定値Bより高い場合は、電極間を流れる電流を減少させてもよい。このような制御は、上述したような電流制御装置によって行うことができる。所定値Aと所定値BはA≧Bの関係にある。所定値Aと所定値Bはそれぞれ、上述した関係(A≧B)を満たしつつ、約30〜約150mS/m、好ましくは約50〜約100mS/mとすることができる。このようにすると、軟水化処理を効率的に行いつつ電極の過度の消耗を抑えることができる。   The electrical conductivity meter 34 is used to measure the electrical conductivity of the water to be treated. When the electrical conductivity of the water to be treated is higher than the predetermined value A, the current flowing between the electrodes is increased to When the conductivity is higher than the predetermined value B, the current flowing between the electrodes may be reduced. Such control can be performed by the current control device as described above. The predetermined value A and the predetermined value B have a relationship of A ≧ B. Each of the predetermined value A and the predetermined value B may be about 30 to about 150 mS / m, preferably about 50 to about 100 mS / m, while satisfying the above-described relationship (A ≧ B). If it does in this way, excessive consumption of an electrode can be controlled, performing water softening processing efficiently.

電解槽12の上部のフロートスイッチ36は、流出口32から流出する水の抵抗を利用して濾過部60に溜まっていくスケールの量を監視している。水の流出抵抗が所定値以上になると、フロートスイッチ36が電解槽12の水面の上昇を感知して警報装置38に信号を送り、警報装置38が警報ランプ40を点灯させ警報ブザー42を鳴らす。   The float switch 36 in the upper part of the electrolytic cell 12 monitors the amount of scale accumulated in the filtration unit 60 using the resistance of the water flowing out from the outflow port 32. When the water outflow resistance exceeds a predetermined value, the float switch 36 senses the rise of the water surface of the electrolytic cell 12 and sends a signal to the alarm device 38. The alarm device 38 turns on the alarm lamp 40 and sounds the alarm buzzer 42.

例1:電極材料の比較
大きさが20mm×40mm、厚さ2mmの、純Ti電極(JIS2種)2枚又はTi−Ni電極(Ti 99.5%−Ni 0.5%)2枚を用いて電極ユニット14を構成し、ガルバノスタットを直流電源16として用いて、定電流(電流密度5A/m2)で被処理水の電気分解を行った。電極の間隔は30mmとした。被処理水として、50mM Na2SO4+10mM NaCl水溶液200mLを用いた。1時間ごとに印加電圧の極性を反転させて槽電圧及び両側の電極電位を測定した。結果を表1に示す。
Example 1: Comparison of electrode materials Two pure Ti electrodes (JIS 2 types) or two Ti-Ni electrodes (Ti 99.5% -Ni 0.5%) having a size of 20 mm x 40 mm and a thickness of 2 mm were used. The electrode unit 14 was configured, and the galvanostat was used as the DC power source 16 to electrolyze the water to be treated at a constant current (current density 5 A / m 2 ). The distance between the electrodes was 30 mm. As the water to be treated, 200 mL of 50 mM Na 2 SO 4 +10 mM NaCl aqueous solution was used. The polarity of the applied voltage was reversed every hour, and the cell voltage and the electrode potentials on both sides were measured. The results are shown in Table 1.

Figure 2010125353
Figure 2010125353

表1の結果から、純Ti電極の槽電圧及び抵抗過電圧はそれぞれ約10V及び約0.2Vであり、Ti−Ni電極の槽電圧及び抵抗過電圧はそれぞれ約4V及び約0.03Vであった。陽極酸化被膜(TiO2)に由来する抵抗過電圧は、Ti−Ni電極の方が純Ti−Ni電極よりも一桁小さい。また、アノード側の電極の過電圧も、Ti−Ni電極の方がTi電極よりも大幅に低い。従って、Ti−Ni電極を使用すると、アノード側の電極の過電圧を低くできることも同時に寄与して、電極表面における陽極酸化被膜の生成が効果的に抑制できる。また、槽電圧は純Ti電極の約37%であったため、Ti−Ni電極を使用することにより消費電力も削減できる。 From the results of Table 1, the cell voltage and resistance overvoltage of the pure Ti electrode were about 10 V and about 0.2 V, respectively, and the cell voltage and resistance overvoltage of the Ti—Ni electrode were about 4 V and about 0.03 V, respectively. The resistance overvoltage derived from the anodic oxide coating (TiO 2 ) is an order of magnitude smaller for the Ti—Ni electrode than for the pure Ti—Ni electrode. Also, the overvoltage of the anode-side electrode is significantly lower for the Ti—Ni electrode than for the Ti electrode. Therefore, when a Ti—Ni electrode is used, the overvoltage of the electrode on the anode side can be reduced at the same time, and the generation of the anodic oxide film on the electrode surface can be effectively suppressed. Moreover, since the cell voltage was about 37% of a pure Ti electrode, the power consumption can be reduced by using a Ti-Ni electrode.

