JP5525499B2 - Method and apparatus for grasping inhibitor concentration in absorbent, and absorption chiller / heater equipped with the apparatus - Google Patents

Method and apparatus for grasping inhibitor concentration in absorbent, and absorption chiller / heater equipped with the apparatus Download PDF

Info

Publication number
JP5525499B2
JP5525499B2 JP2011207168A JP2011207168A JP5525499B2 JP 5525499 B2 JP5525499 B2 JP 5525499B2 JP 2011207168 A JP2011207168 A JP 2011207168A JP 2011207168 A JP2011207168 A JP 2011207168A JP 5525499 B2 JP5525499 B2 JP 5525499B2
Authority
JP
Japan
Prior art keywords
inhibitor
concentration
electrode
voltage
absorbing solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011207168A
Other languages
Japanese (ja)
Other versions
JP2013068359A (en
Inventor
恭一 関口
英則 稲部
仁 八代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Hitachi Building Systems Co Ltd
Original Assignee
Iwate University
Hitachi Building Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University, Hitachi Building Systems Co Ltd filed Critical Iwate University
Priority to JP2011207168A priority Critical patent/JP5525499B2/en
Priority to CN201210352351.XA priority patent/CN103018290B/en
Publication of JP2013068359A publication Critical patent/JP2013068359A/en
Application granted granted Critical
Publication of JP5525499B2 publication Critical patent/JP5525499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は、吸収液中における腐食抑制剤(インヒビター)の濃度を把握するための吸収液中のインヒビター濃度把握方法及び装置、並びにその装置を備えた吸収式冷温水機に関する。   The present invention relates to an inhibitor concentration grasping method and apparatus in an absorbent for grasping the concentration of a corrosion inhibitor (inhibitor) in the absorbent, and an absorption chiller / heater equipped with the apparatus.

従来、水を冷媒として臭化リチウム(LiBr)水溶液を吸収液として用いる吸収式冷温水機は、運転に大きな電力を必要としないこと、加熱用として多様な熱源に対応できること、夏季に需要が減少する天然ガスや灯油等を活用して夏場の空調ができること等の諸事情により、大規模ビルデイング等に用いられている。このように、吸収式冷温水機は特に夏季の電力需給が逼迫する現状では注目される空調熱源機といえる。   Conventionally, absorption chiller / heater using water as a refrigerant and lithium bromide (LiBr) aqueous solution as an absorbent does not require large electric power for operation, supports various heat sources for heating, and demand decreases in summer It is used for large-scale building due to various circumstances such as the use of natural gas, kerosene, etc., which can be used for air conditioning in summer. In this way, the absorption chiller / heater can be said to be an air-conditioning heat source that attracts attention, particularly in the current situation where power supply and demand in summer is tight.

ところで、係る吸収式冷温水機では、濃厚な臭化リチウム(LiBr)水溶液を吸収液として用いるため、吸収式冷温水機を構成する材料の腐食問題が付随し、如何にして腐食防止を図るかが機器の信頼性や寿命を保証する上で重要となっている。   By the way, in such an absorption chiller / heater, since a concentrated lithium bromide (LiBr) aqueous solution is used as an absorbent, there is a problem of corrosion of the materials constituting the absorption chiller / heater, and how to prevent corrosion. Is important in guaranteeing the reliability and longevity of equipment.

吸収式冷温水機を構成する材料の腐食防止を図るためには、吸収液中に腐食抑制剤であるインヒビターを添加するのが一般的であり、インヒビターの添加量(濃度)を適正に管理することにより、耐腐食性の高い吸収式冷温水機の実用化が可能になる。通常インヒビターには酸化剤が用いられ、吸収式冷温水機の主構成材料である炭素鋼の表面に安定な酸化皮膜を形成して腐食を抑制すると同時に、腐食に起因する水素ガスの発生を防止する。また、吸収式冷温水機の構成材料は炭素鋼と共に熱伝導率の高い銅管が多く用いられているが、銅管は強酸化剤に対しては耐久性が低いため、現在では炭素鋼及び銅管の双方を効果的に腐食防止するためにモリブデン酸塩が多用されている。   In order to prevent corrosion of the materials constituting the absorption chiller / heater, it is common to add an inhibitor, which is a corrosion inhibitor, to the absorbing solution, and the amount of addition (concentration) of the inhibitor is properly controlled. This makes it possible to put an absorption chiller / heater with high corrosion resistance into practical use. Usually, an oxidant is used as the inhibitor, and a stable oxide film is formed on the surface of carbon steel, which is the main component of the absorption chiller / heater, to suppress corrosion and at the same time prevent the generation of hydrogen gas due to corrosion. To do. In addition, the absorption chiller / heater is made of carbon steel and copper pipes with high thermal conductivity. However, since copper pipes have low durability against strong oxidants, carbon steel and Molybdate is frequently used to effectively prevent corrosion of both copper tubes.

しかしながら、モリブデン酸塩は腐食防止効果が高い反面、濃厚な臭化リチウム(LiBr)水溶液に対する溶解度が小さいため、一般的には溶解度限界まで添加しているが、それでも腐食防止に必要な濃度の下限レベル程度である。このため、吸収式冷温水機の腐食を防止して安定した運転を維持するためには、モリブデン酸塩のきめ細かな濃度管理が必要である。   However, molybdate has a high corrosion prevention effect, but its solubility in a concentrated lithium bromide (LiBr) aqueous solution is small, so it is generally added up to the solubility limit. However, the lower limit of the concentration necessary for corrosion prevention is still present. It is about a level. For this reason, in order to prevent corrosion of the absorption chiller / heater and maintain stable operation, it is necessary to finely control the concentration of molybdate.

そこで、吸収式冷温水機内の適宜箇所に電極を設置し、電気化学的にインヒビターの濃度を計測する技術が提案されており、例えばこれに関連する周知技術としては、吸収液中のインヒビターに対して酸化還元反応を生じる部材と参照電極との電位差でインヒビターの濃度を求めるようにした「吸収式冷凍機」(特許文献1参照)、酸化物電極及び参照電極間の電位差から吸収液中の溶存酸素濃度を求めるようにした「吸収式冷凍機」(特許文献2参照)、一対の鉄製電極間に流れる電流を計測して防食皮膜の形成状況を検知するようにした「吸収式冷凍機」(特許文献3参照)等が挙げられる。   Therefore, a technique has been proposed in which an electrode is installed at an appropriate location in the absorption chiller / heater and the concentration of the inhibitor is electrochemically measured. For example, as a well-known technique related to this, an inhibitor in the absorbent is used. The absorption concentration is determined by the potential difference between the member that causes the oxidation-reduction reaction and the reference electrode (see Patent Document 1), dissolved in the absorbing solution from the potential difference between the oxide electrode and the reference electrode. “Absorption refrigerator” (see Patent Document 2) that determines the oxygen concentration, and “Absorption refrigerator” that measures the current flowing between a pair of iron electrodes to detect the formation of the anticorrosive film ( For example, see Patent Document 3).

特開平7−35434号公報JP 7-35434 A 特開2006−57895号公報JP 2006-57895 A 特開2008−286441号公報JP 2008-286441 A

上述した特許文献1〜特許文献3に係る電気化学的にインヒビターの濃度を計測する技術は、以下に説明するような問題がある。具体的に云えば、特許文献1に係る技術では、吸収液中のインヒビターに対して酸化還元反応を生じる部材と参照電極との電位差でインヒビターの濃度を求めているが、こうした場合には作用電極の表面においてインヒビターである酸化剤の酸化作用により酸化物を生成して電位が経時変化するため、正確にインヒビターの濃度を知ることが困難になってしまうという問題がある。   The technique for electrochemically measuring the concentration of an inhibitor according to Patent Documents 1 to 3 described above has the following problems. Specifically, in the technique according to Patent Document 1, the concentration of the inhibitor is obtained by the potential difference between the reference electrode and the member that causes an oxidation-reduction reaction with respect to the inhibitor in the absorbing solution. Since an oxide is generated by the oxidizing action of an oxidizing agent, which is an inhibitor, on the surface of the metal, the potential changes with time, so that it is difficult to know the concentration of the inhibitor accurately.

また、特許文献2に係る技術では、酸化物電極及び参照電極間の電位差から吸収液中の溶存酸素濃度を求めるものであり、更に、特許文献3に係る技術では、一対の鉄製電極間に流れる電流を計測して防食皮膜の形成状況を検知するものであるが、何れの場合にも実際にモリブデン酸塩を主成分とするインヒビターが添加された吸収液中のインヒビターを対象にすると、インヒビターの濃度を高精度に把握することが困難であるという問題がある。   Moreover, in the technique which concerns on patent document 2, it calculates | requires the dissolved oxygen concentration in absorption liquid from the electric potential difference between an oxide electrode and a reference electrode, and also in the technique which concerns on patent document 3, it flows between a pair of iron electrodes. The current is measured to detect the state of formation of the anticorrosion film. In any case, when the inhibitor in the absorbing solution to which the inhibitor mainly composed of molybdate is added is targeted, There is a problem that it is difficult to grasp the concentration with high accuracy.

