JP2013100926A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2013100926A
JP2013100926A JP2011243771A JP2011243771A JP2013100926A JP 2013100926 A JP2013100926 A JP 2013100926A JP 2011243771 A JP2011243771 A JP 2011243771A JP 2011243771 A JP2011243771 A JP 2011243771A JP 2013100926 A JP2013100926 A JP 2013100926A
Authority
JP
Japan
Prior art keywords
operation mode
speed operation
refrigerator
compressor
limit temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011243771A
Other languages
Japanese (ja)
Other versions
JP5862867B2 (en
Inventor
Toru Kawanami
徹 川浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2011243771A priority Critical patent/JP5862867B2/en
Publication of JP2013100926A publication Critical patent/JP2013100926A/en
Application granted granted Critical
Publication of JP5862867B2 publication Critical patent/JP5862867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator that can achieve power saving and improving reliability.SOLUTION: A refrigerator 1 includes first and second chilled air passages 7 and 8 communicating with each other through a damper 15 and a cooling device 11 arranged in the first chilled air passage 7. The refrigerator drives a compressor 10 when one of a refrigeration chamber 3 and a freezer chamber 4 or both of them come to a predetermined upper-limit temperature or higher and stops the compressor 10 when one of the refrigeration chamber 3 and the freezer chamber 4 or both of them falls to a predetermined lower-limit temperature or below. It provides a high speed operation mode which drives the compressor 10 at a predetermined rotational speed and a low speed operation mode which drives the compressor 10 at a rotational speed lower than that of the high speed operation mode. In the low speed operation mode, a difference between an upper-limit temperature tf1 of the freezer chamber 4 and a lower-limit temperature tf2 is set smaller than that during the high speed operation mode, and when the damper 15 is opened, an air volume of the second chilled air passage 8 is set to be smaller than that during high speed operation mode.

Description

本発明は、インバータ制御される圧縮機を備えた冷蔵庫に関する。   The present invention relates to a refrigerator provided with an inverter-controlled compressor.

従来の冷蔵庫は特許文献1に開示されている。この冷蔵庫は貯蔵物を冷蔵保存する冷蔵室と貯蔵物を冷凍保存する冷凍室とを備えている。冷蔵室及び冷凍室の後方には冷気が流通する冷気通路が設けられる。冷気通路内には冷却器及び送風ファンが配される。冷却器は圧縮機により運転される冷凍サイクルの低温部に配される。送風ファンの駆動によって冷気通路を流通する空気が冷却器と熱交換して冷気が生成される。   A conventional refrigerator is disclosed in Patent Document 1. This refrigerator includes a refrigerator compartment for storing stored items in a refrigerator and a freezer chamber for storing stored items in a frozen state. A cool air passage through which cool air flows is provided behind the refrigerator compartment and the freezer compartment. A cooler and a blower fan are disposed in the cool air passage. The cooler is arranged in the low temperature part of the refrigeration cycle operated by the compressor. The air flowing through the cold air passage is heat-exchanged with the cooler by driving the blower fan to generate cold air.

冷蔵室または冷凍室が所定の上限温度よりも高温になると、圧縮機及び送風ファンが駆動される。これにより、冷気通路を流通する冷気が冷蔵室及び冷凍室に供給される。これにより、冷蔵室及び冷凍室が冷却され、冷蔵室及び冷凍室を冷却した冷気は冷却器に戻る。そして、冷蔵室または冷凍室が所定の下限温度よりも低温になると、圧縮機及び送風ファンが停止される。   When the refrigerator compartment or the freezer compartment becomes higher than the predetermined upper limit temperature, the compressor and the blower fan are driven. Thereby, the cold air which distribute | circulates a cold air path is supplied to a refrigerator compartment and a freezer compartment. Thereby, the refrigerator compartment and the freezer compartment are cooled, and the cold air that has cooled the refrigerator compartment and the refrigerator compartment returns to the cooler. And if a refrigerator compartment or a freezer compartment becomes temperature lower than predetermined | prescribed minimum temperature, a compressor and a ventilation fan will be stopped.

圧縮機はインバータ制御により回転数が可変される。これにより、外気温が高温の場合や冷蔵室や冷凍室の扉が頻繁に開閉された場合等の大きな冷力が必要なときは、圧縮機を高い回転数で駆動する高速運転モードが行われる。また、外気温が低温の場合や冷蔵室及び冷凍室の扉が長時間閉じられた場合等の大きな冷力を必要としないときは、圧縮機を低い回転数で駆動する低速運転モードが行われる。これにより、高い回転数での圧縮機の駆動により電力消費が大きくなる期間を短縮し、冷蔵庫の省電力化が図られる。   The rotation speed of the compressor is varied by inverter control. As a result, when a large amount of cooling power is required, such as when the outside air temperature is high or when the doors of the refrigerator compartment or freezer compartment are frequently opened and closed, a high-speed operation mode for driving the compressor at a high rotational speed is performed. . In addition, when a large amount of cooling power is not required, such as when the outside air temperature is low or the doors of the refrigerator compartment and freezer compartment are closed for a long time, a low-speed operation mode for driving the compressor at a low rotational speed is performed. . As a result, the period during which the power consumption increases due to the driving of the compressor at a high rotational speed is shortened, and the power consumption of the refrigerator can be reduced.

特開2001−141347号公報(第3頁−第4頁、第1図)JP 2001-141347 A (page 3 to page 4, FIG. 1)

しかしながら、上記従来の冷蔵庫によると、低速運転モードでは圧縮機の回転数が低いため冷却器の冷却能力が低下する。加えて、冷蔵室を流通して昇温された冷気が冷却器に戻る。このため、冷凍室が下限温度まで到達せずに圧縮機の駆動が長時間継続され、十分な省電力化を図ることができない問題や圧縮機の信頼性が低下する問題があった。   However, according to the conventional refrigerator, the cooling capacity of the cooler is reduced because the rotation speed of the compressor is low in the low-speed operation mode. In addition, the cool air that has been heated through the refrigerator compartment returns to the cooler. For this reason, there has been a problem that the compressor cannot be driven for a long time without the freezer compartment reaching the lower limit temperature, and sufficient power saving cannot be achieved, and the reliability of the compressor is lowered.

本発明は、省電力化を図るとともに信頼性を向上できる冷蔵庫を提供することを目的とする。   An object of this invention is to provide the refrigerator which can improve reliability while aiming at power saving.