例2:クーリングタワー循環水の電気分解
大きさが100mm×115mm、厚さ2mmの、純Ti電極(JIS2種)2枚又はTi−Ni電極(Ti 99.5%−Ni 0.5%)2枚を用いて電極ユニット14を構成し、直流電源16として直流安定化電源を用いて、定電流(電流密度3A/m2)で被処理水の電気分解を24時間行った。電極の間隔は30mmとした。被処理水として、20冷凍トンのクーリングタワーで電気伝導率が68mS/mまで上昇した循環水2Lを用いた。被処理水の電気伝導率及び電極間の印加電圧の経時変化を測定し、軟水化処理後の水質分析、電極消耗量の測定、沈殿成分の蛍光X線分析を行った。結果を図4〜図6及び表2〜表3に示す。
Example 2: Electrolysis of circulating water in the cooling tower Two sheets of pure Ti electrodes (JIS type 2) or two Ti-Ni electrodes (Ti 99.5% -Ni 0.5%) with a size of 100 mm x 115 mm and a thickness of 2 mm The electrode unit 14 was configured using a DC stabilized power source as the DC power source 16, and electrolysis of the water to be treated was performed for 24 hours at a constant current (current density 3 A / m 2 ). The distance between the electrodes was 30 mm. As treated water, 2 L of circulating water whose electric conductivity was increased to 68 mS / m in a cooling tower of 20 refrigeration tons was used. The electrical conductivity of the water to be treated and the change with time of the applied voltage between the electrodes were measured, and the water quality analysis after the water softening treatment, the measurement of the electrode consumption, and the fluorescent X-ray analysis of the precipitation components were performed. The results are shown in FIGS. 4 to 6 and Tables 2 to 3.

Figure 2010125353
Figure 2010125353

Figure 2010125353
Figure 2010125353

図4に示すように、Ti−Ni電極を用いて24時間電気分解を行った後の電気伝導率の低下量は、純Ti電極を用いた場合とほとんど同じであった。しかしながら、Ti−Ni電極では電気分解開始後16〜17時間で一定値(約50mS/m)に到達したのに対し、純Ti電極の場合は同程度の値に到達するのに23〜24時間を要している。このことから、被処理水中のイオン成分を電解析出する速度はTi−Ni電極の方が優れていることが分かる。また、Ti−Ni電極を用いた場合の電気伝導率は、電気分解開始後16時間以降、50mS/m近辺を僅かに上下しながら推移している。この現象について、カソード側の電極表面に析出し付着したスケールによって電気分解が阻害されることが、原因の1つとして想定される。従って、印加電圧の極性を反転し、電極表面の陽極酸化被膜を絶縁破壊することによってスケールを剥落させれば、更に電気分解を継続して行うことが可能であると予想される。   As shown in FIG. 4, the amount of decrease in electrical conductivity after 24 hours of electrolysis using a Ti—Ni electrode was almost the same as that using a pure Ti electrode. However, the Ti—Ni electrode reached a constant value (about 50 mS / m) in 16 to 17 hours after the start of electrolysis, whereas the pure Ti electrode reached 23 to 24 hours to reach the same value. Is needed. From this, it can be seen that the Ti—Ni electrode is superior in the rate of electrolytic deposition of ionic components in the water to be treated. In addition, the electrical conductivity in the case of using the Ti—Ni electrode has changed slightly up and down around 50 mS / m after 16 hours from the start of electrolysis. Regarding this phenomenon, it is assumed as one of the causes that the electrolysis is inhibited by the scale deposited and adhered to the electrode surface on the cathode side. Therefore, if the scale is peeled off by reversing the polarity of the applied voltage and breaking down the anodic oxide film on the electrode surface, it is expected that the electrolysis can be continued further.

