JP2008267667A - Absorbent for absorption chiller/heater and absorption chiller/heater - Google Patents

Absorbent for absorption chiller/heater and absorption chiller/heater Download PDF

Info

Publication number
JP2008267667A
JP2008267667A JP2007109561A JP2007109561A JP2008267667A JP 2008267667 A JP2008267667 A JP 2008267667A JP 2007109561 A JP2007109561 A JP 2007109561A JP 2007109561 A JP2007109561 A JP 2007109561A JP 2008267667 A JP2008267667 A JP 2008267667A
Authority
JP
Japan
Prior art keywords
absorption
heater
lithium bromide
absorbent
absorption chiller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007109561A
Other languages
Japanese (ja)
Inventor
Kenji Machizawa
健司 町澤
Yoichi Hirata
陽一 平田
Masahiko Ito
雅彦 伊藤
Masayuki Itagaki
昌幸 板垣
Kunihiro Watanabe
邦洋 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Building Systems Co Ltd
Original Assignee
Hitachi Building Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Building Systems Co Ltd filed Critical Hitachi Building Systems Co Ltd
Priority to JP2007109561A priority Critical patent/JP2008267667A/en
Publication of JP2008267667A publication Critical patent/JP2008267667A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorbent for an absorption chiller/heater, maintaining corrosion restraining effect of copper used as a heat transfer pipe of the absorption chiller/heater. <P>SOLUTION: This absorbent for the absorption chiller/heater using water as a coolant and a lithium bromide aqueous solution as an absorbent is characterized in that the absorbent is made of a lithium bromide aqueous solution at least containing 2,5-dimercaptothiadiazol. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷媒として水、吸収液として臭化リチウム水溶液を用いる吸収式冷温水機用吸収液および吸収式冷温水機に関するものである。   The present invention relates to an absorption liquid for an absorption chiller-heater and an absorption chiller-heater that use water as a refrigerant and an aqueous lithium bromide solution as an absorption liquid.

吸収式冷温水機は、オゾン層破壊の原因となるフロンガスを用いないこと、一台で冷暖房を行なうことができること、多様なエネルギーに対応できることから、ビルの中大型規模の空調用熱源機として主流となっている。   Absorption-type hot / cold water heaters are the mainstream heat source equipment for medium- and large-scale air conditioning in buildings because they do not use chlorofluorocarbon gas, which causes ozone layer destruction, can be cooled and heated by a single unit, and can handle various types of energy. It has become.

この吸収式冷温水機は、加熱源を有する発生(再生)器、冷却水系統を有する凝縮器、冷水系統を有する蒸発器、冷却水系統を有する吸収器、熱交換器、溶液および冷媒用のポンプ等を備え、冷媒として水、吸収液として臭化リチウム水溶液が用いられ、前記機器を循環して冷房能力または暖房能力を発揮する。   This absorption chiller / heater has a generator (regenerator) having a heating source, a condenser having a cooling water system, an evaporator having a cooling water system, an absorber having a cooling water system, a heat exchanger, a solution and a refrigerant. A pump or the like is provided, water is used as a refrigerant, and an aqueous lithium bromide solution is used as an absorbing liquid, and the cooling or heating ability is exhibited by circulating the equipment.

臭化リチウム水溶液は腐食性が強いので、主に炭素鋼、銅で構成されている前記の機器の腐食抑制のため、インヒビターと称される腐食抑制剤を添加するのが一般的で、炭素鋼の防食を主目的とするインヒビターとしては、モリブデン塩酸、硝塩酸、クロム塩酸などの酸素塩酸が知られている。銅の使用比率の高い蒸気焚き吸収式冷温水機では、前記酸素塩酸に加えてベンゾトリアゾール(以下BTAと呼ぶ)を臭化リチウム水溶液に添加することも知られている。(例えば、特許文献1、2参照)。また、実機においては、臭化リチウム水溶液に界面活性剤(2エチル−1−ヘキサノール)が添加され、伝熱性能を向上させるようにしている。
特公昭62−26357号公報 特公昭60−29872号公報
Since the aqueous solution of lithium bromide is highly corrosive, it is common to add a corrosion inhibitor called an inhibitor in order to suppress the corrosion of the equipment mainly composed of carbon steel and copper. Oxygen hydrochloric acid such as molybdenum hydrochloric acid, nitric acid hydrochloric acid, and chromic hydrochloric acid is known as an inhibitor mainly intended to prevent corrosion. In a steam-fired absorption chiller / heater with a high copper usage ratio, it is also known to add benzotriazole (hereinafter referred to as BTA) to an aqueous lithium bromide solution in addition to the oxygen hydrochloric acid. (For example, refer to Patent Documents 1 and 2). In an actual machine, a surfactant (2-ethyl-1-hexanol) is added to the aqueous lithium bromide solution to improve the heat transfer performance.
Japanese Examined Patent Publication No. 62-26357 Japanese Patent Publication No. 60-29872