上記目的を達成するために本発明は、貯蔵物を冷蔵保存する冷蔵室と、貯蔵物を冷凍保存する冷凍室と、回転数を可変されるとともに冷凍サイクルを運転する圧縮機と、冷気を生成する冷却器と、前記冷却器を配して前記冷凍室に冷気を供給する第1冷気通路と、ダンパを介して第1冷気通路に連通して前記冷蔵室に冷気を供給する第2冷気通路と、第1冷気通路及び第2冷気通路に冷気を流通させる送風装置とを備え、前記冷蔵室及び前記冷凍室の一方または両方が所定の上限温度よりも高温になると前記圧縮機を駆動するとともに、前記冷蔵室及び前記冷凍室の一方または両方が所定の下限温度よりも低温になると前記圧縮機を停止する冷蔵庫において、前記圧縮機を所定の回転数で駆動する高速運転モードと、前記圧縮機を前記高速運転モードよりも低い回転数で駆動する低速運転モードとを有し、前記低速運転モード時に、前記冷凍室の前記上限温度と前記下限温度との差を前記高速運転モード時よりも小さくするとともに、前記ダンパを開いた際の第2冷気通路の風量を前記高速運転モード時よりも少なくしたことを特徴としている。   In order to achieve the above object, the present invention generates cold air by storing a refrigerator in a refrigerator, storing a refrigerator in a refrigerator, a compressor having a variable rotation speed, and operating a refrigeration cycle. A first cool air passage that supplies the cool air to the freezer compartment by disposing the cooler, and a second cold air passage that communicates with the first cool air passage via a damper to supply the cool air to the refrigerating chamber And a blower for circulating cold air through the first cold air passage and the second cold air passage, and when one or both of the refrigerator compartment and the freezer compartment becomes higher than a predetermined upper limit temperature, the compressor is driven. A high-speed operation mode for driving the compressor at a predetermined number of revolutions in a refrigerator that stops the compressor when one or both of the refrigerator compartment and the freezer compartment become lower than a predetermined lower limit temperature; and the compressor The fast luck A low-speed operation mode that is driven at a lower rotational speed than the mode, and at the time of the low-speed operation mode, the difference between the upper limit temperature and the lower limit temperature of the freezer compartment is smaller than that in the high-speed operation mode, and The air volume of the second cold air passage when the damper is opened is smaller than that in the high-speed operation mode.

この構成によると、大きな冷力を必要とする場合は高速運転モードにより冷凍室及び冷蔵室が冷却される。この時、冷凍室が所定の上限温度よりも高温になると、ダンパを閉じて送風装置及び圧縮機が駆動される。第1冷気通路を流通する冷気は冷凍室に供給され、冷凍室が冷却される。冷凍室が所定の下限温度よりも低温になると送風装置及び圧縮機が停止される。冷蔵室が所定の上限温度よりも高温になると、ダンパを開いて送風装置が駆動される。この時、冷凍室が上限温度よりも低温の場合は圧縮機を駆動してもよく、停止してもよい。第2冷気通路を流通する冷気は冷蔵室に供給され、冷蔵室が冷却される。冷蔵室が所定の下限温度よりも低温になると送風装置が停止される。   According to this configuration, when a large amount of cooling power is required, the freezer compartment and the refrigerator compartment are cooled in the high speed operation mode. At this time, when the freezer compartment becomes higher than a predetermined upper limit temperature, the damper is closed and the blower and the compressor are driven. The cold air flowing through the first cold air passage is supplied to the freezer compartment, and the freezer compartment is cooled. When the freezer compartment becomes lower than the predetermined lower limit temperature, the blower and the compressor are stopped. When the refrigerator compartment becomes higher than a predetermined upper limit temperature, the damper is opened and the blower is driven. At this time, when the freezer compartment is lower than the upper limit temperature, the compressor may be driven or stopped. The cold air flowing through the second cold air passage is supplied to the refrigerator compartment, and the refrigerator compartment is cooled. When the refrigerator compartment is cooler than a predetermined lower limit temperature, the blower is stopped.

大きな冷力を必要としない場合は低速運転モードにより冷凍室及び冷蔵室が冷却される。この時、冷凍室の上限温度と下限温度との差が高速運転モード時よりも小さく設定される。冷凍室が上限温度よりも高温になると、ダンパを閉じて送風装置及び圧縮機が駆動される。圧縮機は高速運転モード時よりも低い回転数で駆動される。第1冷気通路を流通する冷気は冷凍室に供給され、冷凍室が冷却される。そして、冷凍室が下限温度よりも低温になると送風装置及び圧縮機が停止される。冷蔵室が上限温度よりも高温になると、ダンパを開いて送風装置が駆動される。この時、送風装置によって高速運転モードよりも少ない風量の冷気が第2冷気通路を流通し、冷蔵室に供給される。冷蔵室が下限温度よりも低温になると送風装置が停止される。   When large cooling power is not required, the freezer compartment and the refrigerator compartment are cooled by the low speed operation mode. At this time, the difference between the upper limit temperature and the lower limit temperature of the freezer compartment is set smaller than that in the high speed operation mode. When the freezer compartment becomes higher than the upper limit temperature, the damper is closed and the blower and the compressor are driven. The compressor is driven at a lower rotational speed than in the high-speed operation mode. The cold air flowing through the first cold air passage is supplied to the freezer compartment, and the freezer compartment is cooled. And if a freezer compartment becomes temperature lower than lower limit temperature, an air blower and a compressor will be stopped. When the refrigerator compartment becomes higher than the upper limit temperature, the damper is opened and the blower is driven. At this time, cool air having a smaller air volume than that in the high-speed operation mode is circulated through the second cold air passage by the blower and is supplied to the refrigerator compartment. When the refrigerator compartment is cooler than the lower limit temperature, the blower is stopped.

また本発明は、上記構成の冷蔵庫において、前記低速運転モード時に、前記ダンパを開いた際の前記送風装置の風量が前記ダンパを閉じた際よりも少ないことを特徴としている。   In the refrigerator having the above-described configuration, the air volume of the blower when the damper is opened is smaller than that when the damper is closed in the low-speed operation mode.

また本発明は、上記構成の冷蔵庫において、前記低速運転モード時の前記冷凍室の前記下限温度を前記高速運転モード時の前記冷凍室の前記下限温度よりも高温にしたことを特徴としている。   In the refrigerator having the above-described configuration, the lower limit temperature of the freezer compartment in the low speed operation mode is higher than the lower limit temperature of the freezer compartment in the high speed operation mode.

また本発明は、上記構成の冷蔵庫において、前記冷蔵室の扉及び前記冷凍室の扉を所定時間閉じた状態が継続した際に、前記高速運転モードから前記低速運転モードに切り替えられることを特徴としている。この構成によると、冷蔵室の扉または冷凍室の扉が開閉されてから短時間の場合は高速運転モードが行われる。冷蔵室の扉及び冷凍室の扉が開閉されてから長時間が経過した場合は低速運転モードが行われる。   Further, the present invention is characterized in that, in the refrigerator configured as described above, when the door of the refrigerator compartment and the door of the freezer compartment are closed for a predetermined time, the high-speed operation mode is switched to the low-speed operation mode. Yes. According to this configuration, the high-speed operation mode is performed in a short time after the door of the refrigerator compartment or the door of the freezer compartment is opened and closed. When a long time has passed since the doors of the refrigerator compartment and the freezer compartment were opened and closed, the low speed operation mode is performed.

また本発明は、上記構成の冷蔵庫において、外気温が所定温度よりも低温の時に前記高速運転モードから前記低速運転モードに切り替えられることを特徴としている。この構成によると、外気温が所定温度よりも高温になると高速運転モードが行われる。外気温が所定温度よりも低温になると低速運転モードが行われる。   Moreover, the present invention is characterized in that, in the refrigerator configured as described above, when the outside air temperature is lower than a predetermined temperature, the high speed operation mode is switched to the low speed operation mode. According to this configuration, the high-speed operation mode is performed when the outside air temperature becomes higher than the predetermined temperature. When the outside air temperature becomes lower than the predetermined temperature, the low speed operation mode is performed.

