JP2010071480A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2010071480A
JP2010071480A JP2008236276A JP2008236276A JP2010071480A JP 2010071480 A JP2010071480 A JP 2010071480A JP 2008236276 A JP2008236276 A JP 2008236276A JP 2008236276 A JP2008236276 A JP 2008236276A JP 2010071480 A JP2010071480 A JP 2010071480A
Authority
JP
Japan
Prior art keywords
temperature
compressor
load
refrigerator
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008236276A
Other languages
Japanese (ja)
Inventor
Yasunari Yamato
康成 大和
Takeshi Maeda
剛 前田
Kaori Ono
香央里 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008236276A priority Critical patent/JP2010071480A/en
Publication of JP2010071480A publication Critical patent/JP2010071480A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator appropriately determining balance between operation load and cooling capacity of the refrigerator and reducing waste electric power consumption by appropriately controlling rotational frequency of a compressor. <P>SOLUTION: The refrigerator 100 includes: a refrigerating cycle having a cooler 3 and the compressor 4 with variable rotational frequency; a freezing compartment temperature sensor 13 for detecting the temperature of a freezing compartment 103; and a control device 2 for operating the compressor 4 when the detection temperature by the freezing compartment temperature sensor 13 exceeds starting temperature and stopping the operation of the compressor 4 when the detection temperature is below stop temperature. After first predetermined time passes after start of the compressor 4, when the detection temperature by the freezing compartment temperature sensor 13 is not lowered to the stop temperature, the control device 2 determines the operation load of the refrigerator 100. In accordance with the determination result of the operation load, the control device 2 determines rotational frequency of the compressor 4 and controls the compressor 4 so as to achieve the determined rotational frequency. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、インバータ機能を搭載した冷蔵庫に関する。   The present invention relates to a refrigerator equipped with an inverter function.

近年、冷蔵庫の消費電力を抑えるために圧縮機の回転数を可変とし、冷蔵庫の運転負荷が低いとき(すなわち、室内の温度と目標温度との温度差が小さいようなとき)には低い回転数で圧縮機を運転するインバータ機能を搭載した冷蔵庫が一般的である。通常、どのくらいの回転数で圧縮機を動作するかは、外気温度、部屋(貯蔵室)の容量等から推測する冷蔵庫の運転負荷と、圧縮機の回転数から決定される冷却能力との関係から決定される。そして、この回転数で圧縮機を動作させた場合に、あとどのくらいの時間で室内の温度が目標温度に達して圧縮機の運転を終了させることができるかは、想定可能となっている。しかしながら、冷蔵庫の運転中に高温で大量の食品を部屋に入れた場合や、扉の開閉を頻繁に行うなどした場合、冷蔵庫の運転負荷が大きくなり、想定した時間内で室内を目標温度まで冷却することができない。このように、圧縮機の運転が終了すると想定した時間よりも長く圧縮機を運転させる必要が生じた場合には、運転負荷と冷却能力とのバランス関係が崩れたとして、冷却能力を高めるために圧縮機の回転数を上げる制御が一般的に採用されていた(以下、従来技術1という)。   In recent years, the compressor rotation speed has been made variable in order to reduce the power consumption of the refrigerator, and when the operating load of the refrigerator is low (that is, when the temperature difference between the room temperature and the target temperature is small), the rotation speed is low. A refrigerator equipped with an inverter function for operating a compressor is generally used. Normally, how many revolutions the compressor is operated from the relationship between the operating load of the refrigerator estimated from the outside air temperature, the capacity of the room (storage room), etc., and the cooling capacity determined from the revolutions of the compressor It is determined. Then, when the compressor is operated at this rotational speed, it can be assumed how long the room temperature will reach the target temperature and the operation of the compressor can be terminated. However, if a large amount of food is put in a room at high temperature while the refrigerator is operating, or if the door is frequently opened and closed, the operating load of the refrigerator increases, and the room is cooled to the target temperature within the expected time. Can not do it. In this way, when it becomes necessary to operate the compressor longer than the time when it is assumed that the operation of the compressor is finished, the balance relationship between the operation load and the cooling capacity is broken, so that the cooling capacity is increased. Control for increasing the rotational speed of the compressor has been generally employed (hereinafter referred to as Conventional Technology 1).

