JP2013119631A - Rolled copper foil - Google Patents

Rolled copper foil Download PDF

Info

Publication number
JP2013119631A
JP2013119631A JP2011266677A JP2011266677A JP2013119631A JP 2013119631 A JP2013119631 A JP 2013119631A JP 2011266677 A JP2011266677 A JP 2011266677A JP 2011266677 A JP2011266677 A JP 2011266677A JP 2013119631 A JP2013119631 A JP 2013119631A
Authority
JP
Japan
Prior art keywords
plane
copper foil
rolled copper
crystal
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011266677A
Other languages
Japanese (ja)
Other versions
JP5273236B2 (en
Inventor
Takemi Muroga
岳海 室賀
Soshi Seki
聡至 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2011266677A priority Critical patent/JP5273236B2/en
Priority to KR1020120032838A priority patent/KR20130063444A/en
Priority to CN2012100924481A priority patent/CN103146946A/en
Publication of JP2013119631A publication Critical patent/JP2013119631A/en
Application granted granted Critical
Publication of JP5273236B2 publication Critical patent/JP5273236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rolled copper foil having low stiffness and also, excellent bending property after recrystallization annealing process.SOLUTION: Diffraction peak strengths of a plurality of crystal faces in parallel with a main surface, satisfy following expressions: I/(I+I+I+I+I)≥0.50; (I+I)/(I+I)≥1.0; I/I≤8.0; I/I≤30; I/I≥7.0; I/I≥10; 1.0≤I/I≤15; I/I≤10; I/I≥0.30; 1.0≤I/I≤20; 1.0≤I/I≤75; and 0.50≤I/I≤20.

Description

本発明は、圧延銅箔に関し、特に、フレキシブルプリント配線板に用いられる圧延銅箔に関する。   The present invention relates to a rolled copper foil, and more particularly to a rolled copper foil used for a flexible printed wiring board.

フレキシブルプリント配線板(FPC:Flexible Printed Circuit)は、厚さが薄く可撓性に優れることから、電子機器等への実装形態における自由度が高い。そのため、折り畳み式携帯電話の折り曲げ部やデジタルカメラ、プリンタヘッド等の可動部、ハードディスクドライブ(HDD:Hard Disk Drive)、デジタルバーサタイルディスク(DVD:Digital Versatile Disk)、コンパクトディスク(CD:Compact Disk)等のディスク関
連機器の可動部の配線等に、FPCが用いられている。したがって、FPCやその配線材として用いられる圧延銅箔には、優れた屈曲特性が要求されてきた。
Since a flexible printed circuit (FPC) is thin and excellent in flexibility, it has a high degree of freedom in mounting on an electronic device or the like. Therefore, folding parts of folding cellular phones, movable parts such as digital cameras and printer heads, hard disk drives (HDD: Hard Disk Drive), digital versatile disks (DVDs), compact disks (CDs: Compact Disks), etc. FPC is used for wiring of movable parts of the disk-related equipment. Therefore, excellent bending characteristics have been required for rolled copper foil used as FPC and its wiring material.

FPC用の圧延銅箔は、熱間圧延、冷間圧延等の工程を経て製造され、接着剤を介し或いは直接的に、ポリイミド等の樹脂からなるFPCのベースフィルム(基材)と加熱等により貼り合わされ、エッチング等の表面加工を施されて配線となる。圧延銅箔の屈曲特性は、冷間圧延後の加工硬化した硬質な状態より、焼鈍後の再結晶により軟化した状態の方が著しく向上する。そこで、例えば上記製造工程においては、冷間圧延後の圧延銅箔を用いて伸びやしわ等の変形を避けつつ圧延銅箔を裁断し、基材上に重ね合わせた後に、圧延銅箔の再結晶焼鈍も兼ねて加熱することにより圧延銅箔と基材とを密着させ一体化する製造方法が採られる。   Rolled copper foil for FPC is manufactured through processes such as hot rolling, cold rolling, etc., and through an adhesive or directly by FPC base film (base material) made of resin such as polyimide and heating. They are bonded together and subjected to surface processing such as etching to form wiring. The bending property of the rolled copper foil is significantly improved in the softened state by recrystallization after annealing than in the work-hardened hard state after cold rolling. Therefore, for example, in the above manufacturing process, the rolled copper foil is cut using the rolled copper foil after cold rolling while avoiding deformation such as elongation and wrinkle, and after being stacked on the base material, A manufacturing method is adopted in which the rolled copper foil and the base material are brought into close contact with each other by heating also for crystal annealing.

上記FPCの製造工程を前提として、屈曲特性に優れた圧延銅箔やその製造方法についてこれまでに種々の研究がなされ、圧延銅箔の表面に立方体方位である{002}面({
200}面)が発達するほど屈曲特性が向上することが数多く報告されている。
On the premise of the manufacturing process of the FPC, various studies have been made so far on a rolled copper foil having excellent bending characteristics and a method for manufacturing the rolled copper foil, and the {002} plane ({{
It has been reported many that the flexural properties improve as the (200} plane) develops.

そこで、例えば、特許文献1では、最終冷間圧延の直前の焼鈍を、再結晶粒の平均粒径が5μm〜20μmになる条件下で行い、最終冷間圧延での圧延加工度を90%以上としている。これにより、再結晶組織に調質した状態において、圧延面のX線回折で求めた(200)面の強度(I)が、微粉末銅のX線回折で求めた(200)面の強度(I)に
対し、I/I>20である立方体集合組織を得る。
Therefore, for example, in Patent Document 1, annealing immediately before the final cold rolling is performed under the condition that the average grain size of the recrystallized grains is 5 μm to 20 μm, and the degree of rolling in the final cold rolling is 90% or more. It is said. Thereby, in the state conditioned to the recrystallized structure, the strength (I) of the (200) plane determined by X-ray diffraction of the rolled surface is the strength of the (200) plane determined by X-ray diffraction of fine powder copper ( For I 0 ), a cubic texture with I / I 0 > 20 is obtained.

また、例えば、特許文献2では、最終冷間圧延前の立方体集合組織の発達度を高め、最終冷間圧延での加工度を93%以上とし、更に再結晶焼鈍を施すことにより、(200)面の積分強度がI/I≧40の、立方体集合組織が著しく発達した圧延銅箔を得る。 Further, for example, in Patent Document 2, the degree of development of the cube texture before the final cold rolling is increased, the degree of processing in the final cold rolling is set to 93% or more, and further, recrystallization annealing is performed (200) A rolled copper foil whose surface has an integrated strength of I / I 0 ≧ 40 and whose cubic texture is remarkably developed is obtained.

また、例えば、特許文献3では、最終冷間圧延工程における総加工度を94%以上とし、かつ1パスあたりの加工度を15〜50%に制御する。また、再結晶焼鈍により、X線回折極点図測定により得られる圧延面の{200}面に対する{111}面の面内配向度Δβが10°以下であり、かつ圧延面における立方体集合組織である{200}面の規格化した回折ピーク強度[a]と{200}面の双晶関係にある結晶領域との規格化した回折ピーク強度[b]の比が、[a]/[b]≧3である結晶粒配向状態を得る。   Further, for example, in Patent Document 3, the total work degree in the final cold rolling process is set to 94% or more, and the work degree per pass is controlled to 15 to 50%. Further, by recrystallization annealing, the in-plane orientation degree Δβ of the {111} plane with respect to the {200} plane of the rolled plane obtained by X-ray diffraction pole figure measurement is 10 ° or less, and is a cubic texture on the rolled plane. The ratio of the normalized diffraction peak intensity [a] of the {200} plane and the normalized diffraction peak intensity [b] between the {200} plane twin crystal region is [a] / [b] ≧ A crystal grain orientation state of 3 is obtained.

このように、従来技術では、最終冷間圧延工程の総加工度を高くすることで、再結晶焼鈍工程後に圧延銅箔の立方体集合組織を発達させて屈曲特性の向上を図っている。   Thus, in the prior art, by increasing the total degree of work in the final cold rolling process, the cubic texture of the rolled copper foil is developed after the recrystallization annealing process to improve the bending characteristics.

特許第3009383号公報Japanese Patent No. 3009383 特許第3856616号公報Japanese Patent No. 3856616 特許第4285526号公報Japanese Patent No. 4285526

しかしながら、上記の特許文献1〜3のように、立方体集合組織を多く発現させたとしても、多結晶構造をとる圧延銅箔において立方体集合組織である{002}面が100%を占めることはない。つまり、圧延銅箔中には{002}面以外の結晶面が制御されることなく複数混在し、これらの複数の結晶面を有する結晶粒は、圧延銅箔の諸特性に種々の影響を及ぼしていると考えられる。   However, as described in Patent Documents 1 to 3, even if a large amount of cube texture is expressed, the {002} plane that is the cube texture does not occupy 100% in the rolled copper foil having a polycrystalline structure. . That is, in the rolled copper foil, a plurality of crystal planes other than the {002} plane are mixed without being controlled, and the crystal grains having the plurality of crystal faces have various effects on various properties of the rolled copper foil. It is thought that.

また、近年では、電子機器の小型化や薄型化に伴い、組み立て時の配線の組み込み易さなどの観点から、FPC用の圧延銅箔に対し、高屈曲特性だけでなく低ステフネス性(低反発性)の要求も高まってきている。   In recent years, with the downsizing and thinning of electronic equipment, not only high bending properties but also low stiffness (low repulsion) are achieved for rolled copper foil for FPC from the viewpoint of ease of wiring incorporation during assembly. The demand for sex is also increasing.

本発明の目的は、再結晶焼鈍工程後には、低ステフネス性とともに、優れた屈曲特性を具備させることが可能な圧延銅箔を提供することである。   An object of the present invention is to provide a rolled copper foil that can have excellent bending characteristics as well as low stiffness after the recrystallization annealing step.

本発明の第1の態様によれば、主表面を備え、前記主表面に平行な複数の結晶面を有する最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔であって、前記複数の結晶面には{022}面、{002}面、{113}面、{111}面、及び{133}面が含まれ、前記主表面に対する2θ/θ法によるX線回折測定で得られる前記各結晶面の回折ピーク強度をそれぞれI{022}、I{002}、I{113}、I{111}、及びI{133}としたとき、I{022}/(I{022}+I{002}+I{113}+I{111}+I{133})≧0.50であり、(I{002}+I{113})/(I{111}+I{133})≧1.0であり、I{022}/I{002}≦8.0であり、I{022}/I{113}≦30であり、I{022}/I{111}≧7.0であり、I{022}/I{133}≧10であり、1.0≦I{002}/I{113}≦15であり、I{111}/I{133}≦10であり、I{113}/I{111}≧0.30であり、1.0≦I{002}/I{111}≦20であり、1.0≦I{002}/I{133}≦75であり、且つ、0.50≦I{113}/I{133}≦20である圧延銅箔が提供される。 According to a first aspect of the present invention, there is provided a rolled copper foil having a main surface and having a plurality of crystal planes parallel to the main surface after the final cold rolling step and before the recrystallization annealing step, Crystal planes include {022} plane, {002} plane, {113} plane, {111} plane, and {133} plane, and can be obtained by X-ray diffraction measurement by the 2θ / θ method with respect to the main surface. When the diffraction peak intensities of the crystal planes are I {022} , I {002} , I {113} , I {111} , and I {133} , respectively, I {022} / (I {022} + I {002} + I {113} + I {111} + I {133} ) ≧ 0.50 and (I {002} + I {113} ) / (I {111} + I {133} ) ≧ 1.0 a I {022} / I {002 } ≦ 8.0, I { 22} / I {113} is ≦ 30, an I {022} / I {111 } ≧ 7.0, I {022} / I {133} is ≧ 10, 1.0 ≦ I {002 } / I {113} ≦ 15, I {111} / I {133} ≦ 10, I {113} / I {111} ≧ 0.30, and 1.0 ≦ I {002} / I Provided is a rolled copper foil in which {111} ≦ 20, 1.0 ≦ I {002} / I {133} ≦ 75, and 0.50 ≦ I {113} / I {133} ≦ 20 Is done.

本発明の第2の態様によれば、総加工度が90%以上の前記最終冷間圧延工程により厚さが20μm以下となっている第1の態様に記載の圧延銅箔が提供される。   According to the 2nd aspect of this invention, the rolled copper foil as described in a 1st aspect which is 20 micrometers or less in thickness by the said last cold rolling process with a total workability of 90% or more is provided.

本発明の第3の態様によれば、純度99.96%以上の無酸素銅、又は純度99.9%以上のタフピッチ銅を主成分とする第1又は第2の態様に記載の圧延銅箔が提供される。   According to the third aspect of the present invention, the rolled copper foil according to the first or second aspect mainly comprising oxygen-free copper having a purity of 99.96% or more or tough pitch copper having a purity of 99.9% or more. Is provided.

本発明の第4の態様によれば、銀、硼素、チタン、錫の少なくともいずれかが添加されている第1〜第3の態様のいずれかに記載の圧延銅箔が提供される。   According to the 4th aspect of this invention, the rolled copper foil in any one of the 1st-3rd aspect to which at least any one of silver, boron, titanium, and tin is added is provided.

