KR20110075384A - Method of multi-purpose seawater utilization in industrial usage - Google Patents

Method of multi-purpose seawater utilization in industrial usage Download PDF

Info

Publication number
KR20110075384A
KR20110075384A KR1020090131825A KR20090131825A KR20110075384A KR 20110075384 A KR20110075384 A KR 20110075384A KR 1020090131825 A KR1020090131825 A KR 1020090131825A KR 20090131825 A KR20090131825 A KR 20090131825A KR 20110075384 A KR20110075384 A KR 20110075384A
Authority
KR
South Korea
Prior art keywords
seawater
water
temperature
cooling
waste
Prior art date
Application number
KR1020090131825A
Other languages
Korean (ko)
Inventor
강신경
문정기
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020090131825A priority Critical patent/KR20110075384A/en
Publication of KR20110075384A publication Critical patent/KR20110075384A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/06Flash evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • F02C6/08Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Abstract

PURPOSE: An efficient seawater using method for industrials processes is provided to recycle heat from wasted exhaust gas and cost-effectively implement a desalinating process based on recycled heat source. CONSTITUTION: Coolant(11) at high temperature undergoes an indirect heat-exchanging process with respect to seawater at low temperature. The temperature of the seawater is raised. The wasted exhaust gas(21) is cooled using the seawater at raised temperature. The temperature seawater is further raised. The seawater at raised temperature is used as heat source for a desalinating process. Concentrated water(32) is discharged from the desalinating process.

Description

산업공정에서의 해수의 효율적 이용방법{METHOD OF MULTI-PURPOSE SEAWATER UTILIZATION IN INDUSTRIAL USAGE} Efficient use of seawater in industrial processes {METHOD OF MULTI-PURPOSE SEAWATER UTILIZATION IN INDUSTRIAL USAGE}

본 발명은 해수를 이용하는 방법에 관한 것으로서, 보다 상세하게는 해수를 냉각수, 폐 배가스와 열교환시키고, 폐열원에 의해 감압증발의 방식으로 담수를 생산하고, 농축수를 응집침전시켜 유가자원을 회수하는 방법에 관한 것이다. The present invention relates to a method of using sea water, and more particularly, to exchange fresh water with cooling water and waste exhaust gas, to produce fresh water by a reduced pressure evaporation method using waste heat sources, and to concentrate valuable water to recover valuable resources. It is about a method.

많은 산업현장이 바다에 인접하여 건설되어 있는데, 이는 선박으로 원자재를 수송하거나 제조된 물건 등을 수출입하기가 수월하다는 운송수단의 편의성에 기인한다. 또한, 해수에는 산업현장에서의 활용도가 높은 자원이 많이 있는데, 특히 해수 자체의 저온과 해수에 녹아 있는 유가자원 등이 그것이다. 해수는 많은 양의 염분이 있기 때문에, 직접적으로 담수로서 활용할 수 없기 때문에 담수로 활용하기 위해서는 담수화하는 작업을 거쳐야 한다. Many industrial sites are built near the sea, due to the convenience of transportation, which makes it easy to transport raw materials by ship or import and export of manufactured goods. In addition, there are many resources that have high utilization in industrial sites, especially low temperature of seawater itself and valuable resources dissolved in seawater. Since seawater has a large amount of salt, it cannot be used as freshwater directly, so it must be desalted in order to use it as freshwater.

일반적으로 해수를 담수화하는 장치는 다단으로 구성된 증발기에 의해서 이루어지는데, 상기 증발기는 응축기, 기수분리기, 증발실 등으로 구성되며, 주로 농축수를 여러 번 순환시키는 방식에 의해 이루어진다.In general, a device for desalination of seawater is composed of a multi-stage evaporator. The evaporator is composed of a condenser, a separator, an evaporation chamber, and the like, mainly by circulating concentrated water several times.

