JP2013112879A - Method for leaching gold out of mineral sulfide - Google Patents

Method for leaching gold out of mineral sulfide Download PDF

Info

Publication number
JP2013112879A
JP2013112879A JP2011262397A JP2011262397A JP2013112879A JP 2013112879 A JP2013112879 A JP 2013112879A JP 2011262397 A JP2011262397 A JP 2011262397A JP 2011262397 A JP2011262397 A JP 2011262397A JP 2013112879 A JP2013112879 A JP 2013112879A
Authority
JP
Japan
Prior art keywords
gold
leaching
ion
bromine
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011262397A
Other languages
Japanese (ja)
Other versions
JP5792043B2 (en
Inventor
Kazuhiro Hatano
和浩 波多野
Koji Katsukawa
浩至 勝川
Eiki Ono
瑛基 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011262397A priority Critical patent/JP5792043B2/en
Priority to AU2012244197A priority patent/AU2012244197B2/en
Publication of JP2013112879A publication Critical patent/JP2013112879A/en
Application granted granted Critical
Publication of JP5792043B2 publication Critical patent/JP5792043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method that can inhibit the gold concentration in a solution after leaching in time progress from dropping after gold is leached out of a sulfide mineral.SOLUTION: This method for leaching gold out the sulfide mineral or out of residual dross (hereinafter, referred to as a "raw material") after leaching is processed to the sulfide mineral, includes a process to leach a gold component out of a raw material by contacting acidic water solution containing chlorine ion, bromine ion, copper ion, and iron ion with the material under the supply of an oxidizing agent, and to keep the bromine ion concentration in the acidic water solution, out of which gold has been leached, to 40 g/L or higher and the oxidation-reduction potential to 500 mV (vs. Ag/AgCl) or higher.

Description

本発明は硫化鉱からの金の浸出方法に関する。また、本発明は金を浸出した水溶液から金を回収する方法に関する。   The present invention relates to a method for leaching gold from sulfide ore. The present invention also relates to a method for recovering gold from an aqueous solution leached with gold.

近年、従来の乾式法に替わり、硫化鉱から湿式法によって銅を回収する技術が注目されている。そして、硫化鉱には微量ながら金などの貴金属を含有する場合も多く、銅に加えて貴金属を経済的に回収する方法が求められている。   In recent years, a technique for recovering copper from sulfide ore by a wet method instead of the conventional dry method has attracted attention. The sulfide ore often contains a precious metal such as gold in a small amount, and a method for economically recovering the precious metal in addition to copper is required.

このような問題に取り組んだ技術として、アルカリ金属又はアルカリ土類金属の塩化物及び臭化物と、銅及び鉄の塩化物又は臭化物とを使用し、銅浸出工程後の残渣に対して金浸出工程を実施する方法が知られている(特開2009−235519号公報)。この方法によれば、特別な酸化剤を使用することなく、空気を使用するだけで、硫化銅鉱中の銅及び金を高い浸出率で浸出し、回収することができるとされている。   As a technology for addressing such problems, alkali metal or alkaline earth metal chlorides and bromides and copper and iron chlorides or bromides are used, and the gold leaching process is performed on the residue after the copper leaching process. A method of carrying out is known (Japanese Patent Laid-Open No. 2009-235519). According to this method, it is said that copper and gold in copper sulfide ore can be leached and recovered at a high leaching rate only by using air without using a special oxidizing agent.

上記技術に関連して、特開2009−235525号公報には、「銅精鉱中に存在する金を浸出するには適切な酸化剤と、浸出した金が再び還元されて金属金として沈殿しないための安定化剤が必要である。本発明では塩素イオンを利用して塩化金を生成することで安定的に金を溶出するが、臭素イオンを併用する場合、臭化金を生成することで金浸出をさらに容易することができる」と記載されている(段落0014)。また、金浸出反応に使用するための臭素イオン濃度は、臭化金を生成するとともに溶出した金が錯体を形成するために必要であり、溶出する金濃度にも依存するが、共存する塩化ナトリウム濃度の影響も受けるため溶解度の上限が存在するとされ、溶解度を考慮すると1〜80g/Lとなるが、薬品の経済的な使用量を考えると10〜26g/L程度が望ましいと記載されている(段落0017)。同公報には、浸出液中の臭素イオンは臭化ナトリウムのような形態で添加し、その濃度は高いほど望ましいが、同時に添加する塩素イオン濃度の影響と温度の影響をうけ溶解度が変化するため、実用的には臭素イオン濃度で1〜50g/L、好ましくは10〜26g/Lでよいことも記載されている(段落0025)。   In relation to the above technique, Japanese Patent Application Laid-Open No. 2009-235525 states that “a suitable oxidizing agent for leaching gold present in copper concentrate and the leached gold are reduced again and do not precipitate as metallic gold. In the present invention, gold is stably eluted by producing gold chloride using chlorine ions, but when bromine ions are used in combination, gold bromide is produced. Gold leaching can be further facilitated ”(paragraph 0014). The bromine ion concentration for use in the gold leaching reaction is necessary to form gold bromide and elute gold to form a complex. It is said that there is an upper limit of solubility because it is affected by the concentration, and it is 1 to 80 g / L in consideration of solubility, but it is described that about 10 to 26 g / L is desirable in view of the economical use amount of chemicals. (Paragraph 0017). In this publication, bromine ions in the leachate are added in the form of sodium bromide, and the higher the concentration, the better. However, because the solubility changes due to the influence of chlorine ion concentration and temperature at the same time, Practically, it is also described that the bromine ion concentration may be 1 to 50 g / L, preferably 10 to 26 g / L (paragraph 0025).