本発明の第5の態様によれば、フレキシブルプリント配線板用である第1〜第4の態様のいずれかに記載の圧延銅箔が提供される。   According to the 5th aspect of this invention, the rolled copper foil in any one of the 1st-4th aspect which is an object for flexible printed wiring boards is provided.

本発明によれば、再結晶焼鈍工程後には、低ステフネス性とともに、優れた屈曲特性を
具備させることができる。
According to the present invention, after the recrystallization annealing step, excellent bending characteristics can be provided along with low stiffness.

本発明の一実施形態に係る圧延銅箔の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the rolled copper foil which concerns on one Embodiment of this invention. 本発明の実施例に係る圧延銅箔の屈曲特性を測定する摺動屈曲試験装置の模式図である。It is a schematic diagram of the sliding bending test apparatus which measures the bending characteristic of the rolled copper foil which concerns on the Example of this invention. 本発明の実施例に係る圧延銅箔のステフネス性の試験方法の概要を示す図である。It is a figure which shows the outline | summary of the test method of the stiffness property of the rolled copper foil which concerns on the Example of this invention. 純銅型金属の逆極点図であって、(a)は引張変形による結晶回転方向を示す逆極点図であり、(b)は圧縮変形による結晶回転方向を示す逆極点図である。It is a reverse pole figure of a pure copper type metal, and (a) is a reverse pole figure showing a crystal rotation direction by tensile deformation, and (b) is a reverse pole figure showing a crystal rotation direction by compression deformation. 最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔の結晶方位を示す逆極点図である。It is a reverse pole figure which shows the crystal orientation of the rolled copper foil after a final cold rolling process and before a recrystallization annealing process.

<本発明者等が得た知見>
上述のように、FPC用途で求められる屈曲特性の高い圧延銅箔を得るには、圧延面の立方体方位を発達させるほど良い。本発明者等も、立方体方位の占有率を増大させるべく種々の実験を行ってきた。そして、それまでの実験結果から、最終冷間圧延工程後に存在していた{022}面が、その後の再結晶焼鈍によって再結晶に調質されると、{002}面、すなわち立方体方位となることを確認した。
<Knowledge obtained by the present inventors>
As described above, in order to obtain a rolled copper foil having high bending characteristics required for FPC applications, it is better to develop the cube orientation of the rolled surface. The present inventors have also conducted various experiments in order to increase the occupation ratio of the cube orientation. And from the experimental results so far, when the {022} plane existing after the final cold rolling step is tempered to recrystallization by subsequent recrystallization annealing, it becomes the {002} plane, that is, the cubic orientation. It was confirmed.

一方、圧延銅箔は多結晶であるため、圧延面全体がひとつの結晶面で100%占められることはなく、例えば最終冷間圧延工程後の状態においては、主方位である{022}面以外の副方位の結晶面が複数混在する。そこで、本発明者等は、これまで不要とされてきた副方位の結晶面に着目し、高い屈曲特性を維持しながら、これら副方位の結晶面によって新たな性能を付加できないかを検討してきた。   On the other hand, since the rolled copper foil is polycrystalline, the entire rolled surface is not 100% occupied by one crystal surface. For example, in the state after the final cold rolling step, other than the {022} surface which is the main orientation A plurality of sub-orientation crystal planes coexist. Accordingly, the present inventors have focused on the sub-orientation crystal planes that have been made unnecessary so far, and have examined whether new performance can be added by these sub-orientation crystal planes while maintaining high bending characteristics. .

このような鋭意研究の結果、本発明者等は、主方位の占有率を減少させることなく、副方位の結晶面の比率を制御することで、圧延銅箔に新たな付加価値として低ステフネス性(低反発性)を付与できることを見いだした。   As a result of such diligent research, the present inventors have reduced the stiffness as a new added value to the rolled copper foil by controlling the ratio of the crystal plane of the sub-orientation without reducing the occupation ratio of the main orientation. It was found that (low resilience) can be imparted.

本発明は、発明者等が見いだした上記知見に基づくものである。   The present invention is based on the above findings found by the inventors.

<本発明の一実施形態>
(1)圧延銅箔の構成
まずは、本発明の一実施形態に係る圧延銅箔の結晶構造等の構成について説明する。
<One Embodiment of the Present Invention>
(1) Configuration of Rolled Copper Foil First, the configuration of the rolled copper foil according to an embodiment of the present invention, such as the crystal structure, will be described.

本実施形態に係る圧延銅箔は、例えば主表面としての圧延面を備える板状に構成されている。この圧延銅箔は、例えば無酸素銅(OFC:Oxygen-Free Copper)やタフピッチ銅を原材料とする鋳塊に、後述の熱間圧延工程や冷間圧延工程等を施し所定厚さとした、最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔である。すなわち、本実施形態においては、圧延銅箔は、例えばFPCの可撓性の配線材用途に用いられるよう、総加工度が90%以上、より好ましくは94%以上の最終冷間圧延工程により厚さが20μm以下に構成されており、この後、上述のように、例えばFPCの基材との貼り合わせの工程を兼ねて再結晶焼鈍工程を施され、再結晶により優れた屈曲特性を具備させることが企図されている。   The rolled copper foil which concerns on this embodiment is comprised by the plate shape provided with the rolling surface as a main surface, for example. This rolled copper foil is subjected to, for example, an ingot made of oxygen-free copper (OFC: Oxygen-Free Copper) or tough pitch copper by performing a hot rolling process or a cold rolling process, which will be described later, to a predetermined thickness. It is a rolled copper foil after a hot rolling process and before a recrystallization annealing process. That is, in the present embodiment, the rolled copper foil is thickened by a final cold rolling process in which the total degree of processing is 90% or more, more preferably 94% or more so that it can be used for flexible wiring materials such as FPC. After that, as described above, for example, a recrystallization annealing process is performed to serve as a bonding process with an FPC substrate, and the recrystallization provides excellent bending characteristics. It is intended.

原材料となる無酸素銅は、例えばJIS C1020,H3100等に規定の純度が99.96%以上の銅材である。酸素含有量は完全にゼロでなくともよく、例えば数ppm程度の酸素が含まれていてもよい。また、タフピッチ銅は、例えばJIS C1100,
H3100等に規定の純度が99.9%以上の銅材である。タフピッチ銅の場合、酸素含有量は例えば100ppm〜600ppm程度である。これらの銅材に銀(Ag)等の所定の添加材を加えて銅合金とし、耐熱性等の諸特性が調整された圧延銅箔とする場合もある。本実施形態に係る圧延銅箔には純銅と銅合金との両方を含むことができ、原材料の銅材質や添加材による本実施形態の効果への影響はほとんど生じない。
The oxygen-free copper used as a raw material is a copper material having a purity specified in JIS C1020, H3100, etc. of 99.96% or more. The oxygen content may not be completely zero, and for example, oxygen of about several ppm may be included. Also, tough pitch copper is, for example, JIS C1100,
It is a copper material having a purity specified by H3100 or the like of 99.9% or more. In the case of tough pitch copper, the oxygen content is, for example, about 100 ppm to 600 ppm. A predetermined additive such as silver (Ag) may be added to these copper materials to form a copper alloy, which may be a rolled copper foil in which various properties such as heat resistance are adjusted. The rolled copper foil according to the present embodiment can include both pure copper and a copper alloy, and the influence of the present embodiment on the effects of the present embodiment due to the raw copper material and additives hardly occurs.

最終冷間圧延工程における総加工度は、最終冷間圧延工程前の加工対象物(銅の板材)の厚さをTとし、最終冷間圧延工程後の加工対象物の厚さをTとすると、総加工度(%)=[(T−T)/T]×100で表わされる。総加工度を90%以上、より好ましくは94%以上とすることで、高い屈曲特性を有する圧延銅箔が得られる。 The total degree of work in the final cold rolling process is defined as T B is the thickness of the workpiece (copper plate material) before the final cold rolling process, and T A is the thickness of the workpiece after the final cold rolling process. Then, the total degree of processing (%) = [(T B −T A ) / T B ] × 100. By setting the total workability to 90% or more, more preferably 94% or more, a rolled copper foil having high bending properties can be obtained.

上記圧延銅箔は、圧延面に平行な複数の結晶面を有している。具体的には、最終冷間圧延工程後、再結晶焼鈍工程前の状態で、複数の結晶面には、{022}面、{002}面、{113}面、{111}面、及び{133}面が含まれる。また、圧延銅箔の主表面に対して2θ/θ法によりX線回折測定を行って得られる各結晶面の回折ピーク強度をそれぞれI{022}、I{002}、I{113}、I{111}、及びI{133}としたとき、各結晶面の回折ピーク強度は以下の式(1)〜(12)が全て成り立つ関係にある。 The rolled copper foil has a plurality of crystal planes parallel to the rolled surface. Specifically, after the final cold rolling step and before the recrystallization annealing step, the plurality of crystal planes include {022} plane, {002} plane, {113} plane, {111} plane, and { 133} plane is included. Further, the diffraction peak intensities of the crystal planes obtained by performing X-ray diffraction measurement on the main surface of the rolled copper foil by 2θ / θ method are I {022} , I {002} , I {113} , I When {111} and I {133} are set, the diffraction peak intensities of the crystal planes are in a relationship in which all of the following formulas (1) to (12) hold.

{022}/(I{022}+I{002}+I{113}+I{111}+I{133})≧0.50・・・(1)
(I{002}+I{113})/(I{111}+I{133})≧1.0・・・(2)
{022}/I{002}≦8.0・・・(3)
{022}/I{113}≦30・・・(4)
{022}/I{111}≧7.0・・・(5)
{022}/I{133}≧10・・・(6)
1.0≦I{002}/I{113}≦15・・・(7)
{111}/I{133}≦10・・・(8)
{113}/I{111}≧0.30・・・(9)
1.0≦I{002}/I{111}≦20・・・(10)
1.0≦I{002}/I{133}≦75・・・(11)
0.50≦I{113}/I{133}≦20・・・(12)
I {022} / (I {022} + I {002} + I {113} + I {111} + I {133} ) ≧ 0.50 (1)
(I {002} + I {113} ) / (I {111} + I {133} ) ≧ 1.0 (2)
I {022} / I {002} ≦ 8.0 (3)
I {022} / I {113} ≦ 30 (4)
I {022} / I {111} ≧ 7.0 (5)
I {022} / I {133} ≧ 10 (6)
1.0 ≦ I {002} / I {113} ≦ 15 (7)
I {111} / I {133} ≦ 10 (8)
I {113} / I {111} ≧ 0.30 (9)
1.0 ≦ I {002} / I {111} ≦ 20 (10)
1.0 ≦ I {002} / I {133} ≦ 75 (11)
0.50 ≦ I {113} / I {133} ≦ 20 (12)

上述のように、{022}面は再結晶焼鈍工程後に{002}面へと変化して圧延銅箔の屈曲特性を向上させる。上述の式(1)は、この{022}面の回折ピーク強度I{022}が、これ以外の方位の結晶面の回折ピーク強度と比較して5割以上と、充分に高いことを示している。 As described above, the {022} plane changes to the {002} plane after the recrystallization annealing process, and improves the bending characteristics of the rolled copper foil. The above formula (1) indicates that the diffraction peak intensity I {022} of the {022} plane is sufficiently high, 50% or more, compared with the diffraction peak intensity of the crystal plane of other orientations. Yes.

また、最終冷間圧延工程等の圧延加工時、圧延される銅材には圧縮応力と、圧縮応力よりも弱い引張応力とがかかっている。銅材中の銅結晶は、圧延工程時の応力により回転現象を起こし、いくつかの経路で{022}面へと変化する。圧縮応力が大きくなるほど{002}面や{113}面を経由し易く、引張応力が大きくなるほど{111}面や{133}面を経由し易く、それぞれ{022}面へと変化する。   In addition, during the rolling process such as the final cold rolling process, the rolled copper material is subjected to compressive stress and tensile stress weaker than the compressive stress. The copper crystal in the copper material undergoes a rotation phenomenon due to the stress during the rolling process, and changes to the {022} plane through several paths. The larger the compressive stress, the easier it is to go through the {002} plane and the {113} plane, and the higher the tensile stress, the easier it is to go through the {111} plane and the {133} plane, respectively changing to the {022} plane.

したがって、上記の式(2)は、(I{002}+I{113})の比率が(I{111}+I{133})よりも高く、圧縮応力が優勢であることを示している。 Therefore, the above formula (2) indicates that the ratio of (I {002} + I {113} ) is higher than (I {111} + I {133} ), and the compressive stress is dominant.

また、上記の式(3)〜(6)は、{022}面まで回転したものと、回転不充分であった{002}面、{113}面、{111}面、及び{133}面との回折ピーク強度
の比率をそれぞれ示している。
In addition, the above formulas (3) to (6) are obtained by rotating to the {022} plane, and the {002} plane, {113} plane, {111} plane, and {133} plane that were insufficiently rotated. And the ratio of diffraction peak intensities.

また、上記の式(7),(8)は、{022}面へと変化するそれぞれの経路でみられる{002}面と{113}面、及び{111}面と{133}面、の回折ピーク強度の比率をそれぞれ示している。   In addition, the above equations (7) and (8) are obtained from the {002} plane and the {113} plane, and the {111} plane and the {133} plane, which are seen in the respective paths changing to the {022} plane. The ratio of the diffraction peak intensity is shown.