しかし、酸素塩酸とBTAを含む吸収液を用いた吸収式冷温水機においては、運転時間の経過と共にBTAが臭化リチウム水溶液に添加されている界面活性剤(2エチル−1−ヘキサノール)に抽出されて濃度が低下し、銅に対する腐食抑制効果が次第に低下していき、銅の腐食を効果的に防止することができなかった。   However, in an absorption chiller / heater using an absorption liquid containing oxygen hydrochloric acid and BTA, BTA is extracted into a surfactant (2-ethyl-1-hexanol) added to the lithium bromide aqueous solution as the operation time elapses. As a result, the concentration decreased and the corrosion inhibition effect on copper gradually decreased, and copper corrosion could not be effectively prevented.

本発明の目的は、銅の腐食抑制効果を維持できる吸収式冷温水機用吸収液を提供することにある。   The objective of this invention is providing the absorption liquid for absorption type cold / hot water machines which can maintain the corrosion inhibitory effect of copper.

本発明の他の目的は、銅の腐食抑制剤の補充等の管理を簡素化できる吸収式冷温水機を提供することにある。   Another object of the present invention is to provide an absorption chiller / heater capable of simplifying management such as replenishment of a copper corrosion inhibitor.

上記の目的を達成するために、本発明の請求項1に係る発明は、水を冷媒とし、吸収液として臭化リチウム水溶液を用いる吸収式冷温水機用吸収液において、吸収液は、少なくとも2,5−ジメルカプトチアジアゾールを含む臭化リチウム水溶液からなることを特徴とする。   In order to achieve the above object, an invention according to claim 1 of the present invention is an absorption liquid for an absorption chiller-heater using water as a refrigerant and an aqueous lithium bromide solution as the absorption liquid. It consists of a lithium bromide aqueous solution containing 5-dimercaptothiadiazole.

また、本発明の請求項2に係る発明は、請求項1において、臭化リチウム水溶液に1×10−5モル/リットル以上の2,5−ジメルカプトチアジアゾールを含むことを特徴とする。 The invention according to claim 2 of the present invention is characterized in that, in claim 1, the aqueous lithium bromide solution contains 1 × 10 −5 mol / liter or more of 2,5-dimercaptothiadiazole.

また、本発明の請求項3に係る発明は、請求項1または請求項2において、2,5−ジメルカプトチアジアゾールの他に酸素塩酸およびアルカリを含むことを特徴とする。   The invention according to claim 3 of the present invention is characterized in that, in claim 1 or 2, it contains oxygen hydrochloric acid and an alkali in addition to 2,5-dimercaptothiadiazole.

また、本発明の請求項4に係る発明は、水を冷媒とし、吸収液として臭化リチウム水溶液を用いる吸収式冷温水機において、吸収液として、少なくとも2,5−ジメルカプトチアジアゾールを含む臭化リチウム水溶液を用いることを特徴とする。   Further, the invention according to claim 4 of the present invention is an absorption chiller / heater using water as a refrigerant and an aqueous lithium bromide solution as an absorbent, and a bromide containing at least 2,5-dimercaptothiadiazole as the absorbent. A lithium aqueous solution is used.

本発明によれば、吸収液は、少なくとも2,5−ジメルカプトチアジアゾールを含んでおり、この2,5−ジメルカプトチアジアゾールは、運転中に界面活性剤である2エチル−1−ヘキサノールに抽出されないので、2,5−ジメルカプトチアジアゾール濃度の経時的な低下を防止でき、2,5−ジメルカプトチアジアゾールの濃度を適正な範囲に維持することができる。また、2,5−ジメルカプトチアジアゾールを炭素銅のインヒビターである酸素酸塩と併用して高温高濃度となる臭化リチウム吸収液に添加することにより吸収式冷温水機の腐食を効果的に防止することができる。   According to the present invention, the absorbing solution contains at least 2,5-dimercaptothiadiazole, which is not extracted during operation into the surfactant 2-ethyl-1-hexanol. Therefore, the time-dependent fall of a 2, 5- dimercapto thiadiazole density | concentration can be prevented, and the density | concentration of a 2, 5- dimercapto thiadiazole can be maintained in the appropriate range. In addition, 2,5-dimercaptothiadiazole is used in combination with oxyacid salt, an inhibitor of carbon copper, and added to lithium bromide absorbing solution that is high in temperature and high concentration, effectively preventing absorption chiller water corrosion. can do.