一方、冷凍室の目標温度(例えば−21℃)に対して所定の温度幅の動作温度を設定し、冷凍室に備えた温度センサの検知温度が、温度幅の上限温度(起動温度)に達した場合に圧縮機を起動し、温度幅の下限温度(停止温度)に達した場合、圧縮機を停止するようにした冷蔵庫がある(例えば、特許文献1参照)(以下、従来技術2という)。この冷蔵庫では、検知温度が、起動温度よりも更に高く設定した高負荷温度を超えた場合に圧縮機の回転数を上げ、また、高負荷温度を超えた状態が所定時間継続した場合には、さらに圧縮機の回転数を上げて室内を急激に冷却するようにしている。一方、検知温度が高負荷温度を下回った場合は、即圧縮機の回転数を下げるようにしている。
特開2005−98549号公報(第10頁、第5図)
On the other hand, an operating temperature within a predetermined temperature range is set with respect to the target temperature (for example, −21 ° C.) of the freezer compartment, and the temperature detected by the temperature sensor provided in the freezer compartment reaches the upper limit temperature (starting temperature) of the temperature range. In such a case, the compressor is started, and when the lower limit temperature (stop temperature) of the temperature range is reached, there is a refrigerator in which the compressor is stopped (for example, refer to Patent Document 1) (hereinafter referred to as Prior Art 2). . In this refrigerator, when the detected temperature exceeds the high load temperature set higher than the starting temperature, the compressor speed is increased, and when the state exceeding the high load temperature continues for a predetermined time, Furthermore, the number of revolutions of the compressor is increased so that the room is rapidly cooled. On the other hand, when the detected temperature falls below the high load temperature, the rotational speed of the compressor is immediately lowered.
JP 2005-98549 A (page 10, FIG. 5)

従来技術1では、圧縮機の回転数を上げた状態である程度運転し、冷蔵庫の運転負荷が低下してきた場合であっても、回転数を上げた状態のまま運転を続けていた。このため、運転負荷に比べて冷却能力が過剰な状態で運転することとなっていた。したがって、高温の食品投入や頻繁な扉開閉による一時的な負荷超過の状態が解消されたあとも、圧縮機の回転数を上げたままで運転することになるため、無駄に電力を消費していた。   In the prior art 1, the compressor is operated to some extent with the rotation speed increased, and the operation is continued with the rotation speed increased even when the operation load of the refrigerator is reduced. For this reason, it was supposed to operate in a state where the cooling capacity is excessive as compared with the operating load. Therefore, even after the temporary overload caused by high-temperature food input and frequent door opening / closing is resolved, the compressor is operated with the rotation speed increased, and power is wasted. .

また、冷蔵庫の運転負荷と冷却能力とのバランスが若干崩れ、運転負荷が若干高めの状態などでは、その高めの度合いに関係なく圧縮機の回転数を上げていた。すなわち、例えば圧縮機を現状の回転数のまま運転し、あと数分運転すれば、実際上、停止温度まで室内の温度を低下させることができるような場合であっても、圧縮機の運転が終了すると想定した時間よりも長く圧縮機を運転させる必要があると判断した場合には圧縮機の回転数を上げていた。すなわち、圧縮機の回転数を上げなくても現状の回転数のままで冷却が可能であるにも拘わらず、圧縮機の回転数を上げており、その分、無駄な消費電力を消費することになっていた。   Further, when the balance between the operation load and the cooling capacity of the refrigerator is slightly lost and the operation load is slightly higher, the rotation speed of the compressor is increased regardless of the degree of increase. That is, for example, if the compressor is operated at the current rotation speed and then operated for a few more minutes, even if the room temperature can actually be lowered to the stop temperature, the operation of the compressor can be performed. When it was determined that it was necessary to operate the compressor for a longer time than expected, the rotation speed of the compressor was increased. In other words, the compressor speed is increased even though it can be cooled at the current speed without increasing the speed of the compressor, and unnecessary power consumption is consumed accordingly. It was.

