JP2010069366A - Device for removing scale in cooling water and method for removing scale using this device - Google Patents

Device for removing scale in cooling water and method for removing scale using this device Download PDF

Info

Publication number
JP2010069366A
JP2010069366A JP2008237028A JP2008237028A JP2010069366A JP 2010069366 A JP2010069366 A JP 2010069366A JP 2008237028 A JP2008237028 A JP 2008237028A JP 2008237028 A JP2008237028 A JP 2008237028A JP 2010069366 A JP2010069366 A JP 2010069366A
Authority
JP
Japan
Prior art keywords
cooling water
power supply
scale
electrode plates
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008237028A
Other languages
Japanese (ja)
Other versions
JP4790778B2 (en
Inventor
Hiroshi Tanaka
博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innovative Design and Technology Inc
Original Assignee
Innovative Design and Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovative Design and Technology Inc filed Critical Innovative Design and Technology Inc
Priority to JP2008237028A priority Critical patent/JP4790778B2/en
Publication of JP2010069366A publication Critical patent/JP2010069366A/en
Application granted granted Critical
Publication of JP4790778B2 publication Critical patent/JP4790778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for removing scale in cooling water which is excellent in durability and maintainability. <P>SOLUTION: The device 10 for removing scale in cooling water precipitates and removes scale components in the cooling water supplied to a heat exchange system 11 such as a cooling tower by electrolytic treatment has an electrolytic cell 12 for electrolyzing the cooling water supplied to the heat exchange system to circulate and supply the cooling water to the heat exchange system, a plurality of electrode plates 13a-13d installed in the electrolytic cell, a relay box portion 14 for switching a connection circuit configuration formed by the electrode plates, a power source portion 15 for applying a voltage, set by the relay box portion, between the electrode plates, and an electrolysis control portion 16 for controlling the relay box portion based on a change in power supply voltage of the power source portion in constant current control for supplying a constant current between the electrode plates. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、配管内などへのスケール付着が問題となる熱交換設備において、その冷却水中に含まれるスケール成分を析出除去するための冷却水のスケール除去装置及びそのスケール除去装置を用いたスケール除去方法に関する。   The present invention relates to a scale removal device for cooling water for precipitating and removing scale components contained in the cooling water in a heat exchange facility in which scale adhesion in a pipe or the like becomes a problem, and scale removal using the scale removal device Regarding the method.

クーリングタワーなどの熱交換器などに冷却水を循環させる冷却水循環装置は、機器等の熱交換器を冷却水によって冷却した後、温まった水を冷却塔に流して冷却し、再び熱交換器に循環させるものである。   A cooling water circulation device that circulates cooling water to a heat exchanger such as a cooling tower cools the heat exchanger such as equipment with the cooling water, then cools the warm water by flowing it to the cooling tower, and circulates again to the heat exchanger. It is something to be made.

このような冷却水循環装置においては、その配管の内壁に不溶性のカルシウム塩などがスケールとして付着して、配管の詰まりや冷却効率の低下が生じることがあり、装置内で微生物が繁殖する原因となって衛生上も好ましくない。このため、冷却水に殺菌剤やスケール防止剤等の薬剤を添加しておくことが一般的である。また、経時的な水の蒸発によって冷却水の硬度が上昇すると、スケールが付着しやすくなるため、冷却水の硬度を常時モニタして、規定値以上の硬度になるとクーリングタワー内の冷却水を入れ換えるといったことも行われている。   In such a cooling water circulation device, insoluble calcium salt or the like adheres to the inner wall of the piping as a scale, which may cause clogging of the piping or a decrease in cooling efficiency, causing microorganisms to propagate in the device. It is not preferable for hygiene. For this reason, it is common to add chemical | medical agents, such as a disinfectant and a scale inhibitor, to cooling water. Also, if the hardness of the cooling water increases due to evaporation of water over time, the scale tends to adhere, so the cooling water hardness is constantly monitored, and when the hardness exceeds the specified value, the cooling water in the cooling tower is replaced. Things are also done.

しかし、近年では環境汚染防止という観点から薬剤の使用が自粛されるようになり、これに代わりうるものとして電解処理を利用したスケール付着防止方法が開発されている。例えば、特許文献1には、その冷却水循環経路に設けられた冷却水を貯留する電解槽と、前記電解槽内に設置された一対の電極と、前記一対の電極板間に電圧を印加する電圧源と、前記一対の電極板間に電圧を印加することにより前記電解槽内に貯留された前記冷却水の電解処理を行う電解装置とを備えた冷却水循環装置が提案されている。
再公表特許WO2006/027825号公報
However, in recent years, the use of chemicals has been restrained from the viewpoint of preventing environmental pollution, and a scale adhesion prevention method using electrolytic treatment has been developed as an alternative. For example, Patent Literature 1 discloses an electrolytic cell for storing cooling water provided in the cooling water circulation path, a pair of electrodes installed in the electrolytic cell, and a voltage for applying a voltage between the pair of electrode plates. There has been proposed a cooling water circulation device including a source and an electrolysis device that performs electrolysis treatment of the cooling water stored in the electrolytic cell by applying a voltage between the pair of electrode plates.
Republished patent WO2006 / 027825

前記特許文献1に示したような従来の冷却水のスケール除去装置では、電析処理を行う電極に電力を供給するに際して、析出反応など電解により起こる電気化学反応を一定にするために定電流制御がなされる。そして、この種の電源部では出力電圧を可変するために交流を一度直流に整流し、FETやIGBTなど半導体を用いて一定周期でスイッチング(オンオフ処理)を行って、半導体のON、OFFの時間比率を変えることで矩形波を発生させる出力電圧の制御が行なわれる。すなわち、冷却水のイオン濃度が高い状態では電圧を低く、逆にイオン濃度が低い状態では電圧を高くするようにして定電流制御を行うように電源内部で自動制御される。
こうして、冷却水中のスケール分などが多くなりその負荷抵抗が小さくなると内部の半導体など(主にスイッチングを行う半導体、整流回路のケミコンなど)に大きな電流が流れる状態になり、電源回路の各部品に大きなストレスを与えるため、その耐用性を低下させて電源回路を含むメンテナンス処理が必要になるという課題があった。
また、スケール分などが少なくなり電源部の最大電圧を加えても規定の電流が流れなくなり一定電流を流せなくなるという課題があった。
In the conventional scale removal device for cooling water as shown in Patent Document 1, when supplying power to the electrode for electrodeposition treatment, constant current control is performed in order to keep the electrochemical reaction caused by electrolysis such as precipitation reaction constant. Is made. In this type of power supply unit, in order to change the output voltage, AC is once rectified to DC, and switching (ON / OFF processing) is performed at a constant cycle using a semiconductor such as an FET or IGBT, thereby turning ON / OFF time of the semiconductor. The output voltage for generating the rectangular wave is controlled by changing the ratio. That is, automatic control is performed inside the power supply so as to perform constant current control by reducing the voltage when the ion concentration of the cooling water is high and conversely increasing the voltage when the ion concentration is low.
In this way, when the scale in the cooling water increases and the load resistance decreases, a large current flows through the internal semiconductors (mainly switching semiconductors, rectifier circuit chemicons, etc.). In order to give a big stress, the subject that the durability was reduced and the maintenance process including a power supply circuit was needed occurred.
In addition, there is a problem that the amount of scale is reduced, and even when the maximum voltage of the power supply unit is applied, a specified current does not flow and a constant current cannot flow.

