JP2013113638A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2013113638A
JP2013113638A JP2011258172A JP2011258172A JP2013113638A JP 2013113638 A JP2013113638 A JP 2013113638A JP 2011258172 A JP2011258172 A JP 2011258172A JP 2011258172 A JP2011258172 A JP 2011258172A JP 2013113638 A JP2013113638 A JP 2013113638A
Authority
JP
Japan
Prior art keywords
semiconductor element
semiconductor device
temperature
semiconductor
low heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011258172A
Other languages
Japanese (ja)
Inventor
Shingo Iwasaki
真悟 岩崎
Takuya Kadoguchi
卓矢 門口
Sachikazu Suzuki
祥和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011258172A priority Critical patent/JP2013113638A/en
Publication of JP2013113638A publication Critical patent/JP2013113638A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device for measuring temperature of a hottest part of a semiconductor element.SOLUTION: The semiconductor device has: a semiconductor element; a temperature detection element which is provided so as to be in contact with the semiconductor element and detects temperature of the semiconductor element; a heat sink joined to one surface of the semiconductor element via a first joint part; and a metal plate joined to the other surface of the semiconductor element via a second joint part. A low heat conductive part lower in thermal conductivity than that of the metal plate and the heat sink is provided at any position which leads from the metal plate to the heat sink and overlaps the temperature detection element in planar view.

Description

本発明は、半導体素子の温度を検出する温度検出素子を備えた半導体装置に関する。   The present invention relates to a semiconductor device including a temperature detection element that detects the temperature of a semiconductor element.

半導体素子の温度を検出する温度検出素子を備えた半導体装置が知られている。例えば、パワー半導体素子であるIGBTの表面中央部及び表面周辺部の2箇所にダイオードを取り付けてそれらの温度を検出し、温度勾配監視手段が表面中央部の温度と表面周辺部の温度との温度勾配(温度差)を監視する半導体装置が知られている。   2. Description of the Related Art A semiconductor device including a temperature detection element that detects the temperature of a semiconductor element is known. For example, diodes are attached to two locations on the surface central portion and the surface peripheral portion of the IGBT, which is a power semiconductor element, and their temperatures are detected, and the temperature gradient monitoring means detects the temperature between the surface central portion temperature and the surface peripheral portion temperature. A semiconductor device for monitoring a gradient (temperature difference) is known.

この半導体装置では、動作状態検出手段がIGBTの動作状態、すなわち、オン状態かオフ状態かを検出し、素子電流検出手段がIGBTの大電流動作を検出する。そして、寿命推定手段は、動作状態検出手段がIGBTのオン状態を検出し、素子電流検出手段がIGBTの大電流動作を検出しているときだけ、温度勾配監視手段の監視結果に基づいた寿命の推定を行う。これにより、寿命推定時に、他のパワー半導体素子からの熱の影響による誤認識を防止している(例えば、特許文献1参照)。   In this semiconductor device, the operating state detecting means detects the operating state of the IGBT, that is, whether it is on or off, and the element current detecting means detects the large current operation of the IGBT. The life estimating means detects the life based on the monitoring result of the temperature gradient monitoring means only when the operation state detecting means detects the ON state of the IGBT and the element current detecting means detects the large current operation of the IGBT. Make an estimate. This prevents erroneous recognition due to the influence of heat from other power semiconductor elements at the time of life estimation (see, for example, Patent Document 1).

特開2011−023569号公報JP 2011-023569 A

しかしながら、上記半導体装置では、2つのダイオードを用いて温度検出しているが、半導体素子の温度は場所により異なるため、半導体素子の最高温部の温度を正しく測定できるとは限らない。半導体素子の最高温部の温度を正しく測定できないと、寿命推定の精度が低下する虞がある。   However, in the semiconductor device described above, the temperature is detected using two diodes. However, since the temperature of the semiconductor element differs depending on the location, the temperature of the highest temperature part of the semiconductor element cannot always be measured correctly. If the temperature of the highest temperature part of the semiconductor element cannot be measured correctly, the accuracy of life estimation may be reduced.

本発明は、上記に鑑みてなされたものであり、半導体素子の最高温部の温度を測定可能な半導体装置を提供することを課題とする。   This invention is made | formed in view of the above, and makes it a subject to provide the semiconductor device which can measure the temperature of the highest temperature part of a semiconductor element.

本半導体装置は、半導体素子と、前記半導体素子と接するように設けられ、前記半導体素子の温度を検出する温度検出素子と、前記半導体素子の一方の面に第1の接合部を介して接合される放熱板と、前記半導体素子の他方の面に第2の接合部を介して接合される金属板と、を有し、前記金属板から前記放熱板に至る何れかの位置であって、前記温度検出素子と平面視において重複する位置に、前記金属板及び前記放熱板よりも熱伝導率の低い低熱伝導部を設けたことを要件とする。   The semiconductor device is provided so as to be in contact with a semiconductor element, a temperature detection element that detects a temperature of the semiconductor element, and is bonded to one surface of the semiconductor element via a first bonding portion. A heat sink, and a metal plate joined to the other surface of the semiconductor element via a second joint, and any position from the metal plate to the heat sink, It is a requirement that a low thermal conductivity portion having a lower thermal conductivity than the metal plate and the heat radiating plate is provided at a position overlapping with the temperature detection element in plan view.

開示の技術によれば、半導体素子の最高温部の温度を測定可能な半導体装置を提供できる。   According to the disclosed technology, a semiconductor device capable of measuring the temperature of the highest temperature portion of the semiconductor element can be provided.

第1の実施の形態に係る半導体装置を例示する断面図である。1 is a cross-sectional view illustrating a semiconductor device according to a first embodiment. 比較例に係る半導体装置を例示する断面図である。It is sectional drawing which illustrates the semiconductor device which concerns on a comparative example. 第1の実施の形態に係る半導体装置において、半導体素子の動作時の温度の一例を示す図である。In the semiconductor device concerning a 1st embodiment, it is a figure showing an example of temperature at the time of operation of a semiconductor element. 第2の実施の形態に係る半導体装置を例示する断面図である。6 is a cross-sectional view illustrating a semiconductor device according to a second embodiment; FIG. 第3の実施の形態に係る半導体装置を例示する断面図である。6 is a cross-sectional view illustrating a semiconductor device according to a third embodiment; FIG. 第4の実施の形態に係る半導体装置を例示する断面図である。6 is a cross-sectional view illustrating a semiconductor device according to a fourth embodiment; FIG.