本発明は、このような問題点を解決すべくなされたもので、その第1の技術的課題は、モリブデン酸塩を主成分とするインヒビターが添加された吸収液中のインヒビターの濃度を高精度に把握できる吸収液中のインヒビター濃度把握方法を提供することにある。   The present invention has been made to solve such problems, and a first technical problem thereof is that the concentration of the inhibitor in the absorbing solution to which an inhibitor mainly composed of molybdate is added is highly accurate. It is an object of the present invention to provide a method for grasping an inhibitor concentration in an absorbing solution that can be grasped easily.

本発明の第2の技術的課題は、モリブデン酸塩を主成分とするインヒビターが添加された吸収液中のインヒビターの濃度を高精度に把握できる簡単な構成のインヒビター濃度把握装置を提供することにある。   A second technical problem of the present invention is to provide an inhibitor concentration grasping device having a simple configuration capable of grasping with high accuracy the concentration of an inhibitor in an absorbing solution to which an inhibitor mainly composed of molybdate is added. is there.

本発明の第3の技術的課題は、モリブデン酸塩を主成分とするインヒビターが添加された吸収液中のインヒビターの濃度を高精度に把握できると共に、機器内の腐食を効果的に防止できる吸収式冷温水機を提供することにある。   The third technical problem of the present invention is that the concentration of the inhibitor in the absorbing solution to which the inhibitor mainly composed of molybdate is added can be grasped with high accuracy and the corrosion in the apparatus can be effectively prevented. It is to provide a water chiller / heater.

上記第1の技術的課題を達成するため、本願発明の第1の手段は、モリブデン酸塩を主成分とするインヒビターが添加された吸収液中の当該インヒビターの濃度を把握する吸収液中のインヒビター濃度把握方法であって、吸収液中に浸漬するように挿入したグラッシーカーボン、カーボン、白金、モリブデンの何れか1つで構成された作用電極とモリブデンで構成された参照電極兼対極とによる2つの電極間に電圧を印加するか、或いは電流を供給し、当該電圧を印加した場合の当該2電極間に流れるモリブデン酸イオン濃度に応答した電流を計測するか、或いは当該電流を供給した場合の当該2電極間のモリブデン酸イオン濃度に応答した電圧を計測し、計測した電流値又は電圧値に基づいて当該吸収液中のインヒビターの濃度を把握することを特徴とする。 In order to achieve the first technical problem, the first means of the present invention is to determine the concentration of the inhibitor in the absorbing solution to which an inhibitor mainly composed of molybdate is added. Concentration grasping method , which includes two working electrodes composed of any one of glassy carbon, carbon, platinum, and molybdenum inserted so as to be immersed in the absorbing solution, and a reference electrode / counter electrode composed of molybdenum . Apply a voltage between the electrodes or supply a current and measure the current in response to the concentration of molybdate ion flowing between the two electrodes when the voltage is applied, or apply the current Measure the voltage in response to the molybdate ion concentration between the two electrodes, and grasp the concentration of the inhibitor in the absorbent based on the measured current value or voltage value And wherein the door.

上記第の技術的課題を達成するため、本願発明の第2の手段は、モリブデン酸塩を主成分とするインヒビターが添加された吸収液中の当該インヒビターの濃度を把握する吸収液中のインヒビター濃度把握装置であって、吸収液中に浸漬するように設置され参照電極、作用電極及び対極と、作用電極及び対極間に電圧を印加するか、或いは電流を供給し、当該作用電極の電位を負極の方向にずらすカソード分極と当該作用電極の電位を正極の方向にずらすアノード分極とを行う分極機能、当該カソード分極した場合のカソード電流又はカソード電圧を計測する第1の計測機能、及び当該アノード分極した場合のアノード電流又はアノード電圧を計測する第2の計測機能を備えたポテンショスタットと、を備え、参照電極及び対極は、兼用された参照電極兼対極であることを特徴とする。 In order to achieve the second technical problem described above, the second means of the present invention is to determine the concentration of the inhibitor in the absorbing solution to which an inhibitor mainly composed of molybdate is added. a concentration determination apparatus, the installed reference electrode as immersed in the absorbing solution, the working electrode, and a counter electrode, or a voltage is applied between the working and counter electrodes, or to supply current, of the working electrode A polarization function that performs cathode polarization that shifts the potential in the negative direction and anode polarization that shifts the potential of the working electrode in the positive direction, a first measurement function that measures the cathode current or the cathode voltage when the cathode is polarized, and A potentiostat having a second measurement function for measuring an anode current or an anode voltage when the anode is polarized, and the reference electrode and the counter electrode are shared Characterized in that it is a reference electrode and a counter electrode that.

上記第2の技術的課題を達成するため、本願発明の第3の手段は、上記第2の手段において、参照電極兼対極は、モリブデン金属電極で構成されたことを特徴とする In order to achieve the second technical problem, a third means of the present invention is characterized in that, in the second means, the reference electrode / counter electrode is composed of a molybdenum metal electrode .

上記第2の技術的課題を達成するため、本願発明の第の手段は、上記第2の手段又は上記第3の手段において、作用電極は、グラッシーカーボン、カーボン、白金、モリブデンの何れか1つで構成されたことを特徴とする。 In order to achieve the second technical problem, the fourth means of the present invention is the second means or the third means, wherein the working electrode is any one of glassy carbon, carbon, platinum, and molybdenum. It is composed of two .

上記第3の技術的課題を達成するため、本願発明の第5の手段は、上記第2の手段〜上記第4の手段の何れか1つの手段に係る吸収式中のインヒビター濃度把握装置を吸収式冷温水機が備えたことを特徴とする。 In order to achieve the third technical problem, the fifth means of the present invention absorbs the inhibitor concentration grasping device in the absorption type according to any one of the second means to the fourth means. It is characterized by the fact that it is equipped with a water chiller .

本発明によれば、吸収液中に浸漬するように挿入したグラッシーカーボン、カーボン、白金、モリブデンの何れか1つで構成された作用電極とモリブデンで構成された参照電極兼対極とによる2つの電極間に電圧を印加するか、或いは電流を供給し、電圧を印加した場合の2電極間に流れるモリブデン酸イオン濃度に応答した電流を計測するか、電流を供給した場合の2電極間に流れるモリブデン酸イオン濃度に応答した電圧を計測し、計測した電流値又は電圧値に基づいて吸収液中のインヒビターの濃度を把握するため、モリブデン酸塩を主成分とするインヒビターが添加された吸収液中のインヒビターの濃度を高精度に把握できるようになる。 According to the present invention, two electrodes are composed of a working electrode composed of any one of glassy carbon, carbon, platinum, and molybdenum inserted so as to be immersed in the absorbing solution, and a reference and counter electrode composed of molybdenum. Apply a voltage between them or supply a current and measure the current in response to the concentration of molybdate ion flowing between the two electrodes when a voltage is applied, or molybdenum flowing between the two electrodes when a current is supplied In order to measure the voltage in response to the acid ion concentration and grasp the concentration of the inhibitor in the absorbent based on the measured current value or voltage value, The concentration of the inhibitor can be grasped with high accuracy.

本発明の実施例1に係る吸収液中のインヒビター濃度把握装置を備えた二重効用吸収式冷温水機の概略構成を示した図である。It is the figure which showed schematic structure of the double effect absorption type | mold cold / hot water machine provided with the inhibitor density | concentration grasping | holding apparatus in the absorption liquid which concerns on Example 1 of this invention. 図1に示す吸収式冷温水機内のインヒビターとしてのモリブデン酸リチウム(LiMoO)を含む吸収液中でカソード分極した場合の電圧に対する電流密度の関係による分極特性に関する実験結果を示した線図である。Diagram showing the experimental results relating to the polarization characteristics of the relationship of current density versus voltage in the case of cathode polarization at the absorption solution containing lithium molybdate (Li 2 MoO 4) as the absorption chiller machine inhibitor shown in FIG. 1 It is. 図1に示す吸収式冷温水機内のインヒビターとしてのモリブデン酸リチウム(LiMoO)を含む吸収液中でカソード分極した後にアノード分極した場合の電圧に対する電流密度の関係による分極特性に関する実験結果を示した線図である。The experimental result regarding the polarization characteristic by the relationship of the current density with respect to the voltage at the time of anodic polarization after cathodic polarization in an absorption liquid containing lithium molybdate (Li 2 MoO 4 ) as an inhibitor in the absorption chiller / heater shown in FIG. FIG. 図3で説明したモリブデン酸リチウム(LiMoO)の濃度に対するアノードピーク電流密度の関係を示した線図である。FIG. 4 is a diagram showing the relationship of the anode peak current density to the concentration of lithium molybdate (Li 2 MoO 4 ) described in FIG. 3. 図1に示す吸収式冷温水機内の作用電極への定電流分極時における時間に対する電圧の関係による実験結果を示した線図である。It is the diagram which showed the experimental result by the relationship of the voltage with respect to time at the time of the constant current polarization to the working electrode in the absorption-type cold / hot water machine shown in FIG. 図5で説明した定電流分極による所定時間経過後のモリブデン酸リチウム(LiMoO)の濃度に対する電圧の関係による実験結果を示した線図である。FIG. 6 is a diagram showing an experimental result based on a relationship of a voltage with respect to a concentration of lithium molybdate (Li 2 MoO 4 ) after elapse of a predetermined time due to constant current polarization described in FIG. 図1に示す吸収式冷温水機内の参照電極及び対極を兼用した参照電極兼対極とした上での吸収液中のモリブデン酸リチウム(LiMoO)の濃度が異なる場合の複数の吸収液についての作用電極へのカソード分極時、並びにアノード分極時における電位に対する電流密度の関係による実験結果を示した線図である。A plurality of absorbing liquids in the case where the concentration of lithium molybdate (Li 2 MoO 4 ) in the absorbing liquid is different when the reference electrode and counter electrode in the absorption chiller / heater shown in FIG. It is the diagram which showed the experimental result by the relationship of the current density with respect to the electric potential at the time of the cathode polarization to the working electrode of, and an anode polarization.