本発明によると、圧縮機の回転数が高速運転モードよりも低い低速運転モード時に、冷凍室の上限温度と下限温度との差を高速運転モード時よりも小さくし、ダンパを開いた際の第2冷気通路の風量を高速運転モード時よりも少なくした。従って、冷凍室の温度を短時間で確実に下限温度に到達させることができ、圧縮機の駆動及び停止が繰り返される。従って、冷蔵庫の省電力化を図るとともに信頼性を向上することができる。   According to the present invention, the difference between the upper limit temperature and the lower limit temperature of the freezer compartment is made smaller than in the high speed operation mode in the low speed operation mode in which the rotation speed of the compressor is lower than that in the high speed operation mode, and the damper is opened. 2 The air volume in the cool air passage is less than in the high-speed operation mode. Therefore, the temperature of the freezer can be surely reached the lower limit temperature in a short time, and the driving and stopping of the compressor are repeated. Therefore, it is possible to save power in the refrigerator and improve reliability.

本発明の実施形 態の冷蔵庫を示す側面断面図Side surface sectional view which shows the refrigerator of embodiment of this invention 本発明の実施形態の冷蔵庫の構成を示すブロック図The block diagram which shows the structure of the refrigerator of embodiment of this invention. 本発明の実施形態の冷蔵庫の動作状態の例を示すタイムチャートThe time chart which shows the example of the operation state of the refrigerator of embodiment of this invention 本発明の実施形態の冷蔵庫の高速運転モード時の詳細な動作状態の例を示すタイムチャートThe time chart which shows the example of the detailed operation state at the time of the high-speed operation mode of the refrigerator of embodiment of this invention 本発明の実施形態の冷蔵庫の低速運転モード時の詳細な動作状態の例を示すタイムチャートThe time chart which shows the example of the detailed operation state at the time of the low speed operation mode of the refrigerator of embodiment of this invention 比較例の冷蔵庫の動作状態の例を示すタイムチャートTime chart showing an example of the operating state of the refrigerator of the comparative example

以下に本発明の実施形態を図面を参照して説明する。図1は一実施形態の冷蔵庫を示す側面断面図である。冷蔵庫1は断熱箱体2の上方から順に冷蔵室3、冷凍室4、野菜室5が設けられる。冷蔵室3、冷凍室4及び野菜室5はそれぞれ断熱扉3a、4a、5aによって前面が開閉される。冷蔵室3は貯蔵物を冷蔵保存し、冷凍室4は貯蔵物を冷凍保存する。野菜室5は冷蔵室2よりも高温に維持され、野菜等の貯蔵物を冷蔵保存する。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side sectional view showing a refrigerator according to an embodiment. The refrigerator 1 is provided with a refrigerator compartment 3, a freezer compartment 4, and a vegetable compartment 5 in order from above the heat insulating box 2. The front surfaces of the refrigerator compartment 3, the freezer compartment 4 and the vegetable compartment 5 are opened and closed by heat insulating doors 3a, 4a and 5a, respectively. The refrigerator compartment 3 stores the stored items in a refrigerator, and the freezer compartment 4 stores the stored items in a frozen state. The vegetable room 5 is maintained at a higher temperature than the refrigerated room 2 and stores stored items such as vegetables in a refrigerated state.

冷凍室4及び冷蔵室3の背面にはダンパ15を介して連通する第1、第2冷気通路7、8が設けられる。第1冷気通路7には冷却器11及び冷凍室送風ファン12が配され、冷凍室4に臨む吐出口7aが開口する。第2冷気通路8には冷蔵室送風ファン13が配され、冷蔵室3に臨む吐出口8aが開口する。  First and second cold air passages 7 and 8 that communicate with each other via a damper 15 are provided on the back surfaces of the freezer compartment 4 and the refrigerator compartment 3. In the first cold air passage 7, a cooler 11 and a freezer compartment fan 12 are arranged, and a discharge port 7 a facing the freezer compartment 4 is opened. The second cool air passage 8 is provided with a refrigerating room blower fan 13, and a discharge port 8 a facing the refrigerating room 3 is opened.

野菜室5の後方には機械室6が設けられ、機械室6内にはインバータ制御により回転数が可変される圧縮機10が設置される。圧縮機10には冷媒が流通する冷媒管(不図示)を介して凝縮器(不図示)、キャピラリチューブ(不図示)、冷却器11が順に接続され、圧縮機10に戻る。   A machine room 6 is provided behind the vegetable room 5, and a compressor 10 whose rotation speed is variable by inverter control is installed in the machine room 6. A condenser (not shown), a capillary tube (not shown), and a cooler 11 are sequentially connected to the compressor 10 via a refrigerant pipe (not shown) through which refrigerant flows, and the compressor 10 returns to the compressor 10.

圧縮機10によって圧縮された高温高圧のガス冷媒は凝縮器で放熱しながら凝縮する。凝縮した高温の液冷媒は膨張器を形成するキャピラリチューブで膨張して低温低圧となり、冷却器11に送られる。冷却器11に流入する冷媒は吸熱しながら蒸発して低温のガス冷媒となり、圧縮機10に送られる。これにより、冷媒が循環して冷凍サイクルが運転される。   The high-temperature and high-pressure gas refrigerant compressed by the compressor 10 is condensed while dissipating heat in the condenser. The condensed high-temperature liquid refrigerant expands in the capillary tube forming the expander, becomes low-temperature and low-pressure, and is sent to the cooler 11. The refrigerant flowing into the cooler 11 evaporates while absorbing heat to become a low-temperature gas refrigerant, and is sent to the compressor 10. Thereby, the refrigerant circulates and the refrigeration cycle is operated.

冷凍室送風ファン12を駆動すると第1冷気通路7に空気が流通する。この時、ダンパ15を開いて冷蔵室送風ファン13を駆動すると第2冷気通路8に冷気が流通する。従って、第1、第2冷気通路7、8に冷気を流通させる送風装置が冷凍室送風ファン12及び冷蔵室送風ファン13によって構成される。   When the freezer compartment fan 12 is driven, air flows through the first cold air passage 7. At this time, when the damper 15 is opened and the refrigerating room blower fan 13 is driven, cold air flows through the second cold air passage 8. Therefore, the air blower that distributes the cold air to the first and second cold air passages 7 and 8 is constituted by the freezer compartment blower fan 12 and the refrigerating compartment blower fan 13.

第1冷気通路7を流通する空気が冷凍サイクルの低温部に配される冷却器11と熱交換して冷気が生成され、吐出口7a、8aから吐出される。尚、冷凍室4には冷気を第1冷気通路7に戻す戻り口(不図示)が設けられる。冷蔵室3には野菜室5に連通する連通路(不図示)が導出され、野菜室5には冷気を第1冷気通路7に戻す戻り口(不図示)が設けられる。従って、冷蔵室3を冷却する冷気によって野菜室5が冷却され、野菜室5は冷蔵室3の一部を構成する。以下の説明において、単に冷蔵室3の冷却という場合には野菜室5の冷却が含まれる。   The air flowing through the first cold air passage 7 exchanges heat with the cooler 11 disposed in the low temperature part of the refrigeration cycle to generate cold air, which is discharged from the discharge ports 7a and 8a. The freezer compartment 4 is provided with a return port (not shown) for returning the cold air to the first cold air passage 7. The refrigerator compartment 3 has a communication passage (not shown) communicating with the vegetable compartment 5, and the vegetable compartment 5 is provided with a return port (not shown) for returning the cold air to the first cold air passage 7. Therefore, the vegetable compartment 5 is cooled by the cold air that cools the refrigerator compartment 3, and the vegetable compartment 5 constitutes a part of the refrigerator compartment 3. In the following description, the cooling of the refrigerator compartment 3 includes the cooling of the vegetable compartment 5.