以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。   Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and redundant description may be omitted.

〈第1の実施の形態〉
図1は、第1の実施の形態に係る半導体装置を例示する断面図である。図1を参照するに、半導体装置10は、大略すると、半導体素子11と、接合部12と、放熱板13と、接合部14と、ブロック電極15と、低熱伝導部16と、接合部17と、放熱板18と、封止樹脂19とを有する。
<First Embodiment>
FIG. 1 is a cross-sectional view illustrating the semiconductor device according to the first embodiment. Referring to FIG. 1, a semiconductor device 10 is roughly composed of a semiconductor element 11, a joint portion 12, a radiator plate 13, a joint portion 14, a block electrode 15, a low heat conduction portion 16, and a joint portion 17. The heat sink 18 and the sealing resin 19 are included.

半導体装置10において、半導体素子11は、例えば、車両に搭載されるインバータ回路や昇降圧コンバータ回路の一部を構成する部品である。より詳しくは、半導体素子11は、例えば、IGBT(Insulated gate bipolar transistor)やMOSFET(Metal oxide semiconductor field‐effect transistor)のようなスイッチング素子である。又、半導体素子11は、例えば、IGBTと、IGBTのエミッタとコレクタとの間に接続される還流用のダイオードを含んだ素子等であってもよい。   In the semiconductor device 10, the semiconductor element 11 is a component that constitutes a part of an inverter circuit or a step-up / down converter circuit mounted on a vehicle, for example. More specifically, the semiconductor element 11 is a switching element such as an IGBT (Insulated gate bipolar transistor) or a MOSFET (Metal oxide semiconductor field-effect transistor). The semiconductor element 11 may be, for example, an element including an IGBT and a reflux diode connected between the emitter and collector of the IGBT.

以降、半導体素子11がIGBTである場合を例に説明を行う。又、搭載状態に応じて上下方向が異なるが、便宜上、放熱板13側を下方として説明を行う。従って、半導体装置10を図1のように視た場合の各構成部品の上側の面を上面、下側の面を下面という(他の実施の形態についても同様)。   Hereinafter, the case where the semiconductor element 11 is an IGBT will be described as an example. In addition, although the vertical direction differs depending on the mounting state, for the sake of convenience, description will be made with the heat radiating plate 13 side as the lower side. Accordingly, when the semiconductor device 10 is viewed as shown in FIG. 1, the upper surface of each component is referred to as the upper surface, and the lower surface is referred to as the lower surface (the same applies to other embodiments).

半導体素子11は、例えば、平面形状が矩形の薄板状とすることができる。半導体素子11の下面(放熱板13側の面)には、例えばコレクタ電極(図示せず)が露出している。半導体素子11の下面に露出するコレクタ電極(図示せず)は、接合部12を介して、放熱板13の上面に接合されている。なお、接合部12は、本発明に係る第1の接合部の代表的な一例である。   For example, the semiconductor element 11 may be a thin plate having a rectangular planar shape. For example, a collector electrode (not shown) is exposed on the lower surface of the semiconductor element 11 (the surface on the heat dissipation plate 13 side). A collector electrode (not shown) exposed on the lower surface of the semiconductor element 11 is bonded to the upper surface of the heat sink 13 via the bonding portion 12. In addition, the junction part 12 is a typical example of the 1st junction part which concerns on this invention.

半導体素子11の上面(放熱板18側の面)には、例えばエミッタ電極(図示せず)が露出している。半導体素子11の上面に露出するエミッタ電極(図示せず)は、接合部14を介して、ブロック電極15の下面に接合されている。なお、接合部14は、本発明に係る第2の接合部の代表的な一例である。   For example, an emitter electrode (not shown) is exposed on the upper surface of the semiconductor element 11 (the surface on the heat dissipation plate 18 side). An emitter electrode (not shown) exposed on the upper surface of the semiconductor element 11 is bonded to the lower surface of the block electrode 15 via the bonding portion 14. In addition, the junction part 14 is a typical example of the 2nd junction part which concerns on this invention.

又、半導体素子11の上面に露出するゲート電極(図示せず)は、金や銅等からなる導電性の細線であるボンディングワイヤ(図示せず)を介して、配線部材(図示せず)に接合されている。配線部材(図示せず)は、例えば、放熱板13と共に1つのリードフレームから形成されており、一端が封止樹脂19から露出している。封止樹脂19から露出している配線部材の一端(図示せず)は、外部接続端子として機能する。   A gate electrode (not shown) exposed on the upper surface of the semiconductor element 11 is connected to a wiring member (not shown) via a bonding wire (not shown) which is a conductive thin wire made of gold, copper or the like. It is joined. The wiring member (not shown) is formed from, for example, one lead frame together with the heat radiating plate 13, and one end is exposed from the sealing resin 19. One end (not shown) of the wiring member exposed from the sealing resin 19 functions as an external connection terminal.

平面視において、半導体素子11の上面側の中央部には、半導体素子11と接するように温度検出素子11aが設けられている。温度検出素子11aは、例えば、ダイオードであり、半導体素子11の温度を検出する機能を有する。但し、温度検出素子11aは、半導体素子11に内蔵されてもよいし、半導体素子11の上面又は下面に設けられてもよい。   In a plan view, a temperature detection element 11 a is provided at the center of the upper surface side of the semiconductor element 11 so as to be in contact with the semiconductor element 11. The temperature detection element 11 a is a diode, for example, and has a function of detecting the temperature of the semiconductor element 11. However, the temperature detection element 11 a may be built in the semiconductor element 11 or may be provided on the upper surface or the lower surface of the semiconductor element 11.

放熱板13及び18は、半導体素子11等を介して、互いに対向するように配置されている。放熱板13及び18は、半導体素子11が動作時に発する熱を、半導体装置10の外部に放出する機能を有する。放熱板13及び18の材料としては、例えば、銅(Cu)や銅合金、アルミニウム(Al)等の熱伝導性及び電気伝導性に優れた金属を用いることができる。放熱板13及び18のそれぞれの厚さは、例えば、2mm程度とすることができる。   The heat sinks 13 and 18 are arranged so as to face each other with the semiconductor element 11 and the like interposed therebetween. The radiator plates 13 and 18 have a function of releasing heat generated by the semiconductor element 11 during operation to the outside of the semiconductor device 10. As a material of the heat sinks 13 and 18, for example, a metal having excellent thermal conductivity and electrical conductivity such as copper (Cu), a copper alloy, and aluminum (Al) can be used. Each thickness of the heat sinks 13 and 18 can be about 2 mm, for example.