また、長時間にわたってインヒビター(2,5−ジメルカプトチアジアゾールおよび酸素酸塩)の濃度を適正に維持できるので、インヒビター(2,5−ジメルカプトチアジアゾールおよび酸素酸塩)の濃度管理を頻繁に行なう必要のない吸収式冷温水機を提供することができる。   In addition, since the concentration of inhibitors (2,5-dimercaptothiadiazole and oxyacid salt) can be maintained appropriately over a long period of time, it is necessary to frequently manage the concentration of inhibitors (2,5-dimercaptothiadiazole and oxyacid salt) It is possible to provide an absorption-type cold / hot water machine that does not have any.

以下本発明を蒸気焚き二重効用吸収式冷凍機に適用した一実施形態を図に基づき説明する。   An embodiment in which the present invention is applied to a steam-fired double-effect absorption refrigerator will be described below with reference to the drawings.

図1は本発明の一実施例になる吸収式冷温水機用吸収液の吸収スペクトルを示す説明図、図2は本発明の一実施例になる吸収式冷温水機用吸収液中での銅のアノード分極曲線を示す説明図、図3は本発明を説明するために、従来のBTAを含む臭化リチウム水溶液中での銅のアノード分極曲線を示す説明図、図4は本発明を説明するために従来のBTAを含む臭化リチウム水溶液の吸収スペクトルを示す説明図、図5は本発明の適用対象となる二重効用吸収式冷凍機の構成とサイクルフローの概略図である。   FIG. 1 is an explanatory diagram showing an absorption spectrum of an absorption chiller / heater absorption liquid according to one embodiment of the present invention, and FIG. 2 shows copper in the absorption chiller / heater absorption liquid according to one embodiment of the present invention. FIG. 3 is an explanatory diagram showing an anodic polarization curve of copper in a conventional aqueous solution of lithium bromide containing BTA for explaining the present invention, and FIG. 4 explains the present invention. FIG. 5 is a schematic diagram showing the structure and cycle flow of a double-effect absorption refrigerator that is an application target of the present invention.

図5において、二重効用吸収式冷凍機は、高温再生器1a、低温再生器1b、凝縮器2、蒸発器3、吸収器4、熱交換器5、これら各機器の間を吸収液(臭化リチウム水溶液)6、6a、6bおよび冷媒7を循環させるポンプ類8a、8bとを備えた構成となっており、各機器は各々次のように作動する。   In FIG. 5, the double-effect absorption refrigerator includes a high-temperature regenerator 1a, a low-temperature regenerator 1b, a condenser 2, an evaporator 3, an absorber 4, a heat exchanger 5, and an absorption liquid (odor) between these devices. Lithium chloride aqueous solution) 6, 6 a, 6 b and pumps 8 a, 8 b for circulating the refrigerant 7, and each device operates as follows.

蒸発器3:この蒸発器3の蒸発器管群9の管内には冷水10が通っており、管外には冷媒ポンプ8bから供給された冷媒7が散布ノズル11から散布され、その気化熱によって冷水10から熱を奪う。   Evaporator 3: Cold water 10 passes through the tubes of the evaporator tube group 9 of the evaporator 3, and the refrigerant 7 supplied from the refrigerant pump 8b is sprayed from the spray nozzle 11 to the outside of the tube. Remove heat from cold water 10.

吸収器4:吸収液は同じ温度の水よりも蒸気圧が著しく低く、前記蒸発器3で発生した冷媒蒸気を吸収する。このとき発生した熱は吸収器管群12の管内を流れる冷却水13により冷却される。   Absorber 4: The absorbing liquid has a significantly lower vapor pressure than water at the same temperature, and absorbs the refrigerant vapor generated in the evaporator 3. The heat generated at this time is cooled by the cooling water 13 flowing in the tubes of the absorber tube group 12.

再生器1a、1b:前記吸収器4で冷媒蒸気を吸収して濃度の低下した希薄吸収液6bは溶液循環ポンプ8aにより、一部は高温再生器1aに送られ蒸気(またはガスバーナー)によって過熱されて濃縮される。加熱により発生した高温の蒸気14は低温再生器1bの加熱源となって、濃度の低下した希薄吸収液6bを加熱して濃縮する。この濃縮された吸収液6a、6bは濃厚吸収液6として吸収器4に戻される。   Regenerators 1a and 1b: The diluted absorbent 6b whose concentration has been reduced by absorbing the refrigerant vapor in the absorber 4 is partly sent to the high-temperature regenerator 1a by the solution circulation pump 8a and overheated by the steam (or gas burner). And concentrated. The high-temperature steam 14 generated by heating serves as a heating source for the low-temperature regenerator 1b, and heats and concentrates the diluted absorbent 6b having a reduced concentration. The concentrated absorbents 6 a and 6 b are returned to the absorber 4 as the concentrated absorbent 6.

