JP2014202150A - Hot spring heat power generation system - Google Patents

Hot spring heat power generation system Download PDF

Info

Publication number
JP2014202150A
JP2014202150A JP2013080032A JP2013080032A JP2014202150A JP 2014202150 A JP2014202150 A JP 2014202150A JP 2013080032 A JP2013080032 A JP 2013080032A JP 2013080032 A JP2013080032 A JP 2013080032A JP 2014202150 A JP2014202150 A JP 2014202150A
Authority
JP
Japan
Prior art keywords
power generation
hot spring
medium
heat
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013080032A
Other languages
Japanese (ja)
Other versions
JP6124003B2 (en
Inventor
廣明 松島
Hiroaki Matsushima
廣明 松島
貴行 志田
Takayuki Shida
貴行 志田
康晴 川端
Yasuharu Kawabata
康晴 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013080032A priority Critical patent/JP6124003B2/en
Publication of JP2014202150A publication Critical patent/JP2014202150A/en
Application granted granted Critical
Publication of JP6124003B2 publication Critical patent/JP6124003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot spring heat power generation system using a hot spring water storage tank, capable of generating electric power even in existing spring facilities where device installation location is narrow or at a location at which it is difficult to secure a large quantity of cooling water necessary to generate electric power from hot spring heat, reducing failure risk and disassembly cleaning burden due to closed scale of an indirect heat exchanger, and achieving high efficiency generation of the electric power while suppressing degradation in power generation efficiency due to cooling of a power generation medium and transport power.SOLUTION: A closed loop circulation type hot spring heat power generation system configured so that a power generation medium is evaporated and gasified by a direct heat exchanger 2 in a hot spring water storage tank 1, generated steam is introduced into an expansion turbine 4 installed in an upper portion of the tank 1, the steam is formed into condensed liquid using cold water obtained from an adsorption or absorption refrigerator 9 using hot spring heat in the tank 1 as a drive source, and the condensed liquid is caused to flow again downward from the upper portion of the tank 1 into the heat exchanger 2 in the hot spring water storage tank 1, is constituted in the hot spring water storage tank 1 and the upper portion thereof.

Description

本発明は、温泉熱を利用して水やペンタンなどの低沸点媒体を蒸発気化させ、膨張タービン等を駆動して発電を行う、温泉熱発電システムに関する。特に、既存の源泉施設内に充分な機器設置スペースがなく、また発電媒体の冷却水確保が困難な場所においても簡易に利用できる、高効率な温泉熱発電システムの技術分野に関する。 The present invention relates to a hot spring thermal power generation system that uses hot spring heat to evaporate a low boiling point medium such as water or pentane and drives an expansion turbine to generate power. In particular, the present invention relates to a technical field of a high-efficiency hot spring thermal power generation system that can be easily used even in a place where there is not enough equipment installation space in an existing source facility and it is difficult to secure cooling water for a power generation medium.

地熱発電の一種である温泉熱発電は、地球の高温マグマ層を熱源とし、発電過程において燃料消費や温室効果ガスの排出を伴わないことから、エネルギー自給率の向上や温暖化防止に資する発電手段として近年注目されている。   Hot spring thermal power generation, a type of geothermal power generation, uses the Earth's high-temperature magma layer as a heat source and does not involve fuel consumption or greenhouse gas emissions during the power generation process. Has been attracting attention in recent years.

温泉熱発電の代表としては、アンモニア水や代替フロンなどの低沸点媒体を、源泉湯との熱交換により蒸発気化させ、蒸気タービンを駆動して発電を行うバイナリー発電方式が広く知られているが、源泉湯に炭酸カルシウム等の成分が多量に含まれる場合、これらが発電システム内の蒸発器や温泉配管内でスケールとして析出付着することが多い。 As a representative of hot spring thermal power generation, a binary power generation method in which a low boiling point medium such as ammonia water or alternative chlorofluorocarbon is vaporized by heat exchange with source hot water and a steam turbine is driven to generate power is widely known. When source springs contain a large amount of components such as calcium carbonate, they often deposit as scales in the evaporator and hot spring piping in the power generation system.

発電システムの温泉配管や熱交換器内でスケールが付着すると、流路面積の減少や閉塞によって発電用媒体を加熱する温泉の供給量が減少して熱交換効率が低下するため、発電出力が減少するとともに、機器が故障するリスクも高まってしまう。 If scale adheres in the hot spring piping or heat exchanger of the power generation system, the amount of hot spring that heats the power generation medium decreases due to the reduction or blockage of the flow path area, and the heat exchange efficiency decreases, resulting in a decrease in power generation output. At the same time, the risk of equipment failure increases.

このようなスケール付着の防止法としては、加水や薬剤注入などが挙げられるが、何れも冷却水の確保や薬剤の常時供給などに多大なコストを要する。特に加水によるスケール防止については、水の確保や常時供給が必要となるとともに、加水自体が源泉温度を低下させてしまうため、温泉発電では発電出力をさらに低下させてしまうという課題がある。 Examples of such scale adhesion prevention methods include water addition and drug injection, and all of them require a great deal of cost for securing cooling water and always supplying the drug. In particular, with respect to scale prevention by hydration, it is necessary to secure and constantly supply water, and hydration itself lowers the source temperature, so that there is a problem that the power generation output is further reduced in hot spring power generation.

近年、これらの課題を解決するため、発電用の低沸点媒体を加熱するための熱媒を循環させ、この熱媒と源泉湯を、発電システムの外側に別途設置する熱交換器を用いて熱交換させる、間接熱交換方式も提案されている。 In recent years, in order to solve these problems, a heat medium for heating a low-boiling point medium for power generation is circulated, and this heat medium and source hot water are heated using a heat exchanger separately installed outside the power generation system. An indirect heat exchange system that allows the exchange is also proposed.