또한, 농축수는 농축수 순환펌프에 의하여 각각의 응축기를 거쳐 저압증기의 응축열을 이용하여 가열된다. 상기 가열된 순환농축수는 순차적으로 낮은 압력으로 유지되고 있는 증발실로 유입된다. 가열된 순환농축수의 유입은 증발실 주변의 낮은 압력으로 인하여 증발이 활발하다. 이러한 증발 현상은 유입된 순환농축수가 그 단계의 압력에 해당하는 끓는점까지 냉각되는 동안 계속된다. 그리고, 다음 단계로 유입되어 이와 같은 과정을 반복하게 되며 점점 농도가 증가하게 되면서, 증기를 발생시킨다. In addition, the concentrated water is heated by the concentrated water circulation pump through each condenser using the heat of condensation of low pressure steam. The heated circulating concentrated water is sequentially introduced into an evaporation chamber maintained at low pressure. The inflow of heated circulating concentrated water evaporates due to the low pressure around the evaporation chamber. This evaporation continues while the incoming circulating water is cooled to the boiling point corresponding to the pressure at that stage. Then, the process flows to the next stage and repeats this process, and the concentration gradually increases, generating steam.

생성된 증기는 기수분리기를 지나 포함되어 있을 수 있는 염의 알갱이들을 제거한다. 그리고, 응축기로 유입되어 농축수에 의하여 담수로 응축된다. 이렇게 여러 증발기에서 생성된 담수를 담수펌프를 이용하여 후처리공정으로 이송하게 된다. The resulting steam removes grains of salt that may be contained past the separator. Then, it is introduced into the condenser and condensed into fresh water by the concentrated water. The fresh water generated in the various evaporators is transferred to the aftertreatment process using a fresh water pump.

여기서, 증발기는 공장내의 열에너지를 이용하여 가열된 해수로부터 연속적인 증발, 응축의 과정을 통하여 담수를 분리하는 설비인데, 증발기는 여러 개(대략 19 ~ 30개)의 단계로 구성되어 있다. 이러한 종래의 담수화장치는 발전설비로부터 필요한 열원인 스팀을 공급받도록 되어 있어, 열효율을 향상시키기 위해서는 증발기내의 전열면적과 단의 수를 늘려야 하기 때문에, 그에 따라 설치공간을 많이 차지하게 되고, 제작비용이 증대되는 문제점이 있었다.Here, the evaporator is a facility that separates fresh water from the heated seawater by the continuous evaporation and condensation using the heat energy in the factory. The evaporator is composed of several stages (about 19 to 30). The conventional desalination apparatus is supplied with steam, which is a necessary heat source, from the power generation equipment. Therefore, in order to improve the thermal efficiency, the heat transfer area and the number of stages in the evaporator must be increased, thus occupying a lot of installation space. There was an increasing problem.

본 발명은 해수를 이용하여 유가자원 및 해수를 담수화하는 방법에 관한 것으로서, 보다 상세하게는 해수가 가지고 있는 특성을 복합적으로 이용하여 해수의 온도를 이용하여 냉각수를 냉각시키고, 배가스와 폐열원을 이용하여 해수중의 유가자원 및 해수담수화를 가장 효율적으로 이룰 수 있는 방법을 제공하는데 그 목적이 있다.The present invention relates to a method of desalination of valuable resources and seawater using seawater, and more specifically, to cool the cooling water using the temperature of seawater by using the characteristics of seawater in combination, and to use exhaust gas and waste heat source. The purpose is to provide the most efficient way to achieve valuable resources and seawater desalination in seawater.

본 발명은 산업공정에서 해수를 이용하는 방법에 있어서, 해수의 낮은 온도를 활용하여 냉각수와 간접열교환 방식에 의해 고온의 냉각수를 저온의 냉각수로 냉각시키면서 해수를 승온시키는 냉각수 냉각단계와; 상기 승온된 해수를 간접열교환 방식에 의해 고온의 폐 배가스를 저온의 폐 배가스로 냉각시키면서 해수를 보다 높은 온도로 승온시키는 단계와; 상기 승온된 해수를 공장내의 폐열원을 활용하여 감압증발 방식에 의해 담수화하는 단계와; 상기 담수화하는 단계에서 배출되는 농축수를 활용하여 해수내의 유가자원을 회수하는 단계로 구성된 산업공정에서의 해수의 효율적 이용방법을 제공한다.The present invention relates to a method of using sea water in an industrial process, comprising: a cooling water cooling step of using a low temperature of the sea water to raise the sea water while cooling the high temperature cooling water with a low temperature cooling water by an indirect heat exchange method with the cooling water; Heating the seawater to a higher temperature while cooling the heated wastewater with a low temperature waste exhaust gas by indirect heat exchange; Desalination of the heated sea water by a reduced pressure evaporation method using a waste heat source in a factory; It provides an efficient method of using seawater in an industrial process consisting of recovering valuable resources in seawater using the concentrated water discharged from the desalination step.