本発明は前記従来の課題を解決するためになされたもので、冷却水中のスケール分を電析してスケール分を除去する定電流制御において、その電極の電源部に過大な電圧変化負荷によるストレスを生じさせることがなく、耐用性とメンテナンス性に優れた冷却水のスケール除去装置を提供することを目的とする。
また、本発明は、被処理水を電解装置に通水して電解処理することによりスケール成分を電極表面に析出させて水中から除去する際の制御操作性や耐用性に優れているとともに、析出を安定して行うことができる冷却水のスケール除去装置を用いたスケール除去方法を提供することも目的とする。
The present invention has been made in order to solve the above-described conventional problems. In constant current control for depositing a scale component in cooling water to remove the scale component, stress due to an excessive voltage change load is applied to the power supply unit of the electrode. An object of the present invention is to provide a cooling water scale removing device that does not cause the occurrence of water and has excellent durability and maintainability.
In addition, the present invention is excellent in control operability and durability when depositing the scale component on the electrode surface by passing the water to be treated through an electrolysis apparatus and removing it from the water. Another object of the present invention is to provide a scale removal method using a scale removal device for cooling water that can be stably performed.

(1)前記従来の課題を解決するためになされた本発明の冷却水のスケール除去装置は、クーリングタワーなどの熱交換設備に供給される冷却水中のスケール成分を電解処理により析出除去する冷却水のスケール除去装置であって、前記熱交換設備に供給される冷却水を電解処理して前記熱交換設備に循環供給する電解槽と、前記電解槽内に設置された複数の電極板と、前記電極板により形成される接続回路構成を切り換えるリレーボックス部と、前記リレーボックス部により設定された電極板間に電圧を印加する電源部と、前記電極板間に定電流を供給する定電流制御における前記電源部の電源電圧の変化に基づいて前記リレーボックス部を制御する電解制御部と、を有して構成されている。 (1) The cooling water scale removing apparatus of the present invention, which has been made to solve the above-described conventional problems, is a cooling water that deposits and removes scale components in cooling water supplied to a heat exchange facility such as a cooling tower by electrolytic treatment. A scale removing apparatus, an electrolytic cell that electrolyzes cooling water supplied to the heat exchange facility and circulates and supplies the heat exchange facility, a plurality of electrode plates installed in the electrolytic cell, and the electrode A relay box section for switching a connection circuit configuration formed by the plates, a power supply section for applying a voltage between the electrode plates set by the relay box section, and the constant current control for supplying a constant current between the electrode plates. And an electrolysis control unit that controls the relay box unit based on a change in the power supply voltage of the power supply unit.

(2)本発明は前記(1)記載の冷却水のスケール除去装置において、前記電解制御部を介して前記リレーボックス部を制御して、前記電源部の定電流制御における電源電圧が基準値以上のときに通電電極の枚数を相対的に増加させ、前記電源電圧が基準値未満のときに前記通電電極の枚数を減少させることを特徴とする。 (2) In the cooling water scale removing device according to (1), the present invention controls the relay box unit via the electrolysis control unit, and the power source voltage in the constant current control of the power source unit is equal to or higher than a reference value. In this case, the number of energized electrodes is relatively increased, and the number of energized electrodes is decreased when the power supply voltage is less than a reference value.

(3)本発明は前記(1)又は(2)記載の冷却水のスケール除去装置において、前記電解制御部が、前記電極板間における電流値および電圧値に基づいて前記電解槽に供給される冷却水の導電率を検出することを特徴とする。 (3) In the cooling water scale removing device according to (1) or (2), the electrolysis control unit is supplied to the electrolytic cell based on a current value and a voltage value between the electrode plates. It is characterized by detecting the conductivity of the cooling water.

(4)本発明の冷却水のスケール除去方法は、前記(1)〜(3)いずれか記載の冷却水のスケール除去装置を用いて前記熱交換設備に供給される冷却水中のスケール成分を析出除去する冷却水のスケール除去方法であって、前記電源部の定電流制御時における電源電圧の変化に基づいて、前記電解槽内に設置された複数の電極板の回路構成を切り換えて通電電極の枚数を増減して、前記電解槽内を流れる冷却水中のスケール成分の電解析出処理を行うことを特徴とする。 (4) The cooling water scale removing method of the present invention deposits scale components in the cooling water supplied to the heat exchange facility using the cooling water scale removing device according to any one of (1) to (3). A method of removing scale of cooling water to be removed, wherein the circuit configuration of a plurality of electrode plates installed in the electrolytic cell is switched based on a change in power supply voltage during constant current control of the power supply unit. The number of sheets is increased or decreased, and the electrolytic deposition treatment of the scale component in the cooling water flowing in the electrolytic cell is performed.

本発明によれば、複数の電極板間に定電流を供給して電解処理する際にその電源部の電源電圧の変化に基づいて電極板により形成される接続回路構成を切り換えて制御するので、冷却水中のスケール分の増減による冷却水の電気抵抗の変化を、電極の電気抵抗を変化させることで、電源部に過大な電圧変化によるストレスを生じさせることを少なくすることで、耐用性とメンテナンス性、装置の動作の安定性に優れた冷却水のスケール除去装置を提供することができる。   According to the present invention, when supplying a constant current between a plurality of electrode plates and performing an electrolysis process, the connection circuit configuration formed by the electrode plates is switched and controlled based on the change in the power supply voltage of the power supply unit. By changing the electrical resistance of the cooling water due to the increase / decrease of the scale in the cooling water, the electrical resistance of the electrode is changed to reduce the occurrence of stress due to an excessive voltage change in the power supply, thereby improving durability and maintenance. It is possible to provide a scale removal device for cooling water that is excellent in performance and stability of operation of the device.

本実施形態に係る冷却水のスケール除去装置は、熱交換設備に供給される冷却水を電解処理して前記熱交換設備に循環供給する電解槽と、前記電解槽内に設置された複数の電極板と、前記電極板により形成される接続回路構成を切り換えるリレーボックス部と、前記リレーボックス部により設定された電極板間に電圧を印加する電源部と、前記電極板間に定電流を供給する定電流制御における前記電源部の電源電圧の変化に基づいて前記リレーボックス部を制御する電解制御部と、を有して構成されている。これによって、スケール分を除去する定電流制御において、その電極の電源部に過大な電圧変化によるストレスを生じさせることがなく、その電源部を含めた回路構成の耐用性を高めることができる。   The scale removal apparatus for cooling water according to the present embodiment includes an electrolytic cell that electrolyzes cooling water supplied to a heat exchange facility and circulates the heat water to the heat exchange facility, and a plurality of electrodes installed in the electrolytic cell A constant current is supplied between the electrode plate, a relay box portion for switching a connection circuit configuration formed by the plate, the power supply portion for applying a voltage between the electrode plates set by the relay box portion And an electrolysis control unit that controls the relay box unit based on a change in the power supply voltage of the power supply unit in constant current control. Thus, in constant current control for removing the scale, stress due to excessive voltage change is not generated in the power supply portion of the electrode, and the durability of the circuit configuration including the power supply portion can be improved.

こうして、冷却水に含まれてスケールの原因となるカルシウムイオン、マグネシウムイオンなどのミネラル分を、電解処理の際にリレーボックス部により設定された電極板上にスケールとして析出させ、冷却水からミネラル分を除去して循環経路内でのスケールの付着を低減できる。さらに、このような電解処理によって、冷却水中に殺菌能力を有する次亜塩素酸等を生成させることができると共に、冷却水中の細菌が電極に接触することで細胞膜を破壊させる電解直接殺菌の効果により、環境負荷の大きな薬液を使用することなく微生物の繁殖を防止できる。循環経路内の冷却水の交換を必要最小限度にして、水資源の無駄遣いを抑制することもできる。   In this way, minerals such as calcium ions and magnesium ions that are contained in the cooling water and cause scales are deposited as scales on the electrode plate set by the relay box during the electrolytic treatment, and the mineral content from the cooling water. Can be removed to reduce the adhesion of scale in the circulation path. Furthermore, by such electrolytic treatment, hypochlorous acid and the like having sterilizing ability can be generated in the cooling water, and due to the effect of electrolytic direct sterilization that destroys the cell membrane by the bacteria in the cooling water coming into contact with the electrode. It is possible to prevent the growth of microorganisms without using a chemical solution with a large environmental load. It is also possible to suppress the waste of water resources by minimizing the exchange of cooling water in the circulation path.