「株式会社神戸製鋼所/マイクロバイナリーの発電システムフロー」、[平成25年4月6日検索]、インターネット、<URL:http://www.kobelco.co.jp/machinery/products/rotation/microbinary/systemflow.html>“Kobe Steel Co., Ltd./Micro binary power generation system flow”, [April 6, 2013 search], Internet, <URL: http: // www. kobelco. co. jp / machinery / products / rotation / microbinary / systemflow. html>

前記の通り、従来技術の間接熱交換方式を採用すれば、スケール付着による影響を防止することが可能となるものの、解決すべき5つの課題がある。 As described above, if the indirect heat exchange method of the prior art is adopted, the influence due to the scale adhesion can be prevented, but there are five problems to be solved.

まず、発電用媒体を蒸発気化させるための熱交換が間接熱交換となるため、それぞれの熱交換部分や熱媒配管流路などで熱損失が生じ、源泉熱を直接利用する場合よりも熱交換効率が低下し、結果として発電効率が低下してしまうという課題がある。 First, since heat exchange for evaporating the power generation medium is indirect heat exchange, heat loss occurs in each heat exchange part and heat medium pipe flow path, etc. There is a problem that the efficiency is lowered, and as a result, the power generation efficiency is lowered.

また、間接熱交換器と発電システム内の蒸発器とを循環させる、熱媒循環ポンプの駆動動力が必要となるほか、源泉施設から間接熱交換器にポンプを用いて温泉を圧送する場合には、温泉送出ポンプの動力が必要となり、これらも発電効率を低下させる課題がある他、温泉送出ポンプにはスケール析出による故障発生リスクが伴うという課題がある。 In addition, the drive power of the heat medium circulation pump that circulates the indirect heat exchanger and the evaporator in the power generation system is required, and when hot springs are pumped from the source facility to the indirect heat exchanger using a pump. In addition to the problem of reducing the power generation efficiency, these hot spring delivery pumps also have a problem that there is a risk of failure due to scale deposition.

加えて、温泉を流す間接熱交換器の流路内にスケール付着が起こるため、定期的に間接熱交換器を点検、清掃する必要性が生じてしまう。特に間接熱交換器の内部は流路が狭く複雑なため、温泉成分の滞留によるスケール析出が起こりやすく、温泉成分や使用条件によっては分解清掃作業の頻度が多くなり、大きな負担となってしまう課題がある。 In addition, since scale adhesion occurs in the flow path of the indirect heat exchanger through which hot springs flow, it becomes necessary to periodically inspect and clean the indirect heat exchanger. In particular, because the flow path is narrow and complicated inside the indirect heat exchanger, scale deposition is likely to occur due to the retention of hot spring components, and depending on the hot spring components and usage conditions, the frequency of disassembly and cleaning work increases, which is a heavy burden. There is.

また、従来技術では発電媒体を凝縮液化させるために多量の冷却水を必要とする一方、温泉地帯によっては地下水温度が上昇するため、充分な冷却水確保ができずに発電が困難となる課題や、冷却水輸送に多大な動力を消費して発電効率が大幅に低下する課題がある。   In addition, while the conventional technology requires a large amount of cooling water to condense the power generation medium into condensate, the temperature of the groundwater rises depending on the hot spring area, so that sufficient cooling water cannot be secured and power generation is difficult. There is a problem that power generation efficiency is significantly reduced by consuming a large amount of power for cooling water transportation.

さらに従来技術では、発電媒体を内部循環させるため、凝縮液化した媒体を循環ポンプにより蒸発器に圧送するが、この搬送動力によって発電効率が更に低下する課題がある。   Further, in the prior art, in order to internally circulate the power generation medium, the condensed and liquefied medium is pumped to the evaporator by a circulation pump. However, there is a problem that the power generation efficiency is further reduced by this conveyance power.

本発明は、これらの課題に鑑みてなされたものであり、その目的は、機器の設置場所が狭い既存の源泉施設でも、また、温泉熱発電に必要な多量の冷却水確保が困難な場所でも発電が可能で、間接熱交換器のスケール閉塞に伴う故障リスクと分解清掃の負担を軽減し、さらに発電媒体の冷却や搬送動力による発電効率の低下を抑えながら高効率に発電を行う、温泉貯湯槽活用型の新しい温泉熱発電システムを提供することである。   The present invention has been made in view of these problems, and the purpose of the present invention is even in existing source facilities where equipment installation locations are narrow, and in locations where it is difficult to secure a large amount of cooling water necessary for hot spring thermal power generation. Hot spring hot springs that can generate power, reduce the risk of failure due to clogging of the indirect heat exchanger and the burden of disassembly and cleaning, and generate power with high efficiency while suppressing the decrease in power generation efficiency due to cooling of the power generation medium and conveyance power The aim is to provide a new hot spring thermal power generation system that utilizes tanks.

上記課題を解決するため、請求項1に記載の発明は、
発電用媒体を温泉熱によって蒸発させ、膨張タービン等に導いて発電機を駆動した後に、タービン通過後の媒体蒸気を冷却して凝縮液化させ、再び温泉熱によって蒸発させる循環閉ループ流路を構成する温泉熱発電システムのうち、
前記発電システムを構成する媒体加熱用の熱交換器が、温泉貯湯タンク内への挿入及び貯湯タンクからの取り出しを容易に行えるように構成した熱交換器であり、発電用媒体を、貯湯タンク内で直接熱交換によって蒸発させることを特徴とする。
In order to solve the above-mentioned problem, the invention described in claim 1
After the power generation medium is evaporated by hot spring heat, led to an expansion turbine, etc., the generator is driven, the medium vapor after passing through the turbine is cooled to condense and liquefy, and a recirculation closed loop flow path is formed that evaporates again by hot spring heat Of the hot spring thermal power generation system,
The heat exchanger for heating the medium constituting the power generation system is a heat exchanger configured to be easily inserted into the hot spring hot water storage tank and removed from the hot water storage tank, and the power generation medium is stored in the hot water storage tank. It is characterized by evaporating directly by heat exchange.