以下に、本発明の吸収液中のインヒビター濃度把握方法及び装置、並びにその装置を備えた吸収式冷温水機について、図面を参照して詳細に説明する。   Hereinafter, an inhibitor concentration grasping method and apparatus in an absorbing solution of the present invention and an absorption chiller / heater equipped with the apparatus will be described in detail with reference to the drawings.

最初に、本発明の吸収液中のインヒビター濃度把握方法の技術的概要について、簡単に説明する。本発明の吸収液中のインヒビター濃度把握方法は、モリブデン酸塩を主成分とするインヒビターが添加された吸収液中のインヒビターの濃度を把握するもので、その技術的概要は、吸収液中に浸漬するように挿入した少なくとも2つの電極間に電圧を印加するか、或いは電流を供給し、電圧を印加した場合の2電極間に流れるモリブデン酸イオン濃度に応答した電流を計測するか、或いは電流を供給した場合の2電極間のモリブデン酸イオン濃度に応答した電圧を計測し、計測した電流値又は電圧値に基づいて吸収液中のインヒビターの濃度を把握するものである。   First, a technical outline of the method for grasping the inhibitor concentration in the absorbing solution of the present invention will be briefly described. The method for determining the inhibitor concentration in the absorption liquid of the present invention is to determine the concentration of the inhibitor in the absorption liquid to which an inhibitor mainly composed of molybdate is added, and its technical outline is immersed in the absorption liquid. Apply a voltage between at least two electrodes inserted so as to supply current or measure the current in response to the molybdate ion concentration flowing between the two electrodes when voltage is applied, or The voltage in response to the molybdate ion concentration between the two electrodes when supplied is measured, and the concentration of the inhibitor in the absorbing solution is grasped based on the measured current value or voltage value.

具体的に云えば、吸収液中に浸漬するように設置した作用電極及び対極間に電圧を印加するか、或いは電流を供給し、作用電極の電位を負極の方向にずらすカソード分極によりカソード還元作用を生起させて作用電極に二酸化モリブデン(MoO)を析出させた後、電位を正極の方向にずらすアノード分極によりアノード酸化作用を生起させて作用電極に析出している二酸化モリブデン(MoO)を溶出させ、カソード分極したときのカソード電流又はカソード電圧、並びにアノード分極したときのアノード電流又はアノード電圧による電流値又は電圧値を計測し、計測したカソード電流値又はカソード電圧値、並びにアノード電流値又はアノード電圧値の少なくとも一つの計測値に基づいて吸収液中のインヒビターの濃度を求めるものである。但し、ここではカソード分極及びアノード分極を複数回繰り返すことが好ましい。また、作用電極に対して定電流を供給して定電流分極した際の作用電極の電位を計測し、計測した電位に基づいて吸収液中のインヒビター濃度を求めることも好ましい。 Specifically, cathodic reduction is effected by cathodic polarization in which a voltage is applied between a working electrode and a counter electrode installed so as to be immersed in the absorbing solution, or current is supplied and the potential of the working electrode is shifted in the direction of the negative electrode. after allowed to occur to precipitate molybdenum dioxide (MoO 2) to the working electrode, the molybdenum dioxide is deposited on the working electrode by rise to anode oxidation by anodic polarization shifting the potential in the direction of the positive electrode (MoO 2) The cathode current or cathode voltage when eluting and cathodic polarization is measured, and the current value or voltage value by the anode current or anode voltage when anodic polarization is measured, and the measured cathode current value or cathode voltage value and anode current value or The concentration of the inhibitor in the absorbent is determined based on at least one measured value of the anode voltage value. It is. However, it is preferable here to repeat cathodic polarization and anodic polarization multiple times. It is also preferable to measure the potential of the working electrode when a constant current is supplied to the working electrode to perform constant current polarization, and to determine the inhibitor concentration in the absorbing solution based on the measured potential.

係る方法を適用すれば、モリブデン酸塩を主成分とするインヒビターが添加された吸収液中のインヒビターの濃度を高精度に把握できるようになる。   By applying such a method, the concentration of the inhibitor in the absorbing solution to which the inhibitor mainly composed of molybdate is added can be grasped with high accuracy.

図1は、本発明の実施例1に係る吸収液中のインヒビター濃度把握装置を備えた二重効用吸収式冷温水機の概略構成を示した図である。この二重効用吸収式冷温水機は、ボイラ等の加熱源を備えた高温再生器1、低温再生器2、凝縮器3、蒸発器4、吸収器5、熱交換器6、溶液ポンプ7、冷媒ポンプ8、これらの機器を連絡する管路を備えると共に、高温再生器1内の吸収液中に浸漬するように設置された参照電極11、作用電極12、及び対極13に接続されたポテンショスタット14を備えて構成される。   FIG. 1 is a diagram showing a schematic configuration of a double-effect absorption chiller / heater equipped with an inhibitor concentration grasping device in an absorbent according to Example 1 of the present invention. This double-effect absorption chiller / heater has a high temperature regenerator 1, a low temperature regenerator 2, a condenser 3, an evaporator 4, an absorber 5, a heat exchanger 6, a solution pump 7, a heating source such as a boiler, A potentiostat provided with a refrigerant pump 8, a pipe line connecting these devices, and connected to a reference electrode 11, a working electrode 12, and a counter electrode 13 installed so as to be immersed in the absorbing liquid in the high-temperature regenerator 1. 14.

このうち、参照電極11、作用電極12、及び対極13とポテンショスタット14とは、上述した吸収液中のインヒビター濃度把握方法を適用したインヒビター濃度把握装置となるもので、ポテンショスタット14は、作用電極12及び対極13間に電圧を印加するか、或いは電流を供給し、作用電極12の電位を負極の方向にずらすカソード分極と作用電極12の電位を正極の方向にずらすアノード分極とを行う分極機能、カソード分極した場合のカソード電流又はカソード電圧を計測する第1の計測機能、及びアノード分極した場合のアノード電流又はアノード電圧を計測する第2の計測機能を備えている。   Among these, the reference electrode 11, the working electrode 12, the counter electrode 13, and the potentiostat 14 serve as an inhibitor concentration grasping device to which the above-described inhibitor concentration grasping method in the absorption liquid is applied. A polarization function that applies a voltage or supplies a current between the electrode 12 and the counter electrode 13 to perform cathode polarization that shifts the potential of the working electrode 12 toward the negative electrode and anode polarization that shifts the potential of the working electrode 12 toward the positive electrode A first measurement function for measuring the cathode current or the cathode voltage when the cathode is polarized, and a second measurement function for measuring the anode current or the anode voltage when the anode is polarized.

低温再生器2は、高温再生器1で発生した冷媒蒸気を加熱源とする加熱管2Aを有し、凝縮器3は、管内を冷却水が流れる冷却水管3Aを有し、蒸発器4は、管内を冷水(被冷却媒体)が流れる冷水管4A、並びに冷媒ポンプ8から送り込まれる冷媒液を冷水管4Aに撒布する撒布ヘッダ4Bを有する。また、吸収器5は、管内を冷却水が流れる冷却水管5A、並びに高温再生器1及び低温再生器2から戻された濃厚吸収液(吸収剤の濃度が相対的に高い吸収液)を冷却水管6Aに撒布する撒布ヘッダ5Bを有する。   The low temperature regenerator 2 has a heating pipe 2A that uses the refrigerant vapor generated in the high temperature regenerator 1 as a heating source, the condenser 3 has a cooling water pipe 3A through which cooling water flows, and the evaporator 4 A cold water pipe 4A in which cold water (medium to be cooled) flows in the pipe and a distribution header 4B for distributing refrigerant liquid fed from the refrigerant pump 8 to the cold water pipe 4A. The absorber 5 is a cooling water pipe for cooling water pipe 5A through which cooling water flows, and a concentrated absorbent (absorbent having a relatively high concentration of absorbent) returned from the high temperature regenerator 1 and the low temperature regenerator 2. It has the distribution header 5B distributed to 6A.

実施例1に係る二重効用吸収式冷温水機における熱交換器6は、溶液ポンプ7から吐出され、高温再生器1及び低温再生器2に送り込む吸収液(低温で希薄な吸収液)と高温再生器1および低温再生器2から吸収器5に戻される吸収液(高温で濃厚な吸収液)とを熱交換する。この熱交換器6は、高温再生器1に送り込まれる吸収液と高温再生器1から戻る吸収液とを熱交換する高温熱交換器機能と、低温再生器2に送り込まれる吸収液と低温再生器2から戻る吸収液とを熱交換する低温熱交換器機能とを有するのが一般的である。   The heat exchanger 6 in the double-effect absorption chiller / heater according to the first embodiment is discharged from the solution pump 7 and sent to the high-temperature regenerator 1 and the low-temperature regenerator 2 (low-temperature and dilute absorbent) and high temperature. Heat exchange is performed with the absorption liquid (absorption liquid concentrated at high temperature) returned from the regenerator 1 and the low-temperature regenerator 2 to the absorber 5. This heat exchanger 6 has a high-temperature heat exchanger function for exchanging heat between the absorbing liquid sent to the high-temperature regenerator 1 and the absorbing liquid returned from the high-temperature regenerator 1, and the absorbing liquid and low-temperature regenerator sent to the low-temperature regenerator 2. Generally, it has a low-temperature heat exchanger function for exchanging heat with the absorbing liquid returning from 2.