冷却水のスケール除去装置は、例えばエアコンやボイラー、冷凍機、冷却加熱器、クーリングタワーなどの熱交換設備に付設され、循環供給される冷却水中に含まれるカルシウムイオンなどのスケール成分を電解処理により析出させて、冷却水中のスケール成分を除去するための装置である。   The scale removal device for cooling water is attached to heat exchange equipment such as air conditioners, boilers, refrigerators, cooling heaters, cooling towers, etc., and deposits scale components such as calcium ions contained in the circulating cooling water by electrolytic treatment. And removing the scale component from the cooling water.

電解槽は例えば、熱交換設備から冷却水が供給される供給口と、電解処理された冷却水の排出口とを備え、熱交換設備に供給される冷却水を電解処理する容器体である。このような電解槽には、例えば2、3、4、5、6、7…枚の電極板が互いに並行配置されているとともに、必要に応じて隔膜板を電極板間に配置して電解セル状に形成させることもできる。   The electrolytic bath is, for example, a container body that includes a supply port to which cooling water is supplied from a heat exchange facility and a discharge port for electrolyzed cooling water, and electrolyzes the cooling water supplied to the heat exchange facility. In such an electrolytic cell, for example, 2, 3, 4, 5, 6, 7... Electrode plates are arranged in parallel with each other, and a diaphragm plate is arranged between the electrode plates as necessary, so that the electrolytic cell. It can also be formed into a shape.

電極板の電極材に関して特に制限はないが、例えば、チタンにプラチナをコーティングしたものやカーボン等の冷却水への成分の溶出が起こらないものが使用できる。また、チタンや銅などの基材表面に白金めっき層を形成したものや、白金とイリジュームの複合めっき層を設けたものなどを適用することができる。白金の表面をイリジューム等の貴金属で被うことにより、その触媒作用により電気化学反応を促進させると共に陽極酸化による電極の溶出を少なくし電極の消耗を抑える。   Although there is no restriction | limiting in particular regarding the electrode material of an electrode plate, For example, what coated platinum in titanium and the thing which does not elute the component to cooling water, such as carbon, can be used. Moreover, what formed the platinum plating layer on the base-material surface, such as titanium and copper, and the thing which provided the composite plating layer of platinum and iridium, etc. are applicable. By covering the surface of platinum with a noble metal such as iridium, the catalytic action promotes the electrochemical reaction and reduces electrode elution due to anodic oxidation, thereby suppressing electrode consumption.

リレーボックス部は、例えば、サイリスタなどの半導体素子を用いて小電力の入力で大きな出力電圧をオンオフするソリッドステートリレーや、複数の継電器を組み合わせてパッケージにしたプログラムリレーなどを内蔵した継電装置であって、電解槽中の各電極板と、これら各電極板に電力を供給するための電源部とにそれぞれ接続されている。これによって、操作ボタンやパソコン等を介して継電器の機能や組み合わせを変更して内部リレーを駆動制御することで、電源部と各電極板間に設定される接続回路構成を所定のパターン(例えば、電極板の直列回路構成、並列回路構成)に切り換える機能を有している。   The relay box unit is a relay device that incorporates a solid state relay that turns on and off a large output voltage with low power input using a semiconductor element such as a thyristor, and a program relay that is packaged by combining multiple relays. And it is connected to each electrode plate in an electrolytic cell, and the power supply part for supplying electric power to each of these electrode plates, respectively. Thus, the connection circuit configuration set between the power supply unit and each electrode plate is changed to a predetermined pattern (for example, A function of switching to a series circuit configuration and a parallel circuit configuration of electrode plates).

電源部は、前記リレーボックス部により選択設定された電極板間に電圧を印加するための装置である。例えばスイッチング前の直流電圧が60Vとして、0N時間が50%、OFF時間が50%としたとき、その後、矩形波に対して整流(積分処理)を行うことで出力は30Vとなり、同じようにON時間10%、OFF時間90%の場合、出力電圧を6Vにする機能を有している。このように半導体のON、OFFの時間比率を変えることで出力電圧の制御を行うことができる。   The power supply unit is a device for applying a voltage between the electrode plates selected and set by the relay box unit. For example, if the DC voltage before switching is 60V, the 0N time is 50%, and the OFF time is 50%, then the output will be 30V by performing rectification (integration processing) on the rectangular wave, and it will turn on in the same way When the time is 10% and the OFF time is 90%, the output voltage is set to 6V. Thus, the output voltage can be controlled by changing the ON / OFF time ratio of the semiconductor.

電解制御部は、CPUを備えた制御基盤などであり、前記電源部の電源電圧の変化を検知するためのセンサがそのインターフェースボードなどを介して接続されており、前記電極板間に定電流を供給する定電流制御における前記電源部の電源電圧の変化に基づいて前記リレーボックス部を制御する。これによって、電圧が負荷される複数の電極板による回路構成を選択して定電流制御における電源部の負荷を軽減する機能を有している。   The electrolysis control unit is a control board equipped with a CPU, and a sensor for detecting a change in the power supply voltage of the power supply unit is connected via the interface board, and a constant current is supplied between the electrode plates. The relay box unit is controlled based on a change in the power supply voltage of the power supply unit in the constant current control to be supplied. This has a function of reducing the load on the power supply unit in constant current control by selecting a circuit configuration with a plurality of electrode plates loaded with voltage.

本実施形態の冷却水のスケール除去装置は、前記電解制御部を介して前記リレーボックス部を制御して、前記電源部の定電流制御における電源電圧が基準値以上のときに通電電極の枚数を相対的に増加させ、前記電源電圧が基準値未満のときに前記通電電極の枚数を減少させることができる。これによって、例えば図示するように通電させる電極の直列接続状態、並列接続状態とに切り換えることにより、処理される冷却水の導電率は同じでも、電源から見た電気抵抗を9倍もしくは1/9にすることができるので導電率のより大きな変化に対応することができる。
通電電極の枚数は、例えば電解制御部などを介して前記リレーボックス部を制御することによって、電解槽における電極板の回路構成を切り換えることで2枚(直列状態)から4枚(並列状態)、あるいは4枚から8枚などに適宜変更することができるようになっている。
The cooling water scale removing apparatus of the present embodiment controls the relay box part via the electrolysis control part, and determines the number of energized electrodes when the power supply voltage in the constant current control of the power supply part is equal to or higher than a reference value. The number of energization electrodes can be decreased when the power supply voltage is less than a reference value. Accordingly, for example, by switching between the series connection state and the parallel connection state of the electrodes to be energized as shown in the figure, the electrical resistance viewed from the power source is 9 times or 1/9 even though the conductivity of the cooling water to be processed is the same. Therefore, it is possible to cope with a larger change in conductivity.
The number of energized electrodes can be changed from 2 (in series) to 4 (in parallel) by switching the circuit configuration of the electrode plates in the electrolytic cell by controlling the relay box unit via, for example, an electrolysis controller. Or it can change suitably from 4 sheets to 8 sheets.