また、上記の式(9)〜(12)は、異なる経路でみられる結晶面同士の回折ピーク強度の比率をそれぞれ示している。すなわち、式(9)〜(12)を上述の式(7),(8)と併せて考慮することで、{022}面まで回転しなかった結晶面同士の回折ピーク強度の比率を全て示していることになる。   Moreover, said Formula (9)-(12) has shown the ratio of the diffraction peak intensity of the crystal planes seen in a different path | route, respectively. That is, by considering the expressions (9) to (12) together with the above expressions (7) and (8), all ratios of diffraction peak intensities between crystal planes that did not rotate to the {022} plane are shown. Will be.

上述のように、本発明者等の実験経験に基づけば、ステフネス性と各副方位の結晶面の比率とには密接な関係が認められる。つまり、各結晶面の回折ピーク強度のバランスがステフネス性に影響すると考えられる。具体的には、本実施形態に係る再結晶焼鈍工程前において、圧延銅箔の各副方位の結晶面の回折ピーク強度の比率が上記比例関係式を満たすとき、再結晶焼鈍工程後には結晶方位的に低ステフネス性の効果が得られる。なお、再結晶焼鈍前には、加工硬化によるステフネス性への影響を、考慮する必要がある。   As described above, based on the experimental experience of the present inventors, a close relationship is recognized between the stiffness and the ratio of crystal planes in each sub-orientation. That is, it is considered that the balance of the diffraction peak intensity of each crystal plane affects the stiffness. Specifically, before the recrystallization annealing step according to the present embodiment, when the ratio of the diffraction peak intensity of the crystal planes of each sub-orientation of the rolled copper foil satisfies the above proportional relationship, the crystal orientation after the recrystallization annealing step In particular, an effect of low stiffness can be obtained. In addition, before recrystallization annealing, it is necessary to consider the influence on the stiffness by work hardening.

つまり、本実施形態において、再結晶焼鈍工程では、主方位である{022}面は{002}面へと変化するが、副方位である{002}面、{113}面、{111}面、及び{133}面は再結晶焼鈍工程前後でほとんど変化せず、副方位の各結晶面の回折ピーク強度の比率は、再結晶焼鈍工程後も略同一である。再結晶焼鈍工程によって加工硬化を緩和させることにより(すなわち、ひずみを解消させることにより)、副方位自体は変化することなく副方位の有する効果が発揮されるようになる。   That is, in this embodiment, in the recrystallization annealing process, the {022} plane that is the main orientation changes to the {002} plane, but the {002} plane, the {113} plane, and the {111} plane that are the sub-directions. The {133} plane hardly changes before and after the recrystallization annealing process, and the ratio of the diffraction peak intensities of the sub-oriented crystal faces is substantially the same after the recrystallization annealing process. By relieving work hardening by the recrystallization annealing process (that is, by eliminating strain), the effect of the sub-azimuth is exhibited without changing the sub-azimuth itself.

このように、再結晶焼鈍工程前の、本実施形態に係る圧延銅箔にて、各副方位の結晶面の回折ピーク強度の比率が、上記比例関係式を満たすこととなっていればよい。つまり、再結晶焼鈍前の状態の圧延銅箔、すなわち、最終冷間圧延工程後の圧延銅箔の副方位を制御しておけば良いことになる。   Thus, in the rolled copper foil according to the present embodiment before the recrystallization annealing step, it is only necessary that the ratio of the diffraction peak intensities of the crystal planes in each sub-orientation satisfies the above proportional relational expression. That is, the sub-direction of the rolled copper foil in a state before recrystallization annealing, that is, the rolled copper foil after the final cold rolling process may be controlled.

また、上記の式(1)〜(12)までに示す各結晶面の回折ピーク強度の比例関係は、ひとつ又は複数の式の範囲が変われば他の式の範囲も連動して変わってしまう点に留意が必要である。つまり、例えば式(3)の上限の範囲を小さくするには、例えばI{022}の値を小さくすればよい。しかしこの場合、式(5)の分子も小さくなり、式(5)の値が下限値の7.0を下回ることとなりかねない。このような関係は、上記の式(1)〜(12)までの全てに当てはまる。 In addition, the proportional relationship between the diffraction peak intensities of the crystal planes shown in the above formulas (1) to (12) is such that if the range of one or a plurality of formulas is changed, the ranges of other formulas are also changed in conjunction with each other. It is necessary to pay attention to. That is, for example, in order to reduce the upper limit range of Expression (3), for example, the value of I {022} may be reduced. However, in this case, the numerator of the formula (5) also becomes small, and the value of the formula (5) may fall below the lower limit of 7.0. Such a relationship applies to all of the above formulas (1) to (12).

したがって、上記(1)〜(12)までに規定される所定の範囲を全て満たしたものが最適条件となる。本実施形態に係る圧延銅箔を上記構成とすることで、再結晶焼鈍工程後には、低ステフネス性とともに、優れた屈曲特性を具備させることが可能な圧延銅箔とすることができる。   Accordingly, the optimum condition is that which satisfies all the predetermined ranges defined in the above (1) to (12). By making the rolled copper foil which concerns on this embodiment into the said structure, it can be set as the rolled copper foil which can be equipped with the outstanding bending characteristic with low stiffness after a recrystallization annealing process.

(2)圧延銅箔の製造方法
次に、本発明の一実施形態に係る圧延銅箔の製造方法について、図1を用いて説明する。図1は、本実施形態に係る圧延銅箔の製造工程を示すフロー図である。
(2) Manufacturing method of rolled copper foil Next, the manufacturing method of the rolled copper foil which concerns on one Embodiment of this invention is demonstrated using FIG. FIG. 1 is a flow chart showing the manufacturing process of the rolled copper foil according to this embodiment.

(鋳塊の準備工程S10)
図1に示すように、まずは、無酸素銅(OFC:Oxygen-Free Copper)やタフピッチ銅を原材料として鋳造を行って鋳塊(インゴット)を準備する。鋳塊は、例えば所定厚さ、所定幅を備える板状に形成する。原材料となる無酸素銅やタフピッチ銅には、圧延銅箔の
諸特性を調整するため、所定の添加材が添加されていてもよい。
(Ingot preparation step S10)
As shown in FIG. 1, first, an ingot is prepared by casting using oxygen-free copper (OFC) or tough pitch copper as a raw material. The ingot is formed in a plate shape having a predetermined thickness and a predetermined width, for example. In order to adjust various characteristics of the rolled copper foil, a predetermined additive may be added to the oxygen-free copper or tough pitch copper as the raw material.

添加材で調整可能な上記諸特性には、例えば耐熱性がある。上述のように、FPC用の圧延銅箔については、高屈曲特性を得るための再結晶焼鈍工程は、例えばFPCの基材との貼り合わせの工程を兼ねて行われる。貼り合わせの際の加熱温度は、例えばFPCの樹脂等からなる基材の硬化温度や、使用する接着剤の硬化温度等に併せて設定され、温度条件の範囲は広く多種多様である。このように設定された加熱温度に圧延銅箔の軟化温度を合わせるべく、圧延銅箔の耐熱性を調整可能な添加材が添加される場合がある。耐熱性を上昇又は降下させる添加材の代表例は、例えば下記の技術文献(a)〜(c)等に記載されている。また、本実施形態に使用される鋳塊として、添加材が無添加の鋳塊や、幾種類かの添加材を添加した鋳塊を以下の表1に例示する。   The above-mentioned various characteristics that can be adjusted with the additive include, for example, heat resistance. As described above, with respect to the rolled copper foil for FPC, the recrystallization annealing process for obtaining a high bending property is performed, for example, also as a bonding process with an FPC base material. The heating temperature at the time of bonding is set in accordance with, for example, the curing temperature of a base material made of an FPC resin or the like, the curing temperature of an adhesive to be used, and the range of temperature conditions is wide and diverse. In order to adjust the softening temperature of the rolled copper foil to the heating temperature set in this way, an additive capable of adjusting the heat resistance of the rolled copper foil may be added. Typical examples of additives that increase or decrease heat resistance are described in, for example, the following technical documents (a) to (c). In addition, as ingots used in the present embodiment, ingots with no additive added and ingots added with several kinds of additives are exemplified in Table 1 below.

(a)特開平04−056754
(b)特開2011−001622
(c)堀茂徳、外2名、“銅の再結晶温度におよぼす添加元素の影響”、伸銅技術研究会誌、1981年、20巻、p205−218
(A) Japanese Patent Laid-Open No. 04-056754
(B) JP2011-001622A
(C) Hori Shigenori, 2 others, “Effect of additive elements on copper recrystallization temperature”, Journal of Copper Technology Research, 1981, Vol. 20, p205-218

Figure 2013119631
Figure 2013119631

なお、後述の中間焼鈍工程S32及び生地焼鈍工程S40における温度条件は、銅材質や添加材の耐熱性に応じて適宜変更する。但し、上記銅材質や添加材、各焼鈍工程S32,S40の温度条件等は、本実施形態の効果に対してほとんど影響を与えない。   In addition, the temperature conditions in the below-mentioned intermediate annealing process S32 and dough annealing process S40 are suitably changed according to the heat resistance of a copper material and an additive. However, the copper material, the additive, the temperature conditions of the annealing steps S32 and S40, etc. have little influence on the effect of the present embodiment.

(熱間圧延工程S20)
次に、準備した鋳塊に熱間圧延を施して、鋳造後の所定厚さよりも薄い板厚の板材とする。
(Hot rolling process S20)
Next, the prepared ingot is hot-rolled to obtain a plate material having a thickness smaller than a predetermined thickness after casting.

(繰り返し工程S30)
続いて、冷間圧延工程S31と中間焼鈍工程S32とを所定回数繰り返し実施する繰り返し工程S30を行う。すなわち、冷間圧延を施して加工硬化させた上記板材に、焼鈍処理を施して板材を焼き鈍すことにより加工硬化を緩和する。これを所定回数繰り返すことで、「生地」と称される銅条が得られる。銅材に耐熱性を調整する添加材等が加えられている場合は、銅材の耐熱性に応じて焼鈍処理の温度条件を適宜変更する。
(Repetition step S30)
Subsequently, a repeating step S30 is performed in which the cold rolling step S31 and the intermediate annealing step S32 are repeatedly performed a predetermined number of times. That is, work hardening is relieved by subjecting the plate material that has been cold-rolled and work hardened to an annealing treatment to anneal the plate material. By repeating this a predetermined number of times, a copper strip called “dough” is obtained. When an additive for adjusting heat resistance is added to the copper material, the temperature condition of the annealing treatment is appropriately changed according to the heat resistance of the copper material.

(生地焼鈍工程S40)
引き続き、上記の銅条(生地)に生地焼鈍処理を施し、焼鈍生地を得る。生地焼鈍処理においても、銅材の耐熱性に応じて温度条件を適宜変更する。このとき、生地焼鈍工程S40は、上記の各工程に起因する加工歪みを充分に緩和することのできる温度条件、例えば完全焼鈍処理と略同等の温度条件で実施することが好ましい。
(Dough annealing step S40)
Subsequently, the above-mentioned copper strip (fabric) is subjected to a fabric annealing treatment to obtain an annealed fabric. Also in the fabric annealing treatment, the temperature condition is appropriately changed according to the heat resistance of the copper material. At this time, it is preferable that the material annealing step S40 is performed under a temperature condition that can sufficiently relieve the processing distortion caused by each of the above steps, for example, a temperature condition substantially equivalent to a complete annealing treatment.

(最終冷間圧延工程S50)
次に、最終冷間圧延工程S50を実施する。最終冷間圧延は仕上げ冷間圧延とも呼ばれ、仕上げとなる冷間圧延を複数回に亘って焼鈍生地に施す。このとき、高い屈曲特性を有する圧延銅箔が得られるよう、総加工度を90%以上、より好ましくは94%とする。また、冷間圧延を複数回繰り返すごとに焼鈍生地が薄くなるのに応じて、1回(1パス)あたりの加工度を徐々に小さくしていくことが好ましい。ここで、1パスあたりの加工度は、上記総加工度の例に倣い、nパス目の圧延前の加工対象物の厚さをTBnとし、圧延後の加工対象物の厚さをTAnとすると、1パスあたりの加工度(%)=[(TBn−TAn)/TBn]×100で表わされる。
(Final cold rolling process S50)
Next, the final cold rolling step S50 is performed. The final cold rolling is also referred to as finish cold rolling, and cold rolling to be finished is applied to the annealed fabric a plurality of times. At this time, the total workability is set to 90% or more, more preferably 94% so that a rolled copper foil having high bending characteristics can be obtained. Moreover, it is preferable to gradually reduce the degree of processing per one (one pass) as the annealed dough becomes thinner each time cold rolling is repeated a plurality of times. Here, the degree of processing per pass follows the example of the total degree of processing, and the thickness of the workpiece before rolling of the n-th pass is T Bn, and the thickness of the workpiece after rolling is T An. Then, the degree of processing per pass (%) = [(T Bn −T An ) / T Bn ] × 100.