また、溶液ポンプ7は、吸収器6から希薄な吸収液を吸い込み、熱交換器6を経由して高温再生器1及び低温再生器2に供給する。因みに、溶液ポンプ7の吐出側から撒布ヘッダ5Bに連なる管路を分岐し、吸収液の一部を吸収器5の撒布ヘッダ5Bに導き、吸収器5内に撒布する構成にすることもできる。   Further, the solution pump 7 sucks a diluted absorbent from the absorber 6 and supplies it to the high temperature regenerator 1 and the low temperature regenerator 2 via the heat exchanger 6. Incidentally, a pipe line connected to the distribution header 5B may be branched from the discharge side of the solution pump 7, and a part of the absorbent may be led to the distribution header 5B of the absorber 5 and distributed in the absorber 5.

上述した構成の二重効用吸収式冷温水機は、器内が高真空に維持され、高温再生器1内に吸収液が注入されている。この吸収液は、水を冷媒とする臭化リチウム(LiBr)水溶液を吸収剤とすると共に、モリブデン酸リチウム(モリブデン酸塩)を主成分とするインヒビターが添加されている。   In the double-effect absorption chiller / heater having the above-described configuration, the inside of the chamber is maintained at a high vacuum, and the absorbing liquid is injected into the high-temperature regenerator 1. In this absorbing solution, an aqueous solution of lithium bromide (LiBr) using water as a refrigerant is used as an absorbent, and an inhibitor mainly composed of lithium molybdate (molybdate) is added.

係る二重効用吸収式冷温水機の動作を説明すれば、ボイラの燃焼熱によって高温再生器1内の吸収液を加熱して冷媒蒸気を発生させ、この冷媒蒸気を低温再生器2の加熱管2Aに導き、低温再生器2内の吸収液を加熱して冷媒蒸気を発生させる。加熱管2A内の冷媒及び低温再生器2で発生した冷媒蒸気は、凝縮器3内に流れ込み、冷却水管3A内を流れる冷却水によって冷却され、冷やされた冷媒液となる。この冷媒液は、蒸発器4の撒布ヘッダ4Bから冷水管4Aに撒布され、冷水管4A内を流れる被冷却媒体から気化潜熱を奪って被冷却媒体を冷却する。この冷やされた被冷却媒体が冷房・空調用として略図する室内のファンコイルユニットに循環される。   The operation of the double-effect absorption chiller / heater will be described. The refrigerant in the high-temperature regenerator 1 is heated by the combustion heat of the boiler to generate refrigerant vapor, and the refrigerant vapor is heated to the heating pipe of the low-temperature regenerator 2. 2A, the absorption liquid in the low-temperature regenerator 2 is heated to generate refrigerant vapor. The refrigerant in the heating pipe 2A and the refrigerant vapor generated in the low temperature regenerator 2 flow into the condenser 3 and are cooled by the cooling water flowing through the cooling water pipe 3A to become a cooled refrigerant liquid. This refrigerant liquid is distributed from the distribution header 4B of the evaporator 4 to the cold water pipe 4A, and takes the latent heat of vaporization from the cooling medium flowing in the cold water pipe 4A to cool the cooling medium. This cooled medium to be cooled is circulated to an indoor fan coil unit schematically shown for cooling and air conditioning.

また、蒸発器4で蒸発した冷媒蒸気は、吸収器5に流れ込み、撒布ヘッダ5Bから撒布される吸収液(濃厚な吸収液)と直接接触すると共に、冷却水管5A内を通る冷却水によって冷却され、これによって冷媒蒸気は吸収液に吸収され出し、濃度の低い(換言すれば冷媒が多くなった)希薄吸収液となる。吸収器5で生成された希薄吸収液は、溶液ポンプ7により低温再生器2及び高温再生器1に送り込まれる。   The refrigerant vapor evaporated in the evaporator 4 flows into the absorber 5 and directly contacts the absorbing liquid (concentrated absorbing liquid) distributed from the distribution header 5B, and is cooled by the cooling water passing through the cooling water pipe 5A. As a result, the refrigerant vapor is absorbed by the absorption liquid, and becomes a diluted absorption liquid having a low concentration (in other words, the refrigerant has increased in number). The diluted absorbent generated in the absorber 5 is sent to the low temperature regenerator 2 and the high temperature regenerator 1 by the solution pump 7.

更に、実施例1に係るインヒビター濃度把握装置では、高温再生器1内の吸収液に各種電極を浸漬するように設置された場合を説明するが、各種電極の設置場所は高温再生器1内に限られず、低温再生器2内や吸収器5内、或いは吸収液が循環する管路内等でも良いことは当然である。各種電極については、冷却ジャケット付きの銀−塩化銀電極等による参照電極11、グラッシーカーボン製の作用電極12、白金製の対極13である場合を例示できる。ポテンショスタット14は、上述したように作用電極12及び対極13間に電圧を印加するか、或いは電流を供給する機能を有する他、作用電極12の電位を負極の方向にずらすカソード分極機能、逆に正極の方向にずらすアノード分極機能、カソード分極時のカソード電流又はカソード電圧を計測する第1の計測機能、並びにアノード分極時のアノード電流又はアノード電圧を計測する第2の計測機能を有するものである。   Furthermore, in the inhibitor concentration grasping device according to the first embodiment, a case where various electrodes are installed so as to be immersed in the absorbing solution in the high temperature regenerator 1 will be described. Of course, the inside of the low-temperature regenerator 2, the absorber 5, or the conduit through which the absorbing liquid circulates may be used. Examples of the various electrodes include a reference electrode 11 made of a silver-silver chloride electrode with a cooling jacket, a working electrode 12 made of glassy carbon, and a counter electrode 13 made of platinum. The potentiostat 14 has a function of applying a voltage or supplying a current between the working electrode 12 and the counter electrode 13 as described above, and a cathode polarization function for shifting the potential of the working electrode 12 in the negative direction. It has an anode polarization function that shifts in the direction of the positive electrode, a first measurement function that measures the cathode current or cathode voltage during cathode polarization, and a second measurement function that measures the anode current or anode voltage during anode polarization. .

高温再生器1の吸収液中に浸漬されるように設置された参照電極11、作用電極12、対極13について、参照電極11はポテンショスタット14に接続されてはいるが、電流が流れないようになっており、基準電位を求めるために設置されているものである。作用電極12と対極13とは、電圧(電位差)、或いは電流を付与できるようにポテンショスタット14に接続されている。   About the reference electrode 11, the working electrode 12, and the counter electrode 13 installed so that it may be immersed in the absorption liquid of the high temperature regenerator 1, although the reference electrode 11 is connected to the potentiostat 14, it does not flow an electric current. It is installed to obtain the reference potential. The working electrode 12 and the counter electrode 13 are connected to a potentiostat 14 so that a voltage (potential difference) or a current can be applied.

インヒビターの濃度を把握するために第1の計測機能や第2の計測機能により電流又は電圧を計測する場合、第1の計測機能では作用電極12の電位を負極の方向にずらすカソード分極により、カソード還元作用を生起させて作用電極12に二酸化モリブデン(MoO)を析出させる。また、その後の第2の計測機能では作用電極12の電位を正極の方向にずらすアノード分極により、アノード酸化作用を生起させて作用電極12に析出している二酸化モリブデン(MoO)を溶出させる。要するに、作用電極12をカソード分極した後、アノード分極する操作を行うことになるが、係る操作は2回以上繰り返して行うことが望ましい。ポテンショスタット14では第1の計測機能によりカソード分極したときのカソード電流又はカソード電圧、第2の計測機能によりアノード分極したときのアノード電流又はアノード電圧をそれぞれ計測する。 When the current or voltage is measured by the first measurement function or the second measurement function in order to grasp the concentration of the inhibitor, the first measurement function uses a cathode polarization that shifts the potential of the working electrode 12 in the negative electrode direction. A reduction action is caused to deposit molybdenum dioxide (MoO 2 ) on the working electrode 12. In the second measurement function thereafter, anodic oxidation is caused by anodic polarization that shifts the potential of the working electrode 12 toward the positive electrode, and molybdenum dioxide (MoO 2 ) deposited on the working electrode 12 is eluted. In short, after the working electrode 12 is cathodic polarized, an anodic polarization operation is performed, but it is desirable to repeat the operation twice or more. The potentiostat 14 measures the cathode current or cathode voltage when the cathode is polarized by the first measurement function, and the anode current or anode voltage when the anode is polarized by the second measurement function.