本実施形態の冷却水のスケール除去装置は、前記電解制御部が前記電極板間における電流値および電圧値、水温に基づいて前記電解槽に供給される冷却水の導電率を検出するようにすることもできる。このような構成とすることによって、導電率計などを別に設けなくとも、冷却水のスケール除去装置における電極の通電データに基づいて冷却水のスケール濃度や硬度などを監視することができ、操作性やメンテナンス性、コスト性に優れた使用環境を提供することができる。
電解制御部にはインターフェースを介して電極板間の電圧値、電流値、水温値を取得するセンサが接続されているとともに、そのデータベースとなる記憶部には実験的に求めた前記電極板間の電流値、電圧値や水温値と、これに対応する冷却水の導電率との対照データが保持されている。こうして取得される冷却水の導電率に基づいて、冷却水のイオン濃度が高くなった状態と低くなった状態に対応した定電流制御を行うようにしてもよい。
In the cooling water scale removing apparatus of the present embodiment, the electrolysis control unit detects the conductivity of the cooling water supplied to the electrolytic cell based on the current value, the voltage value, and the water temperature between the electrode plates. You can also. By adopting such a configuration, it is possible to monitor the scale concentration, hardness, etc. of the cooling water on the basis of the energization data of the electrode in the cooling water scale removing device without providing a conductivity meter separately. In addition, it is possible to provide a use environment with excellent maintainability and cost.
The electrolysis control unit is connected to a sensor for acquiring a voltage value, a current value, and a water temperature value between the electrode plates through an interface, and the storage unit serving as the database has an experimentally obtained space between the electrode plates. Control data of current value, voltage value, water temperature value, and corresponding conductivity of the cooling water is held. Based on the conductivity of the cooling water thus obtained, constant current control corresponding to a state where the ion concentration of the cooling water is high and a state where it is low may be performed.

本実施形態の冷却水のスケール除去方法は、冷却水のスケール除去装置を用いて前記熱交換設備に供給される冷却水中のスケール成分を析出除去する冷却水のスケール除去方法であって、前記電源部の定電流制御時における電源電圧の変化に基づいて、前記電解槽内に設置された複数の電極板の回路構成を切り換えて通電電極の枚数を増減して、前記電解槽内を流れる冷却水中のスケール成分の電解析出処理を行うことを特徴とする。これによって、電源部の電源電圧の変化に基づいて電極板により形成される接続回路構成を切り換えるので、定電流制御においてその電極の電源部に過大な電圧変化負荷によるストレスを生じさせることがなく、耐用性とメンテナンス性に優れた冷却水のスケール除去装置を提供することができる。すなわち、電源部内の半導体など(主にスイッチングを行う半導体、整流回路のケミコンなど)に大きな電流が流れて、電源自身が自己防衛を行うように出力を停止するようなことがなく安定的な電解処理が維持される。また、電極の直列、並列を切り換えることにより、電源から見た電気抵抗を調整することができるので導電率のより大きな変化に対応することができる。   The cooling water scale removal method of the present embodiment is a cooling water scale removal method for depositing and removing scale components in cooling water supplied to the heat exchange equipment using a cooling water scale removal device, the power supply Based on the change in the power supply voltage during constant current control of the unit, the circuit configuration of the plurality of electrode plates installed in the electrolytic cell is switched to increase or decrease the number of energized electrodes, and the cooling water flowing in the electrolytic cell Electrolytic deposition treatment of the scale component is performed. Thereby, since the connection circuit configuration formed by the electrode plate is switched based on the change in the power supply voltage of the power supply unit, the constant current control does not cause stress due to an excessive voltage change load on the power supply unit of the electrode, It is possible to provide a cooling water scale removing device having excellent durability and maintainability. In other words, stable current is generated without stopping the output so that a large current flows through the semiconductor in the power supply section (mainly switching semiconductor, chemicon of rectifier circuit, etc.) and the power supply itself performs self-defense. Processing is maintained. Further, by switching between the series and parallel of the electrodes, the electrical resistance viewed from the power source can be adjusted, so that it is possible to cope with a larger change in conductivity.

(実施例1)
図1は実施例1に係る冷却水のスケール除去装置の概略図である。以下、本発明を具体化した実施例について図面を参照しつつ詳細に説明する。
実施例1の冷却水のスケール除去装置10は、空調装置や冷蔵装置等に備えられる熱交換設備11などに循環される冷却水を電解処理するためのものである。冷却水を電解処理して熱交換設備11に循環供給するための電解槽12と、電解槽12内に設置された4枚の電極板13a〜13dと、電極板13a〜13dに接続してその接続回路構成を切り換えるためのリレーボックス部14と、リレーボックス部14により設定された電極板13a〜13dに電圧を印加するための電源部15と、電極板13a〜13d間に規定の定電流を供給する定電流制御において電源部15の電源電圧の変化に基づいてリレーボックス部14の動作を制御するための電解制御部16と、を有する。
Example 1
FIG. 1 is a schematic diagram of a scale removal device for cooling water according to a first embodiment. DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described in detail below with reference to the drawings.
The cooling water scale removing device 10 according to the first embodiment is for electrolyzing cooling water circulated in a heat exchange facility 11 or the like provided in an air conditioner, a refrigerator, or the like. An electrolytic bath 12 for electrolytically treating the cooling water and circulatingly supplying it to the heat exchange facility 11, four electrode plates 13a to 13d installed in the electrolytic bath 12, and connecting to the electrode plates 13a to 13d A relay box section 14 for switching the connection circuit configuration, a power supply section 15 for applying a voltage to the electrode plates 13a to 13d set by the relay box section 14, and a prescribed constant current between the electrode plates 13a to 13d. An electrolysis control unit 16 for controlling the operation of the relay box unit 14 based on a change in the power supply voltage of the power supply unit 15 in the constant current control to be supplied.

熱交換設備11は、所定量の冷却水を保留するための冷却水タンク11aを有する。また、適切量の冷却水を熱交換設備11に供給するために循環ポンプ21が設けられており、スケール除去装置10に冷却水を循環供給するためのスケール除去装置用循環ポンプ11bが設けられている。なお、スケール除去装置10の電解槽12から通過し冷却タンク11aに戻る水路、電解槽12に供給する供給水路、及び、電解槽12の底部に貯留した冷却水を排出する排出流路にはそれぞれ流量制御弁17、18などの制御系が設けられており、循環ポンプ11bや流量制御弁17、18が電解制御部16を介してそれぞれ駆動制御されるようになっている。   The heat exchange facility 11 has a cooling water tank 11a for holding a predetermined amount of cooling water. Further, a circulation pump 21 is provided for supplying an appropriate amount of cooling water to the heat exchange facility 11, and a scale removal device circulation pump 11 b for circulating supply of cooling water to the scale removal device 10 is provided. Yes. Note that a water passage that passes from the electrolytic cell 12 of the scale removing device 10 and returns to the cooling tank 11a, a supply water channel that supplies the electrolytic cell 12, and a discharge channel that discharges the cooling water stored at the bottom of the electrolytic cell 12 are respectively provided. Control systems such as flow control valves 17 and 18 are provided, and the circulation pump 11b and the flow control valves 17 and 18 are driven and controlled via the electrolysis control unit 16, respectively.

