JP2013117353A - Underfloor heat storage air-conditioning system, and energy-saving house including the same - Google Patents

Underfloor heat storage air-conditioning system, and energy-saving house including the same Download PDF

Info

Publication number
JP2013117353A
JP2013117353A JP2011265357A JP2011265357A JP2013117353A JP 2013117353 A JP2013117353 A JP 2013117353A JP 2011265357 A JP2011265357 A JP 2011265357A JP 2011265357 A JP2011265357 A JP 2011265357A JP 2013117353 A JP2013117353 A JP 2013117353A
Authority
JP
Japan
Prior art keywords
air
underfloor
heat
heat storage
underfloor space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011265357A
Other languages
Japanese (ja)
Other versions
JP5893905B2 (en
Inventor
Kazuhiko Okada
和彦 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKAKEN KK
Original Assignee
OKAKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKAKEN KK filed Critical OKAKEN KK
Priority to JP2011265357A priority Critical patent/JP5893905B2/en
Publication of JP2013117353A publication Critical patent/JP2013117353A/en
Application granted granted Critical
Publication of JP5893905B2 publication Critical patent/JP5893905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an underfloor heat storage air-conditioning system that utilizes cold air generated in a heat-pump water heater, while exhibiting high cooling efficiency, thereby minimizing operation of an air conditioner during summer.SOLUTION: The underfloor heat storage air-conditioning system includes a heat storage means, a heat-pump water heater 7, cold-air introduction passages 51, 55, outside-air introduction passage, cooling air passages 20, 30 and an exhaust passage 52. During nighttime, cold air generated in the heat-pump water heater 7 is introduced to an underfloor space 4A to cool a heat storage means. During a daytime, the outside air introduced into the underfloor space 4A via the outside-air introduction passage is cooled by the heat storage means and used for cooling. The underfloor space 4A is formed of an inside space of solid foundation concrete 40 which is formed by surrounding all side surfaces and a bottom with concrete, in at least a lower half thereof. The most of the heat storage means is the foundation concrete 40. In a portion where the outside-air introduction passage and an exhaust passage 52 are arranged in parallel to each other, a heat-exchanging ventilator 6 is disposed to exchange heat of the outside-air introduced in daytime with the exhaust, to be supplied to the underfloor space 4A.

Description

本発明は、床下蓄熱空調システム及びそれを備えた省エネ住宅に関し、殊に、夜間にヒートポンプ式給湯装置で生じた冷気を床下空間に導入して基礎コンクリートに蓄熱し、日中に床下空間に導入した外気を基礎コンクリートで冷却して冷房に使用する床下蓄熱空調システム、及びそれを備えて冷房用のエネルギー消費量を低減可能とした省エネ住宅に関する。   The present invention relates to an underfloor heat storage air conditioning system and an energy-saving house equipped with the same, and in particular, cool air generated by a heat pump hot water supply device is introduced into the underfloor space at night to store heat in the foundation concrete, and is introduced into the underfloor space during the day. The present invention relates to an underfloor heat storage air-conditioning system that cools the outside air with basic concrete and uses it for cooling, and an energy-saving house that can reduce the energy consumption for cooling.

近年、エコ意識の高まりや地球温暖化対策の要請等から省エネ実現のための技術開発が活発化しており、例えば断熱性能に優れて空調のためのエネルギー消費量を抑えた省エネ住宅が多数開発されている。また、熱交換手段により大気の熱を利用してエネルギー投入量の大幅な削減を実現するヒートポンプ式給湯装置も広く普及している。   In recent years, technology development for realizing energy saving has been activated due to increasing eco-consciousness and demand for global warming countermeasures. For example, many energy-saving houses with excellent heat insulation performance and reduced energy consumption for air conditioning have been developed. ing. In addition, a heat pump type hot water supply apparatus that realizes a significant reduction in the amount of energy input by utilizing the heat of the atmosphere by means of heat exchange is also widely used.

さらに、前述のヒートポンプ式給湯装置では大気と熱交換を行うことで大量の冷気が発生することから、夜間のシステム駆動時に生成した冷気を床下空間に導入し、地盤や基礎コンクリート等の蓄熱手段に蓄熱(マイナス方向の蓄熱)しておき、昼間の気温上昇時に外気を床下空間に導入することでこれを冷却して屋内の冷房に使用する技術が特許第4180101号公報や特開2010−7991号公報に提案されている。   Furthermore, since a large amount of cold air is generated by exchanging heat with the atmosphere in the heat pump type hot water supply device described above, the cold air generated when the system is driven at night is introduced into the underfloor space and used as a heat storage means such as ground or foundation concrete. Japanese Patent No. 4180101 and Japanese Patent Application Laid-Open No. 2010-7991 are techniques that store heat (store negative heat) and cool the indoor air by introducing outside air into the under-floor space when the temperature rises during the daytime. Proposed in the gazette.

しかし、これらの技術のように、夜間の給湯で生じた冷気を単に床下に導入するだけでは効率的な蓄熱は行われにくいことに加え、日中に多量の外気をそのまま床下空間に導入するだけでは、床下の蓄熱手段との熱交換が充分に行われないことから、効率的な冷房を実現できずにエアコンの運転を併用せざるを得ないのが現状である。   However, as with these technologies, it is difficult to store heat efficiently by simply introducing cold air generated by hot water supply at night under the floor, and in addition, a large amount of outside air is simply introduced into the underfloor space during the day. Then, since the heat exchange with the heat storage means under the floor is not sufficiently performed, it is impossible to realize efficient cooling, and the operation of the air conditioner must be used together.

特許第4180101号公報Japanese Patent No. 4180101 特開2010−7991号公報JP 2010-7991 A

本発明は、上記のような問題を解決しようとするものであり、ヒートポンプ式給湯装置で生じた冷気を利用する床下蓄熱空調システムについて、従来よりも高い冷房効率を実現して夏季のエアコン運転量を最小限に抑えられるようにすることを課題とする。   The present invention is intended to solve the above-described problem, and an underfloor thermal storage air conditioning system that uses cool air generated by a heat pump hot water supply apparatus realizes higher cooling efficiency than conventional air conditioning operation amount in summer. It is an issue to be able to minimize the above.