請求項2に記載の発明は、
発電用媒体を温泉熱によって蒸発させ、膨張タービン等に導いて発電機を駆動した後に、タービン通過後の媒体蒸気を冷却して凝縮液化させ、再び温泉熱によって蒸発させる循環閉ループ流路を構成する温泉熱発電システムのうち、
前記発電システムの発電用媒体を蒸発させるための熱媒が、温泉貯湯タンク内への挿入及び貯湯タンクからの取り出しを容易に行えるように構成した熱交換器と、前記発電システム内の発電用媒体蒸発器とを結ぶ閉ループ流路を循環し、この熱媒と発電システム内を循環する発電用媒体とを熱交換させることで、貯湯タンク内の温泉湯を熱源として、発電用媒体を蒸発させることを特徴とする。
The invention described in claim 2
After the power generation medium is evaporated by hot spring heat, led to an expansion turbine, etc., the generator is driven, the medium vapor after passing through the turbine is cooled to condense and liquefy, and a recirculation closed loop flow path is formed that evaporates again by hot spring heat Of the hot spring thermal power generation system,
A heat exchanger configured so that a heat medium for evaporating the power generation medium of the power generation system can be easily inserted into and removed from the hot spring hot water storage tank, and the power generation medium in the power generation system By circulating through a closed loop flow path connecting the evaporator and heat exchange between the heat medium and the power generation medium circulating in the power generation system, the power generation medium is evaporated using the hot spring water in the hot water storage tank as a heat source. It is characterized by.

請求項3に記載の発明は、
発電用媒体を温泉熱によって蒸発させ、膨張タービン等に導いて発電機を駆動した後に、タービン通過後の媒体蒸気を冷却して凝縮液化させ、再び温泉熱によって蒸発させる循環閉ループ流路を構成する温泉熱発電システムのうち、
前記媒体蒸気冷却用の冷却水を得るために駆動する、温泉熱利用型冷凍機の駆動熱源が、温泉貯湯タンク内への挿入及び貯湯タンクからの取り出しを容易に行えるように構成した熱交換器と、前記冷凍機内の熱交換器とを結ぶ閉ループ流路内を循環する熱媒とし、この熱媒を利用することで、貯湯タンク内の温泉湯を熱源として、発電用媒体の冷却水を得ることを特徴とする。
The invention according to claim 3
After the power generation medium is evaporated by hot spring heat, led to an expansion turbine, etc., the generator is driven, the medium vapor after passing through the turbine is cooled to condense and liquefy, and a recirculation closed loop flow path is formed that evaporates again by hot spring heat Of the hot spring thermal power generation system,
A heat exchanger configured so that the drive heat source of the hot spring heat utilization type refrigerator that is driven to obtain the cooling water for cooling the medium vapor can be easily inserted into and removed from the hot spring hot water storage tank. And a heat medium that circulates in a closed loop flow path connecting the heat exchanger in the refrigerator, and by using this heat medium, the cooling water for the power generation medium is obtained using the hot spring water in the hot water storage tank as a heat source It is characterized by that.

請求項4に記載の発明は、
発電用媒体を温泉熱によって蒸発させ、膨張タービン等に導いて発電機を駆動した後に、タービン通過後の媒体蒸気を冷却して凝縮液化させ、再び温泉熱によって蒸発させる循環閉ループ流路を構成する温泉熱発電システムのうち、
前記膨張タービン下流の筐体表面を、前記請求項3に記載の冷却水を循環供給して水冷するか、膨張タービン排気口に接続された水冷式熱交換器に、前記冷却水を循環供給して水冷することにより、タービン通過後の媒体蒸気を、温泉熱利用によって得られる冷却水を用いて直接水冷することを特徴とする。
The invention according to claim 4
After the power generation medium is evaporated by hot spring heat, led to an expansion turbine, etc., the generator is driven, the medium vapor after passing through the turbine is cooled to condense and liquefy, and a recirculation closed loop flow path is formed that evaporates again by hot spring heat Of the hot spring thermal power generation system,
The casing surface downstream of the expansion turbine is cooled and supplied with the cooling water according to claim 3, or the cooling water is circulated and supplied to a water-cooled heat exchanger connected to an expansion turbine exhaust port. By cooling with water, the medium vapor after passing through the turbine is directly cooled with cooling water obtained by using hot spring heat.

請求項5に記載の発明は、
請求項1に記載の温泉熱発電システムのうち、前記熱交換器を、貯湯タンクの天面から出し入れできるようにするとともに、この熱交換器の鉛直上方に膨張タービンを接続配置させ、さらにこの膨張タービンの鉛直上方にタービン発電機を配置させる一方、前記膨張タービンの筐体表面か、前記膨張タービンの下方で、かつ前記貯湯タンク天面の上方に、タービン通過後の媒体蒸気を冷却する熱交換器を配置することで、貯湯タンク内の熱交換器に凝縮液化した媒体を流下させて気化上昇させ、タンク上部の膨張タービンを駆動した後にタンク上部で熱交換器を介して凝縮液化させ、液化した媒体をタンク内の熱交換器に再び流下させて気化上昇させる、閉ループ循環流路型の温泉熱発電を貯湯タンクの上部に構成できるよう、発電システムの構成機器を貯湯タンク上部に配置したことを特徴とする。
The invention described in claim 5
In the hot spring thermal power generation system according to claim 1, the heat exchanger can be taken in and out from the top surface of the hot water storage tank, an expansion turbine is connected and arranged vertically above the heat exchanger, and the expansion is further performed. While exchanging a turbine generator vertically above the turbine, heat exchange is performed to cool the medium vapor after passing through the turbine, either on the casing surface of the expansion turbine, below the expansion turbine, and above the hot water tank top surface. By placing a heat exchanger in the hot water storage tank, the condensed and liquefied medium is allowed to flow down to evaporate, and after driving the expansion turbine at the top of the tank, it is condensed and liquefied via the heat exchanger at the top of the tank. Power generation system so that a closed loop circulation flow type hot spring thermal power generation can be configured at the upper part of the hot water storage tank, which causes the heated medium to flow again to the heat exchanger in the tank and evaporate and rise Characterized in that a configuration device to the hot water storage tank top.