放熱板18の下面側には、凹部18xが形成されている。凹部18xは、ブロック電極15と放熱板18とを接合部17を介して接合する際に、溶融した接合部17が放熱板18の下面に必要以上に濡れ広がらないように形成されている。つまり、溶融した接合部17のうち余剰な部分は、凹部18xに収容される。   A recess 18 x is formed on the lower surface side of the heat radiating plate 18. The concave portion 18x is formed so that the melted joint portion 17 does not spread more than necessary on the lower surface of the heat sink plate 18 when the block electrode 15 and the heat sink plate 18 are joined via the joint portion 17. That is, an excessive portion of the melted joint portion 17 is accommodated in the recess portion 18x.

接合部12、14、及び17としては、例えば、Sn−Ag等のはんだ材料を用いることができる。接合部12、14、及び17として、例えば、銀(Ag)ペースト等を用いても構わない。   As the joining parts 12, 14, and 17, for example, a solder material such as Sn—Ag can be used. For example, a silver (Ag) paste or the like may be used as the joints 12, 14, and 17.

なお、接合部12、14、及び17は、必ずしも同一材料を用いなくてもよい。例えば、半導体装置10の製造工程上、最初に溶融する接合部よりも後に溶融する接合部に、より低融点のはんだ材料を用いてもよい。例えば、半導体装置10の製造工程上、最初に溶融する接合部にはSn−Ag(融点220℃程度)を用い、後に溶融する接合部にはSn−Agよりも低融点であるSn−Bi(融点139℃程度)を用いることができる。   Note that the same material is not necessarily used for the joints 12, 14, and 17. For example, in the manufacturing process of the semiconductor device 10, a solder material having a lower melting point may be used for a joint that melts later than a joint that melts first. For example, in the manufacturing process of the semiconductor device 10, Sn—Ag (melting point: about 220 ° C.) is used for the first melting portion, and Sn—Bi (melting point lower than Sn—Ag) is used for the bonding portion that is melted later. Melting point of about 139 ° C.).

なお、接合部12、14、及び17のそれぞれの厚さは、例えば、0.2mm程度であるため、これらのみによりボンディングワイヤ(図示せず)等を配置する高さを確保することは困難である。そのため、ボンディングワイヤ(図示せず)等を配置する高さを確保するためのスペーサとしての機能を有するブロック電極15が配置されている。   In addition, since each thickness of the junction parts 12, 14, and 17 is about 0.2 mm, for example, it is difficult to secure a height for arranging a bonding wire (not shown) or the like only by these. is there. Therefore, the block electrode 15 having a function as a spacer for securing a height for arranging a bonding wire (not shown) or the like is arranged.

ブロック電極15の上面は、接合部17を介して、放熱板18の下面に接合されている。ブロック電極15の材料としては、例えば、銅(Cu)や銅合金、アルミニウム(Al)等の熱伝導性及び電気伝導性に優れた金属を用いることができる。ブロック電極15の厚さは、例えば、1mm程度とすることができる。なお、ブロック電極15は、本発明に係る金属板の代表的な一例である。   The upper surface of the block electrode 15 is bonded to the lower surface of the heat radiating plate 18 via the bonding portion 17. As a material of the block electrode 15, for example, a metal having excellent thermal conductivity and electrical conductivity such as copper (Cu), a copper alloy, and aluminum (Al) can be used. The thickness of the block electrode 15 can be about 1 mm, for example. The block electrode 15 is a typical example of the metal plate according to the present invention.

ブロック電極15の下面側には、低熱伝導部16が設けられている。低熱伝導部16は、ブロック電極15の下面に設けられた凹部に接合部14を構成する材料が充填された構造である。低熱伝導部16に充填される材料(接合部14を構成する材料)は、ブロック電極15を構成する材料よりも熱伝導率が低い。   On the lower surface side of the block electrode 15, a low heat conduction portion 16 is provided. The low heat conducting portion 16 has a structure in which a concave portion provided on the lower surface of the block electrode 15 is filled with a material constituting the joining portion 14. The material that fills the low thermal conductivity portion 16 (the material that constitutes the bonding portion 14) has a lower thermal conductivity than the material that constitutes the block electrode 15.

凹部の平面形状は、例えば円形であり、その場合の直径は、例えば1mm程度とすることができる。凹部の深さは、例えば、0.5mm程度とすることができる。但し、凹部の平面形状は、円形には限定されず、楕円形や多角形等の任意の形状として構わない。低熱伝導部16は、平面視において、温度検出素子11aと重複する位置に形成されている。低熱伝導部16は、平面視において、温度検出素子11aと重複する位置に、複数個形成してもよい。低熱伝導部16の有する特有の効果については、後述する。   The planar shape of the recess is, for example, a circle, and the diameter in that case can be, for example, about 1 mm. The depth of the recess can be, for example, about 0.5 mm. However, the planar shape of the recess is not limited to a circle, and may be an arbitrary shape such as an ellipse or a polygon. The low heat conduction part 16 is formed in the position which overlaps with the temperature detection element 11a in planar view. A plurality of the low heat conducting portions 16 may be formed at positions overlapping the temperature detecting element 11a in plan view. The specific effects of the low heat conducting unit 16 will be described later.

半導体素子11、接合部12、放熱板13、接合部14、ブロック電極15、低熱伝導部16、接合部17、及び放熱板18は、封止樹脂19により封止されている。封止樹脂19としては、例えば、エポキシ系絶縁樹脂等を用いることができる。封止樹脂19は、フィラーを含有しても構わない。   The semiconductor element 11, the joint portion 12, the heat radiating plate 13, the joint portion 14, the block electrode 15, the low heat conduction portion 16, the joint portion 17, and the heat radiating plate 18 are sealed with a sealing resin 19. As the sealing resin 19, for example, an epoxy insulating resin or the like can be used. The sealing resin 19 may contain a filler.