更に、特表2009−526912号公報では、硫化銅原材料を大気塩化物浸出処理した後の浸出残留物又は中間生成物から金を回収するにあたって、浸出を促進するため、浸出液中のアルカリ臭化物を0.5〜30g/Lとすることを提案している。   Furthermore, in Japanese Translation of PCT International Publication No. 2009-526912, in order to promote leaching when recovering gold from the leaching residue or intermediate product after the copper sulfide raw material is leached with atmospheric chloride, alkali bromide in the leachate is reduced to 0. .5-30 g / L is proposed.

特開2009−235519号公報JP 2009-235519 A 特開2009−235525号公報JP 2009-235525 A 特表2009−526912号公報Special table 2009-526912

上記文献に記載の技術では、金浸出に用いる浸出液中のハロゲンイオンは、塩素イオンが主体であり、それに臭素イオンを補助的に添加することで、硫化鉱からの湿式法による金の回収方法に関して商業上実施可能な技術を提案するものである。そして、従来技術を用いて金浸出を行った場合、金を浸出した直後の金浸出後液中には高濃度で金が存在する。しかしながら、従来技術では金浸出後液中の金濃度が時間の経過と共に急速に低下してしまう問題があることを見出した。銅鉱石から金を回収するための実操業においては、金浸出工程の後、金回収工程が必ずしも直ちに実施されるわけではなく、固液分離操作や操業のスケジュール上、1〜3日間程度金浸出後液を保管した後に金回収工程を実施することもある。そのため、金浸出後液を保管している間に、溶解していた金濃度をできるだけ保持することのできる方法が望まれる。   In the technique described in the above-mentioned document, the halogen ions in the leachate used for gold leaching are mainly chlorine ions, and bromine ions are supplementarily added to the method to recover gold from the sulfide ore by a wet method. It proposes a commercially feasible technology. When gold leaching is performed using the conventional technique, gold exists in a high concentration in the solution after gold leaching immediately after leaching gold. However, it has been found that the conventional technique has a problem that the gold concentration in the solution after gold leaching rapidly decreases with time. In the actual operation for recovering gold from copper ore, the gold recovery process is not always performed immediately after the gold leaching process, and gold leaching is performed for about 1 to 3 days due to the solid-liquid separation operation and operation schedule. The gold recovery process may be performed after storing the post-solution. Therefore, a method capable of maintaining the dissolved gold concentration as much as possible while storing the solution after gold leaching is desired.

そこで、本発明は硫化鉱物から金を浸出した後、時間経過による浸出後液中の金濃度の低下を抑制可能な方法を提供することを課題とする。   Then, this invention makes it a subject to provide the method which can suppress the fall of the gold | metal density | concentration in the liquid after leaching with time passage after leaching gold from a sulfide mineral.

本発明者は鋭意研究の結果、塩化アルカリ水溶液を基本とする金浸出液中の臭素イオン濃度を極端に高くした場合、浸出後液中の金が溶解した状態を安定して保持することを見出した。   As a result of intensive studies, the present inventors have found that when the bromine ion concentration in the gold leaching solution based on an alkali chloride aqueous solution is extremely increased, the state in which the gold in the solution after leaching is dissolved is stably maintained. .

本発明は一側面において、硫化鉱物中又は同硫化鉱物に対して浸出処理を行った後の浸出残渣中(以下、「原料」という)に含まれる金の浸出方法であって、
塩素イオン、臭素イオン、銅イオン、及び鉄イオンを含有する酸性水溶液を酸化剤の供給下で原料に接触させて、原料中の金成分を浸出する工程と、金を浸出した酸性水溶液中の臭素イオン濃度を40g/L以上に、酸化還元電位を500mV(vs.Ag/AgCl)以上に保持しながら保存する工程とを含む方法である。
In one aspect, the present invention is a method for leaching gold contained in a sulfide mineral or a leaching residue after the leaching treatment for the sulfide mineral (hereinafter referred to as “raw material”),
A step of leaching the gold component in the raw material by contacting an acidic aqueous solution containing chlorine ion, bromine ion, copper ion, and iron ion with the raw material while supplying the oxidizing agent; and bromine in the acidic aqueous solution in which gold is leached And a step of storing while maintaining the ion concentration at 40 g / L or more and the oxidation-reduction potential at 500 mV (vs. Ag / AgCl) or more.

本発明に係る金の浸出方法の一実施形態においては、酸性水溶液中の臭素イオンを80g/L以上、酸化還元電位を480mV(vs. Ag/AgCl)以上に保持する。   In one embodiment of the gold leaching method according to the present invention, the bromine ion in the acidic aqueous solution is maintained at 80 g / L or more and the oxidation-reduction potential is maintained at 480 mV (vs. Ag / AgCl) or more.

本発明に係る金の浸出方法の別の一実施形態においては、前記酸性水溶液中の塩素イオンに対する臭素イオンの重量濃度比が1以上である。   In another embodiment of the gold leaching method according to the present invention, the weight concentration ratio of bromine ions to chlorine ions in the acidic aqueous solution is 1 or more.

本発明に係る金の浸出方法の更に別の一実施形態においては、前記酸性水溶液中の銅イオン濃度を5g/L以上、鉄イオン濃度を1g/L以上とする方法である。   In still another embodiment of the gold leaching method according to the present invention, the copper ion concentration in the acidic aqueous solution is 5 g / L or more and the iron ion concentration is 1 g / L or more.