ポテンショスタット14により計測したカソード電流値、アノード電流値の少なくとも一方の電流値、或いはカソード電圧値、アノード電圧値の少なくとも一方の電圧値に基づき、各電流値又は各電圧値とインヒビター濃度との関係曲線を参照すれば、二重効用吸収式冷温水機内の吸収液中のインヒビターの濃度を適確に検知して把握することができる。   The relationship between each current value or each voltage value and the inhibitor concentration based on at least one of the cathode current value and anode current value measured by the potentiostat 14 or at least one of the cathode voltage value and the anode voltage value. Referring to the curve, it is possible to accurately detect and grasp the concentration of the inhibitor in the absorbing solution in the double-effect absorption chiller / heater.

上述した例では、電流値又は電圧値を計測する場合について説明したが、作用電極12に供給する定電流密度として、例えば141μA(マイクロアンペア)/cmの定電流を供給し、作用電極12の電極電位(作用電極12及び対極13との間の電圧)の径時変化を計測し、計測した電圧値に基づき、電圧値とインヒビター濃度との関係曲線を参照することによって、二重効用吸収式冷温水機内の吸収液中のインヒビターの濃度を検知(把握)することもできる。 In the example described above, the case where the current value or the voltage value is measured has been described. However, as the constant current density supplied to the working electrode 12, for example, a constant current of 141 μA (microampere) / cm 2 is supplied. By measuring the time-dependent change of the electrode potential (voltage between the working electrode 12 and the counter electrode 13) and referring to the relationship curve between the voltage value and the inhibitor concentration based on the measured voltage value, a double-effect absorption formula It is also possible to detect (obtain) the concentration of the inhibitor in the absorption liquid in the cold / hot water machine.

実施例1に係る二重効用吸収式冷温水機は3電極系システムであるが、この場合には機器内に信頼できる参照電極11を挿入しなければならないという課題があるため、もっと簡単な構成の2電極系システムとして、モリブデン酸塩を含むインヒビターの濃度を検知(把握)できれば、より実用性が高くなると期待される。3電極系システムは、吸収液中のインヒビター濃度に対応した電流又は電圧を計測する上では最も望ましい実施態様ではあるが、吸収式冷温水機のような高温で作動するような場合には、高温で安定に応答する参照電極11が複雑な構造となってしまうため、実用的には対極13と参照電極11を兼用する参照電極兼対極と作用電極12とによる2電極システムとする方が望ましい。   Although the double-effect absorption chiller / heater according to the first embodiment is a three-electrode system, in this case, there is a problem that a reliable reference electrode 11 must be inserted into the device, and thus a simpler configuration. If the concentration of an inhibitor containing molybdate can be detected (ascertained) as a two-electrode system, the practicality is expected to be higher. A three-electrode system is the most desirable embodiment for measuring the current or voltage corresponding to the inhibitor concentration in the absorbing solution. However, when operating at a high temperature such as an absorption chiller / heater, Therefore, the reference electrode 11 that responds stably has a complicated structure. Therefore, in practice, it is desirable to use a two-electrode system that includes the counter electrode 13 and the reference electrode 11 serving both as the reference electrode 11 and the working electrode 12.

2電極システムとする場合には、対極13の分極曲線の形状が吸収液中のモリブデン酸インヒビター濃度に依存しない場合には、電流密度を一定にすれば対極13の電位は定常値で一定となるので、所謂電圧制御で作用電極12の電位制御が可能となり、対極13と参照電極11とを兼用した参照電極兼対極とすることが可能となる。また、作用電極12に電流を流す場合、対極13の面積を十分大きくすれば電流密度が小さくなり、実質的に分極が小さく電位が一定に保持されるので、対極13と参照電極11とを兼用した参照電極兼対極とすることが可能となる。   In the case of a two-electrode system, when the shape of the polarization curve of the counter electrode 13 does not depend on the concentration of molybdate inhibitor in the absorbing solution, the potential of the counter electrode 13 becomes constant at a steady value if the current density is made constant. Therefore, the potential of the working electrode 12 can be controlled by so-called voltage control, and the counter electrode / counter electrode can be used as the counter electrode 13 and the reference electrode 11. In addition, when a current is passed through the working electrode 12, if the area of the counter electrode 13 is made sufficiently large, the current density becomes small and the polarization is substantially small and the potential is kept constant. Therefore, the counter electrode 13 and the reference electrode 11 are used together. The reference electrode and counter electrode can be used.

因みに、上述した各電流値とモリブデン酸インヒビター濃度との間、各電圧値とモリブデン酸インヒビター濃度との間には一定の関係を有することが実験により既に確認されているため、以下には係る各電流値又は各電圧値とインヒビター濃度との関係について説明する。   Incidentally, it has already been confirmed through experiments that each voltage value and molybdate inhibitor concentration have a certain relationship between each voltage value and molybdate inhibitor concentration. The relationship between the current value or each voltage value and the inhibitor concentration will be described.

図2は、上述した吸収式冷温水機内のインヒビターとしてのモリブデン酸リチウム(LiMoO)を含む吸収液中でカソード分極した場合の電圧に対する電流密度の関係による分極特性に関する実験結果を示した線図である。図3は、上述した吸収式冷温水機内のインヒビターとしてのモリブデン酸リチウム(LiMoO)を含む吸収液中でカソード分極した後にアノード分極した場合の電圧に対する電流密度の関係による分極特性に関する実験結果を示した線図である。図4は、図3で説明したモリブデン酸リチウム(LiMoO)の濃度に対するアノードピーク電流密度の関係を示した線図である。図5は、上述した吸収式冷温水機内の作用電極12への定電流分極時における時間に対する電圧の関係による実験結果を示した線図である。図6は、図5で説明した定電流分極による所定時間経過後のモリブデン酸リチウム(LiMoO)の濃度に対する電圧の関係による実験結果を示した線図である。図7は、上述した吸収式冷温水機内の参照電極11及び対極13を兼用した参照電極兼対極とした上での吸収液中のモリブデン酸リチウム(LiMoO)の濃度が異なる場合の複数の吸収液についての作用電極12へのカソード分極時、並びにアノード分極時における電位に対する電流密度の関係による実験結果を示した線図である。 FIG. 2 shows the experimental results regarding the polarization characteristics based on the relationship between the current density and the voltage in the case of cathodic polarization in an absorbing solution containing lithium molybdate (Li 2 MoO 4 ) as an inhibitor in the absorption chiller / heater described above. FIG. FIG. 3 shows an experiment on the polarization characteristics based on the relationship between the current density and the voltage when cathodicly polarized in an absorbing solution containing lithium molybdate (Li 2 MoO 4 ) as an inhibitor in the absorption chiller / heater described above. It is the diagram which showed the result. FIG. 4 is a graph showing the relationship between the anode peak current density and the concentration of lithium molybdate (Li 2 MoO 4 ) described in FIG. FIG. 5 is a diagram showing experimental results based on the relationship of voltage with respect to time during constant current polarization to the working electrode 12 in the absorption chiller / heater described above. FIG. 6 is a diagram showing experimental results based on the relationship of voltage to the concentration of lithium molybdate (Li 2 MoO 4 ) after a predetermined time has elapsed due to the constant current polarization described in FIG. FIG. 7 shows a plurality of cases where the concentration of lithium molybdate (Li 2 MoO 4 ) in the absorbing solution is different when the reference electrode 11 and the counter electrode 13 are combined in the absorption chiller / heater as described above. It is the diagram which showed the experimental result by the relationship of the electric current density with respect to the electric potential at the time of the cathode polarization to the working electrode 12, and the anode polarization about the absorption liquid.

但し、図2〜図6においては、17.3mol・kg−1の臭化リチウム(LiBr)水溶液に0.1mol・kg−1の臭化リチウム(LiBr)を加えた水溶液を基本液とし、これにインヒビターとして1×10−4〜3×10−3・mol・kg−1のモリブデン酸リチウム(LiMoO)を必要に応じて添加した吸収液を用いている。また、図2、図3、図5、及び図7において、曲線Aはインヒビターを添加していない吸収液の場合を示し、曲線Bはインヒビター濃度が1×10−4・mol・kg−1の吸収液の場合を示し、曲線Cはインヒビター濃度が5×10−4・mol・kg−1の吸収液の場合を示し、曲線Dはインヒビター濃度が1×10−3・mol・kg−1の吸収液の場合を示し、曲線Eは、インヒビター濃度が3×10−3・mol・kg−1の吸収液の場合を示している。尚、曲線A〜Eは、それぞれ各図とも同じインヒビター濃度についての計測結果を示すものであるが、同じ曲線Aであっても用いている線の種類は図毎に異なる。曲線B、C、D、Eについても同様である。また、図2及び図3において、電圧(電位差)は参照電極11との差を表わしている。 However, in FIGS. 2 to 6, a basic solution, an aqueous solution was added lithium bromide (LiBr) of 17.3mol · kg -1 of lithium bromide (LiBr) 0.1mol · kg -1 in aqueous solution, which 1 × 10 −4 to 3 × 10 −3 mol · kg −1 lithium molybdate (Li 2 MoO 4 ) as an inhibitor is added as necessary. 2, 3, 5, and 7, curve A shows the case of an absorption solution to which an inhibitor is not added, and curve B shows an inhibitor concentration of 1 × 10 −4 · mol · kg −1 . The case of the absorbing solution is shown, curve C shows the case of the absorbing solution having an inhibitor concentration of 5 × 10 −4 · mol · kg −1 , and curve D shows the inhibitor concentration of 1 × 10 −3 · mol · kg −1 . The case of the absorbing solution is shown, and the curve E shows the case of the absorbing solution having an inhibitor concentration of 3 × 10 −3 · mol · kg −1 . Curves A to E show the measurement results for the same inhibitor concentration in each figure, but the types of lines used vary from figure to figure even for the same curve A. The same applies to the curves B, C, D, and E. 2 and 3, the voltage (potential difference) represents the difference from the reference electrode 11.