또한, 본 발명의 담수화하는 단계는 여러 단계의 증발기에 의해 해수를 증발시키는 것을 특징으로 한다.In addition, the desalination step of the present invention is characterized in that the seawater is evaporated by a multi-stage evaporator.

나아가, 본 발명에서 회수되는 유가자원은 Mg, Li, NaCl인 것을 특징으로 한다.Further, the valuable resources recovered in the present invention is characterized in that the Mg, Li, NaCl.

본 발명에 의하면 해수를 냉각수와 열교환시켜 냉각수를 냉각시키고, 버려지는 폐 배가스의 열을 재활용할 수 있으며, 폐열원을 이용하여 해수를 담수화하는 과정에서 폐열원을 활용하면서, 농축해수 내의 유가자원을 회수할 수 있어 해수를 다목적으로 이용함과 동시에 냉각수, 폐 배가스, 폐열원과 해수 상호간에 필요한 에너지의 공급을 최소화함으로써 경제성을 확보할 수 있다. According to the present invention, the seawater is exchanged with the cooling water to cool the cooling water, and the heat of the waste waste gas discarded can be recycled, and the valuable resources in the concentrated seawater are utilized while utilizing the waste heat source in the process of desalination of the seawater using the waste heat source. It is possible to recover the economy by using seawater for multi-purpose and minimizing the supply of energy required for cooling water, waste flue gas, waste heat source and seawater.

이하에서는 첨부된 도면을 참조하여 보다 구체적으로 설명한다.Hereinafter, with reference to the accompanying drawings will be described in more detail.

먼저, 도 1은 본 발명에 의한 산업공정에서의 해수의 효율적 이용방법에 대한 개략적인 공정을 나타낸 개념도이다.First, Figure 1 is a conceptual diagram showing a schematic process for the efficient use of seawater in the industrial process according to the present invention.

해수의 1년 동안의 평균 온도는 대략 13℃정도로서 산업현장에서 사용되는 냉각공정을 거친 냉각수에 비하여 훨씬 낮은 온도이다. 따라서, 이와 같은 성질을 이용하여 온도가 높아진 냉각수를 해수와 열교환이 가능한데, 열교환을 하게 되면 해수의 온도는 상승하게 되는 반면, 냉각수의 온도는 하강하게 된다. 본 발명은 이와 같은 원리를 이용하여 해수의 온도를 상승시킴과 동시에 해수를 담수화하고, 담수화와 동시에 농축된 해수에서 Mg, Li, U와 같은 유가자원을 회수할 수 있는 방법에 관한 발명이다.The average annual temperature of seawater is around 13 ° C, much lower than that of industrially cooled cooling water. Therefore, by using such a property, the temperature of the cooling water with a high temperature can be exchanged with seawater. When the heat exchange is performed, the temperature of the seawater is increased, but the temperature of the cooling water is lowered. The present invention relates to a method of recovering valuable resources such as Mg, Li, and U from the concentrated seawater by increasing the temperature of the seawater and simultaneously desalting the seawater using this principle.