本発明は別の一側面において、前記金の浸出方法を実施することにより得られた金浸出後液から金を回収する工程を含む原料からの金の回収方法である。   In another aspect, the present invention is a method for recovering gold from a raw material including a step of recovering gold from a solution after gold leaching obtained by performing the gold leaching method.

本発明に係る金の回収方法の一実施形態においては、前記金浸出工程を終えた後、金の回収工程を開始するまでの保存期間が24時間以上である。   In one embodiment of the gold recovery method according to the present invention, the storage period from the end of the gold leaching step to the start of the gold recovery step is 24 hours or more.

本発明に係る金の回収方法の別の一実施形態においては、前記保存期間中に金浸出後液中の臭素イオン濃度を上昇させる。   In another embodiment of the gold recovery method according to the present invention, the bromine ion concentration in the solution after gold leaching is increased during the storage period.

本発明によれば、硫化鉱物中又は同硫化鉱物に対して浸出処理を行った後の浸出残渣から金を浸出した後、時間経過による浸出後液中の金濃度の低下を抑制することができるため、硫化鉱物からの金の回収効率を高めることができる。   According to the present invention, after leaching gold from a leaching residue in a sulfide mineral or after leaching treatment to the sulfide mineral, it is possible to suppress a decrease in gold concentration in the leached solution over time. Therefore, the recovery efficiency of gold from sulfide mineral can be increased.

浸出後液中に溶解している金の濃度の推移を示すグラフである。It is a graph which shows transition of the density | concentration of the gold | metal melt | dissolved in the liquid after leaching.

(浸出工程)
金浸出工程では、塩素イオン、臭素イオン、銅イオン及び鉄イオンを含有する酸性水溶液(金浸出液)を酸化剤の供給下で原料に接触させて、原料中の金成分を浸出する工程を含む。酸性水溶液中の塩素イオン濃度を5〜70g/L、臭素イオン濃度を40g/L以上、銅イオン濃度を5g/L以上、鉄イオン濃度を1g/L以上に調整することが好ましい。本発明の対象となる原料は、硫化鉱物、又は同硫化鉱物に対して浸出処理を行った後の浸出残渣である。硫化鉱物としては特に制限はないが、典型的には金を含有する一次硫化銅鉱(例:黄銅鉱)、金を含むケイ酸鉱を含有する硫化銅鉱、金を含有する黄鉄鉱が挙げられる。また、硫化鉱物の様々な処理過程で生じる中間生成物も硫化鉱物として取り扱う。
(Leaching process)
The gold leaching step includes a step of leaching a gold component in the raw material by bringing an acidic aqueous solution (gold leaching solution) containing chlorine ions, bromine ions, copper ions and iron ions into contact with the raw material while supplying an oxidizing agent. It is preferable to adjust the chlorine ion concentration in the acidic aqueous solution to 5 to 70 g / L, the bromine ion concentration to 40 g / L or more, the copper ion concentration to 5 g / L or more, and the iron ion concentration to 1 g / L or more. The raw material which is the object of the present invention is a sulfide mineral or a leaching residue after the leaching treatment for the sulfide mineral. Although there is no restriction | limiting in particular as a sulfide mineral, Typically, the primary copper sulfide ore (example: chalcopyrite) containing gold, the copper sulfide ore containing the silicate ore containing gold, and the pyrite containing gold are mentioned. In addition, intermediate products generated in various processes of sulfide minerals are also handled as sulfide minerals.

金の浸出は、溶出した金が塩素イオン又は臭素イオンと反応し、金の塩化錯体又は金の臭化錯体を生成することにより進行する。臭素イオンを併用することで、より低電位の状態で錯体を形成するため、浸出時間を短縮できると共に、金の浸出効率の向上、すなわち浸出後液中の金濃度の上昇を図ることができる。本発明においては、金浸出液中の臭素イオン濃度を著しく高めるたことで、浸出した金が溶解した状態で長期間安定的に存在することができるという効果が更に得られる。   Gold leaching proceeds by the elution of gold reacting with chlorine ions or bromine ions to form gold chloride complexes or gold bromide complexes. By using bromine ions in combination, the complex is formed at a lower potential, so that the leaching time can be shortened and the gold leaching efficiency can be improved, that is, the gold concentration in the liquid after leaching can be increased. In the present invention, by significantly increasing the bromine ion concentration in the gold leaching solution, the effect that the leached gold can be stably present for a long time in a dissolved state can be further obtained.

浸出液の酸化還元電位は温度にも依存し、概ね液温が10℃低下すると酸化還元電位も約10mV低下する。したがって一般的な浸出温度である80℃程度からそのまま放置すると、浸出液の温度が低下し、酸化還元電位も低下して金の溶解を維持できにくくなる。   The redox potential of the leachate also depends on the temperature, and when the liquid temperature is lowered by about 10 ° C., the redox potential is also lowered by about 10 mV. Therefore, if it is left as it is from a general leaching temperature of about 80 ° C., the temperature of the leaching solution is lowered, the oxidation-reduction potential is also lowered, and it becomes difficult to maintain the dissolution of gold.