従来技術2では、温度センサの検知温度が高負荷温度を超えた状態が所定時間継続した場合、冷蔵庫の運転負荷が高いと判断して圧縮機の回転数を上げている。しかしながら、高負荷温度を超えていない状態でも、実際には運転負荷に比較して冷却能力が不足気味であり、圧縮機の回転数を上げて室内温度の低下を図った方が良い場合がある。しかし、従来技術2では、このような場合でも回転数を上げずにそのままの回転数で運転するため、一向に室内温度が停止温度まで下がらず、無駄に圧縮機の運転を続けることになるという課題があった。   In the prior art 2, when the state where the temperature detected by the temperature sensor exceeds the high load temperature continues for a predetermined time, it is determined that the operation load of the refrigerator is high and the rotation speed of the compressor is increased. However, even when the temperature does not exceed the high load temperature, the cooling capacity is actually insufficient compared to the operating load, and it may be better to increase the number of revolutions of the compressor to lower the room temperature. . However, since the conventional technique 2 operates at the same rotation speed without increasing the rotation speed even in such a case, the room temperature does not drop to the stop temperature at all, and the compressor operation is continued unnecessarily. was there.

また、温度センサの検知温度が一瞬でも高負荷温度を下回った場合は、部屋の冷却が十分に出来ていなくても圧縮機の回転数を下げてしまうため、冷却能力が落ち、結局再度圧縮機の回転数を上げなければならない場合があった。   In addition, if the temperature detected by the temperature sensor falls below the high load temperature even for a moment, the compressor's rotational speed will be lowered even if the room is not sufficiently cooled. In some cases, it was necessary to increase the rotation speed.

本発明はこのような点に鑑みなされたもので、冷蔵庫の運転負荷と冷却能力とのバランス関係を適切に判断し、圧縮機の回転数を適切に制御することで、無駄な消費電力の低減を図った冷蔵庫を提供することを目的とする。   The present invention has been made in view of the above points, and by appropriately determining the balance relationship between the operating load of the refrigerator and the cooling capacity, and appropriately controlling the rotational speed of the compressor, reduction of wasteful power consumption is achieved. It aims at providing the refrigerator which aimed at.

本発明に係る冷蔵庫は、冷却器と回転数可変の圧縮機とを有する冷凍サイクルと、冷凍室の温度を検知する温度検知手段と、温度検知手段の検知温度が起動温度以上の場合には圧縮機を運転し、停止温度未満の場合には圧縮機の運転を停止する制御手段とを有し、制御手段は、圧縮機を起動してから第1の所定時間経過した際に、温度検知手段の検知温度が停止温度まで低下していない場合、冷蔵庫の運転負荷を判定し、運転負荷の判定結果に応じて圧縮機の回転数を決定し、決定した回転数となるように圧縮機を制御するものである。   The refrigerator according to the present invention includes a refrigeration cycle having a cooler and a compressor having a variable number of rotations, temperature detection means for detecting the temperature of the freezer, and compression when the detected temperature of the temperature detection means is equal to or higher than the starting temperature. And a control means for stopping the operation of the compressor when the temperature is lower than the stop temperature, and the control means is a temperature detection means when a first predetermined time has elapsed since the start of the compressor. If the detected temperature does not drop to the stop temperature, the operating load of the refrigerator is determined, the number of rotations of the compressor is determined according to the determination result of the operating load, and the compressor is controlled to be the determined number of rotations To do.

本発明によれば、圧縮機が運転を開始して第1の所定時間連続運転した後、冷蔵庫の運転負荷を判定し、運転負荷の判定結果に応じて圧縮機の回転数を決定し、決定した回転数となるように圧縮機を制御するので、庫内の状態に見合った適切な圧縮機制御が可能となり、無駄な消費電力の低減や、冷却能力不足の回避が可能となる。   According to the present invention, after the compressor starts operation and continuously operates for the first predetermined time, the operation load of the refrigerator is determined, and the rotation speed of the compressor is determined according to the determination result of the operation load. Since the compressor is controlled so that the number of rotations becomes the same, it is possible to control the compressor appropriately in accordance with the state in the warehouse, and it is possible to reduce wasteful power consumption and avoid insufficient cooling capacity.