図2を参照すれば、ここでは具体的に上記吸収液中にアルゴンガスを吹き込んで脱気した状態で40℃の吸収液中で作用電極12にグラッシーカーボン、対極13に白金板、参照電極11に水冷ジャケットを有する銀(Ag)−塩化銀(Agcl)電極を用いて、動電位法によりカソード分極した場合におけるモリブデン酸リチウム(LiMoO)のインヒビター濃度とカソード分極特性との関係を示している。カソード分極特性について、縦軸は電流密度(i/μAcm−2)であり、横軸は電圧(電位差)としてのポテンシャル(E/V vs. Ag/Agcl)であり、曲線Aはインヒビターを添加していない吸収液の場合を示し、曲線Bはインヒビター濃度が1×10−4・mol・kg−1の吸収液の場合を示し、曲線Cはインヒビター濃度が5×10−4・mol・kg−1の吸収液の場合を示し、曲線Dはインヒビター濃度が1×10−3・mol・kg−1の吸収液の場合を示し、曲線Eはインヒビター濃度が3×10−3・mol・kg−1の吸収液の場合を示している。 Referring to FIG. 2, here, specifically, argon gas was blown into the absorbing solution and degassed, and in the absorbing solution at 40 ° C., the working electrode 12 was glassy carbon, the counter electrode 13 was a platinum plate, and the reference electrode 11. Shows the relationship between the inhibitor concentration of lithium molybdate (Li 2 MoO 4 ) and the cathodic polarization characteristics in the case of cathodic polarization by the electrokinetic method using a silver (Ag) -silver chloride (Agcl) electrode having a water-cooled jacket ing. Regarding the cathode polarization characteristics, the vertical axis represents current density (i / μAcm −2 ), the horizontal axis represents potential (E / V vs. Ag / Agcl) as voltage (potential difference), and curve A represents the addition of an inhibitor. shows the case of a non-absorbing liquid, curve B is the inhibitor concentration shows a case of the absorbing liquid of 1 × 10 -4 · mol · kg -1, the curve C is the inhibitor concentration 5 × 10 -4 · mol · kg - 1 shows the case of the absorbing solution, curve D shows the case of the absorbing solution having an inhibitor concentration of 1 × 10 −3 · mol · kg −1 , and curve E shows the inhibitor concentration of 3 × 10 −3 · mol · kg The case of 1 absorption liquid is shown.

図2からは、電圧が−1.2ボルト以下において電流密度がインヒビター濃度に明瞭に依存している様子が判る。これはグラッシーカーボン上に吸収液中の二酸化モリブデンの還元生成物が生成することによる。このようにカソード分極特性において、−1.2ボルト以下における電流密度を測定すれば、吸収液中のインヒビターの濃度を検知(把握)することができる。   FIG. 2 shows that the current density clearly depends on the inhibitor concentration when the voltage is -1.2 volts or less. This is because reduction products of molybdenum dioxide in the absorbing solution are formed on the glassy carbon. Thus, in the cathode polarization characteristics, if the current density at −1.2 volts or less is measured, the concentration of the inhibitor in the absorbing solution can be detected (understood).

図3を参照すれば、ここでは具体的に上記実施例1で説明した場合と同様な吸収液を用い、150℃でカソード分極した後、引き続いて−1.4ボルトからアノード方向に折り返してアノード分極させた場合におけるモリブデン酸リチウム(LiMoO)濃度(インヒビター濃度)と分極特性との関係を示している。図3中の分極特性について、縦軸、横軸、及び各曲線A、C、D、Eは図2で説明した場合と同じである。 Referring to FIG. 3, here, the same absorbing solution as that described in Example 1 above was used, and after cathodic polarization at 150 ° C., the anode was subsequently turned back from −1.4 volts toward the anode. The relationship between the lithium molybdate (Li 2 MoO 4 ) concentration (inhibitor concentration) and the polarization characteristics in the case of polarization is shown. Regarding the polarization characteristics in FIG. 3, the vertical axis, the horizontal axis, and the curves A, C, D, and E are the same as those described in FIG.

図3からは、分極特性について、電圧が−0.6ボルト付近で一旦カソード電流がアノード電流に転じてピークを示し、その後に0ボルト付近以上でアノード電流となる様子が判る。電圧が−0.6ボルト付近のアノード電流ピークは、カソード分極によりグラッシーカーボン上に析出したMoO 2−の還元生成物である二酸化モリブデン(MoO)が再酸化されて溶出するためである。このピーク電流を示す電位は吸収液の温度により若干シフトするが、実質上問題はない。図3から明らかなように、電圧が−0.6ボルト付近のピーク電流密度は明瞭にインヒビター濃度に依存しているため、このピーク電流密度を計測すれば、吸収液中のインヒビターの濃度を検知(把握)することができる。 From FIG. 3, it can be seen that with respect to the polarization characteristics, the cathode current once turns to the anode current and shows a peak when the voltage is around -0.6 volts, and then the anode current becomes near 0 volts or more. This is because the anode current peak at a voltage of around -0.6 volts is eluted by reoxidation of molybdenum dioxide (MoO 2 ), which is a reduction product of MoO 4 2− deposited on the glassy carbon by cathodic polarization. Although the potential indicating the peak current slightly shifts depending on the temperature of the absorbing solution, there is substantially no problem. As is clear from FIG. 3, the peak current density near −0.6 volts is clearly dependent on the inhibitor concentration. Therefore, if this peak current density is measured, the concentration of the inhibitor in the absorbing solution can be detected. (Understand).

図4を参照すれば、図3に示したピーク電流密度とインヒビター濃度との関係を整理して示したもので、縦軸は電流密度(i/μAcm−2)であり、横軸はモリブデン酸リチウム(LiMoO)濃度(インヒビター濃度)(m/mol・kg−1)である。図4からは、上述したようにインヒビター濃度はピーク電流密度とほぼ直線関係にあり、カソード分極後にアノード方向に折り返しアノード分極をさせることで吸収液中のインヒビターの濃度を検知(把握)することができる。 Referring to FIG. 4, the relationship between the peak current density and the inhibitor concentration shown in FIG. 3 is arranged and the vertical axis is current density (i / μAcm −2 ), and the horizontal axis is molybdic acid. Lithium (Li 2 MoO 4 ) concentration (inhibitor concentration) (m / mol · kg −1 ). From FIG. 4, as described above, the inhibitor concentration is almost linearly related to the peak current density, and the concentration of the inhibitor in the absorbing solution can be detected (obtained) by performing anodic polarization in the anode direction after cathodic polarization. it can.

図5を参照すれば、ここでは具体的に図2、図3の場合と同じ吸収液を用いて25℃で作用電極(グラッシーカーボン電極)12に141μA/cmの定電流密度を印加した場合の電極電位(電圧)の径時変化を示しており、縦軸は電圧(電位差)としてのポテンシャル(E/V vs. Ag/Agcl)であり、横軸は時間(秒t/s)である。図5からは、各曲線B、C、D、Eについて、作用電極(グラッシーカーボン)12の電圧(電位差)がインヒビター濃度により明瞭な差を示していることが判る。 Referring to FIG. 5, here, a case where a constant current density of 141 μA / cm 2 is applied to the working electrode (glassy carbon electrode) 12 at 25 ° C. using the same absorbing liquid as in FIGS. The electrode potential (voltage) of the electrode is shown to change with time, the vertical axis is the potential (E / V vs. Ag / Agcl) as the voltage (potential difference), and the horizontal axis is the time (second t / s). . From FIG. 5, it can be seen that for each of the curves B, C, D, and E, the voltage (potential difference) of the working electrode (glassy carbon) 12 shows a clear difference depending on the inhibitor concentration.

図6を参照すれば、図5の状態から150秒後における作用電極(グラッシーカーボン)12の電圧(電位差)とインヒビター濃度との関係を整理して示したもので、縦軸は電圧(電位差)としてのポテンシャル(E/V vs. Ag/Agcl)であり、横軸はモリブデン酸リチウム(LiMoO)濃度(インヒビター濃度)(m/mol・kg−1)である。図6からは、インヒビター濃度と作用電極(グラッシーカーボン)12の電圧(電位差)とはほぼ直線関係にあることから、吸収液中のインヒビター濃度はグラッシーカーボンによる作用電極12を定電流分極することで検知(把握)することができる。 Referring to FIG. 6, the relationship between the voltage (potential difference) of the working electrode (glassy carbon) 12 and the inhibitor concentration after 150 seconds from the state shown in FIG. 5 is shown. The vertical axis indicates the voltage (potential difference). As a potential (E / V vs. Ag / Agcl), and the horizontal axis represents a lithium molybdate (Li 2 MoO 4 ) concentration (inhibitor concentration) (m / mol · kg −1 ). From FIG. 6, since the inhibitor concentration and the voltage (potential difference) of the working electrode (glassy carbon) 12 are in a substantially linear relationship, the inhibitor concentration in the absorbing solution is obtained by constant-current polarization of the working electrode 12 by the glassy carbon. It can be detected (understood).