金浸出液中の臭素イオンの濃度は、反応速度や溶解度の観点からだけみれば5g/L程度でも十分であるが、浸出後液中の金濃度を2mg/L以上で安定して溶解した状態を数日間保持、あるいは浸出後液の液温が一般的な浸出温度である80℃程度から室温に低下しても溶解した状態を保持するためには、40g/L以上とすることが必要であり、80g/L以上とすることが好ましく、100g/L以上とすることがより好ましく、120g/L以上とすることが更により好ましい。ただし、コストの観点からは金浸出液中の臭素イオン濃度は低くするのが一般的であり、80〜100g/Lとするのが好ましい。   The concentration of bromide ions in the gold leaching solution may be about 5 g / L only from the viewpoint of reaction rate and solubility, but the gold concentration in the leaching solution is stably dissolved at 2 mg / L or more. In order to maintain the dissolved state even if it is kept for several days or the temperature of the solution after leaching is lowered from about 80 ° C. which is a general leaching temperature to room temperature, it is necessary to be 40 g / L or more. 80 g / L or more, more preferably 100 g / L or more, and still more preferably 120 g / L or more. However, from the viewpoint of cost, the bromine ion concentration in the gold leachate is generally low, and is preferably 80 to 100 g / L.

金浸出液中の塩素イオンの濃度は、Cu(I)の生成の観点から、5g/L以上とするのが好ましく、15g/L以上とするのがより好ましい。ただし、塩素イオン濃度を高くし過ぎると浴のイオン濃度が高くなり、操業中に析出の問題も発生してくるため、70g/L以下とすべきであり、20〜40g/Lとするのが好ましい。   The concentration of chlorine ions in the gold leaching solution is preferably 5 g / L or more, and more preferably 15 g / L or more, from the viewpoint of the formation of Cu (I). However, if the chlorine ion concentration is too high, the ion concentration of the bath will increase, and the problem of precipitation will occur during operation, so it should be 70 g / L or less, and it should be 20-40 g / L. preferable.

鉄イオンは、これは酸化剤の供給下で酸化した3価の鉄イオン又は当初より3価の鉄イオンを示すが、金を酸化する働きをする。金浸出液中の鉄イオンの濃度は1g/L以上とするのが好ましく、3g/L以上とするのがより好ましい。   Iron ions, which are trivalent iron ions oxidized from the supply of an oxidizing agent or trivalent iron ions from the beginning, serve to oxidize gold. The concentration of iron ions in the gold leaching solution is preferably 1 g / L or more, more preferably 3 g / L or more.

銅イオンは直接反応に関与しないが、銅イオンが存在することで鉄イオンの酸化速度が速くなる。銅イオンも2価の銅イオンが酸化の働きをする。浸出液中の銅イオンの濃度は5g/L以上とするのが好ましく、20g/L以上とするのがより好ましい。   Copper ions are not directly involved in the reaction, but the presence of copper ions increases the oxidation rate of iron ions. As for copper ions, divalent copper ions function as oxidation. The concentration of copper ions in the leachate is preferably 5 g / L or more, and more preferably 20 g / L or more.

塩素イオンの供給源としては、特に制限はないが、例えば塩化水素、塩酸、塩化金属及び塩素ガス等が挙げられ、経済性や安全性を考慮すれば塩化金属の形態で供給するのが好ましい。塩化金属としては、例えば塩化銅(塩化第一銅、塩化第二銅)、塩化鉄(塩化第一鉄、塩化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の塩化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の塩化物が挙げられ、経済性や入手容易性の観点から、塩化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、塩化銅及び塩化鉄を利用することも好ましい。   The supply source of chlorine ions is not particularly limited, and examples thereof include hydrogen chloride, hydrochloric acid, metal chloride, chlorine gas, and the like. In consideration of economy and safety, supply in the form of metal chloride is preferable. Examples of the metal chloride include copper chloride (cuprous chloride, cupric chloride), iron chloride (ferrous chloride, ferric chloride), and alkali metals (lithium, sodium, potassium, rubidium, cesium, francium). Chlorides and chlorides of alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, radium) can be mentioned, and sodium chloride is preferable from the viewpoint of economy and availability. Moreover, since it can utilize also as a supply source of copper ion and iron ion, it is also preferable to utilize copper chloride and iron chloride.

臭素イオンの供給源としては、特に制限はないが、例えば臭化水素、臭化水素酸、臭化金属及び臭素ガス等が挙げられ、経済性や安全性を考慮すれば臭化金属の形態で供給するのが好ましい。臭化金属としては、例えば臭化銅(臭化第一銅、臭化第二銅)、臭化鉄(臭化第一鉄、臭化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の臭化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の臭化物が挙げられ、経済性や入手容易性の観点から、臭化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、臭化銅及び臭化鉄を利用することも好ましい。   The bromine ion supply source is not particularly limited, and examples thereof include hydrogen bromide, hydrobromic acid, metal bromide, bromine gas, and the like. In consideration of economy and safety, it is in the form of metal bromide. It is preferable to supply. Examples of the metal bromide include copper bromide (cuprous bromide, cupric bromide), iron bromide (ferrous bromide, ferric bromide), alkali metals (lithium, sodium, potassium, Examples thereof include bromides of rubidium, cesium, and francium) and bromides of alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, and radium), and sodium bromide is preferable from the viewpoint of economy and availability. Moreover, since it can utilize also as a supply source of copper ion and iron ion, it is also preferable to utilize copper bromide and iron bromide.