凝縮器2:低温再生器1bから出た冷媒蒸気(水蒸気)は凝縮器2に入り、凝縮器管群15内を流れる冷却水13によって冷却され、液冷媒7となり蒸発器3に流れる。   Condenser 2: Refrigerant vapor (water vapor) emitted from the low-temperature regenerator 1b enters the condenser 2, is cooled by the cooling water 13 flowing in the condenser tube group 15, and becomes liquid refrigerant 7 and flows to the evaporator 3.

熱交換器5:吸収器4から高温再生器1a、低温再生器1bに向かう低温の希薄吸収液6bを高温再生器1a、低温再生器1bから吸収器4に向かう高温の濃厚吸収液6aとを熱交換し、熱効率を高める。   Heat exchanger 5: A low-temperature diluted absorbent 6b from the absorber 4 toward the high-temperature regenerator 1a and the low-temperature regenerator 1b is supplied to the high-temperature regenerator 1a and a high-temperature rich absorbent 6a from the low-temperature regenerator 1b to the absorber 4 Heat exchange and increase thermal efficiency.

ポンプ8a、8b:吸収液循環ポンプ8aは吸収液(臭化リチウム水溶液)を、冷媒ポンプ8bは冷媒(水)を循環させる。   Pumps 8a and 8b: The absorption liquid circulation pump 8a circulates the absorption liquid (lithium bromide aqueous solution), and the refrigerant pump 8b circulates the refrigerant (water).

ここで機内の臭化リチウム水溶液からなる吸収液の最高温度、濃度は各々160℃、65重量パーセント(以下wt%と略す)である。   Here, the maximum temperature and concentration of the absorbing solution composed of the lithium bromide aqueous solution in the machine are 160 ° C. and 65 weight percent (hereinafter abbreviated as wt%), respectively.

上記のように吸収式冷凍機では、蒸発器3で如何に冷媒の蒸発効率を上げるか、発生した冷媒蒸気を吸収器4で如何に効率よく濃厚吸収液に吸収するかが性能を左右する。蒸発器3の効率は機内の圧力に依存し、吸収器4の効率は伝熱管群と吸収液の濡れ性に依存する。このため、吸収液に界面活性剤を添加してあり、吸収液温度が高いので、n−オクチルアルコールや2エチル−1−ヘキサノールなどの高級アルコール類の中から選ばれる。   As described above, in the absorption refrigerator, the performance depends on how the evaporator 3 increases the evaporation efficiency of the refrigerant and how efficiently the generated refrigerant vapor is absorbed by the absorber 4 in the concentrated absorbent. The efficiency of the evaporator 3 depends on the pressure in the machine, and the efficiency of the absorber 4 depends on the wettability of the heat transfer tube group and the absorbing liquid. For this reason, a surfactant is added to the absorption liquid, and the absorption liquid temperature is high, and therefore, it is selected from higher alcohols such as n-octyl alcohol and 2-ethyl-1-hexanol.

吸収液は、冷媒、吸収剤およびインヒビターで構成され、冷媒として水、吸収剤として臭化リチウム(LiBr)水溶液、銅の防食が主な目的であるインヒビターとして2,5−ジメルカプトチアジアゾール(2,5−dimecaptothiadiazol)(以下DMTDAと称する)が用いられ、炭素銅の防食が添加されている。また、伝熱性能を向上させるための界面活性剤として、2エチル−1−ヘキサノールも添加されている。   The absorption liquid is composed of a refrigerant, an absorbent and an inhibitor, water as a refrigerant, lithium bromide (LiBr) aqueous solution as an absorbent, and 2,5-dimercaptothiadiazole (2, 5-dimethylcaptodiadiazol (hereinafter referred to as DMTDA) is used, and corrosion protection of carbon copper is added. Further, 2-ethyl-1-hexanol is also added as a surfactant for improving the heat transfer performance.