このように、クーリングタワーなどの熱交換設備11に冷却水を循環させる冷却水循環流路が接続されて、全体としてループ状に構成されている。クーリングタワーは、空気との接触によって水を冷却する一般的な構成のものである。往路側の流水管には図示しない循環ポンプを装備して、クーリングタワーによって冷やされた冷却水を圧送できるようになっている。また、循環流路を流れる冷却水は、経時的な蒸発やメンテナンス等によって失われていくため、クーリングタワーには、冷却水を外部から補給するための補給管などが設けられている。   In this way, the cooling water circulation passage for circulating the cooling water is connected to the heat exchange facility 11 such as a cooling tower, and the whole is configured in a loop shape. The cooling tower has a general configuration in which water is cooled by contact with air. A circulating pump (not shown) is provided on the outgoing water pipe so that the cooling water cooled by the cooling tower can be pumped. In addition, since the cooling water flowing through the circulation channel is lost due to evaporation or maintenance over time, the cooling tower is provided with a supply pipe for supplying the cooling water from the outside.

冷却水のスケール除去装置10には、冷却水を電解処理するための電解槽12の内部に第1〜第4の電極板13a〜13dが設けられている。これらの電極板13a〜13dは、電源部15にリレーボックス部14を介して接続されている。電極板13a〜13dとしては、電気分解装置に通常に使用されるものであれば特に制限はなく、例えばチタンや銅にプラチナをコーティングしたものや、カーボン電極などを好ましく使用することができる。直流を発生する電源部15にはコントローラとして機能する電解制御部16が接続されて、電極板13a〜13dへそれぞれ印加する電圧の制御を行うとともに、両電極板間の電流・電圧の監視等を行うこともできるようになっている。   The scale removal apparatus 10 for cooling water is provided with first to fourth electrode plates 13a to 13d inside an electrolytic bath 12 for electrolytically treating the cooling water. These electrode plates 13 a to 13 d are connected to the power supply unit 15 via the relay box unit 14. The electrode plates 13a to 13d are not particularly limited as long as they are normally used in an electrolysis apparatus. For example, titanium or copper coated with platinum, carbon electrodes, or the like can be preferably used. An electrolysis control unit 16 that functions as a controller is connected to the power supply unit 15 that generates direct current to control the voltage applied to the electrode plates 13a to 13d, and to monitor the current and voltage between the electrode plates. You can also do it.

電解槽12には、冷却水タンク11aから循環水を供給するための給水管12aと、冷却水タンク11aに戻すための流出管12bとが接続されており、電解処理を行うための冷却水循環流路が構成されている。給水管12a側には除去装置用循環ポンプ11bが設けられていて、冷却水タンク11a内の冷却水を電解槽12に圧送できるようになっている。電解槽12から流れ出る冷却水は流出管12bを介して冷却水タンク11aに戻すようになっている。また、電解槽12の底部には排出管12cが設けられ、流量制御弁18を介して電解槽の内部に滞留したスケール分を含む冷却水を冷却循環水路外へ排水する処理がなされるようになっている。   A water supply pipe 12a for supplying circulating water from the cooling water tank 11a and an outflow pipe 12b for returning to the cooling water tank 11a are connected to the electrolytic tank 12, and a cooling water circulation flow for performing electrolytic treatment A road is constructed. A removal device circulation pump 11b is provided on the side of the water supply pipe 12a so that the cooling water in the cooling water tank 11a can be pumped to the electrolytic cell 12. The cooling water flowing out from the electrolytic cell 12 is returned to the cooling water tank 11a through the outflow pipe 12b. In addition, a discharge pipe 12c is provided at the bottom of the electrolytic cell 12, so that the cooling water including the scale portion retained in the electrolytic cell is discharged through the flow rate control valve 18 to the outside of the cooling circulation channel. It has become.

給水管12a側の冷却水循環流路における所定箇所には、フローメータ19と温度計センサ20が取付けられている。このように、電解槽12に供給される冷却水の流量、温度データが電解制御部16に取り込まれ、電解槽12における電解電圧や電解電流などの電解データとともにスケール除去装置10通電状態を判定して、この判定結果に応じて電極板の接続構成を所定のパターンに設定したり、電解電圧などの電解条件を変更したりすることも可能にしている。   A flow meter 19 and a thermometer sensor 20 are attached to predetermined locations in the coolant circulation path on the water supply pipe 12a side. As described above, the flow rate and temperature data of the cooling water supplied to the electrolytic cell 12 are taken into the electrolysis control unit 16 and the energization state of the scale removing device 10 is determined together with the electrolysis data such as the electrolysis voltage and the electrolysis current in the electrolytic cell 12. Thus, the electrode plate connection configuration can be set to a predetermined pattern or the electrolysis conditions such as the electrolysis voltage can be changed according to the determination result.

次に、以上のように構成された実施例1の冷却水のスケール除去装置10に適用される冷却水のスケール除去方法について説明する。
直流電源を各電極板13a〜13dに供給するための電源部15は、例えばその定電流仕様の電解直流電源として最大60V/定電流10Aのものを用いる。現在一般的に販売されている、この種の電源は出力電圧を可変するために入力の交流を一度直流に整流し、FETやIGBTなど半導体を用いて一定周期でスイッチング(ON/OFF処理)を行い矩形波を発生させる。例えばスイッチング前の直流電圧が60Vとして、0N時間が50%、OFF時間が50%としたとき、その後、矩形波を整流(積分処理)を行うことで出力は約30Vとなるようになっている。
Next, a cooling water scale removing method applied to the cooling water scale removing apparatus 10 according to the first embodiment configured as described above will be described.
The power supply unit 15 for supplying DC power to the electrode plates 13a to 13d uses, for example, a constant current specification electrolytic DC power supply having a maximum of 60V / constant current of 10A. This type of power supply, which is generally sold at present, rectifies the input AC once to change the output voltage, and performs switching (ON / OFF processing) at regular intervals using semiconductors such as FET and IGBT. To generate a square wave. For example, when the DC voltage before switching is 60 V, the 0N time is 50%, and the OFF time is 50%, the output is about 30 V by performing rectification (integration processing) on the rectangular wave thereafter. .

同じようにON時間10%、OFF時間90%の場合、その出力電圧は6Vに設定される。このように半導体のON、OFFの時間比率を変えることで出力電圧の制御を行う。こうした、電源を用いて定電流制御を行うと電流が流れる状態(循環水のイオン濃度などの濃度が高くなった状態)になると電流が流れやすい状態となり電圧を低くするように電源内部で自動制御を行う。例えば10Aで制御する様に設定されているとON時間10%、OFF時間90%になった場合、半導体がONする時に流れる電流は100A以上にとなる。(ONした瞬間には更にこの何倍かの電流が流れる。)このように電源出力とすると60V最大で10Aの電源でも負荷抵抗が小さくなると内部の半導体など(主にスイッチングを行う半導体、整流回路のケミコンなど)に大きな電流が流れる状態なり、電源回路の各部品に大きなストレスを与える事になる。このため、上記の様な理由から直流電源の運用時の最低電圧が設定されている。また電源自身が自己防衛を行うように出力を停止するものもある。   Similarly, when the ON time is 10% and the OFF time is 90%, the output voltage is set to 6V. In this way, the output voltage is controlled by changing the ON / OFF time ratio of the semiconductor. When constant current control is performed using such a power supply, when the current flows (when the concentration of circulating water such as the ion concentration is high), the current easily flows and the voltage is automatically controlled inside the power supply. I do. For example, if it is set to control at 10 A, when the ON time is 10% and the OFF time is 90%, the current that flows when the semiconductor is turned on becomes 100 A or more. (Several times more current flows at the moment when the power is turned on.) When the power output is as described above, the load resistance becomes small even with a power supply of 60 V maximum and 10 A. Internal semiconductors (mainly switching semiconductors, rectifier circuits, etc.) A large current flows through the chemi-con, etc.), giving a large stress to each component of the power circuit. For this reason, the minimum voltage during operation of the DC power supply is set for the reasons described above. Some power supplies stop the output so that the power supply itself performs self-defense.