図2は冷蔵庫1の構成を示すブロック図である。冷蔵庫1は各部を制御する制御部9を有している。制御部9内には計時を行うタイマーが設けられる。制御部9には圧縮機10、送風ファン12、ダンパ15、操作部14、記憶部18、外気温センサ22、冷蔵室温度センサ16、冷凍室温度センサ17、冷蔵室扉センサ19、冷凍室扉センサ20、野菜室扉センサ21が接続される。   FIG. 2 is a block diagram showing the configuration of the refrigerator 1. The refrigerator 1 has a control unit 9 that controls each unit. A timer for measuring time is provided in the control unit 9. The control unit 9 includes a compressor 10, a blower fan 12, a damper 15, an operation unit 14, a storage unit 18, an outside air temperature sensor 22, a refrigerating room temperature sensor 16, a freezer room temperature sensor 17, a refrigerating room door sensor 19, and a freezer room door. A sensor 20 and a vegetable compartment door sensor 21 are connected.

操作部14は冷蔵室3の断熱扉3a等に設けられ、冷蔵室3や冷凍室4の温度設定等を行う。記憶部8はRAM及びROMから成り、冷蔵庫1の制御プログラムを格納するとともに制御部9による演算の一時記憶を行う。外気温センサ22は冷蔵庫1の周囲の外気温を検知する。冷蔵室温度センサ16は冷蔵室3の庫内温度を検知する。冷凍室温度センサ17は冷凍室4の庫内温度を検知する。   The operation part 14 is provided in the heat insulation door 3a etc. of the refrigerator compartment 3, etc., and performs the temperature setting of the refrigerator compartment 3, the freezer compartment 4, etc. The storage unit 8 includes a RAM and a ROM, and stores a control program for the refrigerator 1 and temporarily stores calculations by the control unit 9. The outside air temperature sensor 22 detects the outside air temperature around the refrigerator 1. The refrigerator compartment temperature sensor 16 detects the internal temperature of the refrigerator compartment 3. The freezer temperature sensor 17 detects the internal temperature of the freezer room 4.

冷蔵室扉センサ19は冷蔵室3の断熱扉3aの開閉を検知する。冷凍室扉センサ20は冷凍室4の断熱扉4aの開閉を検知する。野菜室扉センサ21は野菜室5の断熱扉5aの開閉を検知する。   The refrigerator compartment door sensor 19 detects opening and closing of the heat insulation door 3 a of the refrigerator compartment 3. The freezer compartment door sensor 20 detects opening and closing of the heat insulation door 4 a of the freezer compartment 4. The vegetable compartment door sensor 21 detects opening and closing of the heat insulation door 5a of the vegetable compartment 5.

上記構成の冷蔵庫1において、冷凍室4が所定の上限温度tf1よりも高温になると圧縮機10及び冷凍室送風ファン12が駆動される。これにより、第1冷気通路7を流通する冷気が吐出口7aから冷凍室4に吐出して供給され、冷凍室4内が冷却される。冷凍室4を流通した冷気は戻り口を介して第1冷気通路7に戻る。冷凍室4が所定の下限温度tf2よりも低温になると圧縮機10及び冷凍室送風ファン12が停止される。   In the refrigerator 1 having the above configuration, when the freezer compartment 4 becomes higher than a predetermined upper limit temperature tf1, the compressor 10 and the freezer compartment blower fan 12 are driven. Thereby, the cold air which distribute | circulates the 1st cold air channel | path 7 is discharged and supplied to the freezer compartment 4 from the discharge outlet 7a, and the inside of the freezer compartment 4 is cooled. The cold air flowing through the freezer compartment 4 returns to the first cold air passage 7 through the return port. When the freezer compartment 4 becomes lower than the predetermined lower limit temperature tf2, the compressor 10 and the freezer compartment fan 12 are stopped.

この時、冷蔵室3が所定の上限温度tr1よりも高温になるとダンパ15が開かれ、冷凍室送風ファン12が駆動される。また、後述する高速運転モード時には冷蔵室送風ファン13が駆動され、低速運転モード時には冷蔵室送風ファン13が停止される。これにより、第2冷気通路8を流通する冷気が吐出口8aから冷蔵室3に吐出して供給され、冷蔵室3内が冷却される。   At this time, when the refrigerator compartment 3 becomes higher than the predetermined upper limit temperature tr1, the damper 15 is opened and the freezer compartment fan 12 is driven. Further, the refrigerator air blower fan 13 is driven during a high speed operation mode described later, and the refrigerator air blower fan 13 is stopped during a low speed operation mode. Thereby, the cold air which distribute | circulates the 2nd cold air | gas channel | path 8 is discharged and supplied to the refrigerator compartment 3 from the discharge outlet 8a, and the inside of the refrigerator compartment 3 is cooled.

冷蔵室3を流通した冷気は連通路を介して野菜室5に吐出され、野菜室5内が冷却される。野菜室5を流通した冷気は戻り口を介して第1冷気通路7に戻る。この間に冷凍室4が下限温度tf2に到達した場合は圧縮機10が停止される。その後、冷蔵室3が所定の下限温度tr2よりも低温になると冷凍室送風ファン12及び冷蔵室送風ファン13が停止される。   The cold air that has circulated through the refrigerator compartment 3 is discharged to the vegetable compartment 5 through the communication path, and the inside of the vegetable compartment 5 is cooled. The cold air flowing through the vegetable compartment 5 returns to the first cold air passage 7 through the return port. If the freezer compartment 4 reaches the lower limit temperature tf2 during this period, the compressor 10 is stopped. Thereafter, when the refrigerator compartment 3 becomes lower than the predetermined lower limit temperature tr2, the freezer compartment fan 12 and the refrigerator compartment fan 13 are stopped.

また、冷凍室4よりも先に冷蔵室3が下限温度tr2に到達した場合はダンパ15が閉じられて冷蔵室送風ファン13が停止される。その後、冷凍室4が下限温度tf2に到達すると、圧縮機10及び冷凍室送風ファン12が停止される。   When the refrigerator compartment 3 reaches the lower limit temperature tr2 prior to the freezer compartment 4, the damper 15 is closed and the refrigerator refrigerator fan 13 is stopped. Thereafter, when the freezer compartment 4 reaches the lower limit temperature tf2, the compressor 10 and the freezer compartment fan 12 are stopped.

上記により、圧縮機10は冷凍室4が上限温度tf1よりも高温になると駆動され、下限温度tf2よりも低温になると停止される。   As described above, the compressor 10 is driven when the freezer compartment 4 becomes hotter than the upper limit temperature tf1, and is stopped when the freezer compartment 4 becomes colder than the lower limit temperature tf2.