表2に示すように、イオン成分の除去量は、陰イオンについては純Ti電極の方が多く、陽イオンについてはTi−Ni電極の方が多いという違いはあるものの、全体として同程度であった。ここで全硬度とは、水中の硬度成分の合計を意味し、全成分量とは、陽イオン及び陰イオンの合計を意味し、除去量とは、処理前の全成分量から処理後の全成分量を引いた値を意味する。   As shown in Table 2, the removal amount of the ionic component is almost the same as the whole, although there is a difference that the pure Ti electrode is more for anions and the Ti-Ni electrode is more for cations. It was. Here, the total hardness means the total of hardness components in water, the total component amount means the sum of cations and anions, and the removal amount means the total component amount after treatment from the total component amount before treatment. It means the value obtained by subtracting the amount of ingredients.

表3に示すように、Ti−Ni電極を用いた場合の電極消耗量は、純Ti電極の約1/5であった。このことから、Ti−Ni電極は、純Ti電極の少なくとも約5倍の寿命を有しており、電極材料に関するコストの低減が可能であることが分かる。図5に示すように、反応容器に沈殿した成分の蛍光X線分析結果からも、Ti−Ni電極を使用した場合はTi成分が沈殿成分にほとんど含まれていないことが分かる。なお、図5では、沈殿成分中の各イオン種の質量を百分率(質量%)で示している。   As shown in Table 3, the electrode consumption when using a Ti-Ni electrode was about 1/5 of that of a pure Ti electrode. From this, it can be seen that the Ti—Ni electrode has a life of at least about 5 times that of the pure Ti electrode, and the cost for the electrode material can be reduced. As shown in FIG. 5, it can be seen from the fluorescent X-ray analysis results of the components precipitated in the reaction vessel that the Ti component is hardly contained in the precipitated components when the Ti—Ni electrode is used. In addition, in FIG. 5, the mass of each ionic species in a precipitation component is shown by the percentage (mass%).

この例では、直流安定化電源から定電流が供給されているため、アノード側の電極表面に生成される陽極酸化被膜が、電極間の電圧に少なくとも部分的に影響する。図6に示すように、純Ti電極を用いた場合の電圧は約6Vから約18Vまで徐々に増加しながら推移する一方、Ti−Ni電極を用いた場合の電圧は約5Vから約13.5Vで推移した。従って、この例では、Ti−Ni電極の消費電力は純Ti電極の約75%と見積もることができ、Ti−Ni電極を使用することにより消費電力を低減することが可能である。   In this example, since a constant current is supplied from the direct current stabilized power supply, the anodic oxide film produced on the electrode surface on the anode side at least partially affects the voltage between the electrodes. As shown in FIG. 6, the voltage when using a pure Ti electrode gradually increases from about 6V to about 18V, while the voltage when using a Ti-Ni electrode is about 5V to about 13.5V. It changed in. Therefore, in this example, the power consumption of the Ti—Ni electrode can be estimated to be about 75% of that of the pure Ti electrode, and the power consumption can be reduced by using the Ti—Ni electrode.

例3:大電流密度条件での電気分解
電流密度20A/m2の定電流を直流安定化電源から供給した以外は例2と同様にして、被処理水の電気分解を行った。電極消耗量の測定を行った結果を表4に示す。
Example 3: Electrolysis under a large current density condition The electrolyzed water was electrolyzed in the same manner as in Example 2 except that a constant current having a current density of 20 A / m 2 was supplied from a DC stabilized power source. Table 4 shows the results of measurement of electrode consumption.