但し、放熱板13の下面(放熱面)及び放熱板18の上面(放熱面)は、半導体素子11が動作時に発する熱を、半導体装置10の外部に放出するため、封止樹脂19から露出している。又、放熱板13の側面の一部及び放熱板18の側面の一部は突出しており、封止樹脂19から露出している(図示せず)。封止樹脂19から露出している放熱板13及び18の側面の突出部(図示せず)は、外部接続端子として機能する。   However, the lower surface (heat radiating surface) of the heat radiating plate 13 and the upper surface (heat radiating surface) of the heat radiating plate 18 are exposed from the sealing resin 19 in order to release heat generated by the semiconductor element 11 during operation to the outside of the semiconductor device 10. ing. Further, a part of the side surface of the heat radiating plate 13 and a part of the side surface of the heat radiating plate 18 protrude and are exposed from the sealing resin 19 (not shown). Projections (not shown) on the side surfaces of the heat radiation plates 13 and 18 exposed from the sealing resin 19 function as external connection terminals.

ここで、比較例を示しながら、低熱伝導部16の有する特有の効果について説明する。図2は、比較例に係る半導体装置を例示する断面図である。図2(a)は断面図であり、図2(b)は半導体素子の動作時の温度の一例を示す図である。   Here, a specific effect of the low thermal conductive portion 16 will be described with reference to a comparative example. FIG. 2 is a cross-sectional view illustrating a semiconductor device according to a comparative example. FIG. 2A is a cross-sectional view, and FIG. 2B is a diagram illustrating an example of temperature during operation of the semiconductor element.

図2を参照するに、比較例に係る半導体装置10xは、低熱伝導部16が形成されていない点を除いて、第1の実施の形態に係る半導体装置10と同様の構造である。半導体装置10xにおいて、ブロック電極15の平面形状は半導体素子11のサイズよりも小さいので、半導体素子11の外縁部(ブロック電極15と接していない部分)では放熱性能が低い。   Referring to FIG. 2, the semiconductor device 10x according to the comparative example has the same structure as that of the semiconductor device 10 according to the first embodiment, except that the low thermal conduction portion 16 is not formed. In the semiconductor device 10x, since the planar shape of the block electrode 15 is smaller than the size of the semiconductor element 11, the heat dissipation performance is low at the outer edge portion (the portion not in contact with the block electrode 15) of the semiconductor element 11.

このため、図2(b)に示すように、温度検出素子11aが配置されている半導体素子11の中央部の温度よりも半導体素子11の外縁部の温度が高くなる場合がある。この場合、温度検出素子11aの検出した半導体素子11の中央部の温度を補正して、半導体素子11の外縁部の温度を推定する必要があり、温度検出の精度が低下する虞がある。   For this reason, as shown in FIG.2 (b), the temperature of the outer edge part of the semiconductor element 11 may become higher than the temperature of the center part of the semiconductor element 11 in which the temperature detection element 11a is arrange | positioned. In this case, it is necessary to correct the temperature of the central portion of the semiconductor element 11 detected by the temperature detecting element 11a to estimate the temperature of the outer edge portion of the semiconductor element 11, and the accuracy of temperature detection may be reduced.

なお、ブロック電極15の平面形状が半導体素子11のサイズよりも小さい理由は、ブロック電極15は半導体素子11の上面に露出するエミッタ電極に接合されるが、エミッタ電極は半導体素子11の上面外縁部には形成されていないためである。   The reason why the planar shape of the block electrode 15 is smaller than the size of the semiconductor element 11 is that the block electrode 15 is joined to the emitter electrode exposed on the upper surface of the semiconductor element 11. This is because it is not formed.

このように、ブロック電極15の平面形状が半導体素子11のサイズよりも小さいため、半導体素子11の外縁部の放熱性能が低下するが、これ以外にも、以下の要因により、半導体素子11の放熱性能が部分的に低下する虞がある。   As described above, since the planar shape of the block electrode 15 is smaller than the size of the semiconductor element 11, the heat dissipation performance of the outer edge portion of the semiconductor element 11 is deteriorated. In addition to this, the heat dissipation of the semiconductor element 11 is caused by the following factors. There is a possibility that the performance is partially reduced.

すなわち、第1に、接合部12や14にボイドが存在すると、ボイドが存在する領域の放熱性能が低下するため、ボイドが存在する領域に対応する部分の半導体素子11の温度が上昇する虞がある。   That is, first, if there are voids in the joints 12 and 14, the heat dissipation performance in the region where the voids are present decreases, and therefore the temperature of the semiconductor element 11 in the portion corresponding to the region where the voids are likely to rise. is there.

第2に、ブロック電極15が半導体素子11の上面のエミッタ電極(図示せず)に対してずれて実装されると、接合部14を介してブロック電極15と接していない部分のエミッタ電極(図示せず)での放熱性能が低下し、半導体素子11の外縁部の温度が上昇する虞がある。   Secondly, when the block electrode 15 is mounted so as to be displaced with respect to the emitter electrode (not shown) on the upper surface of the semiconductor element 11, a portion of the emitter electrode (not shown) that is not in contact with the block electrode 15 via the junction 14. (Not shown) may deteriorate, and the temperature of the outer edge of the semiconductor element 11 may increase.

第3に、半導体装置10xが半導体素子11に加えて他の半導体素子を有する場合、半導体装置10xのサイズを小さくするために、半導体素子11と他の半導体素子との間隔が狭く設定される場合が多い。このような場合に、半導体素子11及び他の半導体素子がそれぞれ発熱し、両者の熱干渉により、半導体素子11及び他の半導体素子のそれぞれの外縁部の温度が上昇する虞がある。   Third, in the case where the semiconductor device 10x has other semiconductor elements in addition to the semiconductor element 11, the interval between the semiconductor element 11 and the other semiconductor elements is set narrow in order to reduce the size of the semiconductor device 10x. There are many. In such a case, the semiconductor element 11 and other semiconductor elements generate heat, and there is a risk that the temperature of the outer edge of each of the semiconductor elements 11 and other semiconductor elements will rise due to thermal interference between them.