本発明によれば、温泉熱発電に必要な機器の設置場所が狭い既存の源泉施設でも、また、温泉熱発電に必要な多量の冷却水確保が困難な場所でも、間接熱交換器のスケール閉塞に伴う故障のリスクと分解清掃の負担を軽減し、更に発電媒体の冷却や搬送動力による発電効率の低下を抑えながら、高効率に温泉熱発電を行うことが可能となる。 According to the present invention, the scale blockage of the indirect heat exchanger can be achieved even in an existing source facility where the installation location of equipment necessary for hot spring thermal power generation is narrow or where it is difficult to secure a large amount of cooling water required for hot spring thermal power generation. Therefore, it is possible to perform hot spring thermal power generation with high efficiency while reducing the risk of breakdown and the burden of disassembly and cleaning, and further suppressing the decrease in power generation efficiency due to cooling of the power generation medium and conveyance power.

本発明に係る第1実施形態の温泉熱発電システムの概略構成例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the schematic structural example of the hot spring thermal power generation system of 1st Embodiment which concerns on this invention. 図1の発電システムを構成する貯湯タンク挿入型熱交換器の配置と、凝縮媒体の供給内管配置、および発電媒体の蒸気を集める蒸気ヘッダーの詳細を示す模式図である。It is a schematic diagram which shows the detail of the steam header which collects the arrangement | positioning of the hot water tank insertion type heat exchanger which comprises the electric power generation system of FIG. 1, the supply inner pipe arrangement | positioning of a condensing medium, and the vapor | steam of an electric power generation medium. 図1の発電システムを構成する膨張タービンと、前記タービンから排出される媒体蒸気を凝縮液化させる水冷式熱交換器の配置と、前記熱交換器に供給する冷却水の循環流路の詳細を示す模式図である。FIG. 1 shows details of an expansion turbine constituting the power generation system of FIG. 1, an arrangement of a water-cooled heat exchanger for condensing and liquefying medium vapor discharged from the turbine, and a circulation path of cooling water supplied to the heat exchanger. It is a schematic diagram.

以下、図面を参照して本発明を実施するための最良の形態について説明する。なお、本発明の範囲は特許請求の範囲記載のものであって、本実施形態に限定されるものではない。 The best mode for carrying out the present invention will be described below with reference to the drawings. The scope of the present invention is described in the scope of claims, and is not limited to this embodiment.

(第1実施形態) (First embodiment)

まず、本発明の第1実施形態に係る温泉熱発電システムの概略構成および機能について、図に基づき説明する。 First, the schematic configuration and function of the hot spring thermal power generation system according to the first embodiment of the present invention will be described with reference to the drawings.

図1に示すように、本発明の温泉熱発電システムは、温泉を貯湯する源泉施設内の貯湯タンク1のタンク内に、前記貯湯タンクの天面から挿入され、タンク内への挿入やタンクからの取り出しを容易に行えるように構成した、発電媒体の直接熱交換器2と、前記直接熱交換器から生じる発電媒体蒸気を集める蒸気ヘッダー3と、この蒸気ヘッダーの集合管に接続された膨張タービン4と、この膨張タービンに接続された発電機5と、前記膨張タービンの排気蒸気を凝縮液化させる水冷式熱交換器6と、前記熱交換器から出る発電媒体の液体を前記直接熱交換器2の中に流下あるいは滴下させる媒体供給管7から構成される。 As shown in FIG. 1, the hot spring thermal power generation system according to the present invention is inserted into the tank of a hot water storage tank 1 in a hot spring facility for storing hot springs from the top of the hot water storage tank, and inserted into the tank or from the tank. The heat generating medium direct heat exchanger 2, the steam header 3 for collecting the power generating medium vapor generated from the direct heat exchanger, and the expansion turbine connected to the collecting pipe of the steam header 4, a generator 5 connected to the expansion turbine, a water-cooled heat exchanger 6 for condensing and liquefying the exhaust steam of the expansion turbine, and a liquid of a power generation medium exiting the heat exchanger to the direct heat exchanger 2 It is comprised from the medium supply pipe | tube 7 made to flow in or drop in.

なお、前記の水冷式熱交換器6に供給される循環冷却水は、前記貯湯タンクの側面から挿入された熱媒循環流路8に接続された、温泉熱駆動型の吸着式冷凍機9と、前記冷凍機に接続された密閉式クーリングタワー10の駆動によって得られるものである。 The circulating cooling water supplied to the water-cooled heat exchanger 6 is connected to a heat medium circulation passage 8 inserted from a side surface of the hot water storage tank, and is connected to a hot spring heat-driven adsorption refrigerator 9. , And obtained by driving a hermetic cooling tower 10 connected to the refrigerator.

ここで、前記発電媒体の直接熱交換器2と、その上部に接続された蒸気ヘッダー3と、さらにその上部に接続された膨張タービン4と、この膨張タービン軸に接続された発電機5と、前記膨張タービンから排出された媒体蒸気を凝縮液化するための水冷式熱交換器6は、全て温泉を貯湯する源泉施設内の貯湯タンク1の蓋となる貯湯タンク天板11の上に配置固定され、さらにこの貯湯タンク天板11は、貯湯タンク周囲に設置したガイドレール付きの天板支柱12によって保持されており、必要時にはチェーンブロック等を用いて直接熱交換器2を含む発電システム構成機器をタンク上部に吊り上げ、直接熱交換器2の表面に付着した温泉スケールの除去等、メンテナンスを容易に行えるよう構成している。   Here, the direct heat exchanger 2 of the power generation medium, the steam header 3 connected to the upper part thereof, the expansion turbine 4 connected to the upper part thereof, and the generator 5 connected to the expansion turbine shaft, The water-cooled heat exchanger 6 for condensing and liquefying the medium vapor discharged from the expansion turbine is disposed and fixed on a hot water storage tank top plate 11 serving as a lid of the hot water storage tank 1 in a hot spring facility for storing hot springs. Furthermore, the hot water storage tank top plate 11 is held by a top plate support 12 with guide rails installed around the hot water storage tank. When necessary, a power generation system component device including the direct heat exchanger 2 using a chain block or the like is used. It is constructed so that maintenance such as removal of a hot spring scale directly suspended from the surface of the heat exchanger 2 can be easily performed.