銅イオン及び鉄イオンの供給源としては、これらの塩の形態で供給するのが通常であり、例えばハロゲン化塩の形態で供給することができる。塩素イオン及び/又は臭素イオンの供給源としても利用できる観点から銅イオンは塩化銅及び/又は臭化銅、鉄イオンは塩化鉄及び/又は臭化鉄として供給されるのが好ましい。塩化銅及び塩化鉄としては酸化力の観点から塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)を使用するのがそれぞれ望ましいが、塩化第一銅(CuCl)及び塩化第二鉄(FeCl2)を使用しても浸出液に酸化剤を供給することで、塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)にそれぞれ酸化されるため、大差はない。 The supply source of copper ions and iron ions is usually supplied in the form of these salts. For example, it can be supplied in the form of a halide salt. From the viewpoint that it can also be used as a source of chlorine ions and / or bromine ions, copper ions are preferably supplied as copper chloride and / or copper bromide, and iron ions are preferably supplied as iron chloride and / or iron bromide. As copper chloride and iron chloride, it is preferable to use cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ) from the viewpoint of oxidizing power, respectively, but cuprous chloride (CuCl) and ferric chloride are preferable. Even if (FeCl 2 ) is used, supplying an oxidizing agent to the leachate will oxidize to cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ), respectively, so there is no significant difference.

従って、金浸出工程の好適な実施形態においては、金浸出液として、塩素イオン及び臭素イオンの両方を含有するように選択することを条件に、塩酸及び臭素酸の少なくとも一方と、塩化第二銅及び臭化第二銅の少なくとも一方と、塩化第二鉄及び臭化第二鉄の少なくとも一方と、塩化ナトリウム及び臭化ナトリウムの少なくとも一方とを含む混合液を使用することができる。   Accordingly, in a preferred embodiment of the gold leaching step, at least one of hydrochloric acid and bromic acid, cupric chloride, and copper chloride are selected on the condition that the gold leaching solution is selected to contain both chlorine ions and bromine ions. A mixed solution containing at least one of cupric bromide, at least one of ferric chloride and ferric bromide, and at least one of sodium chloride and sodium bromide can be used.

金浸出液のpHは3価の鉄イオンの溶解を確保する理由から、0〜3程度とするのが好ましく、0.5〜2.0程度とするのがより好ましい。金浸出工程の開始時における浸出液の酸化還元電位(vs Ag/AgCl)は、臭素イオンの効果もあり500mV以上とするのが好ましく、550mV以上とするのがより好ましい。金浸出液の温度は浸出効率や装置の材質の観点から、60℃以上とするのが好ましく、浸出速度の観点から70〜90℃とするのがより好ましい。   The pH of the gold leaching solution is preferably about 0 to 3 and more preferably about 0.5 to 2.0 for securing the dissolution of trivalent iron ions. The redox potential (vs Ag / AgCl) of the leaching solution at the start of the gold leaching step is preferably 500 mV or more, more preferably 550 mV or more because of the effect of bromine ions. The temperature of the gold leaching solution is preferably 60 ° C. or more from the viewpoint of leaching efficiency and material of the apparatus, and more preferably 70 to 90 ° C. from the viewpoint of leaching speed.

金浸出工程は酸化剤を供給しながら実施することで、酸化還元電位を管理する。酸化剤としては特に制限はないが、例えば酸素、空気、塩素、臭素、及び過酸化水素などが挙げられる。極端に高い酸化還元電位をもつ酸化剤は必要なく、空気で十分である。経済性や安全性の観点からも空気が好ましい。   The gold leaching process is performed while supplying the oxidizing agent, thereby managing the redox potential. Although there is no restriction | limiting in particular as an oxidizing agent, For example, oxygen, air, chlorine, a bromine, hydrogen peroxide, etc. are mentioned. An oxidant with an extremely high redox potential is not necessary and air is sufficient. Air is also preferable from the viewpoint of economy and safety.

金浸出液と原料の接触方法としては特に制限はなく、噴霧や浸漬などの方法があるが、反応効率の観点から、浸出液中に残渣を浸漬し、撹拌する方法が好ましい。   There are no particular limitations on the method of contacting the gold leachate and the raw material, and there are methods such as spraying and dipping. From the viewpoint of reaction efficiency, a method of dipping the residue in the leachate and stirring is preferred.

(銅回収)
銅浸出工程によって得られた浸出後液は銅成分を多量に含んでいるので、浸出後液から銅を回収することができる。銅の回収方法としては特に制限はないが、例えば溶媒抽出、イオン交換、卑な金属との置換析出及び電解採取などを利用することができる。浸出後液中の銅は1価及び2価の状態が混在しているが、溶媒抽出やイオン交換を円滑に行うために、全部が2価の銅イオンとなるように予め酸化しておくことが好ましい。酸化の方法は特に制限はないが空気や酸素を浸出後液中に吹き込む方法が簡便である。
(Copper recovery)
Since the liquid after leaching obtained by the copper leaching step contains a large amount of copper component, copper can be recovered from the liquid after leaching. Although there is no restriction | limiting in particular as a copper collection | recovery method, For example, solvent extraction, ion exchange, substitution precipitation with a base metal, electrowinning, etc. can be utilized. The copper in the solution after leaching contains both monovalent and divalent states, but in order to perform solvent extraction and ion exchange smoothly, all of them should be oxidized beforehand to be divalent copper ions. Is preferred. The method of oxidation is not particularly limited, but a method of leaching air or oxygen into the liquid after leaching is simple.