そこで、本発明は、床下に配置した蓄熱手段と、ヒートポンプ式給湯装置と、ヒートポンプ式給湯装置から冷気を床下空間まで導入する冷気導入通路と、外気を床下空間まで導入する外気導入通路と、床下空間の冷気を各部屋に送って冷房に使用するための冷房用空気通路と、各部屋の空気を排出するための排気通路とを備え、夜間にヒートポンプ式給湯装置の運転で生じた冷気を床下空間に導入して蓄熱手段を冷却しておき、日中に外気導入通路を介し床下空間まで導入した外気を蓄熱手段で冷却して各部屋の冷房に使用する床下蓄熱空調システムにおいて、その床下空間は少なくとも下半分が総ての側面及び底面をコンクリートで囲まれたベタ式基礎コンクリートの内側空間で構成されて蓄熱手段の大部分が基礎コンクリートによるものであり、且つ、その外気導入通路と排気通路が並列する部分に熱交換型換気装置を有して、日中に導入する外気を排気との間で熱交換を行ってから床下空間に送るものとされている、ことを特徴とするものとした。   Therefore, the present invention includes a heat storage means arranged under the floor, a heat pump hot water supply device, a cold air introduction passage for introducing cold air from the heat pump hot water supply device to the underfloor space, an outdoor air introduction passage for introducing outside air to the underfloor space, It has a cooling air passage for sending the cool air of each space to each room and using it for cooling, and an exhaust passage for discharging the air of each room, and the cold air generated by the operation of the heat pump water heater at night is under the floor In an underfloor heat storage air conditioning system that cools the heat storage means by introducing it into the space and cools the outside air introduced into the underfloor space through the outside air introduction passage during the day by the heat storage means and uses it for cooling each room. Is composed of the inner space of solid foundation concrete with at least the lower half surrounded by concrete on all sides and bottom, and most of the heat storage means is made of foundation concrete There is a heat exchange type ventilation device in the part where the outside air introduction passage and the exhaust passage are in parallel, and the outside air introduced during the day is exchanged with the exhaust before being sent to the underfloor space It has been characterized by that.

このように、床下空間の蓄熱手段に側面及び底面をコンクリートで囲んで器状にしたベタ式の基礎コンクリートを用いたことで、比重の大きな冷気をその内側空間に溜めながら熱伝導性に優れた素材であるコンクリートを短時間で冷却しながら効率的に蓄熱することができ、且つ、外気導入通路の途中に排気と熱交換を行う熱交換型換気装置を配置したことで、外気の温度を下げて蓄熱手段との温度差を縮小してから床下空間に導入するものとなるため、冷房用空気を効率的に生成できるものとなる。   In this way, by using solid solid foundation concrete with the sides and bottom surrounded by concrete as the heat storage means in the underfloor space, it was excellent in thermal conductivity while accumulating cold with large specific gravity in the inner space The temperature of the outside air is lowered by arranging a heat exchange type ventilation device that can efficiently store heat while cooling the material concrete in a short time and also exchanges heat with the exhaust in the outside air introduction passage. Thus, since the temperature difference from the heat storage means is reduced and then introduced into the underfloor space, the cooling air can be efficiently generated.

また、この床下蓄熱空調システムにおいて、その冷気導入通路の末端側は床下空間に配置した主配管から複数分岐して、床下空間の底面になる基礎コンクリートの上面に密着した状態で横向きに延びながら配置密度を平均化するように複数配置された金属製の枝管で構成されており、夜間に各枝管の側面に設けた複数の噴出孔から冷気が噴出することを特徴としたものとすれば、床下空間の総ての領域に亘ってまんべんなく冷気を導入できるとともに、冷気で冷却された枝管で基礎コンクリートを直接的に冷却することができる。   Also, in this underfloor heat storage air conditioning system, the end side of the cold air introduction passage branches from the main pipe arranged in the underfloor space, and is arranged while extending sideways in close contact with the upper surface of the foundation concrete that becomes the bottom surface of the underfloor space It is composed of a plurality of metal branch pipes arranged so as to average the density, and cold air is ejected from a plurality of jet holes provided on the side surface of each branch pipe at night. The cold air can be introduced evenly over the entire area of the underfloor space, and the basic concrete can be directly cooled by the branch pipe cooled by the cold air.

この場合、その噴出孔は、基礎コンクリートの上面に対し平行又は/及び斜めに向かう向きで冷気が噴出するように形成されていることを特徴としたものとすれば、冷気が直接当たることで基礎コンクリートの冷却が効率的に進むものとなる。   In this case, if the ejection hole is formed so that the cold air is ejected in a direction parallel to and / or obliquely with respect to the upper surface of the foundation concrete, the foundation is obtained by direct contact with the cold air. Cooling of concrete will proceed efficiently.

さらに、上述の冷気導入通路の末端側に枝管を有したものにおいて、その冷気導入通路は外気導入通路を兼ねたものとされ、日中にヒートポンプ式給湯装置の外気吸入口から外気が取り込まれて前記主配管及び枝管を通って床下空間に噴出するものとされていることを特徴としたものとすれば、床下空間に導入する外気が基礎コンクリートに密着して冷却された状態の枝管を通る際に直接的に冷却されるため、短時間で効率的に冷房用空気を生成することができる。   Further, in the above-described one having a branch pipe on the end side of the cold air introduction passage, the cold air introduction passage also serves as the outside air introduction passage, and outside air is taken in from the outside air inlet of the heat pump hot water supply device during the day. The main pipe and the branch pipe are jetted into the underfloor space, and the branch pipe in a state where the outside air introduced into the underfloor space is cooled in close contact with the foundation concrete. Therefore, the cooling air can be efficiently generated in a short time.

さらにまた、この冷気導入通路が外気導入通路を兼ねたものにおいて、その熱交換型換気装置は、内部の外気用通路を排気と熱交換を行わないバイパスルートに切換える機能を有しており、夜間に外気導入通路を冷気導入通路として使用する際に、所定の操作または事前の設定によりバイパスルートに切換えることで、冷気と排気との間で熱交換を行わない状態の運転が可能とされている、ことを特徴としたものとすれば、ヒートポンプ式給湯装置から床下空間まで冷気を導入する際に、排気を冷却して冷気の温度上昇を招くことを回避することができる。   Furthermore, in the case where the cold air introduction passage also serves as the outside air introduction passage, the heat exchange type ventilator has a function of switching the internal outside air passage to a bypass route that does not exchange heat with the exhaust. When the outside air introduction passage is used as the cold air introduction passage, the operation can be performed in a state where heat is not exchanged between the cold air and the exhaust gas by switching to the bypass route by a predetermined operation or a preset setting. In this case, when introducing cool air from the heat pump hot water supply device to the underfloor space, it is possible to avoid cooling the exhaust and causing the temperature of the cool air to rise.