なお、冷却水のスケール除去装置10は、電解制御部16を介してリレーボックス部14を駆動させて、図2に示すように各電極板13a〜13dの配列状態を直列、並列などに切り換えることができる。これによって、冷却水循環流路を流れる冷却水の導電率は同じでも、2枚の電極13aと電極13d間に電圧を印加する直列接続から、4枚の電極13a〜13dにそれぞれ電圧を印加する並列接続に切り換えることで電源から見た電気抵抗を約9倍もしくは1/9にすることができ、導電率のより大きな変化に対応することができる。なお、60Vは電源でのスイッチング素子の制御電圧の最大値であり、各電極へ流れる電流は10Aをリミットとしている。   In addition, the scale removal apparatus 10 for cooling water drives the relay box part 14 via the electrolysis control part 16, and switches the arrangement state of each electrode plate 13a-13d to serial, parallel, etc. as shown in FIG. Can do. As a result, even if the conductivity of the cooling water flowing through the cooling water circulation channel is the same, a parallel connection in which a voltage is applied to each of the four electrodes 13a to 13d from a series connection in which a voltage is applied between the two electrodes 13a and 13d. By switching to the connection, the electric resistance viewed from the power source can be increased to about 9 times or 1/9, and a larger change in conductivity can be dealt with. 60V is the maximum value of the control voltage of the switching element in the power supply, and the current flowing to each electrode is limited to 10A.

図3は、電源部15において測定される電圧(電源電圧)に基づいて、リレーボックス部14を制御して電極板13a〜13dの回路構成を切り換える制御方法の一例を示す説明図である。図示するように最初のステップS1では、冷却水のスケール除去装置10の操作盤などに設けたスタートボタンなどを操作することによって、冷却水のスケール除去装置10の循環ポンプ11bなどが動作を開始して、冷却水タンク11aの冷却水が電解槽12に循環供給される。   FIG. 3 is an explanatory diagram showing an example of a control method for switching the circuit configuration of the electrode plates 13a to 13d by controlling the relay box unit 14 based on a voltage (power supply voltage) measured in the power source unit 15. As shown in the figure, in the first step S1, by operating a start button or the like provided on the operation panel of the cooling water scale removing device 10, the circulating pump 11b of the cooling water scale removing device 10 starts its operation. Then, the cooling water in the cooling water tank 11 a is circulated and supplied to the electrolytic cell 12.

次のステップS2では、リレーボックス部14を介して電解槽12内の2枚の電極板13aと電極板13dに電圧が印加される直列接続状態(通電状態)に設定されて、電解処理がなされる。   In the next step S2, a series connection state (energization state) in which a voltage is applied to the two electrode plates 13a and 13d in the electrolytic cell 12 via the relay box portion 14 is set, and the electrolytic treatment is performed. The

ステップS3では、電解制御部16を介して、所定時間、例えば約30秒経過後に電源部15における電圧を計測して、この測定された電圧値が60ボルト以上か、60ボルト未満かを判定する。電圧値が60ボルト未満の場合には、直列接続を継続するステップS4に移行して、60ボルト以上の場合はステップS5に移行する。   In step S3, the voltage in the power supply unit 15 is measured after elapse of a predetermined time, for example, about 30 seconds, through the electrolysis control unit 16, and it is determined whether the measured voltage value is 60 volts or more and less than 60 volts. . If the voltage value is less than 60 volts, the process proceeds to step S4 where the series connection is continued, and if it is 60 volts or more, the process proceeds to step S5.

電圧値が60ボルト以上となる場合のステップS5では、リレーボックス部14及び電解制御部16を介して、電解槽12内の4枚の電極板13d〜13dすべてに電圧を印加する並列接続状態(通電状態)に切り換える。   In step S5 when the voltage value is 60 volts or more, a parallel connection state in which voltage is applied to all four electrode plates 13d to 13d in the electrolytic cell 12 via the relay box unit 14 and the electrolysis control unit 16 ( Switch to energized state.

前記ステップS5に続くステップS6では、電源部15における電圧を再度計測して、この測定された電圧値が20ボルト以上か、20ボルト未満かを判定する。電圧値が20ボルト以上の場合には、並列接続を継続するステップS7に移行して、20ボルト未満の場合は前記ステップS2に移行する。   In step S6 following step S5, the voltage in the power supply unit 15 is measured again to determine whether the measured voltage value is 20 volts or more or less than 20 volts. If the voltage value is 20 volts or more, the process proceeds to step S7 where the parallel connection is continued, and if it is less than 20 volts, the process proceeds to step S2.

以上説明したステップS1〜7の一連の処理を実行することによって、複数の電極板間に定電流を供給する定電流制御において、電源部15の電源電圧の変化に基づいてリレーボックス部14を制御するので、熱交換設備11に供給される冷却水中のスケール成分を電解処理により安定的に析出させて除去することができる。さらに、スケール分を除去する定電流制御において、その電極の電源部に過大な電圧変化負荷によるストレスを生じさせることがなく、耐用性と電析処理における制御操作性とに優れた冷却水のスケール除去方法を提供することができる。   In the constant current control for supplying a constant current between the plurality of electrode plates, the relay box unit 14 is controlled based on the change in the power supply voltage of the power supply unit 15 by executing the series of processes in steps S1 to S7 described above. Therefore, the scale component in the cooling water supplied to the heat exchange facility 11 can be stably deposited and removed by electrolytic treatment. Furthermore, in constant current control to remove scale, the scale of the cooling water has excellent durability and control operability in the electrodeposition process without causing stress due to an excessive voltage change load on the power supply part of the electrode. A removal method can be provided.

図4は、実施例1において測定された電極板13a〜13dの直列接続(通電状態の電極板2枚使用)及び並列接続(通電状態の電極板4枚使用)における、それぞれの電解電圧と電解槽12の抵抗値との関係の一例を示すグラフであり、表1は、その直列接続、並列接続に対応して測定算出された、各電圧と電解槽12の抵抗値のデータ表を示している。なお、ここでは、電解電流は、定電流で動作させる定電流制御条件として、電圧はおよそ20ボルトから60ボルトの範囲で動作させるものとしている。   FIG. 4 shows the respective electrolysis voltages and electrolysis in the series connection (using two energized electrode plates) and the parallel connection (using four energized electrode plates) of the electrode plates 13a to 13d measured in Example 1. It is a graph which shows an example of the relationship with the resistance value of the tank 12, and Table 1 shows the data table of each voltage and the resistance value of the electrolytic cell 12 which were measured and calculated corresponding to the series connection and parallel connection. Yes. Here, the electrolytic current is operated in a range of approximately 20 to 60 volts as a constant current control condition for operating at a constant current.

Figure 2010069366
Figure 2010069366

電解槽12の導電率(抵抗値の逆数)と冷却水中のスケール分とは所定の比例関係があるので、図2に示すような、電解槽12における電極板13d〜13dの回路構成を、比較的冷却水の導電率が高い場合は直列接続に、導電率が低い場合は並列接続に切り換える動作を、その電圧の変化に基づいて採用することができる。   Since the electrical conductivity (reciprocal of the resistance value) of the electrolytic cell 12 and the scale in the cooling water have a predetermined proportional relationship, the circuit configurations of the electrode plates 13d to 13d in the electrolytic cell 12 are compared as shown in FIG. An operation of switching to serial connection when the electrical conductivity of the general cooling water is high and switching to parallel connection when the electrical conductivity is low can be adopted based on the change in the voltage.