(金回収)
金浸出工程によって得られた浸出反応液には金が溶解しており、当該浸出反応液から金を回収することができる。金の回収方法としては特に制限はないが、活性炭吸着、電解採取、溶媒抽出、及びイオン交換などを利用することができる。浸出反応の途中で金を回収することで浸出反応液中の金濃度を低下させ、金の浸出率を高めることもできる。
(Gold collection)
Gold is dissolved in the leaching reaction solution obtained by the gold leaching step, and gold can be recovered from the leaching reaction solution. Although there is no restriction | limiting in particular as a collection | recovery method of gold | metal | money, Activated carbon adsorption | suction, electrowinning, solvent extraction, ion exchange, etc. can be utilized. By collecting gold during the leaching reaction, the gold concentration in the leaching reaction solution can be reduced, and the gold leaching rate can be increased.

本発明によれば、金浸出後に浸出後液中に溶解している金の安定性が高いため、金浸出工程を終えた後、金の回収工程を開始するまでの保存期間を長くすることができる。例えば、保存期間を5日間以上とすることができ、1週間以上とすることもできる。ただし、あまり長期間保存してもメリットは少ないことから、2日間以内とするのが好ましい。   According to the present invention, the stability of the gold dissolved in the solution after leaching after gold leaching is high, so that after the gold leaching process is finished, the storage period until the gold recovery process is started can be extended. it can. For example, the storage period can be 5 days or more, and can be 1 week or more. However, since there are few merits even if it preserve | saves for too long, it is preferable to set it within two days.

浸出後液中で金が安定して溶解している状態を長期間保持するために、保存期間中に金浸出後液中の臭素イオン濃度を上昇させることもできる。具体的には、金浸出工程が終了後、1日以内、好ましくは半日、より好ましくは6時間以内、更により好ましくは1時間以内に浸出後液に臭素イオンの供給源を添加することができる。臭素イオンの供給源としては、先述した化合物が挙げられ、経済性や入手の容易さの観点から、臭化ナトリウムが好ましい。   In order to maintain the state in which gold is stably dissolved in the solution after leaching for a long period of time, the bromine ion concentration in the solution after leaching of gold can be increased during the storage period. Specifically, after completion of the gold leaching step, a bromine ion source can be added to the leached solution within 1 day, preferably within half a day, more preferably within 6 hours, and even more preferably within 1 hour. . Examples of the bromine ion supply source include the compounds described above, and sodium bromide is preferred from the viewpoints of economy and availability.

また、金浸出工程を終えた後、金の回収工程を開始するまでの期間においては、金を浸出した酸性水溶液中の臭素イオン濃度が40g/L以上のとき、金浸出後液の酸化還元電位を500mV以上(vs.Ag/AgCl)で室温以上(25℃以上)で管理することにより金の溶解を維持可能である。これは浸出直後の酸化還元電位よりも40mV以上低い値である。金を浸出した酸性水溶液中の臭素イオン濃度が80g/L以上であれば、金浸出後液の酸化還元電位を480mV以上(vs.Ag/AgCl)で室温以上(25℃以上)で管理することも可能である。酸化還元電位が高い分には問題はないが、必要以上に高く管理するとコスト高となるので、700mV以下(vs.Ag/AgCl)とするのが好ましく、600mV以下(vs.Ag/AgCl)とするのがより好ましいい。また、管理温度が高いほうが金の溶解性は高くなるが、保温のための費用がかかるため、室温(20〜60℃、典型的には25〜40℃)で保存することが好ましい。   In addition, after the gold leaching step, the period from the start of the gold recovery step to when the bromine ion concentration in the acidic aqueous solution leached with gold is 40 g / L or more, the redox potential of the solution after gold leaching Is maintained at 500 mV or higher (vs. Ag / AgCl) at room temperature or higher (25 ° C. or higher), so that dissolution of gold can be maintained. This is a value 40 mV or more lower than the redox potential immediately after leaching. If the bromine ion concentration in the acidic aqueous solution leached with gold is 80 g / L or more, the oxidation-reduction potential of the solution after gold leaching should be controlled at 480 mV or higher (vs. Ag / AgCl) at room temperature or higher (25 ° C. or higher). Is also possible. Although there is no problem with the higher oxidation-reduction potential, the cost becomes higher if it is controlled to be higher than necessary. Therefore, it is preferably 700 mV or less (vs. Ag / AgCl), preferably 600 mV or less (vs. Ag / AgCl). It is more preferable to do. Moreover, although the solubility of gold | metal | money becomes higher, so that management temperature is high, since the expense for heat insulation requires, it is preferable to preserve | save at room temperature (20-60 degreeC, typically 25-40 degreeC).

一般的に温度の低下によっても酸化還元電位は低下する。ここで示す組成の浸出液では、温度低下と酸化還元電位の低下の割合は、約1mV/℃である。つまり40℃程度温度を下げて管理することが出来る。   Generally, the oxidation-reduction potential also decreases with a decrease in temperature. In the leachate having the composition shown here, the rate of decrease in temperature and decrease in redox potential is about 1 mV / ° C. That is, the temperature can be controlled by lowering by about 40 ° C.