본 발명은 산업공정에서 해수(1)를 이용하는 방법 중에서 해수의 낮은 온도를 활용하여 고온의 냉각수(11)와 제1 열교환기(10)에서 해수(1)와 고온의 냉각수(11)간의 간접열교환 방식에 의해 고온의 냉각수(11)를 저온의 냉각수(12)로 냉각키면서 해수(1)를 2~3℃승온시키는 냉각수 냉각단계와, 상기 승온된 해수를 제2 열교환기(20)에서 외부로 버려지는 고온의 폐 배가스(21)와 간접열교환 방식으로 열교환하여 고온의 폐 배가스(21)를 저온의 폐 배가스(22)로 온도를 낮춤과 동시에, 해수(1)를 10~20℃정도 승온시키는 단계와, 상기 승온된 해수를 공장내의 폐열 원을 활용하여 증발기(30)에서 감압원리를 이용하여 해수를 증발시켜 담수(31)를 생산함과 동시에 농축수(32)를 배출하는 단계와, 상기 담수화하는 단계에서는 담수(31)를 생산하면서 농축된 해수도 함께 배출되는데, 배출되는 농축수(32)를 활용하여 유가자원 회수기(33)에서 농축수를 더욱 증발시켜 해수내의 유가자원을 회수하는 단계로 구성된다.The present invention is an indirect heat exchange between the seawater (1) and the high temperature cooling water (11) in the high temperature cooling water (11) and the first heat exchanger (10) by utilizing the low temperature of the seawater in the method of using the seawater (1) in the industrial process The cooling water cooling step of raising the temperature of the sea water 1 to 2 ° C. while cooling the high temperature cooling water 11 with the low temperature cooling water 12 by the method, and externalizing the heated water in the second heat exchanger 20. Heat exchange with the high temperature waste exhaust gas 21 discarded by the indirect heat exchange system to lower the temperature of the high temperature waste exhaust gas 21 to the low temperature waste exhaust gas 22 and simultaneously raise the temperature of the seawater 1 by 10 to 20 ° C. And evaporating the seawater by using the reduced pressure principle in the evaporator 30 by utilizing the waste heat source in the factory to discharge the heated seawater to produce fresh water 31 and discharge the concentrated water 32 at the same time. In the desalination step, the concentrated seawater is discharged along with the production of freshwater 31. It is composed of the step of recovering the valuable resources in the seawater by further evaporating the concentrated water in the valuable resource recovery unit 33 by utilizing the discharged concentrated water (32).

상기 냉각수를 냉각시키는 단계에서는 13℃정도의 해수를 취수하여 일정크기의 제1 열교환기(10)에 투입하는데, 상기 제1 열교환기(10)는 배출구를 통하여 배출될 수 있는 구조를 가지며, 제1 열교환기(10)내에 공장에서 가열된 냉각수를 효율적으로 해수와 열교환을 하면서 냉각되도록 하기 위해 접촉면을 최대한 넓게 만든 배관형태로 투입하거나 반응시간을 최대화하기 위하여 코일형태로 투입하여 간접열교환 방식에 의해 냉각수를 냉각한다. 이때, 취수된 해수는 고온의 냉각수(11)에서 열을 받기 때문에 수온이 대략 2~3℃ 상승한다.In the step of cooling the cooling water, the seawater of about 13 ° C. is collected and introduced into the first heat exchanger 10 having a predetermined size. The first heat exchanger 10 has a structure that can be discharged through an outlet. 1 In the heat exchanger 10, the cooling water heated in the factory is introduced in the form of a pipe in which the contact surface is made as wide as possible for efficient heat exchange with sea water, or in the form of a coil to maximize the reaction time by indirect heat exchange. Cool the coolant. At this time, since the seawater withdrawn receives heat from the high temperature cooling water 11, the water temperature rises by approximately 2 to 3 ° C.

그리고, 상기 승온된 해수(1)를 고온의 폐 배가스(21)를 이용하여 해수를 승온시키는 단계에서는 상기 냉각수 냉각단계에서 약간의 수온이 상승된 해수를 제2 열교환기(20)에 이송한다. 제2 열교환기(20)는 제1 열교환기(10)와 유사한 형태를 가지나 제2 열교환기(20)에 투입되는 것이 고온의 냉각수(11)가 아니라 버려지는 고온의 폐 배가스(21)라는 점에서 차이가 있고, 상기 냉각수 냉각단계에서는 제1 열교환기(10)내에 있는 해수(1) 중에 배관이 형성되어 그 배관 내에 고온의 냉각수(11)가 공급되나, 배가스에 의한 승온단계에서는 제2 열교환기(20)의 내부에 고온의 폐 배가스(21)를 공급하고 상기 고온의 폐 배가스(21) 사이 공간으로 폐수를 유입시킴으로써 폐수의 온도를 상승시키는 점에서 차이가 있다. In the step of raising the temperature of the seawater by using the wastewater gas 21 having a high temperature, the heated seawater 1 is transferred to the second heat exchanger 20, the seawater having a slight increase in the water temperature in the cooling water cooling step. The second heat exchanger 20 has a shape similar to that of the first heat exchanger 10, but the high temperature waste exhaust gas 21 that is thrown into the second heat exchanger 20 is not the high temperature coolant 11 but is discarded. In the cooling water cooling step, a pipe is formed in the sea water 1 in the first heat exchanger 10 so that the high temperature cooling water 11 is supplied into the pipe, but the second heat exchange is performed in the temperature rising step due to the exhaust gas. There is a difference in that the temperature of the wastewater is increased by supplying the high temperature waste exhaust gas 21 into the inside of the gas 20 and introducing the waste water into the space between the high temperature waste exhaust gases 21.