図7を参照すれば、ここでは具体的にアノードがモリブデンの金属電極で構成された参照電極兼対極であり、カソードがグラッシーカーボン電極で構成された作用電極12である2電極システムとしており、313K(40℃)の吸収液中のモリブデン酸リチウム(LiMoO)のインヒビター濃度がそれぞれ曲線Aで零、曲線Bで1×10−4・mol・kg−1、曲線Cで5×10−4・mol・kg−1、曲線Dで1×10−3・mol・kg−1、曲線Eで3×10−3・mol・kg−1の場合の電流電位曲線を示している。図7中では縦軸が電流密度(i/μAcm−2)であり、横軸が電位としてのポテンシャル(E/V vs. Ag/Agcl)である他、左側が作用電極12をカソード分極した際のカソード電流を示したカソード分極特性、右側が作用電極12をアノード分極した際の参照電極兼対極のアノード電流を示したアノード分極特性を表わしている。 Referring to FIG. 7, a two-electrode system in which the anode is a reference electrode / counter electrode composed of a molybdenum metal electrode and the cathode is a working electrode 12 composed of a glassy carbon electrode is specifically described here. inhibitor concentration is zero at each curve a lithium molybdate absorbing solution (Li 2 MoO 4) of (40 ℃), 1 × 10 -4 · mol · kg -1 by curve B, and curve C 5 × 10 - The current-potential curve in the case of 4 · mol · kg −1 , curve D is 1 × 10 −3 · mol · kg −1 , and curve E is 3 × 10 −3 · mol · kg −1 is shown. In FIG. 7, the vertical axis represents current density (i / μAcm −2 ), the horizontal axis represents potential as potential (E / V vs. Ag / Agcl), and the left side is when the working electrode 12 is cathodic polarized. The cathode polarization characteristic showing the cathode current of the reference electrode, and the right side shows the anode polarization characteristic showing the anode current of the reference electrode and the counter electrode when the working electrode 12 is anode-polarized.

図7からは、カソード分極特性での各曲線の形状は、インヒビター濃度が零〜3×10−3・mol・kg−1の範囲において、インヒビター濃度に依存してカソード電流が増加し、しかも増加度合いがインヒビター濃度によって異なる傾向となっていることが判る。これに対し、アノード分極特性での各曲線の形状は、インヒビター濃度に依存せずに何れの場合でもほぼ同じであり、一定となっている様子が判る。従って、同一電流密度(値は任意)で電解した時のアノードとカソードとの電位差D(図7中に示される同一電流密度におけるアノード分極特性とカソード分極特性との間隔)がインヒビター濃度によって異なる値となるため、係る電位差Dにより吸収液中のインヒビターの濃度を検知(把握)することができる。即ち、参照電極兼対極をモリブデン金属電極とする2電極系システムとすることによって、モリブデン酸塩を含むインヒビターが添加された吸収液中のインヒビターの濃度の検知(把握)が可能となる。 From FIG. 7, the shape of each curve in the cathode polarization characteristics shows that the cathode current increases and increases depending on the inhibitor concentration when the inhibitor concentration is in the range of zero to 3 × 10 −3 · mol · kg −1. It can be seen that the degree tends to vary depending on the inhibitor concentration. On the other hand, the shape of each curve in the anodic polarization characteristics is almost the same in any case without depending on the inhibitor concentration, and it can be seen that it is constant. Therefore, the potential difference D between the anode and the cathode when electrolyzed at the same current density (the value is arbitrary) (the interval between the anodic polarization characteristic and the cathode polarization characteristic at the same current density shown in FIG. 7) varies depending on the inhibitor concentration. Therefore, the concentration of the inhibitor in the absorbing solution can be detected (understood) by the potential difference D. That is, by using a two-electrode system in which the reference and counter electrode is a molybdenum metal electrode, it is possible to detect (understand) the concentration of the inhibitor in the absorbing solution to which the inhibitor containing molybdate is added.

尚、実施例1に係る二重効用吸収式冷温水機では、作用電極12としてグラッシーカーボン電極を用いた場合を説明したが、作用電極12はグラッシーカーボンに限定されず、臭化リチウム(LiBr)水溶液に不活性で安定な物質であればその他の材質でも適用可能であり、例えばカーボン、モリブデン、白金等を用いることができ、こうした場合にも実施例1で説明した場合と同様な作用効果が得られる。   In the double-effect absorption chiller / heater according to Example 1, the case where a glassy carbon electrode is used as the working electrode 12 has been described. However, the working electrode 12 is not limited to glassy carbon, and lithium bromide (LiBr). Other materials can be used as long as they are inert and stable to the aqueous solution. For example, carbon, molybdenum, platinum, or the like can be used. In this case, the same effects as those described in the first embodiment can be obtained. can get.

何れにせよ、実施例1に係る二重効用吸収式冷温水機によれば、高温再生器1内の吸収液中に浸漬するように設置された2つの電極(作用電極12及び対極13)間にポテンショスタット14により電圧を印加するか、或いは電流を供給し、分極機能により作用電極12の電位を負の方向にずらすカソード分極により、カソード還元作用を生起させて作用電極12に二酸化モリブデン(MoO)を析出させた後、正の方向にずらすアノード分極によりアノード酸化作用を生起させて作用電極12に析出している二酸化モリブデン(MoO)を溶出させる。このとき、ポテンショスタット14では同時に第1の計測機能によりカソード分極したときのカソード電流又はカソード電圧、並びに第2の計測機能によりアノード分極したときのアノード電流又はアノード電圧に係る少なくとも一方の電流値又は電圧値を計測しているので、各種電極への酸化被膜の形成による影響を殆ど受けることなく、主成分がモリブデン酸塩であるインヒビターの濃度に見合った作用電極12及び対極13間の電圧を印加した場合の2電極間に流れるモリブデン酸イオン濃度に応答した電流(カソード電流、アノード電流)、或いは電流を供給した場合の2電極間に流れるモリブデン酸イオン濃度に応答した電圧(カソード電圧、アノード電圧)を計測することができる。これによって、高精度にインヒビター濃度を検知(把握)することができる。また、参照電極11と対極13とを兼用した参照電極兼対極と作用電極12とによる2電極系システムを構成し、インヒビター濃度を高精度に検知(把握)できるため、電極が少なくて済むため、機器への装着を簡単に行うことができるため、実用上で極めて有効となる。更に、インヒビター濃度を高精度に検知(把握)することが可能であるため、耐食性及び信頼性の高い吸収式冷温水機を提供することができる。 In any case, according to the double-effect absorption chiller / heater according to the first embodiment, between the two electrodes (working electrode 12 and counter electrode 13) installed so as to be immersed in the absorbing liquid in the high-temperature regenerator 1. A voltage is applied to the working electrode 14 by a potentiostat 14 or an electric current is supplied to the working electrode 12 by a cathode polarization that shifts the potential of the working electrode 12 in the negative direction by a polarization function. 2 ) After depositing, anodic oxidation is caused by anodic polarization shifted in the positive direction, and molybdenum dioxide (MoO 2 ) deposited on the working electrode 12 is eluted. At this time, in the potentiostat 14, at least one current value or the cathode current or the cathode voltage when the cathode polarization is performed by the first measurement function and the anode current or the anode voltage when the anode polarization is performed by the second measurement function. Since the voltage value is measured, the voltage between the working electrode 12 and the counter electrode 13 corresponding to the concentration of the inhibitor whose main component is molybdate is applied almost without being affected by the formation of an oxide film on various electrodes. Current corresponding to the molybdate ion concentration flowing between the two electrodes (cathode current, anode current), or voltage corresponding to the molybdate ion concentration flowing between the two electrodes when current is supplied (cathode voltage, anode voltage) ) Can be measured. As a result, the inhibitor concentration can be detected (obtained) with high accuracy. In addition, since a two-electrode system comprising a reference electrode and counter electrode that also serves as the reference electrode 11 and the counter electrode 13 and the working electrode 12 is configured and the inhibitor concentration can be detected (obtained) with high accuracy, the number of electrodes can be reduced. Since it can be easily mounted on a device, it is extremely effective in practice. Furthermore, since the inhibitor concentration can be detected (obtained) with high accuracy, an absorption chiller / heater with high corrosion resistance and reliability can be provided.