試験では、金を含有する硫化銅精鉱中の銅を浸出した後の残渣に対して金浸出した。残渣中の金品位は26g/tで、銅品位は1.2%であった。金浸出は、Clイオン濃度を40g/L、Cuイオン濃度を20g/L、Feイオン濃度を2g/L、Brイオン濃度を20〜120g/Lに調整し、空気を吹き込みながら液温80℃で行った。80℃での酸化還元電位は537〜557mV(vs.Ag/AgCl)であった。   In the test, gold was leached to the residue after leaching the copper in the copper sulfide concentrate containing gold. The gold quality in the residue was 26 g / t, and the copper quality was 1.2%. For gold leaching, the Cl ion concentration is adjusted to 40 g / L, the Cu ion concentration is adjusted to 20 g / L, the Fe ion concentration is adjusted to 2 g / L, and the Br ion concentration is adjusted to 20 to 120 g / L. went. The oxidation-reduction potential at 80 ° C. was 537 to 557 mV (vs. Ag / AgCl).

浸出後液を室温(15〜25℃)で放置し、1日〜7日後の浸出液中に溶解している金濃度を測定した。微細な析出物の影響を排除するため、サンプリングした浸出液は、0.1μmのメンブランフィルターでろ過した後、ICP分析を行った。保存期間中の酸化還元電位は浸出後液の液温が25℃に低下してから測定した。   The solution after leaching was allowed to stand at room temperature (15 to 25 ° C.), and the concentration of gold dissolved in the leaching solution after 1 to 7 days was measured. In order to eliminate the influence of fine precipitates, the sampled leachate was filtered through a 0.1 μm membrane filter and then subjected to ICP analysis. The oxidation-reduction potential during the storage period was measured after the temperature of the solution after leaching dropped to 25 ° C.

分析結果を図1に示す。Br濃度が20g/Lの浸出液の場合、1日後には1mg/L以下まで低下したが、40g/L以上の浸出液は酸化還元電位が500mVならば、7日後までほぼ最初の濃度を維持した。
また、酸化還元電位を480mVにした場合、Br濃度が60g/Lの浸出液の金濃度は1日後には半分以下に低下したが、Br濃度が80g/Lの浸出液の金濃度は5日後でも当初の金濃度を保持していた。
The analysis results are shown in FIG. In the case of a leachate with a Br concentration of 20 g / L, it decreased to 1 mg / L or less after 1 day, but the leachate with a concentration of 40 g / L or more maintained the initial concentration until 7 days after the oxidation-reduction potential was 500 mV.
In addition, when the oxidation-reduction potential was 480 mV, the gold concentration of the leachate with a Br concentration of 60 g / L decreased to less than half after one day, but the gold concentration of the leachate with a Br concentration of 80 g / L was initially even after five days. Of gold concentration.

Claims (7)

硫化鉱物中又は同硫化鉱物に対して浸出処理を行った後の浸出残渣中(以下、「原料」という)に含まれる金の浸出方法であって、
塩素イオン、臭素イオン、銅イオン、及び鉄イオンを含有する酸性水溶液を酸化剤の供給下で原料に接触させて、原料中の金成分を浸出する工程と、金を浸出した酸性水溶液中の臭素イオン濃度を40g/L以上に、酸化還元電位を500mV(vs.Ag/AgCl)以上に保持しながら保存する工程とを含む方法。
A leaching method of gold contained in a leaching residue (hereinafter referred to as “raw material”) in a sulfidation mineral or after leaching treatment to the sulfidation mineral,
A step of leaching the gold component in the raw material by contacting an acidic aqueous solution containing chlorine ion, bromine ion, copper ion, and iron ion with the raw material while supplying the oxidizing agent; and bromine in the acidic aqueous solution in which gold is leached And a step of storing while maintaining the ion concentration at 40 g / L or more and the oxidation-reduction potential at 500 mV (vs. Ag / AgCl) or more.
硫化鉱物中又は同硫化鉱物に対して浸出処理を行った後の浸出残渣中(以下、「原料」という)に含まれる金の浸出方法であって、
塩素イオン、臭素イオン、銅イオン、及び鉄イオンを含有する酸性水溶液を酸化剤の供給下で原料に接触させて、原料中の金成分を浸出する工程と、金を浸出した酸性水溶液中の臭素イオン濃度を80g/L以上に、酸化還元電位を480mV(vs.Ag/AgCl)以上に保持しながら保存する工程とを含む方法。
A leaching method of gold contained in a leaching residue (hereinafter referred to as “raw material”) in a sulfidation mineral or after leaching treatment to the sulfidation mineral,
A step of leaching the gold component in the raw material by contacting an acidic aqueous solution containing chlorine ion, bromine ion, copper ion, and iron ion with the raw material while supplying the oxidizing agent; and bromine in the acidic aqueous solution in which gold is leached And a step of storing while maintaining the ion concentration at 80 g / L or more and the oxidation-reduction potential at 480 mV (vs. Ag / AgCl) or more.
前記酸性水溶液中の塩素イオンに対する臭素イオンの重量濃度比が1以上である請求項1又は2に記載の金の浸出方法。   The gold leaching method according to claim 1 or 2, wherein a weight concentration ratio of bromine ions to chlorine ions in the acidic aqueous solution is 1 or more. 前記酸性水溶液中の銅イオン濃度を5g/L以上、鉄イオン濃度を1g/L以上とする請求項1〜3の何れか一項に記載の金の浸出方法。   The gold leaching method according to any one of claims 1 to 3, wherein a copper ion concentration in the acidic aqueous solution is 5 g / L or more and an iron ion concentration is 1 g / L or more. 請求項1〜4何れか一項に記載の金浸出方法を実施することにより得られた金浸出後液から金を回収する工程を含む原料からの金の回収方法。   A method for recovering gold from a raw material, comprising a step of recovering gold from a solution after gold leaching obtained by performing the gold leaching method according to any one of claims 1 to 4. 前記金浸出工程を終えた後、金の回収工程を開始するまでの保存期間が24時間以上である請求項5に記載の金の回収方法。   The gold recovery method according to claim 5, wherein a storage period from the completion of the gold leaching step to the start of the gold recovery step is 24 hours or more. 前記保存期間中に金浸出後液中の臭素イオン濃度を上昇させる請求項6に記載の金の回収方法。   The method for recovering gold according to claim 6, wherein the bromine ion concentration in the solution after gold leaching is increased during the storage period.
JP2011262397A 2011-11-30 2011-11-30 Method of leaching gold from sulfide ore Active JP5792043B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011262397A JP5792043B2 (en) 2011-11-30 2011-11-30 Method of leaching gold from sulfide ore
AU2012244197A AU2012244197B2 (en) 2011-11-30 2012-10-25 Method of leaching gold from sulfide ores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011262397A JP5792043B2 (en) 2011-11-30 2011-11-30 Method of leaching gold from sulfide ore