さらにまた、上述した冷気導入通路が外気導入通路を兼ねたものにおいて、その主たる冷房用空気通路の基端側は前記枝管及び主配管で構成されており、日中の冷房時に床下空間の空気が前記枝管内を通って各部屋に供給される、ことを特徴としたものとすれば、基礎コンクリートに密着して冷却された状態の枝管内で床下空間の空気が直接的に冷却されるため、冷房用空気が一層効率的に生成されるものとなる。   Furthermore, in the case where the cold air introduction passage described above also serves as the outside air introduction passage, the base end side of the main cooling air passage is constituted by the branch pipe and the main pipe, and the air in the underfloor space is aired during the daytime cooling. Is supplied to each room through the inside of the branch pipe, because the air in the underfloor space is directly cooled in the branch pipe in a state of being cooled in close contact with the foundation concrete. Thus, the cooling air is generated more efficiently.

加えて、ヒートポンプ式給湯装置を備えているとともに床下空間の少なくとも下半分が総ての側面及び底面をコンクリートで囲まれたベタ式の基礎コンクリートの内側空間で構成されている、ことを特徴とした上述の床下蓄熱空調システムを備えた省エネ住宅であるものとすれば、夏季のエアコン運転量を最小限に抑えることが可能となって省エネルギー性能に極めて優れたものとなる。   In addition, it has a heat pump type hot water supply device, and at least the lower half of the underfloor space is composed of an inner space of solid basic concrete with all sides and bottom surrounded by concrete. If it is an energy-saving house provided with the above-described underfloor heat storage air-conditioning system, the amount of air-conditioner operation in summer can be minimized, and the energy-saving performance is extremely excellent.

この場合、その床下空間は、複数の支持用柱状コンクリートが所定の間隔で配置されており、布基礎による壁で仕切られていないことを特徴としたものとすれば、導入した冷気及び外気が床下空間の総ての部分にまんべんなく行き渡りやすくなって、さらに冷房効率に優れたものとなる。   In this case, if the underfloor space is characterized in that a plurality of supporting columnar concretes are arranged at predetermined intervals and are not partitioned by a cloth foundation wall, the introduced cold air and outside air are It becomes easy to reach all parts of the space evenly, and it becomes more excellent in cooling efficiency.

蓄熱手段にベタ式の基礎コンクリートを用いながら、外気を排気と熱交換を行って温度調整してから蓄熱手段で冷却するものとした本発明によると、従来よりも高い冷房効率を実現して夏季のエアコン運転量を最小限に抑えることができるものである。   According to the present invention, which uses solid foundation concrete as the heat storage means, adjusts the temperature of the outside air by exchanging heat with the exhaust air and then cools it with the heat storage means, it achieves higher cooling efficiency than the conventional summer The amount of air conditioner operation can be minimized.

本発明における第1の実施の形態による省エネ住宅の構成及びその夏季夜間の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the energy saving house by the 1st Embodiment in this invention, and the state at the time of the summer night. 図1の省エネ住宅の夏季日中の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state in the summer daytime of the energy-saving house of FIG. 本発明における第2の実施の形態による省エネ住宅の構成及びその夏季夜間の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the energy-saving house by 2nd Embodiment in this invention, and the state of the summer night. 図3のX−X線に沿う断面図である。It is sectional drawing which follows the XX line of FIG. 図3の省エネ住宅の夏季日中の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state in the summer daytime of the energy-saving house of FIG. 本発明における第3の実施の形態による省エネ住宅の構成及びその夏季夜間の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the energy-saving house by 3rd Embodiment in this invention, and the state of the summer night. 図6の省エネ住宅の夏季日中の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state in the summer daytime of the energy-saving house of FIG.

以下に、図面を参照しながら本発明を実施するための形態を説明する。尚、本発明において、蓄熱には加温することによるプラス方向の蓄熱と冷却することによるマイナス方向の蓄熱の両方が含まれるものとする。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the present invention, heat storage includes both positive heat storage by heating and negative heat storage by cooling.

図1は、本発明における第1の実施の形態である床下蓄熱空調システムを備えた省エネ住宅1Aの構造を説明するための簡略的な縦断面図であり、夏季の夜間の状態(蓄熱時)を示している。この省エネ住宅1Aは、給湯タンク70及び熱交換機(室外機)71を備えて大気との間で熱交換を行って給湯用の湯を生成するヒートポンプ式給湯装置7を備えている。   FIG. 1 is a simplified vertical cross-sectional view for explaining the structure of an energy-saving house 1A provided with an underfloor heat storage air conditioning system according to a first embodiment of the present invention, and is a summer night state (when storing heat). Is shown. This energy-saving house 1A includes a heat pump type hot water supply device 7 that includes a hot water supply tank 70 and a heat exchanger (outdoor unit) 71 and generates heat for hot water supply by exchanging heat with the atmosphere.

また、この省エネ住宅1Aでは、部屋2,3の周囲と天井裏に断熱材が配設されていることに加え、屋根8と外壁9の内側に各々空気通路80,90を有して外壁9下端内側から入って上昇した外気が棟に開口した通気口82から抜ける構造とされており、断熱性に優れて屋内の温度を一定に維持しやすくなっている。   Moreover, in this energy-saving house 1A, in addition to the heat insulating material being disposed around the rooms 2 and 3 and the ceiling, the outer wall 9 has air passages 80 and 90 inside the roof 8 and the outer wall 9, respectively. The outside air that has entered from the inside of the lower end and has risen from the vent 82 opened in the wing is structured to be excellent in heat insulation and to keep the indoor temperature constant.

さらに、この省エネ住宅1Aは、前述のヒートポンプ式給湯装置7に加え、室外機71で生じた冷気を床下空間4Aまで導入する冷気導入通路51,55と、外気を床下空間4Aまで導入する外気導入通路(冷気導入通路と共通)と、床下空間4Aの冷気を各部屋2,3に送って冷房に使用するための冷房用空気通路20,30と、各部屋2,3の空気を外部に排出するための排気通路21,31,52とを備え、夜間にヒートポンプ式給湯装置7の運転で生じた冷気を床下空間4Aに導入して蓄熱手段を冷却し、日中に床下空間4Aに導入した外気を蓄熱手段で冷却して各部屋2,3の冷房に使用する床下蓄熱空調システムを備えている。尚、上述の構成は他の省エネ住宅にも見られる周知の技術である。   Furthermore, in addition to the heat pump type hot water supply device 7 described above, the energy-saving house 1A includes cold air introduction passages 51 and 55 for introducing the cold air generated by the outdoor unit 71 to the underfloor space 4A, and outside air introduction for introducing outside air to the underfloor space 4A. Passage (common to the cold air introduction passage), the cooling air passages 20 and 30 for sending the cold air in the underfloor space 4A to the rooms 2 and 3 for cooling, and the air in the rooms 2 and 3 are discharged to the outside. The exhaust passages 21, 31, and 52 are provided to cool the heat storage means by introducing cool air generated by the operation of the heat pump hot water supply device 7 at night into the underfloor space 4A, and introduced into the underfloor space 4A during the day. An underfloor heat storage air-conditioning system that cools the outside air with heat storage means and uses it to cool the rooms 2 and 3 is provided. The above-described configuration is a well-known technique found in other energy-saving houses.