以上説明したように、本発明は、複数の電極板間に定電流を供給して冷却水を電解処理する際に、その電源部の電源電圧の変化に基づいて、電極板により形成される接続回路構成を切り換えて制御すること、を要旨としたものであり、これに該当するものは本発明の権利範囲に属する。例えば、本実施形態では、電解槽12内に並行配置される電極板の枚数が4枚の場合について詳述したが、電解槽内に2枚以上の複数の電極板を互いに並行配列して、これらをリレーボックス部に接続して、その電解槽において測定される電解電圧や電解電流、槽内を流れる冷却水の導電率や温度、流量などに基づいて、電解槽内で有効化させる電極板の回路パターンや印加電圧などの電解条件を設定するようにしてもよい。   As described above, in the present invention, when a constant current is supplied between a plurality of electrode plates to electrolyze cooling water, the connection formed by the electrode plates is based on the change in the power supply voltage of the power supply unit. The gist of switching and controlling the circuit configuration is that which falls under the scope of the present invention. For example, in the present embodiment, the case where the number of electrode plates arranged in parallel in the electrolytic cell 12 is four is described in detail, but two or more electrode plates are arranged in parallel in the electrolytic cell, Electrode plates that are connected to the relay box and activated in the electrolytic cell based on the electrolysis voltage and current measured in the electrolytic cell, the conductivity, temperature, flow rate, etc. of the cooling water flowing in the cell The electrolysis conditions such as the circuit pattern and the applied voltage may be set.

実施例1に係る冷却水のスケール除去装置の概略図である。It is the schematic of the scale removal apparatus of the cooling water which concerns on Example 1. FIG. 電解槽における各電極板の切替状態を示す説明図である。It is explanatory drawing which shows the switching state of each electrode plate in an electrolytic vessel. 電極板の回路構成を切り換える制御方法の説明図である。It is explanatory drawing of the control method which switches the circuit structure of an electrode plate. 電極板の各接続状態における電解電圧と電解槽抵抗値との関係を示すグラフである。It is a graph which shows the relationship between the electrolysis voltage in each connection state of an electrode plate, and electrolytic cell resistance value.

符号の説明Explanation of symbols

10 冷却水のスケール除去装置
11 熱交換設備
11a 冷却水タンク
11b 除去装置用循環ポンプ
12 電解槽
12a 給水管
12b 流出管
12c 排出管
13a〜13d 電極板
14 リレーボックス部
15 電源部
16 電解制御部
17、18 流量制御
19 流量計
20 水温計
21 循環水ポンプ
DESCRIPTION OF SYMBOLS 10 Cooling water scale removal apparatus 11 Heat exchange equipment 11a Cooling water tank 11b Circulation pump for removal apparatus 12 Electrolyzer 12a Water supply pipe 12b Outflow pipe 12c Discharge pipe 13a-13d Electrode plate 14 Relay box part 15 Power supply part 16 Electrolysis control part 17 , 18 Flow control 19 Flow meter 20 Water temperature meter 21 Circulating water pump

Claims (4)

クーリングタワーなどの熱交換設備に供給される冷却水中のスケール成分を電解処理により析出除去する冷却水のスケール除去装置であって、
前記熱交換設備に供給される冷却水を電解処理して前記熱交換設備に循環供給する電解槽と、前記電解槽内に設置された複数の電極板と、前記電極板により形成される接続回路構成を切り換えるリレーボックス部と、前記リレーボックス部により設定された電極板間に電圧を印加する電源部と、前記電極板間に定電流を供給する定電流制御における前記電源部の電源電圧の変化に基づいて前記リレーボックス部を制御する電解制御部と、を有することを特徴とする冷却水のスケール除去装置。
A cooling water scale removing device that precipitates and removes scale components in cooling water supplied to a heat exchange facility such as a cooling tower by electrolytic treatment,
An electrolytic cell that electrolyzes cooling water supplied to the heat exchange facility and circulates and supplies it to the heat exchange facility, a plurality of electrode plates installed in the electrolytic cell, and a connection circuit formed by the electrode plates Relay box section for switching the configuration, power supply section for applying a voltage between electrode plates set by the relay box section, and change in power supply voltage of the power supply section in constant current control for supplying a constant current between the electrode plates And an electrolysis control unit for controlling the relay box unit based on the above.
前記電解制御部を介して前記リレーボックス部を制御して、前記電源部の定電流制御における電源電圧が基準値以上のときに通電電極の枚数を相対的に増加させ、前記電源電圧が基準値未満のときに前記通電電極の枚数を減少させることを特徴とする請求項1記載の冷却水のスケール除去装置。   The relay box part is controlled via the electrolysis control part, and the power supply voltage in the constant current control of the power supply part is relatively increased when the power supply voltage is equal to or higher than a reference value. 2. The cooling water scale removing device according to claim 1, wherein the number of the energizing electrodes is reduced when the number is less than the number. 前記電解制御部が、前記電極板間における電流値および電圧値に基づいて前記電解槽に供給される冷却水の導電率を検出することを特徴とする請求項1又は2記載の冷却水のスケール除去装置。   The scale of the cooling water according to claim 1 or 2, wherein the electrolysis control unit detects a conductivity of the cooling water supplied to the electrolytic cell based on a current value and a voltage value between the electrode plates. Removal device. 請求項1〜3のいずれか記載の冷却水のスケール除去装置を用いて前記熱交換設備に供給される冷却水中のスケール成分を析出除去する冷却水のスケール除去方法であって、前記電源部の定電流制御時における電源電圧の変化に基づいて、前記電解槽内に設置された複数の電極板の回路構成を切り換えて通電電極の枚数を増減して、前記電解槽内を流れる冷却水中のスケール成分の電解析出処理を行うことを特徴とする冷却水のスケール除去方法。   A scale removal method for cooling water that deposits and removes scale components in the cooling water supplied to the heat exchange facility using the scale removal device for cooling water according to any one of claims 1 to 3, comprising: Based on the change in the power supply voltage during constant current control, the circuit configuration of the plurality of electrode plates installed in the electrolytic cell is switched to increase or decrease the number of energized electrodes, and the scale in the cooling water flowing in the electrolytic cell A method for removing scale of cooling water, comprising performing electrolytic deposition treatment of components.
JP2008237028A 2008-09-16 2008-09-16 Cooling water scale removing device and scale removing method using the scale removing device Active JP4790778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008237028A JP4790778B2 (en) 2008-09-16 2008-09-16 Cooling water scale removing device and scale removing method using the scale removing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008237028A JP4790778B2 (en) 2008-09-16 2008-09-16 Cooling water scale removing device and scale removing method using the scale removing device

Publications (2)

Publication Number Publication Date
JP2010069366A true JP2010069366A (en) 2010-04-02
JP4790778B2 JP4790778B2 (en) 2011-10-12

Family

ID=42201645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008237028A Active JP4790778B2 (en) 2008-09-16 2008-09-16 Cooling water scale removing device and scale removing method using the scale removing device

Country Status (1)