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015059897A Division JP6034433B2 (en) 2015-03-23 2015-03-23 Method of leaching gold from sulfide ore

Publications (2)

Publication Number Publication Date
JP2013112879A true JP2013112879A (en) 2013-06-10
JP5792043B2 JP5792043B2 (en) 2015-10-07

Family

ID=48606938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011262397A Active JP5792043B2 (en) 2011-11-30 2011-11-30 Method of leaching gold from sulfide ore

Country Status (2)

Country Link
JP (1) JP5792043B2 (en)
AU (1) AU2012244197B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156350A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Method for recovering gold from sulfide ore
JP2017186657A (en) * 2016-03-31 2017-10-12 Jx金属株式会社 Method for recovering gold from gold-containing ore or refined intermediate
JP2018150597A (en) * 2017-03-14 2018-09-27 Jx金属株式会社 Method for recovering gold from ore or refining intermediate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199945A (en) * 1998-01-07 1999-07-27 Sumitomo Metal Mining Co Ltd Method for leaching platinum group element
JP2008106347A (en) * 2006-09-28 2008-05-08 Nikko Kinzoku Kk Method for leaching gold
JP2009235525A (en) * 2008-03-27 2009-10-15 Nippon Mining & Metals Co Ltd Method for leaching out gold

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5319718B2 (en) * 2011-03-04 2013-10-16 Jx日鉱日石金属株式会社 Methods for leaching copper and gold from sulfide ores

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199945A (en) * 1998-01-07 1999-07-27 Sumitomo Metal Mining Co Ltd Method for leaching platinum group element
JP2008106347A (en) * 2006-09-28 2008-05-08 Nikko Kinzoku Kk Method for leaching gold
JP2009235525A (en) * 2008-03-27 2009-10-15 Nippon Mining & Metals Co Ltd Method for leaching out gold

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.A.WHITEHEAD、他3名: "Comparative leaching of a sulfidic gold ore in ionic liquid and aqueous acid with thiourea and halid", HYDROMETALLURGY, vol. Vol.98 No.3-4, JPN6014032592, September 2009 (2009-09-01), NL, pages 276 - 280, ISSN: 0003111668 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156350A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Method for recovering gold from sulfide ore
JP2014198888A (en) * 2013-03-29 2014-10-23 Jx日鉱日石金属株式会社 Recovery method of gold from sulfide mineral
JP2017186657A (en) * 2016-03-31 2017-10-12 Jx金属株式会社 Method for recovering gold from gold-containing ore or refined intermediate
JP2018150597A (en) * 2017-03-14 2018-09-27 Jx金属株式会社 Method for recovering gold from ore or refining intermediate

Also Published As

Publication number Publication date
AU2012244197A1 (en) 2013-06-13
JP5792043B2 (en) 2015-10-07
AU2012244197B2 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
JP5319718B2 (en) Methods for leaching copper and gold from sulfide ores
JP4717908B2 (en) Method for recovering copper from a chloride bath containing copper
JP6437366B2 (en) Method for recovering molybdenum from molybdenum concentrate
JP5840643B2 (en) Method for recovering gold from sulfide minerals
JP5792043B2 (en) Method of leaching gold from sulfide ore
JP5840642B2 (en) Method for recovering gold from sulfide minerals
JP6034433B2 (en) Method of leaching gold from sulfide ore
JP2013163868A (en) Leaching method of copper and gold from sulfide ore
JP6195536B2 (en) Iron removal method, iron leaching method, and gold recovery method
JP2019178406A (en) Treatment method of copper ore
JP6750454B2 (en) Method for removing impurities from bismuth electrolyte
JP6196209B2 (en) Method for treating copper-containing molybdenum ore
JP6429990B2 (en) Method for separating molybdenum and method for treating copper-containing molybdenum ore
JP2016141877A (en) Method for treating copper-containing molybdenum ore
JP7153599B2 (en) Ore processing method
JP6038192B2 (en) Method for leaching gold from gold ore containing pyrite
WO2015199098A1 (en) Method for processing copper-containing molybdenum ore
JP6849482B2 (en) How to recover gold from ores containing gold or refining intermediates
JP6046082B2 (en) Method for treating copper-containing molybdenum ore
JP2014065947A (en) Method for leaching copper sulfide ore
JP2021031692A (en) Metal recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150805

R150 Certificate of patent or registration of utility model

Ref document number: 5792043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250