そして、本発明による床下蓄熱空調システムを備えた省エネ住宅1Aは、その床下空間4Aが、少なくとも下半分を総ての側面及び上面をコンクリートで囲まれたベタ式の基礎コンクリート40の内側空間で構成され、その蓄熱手段の大部分(蓄熱量の80%以上が好ましい)が、その基礎コンクリート40によるものとされており、且つ、冷気導入通路51,55が外気導入通路を兼ねるとともに、屋根裏空間5で冷気導入通路51に排気通路52が並列している部分に熱交換型換気装置6が配置され、日中に導入した外気と排気との間で熱交換を行って両者の温度を平均化するようになっており、斯かる部分が本発明における特徴となっている。   And the energy-saving house 1A provided with the underfloor heat storage air-conditioning system according to the present invention, the underfloor space 4A is composed of an inner space of a solid basic concrete 40 in which at least the lower half is surrounded by concrete on all sides and upper surfaces. In addition, most of the heat storage means (preferably 80% or more of the heat storage amount) is due to the foundation concrete 40, and the cold air introduction passages 51 and 55 also serve as the outside air introduction passage, and the attic space 5 Thus, the heat exchange type ventilation device 6 is arranged in a portion where the exhaust passage 52 is in parallel with the cold air introduction passage 51, and heat is exchanged between the outside air introduced during the day and the exhaust to average the temperatures of both. Such a portion is a feature of the present invention.

即ち、木材や土よりも熱伝導性に優れた素材であるコンクリートを床下蓄熱空調システムの蓄熱手段に使用するとともにこれを器状に形成したことで、蓄熱手段としての充分な体積量を確保しながら比重の大きな冷気を導入して内側空間に溜めることになるため、蓄熱手段を効率的に冷却することができる。   That is, concrete, which is a material with higher thermal conductivity than wood and soil, is used as a heat storage means of the underfloor heat storage air conditioning system and formed into a vessel shape, thereby securing a sufficient volume as a heat storage means. However, since cold air having a large specific gravity is introduced and accumulated in the inner space, the heat storage means can be efficiently cooled.

また、その基礎コンクリート40は年間を通じて温度が安定している地盤100に底面を接していることで、夏季に外気よりも低い温度を維持しやすいと利点も有している。さらに、床下空間4A内で冷却する外気を予め排気との間で熱交換を行って当初温度よりも下げておくことにより、床下空間4Aにおける効率的な冷却を可能としている。   In addition, the foundation concrete 40 has an advantage that it is easy to maintain a temperature lower than the outside air in the summer because the bottom surface is in contact with the ground 100 whose temperature is stable throughout the year. Further, the outside air to be cooled in the underfloor space 4A is preliminarily subjected to heat exchange with the exhaust gas and is lowered below the initial temperature, thereby enabling efficient cooling in the underfloor space 4A.

本実施の形態では、前述のように室外機71の空気取込口から続く冷気導入通路51,55が外気導入通路を兼ねており、夜間のヒートポンプ式給湯装置7の運転時に冷気導入通路として使用し、日中の冷房時には外気導入通路として使用する方式としているが、冷気導入通路として使用する場合の送風駆動力のメインを室外機71のファンとし、外気導入通路として使用する場合における送風駆動力のメインを熱交換型換気装置6とすることにより、駆動エネルギーの節約と効率的な送風を両立しやすいものとなる。   In the present embodiment, as described above, the cold air introduction passages 51 and 55 that continue from the air intake port of the outdoor unit 71 also serve as the outside air introduction passage, and are used as the cold air introduction passage during operation of the heat pump hot water supply device 7 at night. However, when cooling during the daytime, the system is used as an outside air introduction passage. However, when the cooling air introduction passage is used, the main air blowing driving force is used as the fan of the outdoor unit 71, and the air blowing driving force when used as the outside air introduction passage. By making the main of the heat exchange type ventilator 6, it becomes easy to achieve both driving energy saving and efficient air blowing.

尚、熱交換型換気装置6としては、内部の外気用通路が排気との熱交換を行わない図中破線で示すようなバイパスルート62への切換え機能を備えた機種が好ましく、これにより夜間に外気導入通路を冷気導入通路として使用する際、バイパスルート62に切換えて冷気と排気との間で熱交換を行わない状態にすることができ、冷気が床下空間4Aに入る前に温度上昇してしまうのを回避可能となる。   The heat exchange type ventilator 6 is preferably a model having a function of switching to the bypass route 62 as shown by a broken line in the figure where the internal outside air passage does not exchange heat with the exhaust gas. When the outside air introduction passage is used as the cold air introduction passage, it is possible to switch to the bypass route 62 so that heat is not exchanged between the cold air and the exhaust, and the temperature rises before the cold air enters the underfloor space 4A. It can be avoided.

そして、夏季夜間のヒートポンプ式給湯装置7の運転時に、室外機71の空気取込口から取り込まれた外気は内部の熱交換手段で熱交換され、冷気(例えば15℃前後)となって、冷気導入通路51、熱交換型換気装置6(好ましくはバイパス通路62)、冷気導入通路55を通って床下空間4Aに導入される。   Then, during operation of the heat pump type hot water supply device 7 at night in summer, the outside air taken in from the air intake port of the outdoor unit 71 is heat-exchanged by the internal heat exchanging means and becomes cold air (for example, around 15 ° C.). The air is introduced into the underfloor space 4 </ b> A through the introduction passage 51, the heat exchange type ventilation device 6 (preferably the bypass passage 62), and the cold air introduction passage 55.

この床下空間4Aは布基礎による壁で仕切られておらず、複数の支持用柱状コンクリート41,42,・・・が所定の間隔で配置された構成となっており(図4と同様)、導入した冷気が総ての部分までまんべんなく行き渡りやすくなっている。そして、床下空間4Aに導入された冷気は、基礎コンクリート40の冷却に使用されてやや温度が上昇した状態の上部オーバーフロー分(涼風)が、冷房用空気通路20,30を通って各部屋2,3に供給され、夜間の冷房に使用されてから排気通路21,31、熱交換型換気装置6、排気通路52を通って屋外に排出される。   This underfloor space 4A is not partitioned by a cloth foundation wall, and has a configuration in which a plurality of supporting columnar concrete 41, 42,... Are arranged at predetermined intervals (similar to FIG. 4). The cold air is easy to spread all over. Then, the cool air introduced into the underfloor space 4A is used for cooling the foundation concrete 40, and the upper overflow portion (cool wind) in a state where the temperature is slightly raised passes through the cooling air passages 20 and 30 to each room 2, 3 is used for cooling at night, and then discharged to the outside through the exhaust passages 21, 31, the heat exchange ventilator 6, and the exhaust passage 52.