Country Link
JP (1) JP4790778B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888869B1 (en) * 2011-01-07 2012-02-29 イノベーティブ・デザイン&テクノロジー株式会社 Scale component removal device for water heater
JP4999022B1 (en) * 2011-05-02 2012-08-15 イノベーティブ・デザイン&テクノロジー株式会社 Scale removal device electrode structure
JP4999030B1 (en) * 2011-11-28 2012-08-15 イノベーティブ・デザイン&テクノロジー株式会社 Scale removal device electrode structure
JP2012161794A (en) * 2012-04-04 2012-08-30 Daikin Industries Ltd Electrolytic apparatus and heat pump type water heater equipped with the same
JP2012161795A (en) * 2012-04-04 2012-08-30 Daikin Industries Ltd Electrolytic apparatus and heat pump type water heater equipped with the same
WO2012150620A1 (en) * 2011-05-02 2012-11-08 イノベーティブ・デザイン&テクノロジー株式会社 Cooling water circulation device
JP2013119993A (en) * 2011-12-07 2013-06-17 Daikin Industries Ltd Heat pump water heater
JP2013119054A (en) * 2011-12-07 2013-06-17 Daikin Industries Ltd Electrolyzer and heat pump water heater including the same
JP5678388B1 (en) * 2013-04-15 2015-03-04 有限会社ターナープロセス Apparatus and method for reducing ion concentration of aqueous liquid held in system, and apparatus including the apparatus
JP5855291B1 (en) * 2015-02-02 2016-02-09 イノベーティブ・デザイン&テクノロジー株式会社 Heat exchanger for power generation system, binary power generation system including the heat exchanger, and control method for heat exchanger for power generation system
US9657600B2 (en) 2015-02-02 2017-05-23 Innovative Designs & Technology Inc. Heat exchanger, a purifier, an electrode-containing pipe, a power generation system, a control method for heat exchanger and a scale removing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125687A (en) * 1984-07-13 1986-02-04 Hitachi Plant Eng & Constr Co Ltd Electrolytic apparatus of organic waste liquid
JPH0839072A (en) * 1994-08-03 1996-02-13 Noritz Corp Bath unit
JP2001170642A (en) * 1999-12-17 2001-06-26 Sanyo Electric Co Ltd Water treating device
JP2001259690A (en) * 2000-03-15 2001-09-25 Asahi Glass Engineering Co Ltd Method for preventing scaling in water system
JP2003200170A (en) * 2001-12-28 2003-07-15 Kenichi Karasawa Water treatment method using electrolysis, water treatment apparatus therefor and power supply device for electrolysis by stepless voltage transformation
JP2005152864A (en) * 2003-11-28 2005-06-16 Fusamori Kogyo Kk Method and apparatus for treating water
WO2006027825A1 (en) * 2004-09-06 2006-03-16 Innovative Design & Technology Inc. Cooling water circulation system and method for removing scale from cooling water circulation system
JP2007057203A (en) * 2005-08-26 2007-03-08 Hiroshi Tanaka Cooling water circulating device
WO2008018316A1 (en) * 2006-08-08 2008-02-14 Koganei Corporation Water softening method and water softener

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125687A (en) * 1984-07-13 1986-02-04 Hitachi Plant Eng & Constr Co Ltd Electrolytic apparatus of organic waste liquid
JPH0839072A (en) * 1994-08-03 1996-02-13 Noritz Corp Bath unit
JP2001170642A (en) * 1999-12-17 2001-06-26 Sanyo Electric Co Ltd Water treating device
JP2001259690A (en) * 2000-03-15 2001-09-25 Asahi Glass Engineering Co Ltd Method for preventing scaling in water system
JP2003200170A (en) * 2001-12-28 2003-07-15 Kenichi Karasawa Water treatment method using electrolysis, water treatment apparatus therefor and power supply device for electrolysis by stepless voltage transformation
JP2005152864A (en) * 2003-11-28 2005-06-16 Fusamori Kogyo Kk Method and apparatus for treating water
WO2006027825A1 (en) * 2004-09-06 2006-03-16 Innovative Design & Technology Inc. Cooling water circulation system and method for removing scale from cooling water circulation system
JP2007057203A (en) * 2005-08-26 2007-03-08 Hiroshi Tanaka Cooling water circulating device
WO2008018316A1 (en) * 2006-08-08 2008-02-14 Koganei Corporation Water softening method and water softener

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888869B1 (en) * 2011-01-07 2012-02-29 イノベーティブ・デザイン&テクノロジー株式会社 Scale component removal device for water heater
JP4999022B1 (en) * 2011-05-02 2012-08-15 イノベーティブ・デザイン&テクノロジー株式会社 Scale removal device electrode structure
KR101430380B1 (en) * 2011-05-02 2014-08-13 이노베이티브 디자인 앤드 테크놀로지 가부시키가이샤 Cooling water circulation device
WO2012150620A1 (en) * 2011-05-02 2012-11-08 イノベーティブ・デザイン&テクノロジー株式会社 Cooling water circulation device
JP4999030B1 (en) * 2011-11-28 2012-08-15 イノベーティブ・デザイン&テクノロジー株式会社 Scale removal device electrode structure
JP2013119054A (en) * 2011-12-07 2013-06-17 Daikin Industries Ltd Electrolyzer and heat pump water heater including the same
JP2013119993A (en) * 2011-12-07 2013-06-17 Daikin Industries Ltd Heat pump water heater
JP2012161794A (en) * 2012-04-04 2012-08-30 Daikin Industries Ltd Electrolytic apparatus and heat pump type water heater equipped with the same
JP2012161795A (en) * 2012-04-04 2012-08-30 Daikin Industries Ltd Electrolytic apparatus and heat pump type water heater equipped with the same
JP5678388B1 (en) * 2013-04-15 2015-03-04 有限会社ターナープロセス Apparatus and method for reducing ion concentration of aqueous liquid held in system, and apparatus including the apparatus
JP5855291B1 (en) * 2015-02-02 2016-02-09 イノベーティブ・デザイン&テクノロジー株式会社 Heat exchanger for power generation system, binary power generation system including the heat exchanger, and control method for heat exchanger for power generation system
JP2016142451A (en) * 2015-02-02 2016-08-08 イノベーティブ・デザイン&テクノロジー株式会社 Heat exchanger for power generation system, binary power generation system with heat exchanger and control method for heat exchanger for power generation system
US9657600B2 (en) 2015-02-02 2017-05-23 Innovative Designs & Technology Inc. Heat exchanger, a purifier, an electrode-containing pipe, a power generation system, a control method for heat exchanger and a scale removing method

Also Published As

Publication number Publication date
JP4790778B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
JP4790778B2 (en) Cooling water scale removing device and scale removing method using the scale removing device
JP4644677B2 (en) Cooling water circulation device
EP1860071B1 (en) Method for cleaning circulation water
JP4686608B2 (en) Water purification method and apparatus
KR20180078224A (en) An electrolytic water producing device, a water-containing server having the electrolytic water producing device, and a manufacturing device of a dialysis liquid preparing water
US8486252B2 (en) Copper chloride/copper bromide disinfector for swimming pools and control method thereof
JP2007090267A (en) Apparatus and method for removing scale component
CN107635927B (en) Hydrogen rich water supplier
JP2006098003A (en) Electrolytic treating method and electrolytic treating device for circulating type cooling water system
JP5295753B2 (en) Ozone water generator
JP2010125353A (en) Water softening method and water softener
JP2010194402A (en) Water treatment system and treatment method of cooling system circulating water
JP2006255653A (en) Electrolytic treatment method of water system
JP4999022B1 (en) Scale removal device electrode structure
JP4999030B1 (en) Scale removal device electrode structure
KR101430380B1 (en) Cooling water circulation device
JP2006198583A (en) Electrolytic treatment method and apparatus for water system
JP4686605B2 (en) Water purification method and apparatus
JP3925269B2 (en) Water treatment method for cooling water system
JP2004283662A (en) Residual chlorine concentration maintaining device
JP3685384B2 (en) Slime prevention method
JP2005319427A (en) Alkaline water generator
JP3806626B2 (en) Hypochlorous acid generator
KR101946865B1 (en) System for controlling chlorine&#39;s concentration of sea water electrolysis apparatus
JP2019076813A (en) Seawater treatment method, seawater treatment apparatus, and antifouling apparatus of seawater utilization structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4790778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250