このように、発電システムの構成機器を配置し、発電媒体の熱交換器を貯湯タンク内に挿入設置することで、温泉熱による媒体直接交換を行うことで、発電システム内のスケール析出リスクをなくし、更に温泉の流動や空気接触による熱交換器表面のスケール析出も抑えながら、発電媒体をタンク内で蒸発気化させて速やかに膨張タービンに導入して発電させ、発電後の媒体蒸気を温泉熱利用によって得た冷却水によって効率よく直接冷却することで凝縮液化し、得られた媒体をそのまま流下させて再び貯湯タンク内の媒体熱交換器に還流させる閉ループ循環流路を構成することで、発電システム全体の熱交換効率を高め、媒体循環流路の短縮により搬送動力も削減し、高効率な温泉熱発電を行えるようになる。   In this way, by arranging the components of the power generation system and inserting and installing the heat exchanger for the power generation medium in the hot water storage tank, the medium is directly replaced by hot spring heat, eliminating the risk of scale deposition in the power generation system. In addition, while suppressing scale deposition on the surface of the heat exchanger due to the flow of hot springs and air contact, the power generation medium is evaporated and vaporized in the tank and immediately introduced into the expansion turbine to generate power, and the generated medium vapor uses hot spring heat. The power generation system is configured by forming a closed loop circulation flow path that condenses and liquefies by efficiently cooling directly with the cooling water obtained by the above, and flows down the obtained medium as it is to return to the medium heat exchanger in the hot water storage tank again. The overall heat exchange efficiency is increased, the conveyance power is reduced by shortening the medium circulation channel, and highly efficient hot spring thermal power generation can be performed.

また、温泉熱発電に不可欠な冷却水についても、密閉式クーリングタワーの補水だけとすることで、冷却水必要量を大幅に削減し、さらに温泉熱を活用することで得られる冷熱を発電システムに利用するように構成することで、冷却水の確保が困難な地域でも温泉熱発電を容易に行うことができるようになる。   In addition, with regard to the cooling water essential for hot spring thermal power generation, only the supplementary water for the enclosed cooling tower can be used to greatly reduce the amount of cooling water required, and the cold energy obtained by utilizing hot spring heat can be used in the power generation system. By doing so, hot spring thermal power generation can be easily performed even in areas where it is difficult to secure cooling water.

さらに発電システムを簡素化し、その構成機器を貯湯タンク上部の空きスペースを活用して設置することで、貯湯タンク周囲を含む源泉施設内での機器設置は、吸着式冷凍機と密閉式クーリングタワーだけとし、機器設置面積を減少させることで、機器設置スペースを充分に確保できない場所でも温泉熱発電を行うことが可能となる。   Furthermore, by simplifying the power generation system and installing its components using the empty space above the hot water storage tank, only the adsorption chiller and the sealed cooling tower can be installed in the source facility including the area around the hot water storage tank. By reducing the equipment installation area, hot spring thermal power generation can be performed even in a place where a sufficient equipment installation space cannot be secured.

なお、図1に示す発電媒体の直接熱交換器2の外側表面は、貯湯タンク内での源泉直接熱交換にあたり、高い熱効率と各種温泉成分への耐性が求められることから、熱伝導率と耐食性が良好なシリコンカーバイド製の熱交換器やシリコンカーバイド等の耐熱・耐食材で外側表面をコーティングした伝熱管を利用することが望ましい。また、媒体漏えい時の安全性から、発電用媒体としては無害な代替フロンやアルコール類のほか、水を選択することもできるが、沸点の高い水を利用する場合は、必要に応じて発電システムを構成する循環閉ループ流路全体を内部減圧することで、媒体の沸点を下げて運用しても良い。   The outer surface of the direct heat exchanger 2 of the power generation medium shown in FIG. 1 is required to have high thermal efficiency and resistance to various hot spring components in direct heat exchange in the hot water storage tank. It is desirable to use a heat exchanger tube whose outer surface is coated with a heat- and corrosion-resistant material such as a silicon carbide heat exchanger and silicon carbide. In addition to the harmless alternatives to chlorofluorocarbons and alcohols, water can be selected as a medium for power generation due to safety in the event of a medium leak, but when using water with a high boiling point, a power generation system can be used if necessary. It is also possible to operate with the boiling point of the medium lowered by reducing the internal pressure of the entire closed closed loop flow path constituting the medium.

また、前記直接熱交換器から生じる発電媒体の蒸気を集める蒸気ヘッダー3は、図2に示す通り複数の管式熱交換器から生じる媒体蒸気を膨張タービン入口に集約して供給する
場合に必要となるが、貯湯タンク内に蒸気排出管一つを有する大型熱交換器を挿入できる場合には、蒸気ヘッダーを省略して媒体蒸気の圧力損失を低減させて膨張タービンに導入することが望ましい。
Further, the steam header 3 that collects steam of the power generation medium generated from the direct heat exchanger is necessary when the medium steam generated from a plurality of tubular heat exchangers is supplied to the expansion turbine inlet as shown in FIG. However, when a large heat exchanger having one steam discharge pipe can be inserted into the hot water storage tank, it is desirable to omit the steam header to reduce the pressure loss of the medium steam and introduce it into the expansion turbine.

なお、前記膨張タービン4としては、軸流タービンの他、スクロール式の膨張タービンなど、媒体の高圧蒸気を中心から導入し、タービンの筐体外側に近づくほど低圧膨張して排出される流路を構成する機器が好ましく、この場合はタービン筐体の外側に水冷流路を設けて冷却水を供給し、タービン排気口付近で直接媒体蒸気を凝縮液化する構成とすれば、水冷熱交換部分をタービン筐体と一体化、または近接させることができ、さらなる装置のコンパクト化と効率向上を実現することができる。 In addition to the axial flow turbine, the expansion turbine 4 includes a flow path that introduces high-pressure steam of a medium from the center, such as a scroll-type expansion turbine, and expands and discharges as it approaches the outside of the turbine casing. In this case, if the water cooling flow path is provided outside the turbine casing to supply cooling water and the medium vapor is condensed and liquefied directly in the vicinity of the turbine exhaust port, the water cooling heat exchange portion is connected to the turbine. It can be integrated with or close to the housing, and further downsizing and efficiency improvement of the device can be realized.