図2は、図1の省エネ住宅1Aの夏季日中の状態を示している。床下空間4Aの少なくとも下半分の内側面を構成する蓄熱手段としての基礎コンクリート40は、日中は導入した外気を冷却して冷房用の空気を生成するように機能するものであり、外気は室外機71の外気取込口、外気導入通路として使用される冷気導入通路51を経て、熱交換型換気装置6内で部屋2,3から来た排気との間で熱交換され、外気導入通路として使用される冷気導入通路55を経て床下空間4Aに導入される。この導入時点では当初よりも温度が低下した状態であるため、効率的な冷房機能を確保しやすいものとなっている。   FIG. 2 shows the summer daytime state of the energy-saving house 1A of FIG. The foundation concrete 40 as heat storage means constituting the inner surface of at least the lower half of the underfloor space 4A functions to cool the outside air introduced during the day to generate air for cooling, and the outside air is outdoor. Heat is exchanged between the exhaust air coming from the rooms 2 and 3 in the heat exchange type ventilator 6 through the cool air introduction passage 51 used as the outside air intake port of the machine 71 and the outside air introduction passage, and serves as the outside air introduction passage. It is introduced into the underfloor space 4A through the cold air introduction passage 55 to be used. Since the temperature is lower than that at the beginning at the time of introduction, it is easy to ensure an efficient cooling function.

即ち、例えば外気が32℃で部屋の空気が27℃である場合、熱交換型換気装置6により両者は平均化されて、排気が29℃程度、外気(調整外気)が30℃程度に調整されることから、床下空間4A内に導入されると比較的短時間で冷房に適した温度(例えば26℃)まで下げることが可能となるため、高温(32℃)の外気をそのまま導入する場合と比べて蓄熱手段による冷却機能が長時間に亘って発揮されやすくなり、エアコン運転の追加が殆ど不要なものとなる。   That is, for example, when the outside air is 32 ° C. and the room air is 27 ° C., both are averaged by the heat exchange ventilator 6 to adjust the exhaust to about 29 ° C. and the outside air (adjusted outside air) to about 30 ° C. Therefore, when it is introduced into the underfloor space 4A, it can be lowered to a temperature suitable for cooling (for example, 26 ° C.) in a relatively short time, so that high temperature (32 ° C.) outside air is introduced as it is. In comparison, the cooling function by the heat storage means is easily exhibited over a long period of time, and it is almost unnecessary to add an air conditioner operation.

この場合、冷房開始時点からしばらくの間は、夜のうちに床下空間4A内に溜めておいた冷気に外気(調整外気)を混合しながら冷房用空気として冷房用空気通路20,30を介して各部屋2,3に供給するが、その後は導入した外気を基礎コンクリート40で冷却しながら順次冷房用空気にして供給し(涼風)、基礎コンクリート40の容量が大きいことと地盤100の温度が安定的であることも相俟って、長時間に亘る冷房機能を発揮しながら部屋2,3の温度を快適な状態に維持するものである。   In this case, for a while from the start of cooling, the outside air (regulated outside air) is mixed with the cold air stored in the underfloor space 4A during the night as the cooling air through the cooling air passages 20 and 30. The air is supplied to each of the rooms 2 and 3, but after that, the introduced outside air is cooled by the basic concrete 40 and supplied as cooling air in order (cool wind), and the capacity of the basic concrete 40 is large and the temperature of the ground 100 is stable. In combination with this, the temperature of the rooms 2 and 3 is maintained in a comfortable state while exhibiting a cooling function for a long time.

図3は、本発明における第2の実施の形態である床下蓄熱空調システムを備えた省エネ住宅1Bを示しており、図4は図3のX−X線に沿う断面図を示している。この省エネ住宅1Bは、基本的な構成及び機能は前述の省エネ住宅1Aとほぼ共通しているが、その冷気導入通路56の末端側が床下空間4Bに配置した主配管57から複数分岐して、図4に示すように床下空間4Aの底面になる基礎コンクリート40の上面に密着するように横向きに延びながら配置密度を平均化して配置された複数の金属製の枝管57a,57b,・・・57k,57lで構成されており、各枝管57a,・・・の側面に所定間隔で設けた噴出孔571から基礎コンクリート40の上面に対し平行又は/及び斜めに向かう方向で冷気が噴出するようになっている点を特徴としている。   FIG. 3 shows an energy-saving house 1B provided with an underfloor heat storage air-conditioning system according to the second embodiment of the present invention, and FIG. 4 shows a cross-sectional view taken along the line XX of FIG. This energy-saving house 1B has almost the same basic configuration and function as the energy-saving house 1A described above, but the end side of the cold air introduction passage 56 is branched from the main pipe 57 arranged in the underfloor space 4B. As shown in FIG. 4, a plurality of metal branch pipes 57a, 57b,... 57k arranged by averaging the arrangement density while extending laterally so as to be in close contact with the upper surface of the foundation concrete 40 that becomes the bottom surface of the underfloor space 4A. , 57l so that cold air is jetted in a direction parallel to and / or obliquely with respect to the upper surface of the foundation concrete 40 from the blow holes 571 provided at predetermined intervals on the side surfaces of the branch pipes 57a,. It is characterized by.

即ち、図4に示すように、床下空間4Bは布基礎の壁で仕切られずに複数の支持用柱状コンクリート41,42,・・・が所定の間隔で配置されているが、主配管57から分岐した枝管57a,57b,・・・57k,57lでその底面を平均的にカバーして各噴出孔571,・・・から噴出した冷気が床下空間4B内にまんべんなく導入されるため、冷気が空間総てに亘って行き渡りやすくなっている。   That is, as shown in FIG. 4, the underfloor space 4 </ b> B is not partitioned by the cloth foundation wall, and a plurality of supporting column concretes 41, 42,... Since the branch pipes 57a, 57b,... 57k, 571 cover the bottom surface on average and the cold air ejected from the respective ejection holes 571,. It is easy to spread all over.

また、これに加え、冷気により冷却された状態の各枝管57a,・・・の底面が基礎コンクリート40に密着した状態であることから、基礎コンクリート40が直接的に冷却されるとともに、噴出孔571から噴出した冷気が直接当たることにより、基礎コンクリート40の冷却が極めて効率的に行われるものであ。   In addition to this, since the bottom surfaces of the branch pipes 57a,... In a state cooled by cold air are in close contact with the foundation concrete 40, the foundation concrete 40 is directly cooled and the ejection holes Cooling of the foundation concrete 40 is performed extremely efficiently by direct contact with the cold air ejected from 571.