Figure 2010125353
Figure 2010125353

表4に示すように、電流密度を20A/m2に上げてもTi−Ni電極はほとんど消耗しないのに対し、純Ti電極はアノード側の電極表面に生成する陽極酸化被膜の絶縁破壊を繰り返して著しく消耗する。このことから、電流密度の大きい運転条件下での電極の寿命について、Ti−Ni電極は純Ti電極と比べて特に優れている。 As shown in Table 4, the Ti-Ni electrode is hardly consumed even when the current density is increased to 20 A / m 2 , whereas the pure Ti electrode repeatedly causes dielectric breakdown of the anodic oxide film formed on the electrode surface on the anode side. And wear out remarkably. For this reason, the Ti—Ni electrode is particularly superior to the pure Ti electrode in terms of the life of the electrode under operating conditions with a large current density.

本発明は、飲料水、ボイラーなどの蒸気発生装置用の水、射出成型装置などの金型冷却用の水、電気温水器・加湿器・誘導加熱炉などの電気加熱システムに使用される水、純水製造装置に供給される水(原水)、クーリングタワー用循環水、チラー用循環水、冷温水器用循環水、ヒートポンプ式給湯器の補給水、ガス・石油給湯器の補給水、24時間風呂の水、プールの水、人工池の水などの軟水化に適用できる。   The present invention includes drinking water, water for steam generators such as boilers, water for cooling molds such as injection molding devices, water used in electric heating systems such as electric water heaters, humidifiers, induction heating furnaces, Water (raw water) supplied to pure water production equipment, circulating water for cooling towers, circulating water for chillers, circulating water for cold and hot water heaters, supplementary water for heat pump water heaters, supplementary water for gas / oil water heaters, 24-hour bath Applicable to softening water, pool water, artificial pond water, etc.

本発明の一実施態様による軟水化装置の概略図である。It is the schematic of the water softening apparatus by one embodiment of this invention. 本発明の一実施態様による、複数の板状電極から構成される電極ユニットの概略図である。It is the schematic of the electrode unit comprised from the some plate-shaped electrode by one embodiment of this invention. 本発明の一実施態様による軟水化装置の制御機構の説明図である。It is explanatory drawing of the control mechanism of the water softening apparatus by one embodiment of this invention. 純チタン電極を用いた場合及びチタン−ニッケル合金電極を用いた場合の電気伝導率の推移を示すグラフである。It is a graph which shows transition of the electrical conductivity at the time of using a pure titanium electrode and a titanium-nickel alloy electrode. 純チタン電極を用いた場合及びチタン−ニッケル合金電極を用いた場合の沈殿成分の分析結果を示す棒グラフである。It is a bar graph which shows the analysis result of the precipitation component at the time of using a pure titanium electrode and a titanium-nickel alloy electrode. 純チタン電極を用いた場合及びチタン−ニッケル合金電極を用いた場合の、電極間の印加電圧の推移を示すグラフである。It is a graph which shows transition of the applied voltage between electrodes at the time of using a pure titanium electrode and a titanium-nickel alloy electrode.

符号の説明Explanation of symbols

10 軟水化装置
12 電解槽
14 電極ユニット
16 直流電源
17 制御盤
18 底部
20 給水ポンプ
22 給水口
24 第一電極
26 第二電極
28 側部
30 オーバーフロー仕切り
32 流出口
34 電気伝導率計
36 フロートスイッチ
38 警報装置
40 警報ランプ
42 警報ブザー
44 受けタンク
46 流出配管
48 排出ポンプ
50 フロートスイッチ
52 排出口
54 排出装置
56 排出バルブ
58 開閉用タイマー
60 濾過部
70 スケール
DESCRIPTION OF SYMBOLS 10 Water softening device 12 Electrolytic tank 14 Electrode unit 16 DC power supply 17 Control panel 18 Bottom part 20 Water supply pump 22 Water supply port 24 1st electrode 26 2nd electrode 28 Side part 30 Overflow partition 32 Outlet 34 Electric conductivity meter 36 Float switch 38 Alarm device 40 Alarm lamp 42 Alarm buzzer 44 Receiving tank 46 Outflow piping 48 Discharge pump 50 Float switch 52 Discharge port 54 Discharge device 56 Discharge valve 58 Opening / closing timer 60 Filtration unit 70 Scale

Claims (11)