효율적인 열교환을 위해 내부의 접촉면을 넓힌 배관 또는 반응시간을 최대화하기 위해 코일 형태로 하는 배관의 내부로 해수(1)가 지나가면서 고온의 폐 배가스(21)로부터 열을 흡수하게 된다. 고온의 폐 배가스(21)는 해수에 열을 방출함과 동시에 해수는 고온의 폐 배가스(21)로부터 열을 흡수하면서 고온의 폐 배가스(21)를 저온의 폐 배가스(22)로 온도를 떨어뜨린다. 이와 같은 과정을 거치면서 해수는 약 10~20도 정도 수온이 상승하게 된다.The seawater 1 absorbs heat from the hot waste flue gas 21 as the seawater 1 passes into the pipe having a wider contact surface for efficient heat exchange or a coiled pipe to maximize the reaction time. The high temperature waste exhaust gas 21 releases heat to the seawater and at the same time the sea water absorbs heat from the high temperature waste exhaust gas 21 while lowering the temperature of the high temperature waste exhaust gas 21 to the low temperature waste exhaust gas 22. . Through this process, sea water is about 10 to 20 degrees water temperature rises.

상기 고온의 폐 배가스(21)에 의해 승온된 해수는 담수화되는 단계를 거치는데, 이는 승온된 해수를 공장내의 폐열원 예를 들어, 고로 또는 발전소 등에서의 폐열원을 이용한다. 담수화하는 단계는 폐열원을 폐열원 공급라인(35)으로 공급하여 다단의 증발기(30)에서 감압증발 방식에 의해 해수를 증발시켜 담수(31)를 생산하는 과정이다. 증발된 담수(31)는 별도의 용기에 담겨지고, 증발되지 않은 농축수(32)는 담수(31)와는 다른 별도의 용기에 담겨진다. 상기 감압증발 방식은 다단증발법을 이용하면 효율적이다.The seawater heated by the high temperature waste exhaust gas 21 undergoes a desalination step, which uses the waste heat source in a waste heat source in a plant, for example, a blast furnace or a power plant. Desalination is a process of supplying a waste heat source to a waste heat source supply line 35 to produce fresh water 31 by evaporating seawater by a reduced pressure evaporation method in a multi-stage evaporator 30. The evaporated fresh water 31 is contained in a separate container, and the concentrated water 32 not evaporated is contained in a separate container different from the fresh water 31. The reduced pressure evaporation method is effective using a multi-stage evaporation method.

상기의 감압증발 방식에 의한 담수화단계 이후에는 해수를 담수화하는 과정에서 배출된 농축수(32)가 배출되는데, 농축수(32)를 활용하여 유가자원 회수기(33)에서 응집 침전반응을 일으켜 해수내에 포함되어 있던 Mg, NaCl, Li, 등과 같은 유가자원을 회수하는 과정을 거친다. After the desalination step by the reduced pressure evaporation method, the concentrated water 32 discharged during the desalination of seawater is discharged. The concentrated water 32 is used to cause a flocculation settling reaction in the valuable resource recovery unit 33 to cause seawater in the seawater. It recovers valuable resources such as Mg, NaCl, Li, and so on.

즉, 앞서 설명한 해수의 담수화공정을 통하여 해수 중 증발한 물은 담수로 이용하게 되며, 증발되지 않은 농축수는 고농도의 해수이온 성분을 포함하고 있기 때문에 효과적으로 유가자원을 추출할 수 있는 원료로 이용된다. 이와 같이 취수된 농축수를 이용할 때는 동력비, 반응용기, 필요 열량 등 많은 부분에서 경제성을 확보할 수 있다. That is, the water evaporated in the seawater through the desalination process described above is used as fresh water, and the concentrated water that is not evaporated is used as a raw material that can effectively extract valuable resources because it contains high concentrations of seawater ions. . When the concentrated water is collected in this way, economic feasibility can be secured in many parts such as power costs, reaction vessels, and calories required.