一般に水溶液中の物質が有機溶媒中に存在する比率は、分配比と呼ばれており、この値が小さいほど有機溶媒中への抽出量が少ない。2エチル−1−ヘキサノールと吸収液の2相の場合、BTAの分配率は3.76であるのに対し、2,5−ジメルカプトチアジアゾールは0.2と極めて小さく、冷温水機の運転中において界面活性剤である2エチル−1−ヘキサノール中に抽出されることなく吸収液中に残存する。したがって銅に対する腐食抑制効果の経時的な低下を防止できる。   In general, the ratio at which a substance in an aqueous solution is present in an organic solvent is called a distribution ratio. The smaller this value, the smaller the amount extracted into the organic solvent. In the case of two phases of 2-ethyl-1-hexanol and the absorption liquid, the distribution ratio of BTA is 3.76, whereas 2,5-dimercaptothiadiazole is as small as 0.2, and the cold water heater is in operation. In the absorbent without being extracted into 2-ethyl-1-hexanol which is a surfactant. Accordingly, it is possible to prevent the deterioration of the corrosion inhibition effect on copper over time.

図3は、縦軸を電流密度、横軸を電位とした、2エチル−1−ヘキサノール添加前後のBTAを含む3モル/リットル(以下mol/lと略す)の臭化リチウム水溶液中における銅のアノード分極曲線を示す説明図で、この図3で曲線イは、3mol/l臭化リチウム水溶液のみ、曲線ロは、0.005mol/lのBTAを添加した場合、曲線ハは、0.005mol/lのBTAおよび2エチル−1−ヘキサノールを添加して攪拌し、その後、BTAを含む臭化リチウム水溶液を分離したものを示す。臭化リチウム水溶液のみでは、対Ag/AgCl(銀/塩化銀)参照電極で約−0.4ボルト(以下V vs SSEと略す)より電位で銅の活性溶解によるアノード電流が増加するが、BTAを含む場合は、アノード電流が大幅に低下し、銅の溶解が抑制される。しかし、曲線ロでは、再びアノード電流が増加し腐食抑制効果が著しく低下したことが分かる。   FIG. 3 shows the copper concentration in a 3 mol / liter (hereinafter abbreviated as mol / l) lithium bromide solution containing BTA before and after the addition of 2-ethyl-1-hexanol, with the current density on the vertical axis and the potential on the horizontal axis. FIG. 3 is an explanatory diagram showing an anodic polarization curve. In FIG. 3, curve A is only 3 mol / l lithium bromide aqueous solution, curve B is when 0.005 mol / l BTA is added, and curve C is 0.005 mol / l. 1 BTA and 2-ethyl-1-hexanol were added and stirred, and then the aqueous lithium bromide solution containing BTA was separated. The aqueous solution of lithium bromide alone increases the anode current due to active dissolution of copper at a potential higher than about −0.4 volts (hereinafter referred to as V vs SSE) at the reference electrode of Ag / AgCl (silver / silver chloride). In the case of containing, the anode current is greatly reduced, and the dissolution of copper is suppressed. However, in curve B, it can be seen that the anode current increased again and the corrosion inhibition effect was significantly reduced.

図4は、縦軸を吸光度、横軸を波長とした、2エチル−1−ヘキサノール添加前後の0.005mol/lのBTAを含む3mol/lの臭化リチウム水溶液の吸収スペクトルを示す説明図で、曲線イの2エチル−1−ヘキサノール添加前は、270ナノメートル(以下nmと略す)附近にBTAの吸収ピークが存在し、吸光度は0.95である。これに対し、曲線ロの2エチル−1−ヘキサノール添加後には0.2と大幅に小さく、BTAは臭化リチウム水溶液中から2エチル−1−ヘキサノール中に移行したことが分かる。   FIG. 4 is an explanatory diagram showing an absorption spectrum of a 3 mol / l lithium bromide aqueous solution containing 0.005 mol / l BTA before and after the addition of 2-ethyl-1-hexanol, with the vertical axis representing absorbance and the horizontal axis representing wavelength. Before the addition of 2-ethyl-1-hexanol in curve A, an absorption peak of BTA exists in the vicinity of 270 nanometers (hereinafter abbreviated as nm), and the absorbance is 0.95. On the other hand, after the addition of 2 ethyl-1-hexanol in the curve (b), it was greatly reduced to 0.2, indicating that BTA was transferred from the aqueous lithium bromide solution to 2 ethyl-1-hexanol.

図1は、縦軸を吸光度、横軸を波長とした、2エチル−1−ヘキサノール添加前後の0.0004mol/lのDMTDAを含む3mol/lの臭化リチウム水溶液の吸収スペクトルを示す説明図で、DMTDAの吸収ピークは、320nm附近にあり、吸光度は曲線イの2エチル−1−ヘキサノール添加前と、曲線ロの添加後では殆んど同じであり、DMTDAは2エチル−1−ヘキサノール中に抽出されないことが分かる。   FIG. 1 is an explanatory diagram showing absorption spectra of a 3 mol / l lithium bromide aqueous solution containing 0.0004 mol / l DMTDA before and after addition of 2-ethyl-1-hexanol, with the vertical axis representing absorbance and the horizontal axis representing wavelength. The absorption peak of DMTDA is close to 320 nm, and the absorbance is almost the same before and after the addition of 2-ethyl-1-hexanol in curve I. DMTDA is in 2-ethyl-1-hexanol. It turns out that it is not extracted.