圧延加工時、焼鈍生地等の加工対象物は、例えば互いに対向する1対のロール間の間隙に引き込まれ、反対側に引き出されることで減厚される。加工対象物の速度は、ロールに引き込まれる前の入り口側ではロールの回転速度より遅く、ロールから引き出された後の出口側ではロールの回転速度より速い。したがって、加工対象物には、入り口側では圧縮応力が、出口側では引張応力がかかる。加工対象物を薄く加工するためには、圧縮応力>引張応力でなければならない。1パスあたりの加工度を調整することで、圧縮応力>引張応力であることを前提として、それぞれの応力の強度、及び応力成分(圧縮成分と引張成分)の比を調整することができる。これにより、上述のように、{022}面への変化の経路が変わり、副方位の結晶面の比率を調整することができる。   At the time of rolling, an object to be processed such as annealed dough is reduced in thickness by, for example, being drawn into a gap between a pair of rolls facing each other and drawn to the opposite side. The speed of the workpiece is slower than the rotation speed of the roll on the entrance side before being drawn into the roll, and faster than the rotation speed of the roll on the exit side after being drawn out of the roll. Accordingly, the workpiece is subjected to compressive stress on the entrance side and tensile stress on the exit side. In order to thinly process a workpiece, compressive stress> tensile stress must be satisfied. By adjusting the degree of processing per pass, it is possible to adjust the strength of each stress and the ratio of stress components (compression component and tensile component) on the premise that compressive stress> tensile stress. Thereby, as described above, the path of change to the {022} plane is changed, and the ratio of the crystal planes in the sub-orientation can be adjusted.

また、最終冷間圧延工程S50では、冷間圧延を複数回繰り返すごとに、以下に説明する中立点の位置がロールの出口側へと移動していくよう制御することが好ましい。すなわち、上記のように、ロールの回転速度に対して入り口側と出口側とで大小関係が逆転する加工対象物の速度は、入り口側及び出口側の間のどこかの位置でロールの回転速度と等しくなる。この両者の速度が等しい位置を中立点といい、中立点では加工対象物にかかる圧力が最大となる。   In the final cold rolling step S50, it is preferable to control the position of the neutral point described below to move toward the outlet side of the roll every time cold rolling is repeated a plurality of times. That is, as described above, the speed of the workpiece whose magnitude relationship is reversed between the inlet side and the outlet side with respect to the rotational speed of the roll is the rotational speed of the roll at some position between the inlet side and the outlet side. Is equal to A position where both speeds are equal is called a neutral point, and the pressure applied to the workpiece is maximized at the neutral point.

中立点の位置は、前方張力、後方張力、圧延速度(ロールの回転速度)、ロール径、加工度、圧延荷重等の組み合わせを調整することで制御することができる。つまり、中立点の位置を制御することによっても、圧縮応力及び引張応力の強度や応力成分の比を調整することができ、副方位の結晶面の比率を調整することができる。   The position of the neutral point can be controlled by adjusting a combination of forward tension, backward tension, rolling speed (roll rotational speed), roll diameter, degree of processing, rolling load, and the like. That is, by controlling the position of the neutral point, the strength of compressive stress and tensile stress and the ratio of stress components can be adjusted, and the ratio of crystal planes in the sub-orientation can be adjusted.

(表面処理工程S60)
以上の工程を経た銅条に所定の表面処理を施す。以上により、本実施形態に係る圧延銅箔が製造される。
(Surface treatment step S60)
A predetermined surface treatment is performed on the copper strip that has undergone the above steps. The rolled copper foil which concerns on this embodiment is manufactured by the above.

本実施形態では、上記の最終冷間圧延工程S50にて、総加工度が90%以上、より好ましくは94%以上となるように冷間圧延加工を施す。また、1パスあたりの加工度および各パスにおける中立点の位置を制御する。これにより、主方位および副方位の結晶面の比率を調整し、上述の式(1)〜(12)までを満たすように各結晶面の回折ピーク強度を調整することができる。よって、後述の再結晶焼鈍工程後には、低ステフネス性とともに、優れた屈曲特性を具備させることが可能な圧延銅箔を製造することができる。   In the present embodiment, the cold rolling is performed in the final cold rolling step S50 so that the total workability is 90% or more, more preferably 94% or more. Further, the degree of processing per pass and the position of the neutral point in each pass are controlled. Thereby, the ratio of the crystal planes of the main orientation and the sub-orientation can be adjusted, and the diffraction peak intensity of each crystal plane can be adjusted so as to satisfy the above-mentioned formulas (1) to (12). Therefore, after the recrystallization annealing process described later, it is possible to produce a rolled copper foil that can have excellent bending characteristics as well as low stiffness.

(3)フレキシブルプリント配線板の製造方法
次に、本発明の一実施形態に係る圧延銅箔を用いたフレキシブルプリント配線板(FPC)の製造方法について説明する。
(3) Manufacturing method of flexible printed wiring board Next, the manufacturing method of the flexible printed wiring board (FPC) using the rolled copper foil which concerns on one Embodiment of this invention is demonstrated.

(再結晶焼鈍工程(CCL工程))
まずは、本実施形態に係る圧延銅箔を所定のサイズに裁断し、例えばポリイミド等の樹脂からなるFPCの基材と貼り合わせてCCL(Copper Clad Laminate)を形成する。このとき、接着剤を介して貼り合わせを行う3層材CCLを形成する方法と、接着剤を介さず直接貼り合わせを行う2層材CCLを形成する方法のいずれを用いてもよい。接着剤を用いる場合には、加熱処理により接着剤を硬化させて圧延銅箔と基材とを密着させ一体化する。接着剤を用いない場合には、加熱・加圧により密着させる。加熱温度や時間は、接着剤や基材の硬化温度等に合わせて適宜選択することができ、例えば150℃以上300℃以下の温度で、1分以上120分以下とすることができる。
(Recrystallization annealing process (CCL process))
First, the rolled copper foil according to the present embodiment is cut into a predetermined size, and bonded to an FPC base material made of a resin such as polyimide to form a CCL (Copper Clad Laminate). At this time, either a method of forming a three-layer material CCL that is bonded using an adhesive or a method of forming a two-layer material CCL that is directly bonded without using an adhesive may be used. When an adhesive is used, the adhesive is cured by heat treatment, and the rolled copper foil and the base material are brought into close contact with each other to be integrated. When no adhesive is used, it is brought into close contact by heating and pressing. The heating temperature and time can be appropriately selected according to the curing temperature of the adhesive or the base material, and can be set to 1 to 120 minutes at a temperature of 150 to 300 ° C., for example.

上述のように、圧延銅箔の耐熱性は、このときの加熱温度に合わせて調整されている。したがって、上記加熱により圧延銅箔が軟化し再結晶されて、圧延銅箔の屈曲特性を著しく向上させることができる。つまり、基材に圧延銅箔を貼り合わせるCCL工程が、圧延銅箔に対する再結晶焼鈍工程を兼ねている。これにより、圧延銅箔を基材に貼り合わせるまでの工程では、冷間圧延工程後の加工硬化した状態で圧延銅箔を取り扱うことができ、圧延銅箔を基材に貼り合わせる際の、伸び、しわ、折れ等の変形を起こり難くすることができる。   As described above, the heat resistance of the rolled copper foil is adjusted according to the heating temperature at this time. Therefore, the rolled copper foil is softened and recrystallized by the heating, and the bending characteristics of the rolled copper foil can be remarkably improved. That is, the CCL process of bonding the rolled copper foil to the base material also serves as a recrystallization annealing process for the rolled copper foil. Thus, in the process until the rolled copper foil is bonded to the base material, the rolled copper foil can be handled in the work-hardened state after the cold rolling process, and the elongation when the rolled copper foil is bonded to the base material is increased. It is possible to prevent deformation such as wrinkles and creases.

(表面加工工程)
次に、基材に貼り合わせた圧延銅箔に表面加工工程を施す。表面加工工程では、圧延銅箔に例えばエッチング等の手法を用いて銅配線等を形成する配線形成工程と、銅配線と他の電子部材との接続信頼性を向上させるためメッキ処理等の表面処理を施す表面処理工程と、銅配線等を保護するため銅配線上の一部を覆うようにソルダレジスト等の保護膜を形成する保護膜形成工程とを行う。
(Surface machining process)
Next, a surface processing step is performed on the rolled copper foil bonded to the base material. In the surface processing step, for example, a wiring forming step for forming copper wiring or the like on the rolled copper foil by using a technique such as etching, and surface treatment such as plating for improving the connection reliability between the copper wiring and other electronic members. And a protective film forming step of forming a protective film such as a solder resist so as to cover a part of the copper wiring in order to protect the copper wiring and the like.

以上により、本実施形態に係る圧延銅箔を用いたFPCが製造される。   As described above, the FPC using the rolled copper foil according to this embodiment is manufactured.

上記のように、本実施形態では、CCL工程を兼ねて、圧延銅箔に対し再結晶焼鈍工程を施す。これにより、再結晶組織を有する圧延銅箔が得られる。このとき、主方位である{022}面は{002}面へと変化する。よって、屈曲特性に優れた圧延銅箔を得ることができる。一方で、副方位である{002}面、{113}面、{111}面、及び{133}面については、圧延銅箔の製造工程における最終冷間圧延工程後の状態を保ったまま比率がほとんど変化することはなく、再結晶焼鈍工程により加工硬化の影響を取り除くことによって、副方位の効果が最大限に近い形で発揮され、圧延銅箔の低ステフネス性が得られる。よって、低ステフネス性とともに優れた屈曲特性を備えた圧延銅箔を得ることができる。   As described above, in the present embodiment, the recrystallization annealing process is performed on the rolled copper foil also serving as the CCL process. Thereby, the rolled copper foil which has a recrystallized structure is obtained. At this time, the {022} plane which is the main orientation changes to a {002} plane. Therefore, the rolled copper foil excellent in the bending characteristic can be obtained. On the other hand, the {002} plane, {113} plane, {111} plane, and {133} plane, which are sub-azimuths, are ratios while maintaining the state after the final cold rolling process in the rolled copper foil manufacturing process. Is hardly changed, and by removing the influence of work hardening by the recrystallization annealing step, the effect of the sub-orientation is exhibited in a form close to the maximum, and the low stiffness of the rolled copper foil is obtained. Therefore, the rolled copper foil provided with the bending characteristic which was excellent with low stiffness can be obtained.

<本発明の他の実施形態>
以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other Embodiments of the Present Invention>
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, It can change variously in the range which does not deviate from the summary.

例えば、上述の実施形態においては、圧延銅箔の耐熱性を調整する添加材としてAgを用いることとしたが、添加材は、Agや上記技術文献等に挙げたものに限られない。また、添加材により調整可能な諸特性は耐熱性に限られず、調整を必要とする諸特性に応じて添加材を適宜選択してもよい。   For example, in the above-described embodiment, Ag is used as the additive for adjusting the heat resistance of the rolled copper foil. However, the additive is not limited to those listed in Ag, the technical literature, and the like. Moreover, the various characteristics that can be adjusted by the additive are not limited to heat resistance, and the additive may be appropriately selected according to the various characteristics that require adjustment.

また、上述の実施形態においては、FPCの製造工程におけるCCL工程は圧延銅箔に対する再結晶焼鈍工程を兼ねることとしたが、再結晶焼鈍工程は、CCL工程とは別工程として行ってもよい。   In the above-described embodiment, the CCL process in the FPC manufacturing process also serves as a recrystallization annealing process for the rolled copper foil. However, the recrystallization annealing process may be performed as a separate process from the CCL process.

また、上述の実施形態においては、圧延銅箔はFPC用途に用いられることとしたが、圧延銅箔の用途はこれに限られず、高屈曲特性及び低ステフネス性を必要とする用途に用いることができる。圧延銅箔の厚さについても、FPC用途をはじめとする各種用途に応じて20μm超としてもよい。   Moreover, in the above-mentioned embodiment, although rolled copper foil was used for FPC use, the use of rolled copper foil is not restricted to this, It is used for the use which requires a high bending characteristic and low stiffness. it can. Also about the thickness of rolled copper foil, it is good also as more than 20 micrometers according to various uses including a FPC use.

また、上述の実施形態においては、最終冷間圧延工程S50での総加工度を90%以上などとし優れた屈曲特性を得ることとしたが、副方位の結晶面の調整により低ステフネス性を得る手法は、これとは独立して用いることができる。つまり、主に低ステフネス性が重要であって、ある程度の屈曲特性が得られていればよい場合等には、最終冷間圧延工程における総加工度を例えば85%、70%等の90%未満としてもよい。   Further, in the above-described embodiment, the total degree of work in the final cold rolling step S50 is set to 90% or more to obtain excellent bending characteristics. However, low stiffness is obtained by adjusting the sub-oriented crystal plane. The technique can be used independently of this. That is, when low stiffness is mainly important and it is sufficient that a certain degree of bending property is obtained, the total degree of work in the final cold rolling process is less than 90% such as 85% and 70%, for example. It is good.

なお、本発明の効果を奏するために、上記に挙げた工程のすべてが必須であるとは限らない。上述の実施形態や後述の実施例で挙げる種々の条件もあくまで例示であって、適宜変更可能である。   In addition, in order to show the effect of this invention, not all the processes mentioned above are necessarily essential. The various conditions given in the above-described embodiment and examples described later are merely examples, and can be changed as appropriate.

次に、本発明に係る実施例について比較例とともに説明する。   Next, examples according to the present invention will be described together with comparative examples.