一方、第1の実施の形態に係る半導体装置10では、ブロック電極15の下面側に低熱伝導部16が設けられている。低熱伝導部16を構成する材料(接合部14の材料)には、ブロック電極15を構成する材料よりも熱伝導率が低い材料が選定される。このため、低熱伝導部16の部分の放熱性能は、その周辺のブロック電極15の放熱性能よりも低下する。   On the other hand, in the semiconductor device 10 according to the first embodiment, the low heat conduction portion 16 is provided on the lower surface side of the block electrode 15. A material having a lower thermal conductivity than the material constituting the block electrode 15 is selected as the material constituting the low thermal conduction portion 16 (the material of the joint portion 14). For this reason, the heat dissipation performance of the portion of the low heat conducting portion 16 is lower than the heat dissipation performance of the surrounding block electrode 15.

その結果、図3に示すように、低熱伝導部16の部分の温度を、意図的に周辺部の温度よりも高くすることができる。つまり、前述のような要因により、半導体素子11の温度が部分的に高くなる領域が存在しても、低熱伝導部16の部分の温度を更に高くすることが可能となり、低熱伝導部16の部分を半導体素子11の最高温部とすることができる。   As a result, as shown in FIG. 3, the temperature of the portion of the low heat conducting portion 16 can be intentionally made higher than the temperature of the peripheral portion. That is, even if there is a region where the temperature of the semiconductor element 11 is partially increased due to the above-described factors, it is possible to further increase the temperature of the portion of the low heat conduction portion 16, and the portion of the low heat conduction portion 16. Can be the highest temperature part of the semiconductor element 11.

ところで、前述のように、低熱伝導部16は、平面視において、温度検出素子11aと重複する位置に形成されているため、温度検出素子11aは半導体素子11の最高温部の温度を直接測定可能となる。   By the way, as described above, the low heat conduction part 16 is formed at a position overlapping the temperature detection element 11a in plan view, and therefore the temperature detection element 11a can directly measure the temperature of the highest temperature part of the semiconductor element 11. It becomes.

つまり、比較例に係る半導体素子10xのように、温度検出素子11aの検出した温度を補正して半導体素子11の最高温部の温度(例えば、半導体素子11の外縁部の温度)を推定する必要がないため、半導体素子11の温度検出の精度を向上できる。又、半導体素子11の温度検出の精度を向上できる結果、温度検出素子11aの検出結果に基づいて、半導体素子11の電流制御の精度も向上できる。   That is, like the semiconductor element 10x according to the comparative example, it is necessary to correct the temperature detected by the temperature detection element 11a and estimate the temperature of the highest temperature portion of the semiconductor element 11 (for example, the temperature of the outer edge portion of the semiconductor element 11). Therefore, the temperature detection accuracy of the semiconductor element 11 can be improved. In addition, as a result of improving the temperature detection accuracy of the semiconductor element 11, the current control accuracy of the semiconductor element 11 can also be improved based on the detection result of the temperature detection element 11a.

なお、低熱伝導部16の部分は、常に半導体素子11の最高温部となるため、低熱伝導部16を構成するはんだ材料にストレスがかかるが、低熱伝導部16の部分のはんだ材料は厚いため、さほど大きな歪は発生せず、はんだ材料の寿命が低下する虞は少ない。   In addition, since the part of the low heat conduction part 16 is always the highest temperature part of the semiconductor element 11, stress is applied to the solder material constituting the low heat conduction part 16, but the solder material of the part of the low heat conduction part 16 is thick, Not much strain is generated, and there is little possibility that the life of the solder material is reduced.

なお、半導体装置10では、ブロック電極15の下面側に低熱伝導部16が設けられているが、ブロック電極15の上面側に低熱伝導部16を設けた場合にも、同様の効果を奏する。又、ブロック電極15の上面側及び下面側に、それぞれ低熱伝導部16を設けた場合にも、同様の効果を奏する。   In the semiconductor device 10, the low heat conduction portion 16 is provided on the lower surface side of the block electrode 15, but the same effect can be obtained when the low heat conduction portion 16 is provided on the upper surface side of the block electrode 15. Further, when the low heat conduction portions 16 are provided on the upper surface side and the lower surface side of the block electrode 15, the same effect can be obtained.

〈第2の実施の形態〉
第2の実施の形態では、下側の放熱板に低熱伝導部を設ける例を示す。なお、第2の実施の形態において、既に説明した実施の形態と同一構成部品についての説明は省略する。
<Second Embodiment>
In 2nd Embodiment, the example which provides a low heat conductive part in a lower heat sink is shown. In the second embodiment, the description of the same components as those of the already described embodiments is omitted.

図4は、第2の実施の形態に係る半導体装置を例示する断面図である。図4を参照するに、半導体装置20は、低熱伝導部16が低熱伝導部26に置換された点が半導体装置10(図1参照)と相違する。つまり、半導体装置10では、ブロック電極15の下面に低熱伝導部16が設けられていたが、半導体装置20では、放熱板13の上面に低熱伝導部26が設けられている。   FIG. 4 is a cross-sectional view illustrating a semiconductor device according to the second embodiment. Referring to FIG. 4, the semiconductor device 20 is different from the semiconductor device 10 (see FIG. 1) in that the low heat conduction unit 16 is replaced with a low heat conduction unit 26. In other words, in the semiconductor device 10, the low heat conductive portion 16 is provided on the lower surface of the block electrode 15, but in the semiconductor device 20, the low heat conductive portion 26 is provided on the upper surface of the heat sink 13.

低熱伝導部26は、放熱板13の上面に設けられた凹部に接合部12を構成する材料が充填された構造である。低熱伝導部26に充填される材料(接合部12を構成する材料)は、放熱板13を構成する材料よりも熱伝導率が低い。   The low heat conducting portion 26 has a structure in which a concave portion provided on the upper surface of the heat radiating plate 13 is filled with a material constituting the joining portion 12. The material that fills the low thermal conductivity portion 26 (the material that constitutes the joint portion 12) has a lower thermal conductivity than the material that constitutes the heat sink 13.

凹部の平面形状は、例えば円形であり、その場合の直径は、例えば1mm程度とすることができる。凹部の深さは、例えば、0.5mm程度とすることができる。但し、凹部の平面形状は、円形には限定されず、楕円形や多角形等の任意の形状として構わない。低熱伝導部26は、平面視において、温度検出素子11aと重複する位置に形成されている。低熱伝導部26は、平面視において、温度検出素子11aと重複する位置に、複数個形成してもよい。   The planar shape of the recess is, for example, a circle, and the diameter in that case can be, for example, about 1 mm. The depth of the recess can be, for example, about 0.5 mm. However, the planar shape of the recess is not limited to a circle, and may be an arbitrary shape such as an ellipse or a polygon. The low heat conduction part 26 is formed at a position overlapping the temperature detection element 11a in plan view. A plurality of low heat conducting portions 26 may be formed at a position overlapping the temperature detecting element 11a in plan view.