以下、本発明の実施の形態について、添付の図面を用いながら説明する。
図1は、本発明の一実施の形態に係る冷蔵庫100の正面図である。図2は、本発明の一実施の形態に係る冷蔵庫100の縦断面図である。図3は、本発明の一実施の形態に係る冷蔵庫100の電気的な構成を示すブロック図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a front view of a refrigerator 100 according to an embodiment of the present invention. FIG. 2 is a longitudinal sectional view of the refrigerator 100 according to the embodiment of the present invention. FIG. 3 is a block diagram showing an electrical configuration of the refrigerator 100 according to the embodiment of the present invention.

冷蔵庫100は最上段に冷蔵室101を備えており、冷蔵室101は扉111を有している。冷蔵室扉111には、冷蔵庫100の各部屋の設定温度の調節や、急冷等の指示を行うための操作パネル1を備えている。冷蔵室101の下には切替室102、冷凍室103、野菜室104、製氷室105が構成されており、各室102〜105の前面には扉112〜115を有している。また、各部屋101〜105には扉111〜115の開閉を検知するドアスイッチ(図示省略)が備えてあり、冷蔵室101の扉111が開いた場合には、冷蔵室101内の庫内灯(図示省略)が点灯するようになっている。また、各部屋101〜105同士の間は断熱材(図示省略)で仕切られている。   The refrigerator 100 includes a refrigeration room 101 at the top, and the refrigeration room 101 has a door 111. The refrigerator compartment door 111 is provided with an operation panel 1 for adjusting the set temperature of each room of the refrigerator 100 and instructing rapid cooling or the like. Below the refrigerating room 101, a switching room 102, a freezing room 103, a vegetable room 104, and an ice making room 105 are configured, and doors 112 to 115 are provided in front of each room 102 to 105. Each of the rooms 101 to 105 is provided with a door switch (not shown) that detects opening and closing of the doors 111 to 115. When the door 111 of the refrigerator compartment 101 is opened, the interior lamp in the refrigerator compartment 101 is opened. (Not shown) lights up. Further, the rooms 101 to 105 are partitioned by a heat insulating material (not shown).

冷却器3、圧縮機4等で構成される冷凍サイクルの動作により生成された冷気は、庫内ファン5により各部屋101〜105に繋がる風路6に送り込まれる。風路6内には、開閉可能なダンパ121〜125(図3参照)が設けられており、各部屋101〜105に設けられた温度センサ11〜15の検知温度に基づいてダンパ121〜125を開閉し、各部屋101〜105の温度調節を行う。各部屋101〜105を冷却し終えた冷気は、冷却器3の元へ戻り再び冷却され、庫内ファン5により各部屋101〜105へ供給される。   The cool air generated by the operation of the refrigeration cycle including the cooler 3 and the compressor 4 is sent to the air path 6 connected to the rooms 101 to 105 by the internal fan 5. Openable and closable dampers 121 to 125 (see FIG. 3) are provided in the air passage 6, and the dampers 121 to 125 are installed based on the detected temperatures of the temperature sensors 11 to 15 provided in the rooms 101 to 105. Open and close and adjust the temperature of each of the rooms 101-105. The cold air that has cooled the rooms 101 to 105 is returned to the cooler 3 and cooled again, and is supplied to the rooms 101 to 105 by the internal fan 5.

冷蔵庫100の背面には制御装置2が備えてあり、図3に示すように、制御装置2には各温度センサ11〜15、ドアセンサ16、圧縮機4、庫内ファン5及び各ダンパ121〜125が接続されている。そして、各温度センサ11〜15の検知温度の入力により、圧縮機4や庫内ファン5の起動・停止、回転数を制御するとともに、各ダンパ121〜125の開閉を制御する。   A control device 2 is provided on the back of the refrigerator 100. As shown in FIG. 3, the control device 2 includes temperature sensors 11 to 15, a door sensor 16, a compressor 4, an internal fan 5, and dampers 121 to 125. Is connected. And the start / stop of the compressor 4 and the fan 5 in a warehouse, and the rotation speed are controlled by the input of the detected temperature of each temperature sensor 11-15, and the opening / closing of each damper 121-125 is controlled.