(1)圧延銅箔の製作
目標濃度を200ppmとするAgを添加した無酸素銅を用い、上述の実施形態と同様の手順及び手法で、実施例1〜18および比較例1〜18に係る圧延銅箔を製作した。すなわち、まずは、無酸素銅に所定量のAgを溶解して鋳造した厚さ150mm、幅500mmの鋳塊を準備した。以下の表2に、高周波誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析法により分析した、鋳塊中のAg濃度の分析値を示す。
(1) Production of rolled copper foil Rolling according to Examples 1 to 18 and Comparative Examples 1 to 18 is performed using oxygen-free copper to which Ag with a target concentration of 200 ppm is added, in the same procedure and manner as in the above-described embodiment. Made copper foil. That is, first, an ingot having a thickness of 150 mm and a width of 500 mm prepared by dissolving a predetermined amount of Ag in oxygen-free copper and casting was prepared. Table 2 below shows analysis values of Ag concentration in the ingot, which were analyzed by an inductively coupled plasma (ICP) emission spectroscopic analysis method.

Figure 2013119631
Figure 2013119631

表2に示すように、目標濃度の200ppmに対し、分析値は185ppm〜210ppmと、いずれも200ppm±20ppm(10%)程度内のバラツキに抑えられている。Agは元々、主原料である無酸素銅に不可避不純物として数ppm〜十数ppm程度含有されている場合があるほか、鋳塊を鋳造する際のバラツキ等の種々の原因により、±
20ppm程度内のバラツキは金属材料分野では一般的なものである。
As shown in Table 2, with respect to the target concentration of 200 ppm, the analytical values are 185 ppm to 210 ppm, both of which are suppressed to variations within about 200 ppm ± 20 ppm (10%). Originally, Ag may be contained in the oxygen-free copper as the main raw material in the order of several ppm to tens of ppm as an unavoidable impurity, and due to various causes such as variations in casting an ingot, ±
Variation within about 20 ppm is common in the metal material field.

次に、上述の実施形態と同様の手順及び手法で、熱間圧延工程にて厚さ8mmの板材を得た後、冷間圧延工程と、温度700℃〜800℃で2分間保持する中間焼鈍工程とを繰り返し実施して銅条(生地)を製作し、温度750℃で1分間保持とする生地焼鈍工程にて焼鈍生地を得た。ここで、各焼鈍工程の温度条件等は、Agを185ppm〜210ppm含有する無酸素銅材の耐熱性に合わせたものである。   Next, after obtaining a plate material having a thickness of 8 mm in the hot rolling step by the same procedure and method as in the above-described embodiment, the cold rolling step and intermediate annealing for 2 minutes at a temperature of 700 ° C. to 800 ° C. A copper strip (fabric) was manufactured by repeatedly performing the process, and an annealed fabric was obtained in a fabric annealing process in which the temperature was maintained at 750 ° C. for 1 minute. Here, the temperature conditions of each annealing process match the heat resistance of the oxygen-free copper material containing 185 ppm to 210 ppm of Ag.

最後に、上述の実施形態と同様の手順及び手法で最終冷間圧延工程を行い、実施例1〜18および比較例1〜18に係る圧延銅箔を得た。最終冷間圧延工程での条件を以下の表3に示す。   Finally, the final cold rolling process was performed by the same procedure and method as the above-mentioned embodiment, and the rolled copper foil which concerns on Examples 1-18 and Comparative Examples 1-18 was obtained. The conditions in the final cold rolling process are shown in Table 3 below.

Figure 2013119631
Figure 2013119631

表3に示すように、上段から下段へと順次板厚が薄くなるのに応じて、右欄のように条件を切り替えて、最終冷間圧延を行った。つまり、厚さが200μm以下における冷間圧延加工の、1パスあたりの加工度と中立点の位置とを変化させた。右欄に示す中立点の位置(mm)は、ロールと加工対象物である焼鈍生地との接触面の出口側端部から中立点までの長さで示した。また、優れた屈曲特性を得るため、実施例1〜18および比較例1〜18の全てにおいて、最終冷間圧延工程での総加工度が95%となるように条件を設定した。以上により、厚さが12μmの実施例1〜18および比較例1〜18に係る圧延銅箔を製作した。   As shown in Table 3, the final cold rolling was performed by changing the conditions as shown in the right column in accordance with the reduction of the plate thickness sequentially from the upper stage to the lower stage. That is, the degree of processing per pass and the position of the neutral point of the cold rolling process with a thickness of 200 μm or less were changed. The position (mm) of the neutral point shown in the right column is indicated by the length from the end on the outlet side of the contact surface between the roll and the annealed material as the workpiece to the neutral point. Further, in order to obtain excellent bending characteristics, the conditions were set so that the total degree of work in the final cold rolling process was 95% in all of Examples 1 to 18 and Comparative Examples 1 to 18. By the above, the rolled copper foil which concerns on Examples 1-18 and Comparative Examples 1-18 whose thickness is 12 micrometers was manufactured.

(2)圧延銅箔の評価
上記のように製作した実施例1〜18および比較例1〜18に係る圧延銅箔について、以下の評価を行った。
(2) Evaluation of rolled copper foil The following evaluation was performed about the rolled copper foil which concerns on Examples 1-18 manufactured as mentioned above and Comparative Examples 1-18.

(2θ/θ法によるX線回折測定)
まずは、実施例1〜18および比較例1〜18に係る圧延銅箔に対し、2θ/θ法によるX線回折測定を行った。係る測定は、株式会社リガク製のX線回折装置(型式:Ult
ima IV)を用い、以下の表4に示す条件で行った。
(X-ray diffraction measurement by 2θ / θ method)
First, X-ray diffraction measurement by the 2θ / θ method was performed on the rolled copper foils according to Examples 1 to 18 and Comparative Examples 1 to 18. The measurement concerned is an X-ray diffractometer manufactured by Rigaku Corporation (model: Ult
ima IV) and the conditions shown in Table 4 below.

Figure 2013119631
Figure 2013119631

以下の表5に、2θ/θ法により測定した銅結晶の{022}面、{002}面、{113}面、{111}面、及び{133}面の回折ピーク強度を示す。   Table 5 below shows diffraction peak intensities of the {022} plane, {002} plane, {113} plane, {111} plane, and {133} plane of the copper crystal measured by the 2θ / θ method.

Figure 2013119631
Figure 2013119631

また、以下の表6,7に、表5の回折ピーク強度の値を上述の式(1)〜(12)の比例関係式にあてはめて各値を算出した結果を示す。   Further, Tables 6 and 7 below show the results of calculating each value by applying the diffraction peak intensity values in Table 5 to the proportional relational expressions of the above formulas (1) to (12).

Figure 2013119631
Figure 2013119631
Figure 2013119631
Figure 2013119631

上記のように、本実施例及び比較例では、最終冷間圧延工程での1パスあたりの加工度と中立点の位置とを変化させている。これにより、冷間圧延加工時に、加工対象物にかかる圧縮成分と引張成分との応力成分の比が変化する。その結果、各結晶面の比率が変わり
、表6,7に示すように、各結晶面の回折ピーク強度の比率も変化している。
As described above, in this example and the comparative example, the degree of processing per pass and the position of the neutral point in the final cold rolling process are changed. Thereby, at the time of cold rolling, the ratio of the stress component between the compression component and the tensile component applied to the workpiece is changed. As a result, the ratio of each crystal plane changes, and as shown in Tables 6 and 7, the ratio of the diffraction peak intensity of each crystal plane also changes.

実施例1〜18の各条件の組み合わせによれば、式(1)〜(12)までの各値はいずれも上述の所定範囲内にあり、再結晶焼鈍工程後には、低ステフネス性とともに、優れた屈曲特性を具備させることが可能な圧延銅箔が得られていることが分かる。一方、比較例1〜18の各条件の組み合わせでは、いずれの圧延銅箔においても式(1)〜(12)までの各値のうち複数の値が上述の所定範囲外となっており、これらの圧延銅箔は、再結晶焼鈍工程を経ても低ステフネス性を具備することはできない。表7中、上述の所定範囲を外れた値を下線付きの太字で示した。   According to the combination of the conditions of Examples 1 to 18, all the values from the formulas (1) to (12) are within the above-mentioned predetermined range, and after the recrystallization annealing process, the low stiffness is excellent. It turns out that the rolled copper foil which can be provided with the bending characteristic which was able to be obtained is obtained. On the other hand, in the combination of the conditions of Comparative Examples 1 to 18, in any rolled copper foil, a plurality of values out of the values from the formulas (1) to (12) are outside the above-described predetermined range. This rolled copper foil cannot have low stiffness even after undergoing a recrystallization annealing process. In Table 7, values outside the above-mentioned predetermined range are shown in bold with underline.

(屈曲疲労寿命試験)
次に、各圧延銅箔の屈曲特性を調べるため、信越エンジニアリング株式会社製のFPC高速屈曲試験機(型式:SEK−31B2S)を用い、IPC(米国プリント回路工業会)規格に準拠して屈曲疲労寿命試験を行った。図2には、上記FPC高速屈曲試験機等も含む、一般的な摺動屈曲試験装置10の模式図を示す。
(Bending fatigue life test)
Next, in order to examine the bending characteristics of each rolled copper foil, FPC high-speed bending tester (model: SEK-31B2S) manufactured by Shin-Etsu Engineering Co., Ltd. was used, and bending fatigue was performed in accordance with the IPC (American Printed Circuit Industry Association) standard. A life test was conducted. FIG. 2 shows a schematic diagram of a general sliding bending test apparatus 10 including the FPC high-speed bending tester and the like.

まずは、実施例1〜18および比較例1〜18に係る圧延銅箔を幅12.5mm、長さ220mmに切り取った試料片Sに、上述の再結晶焼鈍工程と同様の手順及び手法で、300℃、60分間の再結晶焼鈍を施した。係る条件は、プリント配線板のCCL工程で、基材との密着の際に圧延銅箔が実際に受ける熱量の一例を模している。   First, a sample piece S obtained by cutting the rolled copper foils according to Examples 1 to 18 and Comparative Examples 1 to 18 into a width of 12.5 mm and a length of 220 mm was subjected to the same procedure and technique as in the above-described recrystallization annealing step. Recrystallization annealing was performed at 60 ° C. for 60 minutes. Such a condition imitates an example of the amount of heat that the rolled copper foil actually receives in close contact with the substrate in the CCL process of the printed wiring board.

次に、図2に示すように、圧延銅箔の試料Sを、摺動屈曲試験装置10の試料固定板11にネジ12で固定した。続いて、試料Sを振動伝達部13に接触させ、発振駆動体14により振動伝達部13を上下方向に振動させて試料Sに振動を伝達し、屈曲疲労寿命試験を実施した。屈曲疲労寿命の測定条件としては、曲げ半径を1.5mmとし、ストロークを10mmとし、振幅数を25Hzとした。係る条件下、各圧延銅箔から切り取った試料片Sを5枚ずつ測定してその平均値を比較した。以下の表8に、結果を示す。   Next, as shown in FIG. 2, the rolled copper foil sample S was fixed to the sample fixing plate 11 of the sliding bending test apparatus 10 with screws 12. Subsequently, the sample S was brought into contact with the vibration transmission unit 13, and the vibration transmission unit 13 was vibrated in the vertical direction by the oscillation driver 14 to transmit the vibration to the sample S, and a bending fatigue life test was performed. The measurement conditions for the bending fatigue life were a bending radius of 1.5 mm, a stroke of 10 mm, and an amplitude number of 25 Hz. Under such conditions, five sample pieces S cut from each rolled copper foil were measured and their average values were compared. Table 8 below shows the results.

Figure 2013119631
Figure 2013119631

上記のように、各圧延銅箔は、総加工度を95%とする最終冷間圧延工程を経ており、表8に示すように、実施例1〜18および比較例1〜18のいずれにおいても、屈曲疲労寿命、すなわち、屈曲破断回数は100万回以上となり、優れた屈曲特性が得られた。   As described above, each rolled copper foil has undergone a final cold rolling process in which the total degree of work is 95%, and as shown in Table 8, in any of Examples 1 to 18 and Comparative Examples 1 to 18 The bending fatigue life, that is, the number of bending breaks was 1 million times or more, and excellent bending characteristics were obtained.

(ループステフネスの評価)
続いて、株式会社東洋精機製作所製のループステフネステスタを用い、各圧延銅箔のステフネス性を調査した。図3に、試験方法の概要を示す。
(Evaluation of loop stiffness)
Subsequently, the stiffness of each rolled copper foil was investigated using a loop stiffness tester manufactured by Toyo Seiki Seisakusho Co., Ltd. FIG. 3 shows an outline of the test method.