低熱伝導部26を構成する材料(接合部12の材料)には、放熱板13を構成する材料よりも熱伝導率が低い材料が選定される。このため、低熱伝導部26の部分の放熱性能は、その周辺の放熱板13の放熱性能よりも低下する。その結果、図3と同様に、低熱伝導部26の部分の温度を、意図的に周辺部の温度よりも高くすることができる。これにより、第1の実施の形態と同様の効果を奏する。
〈第3の実施の形態〉
第3の実施の形態では、ブロック電極を貫通する低熱伝導部を設ける例を示す。なお、第3の実施の形態において、既に説明した実施の形態と同一構成部品についての説明は省略する。
A material having a lower thermal conductivity than the material forming the heat radiating plate 13 is selected as the material forming the low heat conducting unit 26 (the material of the bonding unit 12). For this reason, the heat dissipation performance of the portion of the low heat conducting portion 26 is lower than the heat dissipation performance of the surrounding heat sink 13. As a result, similarly to FIG. 3, the temperature of the portion of the low heat conduction portion 26 can be intentionally made higher than the temperature of the peripheral portion. Thereby, there exists an effect similar to 1st Embodiment.
<Third Embodiment>
In the third embodiment, an example in which a low heat conduction portion that penetrates the block electrode is provided. In the third embodiment, the description of the same components as those of the already described embodiments is omitted.

図5は、第3の実施の形態に係る半導体装置を例示する断面図である。図5を参照するに、半導体装置30は、低熱伝導部16が低熱伝導部36に置換された点が半導体装置10(図1参照)と相違する。つまり、半導体装置10では、ブロック電極15の下面に低熱伝導部16が設けられていたが、半導体装置30では、ブロック電極15を貫通する低熱伝導部36が設けられている。   FIG. 5 is a cross-sectional view illustrating a semiconductor device according to the third embodiment. Referring to FIG. 5, the semiconductor device 30 is different from the semiconductor device 10 (see FIG. 1) in that the low heat conduction unit 16 is replaced with a low heat conduction unit 36. That is, in the semiconductor device 10, the low heat conduction part 16 is provided on the lower surface of the block electrode 15, but in the semiconductor device 30, the low heat conduction part 36 penetrating the block electrode 15 is provided.

低熱伝導部36は、ブロック電極15を厚さ方向に貫通する貫通孔に接合部14を構成する材料が充填された構造である。但し、接合部14を構成する材料に代えて、接合部17を構成する材料を充填してもよい。低熱伝導部36に充填される材料(接合部14又は17を構成する材料)は、ブロック電極15を構成する材料よりも熱伝導率が低い。   The low heat conducting portion 36 has a structure in which a material constituting the joint portion 14 is filled in a through hole that penetrates the block electrode 15 in the thickness direction. However, instead of the material constituting the joint 14, the material constituting the joint 17 may be filled. The material that fills the low thermal conductivity portion 36 (the material that constitutes the bonding portion 14 or 17) has a lower thermal conductivity than the material that constitutes the block electrode 15.

貫通孔の平面形状は、例えば円形であり、その場合の直径は、例えば1mm程度とすることができる。貫通孔の深さ(ブロック電極の厚さ)は、例えば、1mm程度とすることができる。但し、貫通孔の平面形状は、円形には限定されず、楕円形や多角形等の任意の形状として構わない。低熱伝導部36は、平面視において、温度検出素子11aと重複する位置に形成されている。低熱伝導部36は、平面視において、温度検出素子11aと重複する位置に、複数個形成してもよい。   The planar shape of the through hole is, for example, a circle, and the diameter in that case can be, for example, about 1 mm. The depth of the through hole (thickness of the block electrode) can be set to about 1 mm, for example. However, the planar shape of the through hole is not limited to a circle, and may be an arbitrary shape such as an ellipse or a polygon. The low heat conduction part 36 is formed at a position overlapping the temperature detection element 11a in plan view. A plurality of low heat conducting portions 36 may be formed at a position overlapping the temperature detecting element 11a in plan view.

低熱伝導部36を構成する材料(接合部14又は17の材料)には、ブロック電極15を構成する材料よりも熱伝導率が低い材料が選定される。このため、低熱伝導部36の部分の放熱性能は、その周辺のブロック電極15の放熱性能よりも低下する。その結果、図3と同様に、低熱伝導部36の部分の温度を、意図的に周辺部の温度よりも高くすることができる。これにより、第1の実施の形態と同様の効果を奏する。   A material having a lower thermal conductivity than the material constituting the block electrode 15 is selected as the material constituting the low thermal conductivity portion 36 (the material of the joint portion 14 or 17). For this reason, the heat dissipation performance of the portion of the low thermal conduction portion 36 is lower than the heat dissipation performance of the surrounding block electrode 15. As a result, similarly to FIG. 3, the temperature of the portion of the low heat conducting portion 36 can be intentionally made higher than the temperature of the peripheral portion. Thereby, there exists an effect similar to 1st Embodiment.

〈第4の実施の形態〉
第4の実施の形態では、半導体素子とブロック電極との間に低熱伝導部を挟み込む例を示す。なお、第4の実施の形態において、既に説明した実施の形態と同一構成部品についての説明は省略する。
<Fourth embodiment>
In the fourth embodiment, an example in which a low thermal conductive portion is sandwiched between a semiconductor element and a block electrode is shown. Note that in the fourth embodiment, descriptions of the same components as those of the already described embodiments are omitted.

図6は、第4の実施の形態に係る半導体装置を例示する断面図である。図6を参照するに、半導体装置40は、低熱伝導部16が低熱伝導部46に置換された点が半導体装置10(図1参照)と相違する。つまり、半導体装置10では、ブロック電極15の下面に低熱伝導部16が設けられていたが、半導体装置40では、半導体素子11とブロック電極15との間に低熱伝導部46が挟み込まれている。   FIG. 6 is a cross-sectional view illustrating a semiconductor device according to the fourth embodiment. Referring to FIG. 6, the semiconductor device 40 is different from the semiconductor device 10 (see FIG. 1) in that the low heat conduction unit 16 is replaced with a low heat conduction unit 46. That is, in the semiconductor device 10, the low heat conduction part 16 is provided on the lower surface of the block electrode 15, but in the semiconductor device 40, the low heat conduction part 46 is sandwiched between the semiconductor element 11 and the block electrode 15.