1 高温再生器
2 低温再生器
3 凝縮器
3A、5A 冷却水管
4 蒸発器
4A 冷水管
4B、5B 撒布ヘッダ
5 吸収器
6 熱交換器
7 溶液ポンプ
8 冷媒ポンプ
11 参照電極
12 作用電極
13 対極
14 ポテンショスタット
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Low temperature regenerator 3 Condenser 3A, 5A Cooling water pipe 4 Evaporator 4A Cold water pipe 4B, 5B Distribution header 5 Absorber 6 Heat exchanger 7 Solution pump 8 Refrigerant pump 11 Reference electrode 12 Working electrode 13 Counter electrode 14 Potentiometer Stat

Claims (5)

モリブデン酸塩を主成分とするインヒビターが添加された吸収液中の当該インヒビターの濃度を把握する吸収液中のインヒビター濃度把握方法であって、
前記吸収液中に浸漬するように挿入したグラッシーカーボン、カーボン、白金、モリブデンの何れか1つで構成された作用電極とモリブデンで構成された参照電極兼対極とによる2つの電極間に電圧を印加するか、或いは電流を供給し、当該電圧を印加した場合の当該2電極間に流れるモリブデン酸イオン濃度に応答した電流を計測するか、或いは当該電流を供給した場合の当該2電極間のモリブデン酸イオン濃度に応答した電圧を計測し、計測した前記電流値又は前記電圧値に基づいて当該吸収液中の前記インヒビターの濃度を把握することを特徴とする吸収液中のインヒビター濃度把握方法。
A method for grasping an inhibitor concentration in an absorbing solution for grasping a concentration of the inhibitor in an absorbing solution to which an inhibitor mainly composed of molybdate is added,
A voltage is applied between two electrodes by a working electrode made of any one of glassy carbon, carbon, platinum, and molybdenum inserted so as to be immersed in the absorbing solution and a reference electrode / counter electrode made of molybdenum. Or current is supplied and the current in response to the concentration of molybdate flowing between the two electrodes when the voltage is applied is measured or the molybdic acid between the two electrodes when the current is supplied A method for grasping an inhibitor concentration in an absorbing solution, comprising: measuring a voltage in response to an ion concentration, and grasping the concentration of the inhibitor in the absorbing solution based on the measured current value or the voltage value.
モリブデン酸塩を主成分とするインヒビターが添加された吸収液中の当該インヒビターの濃度を把握する吸収液中のインヒビター濃度把握装置であって、
前記吸収液中に浸漬するように設置され参照電極、作用電極及び対極と、前記作用電極及び前記対極間に電圧を印加するか、或いは電流を供給し、当該作用電極の電位を負極の方向にずらすカソード分極と当該作用電極の電位を正極の方向にずらすアノード分極とを行う分極機能、当該カソード分極した場合のカソード電流又はカソード電圧を計測する第1の計測機能、及び当該アノード分極した場合のアノード電流又はアノード電圧を計測する第2の計測機能を備えたポテンショスタットと、を備え、
前記参照電極及び前記対極は、兼用された参照電極兼対極であることを特徴とする吸収液中のインヒビター濃度把握装置
An inhibitor concentration grasping device in the absorbing solution for grasping the concentration of the inhibitor in the absorbing solution to which an inhibitor mainly composed of molybdate is added,
The installed reference electrode as immersed in the absorbing solution, the working electrode, and a counter electrode, or a voltage is applied between the working electrode and the counter electrode, or to supply current, the negative electrode potential of the working electrode A polarization function for performing cathode polarization shifted in the direction and anodic polarization for shifting the potential of the working electrode in the positive direction, a first measurement function for measuring a cathode current or a cathode voltage when the cathode is polarized, and the anode polarization A potentiostat having a second measurement function for measuring the anode current or anode voltage of the case,
The inhibitor concentration grasping device in the absorbing solution, wherein the reference electrode and the counter electrode are a combined reference electrode and counter electrode .
請求項2記載の吸収液中のインヒビター濃度把握装置において、前記参照電極兼対極は、モリブデン金属電極で構成されたことを特徴とする吸収液中のインヒビター濃度把握装置In inhibitor concentration determination apparatus of the absorbing solution according to claim 2, wherein the reference electrode and the counter electrode, the inhibitor concentration determination apparatus of the absorbing fluid and characterized in that it is composed of molybdenum metal electrodes. 請求項2又は3記載の吸収液中のインヒビター濃度把握装置において、前記作用電極は、グラッシーカーボン、カーボン、白金、モリブデンの何れか1つで構成されたことを特徴とする吸収液中のインヒビター濃度把握装置The inhibitor concentration grasping device in the absorbing solution according to claim 2 or 3 , wherein the working electrode is composed of any one of glassy carbon, carbon, platinum, and molybdenum. Grasping device . 請求項2〜4の何れか1項記載の吸収液中のインヒビター濃度把握装置を備えたことを特徴とする吸収式冷温水機An absorption chiller / heater having the inhibitor concentration grasping device in the absorbent according to any one of claims 2 to 4 .
JP2011207168A 2011-09-22 2011-09-22 Method and apparatus for grasping inhibitor concentration in absorbent, and absorption chiller / heater equipped with the apparatus Active JP5525499B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011207168A JP5525499B2 (en) 2011-09-22 2011-09-22 Method and apparatus for grasping inhibitor concentration in absorbent, and absorption chiller / heater equipped with the apparatus
CN201210352351.XA CN103018290B (en) 2011-09-22 2012-09-20 Inhibitor concentration management method in absorption liquid, device thereof, and absorption type cold/warm water machine with the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011207168A JP5525499B2 (en) 2011-09-22 2011-09-22 Method and apparatus for grasping inhibitor concentration in absorbent, and absorption chiller / heater equipped with the apparatus

Publications (2)

Publication Number Publication Date
JP2013068359A JP2013068359A (en) 2013-04-18
JP5525499B2 true JP5525499B2 (en) 2014-06-18

Family

ID=47967133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011207168A Active JP5525499B2 (en) 2011-09-22 2011-09-22 Method and apparatus for grasping inhibitor concentration in absorbent, and absorption chiller / heater equipped with the apparatus

Country Status (2)

Country Link
JP (1) JP5525499B2 (en)
CN (1) CN103018290B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109458753B (en) * 2018-12-27 2024-04-02 双良节能系统股份有限公司 Online detection density flue gas type lithium bromide absorption type low-temperature water chilling unit

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611901B2 (en) * 1974-09-21 1981-03-17
JPS5981552A (en) * 1983-09-13 1984-05-11 Toshiba Corp Method for measuring texture change of metallic material electrochemically
CA1230171A (en) * 1984-12-21 1987-12-08 Pulp And Paper Research Institute Of Canada Device for monitoring black liquor oxidation
JPH0762578B2 (en) * 1989-01-11 1995-07-05 株式会社日立製作所 Closed circulation absorption refrigerator and method for forming anticorrosion film for absorption refrigerator
JPH07270371A (en) * 1994-03-31 1995-10-20 Hitachi Ltd Internal reference electrode and absorption type refrigerator
JPH11248301A (en) * 1998-03-04 1999-09-14 Hitachi Building Shisetsu Engineering Kk Method and apparatus for managing concentration of inhibitor for absorption refrigerator
JP4132337B2 (en) * 1998-12-29 2008-08-13 イビデン株式会社 Method for measuring metal adsorbents
JP2002322598A (en) * 2001-04-24 2002-11-08 Fujikura Ltd Method for controlling concentration of plating bath and device therefor
JP4089360B2 (en) * 2002-09-09 2008-05-28 栗田工業株式会社 Anticorrosive evaluation method
CN1916617B (en) * 2005-08-19 2011-11-16 深圳富泰宏精密工业有限公司 Method for measuring density of corrosion inhibitor
JP2008286441A (en) * 2007-05-16 2008-11-27 Hitachi Building Systems Co Ltd Absorption refrigerator
WO2010004690A1 (en) * 2008-07-09 2010-01-14 日本電気株式会社 Carbon electrode, electrochemical sensor, and carbon electrode manufacturing method
CN102636528B (en) * 2012-04-28 2013-11-20 南京大学 Corrosion inhibitor performance evaluation device and method of circular cooling water system

Also Published As

Publication number Publication date
CN103018290A (en) 2013-04-03
CN103018290B (en) 2014-11-12
JP2013068359A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
JP5818907B2 (en) Equipment and hot water heating / heating system
EP3032245B1 (en) Corrosion-prevention-performance degradation detection sensor, hot water supply and heating system, and facility equipment
US9949411B2 (en) Power supply system and method of managing the same
JP5525499B2 (en) Method and apparatus for grasping inhibitor concentration in absorbent, and absorption chiller / heater equipped with the apparatus
JP6095862B2 (en) Corrosion detection sensor, cooling device, cooling system, and vehicle power supply system
JP2012220288A (en) Anticorrosion performance deterioration detection sensor, and hot water feeding and heating system and facility device equipped with the same
JP2010247063A (en) Method and apparatus for injection control of chemical for cooling water
JP2008286441A (en) Absorption refrigerator
JP2008267667A (en) Absorbent for absorption chiller/heater and absorption chiller/heater
CN108662653A (en) A kind of afterheat of hot water reutilization system
JP5571418B2 (en) Heat transfer medium and heat transfer system using the same
CN106766343A (en) A kind of lithium bromide cold and hot water machine group and expansion tube method
JP2002285144A (en) Heat transfering medium
CN206637886U (en) A kind of lithium bromide cold and hot water machine group
JPH07270371A (en) Internal reference electrode and absorption type refrigerator
JP2004239638A (en) Method and apparatus for determining corrosiveness in water
JP2012154524A (en) Cooling system
JP6218407B2 (en) Absorption refrigerator operation method
JPH11248301A (en) Method and apparatus for managing concentration of inhibitor for absorption refrigerator
JP5706728B2 (en) Heat transfer medium and heat transfer system using the same
Cross Characterization and Development of the All–Aqueous Copper Thermally Regenerative Ammonia Battery
RU57875U1 (en) ELECTRODE WATER HEATER
CN116879150A (en) Experimental device for quick quantitative evaluation of metal corrosion by heat insulating material leaching solution
JPH0735434A (en) Absorption type freezer
JP2000310609A (en) Sensor and method for detecting deterioration of anti- freeze

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140411

R150 Certificate of patent or registration of utility model

Ref document number: 5525499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150