対向する電極間に被処理水を配置し、該電極間に直流電圧を印加して、該被処理水中の金属イオンをカソード側の電極に電解析出させることを含む、被処理水の軟水化方法であって、ニッケルを0.1〜5質量%含有するチタン系合金電極を少なくともアノード側の電極に使用することを特徴とする、被処理水の軟水化方法。   Softening water to be treated, including disposing treated water between opposing electrodes, applying a DC voltage between the electrodes, and electrolytically depositing metal ions in the treated water on the cathode side electrode A method for softening water to be treated, characterized in that a titanium-based alloy electrode containing 0.1 to 5% by mass of nickel is used at least as an electrode on the anode side. ニッケルを0.1〜5質量%含有するチタン系合金電極をカソード側とアノード側の両方の電極に使用し、前記電極間に印加する電圧の極性を所定時間毎に反転させることを特徴とする、請求項1に記載の方法。   A titanium alloy electrode containing 0.1 to 5% by mass of nickel is used for both the cathode side and anode side electrodes, and the polarity of the voltage applied between the electrodes is reversed every predetermined time. The method of claim 1. 前記電極間に流す電流がアノード側の電極の単位面積1m2当たり0.1〜30Aであることを特徴とする、請求項1又は2のいずれかに記載の方法。 3. The method according to claim 1, wherein a current flowing between the electrodes is 0.1 to 30 A per 1 m 2 of an electrode area on the anode side. 前記電極間に流す電流が定電流であることを特徴とする、請求項1〜3のいずれか1つに記載の方法。   The method according to claim 1, wherein the current flowing between the electrodes is a constant current. 前記被処理水の電気伝導率が所定値Aより高い場合は、前記電極間に流す電流を増加させ、前記被処理水の電気伝導率が所定値Bより低い場合は、前記電極間に流す電流を減少させ、該所定値Aと該所定値BがA≧Bの関係であることを特徴とする、請求項1〜3のいずれか1つに記載の方法。   When the electrical conductivity of the water to be treated is higher than a predetermined value A, the current passed between the electrodes is increased. When the electrical conductivity of the water to be treated is lower than a predetermined value B, the current passed between the electrodes The method according to claim 1, wherein the predetermined value A and the predetermined value B have a relationship of A ≧ B. 前記被処理水の電気伝導率の前記所定値Aが30〜150mS/mであり、前記所定値Bが30〜150mS/mであることを特徴とする、請求項5に記載の方法。   The method according to claim 5, wherein the predetermined value A of the electric conductivity of the water to be treated is 30 to 150 mS / m, and the predetermined value B is 30 to 150 mS / m. 被処理水を受け入れて排出する電解槽と、該電解槽内に設置されている1又は複数の第一電極と、該電解槽内で該第一電極と所定間隔をおいて設置されている1又は複数の第二電極と、該第一電極と該第二電極の間に直流電圧を印加する直流電源とを備える軟水化装置であって、該第一電極と該第二電極のうち少なくともアノード側の電極となる電極が、ニッケルを0.1〜5質量%含有するチタン系合金電極であることを特徴とする、軟水化装置。   An electrolytic cell that receives and discharges water to be treated, one or more first electrodes installed in the electrolytic cell, and 1 installed in the electrolytic cell at a predetermined interval from the first electrode Or a water softening device comprising a plurality of second electrodes and a DC power source for applying a DC voltage between the first electrodes and the second electrodes, wherein at least the anode of the first electrodes and the second electrodes The water softening device, wherein the electrode serving as the side electrode is a titanium-based alloy electrode containing 0.1 to 5% by mass of nickel. 前記第一電極及び前記第二電極の両方が、ニッケルを0.1〜5質量%含有するチタン系合金電極であり、前記第一電極と前記第二電極の間に印加されている電圧の極性を所定時間毎に反転させる極性切替装置を更に備えることを特徴とする、請求項7に記載の軟水化装置。   Both the first electrode and the second electrode are titanium-based alloy electrodes containing 0.1 to 5% by mass of nickel, and the polarity of the voltage applied between the first electrode and the second electrode The water softening device according to claim 7, further comprising a polarity switching device that reverses the frequency at a predetermined time. 前記直流電源が、アノード側の電極の単位面積1m2当たり0.1〜30Aの定電流を流すことが可能な直流安定化電源であることを特徴とする、請求項7又は8のいずれかに記載の軟水化装置。 The DC power supply according to any one of claims 7 and 8, wherein the DC power supply is a DC stabilized power supply capable of supplying a constant current of 0.1 to 30 A per 1 m 2 of an anode-side electrode area. The water softening device described. 前記被処理水の電気伝導率を計測する電気伝導率計と、該電気伝導率計によって得られた電気伝導率が所定値Aより高い場合は、前記直流電源の出力電圧を高くして前記電極間を流れる電流を増加させ、該電気伝導率計によって得られた電気伝導率が所定値Bより低い場合は、前記直流電源の出力電圧を低くして前記電極間を流れる電流を減少させ、該所定値Aと該所定値BをA≧Bの関係とする、電流制御装置とを備えていることを特徴とする、請求項7又は8のいずれかに記載の軟水化装置。   An electrical conductivity meter for measuring the electrical conductivity of the water to be treated; and when the electrical conductivity obtained by the electrical conductivity meter is higher than a predetermined value A, the output voltage of the DC power supply is increased to increase the electrode If the electrical conductivity obtained by the electrical conductivity meter is lower than a predetermined value B, the output voltage of the DC power supply is lowered to reduce the current flowing between the electrodes, The water softening device according to any one of claims 7 and 8, further comprising: a current control device that sets the predetermined value A and the predetermined value B to have a relationship of A ≧ B. 前記被処理水の電気伝導率の前記所定値Aが30〜150mS/m、前記所定値Bが30〜150mS/mであることを特徴とする、請求項10に記載の軟水化装置。   The water softening device according to claim 10, wherein the predetermined value A of the electrical conductivity of the water to be treated is 30 to 150 mS / m, and the predetermined value B is 30 to 150 mS / m.
JP2008299765A 2008-11-25 2008-11-25 Water softening method and water softener Pending JP2010125353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299765A JP2010125353A (en) 2008-11-25 2008-11-25 Water softening method and water softener