圧縮機4は冷凍室103に設けられた冷凍室温度センサ13の検知温度により、起動・停止が決定される。冷凍室103の設定温度(例えば−18℃)を中心として、所定の温度幅(例えば±3℃)を持ち、温度幅の上限温度を上回った場合(例えば−15℃を超えた場合)に圧縮機4を起動し、温度幅の下限温度を下回った場合(例えば−21℃を下回った場合)に圧縮機4を停止する。以下では、前記上限温度を起動温度、前記下限温度を停止温度という。   Starting and stopping of the compressor 4 is determined by the temperature detected by the freezer temperature sensor 13 provided in the freezer room 103. Compressed when it has a predetermined temperature range (for example, ± 3 ° C) around the set temperature (for example, -18 ° C) of the freezer compartment 103 and exceeds the upper limit temperature of the temperature range (for example, exceeds -15 ° C) The machine 4 is started, and the compressor 4 is stopped when the temperature falls below the lower limit temperature of the temperature range (for example, below -21 ° C). Hereinafter, the upper limit temperature is referred to as a start temperature, and the lower limit temperature is referred to as a stop temperature.

圧縮機4はインバータ機能により、回転数可変となっている。回転数を高くするほど冷却能力が高まるが、消費電力も高くなる。起動開始時の回転数は外気温度、冷却対象の部屋容量等から決定するが、外気温度で回転数を決定する場合の外気温度と回転数との対応表の一例を次の表1に示す。   The compressor 4 is variable in rotation speed by an inverter function. The higher the number of revolutions, the higher the cooling capacity, but the higher the power consumption. The number of rotations at the start of startup is determined from the outside air temperature, the room capacity to be cooled, and the like. Table 1 below shows an example of a correspondence table between the outside air temperature and the number of rotations when the number of rotations is determined by the outside air temperature.

Figure 2010071480
Figure 2010071480

本発明は、運転負荷と冷却能力とのバランス関係を加味した圧縮機4の適切な回転数制御に特徴を有するものであり、以下、本実施の形態の圧縮機4の動作概要を説明する。   The present invention is characterized by appropriate rotational speed control of the compressor 4 taking into account the balance relationship between the operating load and the cooling capacity. Hereinafter, an outline of the operation of the compressor 4 of the present embodiment will be described.

図4は、本発明の一実施の形態の冷蔵庫100における圧縮機4の動作概要を説明するための図である。特に図4aは、運転負荷と冷却能力とのバランス関係が、運転負荷<冷却能力の状態の場合の圧縮機4の運転例を示す図である。また、図4bは、運転負荷と冷却能力とのバランス関係が、運転負荷>冷却能力の状態の場合の圧縮機4の運転例を示す図である。なお、図4b中の点線の温度線図は図4aの温度線図を比較のため図示したものである。また、図4は、外気温度が20℃で、圧縮機起動開始時の回転数が表1に基づき49rpsとした例を示している。   FIG. 4 is a diagram for explaining an outline of the operation of the compressor 4 in the refrigerator 100 according to the embodiment of the present invention. In particular, FIG. 4A is a diagram illustrating an operation example of the compressor 4 when the balance relationship between the operation load and the cooling capacity is such that the operation load <the cooling capacity. FIG. 4B is a diagram illustrating an operation example of the compressor 4 when the balance relationship between the operation load and the cooling capacity is such that the operation load> the cooling capacity. The temperature diagram of the dotted line in FIG. 4b shows the temperature diagram of FIG. 4a for comparison. FIG. 4 shows an example in which the outside air temperature is 20 ° C. and the rotation speed at the start of the compressor start is 49 rps based on Table 1.