유가자원을 회수하는 대표적인 예로 Mg를 회수하는 방법에 대해 살펴보면, 먼저 하기 [반응식 1]과 같이 농축수에 Ca(OH)2를 투입하여 해수중의 CO2 성분을 CaCO3로 침전시켜 제거한 후, 하기 [반응식 2]와 같이 다시 Ca(OH)2를 투입하여 Mg(OH)2로 침전하여 회수한다.As a representative example of recovering valuable resources, a method of recovering Mg is described. First, Ca (OH) 2 is added to concentrated water as shown in the following [Reaction Scheme 1] to precipitate and remove CO 2 components in seawater with CaCO 3 . As shown in [Reaction Scheme 2], Ca (OH) 2 was added again, precipitated with Mg (OH) 2 , and recovered.

CO2 + Ca(OH)2 ↓---> CaCO3 + H2O CO 2 + Ca (OH) 2 ↓ ---> CaCO 3 + H 2 O

Ca(OH)2 + Mg ---> Ca + Mg(OH)2Ca (OH) 2 + Mg ---> Ca + Mg (OH) 2

상기에서 알 수 있듯이 해수는 가장 안정적으로 비교적 낮은 수온을 유지하고 있는 효율적인 냉매로 활용할 수 있다. 이에 국내외적으로 최근 물부족으로 인한 산업활동에 제약을 받는 사례가 다수 발생하는 상황에서 효율적인 해수를 이용한 냉각방식은 많은 주목을 받고 있다. 또한 이와 같이 열교환을 통하여 다소의 수온이 상승한 해수를 산업체에서 많이 발생하는 고온의 폐 배가스를 이용하여 가열함으로써 보다 높은 수온을 가진 해수를 만들 수 있을 것이다. 이와 같은 과정을 거쳐 충분히 수온이 높아진 해수를 공장내 존재하는 폐열원을 활용한 증발기를 통 하여 담수를 생산시 초기에 필요한 높은 열량을 사전의 열교환 및 배가스를 통하여 확보함으로 에너지비용을 효율적으로 저감할 수 있다. 뿐만 아니라, 담수화하는 과정에서의 부산물로 생성되는 농축수를 이용하여 해수내의 유용물질(Mg, NaCl 등)을 회수할 수 있다. As can be seen from the above seawater can be utilized as an efficient refrigerant that maintains a relatively low water temperature most stably. Therefore, the cooling system using efficient seawater has attracted much attention in a situation where a number of cases of industrial activities are restricted in recent years both domestically and internationally. In addition, the seawater with a slight increase in water temperature through heat exchange may be heated using high temperature waste exhaust gas generated in a large number of industries to create seawater having a higher water temperature. Through this process, the seawater with high enough water temperature can be efficiently reduced by securing the high heat required in the early stage of freshwater production through heat exchange and exhaust gas through the evaporator using waste heat source existing in the factory. Can be. In addition, it is possible to recover useful substances (Mg, NaCl, etc.) in seawater using the concentrated water produced as a by-product of the desalination process.

보통 열교환기에서의 효율은 열교환하는 작동물질간의 온도차가 작을수록 열교환의 효율이 좋아지므로, 먼저 해수의 온도와 가장 차이가 작은 냉각과정을 거쳐 온도가 상승된 고온의 냉각수(11)와 열교환시킨 후, 그보다 훨씬 온도가 높은 고온의 폐 배가스(21)와 열교환시켜 해수의 온도를 상승시킴으로써 제1,2열교환기(10,20)에서 해수의 온도를 상승시키지 않고 버려지는 열을 최소화할 수 있다 In general, the efficiency of the heat exchanger is improved as the temperature difference between the working materials to be heat exchanged becomes smaller. Therefore, the heat exchanger is first heat-exchanged with the high temperature cooling water 11 through a cooling process having the smallest difference from the temperature of the seawater. By heat-exchanging with the waste gas (21) having a much higher temperature than that, the temperature of the seawater can be increased to minimize the heat discarded without raising the temperature of the seawater in the first and second heat exchangers (10,20).