尚、冷凍室4が上限温度tf1よりも低温の時に冷蔵室3が上限温度tr1よりも高温になった場合や、冷蔵室3及び冷凍室4の冷却中に先に冷凍室4が下限温度tf2に到達した場合に圧縮機10を駆動してもよい。この時、圧縮機10は冷蔵室3が上限温度tr1よりも高温になると駆動され、下限温度tr2よりも低温になると停止される。即ち、圧縮機10は冷蔵室3及び冷凍室4の一方または両方が上限温度tr1、tf1よりも高温になると駆動され、冷蔵室3及び冷凍室4の一方または両方が下限温度tr2、tf2よりも低温になると停止される。   It should be noted that when the freezer compartment 4 becomes lower than the upper limit temperature tr1 when the freezer compartment 4 is at a lower temperature than the upper limit temperature tf1, or when the freezer compartment 4 and the freezer compartment 4 are cooled before the lower limit temperature tf2 is reached. The compressor 10 may be driven when reaching. At this time, the compressor 10 is driven when the refrigerator compartment 3 becomes higher than the upper limit temperature tr1, and is stopped when the temperature becomes lower than the lower limit temperature tr2. That is, the compressor 10 is driven when one or both of the refrigerating room 3 and the freezing room 4 becomes higher than the upper limit temperatures tr1 and tf1, and one or both of the refrigerating room 3 and the freezing room 4 are lower than the lower limit temperatures tr2 and tf2. Stops when the temperature is low.

外気温センサ22の検知によって外気温が所定温度よりも高温になった場合には大きな冷力が必要となる。また、冷蔵室扉センサ19、冷凍室扉センサ20及び野菜室扉センサ21の検知により断熱扉3a、4a、5aのいずれかが開閉されてから短時間の場合も大きな冷力が必要となる。このため、圧縮機10の回転数が高い高速運転モードが行われる。   When the outside air temperature becomes higher than a predetermined temperature as detected by the outside air temperature sensor 22, a large amount of cooling power is required. In addition, a large amount of cooling power is required even in a short period of time after any one of the heat insulating doors 3a, 4a, and 5a is opened and closed by the detection of the refrigerator compartment door sensor 19, the freezer compartment door sensor 20, and the vegetable compartment door sensor 21. For this reason, the high speed operation mode in which the rotation speed of the compressor 10 is high is performed.

外気温が所定温度よりも低温の場合や、断熱扉3a、4a、5aがいずれも閉じられてから長時間が経過している場合には大きな冷力を必要としない。このため、圧縮機10の回転数が高速運転モードよりも低い低速運転モードが行われる。これにより、高い回転数での圧縮機10の駆動による電力消費が大きくなる期間を短縮し、冷蔵庫1の省電力化が図られる。   When the outside air temperature is lower than a predetermined temperature, or when a long time has passed since all of the heat insulating doors 3a, 4a and 5a are closed, a large cooling power is not required. For this reason, the low speed operation mode in which the rotation speed of the compressor 10 is lower than the high speed operation mode is performed. Thereby, the period when the power consumption by the drive of the compressor 10 at high rotation speed becomes large is shortened, and the power saving of the refrigerator 1 is achieved.

Figure 2013100926
Figure 2013100926

表1は高速運転モード及び低速運転モードの設定値の一例を示している。表1によると、高速運転モードでは圧縮機10が2600rpmで駆動され、冷蔵庫1の電源投入時の所定期間のみ3000rpmで駆動される。低速運転モードでは圧縮機10が1600rpmで駆動される。   Table 1 shows an example of set values for the high-speed operation mode and the low-speed operation mode. According to Table 1, the compressor 10 is driven at 2600 rpm in the high speed operation mode, and is driven at 3000 rpm only for a predetermined period when the refrigerator 1 is powered on. In the low speed operation mode, the compressor 10 is driven at 1600 rpm.

また、高速運転モードではダンパ15を開いた際に冷凍室送風ファン12及び冷蔵室送風ファン13が駆動される。低速運転モードではダンパ15を開いた際に冷凍室送風ファン12が駆動され、冷蔵室送風ファン13が停止される。これにより、低速運転モード時に第2冷気通路8を流通する冷気の風量が高速運転モード時よりも少なくなる。尚、低速運転モードに冷蔵室送風ファン13を高速運転モードよりも低い回転数で回転して第2冷気通路8の風量を少なくしてもよい。   In the high-speed operation mode, when the damper 15 is opened, the freezer compartment blower fan 12 and the refrigerator compartment blower fan 13 are driven. In the low-speed operation mode, when the damper 15 is opened, the freezer compartment blower fan 12 is driven and the refrigerating compartment blower fan 13 is stopped. Thereby, the air volume of the cool air flowing through the second cold air passage 8 in the low speed operation mode is smaller than that in the high speed operation mode. It should be noted that the cool air blower fan 13 may be rotated at a lower rotational speed than in the high speed operation mode in the low speed operation mode to reduce the air volume in the second cold air passage 8.

また、高速運転モードでは冷凍室4の上限温度tf1は−21℃に設定され、下限温度tf2は−25℃に設定される。これにより、上限温度tf1と下限温度tf2との差(ディファレンシャル)は4℃になっている。低速運転モードでは冷凍室4の上限温度tf1は−21℃に設定され、下限温度tf2は−22.5℃に設定される。これにより、上限温度tf1と下限温度tf2との差(ディファレンシャル)は1.5℃になっている。   In the high-speed operation mode, the upper limit temperature tf1 of the freezer compartment 4 is set to -21 ° C, and the lower limit temperature tf2 is set to -25 ° C. Thereby, the difference (differential) between the upper limit temperature tf1 and the lower limit temperature tf2 is 4 ° C. In the low speed operation mode, the upper limit temperature tf1 of the freezer compartment 4 is set to −21 ° C., and the lower limit temperature tf2 is set to −22.5 ° C. Thereby, the difference (differential) between the upper limit temperature tf1 and the lower limit temperature tf2 is 1.5 ° C.

また、冷蔵室3の上限温度tr1及び下限温度tr2は高速運転モード及び低速運転モードで同じであり、それぞれ5℃、1℃に設定される(ディファレンシャル4℃)。   Further, the upper limit temperature tr1 and the lower limit temperature tr2 of the refrigerator compartment 3 are the same in the high speed operation mode and the low speed operation mode, and are set to 5 ° C. and 1 ° C., respectively (differential 4 ° C.).

図3は圧縮機10、冷蔵室送風ファン13、ダンパ15の駆動状態の例を示すタイムチャートである。縦軸は駆動パルスのオンオフ状態であり、横軸は時間である。期間T1は冷蔵庫1の電源投入直後を示しており、高速運転モードが行われて圧縮機10が3000rpmで連続運転される。この時、冷蔵室3の温度に応じて冷蔵室送風ファン13がオンオフされ、冷蔵室送風ファン13に連動してダンパ15が開閉される。   FIG. 3 is a time chart showing an example of driving states of the compressor 10, the refrigerator compartment blower fan 13, and the damper 15. The vertical axis represents the driving pulse on / off state, and the horizontal axis represents time. Period T1 shows immediately after power-on of the refrigerator 1, the high speed operation mode is performed, and the compressor 10 is continuously operated at 3000 rpm. At this time, the refrigerating room blower fan 13 is turned on / off according to the temperature of the refrigerating room 3, and the damper 15 is opened and closed in conjunction with the refrigerating room blower fan 13.