尚、この枝管57a,・・・は、その末端側が閉鎖されていることが各噴出孔571の噴出圧力を平均的に確保する観点で好ましく、その底面に平坦部分を有する等して基礎コンクリート40上面との密着面積を大きくしたものが好適であり、その素材にアルミや銅などの熱伝導性に優れた金属を用いることが冷却効率の観点から好ましい。   The branch pipes 57a,... Are preferably closed from the end in terms of ensuring the average jet pressure of the jet holes 571, and have a flat portion on the bottom surface of the foundation concrete. A material having a large contact area with the upper surface of 40 is suitable, and it is preferable to use a metal having excellent thermal conductivity such as aluminum or copper as the material from the viewpoint of cooling efficiency.

図5は、図3の省エネ住宅1Bの夏季日中の状態を示しているが、本実施の形態においても、前述のようにその冷気導入通路51,56は外気導入通路を兼ねているとともに、その末端側の主配管57及び各枝管57a,・・・も外気導入通路を兼ねている。そのため、導入された外気(調整外気)は各枝管57a,・・・を通って各噴出孔571から導入される方式であるが、冷却された状態の各枝管57a,・・・を通る外気は内部で直接的に冷却された後に床下空間4B内にまんべんなく行き渡り、且つ、基礎コンクリート40上面に直接当たることで効率的に冷却されて短時間で冷房用空気になり、涼風として各部屋2,3に供給される。   FIG. 5 shows the state of the energy-saving house 1B in FIG. 3 during the summer day, but also in the present embodiment, the cold air introduction passages 51 and 56 also serve as the outside air introduction passage as described above. The main pipe 57 and the branch pipes 57a on the end side also serve as an outside air introduction passage. For this reason, the introduced outside air (adjusted outside air) is introduced from each ejection hole 571 through each branch pipe 57a,..., But passes through each branch pipe 57a,. After the outside air is directly cooled inside, it spreads uniformly in the underfloor space 4B, and by directly hitting the upper surface of the foundation concrete 40, the outside air is efficiently cooled and becomes air for cooling in a short time. , 3.

図6は、本発明における第3実施の形態である床下蓄熱空調システムを備えた省エネ住宅1Cであり、その夏季夜間の状態を示している。この省エネ住宅1Cも、基本的な構成及び機能は前述の省エネ住宅1Bとほぼ共通しているが、その主たる冷房用空気通路59の基端側が枝管57a,・・・及び主配管57で構成されており、日中の冷房時に床下空間4Cの空気が枝管57a,・・・を通って部屋2,3に供給される点を特徴としている。   FIG. 6 shows an energy-saving house 1C provided with an underfloor heat storage air-conditioning system according to a third embodiment of the present invention, and shows a state in the summer and night. This energy-saving house 1C also has the basic configuration and functions substantially the same as those of the energy-saving house 1B described above, but the base end side of the main cooling air passage 59 is constituted by branch pipes 57a,. The air in the underfloor space 4C is supplied to the rooms 2 and 3 through the branch pipes 57a,.

即ち、夜間の冷気導入の際の機能は前述と同様であり、基礎コンクリート40の冷却に使用した冷気は従たる冷房用空気通路22,32を通って夜間の冷房に使用されるものであるが、日中においては、図7に示すよう床下空間4Cに導入した外気(調整外気)が、主たる冷房用空気通路59の基端側を構成し基礎コンクリート40で冷却されている各枝管57a,・・・内を通ることで直接的に冷却されるため、冷房用空気が一層効率的に生成されるものである。   That is, the function at the time of introducing cold air at night is the same as described above, and the cold air used for cooling the foundation concrete 40 is used for cooling at night through the secondary air passages 22 and 32 for cooling. In the daytime, as shown in FIG. 7, the outside air (adjusted outside air) introduced into the underfloor space 4C constitutes the base end side of the main cooling air passage 59 and is cooled by the foundation concrete 40, ... because it is cooled directly by passing through it, cooling air is generated more efficiently.

この場合、冷房用空気通路59は、図のように外気導入通路を兼ねた冷気導入通路58と並列した別体のものとして、別個に主配管57に接続させておくことが必要であり、その途中に冷房用空気を送るための熱交換型換気装置6とは別個のファン60を配置して、冷房用空気通路65,66を介して各部屋2,3まで送風させる方式とすることが、冷房用空気の送風力確保の観点で好ましい。   In this case, the air passage 59 for cooling needs to be separately connected to the main pipe 57 as a separate body in parallel with the cold air introduction passage 58 that also serves as the outside air introduction passage as shown in the figure. It is possible to arrange a fan 60 separate from the heat exchanging ventilator 6 for sending air for cooling on the way and to blow air to the rooms 2 and 3 through the air passages 65 and 66 for cooling. This is preferable from the viewpoint of securing the blowing power of the cooling air.

一方、この冷房用空気通路59が外気導入通路として使用する冷気導入通路58と並列した状態で同じ主配管57に接続されている関係で、導入された外気がそのまま冷房用通路59に流入してしまう心配もある。そこで、図のように切換弁61を両者の並列部分に配置して、夜間の冷気導入時は冷房用空気通路59を閉鎖しておき(図6参照)日中の冷房時には切換弁61を切換えて、外気導入通路を床下空間4C内に開口した状態で冷房用空気通路59を開通させる(図7参照)構成とすることでこの問題を解決することができる。   On the other hand, since the cooling air passage 59 is connected to the same main pipe 57 in parallel with the cooling air introduction passage 58 used as the outside air introduction passage, the introduced outside air flows into the cooling passage 59 as it is. There is also a worry. Therefore, as shown in the figure, the switching valve 61 is arranged in the parallel part of both, and the cooling air passage 59 is closed when the cold air is introduced at night (see FIG. 6). The switching valve 61 is switched during the daytime cooling. Thus, this problem can be solved by adopting a configuration in which the cooling air passage 59 is opened with the outside air introduction passage opened in the underfloor space 4C (see FIG. 7).

尚、上述したように、本発明の床下蓄熱空調システム及びそれを備えた省エネ住宅1A,1B,1Cは、夏季の冷房使用時における省エネ性能に優れたものであるが、その各構成をそのまま使用することにより、冬季暖房時にも優れた省エネ性能と快適な住環境を提供することも可能であり、また、屋内の隅々に空気が循環することで他の季節においても快適さを確保しやすい利点を有している。   As described above, the underfloor heat storage air-conditioning system of the present invention and the energy-saving homes 1A, 1B, and 1C having the same are excellent in energy-saving performance during cooling use in summer, but each configuration is used as it is. By doing so, it is possible to provide excellent energy saving performance and a comfortable living environment even during winter heating, and it is easy to ensure comfort in other seasons because air circulates in every corner of the room Has advantages.