図2は、縦軸を電流密度、横軸を電位とした、2エチル−1−ヘキサノール添加前後の0.005mol/lのDMTDAを含む3mol/lの臭化リチウム水溶液中における銅のアノード分極曲線を示す説明図で、同図で曲線イは2エチル−1−ヘキサノール添加前のDMTDA、曲線ロは2エチル−1−ヘキサノール添加後のDMTDAを含む場合である。この図からDMTDAの場合、2エチル−1−ヘキサノール添加前後におけるアノード電流に大きな差はなく、吸収液に2エチル−1−ヘキサノールを添加しても銅に対する腐食抑制効果は変化しないことが分かる。   FIG. 2 shows the anodic polarization curve of copper in a 3 mol / l aqueous lithium bromide solution containing 0.005 mol / l DMTDA before and after the addition of 2-ethyl-1-hexanol, with the current density on the vertical axis and the potential on the horizontal axis. In the same figure, curve A represents DMTDA before addition of 2 ethyl-1-hexanol, and curve B represents DMTDA after addition of 2 ethyl-1-hexanol. From this figure, it can be seen that in the case of DMTDA, there is no significant difference in the anode current before and after the addition of 2-ethyl-1-hexanol, and even if 2-ethyl-1-hexanol is added to the absorbent, the corrosion inhibition effect on copper does not change.

表1は、これまでの分極曲線上の一定電位−0.005V vs SSEを銅に付与した場合における電流密度をDMTDAの濃度に関連づけて整理したものである。分極曲線の測定条件は、図1と同様である。この表から明らかなようにDMTDAは、その濃度が1×10−5以上存在すれば2−エチル−1−ヘキサノール添加後においても銅の腐食に伴う電流密度が従来のBTAに比較して十分小さく腐食抑制効果が発揮されることが分かる。

Figure 2008267667
Table 1 summarizes the current density in the case where a constant potential of −0.005 V vs. SSE on the conventional polarization curve is applied to copper in relation to the concentration of DMTDA. The measurement conditions for the polarization curve are the same as in FIG. As is apparent from this table, DMTDA has a sufficiently low current density due to corrosion of copper even after addition of 2-ethyl-1-hexanol, if the concentration is 1 × 10 −5 or more, compared to conventional BTA. It turns out that the corrosion inhibitory effect is exhibited.
Figure 2008267667

次に、蒸気焚き二重効用吸収式冷凍機を用いて運転中の銅イオン濃度およびDMTDAの濃度を測定した結果について説明する。   Next, the results of measuring the copper ion concentration and the DMTDA concentration during operation using a steam-fired double-effect absorption refrigerator will be described.

冷凍容量30RT(冷凍トン)の蒸気焚き二重効用吸収式冷凍機を用いて、55wt%の臭化リチウム水溶液に0.25wt%LiOH(水酸化リチウム)、0.02wt%LiMoO(モリブデン酸リチウム)、0.08wt%DMTDAを添加した吸収液200kgを機内に封入して784kpaの蒸気を供給して全負荷で1000時間運転した。試験中は、運転中の吸収液中の銅イオン濃度およびDMTDAの濃度を測定した。比較例としてDMTDAに変えて0.05wt%BTAを添加した吸収液を封入した30RT蒸気焚き二重効用吸収式冷凍機を用い、同一条件で試験した。表2に結果を示す。

Figure 2008267667
Using a steam-fired double-effect absorption refrigerator having a freezing capacity of 30 RT (freezing ton), 0.25 wt% LiOH (lithium hydroxide), 0.02 wt% Li 2 MoO 4 (molybdenum) in a 55 wt% lithium bromide aqueous solution 200 kg of an absorbing solution to which 0.08 wt% DMTDA was added was sealed in the apparatus, and 784 kpa of steam was supplied to operate at full load for 1000 hours. During the test, the copper ion concentration and DMTDA concentration in the absorbent during operation were measured. As a comparative example, a 30 RT steam-fired double-effect absorption refrigerator in which an absorption liquid added with 0.05 wt% BTA instead of DMTDA was enclosed was tested under the same conditions. Table 2 shows the results.
Figure 2008267667