なお、前記の冷却水については、現地で充分な冷水を容易に確保できる場所においては、調達冷水の直接供給によって冷却を行えば良いが、冷水の確保が困難な場所においては、貯湯タンク内に別途設置した閉ループ熱交換器で得られる温泉熱を熱源として、吸着式か吸収式の冷凍機を駆動し、この冷凍機から得られる冷却水を循環させて媒体の凝縮液化に利用することで、温泉熱で得られる冷熱を有効活用し、冷熱必要量を最小限に抑えながら、温泉熱発電を行えるよう、機器を構成すれば良い。   The above cooling water may be cooled by direct supply of proceded cold water in a place where sufficient cold water can be easily secured locally, but in places where it is difficult to secure cold water, By using hot spring heat obtained in a separately installed closed loop heat exchanger as a heat source, driving an adsorption or absorption refrigerator, circulating cooling water obtained from this refrigerator, and using it for condensing liquefaction of the medium, It is only necessary to configure equipment so that hot spring thermal power generation can be performed while effectively utilizing the cold heat obtained from hot spring heat and minimizing the required amount of cold heat.

また、媒体蒸気の凝縮液は、そのまま貯湯タンク内の直接熱交換器に向けて流下あるいは滴下できることが望ましいが、搬送動力が不足して効率よく発電が行えない場合には、凝縮液流路に、発電電力を利用して駆動する、補助的な媒体循環ポンプを設置すればよい。   In addition, it is desirable that the condensate of the medium vapor can flow down or dripping directly toward the direct heat exchanger in the hot water storage tank. However, if the transport power is insufficient and power generation cannot be performed efficiently, the condensate flow path can be used. An auxiliary medium circulation pump that drives using generated power may be installed.

このように、本発明の温泉熱発電システムを構成すれば、発電用媒体を貯湯タンク内で直接熱交換により蒸発気化させ、タンク上部で速やかに膨張タービンを駆動して発電した後に水冷して凝縮液化させ、そのままタンク上部から貯湯タンクへ流下させる、閉ループ循環流路を構成することで、コンパクトで高効率な温泉熱発電システムを構成することが可能となるのである。   As described above, if the hot spring thermal power generation system of the present invention is configured, the power generation medium is evaporated and evaporated by direct heat exchange in the hot water storage tank, and the expansion turbine is quickly driven in the upper part of the tank to generate power and then cooled by water and condensed. By forming a closed loop circulation flow path that is liquefied and flows down from the upper part of the tank to the hot water storage tank, a compact and highly efficient hot spring thermal power generation system can be configured.

また、温泉熱発電に不可欠な多量の冷却水確保についても、温泉熱を活用して得られる冷熱を活用するシステムを構成することで、冷却水の確保が困難な場所であっても、温泉熱発電を容易に行うことが可能となる。   In addition, with regard to securing a large amount of cooling water, which is essential for hot spring thermal power generation, a system that uses cold heat obtained by utilizing hot spring heat can be configured, so even if it is difficult to secure cooling water, It is possible to easily generate power.

本発明は、前記実施形態に限定されるものではなく、例えば太陽熱を効率良く集熱することで得られる高温の温水貯湯タンクや、森林間伐材等の燃焼によって得られる高温水の貯湯タンク、工場に設置された温水タンクやオイルタンク、薬液タンクなどでも適用可能である。このように、前記の実施形態は例示であり、本発明の特許請求範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above-described embodiment. For example, a high-temperature hot water hot water storage tank obtained by efficiently collecting solar heat, a hot water hot water storage tank obtained by burning forest thinning, etc., a factory It can also be applied to hot water tanks, oil tanks, chemical tanks, etc. As described above, the above-described embodiment is merely an example, and any one having substantially the same configuration as the technical idea described in the claims of the present invention and having the same function and effect can be obtained. However, it is included in the technical scope of the present invention.

1:源泉貯湯タンク
2:貯湯タンク内挿入型熱交換器
3:発電媒体蒸気ヘッダー
4:膨張タービン
5:発電機
6:発電媒体冷却用水冷式熱交換器
7:発電媒体供給管
8:貯湯タンク内熱交換器付き熱媒循環流路
9:温泉熱駆動型の吸着式冷凍機
10:密閉式クーリングタワー
11:発電機器を構成した源泉貯湯タンク天板
12:ガイドレール付き貯湯タンク天板支持柱

















1: Source hot water storage tank 2: Insertion type heat exchanger in hot water storage tank 3: Power generation medium steam header 4: Expansion turbine 5: Generator 6: Water cooling type heat exchanger for cooling the power generation medium 7: Power generation medium supply pipe 8: Hot water storage tank Heat medium circulation flow path 9 with internal heat exchanger: Hot spring heat drive type adsorption refrigerator 10: Sealing cooling tower 11: Source hot water storage tank top plate 12 constituting power generation equipment 12: Hot water storage tank top plate support pillar with guide rail

















Claims (5)