例えば、床下空間にエアコンを配置し深夜の安価な電力で基礎コンクリートに蓄熱しておくことで、他の時間帯に床下空間内に導入して暖めた暖房用空気を各部屋に供給する方式とすれば、地盤による安定的な温度が加わること及び床下を含む屋内の各あらゆる空間で空気が循環することも相俟って、優れた暖房効率を実現することができる。   For example, by placing an air conditioner in the underfloor space and storing heat in the basic concrete with inexpensive electricity at midnight, the heating air introduced into the underfloor space and heated in other times is supplied to each room. In this case, it is possible to realize excellent heating efficiency in combination with the addition of a stable temperature due to the ground and the circulation of air in every indoor space including under the floor.

以上、述べたように、ヒートポンプ式給湯装置で生じた冷気を利用する床下蓄熱空調システムについて、本発明により、従来よりも高い冷房効率を実現して夏季のエアコン運転両を最小限に抑えられるようになった。   As described above, the underfloor thermal storage air-conditioning system that uses the cold air generated by the heat pump hot water supply apparatus can achieve higher cooling efficiency than the conventional one and can minimize both summer air-conditioner operations. Became.

1A,1B,1C 省エネ住宅、2,3 部屋、4A,4B,4C 床下空間、6 熱交換型換気装置、7 ヒートポンプ式給湯装置、20,22.30,32,59,65,66 冷房用空気通路、21,31,52 排気通路、40 基礎コンクリート、41,42,43,44,45,46,47,48 支持用柱状コンクリート、51,55,56,58 冷気導入通路、57 主配管、57a,57b,57c,57d,57e,57f,57g,57h,57h,57i,57j,57k,57l 枝管、61 切換弁、62 バイパスルート,100 地盤、571 噴出孔   1A, 1B, 1C Energy saving house, 2, 3 rooms, 4A, 4B, 4C Underfloor space, 6 Heat exchange type ventilator, 7 Heat pump type hot water supply device, 20, 22.30, 32, 59, 65, 66 Air for cooling Passage, 21, 31, 52 Exhaust passage, 40 Foundation concrete, 41, 42, 43, 44, 45, 46, 47, 48 Supporting columnar concrete, 51, 55, 56, 58 Cold air introduction passage, 57 Main piping, 57a , 57b, 57c, 57d, 57e, 57f, 57g, 57h, 57h, 57i, 57j, 57k, 57l Branch pipe, 61 selector valve, 62 bypass route, 100 ground, 571 outlet

Claims (8)

床下に配置した蓄熱手段と、ヒートポンプ式給湯装置と、該ヒートポンプ式給湯装置から冷気を床下空間まで導入する冷気導入通路と、外気を前記床下空間まで導入する外気導入通路と、前記床下空間の冷気を各部屋に送って冷房に使用するための冷房用空気通路と、前記各部屋の空気を排出するための排気通路とを備え、夜間に前記ヒートポンプ式給湯装置の運転で生じた冷気を前記床下空間に導入して前記蓄熱手段を冷却しておき、日中に前記外気導入通路を介し前記床下空間まで導入した外気を前記蓄熱手段で冷却して前記各部屋の冷房に使用する床下蓄熱空調システムにおいて、
前記床下空間は、少なくとも下半分が総ての側面及び底面をコンクリートで囲まれたベタ式の基礎コンクリートの内側空間で構成されて前記蓄熱手段の大部分が前記基礎コンクリートによるものであり、且つ、前記外気導入通路と前記排気通路が並列する部分に熱交換型換気装置を有して、日中に導入する外気を排気との間で熱交換を行ってから前記床下空間に送るものとされている、ことを特徴とする床下蓄熱空調システム。
Heat storage means arranged under the floor, a heat pump hot water supply device, a cold air introduction passage for introducing cold air from the heat pump hot water supply device to the underfloor space, an outdoor air introduction passage for introducing outside air to the underfloor space, and the cold air in the underfloor space A cooling air passage for sending the air to each room and using it for cooling, and an exhaust passage for discharging the air in each room, and cool air generated by the operation of the heat pump hot water supply device at night under the floor An underfloor heat storage air conditioning system that cools the heat storage means by introducing it into a space, cools the outside air introduced to the underfloor space through the outside air introduction passage during the day by the heat storage means, and uses it for cooling each room. In
The underfloor space is composed of an inner space of solid basic concrete in which at least the lower half is surrounded by concrete on all sides and bottom, and most of the heat storage means is made of the basic concrete, and The outside air introduction passage and the exhaust passage have a heat exchange type ventilation device in parallel, and the outside air introduced during the day is exchanged with the exhaust and then sent to the underfloor space. Underfloor thermal storage air conditioning system.
前記冷気導入通路の末端側は、前記床下空間に配置した主配管から複数分岐して前記床下空間の底面になる前記基礎コンクリートの上面に密着した状態で横向きに延びながら配置密度を平均化するように複数配置された金属製の枝管で構成されており、夜間に前記各枝管の側面に設けた複数の噴出孔から冷気が噴出するものとされている、ことを特徴とする請求項1に記載した床下蓄熱空調システム。   The end side of the cold air introduction passage is branched from a main pipe arranged in the underfloor space, and the arrangement density is averaged while extending sideways in close contact with the upper surface of the foundation concrete that becomes the bottom surface of the underfloor space. 2. A plurality of metal branch pipes arranged at the same time, wherein cold air is jetted from a plurality of jet holes provided on a side surface of each branch pipe at night. Underfloor heat storage air conditioning system described in 1. 前記噴出孔は、前記基礎コンクリートの上面に対し平行又は/及び斜めに向かう向きで冷気が噴出するように形成されている、ことを特徴とする請求項2に記載した床下蓄熱空調システム。   The underfloor thermal storage air conditioning system according to claim 2, wherein the ejection holes are formed so that cold air is ejected in a direction parallel to and / or obliquely with respect to the upper surface of the foundation concrete. 前記冷気導入通路は前記外気導入通路を兼ねており、日中に前記ヒートポンプ式給湯装置の外気取込口から外気が取り込まれ前記主配管及び前記枝管を通って前記床下空間に噴出する、ことを特徴とする請求項2または3に記載した床下蓄熱空調システム。 The cold air introduction passage also serves as the outside air introduction passage, and outside air is taken in from the outside air intake port of the heat pump hot water supply device during the day, and is ejected to the underfloor space through the main pipe and the branch pipe. The underfloor thermal storage air conditioning system according to claim 2 or 3. 前記熱交換型換気装置は、内部の外気用通路を排気と熱交換を行わないバイパスルートに切換える機能を有しており、夜間に前記外気導入通路を前記冷気導入通路として使用する際に、所定の操作または事前の設定により前記バイパスルートに切換えることで、冷気と排気との間で熱交換を行わない状態の運転が可能とされている、ことを特徴とする請求項4に記載した床下蓄熱空調システム。   The heat exchange type ventilator has a function of switching an internal outside air passage to a bypass route that does not exchange heat with exhaust, and when the outside air introduction passage is used as the cold air introduction passage at night, a predetermined amount is used. The underfloor heat storage according to claim 4, wherein the operation in a state in which heat is not exchanged between the cold air and the exhaust is enabled by switching to the bypass route by an operation or a prior setting. Air conditioning system. 主たる前記冷房用空気通路の基端側が前記枝管及び前記主配管で構成されており、日中の冷房時に前記床下空間の空気が前記枝管内を通って前記各部屋に供給される、ことを特徴とする請求項4または5に記載した床下蓄熱空調システム。   The base end side of the main air passage for cooling is composed of the branch pipe and the main pipe, and the air in the underfloor space is supplied to the rooms through the branch pipe during cooling during the day. The underfloor heat storage air-conditioning system according to claim 4 or 5. 前記ヒートポンプ式給湯装置を備えているとともに、前記床下空間の少なくとも下半分が総ての側面及び底面をコンクリートで囲まれたベタ式の前記基礎コンクリートの内側空間で構成されている、ことを特徴とする請求項1,2,3,4,5または6に記載の床下蓄熱空調システムを備えた省エネ住宅。   The heat pump type hot water supply apparatus is provided, and at least the lower half of the underfloor space is configured by a solid inner space of the foundation concrete in which all side surfaces and bottom surfaces are surrounded by concrete. An energy saving house comprising the underfloor heat storage air conditioning system according to claim 1, 2, 3, 4, 5 or 6. 前記床下空間は、複数の支持用柱状コンクリートが所定の間隔で配置されており、布基礎による壁で仕切られていないことを特徴とする、請求項7に記載した省エネ住宅。   The energy-saving house according to claim 7, wherein a plurality of supporting columnar concretes are arranged at predetermined intervals in the underfloor space and are not partitioned by a cloth-based wall.
JP2011265357A 2011-12-04 2011-12-04 Underfloor thermal storage air conditioning system and energy-saving house equipped with the same Active JP5893905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011265357A JP5893905B2 (en) 2011-12-04 2011-12-04 Underfloor thermal storage air conditioning system and energy-saving house equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011265357A JP5893905B2 (en) 2011-12-04 2011-12-04 Underfloor thermal storage air conditioning system and energy-saving house equipped with the same