期間T2、T4は高速運転モードを示し、期間T2は電源投入から所定時間が経過した後を示している。期間T2、T4では冷凍室4の温度に応じて圧縮機10が2600rpmでオンオフされる。この時、冷蔵室3の温度に応じて冷蔵室送風ファン13がオンオフされ、冷蔵室送風ファン13に連動してダンパ15が開閉される。   Periods T2 and T4 indicate the high-speed operation mode, and period T2 indicates after a predetermined time has elapsed since the power was turned on. In the periods T2 and T4, the compressor 10 is turned on and off at 2600 rpm according to the temperature of the freezer compartment 4. At this time, the refrigerating room blower fan 13 is turned on / off according to the temperature of the refrigerating room 3, and the damper 15 is opened and closed in conjunction with the refrigerating room blower fan 13.

期間T3は低速運転モードを示しており、冷凍室4の温度に応じて圧縮機10が1600rpmでオンオフされる。この時、冷蔵室送風ファン13が停止され、冷蔵室3の温度に応じてダンパ15が開閉される。   A period T3 indicates a low-speed operation mode, and the compressor 10 is turned on and off at 1600 rpm according to the temperature of the freezer compartment 4. At this time, the refrigerator compartment blower fan 13 is stopped, and the damper 15 is opened and closed according to the temperature of the refrigerator compartment 3.

図4、図5はそれぞれ高速運転モード時及び低速運転モード時の冷蔵室3の温度、冷蔵室送風ファン13及びダンパ15のオンオフ状態、冷却器11の温度、圧縮機10のオンオフ状態の詳細な推移の例を示すタイムチャートである。図5は冷蔵室送風ファン13が停止状態のため省いている。図6は比較のため、前述の表1に示す高速運転モード時の条件で圧縮機10の回転数を1600rpmにした場合を示している。図4〜図6において横軸は時間である。   4 and 5 show details of the temperature of the refrigerator compartment 3 in the high-speed operation mode and the low-speed operation mode, the ON / OFF state of the refrigerator fan 13 and the damper 15, the temperature of the cooler 11, and the ON / OFF state of the compressor 10, respectively. It is a time chart which shows the example of transition. FIG. 5 is omitted because the refrigerator fan 13 is in a stopped state. For comparison, FIG. 6 shows a case where the rotational speed of the compressor 10 is set to 1600 rpm under the conditions in the high-speed operation mode shown in Table 1 described above. 4 to 6, the horizontal axis is time.

図4に示すように、高速運転モードでは冷凍室4が上限温度tf1に到達すると圧縮機10が駆動される(この時、冷却器11の温度はte1になっている)。これにより、冷却器11が降温され、冷凍室4が冷却される。次に冷蔵室3が上限温度tr1に到達すると、ダンパ15が開かれて冷蔵室送風ファン13が駆動される。これにより、冷蔵室3が降温される。この時、冷蔵室3を流通した冷気が冷却器11に戻るため、冷却器11の温度が上昇する。   As shown in FIG. 4, in the high-speed operation mode, when the freezer compartment 4 reaches the upper limit temperature tf1, the compressor 10 is driven (at this time, the temperature of the cooler 11 is te1). Thereby, the cooler 11 falls and the freezer compartment 4 is cooled. Next, when the refrigerator compartment 3 reaches the upper limit temperature tr1, the damper 15 is opened and the refrigerator fan 13 is driven. Thereby, the temperature in the refrigerator compartment 3 is lowered. At this time, since the cold air flowing through the refrigerator compartment 3 returns to the cooler 11, the temperature of the cooler 11 rises.

冷蔵室3が下限温度tr2に到達すると、ダンパ15が閉じられて冷蔵室送風ファン13が停止される。これにより、冷蔵室3の温度が上昇するとともに冷却器11及び冷凍室4が降温される。冷凍室4が下限温度tf2に到達すると圧縮機10が停止される(この時、冷却器11の温度はte2になっている)。これにより、冷却器11及び冷凍室4の温度が上昇し、冷凍室4が上限温度tf1に到達すると圧縮機10が駆動される。この動作を繰り返して冷蔵室3及び冷凍室4の冷却が行われる。   When the refrigerator compartment 3 reaches the lower limit temperature tr2, the damper 15 is closed and the refrigerator compartment blower fan 13 is stopped. Thereby, while the temperature of the refrigerator compartment 3 rises, the cooler 11 and the freezer compartment 4 are temperature-fallen. When the freezer compartment 4 reaches the lower limit temperature tf2, the compressor 10 is stopped (at this time, the temperature of the cooler 11 is te2). Thereby, the temperature of the cooler 11 and the freezer compartment 4 rises, and when the freezer compartment 4 reaches the upper limit temperature tf1, the compressor 10 is driven. This operation is repeated to cool the refrigerator compartment 3 and the freezer compartment 4.

図6に示すように高速運転モードの圧縮機10の回転数を1600rpmに低下させると、冷却器11の冷却能力が低下する。また、ダンパ15を開いて冷蔵室送風ファン13が駆動されると冷蔵室3で昇温された冷気が冷却器11に戻る。これにより、冷却器11が冷凍室4の下限温度tf2に対応した温度te2まで降温されず、Δteだけ高温の状態で次の冷蔵室3の冷却が開始されて昇温する。このため、圧縮機11が停止されずに駆動が継続される。   As shown in FIG. 6, when the rotation speed of the compressor 10 in the high-speed operation mode is reduced to 1600 rpm, the cooling capacity of the cooler 11 is reduced. Further, when the damper 15 is opened and the refrigerating room blower fan 13 is driven, the cool air heated in the refrigerating room 3 returns to the cooler 11. As a result, the cooler 11 is not cooled down to the temperature te2 corresponding to the lower limit temperature tf2 of the freezer compartment 4, and the next refrigerator compartment 3 starts to be cooled and heated up at a high temperature by Δte. For this reason, the driving is continued without stopping the compressor 11.

これに対して、低速運転モードでは冷凍室4のディファレンシャルを高速運転モード時よりも小さくして冷蔵室送風ファン13が停止される。このため、図5に示すように冷却器11が冷凍室4の下限温度tf2に対応した温度te2’に到達すると圧縮機10が停止される。この時、冷蔵室送風ファン13の停止によって冷蔵室3の降温が図6の場合よりも緩やかになるが、冷却器11の昇温が抑制される。このため、圧縮機10を早期に停止状態に移行させることができる。従って、冷蔵庫1の省電力化を図るとともに圧縮機10及び冷蔵庫1の信頼性を向上することができる。   On the other hand, in the low speed operation mode, the freezer compartment 4 differential is made smaller than that in the high speed operation mode, and the refrigerating room blower fan 13 is stopped. Therefore, as shown in FIG. 5, when the cooler 11 reaches a temperature te2 'corresponding to the lower limit temperature tf2 of the freezer compartment 4, the compressor 10 is stopped. At this time, the temperature drop of the refrigerator compartment 3 becomes gentler than the case of FIG. 6 by the stop of the refrigerator fan 13 but the temperature rise of the cooler 11 is suppressed. For this reason, the compressor 10 can be shifted to a stop state at an early stage. Therefore, power saving of the refrigerator 1 can be achieved and the reliability of the compressor 10 and the refrigerator 1 can be improved.