まずは、実施例1〜18および比較例1〜18に係る圧延銅箔を幅10mm、長さ180mmに切り取った試料片Sに、上記と同様、300℃、60分間の再結晶焼鈍を施した。次に、図3に示すように、試料片Sの両端部を合わせ、ループ長が70mmのループ状にした後、互いに対向させた圧子板21と固定板22との間に試料片Sを挟み、5mmのストロークで圧子板21にてループの頂点を固定板22側へと押した。ループステフネスの測定では、このときの圧縮力(反発力)を測定する。このループステフネスによるステフネス性の測定方法は、JIS規格やIPC規格のような規格化はされていないものの、近年のFPC業界で多用されている手法である。以下の表9に、結果を示す。   First, the recrystallization annealing for 60 minutes was performed to the sample piece S which cut the rolled copper foil which concerns on Examples 1-18 and Comparative Examples 1-18 in width 10mm and length 180mm similarly to the above. Next, as shown in FIG. 3, both ends of the sample piece S are combined to form a loop having a loop length of 70 mm, and then the sample piece S is sandwiched between the indenter plate 21 and the fixed plate 22 facing each other. The top of the loop was pushed toward the fixed plate 22 by the indenter plate 21 with a stroke of 5 mm. In the loop stiffness measurement, the compression force (repulsive force) at this time is measured. The method of measuring the stiffness by the loop stiffness is a technique that is widely used in the recent FPC industry, although it is not standardized as in the JIS standard and the IPC standard. The results are shown in Table 9 below.

Figure 2013119631
Figure 2013119631

表9に示すように、実施例1〜18の反発力(ループステフネス性)は0.045g〜0.056gと低反発性を示している。それに対して、比較例1〜18の反発力は、0.067g〜0.081gと比較的高めである。実施例1〜18全体での反発力は、比較例1〜18全体に対し、約16%〜44%小さい([(0.067−0.056)/0.067]×100≒16%,[(0.081−0.045)/0.081]×100≒44%)。   As shown in Table 9, the repulsive force (loop stiffness) of Examples 1 to 18 is 0.045 g to 0.056 g, indicating low repulsion. On the other hand, the repulsive force of Comparative Examples 1-18 is comparatively high with 0.067g-0.081g. The repulsive force in the whole Examples 1 to 18 is about 16% to 44% smaller than the whole Comparative Examples 1 to 18 ([(0.067-0.056) /0.067] × 100≈16%, [(0.081−0.045) /0.081] × 100≈44%).

このように、上記の式(1)〜(12)までの比例関係式にみられるように、副方位の結晶面の比率が調整された実施例1〜18に係る圧延銅箔では、低ステフネス性が得られていることがわかる。一方で、上記の式(1)〜(12)で得られた複数の値が所定範囲外となっていた比較例1〜18に係る圧延銅箔では、充分な低ステフネス性が得られていない。   Thus, in the rolled copper foil which concerns on Examples 1-18 in which the ratio of the crystal plane of a sub-orientation was adjusted so that it may be seen in the proportionality relational expression to said formula (1)-(12), it is low stiffness. It can be seen that sex is obtained. On the other hand, in the rolled copper foil which concerns on Comparative Examples 1-18 in which the several value obtained by said Formula (1)-(12) was outside the predetermined range, sufficient low stiffness was not acquired. .

以上、上記の屈曲疲労寿命試験の結果と考え併せると、再結晶焼鈍を施すことにより、実施例1〜18に係る圧延銅箔は、低ステフネス性とともに優れた屈曲特性を備えることがわかる。一方で、比較例1〜18に係る圧延銅箔は、優れた屈曲特性を備えるもののステフネス性には劣る。   As mentioned above, when combined with the results of the above-described bending fatigue life test, it is understood that the rolled copper foils according to Examples 1 to 18 have excellent bending characteristics as well as low stiffness by performing recrystallization annealing. On the other hand, although the rolled copper foil which concerns on Comparative Examples 1-18 is equipped with the outstanding bending characteristic, it is inferior to the stiffness property.

(3)タフピッチ銅を用いた圧延銅箔
次に、目標濃度を200ppmとするAgを添加したタフピッチ銅を用い、上述の実施例と同様の手順及び手法で、厚さが12μmの実施例19および比較例19に係る圧延銅
箔を製作した。実施例19および比較例19の鋳塊中におけるAg濃度は、IPC発光分光分析法により得た分析値で、それぞれ190ppmおよび195ppmであった。なお、係る濃度のAgを含有するタフピッチ銅材の耐熱性に合わせ、中間焼鈍工程および生地焼鈍工程のみ、上記とは異なる条件を用いた。具体的には、中間焼鈍工程では温度600℃〜700℃で約2分間保持し、生地焼鈍工程では温度700℃で約1分間保持した。
(3) Rolled copper foil using tough pitch copper Next, using a tough pitch copper to which Ag having a target concentration of 200 ppm was added, Example 19 having a thickness of 12 μm and the same procedure and method as in the above-described Examples and A rolled copper foil according to Comparative Example 19 was produced. The Ag concentrations in the ingots of Example 19 and Comparative Example 19 were 190 ppm and 195 ppm, respectively, as analytical values obtained by IPC emission spectroscopic analysis. In addition, according to the heat resistance of the tough pitch copper material containing Ag with such a concentration, only the intermediate annealing process and the dough annealing process were performed under conditions different from the above. Specifically, the intermediate annealing step was held at a temperature of 600 ° C. to 700 ° C. for about 2 minutes, and the dough annealing step was held at a temperature of 700 ° C. for about 1 minute.

上記のように製作した実施例19および比較例19に係る圧延銅箔について、上述の実施例と同様の手法及び手順で2θ/θ法によるX線回折測定を行い、得られた各結晶面の回折ピーク強度を上述の式(1)〜(12)の比例関係式にあてはめて各値を算出した。   For the rolled copper foils according to Example 19 and Comparative Example 19 manufactured as described above, X-ray diffraction measurement was performed by the 2θ / θ method in the same manner and procedure as in the above-described Examples, and the obtained crystal planes were obtained. Each value was calculated by applying the diffraction peak intensity to the proportional relational expressions of the above formulas (1) to (12).

実施例19に係る圧延銅箔については、各結晶面の回折ピーク強度の比例関係が式(1)〜(12)までの所定範囲内となった。   For the rolled copper foil according to Example 19, the proportional relationship between the diffraction peak intensities of the crystal planes was within a predetermined range from Equations (1) to (12).

一方、比較例19に係る圧延銅箔については、式(2)に係る数値が、
(I{002}+I{113})/(I{111}+I{133})=0.90
となり、所定範囲から外れていた。また、これにより、これ以外の比例関係についても所定範囲から外れるものがあった。
On the other hand, for the rolled copper foil according to Comparative Example 19, the numerical value according to Equation (2) is
(I {002} + I {113} ) / (I {111} + I {133} ) = 0.90
It was out of the predetermined range. As a result, other proportional relationships may be out of the predetermined range.

また、実施例19および比較例19に係る圧延銅箔について、上述の実施例と同様の手順及び手法で、屈曲疲労寿命試験を行ったところ、上記と同様、最終冷間圧延工程での総加工度が95%であるので、実施例19および比較例19ともに屈曲破断回数が100万回以上の優れた屈曲特性を示した。   Further, with respect to the rolled copper foil according to Example 19 and Comparative Example 19, a bending fatigue life test was performed by the same procedure and method as in the above-described example. As above, the total processing in the final cold rolling step was performed. Since the degree was 95%, both Example 19 and Comparative Example 19 exhibited excellent bending characteristics with a number of bending breaks of 1 million times or more.

さらに、実施例19および比較例19に係る圧延銅箔について、上述の実施例と同様の手順及び手法で、ループステフネスを評価したところ、実施例19の反発力は0.051gであったのに対し、比較例19の反発力は0.072gであった。よって、タフピッチ銅を原材料とする実施例19の圧延銅箔においても、低ステフネス性を得ることができた。   Further, with respect to the rolled copper foil according to Example 19 and Comparative Example 19, when the loop stiffness was evaluated by the same procedure and method as in the above Example, the repulsive force of Example 19 was 0.051 g. On the other hand, the repulsive force of Comparative Example 19 was 0.072 g. Therefore, also in the rolled copper foil of Example 19 which uses tough pitch copper as a raw material, low stiffness could be obtained.

(4)異なる添加材を用いた圧延銅箔
次に、目標濃度を120ppmとするAgおよび目標濃度を40ppmとするチタン(Ti)を添加材として加えた無酸素銅を用い、上述の実施例と同様の手順及び手法で、厚さが12μmの実施例20および比較例20に係る圧延銅箔を製作した。実施例20および比較例20の鋳塊中におけるAg濃度は、IPC発光分光分析法により得た分析値で、それぞれ120ppmおよび125ppmであった。また、Ti濃度は、それぞれ37ppmおよび44ppmであった。全て±10%程度内のバラツキであって、金属材料の分野では一般的なものである。
(4) Rolled copper foil using different additives Next, using oxygen-free copper added with Ag (target concentration of 120 ppm) and titanium (Ti) with target concentration of 40 ppm as an additive, The rolled copper foil which concerns on Example 20 and Comparative Example 20 whose thickness is 12 micrometers was manufactured with the same procedure and method. The Ag concentrations in the ingots of Example 20 and Comparative Example 20 were analytical values obtained by IPC emission spectroscopic analysis, and were 120 ppm and 125 ppm, respectively. Ti concentrations were 37 ppm and 44 ppm, respectively. The variations are all within ± 10%, and are common in the field of metal materials.

また、上記濃度のAgおよびTiを含有する無酸素銅材の耐熱性に合わせ、中間焼鈍工程および生地焼鈍工程のみ、上記とは異なる条件を用いた。具体的には、中間焼鈍工程では温度650℃〜700℃で約1分間保持し、生地焼鈍工程では温度700℃で約1分間保持した。   Also, different conditions from the above were used only in the intermediate annealing step and the dough annealing step in accordance with the heat resistance of the oxygen-free copper material containing Ag and Ti at the above concentrations. Specifically, the intermediate annealing step was held at a temperature of 650 ° C. to 700 ° C. for about 1 minute, and the dough annealing step was held at a temperature of 700 ° C. for about 1 minute.

上記のように製作した実施例20および比較例20に係る圧延銅箔について、上述の実施例と同様の手法及び手順で2θ/θ法によるX線回折測定を行い、得られた各結晶面の回折ピーク強度を上述の式(1)〜(12)の比例関係式にあてはめて各値を算出した。   For the rolled copper foils according to Example 20 and Comparative Example 20 manufactured as described above, X-ray diffraction measurement was performed by the 2θ / θ method in the same manner and procedure as in the above-described Examples, and the obtained crystal planes were obtained. Each value was calculated by applying the diffraction peak intensity to the proportional relational expressions of the above formulas (1) to (12).

実施例20に係る圧延銅箔については、各結晶面の回折ピーク強度の比例関係が式(1)〜(12)までの所定範囲内となった。   About the rolled copper foil which concerns on Example 20, the proportional relationship of the diffraction peak intensity of each crystal plane became in the predetermined range to Formula (1)-(12).

一方、比較例20に係る圧延銅箔については、式(2)に係る数値が、
(I{002}+I{113})/(I{111}+I{133})=0.95
となり、所定範囲から外れていた。また、これにより、これ以外の比例関係についても所定範囲から外れるものがあった。
On the other hand, for the rolled copper foil according to Comparative Example 20, the numerical value according to Equation (2) is
(I {002} + I {113} ) / (I {111} + I {133} ) = 0.95
It was out of the predetermined range. As a result, other proportional relationships may be out of the predetermined range.

また、実施例20および比較例20に係る圧延銅箔ともに、上述の実施例と同様の手順及び手法による屈曲疲労寿命試験にて、屈曲破断回数が100万回以上の優れた屈曲特性を示した。   In addition, both the rolled copper foils according to Example 20 and Comparative Example 20 exhibited excellent bending characteristics with a bending breakage number of 1 million times or more in a bending fatigue life test using the same procedure and method as in the above-described Examples. .

さらに、上述の実施例と同様の手順及び手法によるループステフネスの評価では、実施例20の反発力は0.048gであったのに対し、比較例20の反発力は0.074gであった。よって、異なる添加材を添加した実施例20の圧延銅箔においても、低ステフネス性を得ることができた。   Furthermore, in the evaluation of loop stiffness by the same procedure and method as in the above-described Example, the repulsive force of Example 20 was 0.048 g, whereas the repulsive force of Comparative Example 20 was 0.074 g. . Therefore, low stiffness could be obtained also in the rolled copper foil of Example 20 to which different additives were added.

<本発明者等による考察>
以上、述べてきたように、副方位の結晶面を制御することで圧延銅箔に低ステフネス性が付与される原理、及び、上述の圧延銅箔の製造工程における副方位の結晶面の制御の仕組みに対する本発明者等の考察について、以下に説明する。
<Discussion by the present inventors>
As described above, the principle of low-stiffness is imparted to the rolled copper foil by controlling the sub-oriented crystal plane, and the control of the sub-oriented crystal plane in the above-described rolled copper foil manufacturing process. The inventors' consideration on the mechanism will be described below.

(1)低ステフネス性について
本発明者等は、結晶方位学の知見と金属学の知見とこれまでの実験経験とから、副方位の結晶面を制御することで低ステフネス性が得られる原理について以下の考察を行った。
(1) Low Stiffness From the knowledge of crystal orientation, metallurgy, and previous experimental experience, the present inventors have learned about the principle that low stiffness can be obtained by controlling the crystal plane in the sub-orientation. The following considerations were made.