도 1은 본 발명에 의한 산업공정에서의 해수의 효율적 이용방법에 대한 개략적인 공정을 나타낸 개념도이다. 1 is a conceptual diagram showing a schematic process for the efficient use of seawater in the industrial process according to the present invention.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1: 해수 10: 제1열교환기1: seawater 10: first heat exchanger

11: 고온의 냉각수 12: 저온의 냉각수11: high temperature coolant 12: low temperature coolant

20: 제2열교환기 21: 고온의 폐 배가스20: second heat exchanger 21: hot waste exhaust gas

22: 저온의 폐 배가스 30: 다단 증발기22: waste gas at low temperature 30: multi-stage evaporator

31: 담수 32: 농축수31: freshwater 32: concentrated water

33: 유가자원 회수기 34: 유가자원33: Valuable Resources Recovery 34: Valuable Resources

35: 폐열원 공급라인35: waste heat source supply line

Claims (3)

산업공정에서 해수를 이용하는 방법에 있어서,In the method of using seawater in an industrial process, 해수의 낮은 온도를 활용하여 냉각수와 간접열교환 방식에 의해 고온의 냉각수를 냉각시키면서 해수를 승온시키는 냉각수 냉각단계와;Cooling water cooling step of using the low temperature of the sea water to increase the temperature of the sea water while cooling the high temperature cooling water by the indirect heat exchange method with the cooling water; 상기 승온된 해수를 간접열교환 방식에 의해 고온의 폐 배가스를 냉각시키면서 해수를 보다 높은 온도로 승온시키는 단계와;Heating the seawater to a higher temperature while cooling the high temperature waste exhaust gas by indirect heat exchange; 상기 승온된 해수를 공장내의 폐열원을 활용하여 감압증발 방식에 의해 담수화하는 단계와;Desalination of the heated sea water by a reduced pressure evaporation method using a waste heat source in a factory; 상기 담수화하는 단계에서 배출되는 농축수를 활용하여 해수내의 유가자원을 회수하는 단계로 구성된 산업공정에서의 해수의 효율적 이용방법.Efficient use of seawater in an industrial process consisting of recovering valuable resources in seawater by using the concentrated water discharged in the desalination step. 제1항에 있어서,The method of claim 1, 상기 담수화하는 단계는 여러 단계의 증발기에 의해 해수를 증발시키는 것을 특징으로 하는 산업공정에서의 해수의 효율적 이용방법.The desalination step is an efficient use method of sea water in an industrial process, characterized in that the evaporation of sea water by several stages of evaporator. 제1항에 있어서,The method of claim 1, 상기 유가자원은 Mg, Li, NaCl인 것을 특징으로 하는 산업공정에서의 해수의 효율적 이용방법.The valuable resources are Mg, Li, NaCl method of efficient use of sea water in the industrial process, characterized in that.
KR1020090131825A 2009-12-28 2009-12-28 Method of multi-purpose seawater utilization in industrial usage KR20110075384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090131825A KR20110075384A (en) 2009-12-28 2009-12-28 Method of multi-purpose seawater utilization in industrial usage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090131825A KR20110075384A (en) 2009-12-28 2009-12-28 Method of multi-purpose seawater utilization in industrial usage

Publications (1)

Publication Number Publication Date
KR20110075384A true KR20110075384A (en) 2011-07-06

Family

ID=44915388

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090131825A KR20110075384A (en) 2009-12-28 2009-12-28 Method of multi-purpose seawater utilization in industrial usage

Country Status (1)

Country Link
KR (1) KR20110075384A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013184820A1 (en) * 2012-06-07 2013-12-12 Deepwater Desal Llc Systems and methods for data center cooling and water desalination
KR101501656B1 (en) * 2013-09-11 2015-03-12 재단법인 포항산업과학연구원 The method for utilizing concentrated-water produced from desalination by reverse osmosis
WO2016044100A1 (en) * 2014-09-16 2016-03-24 Deepwater Desal Llc Systems and methods for applying power generation units in water desalination
US10221083B2 (en) 2014-09-16 2019-03-05 Deepwater Desal Llc Underwater systems having co-located data center and water desalination subunits
US10334828B2 (en) 2013-03-15 2019-07-02 Deepwater Desal Llc Co-location of a heat source cooling subsystem and aquaculture
US10716244B2 (en) 2014-09-16 2020-07-14 Deepwater Desal Llc Water cooled facilities and associated methods
US11214498B2 (en) 2013-03-15 2022-01-04 Deepwater Desal Llc Refrigeration facility cooling and water desalination
WO2022150510A1 (en) * 2021-01-06 2022-07-14 Effluent Free Desalination Corporation Sustainable and circular water demineralization with zero waste discharge