本実施形態によると、圧縮機10の回転数が高速運転モードよりも低い低速運転モード時に、冷凍室4の上限温度tf1と下限温度tf2との差(ディファレンシャル)を高速運転モード時よりも小さくし、ダンパ15を開いた際の第2冷気通路8の風量を高速運転モード時よりも少なくした。従って、冷凍室4の温度を短時間で確実に下限温度tf2に到達させることができ、圧縮機10の駆動及び停止が繰り返される。従って、冷蔵庫1の省電力化を図るとともに信頼性を向上することができる。   According to the present embodiment, the difference (differential) between the upper limit temperature tf1 and the lower limit temperature tf2 of the freezer compartment 4 is made smaller in the low speed operation mode in which the rotation speed of the compressor 10 is lower than that in the high speed operation mode than in the high speed operation mode. The air volume of the second cold air passage 8 when the damper 15 is opened is less than that in the high speed operation mode. Therefore, the temperature of the freezer compartment 4 can be surely reached the lower limit temperature tf2 in a short time, and the driving and stopping of the compressor 10 are repeated. Therefore, the power saving of the refrigerator 1 can be achieved and the reliability can be improved.

尚、低速運転モード時の冷凍室4の上限温度tf1を高速運転モード時よりも低温にして上限温度tf1と下限温度tf2とのディファレンシャルを小さくしてもよい。しかしながら、低速運転モード時の冷凍室4の下限温度tf2を高速運転モード時よりも高温にしてディファレンシャルを小さくすると、圧縮機11の駆動時間をより短縮することができる。従って、より省電力化を図ることができる。   Note that the upper limit temperature tf1 of the freezer compartment 4 in the low speed operation mode may be lower than that in the high speed operation mode, and the differential between the upper limit temperature tf1 and the lower limit temperature tf2 may be reduced. However, when the lower limit temperature tf2 of the freezer compartment 4 in the low speed operation mode is set higher than that in the high speed operation mode to reduce the differential, the drive time of the compressor 11 can be further shortened. Therefore, further power saving can be achieved.

また、断熱扉3a、4a、5aを所定時間閉じた状態が継続した際に、高速運転モードから低速運転モードに切り替えられるので、冷蔵室3及び冷凍室4の温度が安定した際に圧縮機10を低回転にして冷蔵庫1の省電力化を図ることができる。   Further, since the high-speed operation mode is switched to the low-speed operation mode when the heat insulation doors 3a, 4a, and 5a are closed for a predetermined time, the compressor 10 is restored when the temperature of the refrigerator compartment 3 and the freezer compartment 4 is stabilized. The power consumption of the refrigerator 1 can be reduced by reducing the rotation speed.

また、外気温が所定温度よりも低温の時に高速運転モードから低速運転モードに切り替えられるので、冷蔵室3及び冷凍室4の温度が安定した際に圧縮機10を低回転にして冷蔵庫1の省電力化を図ることができる。   Further, since the high-speed operation mode is switched to the low-speed operation mode when the outside air temperature is lower than the predetermined temperature, the compressor 10 is rotated at a low speed when the temperature of the refrigerator compartment 3 and the freezer compartment 4 is stabilized, so that the refrigerator 1 can be saved. Electricity can be achieved.

本実施形態において、冷蔵室送風ファン13を省き、冷凍室送風ファン12によって第1、第2冷気通路7、8に冷気を流通させる送風装置を構成してもよい。そして、低速運転モード時の冷凍室送風ファン12の回転数を高速運転モード時よりも低くする。これにより、送風装置の風量が低下し、ダンパ15を開いた際の第2冷気通路8の風量を高速運転モード時よりも少なくすることができる。   In the present embodiment, the cooling room blower fan 13 may be omitted, and a blower that distributes the cold air to the first and second cold air passages 7 and 8 by the freezer compartment blower fan 12 may be configured. And the rotation speed of the freezer compartment ventilation fan 12 at the time of low speed operation mode is made lower than at the time of high speed operation mode. Thereby, the air volume of an air blower falls and the air volume of the 2nd cold passage 8 at the time of opening the damper 15 can be made smaller than the time of high speed operation mode.

この時、低速運転モードでダンパ15を閉じた際の冷凍室送風ファン12の回転数を高速回転モードと同じにしてもよい。そして、低速運転モードでダンパ15を開いた際の冷凍室送風ファン12の回転数を閉じた場合よりも低くする。これにより、送風装置の風量が低下し、ダンパ15を開いた際の第2冷気通路8の風量を高速運転モード時よりも少なくすることができる。   At this time, the rotation speed of the freezer compartment fan 12 when the damper 15 is closed in the low speed operation mode may be the same as that in the high speed rotation mode. Then, the rotational speed of the freezer compartment fan 12 when the damper 15 is opened in the low-speed operation mode is set lower than when the rotational speed is closed. Thereby, the air volume of an air blower falls and the air volume of the 2nd cold passage 8 at the time of opening the damper 15 can be made smaller than the time of high speed operation mode.

本発明によると、インバータ制御される圧縮機を備えた冷蔵庫に利用することができる。   According to this invention, it can utilize for the refrigerator provided with the compressor controlled by an inverter.

1 冷蔵庫
2 断熱箱体
3 冷蔵室
4 冷凍室
5 野菜室
6 機械室
7 第1冷気通路
8 第2冷気通路
7a、8a 吐出口
9 制御部
10 圧縮機
11 冷却器
12 冷凍室送風ファン
13 冷蔵室送風ファン
14 操作部
15 ダンパ
16 冷蔵室温度センサ
17 冷凍室温度センサ
18 記憶部
19 冷蔵室扉センサ
20 冷凍室扉センサ
21 野菜室扉センサ
22 外気温センサ
DESCRIPTION OF SYMBOLS 1 Refrigerator 2 Heat insulation box 3 Refrigerating room 4 Freezing room 5 Vegetable room 6 Machine room 7 1st cold air passage 8 2nd cold air passage 7a, 8a Discharge port 9 Control part 10 Compressor 11 Cooler 12 Freezer compartment fan 13 Cold room Blower fan 14 Operation unit 15 Damper 16 Cold room temperature sensor 17 Freezer room temperature sensor 18 Storage unit 19 Cold room door sensor 20 Freezer room door sensor 21 Vegetable room door sensor 22 Outside air temperature sensor

Claims (5)