表2から明らかなように、本発明になる吸収式冷凍機では構成材料の銅の腐食抑制が効果的に行なわれた結果、腐食により吸収液中に溶出する銅イオンを分析法の定量下限値以下まで軽減することができる。   As is apparent from Table 2, the absorption refrigerator according to the present invention effectively suppressed the corrosion of copper as a constituent material, and as a result, the copper ion eluted in the absorbing solution due to corrosion was determined as the lower limit of quantification of the analytical method. It can be reduced to:

本発明の一実施例になる吸収式冷温水機用吸収液の吸収スペクトルを示す説明図である。It is explanatory drawing which shows the absorption spectrum of the absorption liquid for absorption type cold / hot water machines which becomes one Example of this invention. 本発明の一実施例になる吸収式冷温水機用吸収液中での銅のアノード分極曲線を示す説明図である。It is explanatory drawing which shows the anodic polarization curve of copper in the absorption liquid for absorption type cold / hot water machines which becomes one Example of this invention. 本発明を説明するために、従来のBTAを含む臭化リチウム水溶液中での銅のアノード分極曲線を示す説明図である。In order to demonstrate this invention, it is explanatory drawing which shows the anodic polarization curve of copper in the lithium bromide aqueous solution containing the conventional BTA. 本発明を説明するために従来のBTAを含む臭化リチウム水溶液の吸収スペクトルを示す説明図である。It is explanatory drawing which shows the absorption spectrum of the lithium bromide aqueous solution containing the conventional BTA in order to demonstrate this invention. 本発明の適用対象となる二重効用吸収式冷凍機の構成とサイクルフローの概略図である。It is the schematic of the structure and cycle flow of the double effect absorption refrigerator used as the application object of this invention.

符号の説明Explanation of symbols

1a、1b 再生器
2 凝縮機
3 蒸発器
4 吸収器
5 熱交換器
6、6a、6b 吸収液
7 冷媒
8a、8b ポンプ
9 蒸発器管群
10 冷水
11 散布ノズル
12 冷却管
13 冷却水
14 高温冷媒蒸気
15 冷却管
DESCRIPTION OF SYMBOLS 1a, 1b Regenerator 2 Condenser 3 Evaporator 4 Absorber 5 Heat exchanger 6, 6a, 6b Absorbent liquid 7 Refrigerant 8a, 8b Pump 9 Evaporator tube group 10 Cold water 11 Spray nozzle 12 Cooling tube 13 Cooling water 14 High temperature refrigerant Steam 15 Cooling pipe

Claims (4)

水を冷媒とし、吸収液として臭化リチウム水溶液を用いる吸収式冷温水機用吸収液において、前記吸収液は、少なくとも2,5−ジメルカプトチアジアゾールを含む臭化リチウム水溶液からなることを特徴とする吸収式冷温水機用吸収液。   In an absorption liquid for an absorption chiller / heater using water as a refrigerant and an aqueous lithium bromide solution as the absorption liquid, the absorption liquid is composed of an aqueous lithium bromide solution containing at least 2,5-dimercaptothiadiazole. Absorption liquid for absorption cold / hot water machine. 臭化リチウム水溶液に1×10−5モル/リットル以上の2,5−ジメルカプトチアジアゾールを含むことを特徴とする請求項1記載の吸収式冷温水機用吸収液。 2. The absorption liquid for an absorption chiller / heater according to claim 1, wherein the aqueous lithium bromide solution contains 1 × 10 −5 mol / liter or more of 2,5-dimercaptothiadiazole. 2,5−ジメルカプトチアジアゾールの他に酸素酸塩およびアルカリを含むことを特徴とする請求項1または請求項2記載の吸収式冷温水機用吸収液。   The absorption liquid for an absorption chiller-heater according to claim 1 or 2, further comprising an oxyacid salt and an alkali in addition to 2,5-dimercaptothiadiazole. 水を冷媒とし、吸収液として臭化リチウム水溶液を用いる吸収式冷温水機において、前記吸収液として、少なくとも2,5−ジメルカプトチアジアゾールを含む臭化リチウム水溶液を用いることを特徴とする吸収式冷温水機。   In an absorption chiller / heater using water as a refrigerant and an aqueous lithium bromide solution as an absorbing liquid, an absorbing cold / hot water characterized in that an aqueous lithium bromide solution containing at least 2,5-dimercaptothiadiazole is used as the absorbing liquid. Water machine.
JP2007109561A 2007-04-18 2007-04-18 Absorbent for absorption chiller/heater and absorption chiller/heater Pending JP2008267667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007109561A JP2008267667A (en) 2007-04-18 2007-04-18 Absorbent for absorption chiller/heater and absorption chiller/heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109561A JP2008267667A (en) 2007-04-18 2007-04-18 Absorbent for absorption chiller/heater and absorption chiller/heater