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10662084B2 (en) 2012-06-07 2020-05-26 Deepwater Desal Llc Systems and methods for data center cooling and water desalination
WO2013184820A1 (en) * 2012-06-07 2013-12-12 Deepwater Desal Llc Systems and methods for data center cooling and water desalination
US11377372B2 (en) 2012-06-07 2022-07-05 Deepwater Desal Llc Systems and methods for data center cooling and water desalination
AU2013271605B2 (en) * 2012-06-07 2016-06-02 Deepwater Desal Llc Systems and methods for data center cooling and water desalination
US11214498B2 (en) 2013-03-15 2022-01-04 Deepwater Desal Llc Refrigeration facility cooling and water desalination
US10334828B2 (en) 2013-03-15 2019-07-02 Deepwater Desal Llc Co-location of a heat source cooling subsystem and aquaculture
US11134662B2 (en) 2013-03-15 2021-10-05 Deepwater Desal Llc Co-location of a heat source cooling subsystem and aquaculture
KR101501656B1 (en) * 2013-09-11 2015-03-12 재단법인 포항산업과학연구원 The method for utilizing concentrated-water produced from desalination by reverse osmosis
US10221083B2 (en) 2014-09-16 2019-03-05 Deepwater Desal Llc Underwater systems having co-located data center and water desalination subunits
US10947133B2 (en) 2014-09-16 2021-03-16 Deepwater Desal Llc Underwater systems having co-located data center and water desalination subunits
US10934181B2 (en) 2014-09-16 2021-03-02 Deepwater Desal Llc Systems and methods for applying power generation units in water desalination
US10716244B2 (en) 2014-09-16 2020-07-14 Deepwater Desal Llc Water cooled facilities and associated methods
WO2016044100A1 (en) * 2014-09-16 2016-03-24 Deepwater Desal Llc Systems and methods for applying power generation units in water desalination
WO2022150510A1 (en) * 2021-01-06 2022-07-14 Effluent Free Desalination Corporation Sustainable and circular water demineralization with zero waste discharge
US11667544B2 (en) 2021-01-06 2023-06-06 Effluent Free Desalination Corporation Sustainable and circular water demineralization with zero waste discharge

Similar Documents

Publication Publication Date Title
KR20110075384A (en) Method of multi-purpose seawater utilization in industrial usage
AU2007215134B2 (en) A method for producing a distillate stream from a water stream containing at least one dissolved solid
US7037430B2 (en) System and method for desalination of brackish water from an underground water supply
US9045351B2 (en) Zero discharge water desalination plant with minerals extraction integrated with natural gas combined cycle power generation
ES2929993T3 (en) Process to treat salt water produced in oil and gas wells
US5346592A (en) Combined water purification and power of generating plant
CN108793571B (en) Enhanced desalination high-salinity wastewater treatment system
CN101204641A (en) Treating system for film evaporating concentrated liquid and method therefor
KR101514030B1 (en) Pure water manufacturing system
CN102786108A (en) Brine desalting method and system
CN103775150A (en) Electricity-water co-production system and method
CN103806964A (en) Method and system for comprehensively utilizing steam turbine dead steam latent heat
KR101402482B1 (en) A Seawater Desalination System for Small Craft
CN117185389A (en) Concentrated crystallization desalination water treatment facilities of high salt waste water will contain through lithium bromide unit
CN105253939A (en) High-temperature sulfur-containing nitrogen-containing flue gas waste heat type multi-effect distillation seawater desalination system
KR100733696B1 (en) Freshwater apparatus of seawater
CN117164037A (en) Concentrated crystallization of high salt wastewater contains salt desalination water processing apparatus through heat pump
Shih et al. Utilization of waste heat in the desalination process
Al-Mutaz Msf challenges and survivals
PL234746B1 (en) Associated desalted water production system
CN108249499A (en) The method and device concentrated using hot industry waste water to high-salt wastewater low-temperature evaporation
CN1962467A (en) Cyclic cooling water desalting method
JPS61141985A (en) Seawater desalting system
US20070220905A1 (en) Cooling Water for a Natural Gas Conversion Complex
KR100726066B1 (en) Freshwater apparatus of seawater using waste heat

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application