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299765A JP2010125353A (en) 2008-11-25 2008-11-25 Water softening method and water softener

Publications (1)

Publication Number Publication Date
JP2010125353A true JP2010125353A (en) 2010-06-10

Family

ID=42326105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299765A Pending JP2010125353A (en) 2008-11-25 2008-11-25 Water softening method and water softener

Country Status (1)

Country Link
JP (1) JP2010125353A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042867A1 (en) * 2010-09-30 2012-04-05 ダイキン工業株式会社 Electrolysis device and heat-pump-type water heater provided with same
JP2012161795A (en) * 2012-04-04 2012-08-30 Daikin Industries Ltd Electrolytic apparatus and heat pump type water heater equipped with the same
JP2012161794A (en) * 2012-04-04 2012-08-30 Daikin Industries Ltd Electrolytic apparatus and heat pump type water heater equipped with the same
WO2013038692A1 (en) * 2011-09-15 2013-03-21 ダイキン工業株式会社 Heat pump hot-water supply device
WO2013038710A1 (en) * 2011-09-15 2013-03-21 ダイキン工業株式会社 Heat pump water heater
CN104203836A (en) * 2012-03-28 2014-12-10 大金工业株式会社 Electrolysis device and temperature-adjusting water-supplying machine provided with same
JP5855291B1 (en) * 2015-02-02 2016-02-09 イノベーティブ・デザイン&テクノロジー株式会社 Heat exchanger for power generation system, binary power generation system including the heat exchanger, and control method for heat exchanger for power generation system
CN113511732A (en) * 2021-04-09 2021-10-19 安徽中科索纳新材料科技有限公司 Capacitive deionization selective adsorption electrode, capacitive deionization device and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294836A (en) * 1987-12-09 1989-11-28 Nippon Mining Co Ltd Material for insoluble anode
WO2008018316A1 (en) * 2006-08-08 2008-02-14 Koganei Corporation Water softening method and water softener

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294836A (en) * 1987-12-09 1989-11-28 Nippon Mining Co Ltd Material for insoluble anode
WO2008018316A1 (en) * 2006-08-08 2008-02-14 Koganei Corporation Water softening method and water softener