Publications (1)

Publication Number Publication Date
JP2008267667A true JP2008267667A (en) 2008-11-06

Family

ID=40047407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109561A Pending JP2008267667A (en) 2007-04-18 2007-04-18 Absorbent for absorption chiller/heater and absorption chiller/heater

Country Status (1)

Country Link
JP (1) JP2008267667A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196580A (en) * 2010-03-17 2011-10-06 Tokyo Metropolitan Univ Absorbing liquid for absorption refrigeration machine
JP2013543965A (en) * 2010-11-08 2013-12-09 エボニック デグサ ゲーエムベーハー Working medium for absorption heat pump
JP2014181862A (en) * 2013-03-19 2014-09-29 Osaka Gas Co Ltd Absorbent for absorption type refrigerator, absorption type refrigerator, and operation method for absorption type refrigerator
JP2016057046A (en) * 2014-09-12 2016-04-21 大阪瓦斯株式会社 Absorbent for absorption type refrigeration machine, absorption type refrigeration machine and operation method of absorption type refrigeration machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155157A (en) * 1987-12-10 1989-06-19 Sanyo Electric Co Ltd Absorption type refrigerator
JPH11218361A (en) * 1997-10-24 1999-08-10 Ebara Corp Absorption refrigerating machine and initial corrosion-proof film forming method therefor
JP2006194504A (en) * 2005-01-12 2006-07-27 Ebara Refrigeration Equipment & Systems Co Ltd Inhibitor substitution method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155157A (en) * 1987-12-10 1989-06-19 Sanyo Electric Co Ltd Absorption type refrigerator
JPH11218361A (en) * 1997-10-24 1999-08-10 Ebara Corp Absorption refrigerating machine and initial corrosion-proof film forming method therefor
JP2006194504A (en) * 2005-01-12 2006-07-27 Ebara Refrigeration Equipment & Systems Co Ltd Inhibitor substitution method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196580A (en) * 2010-03-17 2011-10-06 Tokyo Metropolitan Univ Absorbing liquid for absorption refrigeration machine
JP2013543965A (en) * 2010-11-08 2013-12-09 エボニック デグサ ゲーエムベーハー Working medium for absorption heat pump
JP2017036914A (en) * 2010-11-08 2017-02-16 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Working medium for absorption heat pump
JP2014181862A (en) * 2013-03-19 2014-09-29 Osaka Gas Co Ltd Absorbent for absorption type refrigerator, absorption type refrigerator, and operation method for absorption type refrigerator
JP2016057046A (en) * 2014-09-12 2016-04-21 大阪瓦斯株式会社 Absorbent for absorption type refrigeration machine, absorption type refrigeration machine and operation method of absorption type refrigeration machine

Similar Documents

Publication Publication Date Title
EP0611388B1 (en) Vapour absorbent compositions
KR890000329B1 (en) Multi-stage absorption refrigeration system
JP5748794B2 (en) Operation method of absorption heat pump
RU2012122709A (en) CASCADE REFRIGERATING SYSTEM WITH FLUOROFIN REFRIGERANT
JP5086947B2 (en) Type 2 absorption heat pump system
JP2016180583A (en) Absorption type refrigerator
JP2008267667A (en) Absorbent for absorption chiller/heater and absorption chiller/heater
Liang et al. The latent application of ionic liquids in absorption refrigeration
JPH0335384B2 (en)
JP2008286441A (en) Absorption refrigerator
JP2011196580A (en) Absorbing liquid for absorption refrigeration machine
US11466189B2 (en) Absorption cycle apparatus and related method
CN206875752U (en) Absorption energy-saving air conditioning system peculiar to vessel
JP2950522B2 (en) Mixed absorption liquid and absorption heat conversion device using the same
JPS6114282A (en) Medium for absorption type refrigerator
JPS6356918B2 (en)
JP2014129944A (en) Refrigeration device
JPWO2004087830A1 (en) Absorption chiller working medium, absorption chiller, and method for producing cooling and heating medium
JP6218407B2 (en) Absorption refrigerator operation method
JP2000319646A (en) Absorbing solution for absorption refrigerating machine and absorption refrigerating machine
JPS5944498B2 (en) Exhaust heat utilization equipment
JPH03174487A (en) Absorbent liquid for absorption refrigerating machine
JP3484142B2 (en) 2-stage double-effect absorption refrigerator
JP4913474B2 (en) Absorption type water heater
JP2748789B2 (en) Absorption solution for absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220