(運転負荷<冷却能力の状態の場合)
冷凍室温度センサ13の検知温度が起動温度に到達すると、圧縮機4を起動させる。ここでは運転負荷に比べて冷却能力が大きいため、圧縮機4の運転により冷凍室103が冷却されて徐々に温度が下がっている。そして、冷凍室温度センサ13の検知温度が停止温度に到達すると、圧縮機4を停止させる。圧縮機4が停止したことにより冷蔵庫100の運転負荷が次第に上がっており、起動温度に到達すると、再度、圧縮機4を起動させる。
(When operating load <cooling capacity)
When the temperature detected by the freezer temperature sensor 13 reaches the starting temperature, the compressor 4 is started. Here, since the cooling capacity is larger than the operation load, the freezer compartment 103 is cooled by the operation of the compressor 4, and the temperature gradually decreases. Then, when the temperature detected by the freezer temperature sensor 13 reaches the stop temperature, the compressor 4 is stopped. When the compressor 4 is stopped, the operation load of the refrigerator 100 is gradually increased, and when the start temperature is reached, the compressor 4 is started again.

(運転負荷>冷却能力の状態の場合)
冷凍室温度センサ13の検知温度が起動温度に到達すると、圧縮機4を起動させる。ここでは運転負荷に比べて冷却能力が小さいため、上記に比べて冷却速度は遅くなっている。そして、第1の所定時間運転後、停止温度の直前まで冷凍室温度センサ13の検知温度が低下するが、冷却能力不足によりそれ以上低下せず、その温度で停滞している。この場合、運転負荷と冷却能力のバランスが崩れていると判断し、圧縮機4の回転数を1段階(例えば、8rpm)上げる。すると、運転負荷と冷却能力との関係が運転負荷<冷却能力の関係に変化し、しばらくすると、冷凍室温度センサ13の検知温度が停止温度に達するため、圧縮機4を停止させる。
(When operating load> cooling capacity)
When the temperature detected by the freezer temperature sensor 13 reaches the starting temperature, the compressor 4 is started. Here, since the cooling capacity is smaller than the operating load, the cooling rate is slower than the above. Then, after the first predetermined time operation, the temperature detected by the freezer temperature sensor 13 decreases until just before the stop temperature, but does not decrease any more due to insufficient cooling capacity, and is stagnant at that temperature. In this case, it is determined that the balance between the operating load and the cooling capacity is lost, and the rotational speed of the compressor 4 is increased by one step (for example, 8 rpm). Then, the relationship between the operating load and the cooling capacity changes to the relationship of operating load <cooling capacity. After a while, the temperature detected by the freezer temperature sensor 13 reaches the stop temperature, and the compressor 4 is stopped.

以上は本実施の形態の冷蔵庫100における圧縮機4の動作概要であり、更に詳しい圧縮機4の動作について次の図5を用いて説明する。   The above is an outline of the operation of the compressor 4 in the refrigerator 100 of the present embodiment, and a more detailed operation of the compressor 4 will be described with reference to FIG.

図5は、上記のように構成した冷蔵庫100の制御フローチャートである。
まず、制御装置2は、外気温度20℃と表1とにより圧縮機4の回転数を決定し、その回転数で圧縮機4を起動させる(S1)。そして、圧縮機4の運転時間を一旦クリアし(S2)、その後、運転時間のカウントを開始する(S3)。次に、冷凍室温度センサ13の検知温度が停止温度(例えば−21℃)以下かどうかの判定を行い(S4)、停止温度以下の場合は、圧縮機4を停止させる(S13)。一方、冷凍室温度センサ13の検知温度が停止温度を超えている場合は、圧縮機4の運転時間が予め設定された第1の所定時間(例えば70分)が経過したかどうかを判定する(S5)。第1の所定時間経過していない場合はS2に戻り、第1の所定時間経過した場合は負荷判定処理に移行する(S6)。すなわち、圧縮機4を第1の所定時間連続運転しても、冷凍室103の温度が停止温度に達しなかった場合、負荷判定処理を行うことになる。
FIG. 5 is a control flowchart of the refrigerator 100 configured as described above.
First, the control device 2 determines the rotational speed of the compressor 4 based on the outside air temperature of 20 ° C. and Table 1, and starts the compressor 4 at the rotational speed (S1). Then, the operation time of the compressor 4 is once cleared (S2), and then counting of the operation time is started (S3). Next, it is determined whether the temperature detected by the freezer temperature sensor 13 is equal to or lower than the stop temperature (for example, −21 ° C.) (S4). If the detected temperature is equal to or lower than the stop temperature, the compressor 4 is stopped (S13). On the other hand, when the detected temperature of the freezer temperature sensor 13 exceeds the stop temperature, it is determined whether or not a first predetermined time (for example, 70 minutes) set in advance for the compressor 4 has elapsed ( S5). If the first predetermined time has not elapsed, the process returns to S2, and if the first predetermined time has elapsed, the process proceeds to a load determination process (S6). That is, even if the compressor 4 is continuously operated for the first predetermined time, if the temperature of the freezer compartment 103 does not reach the stop temperature, a load determination process is performed.