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042867A1 (en) * 2010-09-30 2012-04-05 ダイキン工業株式会社 Electrolysis device and heat-pump-type water heater provided with same
JP2012075982A (en) * 2010-09-30 2012-04-19 Daikin Industries Ltd Heat pump type water heater
CN103118990A (en) * 2010-09-30 2013-05-22 大金工业株式会社 Electrolysis device and heat-pump-type water heater provided with same
WO2013038692A1 (en) * 2011-09-15 2013-03-21 ダイキン工業株式会社 Heat pump hot-water supply device
WO2013038710A1 (en) * 2011-09-15 2013-03-21 ダイキン工業株式会社 Heat pump water heater
JP2013061143A (en) * 2011-09-15 2013-04-04 Daikin Industries Ltd Heat pump water heater
JP2013061141A (en) * 2011-09-15 2013-04-04 Daikin Industries Ltd Heat pump water heater
EP2757330A1 (en) * 2011-09-15 2014-07-23 Daikin Industries, Ltd. Heat pump hot-water supply device
EP2757330A4 (en) * 2011-09-15 2015-04-22 Daikin Ind Ltd Heat pump hot-water supply device
AU2012309972B2 (en) * 2011-09-15 2015-07-16 Daikin Industries, Ltd. Heat pump hot-water supply device
CN104203836A (en) * 2012-03-28 2014-12-10 大金工业株式会社 Electrolysis device and temperature-adjusting water-supplying machine provided with same
JP2012161794A (en) * 2012-04-04 2012-08-30 Daikin Industries Ltd Electrolytic apparatus and heat pump type water heater equipped with the same
JP2012161795A (en) * 2012-04-04 2012-08-30 Daikin Industries Ltd Electrolytic apparatus and heat pump type water heater equipped with the same
JP5855291B1 (en) * 2015-02-02 2016-02-09 イノベーティブ・デザイン&テクノロジー株式会社 Heat exchanger for power generation system, binary power generation system including the heat exchanger, and control method for heat exchanger for power generation system
JP2016142451A (en) * 2015-02-02 2016-08-08 イノベーティブ・デザイン&テクノロジー株式会社 Heat exchanger for power generation system, binary power generation system with heat exchanger and control method for heat exchanger for power generation system
CN113511732A (en) * 2021-04-09 2021-10-19 安徽中科索纳新材料科技有限公司 Capacitive deionization selective adsorption electrode, capacitive deionization device and application

Similar Documents

Publication Publication Date Title
EP1860071B1 (en) Method for cleaning circulation water
KR101430678B1 (en) Method of purifying water and apparatus therefor
JP2010125353A (en) Water softening method and water softener
KR20090038445A (en) Method of softening water and apparatus therefor
US8475645B2 (en) Cooling water circulation apparatus and method of removing scale from cooling water circulation apparatus
JP2007090267A (en) Apparatus and method for removing scale component
JP2006247640A (en) Apparatus for adjusting concentration of electrified substance in liquid, and apparatus and method for controlling quality of solution
JP2012081448A (en) Sterilized water making apparatus, and method for making sterilized water
JP2007144258A (en) Method for electrolyzing water and electrolytic apparatus
JP2006098003A (en) Electrolytic treating method and electrolytic treating device for circulating type cooling water system
JP2006255653A (en) Electrolytic treatment method of water system
JP2007253114A (en) Electrolysis method of water and electrolytic apparatus
JP4126904B2 (en) Water treatment method and apparatus for cooling water system
KR101397606B1 (en) Method of purifying water and apparatus therefor
JP2006198583A (en) Electrolytic treatment method and apparatus for water system
JPH06158378A (en) Electrode for electrolyzing drinking water and manufacture of the same and ionized water forming device
TW201302624A (en) Cooling water circulation apparatus
JP2005288238A (en) Cooling water treatment device and its operation method
RU2203227C2 (en) Device for electrochemical cleaning of potable water
JPH07313980A (en) Electrode for ion water making apparatus, production thereof and ion water making apparatus
JP2005262197A (en) Device and method for treating cooling water

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110916

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120413

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925