貯蔵物を冷蔵保存する冷蔵室と、貯蔵物を冷凍保存する冷凍室と、回転数を可変されるとともに冷凍サイクルを運転する圧縮機と、冷気を生成する冷却器と、前記冷却器を配して前記冷凍室に冷気を供給する第1冷気通路と、ダンパを介して第1冷気通路に連通して前記冷蔵室に冷気を供給する第2冷気通路と、第1冷気通路及び第2冷気通路に冷気を流通させる送風装置とを備え、前記冷蔵室及び前記冷凍室の一方または両方が所定の上限温度よりも高温になると前記圧縮機を駆動するとともに、前記冷蔵室及び前記冷凍室の一方または両方が所定の下限温度よりも低温になると前記圧縮機を停止する冷蔵庫において、前記圧縮機を所定の回転数で駆動する高速運転モードと、前記圧縮機を前記高速運転モードよりも低い回転数で駆動する低速運転モードとを有し、前記低速運転モード時に、前記冷凍室の前記上限温度と前記下限温度との差を前記高速運転モード時よりも小さくするとともに、前記ダンパを開いた際の第2冷気通路の風量を前記高速運転モード時よりも少なくしたことを特徴とする冷蔵庫。   There are provided a refrigerator compartment for storing stored items in a refrigerator, a freezing chamber for storing stored items in a frozen state, a compressor for operating a refrigeration cycle with a variable rotation speed, a cooler for generating cold air, and the cooler. A first cold air passage for supplying cold air to the freezer compartment, a second cold air passage for communicating cold air to the first cold air passage via a damper, and a first cold air passage and a second cold air passage. An air blower that circulates cold air, and when one or both of the refrigerating chamber and the freezing chamber becomes higher than a predetermined upper limit temperature, the compressor is driven, and one of the refrigerating chamber and the freezing chamber or In a refrigerator that stops the compressor when both are lower than a predetermined lower limit temperature, a high-speed operation mode in which the compressor is driven at a predetermined rotation speed, and the compressor is operated at a rotation speed lower than that in the high-speed operation mode. Drive And a second cool air when the damper is opened while the difference between the upper limit temperature and the lower limit temperature of the freezer compartment is made smaller than in the high speed operation mode in the low speed operation mode. A refrigerator characterized in that the air volume in the passage is smaller than that in the high-speed operation mode. 前記低速運転モード時に、前記ダンパを開いた際の前記送風装置の風量が前記ダンパを閉じた際よりも少ないことを特徴とする請求項1に記載の冷蔵庫。   2. The refrigerator according to claim 1, wherein in the low-speed operation mode, the air volume of the blower when the damper is opened is less than when the damper is closed. 前記低速運転モード時の前記冷凍室の前記下限温度を前記高速運転モード時の前記冷凍室の前記下限温度よりも高温にしたことを特徴とする請求項1または請求項2に記載の冷蔵庫。   The refrigerator according to claim 1 or 2, wherein the lower limit temperature of the freezer compartment during the low speed operation mode is set higher than the lower limit temperature of the freezer compartment during the high speed operation mode. 前記冷蔵室の扉及び前記冷凍室の扉を所定時間閉じた状態が継続した際に、前記高速運転モードから前記低速運転モードに切り替えられることを特徴とする請求項1〜請求項3のいずれかに記載の冷蔵庫。   The switching from the high-speed operation mode to the low-speed operation mode is performed when the state in which the door of the refrigerator compartment and the door of the freezer compartment are closed for a predetermined time continues. Refrigerator. 外気温が所定温度よりも低温の時に前記高速運転モードから前記低速運転モードに切り替えられることを特徴とする請求項1〜請求項4のいずれかに記載の冷蔵庫。   The refrigerator according to any one of claims 1 to 4, wherein the high-speed operation mode is switched to the low-speed operation mode when the outside air temperature is lower than a predetermined temperature.
JP2011243771A 2011-11-07 2011-11-07 refrigerator Active JP5862867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011243771A JP5862867B2 (en) 2011-11-07 2011-11-07 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011243771A JP5862867B2 (en) 2011-11-07 2011-11-07 refrigerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015243937A Division JP6166771B2 (en) 2015-12-15 2015-12-15 refrigerator

Publications (2)

Publication Number Publication Date
JP2013100926A true JP2013100926A (en) 2013-05-23
JP5862867B2 JP5862867B2 (en) 2016-02-16

Family

ID=48621691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011243771A Active JP5862867B2 (en) 2011-11-07 2011-11-07 refrigerator

Country Status (1)

Country Link
JP (1) JP5862867B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090191A (en) * 2014-11-10 2016-05-23 シャープ株式会社 refrigerator
WO2018038023A1 (en) * 2016-08-25 2018-03-01 日本電産株式会社 Control device, program, method for controlling refrigerator, and refrigerator
JP2018109488A (en) * 2017-01-06 2018-07-12 パナソニックIpマネジメント株式会社 refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141347A (en) * 1999-11-15 2001-05-25 Sharp Corp Refrigerator
JP2002081817A (en) * 2000-09-06 2002-03-22 Fujitsu General Ltd Refrigerator
JP2004197966A (en) * 2002-12-16 2004-07-15 Matsushita Refrig Co Ltd Refrigerator
JP2010032072A (en) * 2008-07-25 2010-02-12 Suntech Co Ltd Power consumption control device, cooling system and power consumption control method
JP2010071480A (en) * 2008-09-16 2010-04-02 Mitsubishi Electric Corp Refrigerator
JP2010139234A (en) * 2008-11-13 2010-06-24 Daikin Ind Ltd Freezing unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141347A (en) * 1999-11-15 2001-05-25 Sharp Corp Refrigerator
JP2002081817A (en) * 2000-09-06 2002-03-22 Fujitsu General Ltd Refrigerator
JP2004197966A (en) * 2002-12-16 2004-07-15 Matsushita Refrig Co Ltd Refrigerator
JP2010032072A (en) * 2008-07-25 2010-02-12 Suntech Co Ltd Power consumption control device, cooling system and power consumption control method
JP2010071480A (en) * 2008-09-16 2010-04-02 Mitsubishi Electric Corp Refrigerator
JP2010139234A (en) * 2008-11-13 2010-06-24 Daikin Ind Ltd Freezing unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090191A (en) * 2014-11-10 2016-05-23 シャープ株式会社 refrigerator
WO2018038023A1 (en) * 2016-08-25 2018-03-01 日本電産株式会社 Control device, program, method for controlling refrigerator, and refrigerator
JP2018109488A (en) * 2017-01-06 2018-07-12 パナソニックIpマネジメント株式会社 refrigerator

Also Published As

Publication number Publication date
JP5862867B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP4059474B2 (en) refrigerator
JP5826317B2 (en) refrigerator
KR101721771B1 (en) Colntrol method for refrigerator
JP5856435B2 (en) refrigerator
JP5624295B2 (en) refrigerator
JP2017036853A (en) refrigerator
JP5862867B2 (en) refrigerator
JP2014044025A (en) Refrigerator
JP6166771B2 (en) refrigerator
JPH11148761A (en) Refrigerator
JP2013068388A (en) Refrigerator
JP5743867B2 (en) Cooling storage
JP6017886B2 (en) refrigerator
JP2013053801A (en) Refrigerator
JP2013057441A (en) Refrigerator
JP2012082985A (en) Refrigerator
JP2009014320A (en) Refrigerator
JP2005337677A (en) Refrigerator
JP2020091045A (en) refrigerator
JP7430158B2 (en) Cold storage
KR100705766B1 (en) Quick freezing system for refrigerator
JP2012241975A (en) Refrigerator
KR100569895B1 (en) Method for control temperature of refrigerator
JP2002071254A (en) Refrigerator and its controlling method
JP2016011830A (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150618

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151215

R150 Certificate of patent or registration of utility model

Ref document number: 5862867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150