Publications (2)

Publication Number Publication Date
JP2013117353A true JP2013117353A (en) 2013-06-13
JP5893905B2 JP5893905B2 (en) 2016-03-23

Family

ID=48712033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011265357A Active JP5893905B2 (en) 2011-12-04 2011-12-04 Underfloor thermal storage air conditioning system and energy-saving house equipped with the same

Country Status (1)

Country Link
JP (1) JP5893905B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138128A (en) * 2018-02-08 2019-08-22 国立大学法人 東京大学 Ductless type dynamic insulation and heat storage system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140239U (en) * 1989-04-21 1990-11-22
JPH07310389A (en) * 1994-05-16 1995-11-28 Takiron Co Ltd Underfloor structure, and floor post therefor
JP2004197974A (en) * 2002-12-16 2004-07-15 Panahome Corp Air conditioner and air conditioning method for residence
JP2007298252A (en) * 2006-05-02 2007-11-15 Hideharu Aizawa Residential ventilator
WO2009050795A1 (en) * 2007-10-17 2009-04-23 Geo Power System Co., Ltd. Air-conditioning system utilizing natural energy and building using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140239U (en) * 1989-04-21 1990-11-22
JPH07310389A (en) * 1994-05-16 1995-11-28 Takiron Co Ltd Underfloor structure, and floor post therefor
JP2004197974A (en) * 2002-12-16 2004-07-15 Panahome Corp Air conditioner and air conditioning method for residence
JP2007298252A (en) * 2006-05-02 2007-11-15 Hideharu Aizawa Residential ventilator
WO2009050795A1 (en) * 2007-10-17 2009-04-23 Geo Power System Co., Ltd. Air-conditioning system utilizing natural energy and building using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138128A (en) * 2018-02-08 2019-08-22 国立大学法人 東京大学 Ductless type dynamic insulation and heat storage system
JP7333026B2 (en) 2018-02-08 2023-08-24 ジェイ建築システム株式会社 Ductless dynamic insulation and heat storage system

Also Published As

Publication number Publication date
JP5893905B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
CN102132111A (en) Heat pump-type cooling/heating system
CN107228436B (en) A kind of air-conditioning system cold based on solar energy and ground
CN112984597B (en) Interlayer ventilation type heating system based on phase-change material
CN105180388B (en) Rectilinear double seasons heat pipe recuperation of heat unit
TW201901100A (en) Floor air conditioning system which has low energy cost and simple structure
KR101309555B1 (en) Solar hot water system with cooling
JP2008256344A (en) Cooling/heating and heat/cold retaining system using cold in underground layer with less temeprature change for circulating liquid temperature-controlled by water temeprature control auxiliary device into whole building and container or in cooler/heater while using the liquid as cold source
CN111365801A (en) Indoor cooling device
KR100967132B1 (en) Energy saving and high efficient heat pump cooling and heating system using water source
JP2010014296A (en) Air conditioning system and unit building
JP5751599B2 (en) Hot water heating / cooling system
KR101131187B1 (en) Air condotioning equipment using underground air as the heat source and control method thereof
JP5893905B2 (en) Underfloor thermal storage air conditioning system and energy-saving house equipped with the same
CN103148553A (en) Ice storage type water heating cooling and heating central air conditioner
JP2010286144A (en) Heat storage type hot water supply air-conditioning system
KR101265937B1 (en) Cooling and heating system for building
CN201740331U (en) Multi-purpose split type refrigerator
JP4175445B2 (en) Hot water supply system and structure including the hot water supply system
CN112212429A (en) Low-energy-consumption air conditioner cooling system based on evaporative cooling and seasonal cold storage
JP4273361B1 (en) Air conditioner
JP2009250466A (en) Heating and cooling system and building
CN109631202A (en) A kind of accumulation of heat/cold storage double-flow style semiconductor air conditioner
CN219120679U (en) Composite air conditioning system
KR100940280B1 (en) Ice thermal storage system with heat pump
KR101233870B1 (en) Hybrid cooling and heating system for building using the thermal energy of the domestic supply water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160225

R150 Certificate of patent or registration of utility model

Ref document number: 5893905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250