低熱伝導部46は、半導体素子11やブロック電極15とは別の部材であり、低熱伝導部46の側面は接合部14と接している。低熱伝導部46は、ブロック電極15を構成する材料よりも熱伝導率が低い。なお、半導体素子11と低熱伝導部46との間、ブロック電極15と低熱伝導部46との間の何れか一方又は双方に接合部14が入り込んでもよい。   The low heat conduction part 46 is a member different from the semiconductor element 11 and the block electrode 15, and the side surface of the low heat conduction part 46 is in contact with the joint part 14. The low thermal conductivity portion 46 has a thermal conductivity lower than that of the material constituting the block electrode 15. Note that the joint portion 14 may enter between one or both of the semiconductor element 11 and the low thermal conduction portion 46 and between the block electrode 15 and the low thermal conduction portion 46.

低熱伝導部46の平面形状は、例えば円形であり、その場合の直径は、例えば1mm程度とすることができる。低熱伝導部46の厚さは、例えば、0.2mm程度とすることができる。但し、低熱伝導部46の平面形状は、円形には限定されず、楕円形や多角形等の任意の形状として構わない。低熱伝導部46は、平面視において、温度検出素子11aと重複する位置に形成されている。低熱伝導部46は、平面視において、温度検出素子11aと重複する位置に、複数個形成してもよい。   The planar shape of the low heat conducting portion 46 is, for example, a circle, and the diameter in that case can be, for example, about 1 mm. The thickness of the low heat conductive portion 46 can be set to, for example, about 0.2 mm. However, the planar shape of the low thermal conductive portion 46 is not limited to a circle, and may be an arbitrary shape such as an ellipse or a polygon. The low heat conduction part 46 is formed at a position overlapping the temperature detection element 11a in plan view. A plurality of low heat conducting portions 46 may be formed at a position overlapping the temperature detecting element 11a in plan view.

低熱伝導部46を構成する材料には、ブロック電極15を構成する材料よりも熱伝導率が低い材料が選定される。低熱伝導部46を構成する材料としては、例えば、エポキシ系樹脂等を用いることができる。但し、低熱伝導部46を構成する材料としては、接合部14を溶融させる温度(例えば、260~280℃程度)に耐え得る材料を選定する必要がある。   A material having a lower thermal conductivity than the material constituting the block electrode 15 is selected as the material constituting the low heat conduction portion 46. For example, an epoxy resin or the like can be used as a material constituting the low heat conduction unit 46. However, it is necessary to select a material that can withstand the temperature (for example, about 260 to 280 ° C.) at which the bonding portion 14 is melted as the material that constitutes the low thermal conductivity portion 46.

低熱伝導部46を構成する材料には、ブロック電極15を構成する材料よりも熱伝導率が低い材料が選定されているため、低熱伝導部46の部分の放熱性能は、その周辺のブロック電極15の放熱性能よりも低下する。その結果、図3と同様に、低熱伝導部46の部分の温度を、意図的に周辺部の温度よりも高くすることができる。これにより、第1の実施の形態と同様の効果を奏する。   Since a material having a lower thermal conductivity than that of the material constituting the block electrode 15 is selected as the material constituting the low heat conduction portion 46, the heat dissipation performance of the portion of the low heat conduction portion 46 is the peripheral block electrode 15 thereof. It will be lower than the heat dissipation performance. As a result, similarly to FIG. 3, the temperature of the portion of the low heat conducting portion 46 can be intentionally made higher than the temperature of the peripheral portion. Thereby, there exists an effect similar to 1st Embodiment.

なお、半導体装置40では、低熱伝導部46が半導体素子11とブロック電極15との間に挟み込まれ、低熱伝導部46の側面が接合部14と接する構造であるが、低熱伝導部46が半導体素子11と放熱板13との間に挟み込まれ、低熱伝導部46の側面が接合部12と接する構造としても同様の効果を奏する。又、半導体素子11とブロック電極15との間及び半導体素子11と放熱板13との間に、それぞれ低熱伝導部46を設けた場合にも、同様の効果を奏する。   The semiconductor device 40 has a structure in which the low heat conductive portion 46 is sandwiched between the semiconductor element 11 and the block electrode 15 and the side surface of the low heat conductive portion 46 is in contact with the joint portion 14. 11 and the heat radiating plate 13, and the same effect can be obtained as a structure in which the side surface of the low heat conducting portion 46 is in contact with the joint portion 12. In addition, the same effect can be obtained when the low thermal conduction portions 46 are provided between the semiconductor element 11 and the block electrode 15 and between the semiconductor element 11 and the heat dissipation plate 13, respectively.

以上、好ましい実施の形態について詳説したが、上述した実施の形態に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態に種々の変形及び置換を加えることができる。   The preferred embodiment has been described in detail above. However, the present invention is not limited to the above-described embodiment, and various modifications and replacements are made to the above-described embodiment without departing from the scope described in the claims. Can be added.

例えば、各実施の形態では、半導体素子を1個備えた半導体装置を例示したが、半導体装置に含まれる半導体素子は2個以上でもよい。   For example, in each embodiment, the semiconductor device including one semiconductor element is illustrated, but two or more semiconductor elements may be included in the semiconductor device.