本発明者等によれば、本発明にて得られる低ステフネス性には、再結晶焼鈍工程前後での主方位の変化と副方位の不変化とが関係していると考えられる。上述のように、再結晶焼鈍工程において、主方位である{022}面は再結晶後に{002}面となる。一方、副方位である{002}面、{113}面、{111}面、及び{133}面は、再結晶後も略変化しないままであり、これら副方位の各すべり面(銅原子の最密面)が低ステフネス性に関与していると考えられる。   According to the present inventors, it is considered that the low stiffness obtained in the present invention is related to the change of the main orientation and the non-change of the sub-direction before and after the recrystallization annealing process. As described above, in the recrystallization annealing step, the {022} plane that is the main orientation becomes the {002} plane after recrystallization. On the other hand, the {002} plane, {113} plane, {111} plane, and {133} plane, which are secondary orientations, remain substantially unchanged after recrystallization. It is considered that the close-packed surface is involved in low stiffness.

銅結晶のすべりは銅原子の移動なので、銅結晶のすべり面である{111}面が圧延面に平行または平行に近い状態になっている場合、すべり方向もまた、圧延面に平行または平行に近い方向となる。これにより、圧延面に対して垂直な力に対する反発力は、すべり方向と垂直または垂直に近い方向に働くこととなり、反発力が強くなると考えられる。   Since the slip of the copper crystal is the movement of copper atoms, if the {111} plane, which is the slip plane of the copper crystal, is in a state parallel or nearly parallel to the rolling surface, the slip direction is also parallel or parallel to the rolling surface. It will be closer. Thereby, the repulsive force with respect to the force perpendicular to the rolling surface works in a direction perpendicular or nearly perpendicular to the slip direction, and it is considered that the repulsive force becomes stronger.

一方、銅結晶のすべり方向と圧延面とのなす角度が大きくなるほど、反発力が働く方向とすべり方向との差が小さくなってくる。すなわち、反発力の方向とすべり方向とがなす角度が平行に近づくほど、圧延面に垂直にかかる力に対する反発力は、銅結晶のすべり現象に影響され易くなると考えられる。ここで、{111}面(すべり面)に対する各結晶面のなす角度は以下のとおりである。   On the other hand, the larger the angle formed between the sliding direction of the copper crystal and the rolling surface, the smaller the difference between the direction in which the repulsive force works and the sliding direction. That is, it is considered that as the angle formed by the direction of the repulsive force and the slip direction approaches in parallel, the repulsive force with respect to the force applied perpendicular to the rolling surface is more easily affected by the slip phenomenon of the copper crystal. Here, the angle formed by each crystal plane with respect to the {111} plane (slip plane) is as follows.

{111}面∠{002}面 : 54.7°
{111}面∠{113}面 : 29.5°,58.5°,80.0°
{111}面∠{133}面 : 22.0°
{111}面∠{022}面 : 35.3°(参考値)
{111} face {002} face: 54.7 °
{111} face {113} face: 29.5 °, 58.5 °, 80.0 °
{111} face {133} face: 22.0 °
{111} face {022} face: 35.3 ° (reference value)

つまり、{002}面が圧延面に平行となっている銅結晶のすべり面は、圧延面に対して54.7°に位置する。   That is, the slip surface of the copper crystal whose {002} plane is parallel to the rolling surface is located at 54.7 ° with respect to the rolling surface.

また、{113}面が圧延面に平行となっている銅結晶のすべり面は、圧延面に対して
29.5°,58.5°又は80.0°に位置する。
Moreover, the slip surface of the copper crystal whose {113} plane is parallel to the rolling surface is located at 29.5 °, 58.5 °, or 80.0 ° with respect to the rolling surface.

また、{133}面が圧延面に平行となっている銅結晶のすべり面は、圧延面に対して22.0°に位置する。   Moreover, the sliding surface of the copper crystal whose {133} plane is parallel to the rolling surface is located at 22.0 ° with respect to the rolling surface.

また、{111}面が圧延面に平行となっている銅結晶のすべり面は、圧延面に対して0°に位置する。   Further, the slip surface of the copper crystal whose {111} plane is parallel to the rolled surface is located at 0 ° with respect to the rolled surface.

以上のように、上記の各結晶面のなす角度や、各結晶面の回折ピーク強度の比率のバランスがステフネス性に影響を及ぼしていると推察される。このように、低ステフネス性と各副方位の結晶面の比率とには、密接な関係があるといえる。   As described above, it is surmised that the balance between the angles formed by the crystal planes and the ratio of the diffraction peak intensities of the crystal planes affects the stiffness. Thus, it can be said that there is a close relationship between low stiffness and the ratio of crystal planes in each sub-orientation.

(2)副方位の結晶面の制御について
(結晶回転)
上述のように、最終冷間圧延工程等の圧延加工時、銅材には圧縮応力と、圧縮応力よりも弱い引張応力とがかかっている。圧延される銅材中の銅結晶は、圧延加工時の応力によって{022}面への回転現象を起こし、圧延加工の進展とともに、圧延面に平行な結晶面の方位が主に{022}面である圧延集合組織を形成する。このとき、上述のように、圧縮応力と引張応力との比により、{022}面へと向かって回転する経路が変わる。これについて、図4を用いて説明する。
(2) Control of the crystal plane in the sub-direction (crystal rotation)
As described above, during the rolling process such as the final cold rolling process, the copper material is subjected to a compressive stress and a tensile stress that is weaker than the compressive stress. The copper crystal in the rolled copper material causes a rotation phenomenon to the {022} plane due to the stress during the rolling process, and with the progress of the rolling process, the orientation of the crystal plane parallel to the rolled plane is mainly the {022} plane. A rolling texture is formed. At this time, as described above, the path of rotation toward the {022} plane varies depending on the ratio of the compressive stress and the tensile stress. This will be described with reference to FIG.

図4は、下記の技術文献(d)から引用した純銅型金属の逆極点図であって、(a)は引張変形による結晶回転方向を示す逆極点図であり、(b)は圧縮変形による結晶回転方向を示す逆極点図である。なお、逆極点図では、{002}面を{001}面と表記し、{022}面を{011}面と表記することになっている。つまり、{002}面は、{002}面に平行な面の最小数値である{001}面で表わし、{022}面は、{022}面に平行な面の最小数値である{011}面で表わす。   FIG. 4 is an inverse pole figure of a pure copper type metal quoted from the following technical document (d), (a) is an inverse pole figure showing a crystal rotation direction by tensile deformation, and (b) is by compression deformation. It is a reverse pole figure which shows a crystal rotation direction. In the inverted pole figure, the {002} plane is expressed as {001} plane and the {022} plane is expressed as {011} plane. That is, the {002} plane is represented by the {001} plane which is the minimum value of the plane parallel to the {002} plane, and the {022} plane is the minimum value of the plane parallel to the {022} plane. Express in terms of faces.

(d)編著者 長嶋晋一、“集合組織”、丸善株式会社、昭和59年1月20日、p96の図2.52(a),(c)   (D) Editor Shinichi Nagashima, “Cross texture”, Maruzen Co., Ltd., January 20, 1984, p. 96, Figures 2.52 (a) and (c)

図4に示すように、銅材中の銅結晶は、引張変形のみでは{111}面へと向かって回転し、圧縮変形のみでは{011}面へと向かって回転する。圧延加工では、圧縮成分と引張成分とが合わさった変形をするため、結晶回転方向はこれほど単純ではない。ただし、引張成分より圧縮成分が優勢となって変形し、圧延加工がされるので、総じて{011}面へと向かう結晶回転を起こしつつ、圧縮成分と引張成分との割合によって{111}面へも一部回転しようとする。このとき、圧縮成分の方が優勢であるので、{111}面へと回転しかけた結晶が{011}面へと戻される結晶回転も起きる。また、これとは逆に、{011}面へと向かって回転している結晶や{011}面に到達した結晶が、引張成分によって{133}面や{111}面へ向かって回転する場合もある。   As shown in FIG. 4, the copper crystal in the copper material rotates toward the {111} plane only by tensile deformation, and rotates toward the {011} plane only by compression deformation. In rolling, since the compression component and the tensile component are deformed, the crystal rotation direction is not so simple. However, since the compressive component prevails over the tensile component and deforms and is rolled, the crystal rotation toward the {011} plane generally takes place, and the {111} plane changes depending on the ratio of the compressive component and the tensile component. Also try to rotate partly. At this time, since the compression component is dominant, crystal rotation is also caused in which the crystal that has been rotated to the {111} plane returns to the {011} plane. On the contrary, when a crystal rotating toward the {011} plane or a crystal reaching the {011} plane rotates toward the {133} plane or the {111} plane due to the tensile component There is also.

このように、圧縮成分と引張成分とが、圧縮成分>引張成分の関係を保ちながら混在する中で結晶回転が起こると、最終的には図5の逆極点図に示すような主方位および副方位の結晶面の分布になると考えられる。圧縮成分>引張成分であるから、最終的な主方位の結晶面は{011}面となり、また、圧縮成分と引張成分との混合による結晶回転の結果、副方位の結晶面は、{001}面、{113}面、{111}面、{133}面になると考えられる。   Thus, when crystal rotation occurs while the compression component and the tensile component coexist while maintaining the relationship of compression component> tensile component, the main orientation and sub-direction as shown in the reverse pole figure of FIG. It is thought that the orientation crystal plane distribution. Since the compression component> tensile component, the final main orientation crystal plane is the {011} plane, and as a result of crystal rotation by mixing the compression component and the tensile component, the sub-orientation crystal plane is {001} It is considered to be a plane, {113} plane, {111} plane, and {133} plane.

ここで、図5には、上記特定方位の結晶面のみが分布しているように示したが、これは以下の理由による。銅は面心立方構造の結晶なので、2θ/θ法によるX線回折測定では
、{hkl}面のh,k,lが全て奇数値または全て偶数値でなければ回折ピークとして現れない。h,k,lが奇数値と偶数値との混在となっていると、消滅則によって回折ピークが消失し、測定できないためである。したがって、上述の実施形態等に係る圧延銅箔の構成を示すにあたっては、回折ピークとして現れる{001}面({002}面)、{113}面、{111}面、及び{133}面で規定した。上述の実施例等の結果からも本構成の効果は明白であるから、上記に挙げた副方位の結晶面を考えれば充分であるといえる。
Here, FIG. 5 shows that only the crystal planes of the specific orientation are distributed, but this is due to the following reason. Since copper has a face-centered cubic crystal, X-ray diffraction measurement by the 2θ / θ method does not appear as a diffraction peak unless h, k, and l on the {hkl} plane are all odd or even values. This is because if h, k, and l are a mixture of odd and even values, the diffraction peak disappears due to the extinction rule and measurement is impossible. Therefore, in showing the configuration of the rolled copper foil according to the above-described embodiment etc., the {001} plane ({002} plane), {113} plane, {111} plane, and {133} plane appearing as diffraction peaks. Stipulated. Since the effect of this configuration is obvious from the results of the above-described Examples and the like, it can be said that it is sufficient to consider the sub-oriented crystal planes listed above.

(加工度による制御)
以上のことから、圧縮応力>引張応力であることを前提として、圧縮成分と引張成分との比を調整すると、{022}面へと向かって回転する経路が変わる。具体的には、圧縮成分が大きくなるほど{002}面や{113}面を経由し易く、引張成分が大きくなるほど{111}面や{133}面を経由し易い。主な副方位の結晶面が{002}面、{113}面、{111}面、及び{133}面となるのは、{022}面へと回転しきれなかった上記結晶面が銅材中に残るためであり、最終冷間圧延工程での圧縮成分と引張成分との調整により、銅材中に残る各副方位の結晶面の割合を調整することができる。
(Control by processing degree)
From the above, assuming that compressive stress> tensile stress, adjusting the ratio of compressive component and tensile component changes the path of rotation toward the {022} plane. Specifically, the larger the compression component, the easier it is to pass through the {002} plane and {113} plane, and the greater the tensile component, the easier it is to pass through the {111} plane and {133} plane. The main sub-orientation crystal planes are {002} plane, {113} plane, {111} plane, and {133} plane because the crystal plane that could not be rotated to the {022} plane is a copper material. This is because the ratio of the crystal plane of each sub-orientation remaining in the copper material can be adjusted by adjusting the compression component and the tensile component in the final cold rolling step.

具体的には、圧縮成分と引張成分とは、圧延加工時の1パスあたりの圧延条件を変化させることで制御することができる。圧縮成分と引張成分とを制御する種々の制御パラメータを調整するにあたっては、上述の実施形態や実施例にて試みたように、例えば1パスあたりの加工度の変化に着目することができる。   Specifically, the compression component and the tensile component can be controlled by changing the rolling conditions per pass during the rolling process. In adjusting various control parameters for controlling the compression component and the tensile component, for example, attention can be paid to a change in the degree of processing per pass, as attempted in the above-described embodiments and examples.

1パスあたりの加工度を高くするには、例えば圧延荷重(ロール荷重)を大きくして圧延対象である銅材を押しつぶす方法があり、この場合、圧縮応力が大きくなる。よって、結晶の回転経路は{002}面や{113}面となって、{022}面へと向かって回転する。   In order to increase the degree of processing per pass, for example, there is a method of crushing the copper material to be rolled by increasing the rolling load (roll load). In this case, the compressive stress increases. Therefore, the crystal rotation path becomes {002} plane or {113} plane and rotates toward the {022} plane.