発電用媒体を温泉熱によって蒸発させ、膨張タービン等に導いて発電機を駆動した後に、タービン通過後の媒体蒸気を冷却して凝縮液化させ、再び温泉熱によって蒸発させる循環閉ループ流路を構成する温泉熱発電システムのうち、
前記発電システムを構成する媒体加熱用の熱交換器が、温泉貯湯タンク内への挿入及び貯湯タンクからの取り出しを容易に行えるように構成した熱交換器であり、発電用媒体を、貯湯タンク内で直接熱交換によって蒸発させることを特徴とする、温泉熱発電システム。
After the power generation medium is evaporated by hot spring heat, led to an expansion turbine, etc., the generator is driven, the medium vapor after passing through the turbine is cooled to condense and liquefy, and a recirculation closed loop flow path is formed that evaporates again by hot spring heat Of the hot spring thermal power generation system,
The heat exchanger for heating the medium constituting the power generation system is a heat exchanger configured to be easily inserted into the hot spring hot water storage tank and removed from the hot water storage tank, and the power generation medium is stored in the hot water storage tank. Hot spring thermal power generation system, characterized by being directly evaporated by heat exchange.
発電用媒体を温泉熱によって蒸発させ、膨張タービン等に導いて発電機を駆動した後に、タービン通過後の媒体蒸気を冷却して凝縮液化させ、再び温泉熱によって蒸発させる循環閉ループ流路を構成する温泉熱発電システムのうち、
前記発電システムの発電用媒体を蒸発させるための熱媒が、温泉貯湯タンク内への挿入及び貯湯タンクからの取り出しを容易に行えるように構成した熱交換器と、前記発電システム内の発電用媒体蒸発器とを結ぶ閉ループ流路を循環し、この熱媒と発電システム内を循環する発電用媒体とを熱交換させることで、貯湯タンク内の温泉湯を熱源として、発電用媒体を蒸発させることを特徴とする、温泉熱発電システム。
After the power generation medium is evaporated by hot spring heat, led to an expansion turbine, etc., the generator is driven, the medium vapor after passing through the turbine is cooled to condense and liquefy, and a recirculation closed loop flow path is formed that evaporates again by hot spring heat Of the hot spring thermal power generation system,
A heat exchanger configured so that a heat medium for evaporating the power generation medium of the power generation system can be easily inserted into and removed from the hot spring hot water storage tank, and the power generation medium in the power generation system By circulating through a closed loop flow path connecting the evaporator and heat exchange between the heat medium and the power generation medium circulating in the power generation system, the power generation medium is evaporated using the hot spring water in the hot water storage tank as a heat source. Features a hot spring thermal power generation system.
発電用媒体を温泉熱によって蒸発させ、膨張タービン等に導いて発電機を駆動した後に、タービン通過後の媒体蒸気を冷却して凝縮液化させ、再び温泉熱によって蒸発させる循環閉ループ流路を構成する温泉熱発電システムのうち、
前記媒体蒸気冷却用の冷却水を得るために駆動する、温泉熱利用型冷凍機の駆動熱源が、温泉貯湯タンク内への挿入及び貯湯タンクからの取り出しを容易に行えるように構成した熱交換器と、前記冷凍機内の熱交換器とを結ぶ閉ループ流路内を循環する熱媒とし、この熱媒を利用することで、貯湯タンク内の温泉湯を熱源として、発電用媒体の冷却水を得ることを特徴とする、温泉熱発電システムの冷却水調達方法
After the power generation medium is evaporated by hot spring heat, led to an expansion turbine, etc., the generator is driven, the medium vapor after passing through the turbine is cooled to condense and liquefy, and a recirculation closed loop flow path is formed that evaporates again by hot spring heat Of the hot spring thermal power generation system,
A heat exchanger configured so that the drive heat source of the hot spring heat utilization type refrigerator that is driven to obtain the cooling water for cooling the medium vapor can be easily inserted into and removed from the hot spring hot water storage tank. And a heat medium that circulates in a closed loop flow path connecting the heat exchanger in the refrigerator, and by using this heat medium, the cooling water for the power generation medium is obtained using the hot spring water in the hot water storage tank as a heat source Cooling water procurement method for hot spring thermal power generation system
発電用媒体を温泉熱によって蒸発させ、膨張タービン等に導いて発電機を駆動した後に、タービン通過後の媒体蒸気を冷却して凝縮液化させ、再び温泉熱によって蒸発させる循環閉ループ流路を構成する温泉熱発電システムのうち、
前記膨張タービン下流の筐体表面を、前記請求項3に記載の冷却水を循環供給して水冷するか、膨張タービン排気口に接続された水冷式熱交換器に、前記冷却水を循環供給して水冷することにより、タービン通過後の媒体蒸気を、温泉熱利用によって得られる冷却水を用いて直接水冷することを特徴とする、温泉熱発電システムの発電用媒体冷却方法。
After the power generation medium is evaporated by hot spring heat, led to an expansion turbine, etc., the generator is driven, the medium vapor after passing through the turbine is cooled to condense and liquefy, and a recirculation closed loop flow path is formed that evaporates again by hot spring heat Of the hot spring thermal power generation system,
The casing surface downstream of the expansion turbine is cooled and supplied with the cooling water according to claim 3, or the cooling water is circulated and supplied to a water-cooled heat exchanger connected to an expansion turbine exhaust port. A medium cooling method for power generation in a hot spring thermal power generation system, wherein the medium vapor after passing through the turbine is directly water cooled by using cooling water obtained by using hot spring heat.
請求項1に記載の温泉熱発電システムのうち、前記熱交換器を、貯湯タンクの天面から出し入れできるようにするとともに、この熱交換器の鉛直上方に膨張タービンを接続配置させ、さらにこの膨張タービンの鉛直上方にタービン発電機を配置させる一方、前記膨張タービンの筐体表面か、前記膨張タービンの下方で、かつ前記貯湯タンク天面の上方に、タービン通過後の媒体蒸気を冷却する熱交換器を配置することで、貯湯タンク内の熱交換器に凝縮液化した媒体を流下させて気化上昇させ、タンク上部の膨張タービンを駆動した後にタンク上部で熱交換器を介して凝縮液化させ、液化した媒体をタンク内の熱交換器に再び流下させて気化上昇させる、閉ループ循環流路型の温泉熱発電を貯湯タンクの上部に構成できるよう、発電システムの構成機器を貯湯タンク上部に配置したことを特徴とする、
温泉貯湯槽活用型の温泉熱発電システム






