10、20、30、40 半導体装置
11 半導体素子
11a 温度検出素子
12、14、17 接合部
13、18 放熱板
15 ブロック電極
16、26、36、46 低熱伝導部
18x 凹部
19 封止樹脂
DESCRIPTION OF SYMBOLS 10, 20, 30, 40 Semiconductor device 11 Semiconductor element 11a Temperature detection element 12, 14, 17 Junction part 13, 18 Heat sink 15 Block electrode 16, 26, 36, 46 Low heat conduction part 18x Recessed part 19 Sealing resin

Claims (7)

半導体素子と、
前記半導体素子と接するように設けられ、前記半導体素子の温度を検出する温度検出素子と、
前記半導体素子の一方の面に第1の接合部を介して接合される放熱板と、
前記半導体素子の他方の面に第2の接合部を介して接合される金属板と、を有し、
前記金属板から前記放熱板に至る何れかの位置であって、前記温度検出素子と平面視において重複する位置に、前記金属板及び前記放熱板よりも熱伝導率の低い低熱伝導部を設けた半導体装置。
A semiconductor element;
A temperature detection element that is provided in contact with the semiconductor element and detects a temperature of the semiconductor element;
A heat sink bonded to one surface of the semiconductor element via a first bonding portion;
A metal plate bonded to the other surface of the semiconductor element via a second bonding portion,
A low thermal conductivity portion having a lower thermal conductivity than the metal plate and the heat radiating plate is provided at any position from the metal plate to the heat radiating plate and overlapping with the temperature detection element in plan view. Semiconductor device.
前記低熱伝導部は、前記金属板の前記第2の接合部側の面に設けられた凹部に前記第2の接合部を構成する材料が充填された構造である請求項1記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the low thermal conductive portion has a structure in which a concave portion provided on a surface of the metal plate on the second joint portion side is filled with a material constituting the second joint portion. 前記低熱伝導部は、前記放熱板の前記第1の接合部側の面に設けられた凹部に前記第1の接合部を構成する材料が充填された構造である請求項1記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the low thermal conductive portion has a structure in which a concave portion provided on a surface of the heat sink on the first joint portion side is filled with a material constituting the first joint portion. 前記低熱伝導部は、前記金属板を厚さ方向に貫通する貫通孔に前記第2の接合部を構成する材料が充填された構造である請求項1記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the low thermal conductive portion has a structure in which a material constituting the second bonding portion is filled in a through hole penetrating the metal plate in a thickness direction. 前記低熱伝導部は、前記半導体素子と前記金属板との間に挟み込まれ、側面が前記第2の接合部と接する構造である請求項1記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the low thermal conductive portion is sandwiched between the semiconductor element and the metal plate, and has a structure in which a side surface is in contact with the second bonding portion. 前記低熱伝導部は、前記半導体素子と前記放熱板との間に挟み込まれ、側面が前記第1の接合部と接する構造である請求項1記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the low thermal conductive portion is sandwiched between the semiconductor element and the heat radiating plate, and has a structure in which a side surface is in contact with the first bonding portion. 前記温度検出素子は、平面視において、前記半導体素子の中央部に設けられている請求項1乃至6の何れか一項記載の半導体装置。   The semiconductor device according to claim 1, wherein the temperature detection element is provided in a central portion of the semiconductor element in a plan view.
JP2011258172A 2011-11-25 2011-11-25 Semiconductor device Pending JP2013113638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011258172A JP2013113638A (en) 2011-11-25 2011-11-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011258172A JP2013113638A (en) 2011-11-25 2011-11-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2013113638A true JP2013113638A (en) 2013-06-10

Family

ID=48709314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011258172A Pending JP2013113638A (en) 2011-11-25 2011-11-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2013113638A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817592A (en) * 2017-11-22 2019-05-28 丰田自动车株式会社 Semiconductor device
CN109883748A (en) * 2019-04-02 2019-06-14 无锡厦泰生物科技有限公司 A kind of separate type low-heat leads TEC detection device
JP2019145573A (en) * 2018-02-16 2019-08-29 トヨタ自動車株式会社 Semiconductor module
DE112016007096B4 (en) 2016-07-28 2023-06-29 Mitsubishi Electric Corporation semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136018A (en) * 2003-10-29 2005-05-26 Denso Corp Semiconductor device
JP2006108308A (en) * 2004-10-04 2006-04-20 Toyota Motor Corp Semiconductor device
WO2011142013A1 (en) * 2010-05-12 2011-11-17 トヨタ自動車株式会社 Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136018A (en) * 2003-10-29 2005-05-26 Denso Corp Semiconductor device
JP2006108308A (en) * 2004-10-04 2006-04-20 Toyota Motor Corp Semiconductor device
WO2011142013A1 (en) * 2010-05-12 2011-11-17 トヨタ自動車株式会社 Semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016007096B4 (en) 2016-07-28 2023-06-29 Mitsubishi Electric Corporation semiconductor device
CN109817592A (en) * 2017-11-22 2019-05-28 丰田自动车株式会社 Semiconductor device
JP2019096731A (en) * 2017-11-22 2019-06-20 トヨタ自動車株式会社 Semiconductor device
US10483183B2 (en) 2017-11-22 2019-11-19 Toyota Jidosha Kabushiki Kaisha Semiconductor device
JP2019145573A (en) * 2018-02-16 2019-08-29 トヨタ自動車株式会社 Semiconductor module
JP6996332B2 (en) 2018-02-16 2022-01-17 株式会社デンソー Semiconductor module
CN109883748A (en) * 2019-04-02 2019-06-14 无锡厦泰生物科技有限公司 A kind of separate type low-heat leads TEC detection device

Similar Documents

Publication Publication Date Title
US7728413B2 (en) Resin mold type semiconductor device
JP5257817B2 (en) Semiconductor device
US8749977B2 (en) Power semiconductor module and its attachment structure
WO2014097798A1 (en) Semiconductor device
JP5168870B2 (en) Semiconductor device
JP2005303018A (en) Semiconductor device
KR100536115B1 (en) Power semiconductor device
JP2014003095A (en) Semiconductor device
CN111052353A (en) Semiconductor device with a plurality of semiconductor chips
JP2009224560A (en) Semiconductor device and production method therefor
JP2009252885A (en) Power semiconductor device
US11195775B2 (en) Semiconductor module, semiconductor device, and manufacturing method of semiconductor module
KR101734712B1 (en) Power module
JP6834436B2 (en) Semiconductor device
JP2013113638A (en) Semiconductor device
JP6192561B2 (en) Power semiconductor device
JP5267021B2 (en) Semiconductor device and inverter circuit using the same
JP5869285B2 (en) Semiconductor device
JP2020013923A (en) Semiconductor device
JP4356494B2 (en) Semiconductor device
JP7118205B1 (en) Semiconductor device and semiconductor module using the same
WO2021029150A1 (en) Semiconductor device
JP2012238749A (en) Semiconductor device
JP2015149363A (en) semiconductor module
JP4258391B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006