一方、圧縮応力>引張応力を前提として、引張成分を大きくして銅材を薄くすることで加工度を高くする方法もある。引張成分を大きくしているので、結晶の回転経路は{111}面や{133}面となって、{022}面へと向かって回転する。なお、圧延後、銅材中に残る{133}面には、引張成分により結晶の回転途中で得られたものと、圧縮成分により一旦、{022}面へと到達した結晶が、引張成分により{133}面へと再び回転したものとが含まれると考えられる。また、引張応力による加工度の変化は、圧縮荷重を大きくした場合に比べると小さい。つまり、加工度への寄与は、圧縮応力の方が大きい。   On the other hand, on the premise of compressive stress> tensile stress, there is also a method of increasing the workability by increasing the tensile component and thinning the copper material. Since the tensile component is increased, the crystal rotation path is the {111} plane or {133} plane and rotates toward the {022} plane. Note that the {133} plane remaining in the copper material after rolling is obtained by the tensile component and the crystal once reached the {022} plane by the compression component due to the tensile component. It is considered that it has been rotated again to the {133} plane. Further, the change in the degree of processing due to the tensile stress is small as compared with the case where the compressive load is increased. That is, the compressive stress has a larger contribution to the degree of processing.

なお、ここで注意しなければならないことは、それぞれの成分(圧縮応力と引張応力)のみでは材料形状が均一に加工できず、圧延はできないということである。つまり、圧縮応力と引張応力との両方によって、材料の厚さを薄くするのと同時に材料形状を制御している。   It should be noted that the material shape cannot be processed uniformly only by the respective components (compressive stress and tensile stress), and rolling cannot be performed. That is, the material shape is controlled at the same time as the thickness of the material is reduced by both compressive stress and tensile stress.

(中立点による制御)
上述の実施形態や実施例においては、最終冷間圧延工程における1パスあたりの加工度と併せ、中立点の位置制御も行っている。つまり、圧縮成分と引張成分との制御パラメータの調整にあたっては、例えば中立点の位置変化に着目することも可能である。
(Control by neutral point)
In the above-described embodiments and examples, the position control of the neutral point is also performed together with the degree of processing per pass in the final cold rolling process. That is, in adjusting the control parameters of the compression component and the tensile component, it is possible to pay attention to, for example, a change in the position of the neutral point.

上述のように、1パス毎に中立点の位置を制御する制御因子としては、前方張力、後方張力、圧延速度(ロールの回転速度)、ロール径、加工度、圧延荷重等がある。これらの制御因子を種々に組み合わせ、中立点の位置を変化させることができる。   As described above, the control factors that control the position of the neutral point for each pass include the front tension, the rear tension, the rolling speed (roll rotational speed), the roll diameter, the working degree, the rolling load, and the like. Various combinations of these control factors can be used to change the position of the neutral point.

係る中立点の位置は、いくつかの計測値から計算によって算出することができる。すなわち、まずは、下記の技術文献(e)を参考とする次式、
張力の成分+圧縮力の成分=2×剪断降伏応力・・・(13)
の関係において、圧縮力成分を張力成分より大きくし、さらに、圧延速度とロール径との条件バランス、すなわち、圧延加工時のロールと銅材との接触面における中立点の位置を、式(13)を用いて算出する。なお、中立点の詳細についても、下記技術文献(e)を参照した。
The position of such a neutral point can be calculated from some measured values. That is, first, the following formula with reference to the following technical document (e):
Tension component + compressive force component = 2 × shear yield stress (13)
In this relationship, the compression force component is made larger than the tension component, and further, the condition balance between the rolling speed and the roll diameter, that is, the position of the neutral point on the contact surface between the roll and the copper material at the time of rolling is expressed by the equation (13). ) To calculate. The details of the neutral point were also referred to the following technical document (e).

(e)日本塑性加工学会編、“塑性加工技術シリーズ7 板圧延”、コロナ社、p14,p27 式(3.3),p28   (E) Edited by Japan Society for Technology of Plasticity, “Plastic Technology Series 7 Sheet Rolling”, Corona, p14, p27 formula (3.3), p28

上記の式(13)の計算時のパラメータは上記制御因子であるが、これらのうち、固定とするものと可変とするものとをどのように選択するかで、複数種類の制御方法が考えられる。上述の実施形態や実施例においては、加工度を可変の制御因子として中立点の位置を制御したが、加工度以外の制御因子を用いた制御も可能である。   Although the parameter at the time of calculation of the above equation (13) is the control factor, a plurality of types of control methods are conceivable depending on how the fixed one and the variable one are selected. . In the above-described embodiments and examples, the position of the neutral point is controlled using the degree of machining as a variable control factor, but control using a control factor other than the degree of machining is also possible.

また、上記制御因子は圧延機の構成に関わるところであり、中立点の位置制御は、圧延機の仕様に依存するところが大きい。具体的には、ロールの段数、ロールの総数、ロールの組み合わせ配置、各ロールの径や材質や表面状態(表面粗さ)等のロールの構成などの違いにより、銅材への圧縮応力のかかり方や摩擦係数等に違いが生じる。圧延機が異なれば、上述の実施例で挙げた条件に係る各制御因子もその絶対値が異なるため、圧延機ごとに適宜調整することができる。   The control factor is related to the configuration of the rolling mill, and the neutral point position control largely depends on the specifications of the rolling mill. Specifically, the compression stress is applied to the copper material due to differences in the number of rolls, the total number of rolls, the combination of rolls, and the roll configuration such as the diameter, material, and surface condition (surface roughness) of each roll. Difference in the direction and coefficient of friction. If the rolling mills are different, each control factor related to the conditions mentioned in the above embodiment also has different absolute values, and can be appropriately adjusted for each rolling mill.

10 摺動屈曲試験装置
11 試料固定板
12 ネジ
13 振動伝達部
14 発振駆動体
21 圧子板
22 固定板
S 試料片
DESCRIPTION OF SYMBOLS 10 Sliding bending test apparatus 11 Sample fixing plate 12 Screw 13 Vibration transmission part 14 Oscillation drive body 21 Indenter plate 22 Fixing plate S Sample piece

Figure 2013119631
Figure 2013119631

Figure 2013119631
Figure 2013119631
Figure 2013119631
Figure 2013119631

Claims (5)

主表面を備え、前記主表面に平行な複数の結晶面を有する最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔であって、
前記複数の結晶面には{022}面、{002}面、{113}面、{111}面、及び{133}面が含まれ、
前記主表面に対する2θ/θ法によるX線回折測定で得られる前記各結晶面の回折ピーク強度をそれぞれI{022}、I{002}、I{113}、I{111}、及びI{133}としたとき、
{022}/(I{022}+I{002}+I{113}+I{111}+I{133})≧0.50であり、
(I{002}+I{113})/(I{111}+I{133})≧1.0であり、
{022}/I{002}≦8.0であり、
{022}/I{113}≦30であり、
{022}/I{111}≧7.0であり、
{022}/I{133}≧10であり、
1.0≦I{002}/I{113}≦15であり、
{111}/I{133}≦10であり、
{113}/I{111}≧0.30であり、
1.0≦I{002}/I{111}≦20であり、
1.0≦I{002}/I{133}≦75であり、且つ、
0.50≦I{113}/I{133}≦20である
ことを特徴とする圧延銅箔。
A rolled copper foil comprising a main surface, after a final cold rolling step having a plurality of crystal planes parallel to the main surface, and before a recrystallization annealing step,
The plurality of crystal planes include {022} plane, {002} plane, {113} plane, {111} plane, and {133} plane,
The diffraction peak intensities of the crystal planes obtained by X-ray diffraction measurement by the 2θ / θ method with respect to the main surface are respectively I {022} , I {002} , I {113} , I {111} , and I {133 }
I {022} / (I {022} + I {002} + I {113} + I {111} + I {133} ) ≧ 0.50,
(I {002} + I {113} ) / (I {111} + I {133} ) ≧ 1.0,
I {022} / I {002} ≦ 8.0,
I {022} / I {113} ≦ 30,
I {022} / I {111} ≧ 7.0,
I {022} / I {133} ≧ 10,
1.0 ≦ I {002} / I {113} ≦ 15,
I {111} / I {133} ≦ 10,
I {113} / I {111} ≧ 0.30,
1.0 ≦ I {002} / I {111} ≦ 20,
1.0 ≦ I {002} / I {133} ≦ 75, and
The rolled copper foil characterized by 0.50 ≦ I {113} / I {133} ≦ 20.
総加工度が90%以上の前記最終冷間圧延工程により厚さが20μm以下となっていることを特徴とする請求項1に記載の圧延銅箔。   2. The rolled copper foil according to claim 1, wherein the thickness is 20 μm or less by the final cold rolling step with a total workability of 90% or more. 純度99.96%以上の無酸素銅、又は純度99.9%以上のタフピッチ銅を主成分とする
ことを特徴とする請求項1又は2に記載の圧延銅箔。
The rolled copper foil according to claim 1 or 2, comprising oxygen-free copper having a purity of 99.96% or more or tough pitch copper having a purity of 99.9% or more as a main component.
銀、硼素、チタン、錫の少なくともいずれかが添加されている
ことを特徴とする請求項1〜3のいずれかに記載の圧延銅箔。
The rolled copper foil according to any one of claims 1 to 3, wherein at least one of silver, boron, titanium, and tin is added.
フレキシブルプリント配線板用である
ことを特徴とする請求項1〜4のいずれかに記載の圧延銅箔。
It is an object for flexible printed wiring boards, The rolled copper foil in any one of Claims 1-4 characterized by the above-mentioned.
JP2011266677A 2011-12-06 2011-12-06 Rolled copper foil Active JP5273236B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011266677A JP5273236B2 (en) 2011-12-06 2011-12-06 Rolled copper foil
KR1020120032838A KR20130063444A (en) 2011-12-06 2012-03-30 Rolled copper foil
CN2012100924481A CN103146946A (en) 2011-12-06 2012-03-31 Rolled copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011266677A JP5273236B2 (en) 2011-12-06 2011-12-06 Rolled copper foil

Publications (2)

Publication Number Publication Date
JP2013119631A true JP2013119631A (en) 2013-06-17
JP5273236B2 JP5273236B2 (en) 2013-08-28

Family

ID=48545260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011266677A Active JP5273236B2 (en) 2011-12-06 2011-12-06 Rolled copper foil

Country Status (3)

Country Link
JP (1) JP5273236B2 (en)
KR (1) KR20130063444A (en)
CN (1) CN103146946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204108A (en) * 2017-06-07 2018-12-27 株式会社Shカッパープロダクツ Oxygen-free copper plate and ceramic wiring board

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801542A (en) * 2015-05-06 2015-07-29 无锡丰元新材料科技有限公司 High-precision rolled copper foil for high-energy environment-friendly battery
KR20220146466A (en) * 2020-03-06 2022-11-01 미쓰비시 마테리알 가부시키가이샤 Pure copper plate, copper/ceramic bonded body, insulated circuit board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106313A (en) * 2006-10-26 2008-05-08 Hitachi Cable Ltd Rolled copper foil and manufacturing method therefor
JP2009185376A (en) * 2008-01-08 2009-08-20 Hitachi Cable Ltd Rolled copper foil and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856581B2 (en) * 1999-01-18 2006-12-13 日鉱金属株式会社 Rolled copper foil for flexible printed circuit board and method for producing the same
JP3856616B2 (en) * 2000-03-06 2006-12-13 日鉱金属株式会社 Rolled copper foil and method for producing the same
JP4285526B2 (en) * 2006-10-26 2009-06-24 日立電線株式会社 Rolled copper foil and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106313A (en) * 2006-10-26 2008-05-08 Hitachi Cable Ltd Rolled copper foil and manufacturing method therefor
JP2009185376A (en) * 2008-01-08 2009-08-20 Hitachi Cable Ltd Rolled copper foil and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204108A (en) * 2017-06-07 2018-12-27 株式会社Shカッパープロダクツ Oxygen-free copper plate and ceramic wiring board
JP7094151B2 (en) 2017-06-07 2022-07-01 株式会社Shカッパープロダクツ Oxygen-free copper plate and ceramic wiring board

Also Published As

Publication number Publication date
KR20130063444A (en) 2013-06-14
JP5273236B2 (en) 2013-08-28
CN103146946A (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP4285526B2 (en) Rolled copper foil and method for producing the same
JP4215093B2 (en) Rolled copper foil and method for producing the same
KR101632515B1 (en) Rolled copper foil
JP5057932B2 (en) Rolled copper foil and flexible printed wiring board
JP5273236B2 (en) Rolled copper foil
JP5126435B1 (en) Rolled copper foil
JP5126434B1 (en) Rolled copper foil
KR102002355B1 (en) Rolled copper foil
JP5373940B1 (en) Rolled copper foil
JP5126436B1 (en) Rolled copper foil
JP5201432B1 (en) Rolled copper foil
TWI480397B (en) Rolled copper foil
JP5246526B1 (en) Rolled copper foil
JP5631847B2 (en) Rolled copper foil
JP4242801B2 (en) Rolled copper foil and method for producing the same
KR101967748B1 (en) Rolled copper foil
JP2014139335A (en) Copper plating layer-clad rolled copper foil

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5273236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250