In the hot spring thermal power generation system according to claim 1, the heat exchanger can be taken in and out from the top surface of the hot water storage tank, an expansion turbine is connected and arranged vertically above the heat exchanger, and the expansion is further performed. While exchanging a turbine generator vertically above the turbine, heat exchange is performed to cool the medium vapor after passing through the turbine, either on the casing surface of the expansion turbine, below the expansion turbine, and above the hot water tank top surface. By placing a heat exchanger in the hot water storage tank, the condensed and liquefied medium is allowed to flow down to evaporate, and after driving the expansion turbine at the top of the tank, it is condensed and liquefied via the heat exchanger at the top of the tank. Power generation system so that a closed loop circulation flow type hot spring thermal power generation can be configured at the upper part of the hot water storage tank, which causes the heated medium to flow again to the heat exchanger in the tank and evaporate and rise Characterized in that a configuration device to the hot water storage tank top,
Hot spring thermal power generation system utilizing hot spring storage tank






























JP2013080032A 2013-04-07 2013-04-07 Hot spring thermal power generation system Active JP6124003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013080032A JP6124003B2 (en) 2013-04-07 2013-04-07 Hot spring thermal power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013080032A JP6124003B2 (en) 2013-04-07 2013-04-07 Hot spring thermal power generation system

Publications (2)

Publication Number Publication Date
JP2014202150A true JP2014202150A (en) 2014-10-27
JP6124003B2 JP6124003B2 (en) 2017-05-10

Family

ID=52352812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013080032A Active JP6124003B2 (en) 2013-04-07 2013-04-07 Hot spring thermal power generation system

Country Status (1)

Country Link
JP (1) JP6124003B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5855291B1 (en) * 2015-02-02 2016-02-09 イノベーティブ・デザイン&テクノロジー株式会社 Heat exchanger for power generation system, binary power generation system including the heat exchanger, and control method for heat exchanger for power generation system
JP2017072013A (en) * 2015-10-11 2017-04-13 嘉郎 前田 Hot spring establishment device and hot spring establishment type hot spring heat power generation system
US9657600B2 (en) 2015-02-02 2017-05-23 Innovative Designs & Technology Inc. Heat exchanger, a purifier, an electrode-containing pipe, a power generation system, a control method for heat exchanger and a scale removing method
JP2018044439A (en) * 2016-04-27 2018-03-22 中松 義郎 Method for suppressing opposition of geothermal generation, accelerating utilization of power geothermal energy and accelerating geothermal power generation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112697A (en) * 1980-12-29 1982-07-13 Mitsubishi Metal Corp Method of removing scale on surface of heat-exchange tube
JPH02267304A (en) * 1989-04-10 1990-11-01 Kajima Corp Binary cycle power recovery device
JP2004235537A (en) * 2003-01-31 2004-08-19 Clover Denshi Kogyo Kk Multilayer wiring board
JP2010169369A (en) * 2009-01-26 2010-08-05 Ken Odane Hot water supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112697A (en) * 1980-12-29 1982-07-13 Mitsubishi Metal Corp Method of removing scale on surface of heat-exchange tube
JPH02267304A (en) * 1989-04-10 1990-11-01 Kajima Corp Binary cycle power recovery device
JP2004235537A (en) * 2003-01-31 2004-08-19 Clover Denshi Kogyo Kk Multilayer wiring board
JP2010169369A (en) * 2009-01-26 2010-08-05 Ken Odane Hot water supply system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5855291B1 (en) * 2015-02-02 2016-02-09 イノベーティブ・デザイン&テクノロジー株式会社 Heat exchanger for power generation system, binary power generation system including the heat exchanger, and control method for heat exchanger for power generation system
JP2016142451A (en) * 2015-02-02 2016-08-08 イノベーティブ・デザイン&テクノロジー株式会社 Heat exchanger for power generation system, binary power generation system with heat exchanger and control method for heat exchanger for power generation system
US9657600B2 (en) 2015-02-02 2017-05-23 Innovative Designs & Technology Inc. Heat exchanger, a purifier, an electrode-containing pipe, a power generation system, a control method for heat exchanger and a scale removing method
JP2017072013A (en) * 2015-10-11 2017-04-13 嘉郎 前田 Hot spring establishment device and hot spring establishment type hot spring heat power generation system
JP2018044439A (en) * 2016-04-27 2018-03-22 中松 義郎 Method for suppressing opposition of geothermal generation, accelerating utilization of power geothermal energy and accelerating geothermal power generation

Also Published As

Publication number Publication date
JP6124003B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
KR101280520B1 (en) Power Generation System Using Waste Heat
US20150361831A1 (en) System and method for thermal management
JP5845590B2 (en) Heat pump steam generator
WO2011004866A1 (en) Vapor supply device
US11300010B2 (en) Cooling equipment, combined cycle plant comprising same, and cooling method
JP6021526B2 (en) COOLING WATER SUPPLY SYSTEM AND BINARY POWER GENERATOR HAVING THE SAME
JP6124003B2 (en) Hot spring thermal power generation system
JP4659601B2 (en) Energy supply system, energy supply method, and energy supply system remodeling method
CN103547786A (en) Composite power generation system
JP2007224868A (en) Heat pump system, lubricating water temperature adjusting method for heat pump system, and operating method for heat pump system
KR20160093873A (en) Waste heat recycling system based on constant temperature tank and heat pump
WO2007108625A1 (en) The cooler for transformer using generation cycle
JP2016151191A (en) Power generation system
KR101528935B1 (en) The generating system using the waste heat of condenser
US20080196411A1 (en) Nuclear Power Plant and a Steam Turbine
KR101481010B1 (en) Ocean thermal energy conversion system and operation method thereof
Hill Study of low-grade waste heat recovery and energy transportation systems in industrial applications
JP5713824B2 (en) Power generation system
KR20100057573A (en) The condensing system for steam turbine using refrigerant evaporation heat
KR101336788B1 (en) A cooling system of the organic rankine cycle
JP2010203686A (en) Storage type hot water supply device
Zhang et al. Experimental investigation on heat recovery from condensation of thermal power plant exhaust steam by a CO2 vapor compression cycle
KR20150098163A (en) ORC distribute electricity generation system
JP2005171861A (en) Rankine cycle power generation system
JP2013194926A (en) Steam generating system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170321

R150 Certificate of patent or registration of utility model

Ref document number: 6124003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350