図6は、負荷判定処理の流れを示すフローチャートである。以下、負荷判定処理について図6を参照しながら説明する。
冷凍室温度センサ13の検知温度が、停止温度以上の第1の所定温度(例えば−17℃)未満の場合(S51)、また、その他の部屋の各温度センサ11,12,14,15の検知温度が、それぞれの部屋のダンパ閉温度以上の第2の所定温度〜第5の所定温度(例えば冷蔵室101は3℃、切替室102は−6℃、製氷室105は−17℃、野菜室104は4℃等)未満の場合(S52〜S55)、負荷「小」と判定する(S56)。逆に、各温度センサ11〜15のうち、何れか一つでも、それぞれ対応の第1の所定温度〜第5の所定温度以上となった場合には、負荷「大」と判定する(S57)。なお、図6では、全ての部屋101〜105の温度センサ11〜15の検知温度を負荷の判定材料にしているが、これに限らず、例えば、冷凍室温度センサ13と冷蔵室温度センサ11の検知温度のみを判定材料にしてもよい。以上が負荷判定処理である。
FIG. 6 is a flowchart showing the flow of the load determination process. Hereinafter, the load determination process will be described with reference to FIG.
When the temperature detected by the freezer temperature sensor 13 is lower than a first predetermined temperature (for example, −17 ° C.) that is equal to or higher than the stop temperature (S51), the temperature sensors 11, 12, 14, and 15 in other rooms are also detected. The second predetermined temperature to the fifth predetermined temperature that are equal to or higher than the damper closing temperature of each room (for example, the refrigerator compartment 101 is 3 ° C., the switching room 102 is −6 ° C., the ice making room 105 is −17 ° C., the vegetable room) If 104 is less than 4 ° C. or the like (S52 to S55), the load is determined to be “small” (S56). On the other hand, if any one of the temperature sensors 11 to 15 exceeds the corresponding first predetermined temperature to fifth predetermined temperature, it is determined that the load is “large” (S57). . In addition, in FIG. 6, although the detection temperature of the temperature sensors 11-15 of all the rooms 101-105 is made into the determination material of load, it is not restricted to this, For example, the freezer compartment temperature sensor 13 and the refrigerator compartment temperature sensor 11 Only the detected temperature may be used as the determination material. The above is the load determination process.

負荷判定処理で負荷大と判定した場合、すなわち圧縮機4を第1の所定時間連続運転しても運転負荷状態が負荷大のままの場合、制御装置2は冷却能力が本当に不足していると判断し、圧縮機4の回転数を1段階アップさせる(S7、S8)。一方、負荷小と判定した場合は、S9に進み、負荷小の継続時間(負荷小時間)のカウントを開始する(S9)。   When it is determined that the load is high in the load determination process, that is, when the operation load state remains high even if the compressor 4 is continuously operated for the first predetermined time, the control device 2 is really insufficient in cooling capacity. Judgment is made and the rotational speed of the compressor 4 is increased by one step (S7, S8). On the other hand, if it is determined that the load is small, the process proceeds to S9, and starts counting the duration of the light load (load small time) (S9).

そして、負荷小時間が第2の所定時間(例えば20分)以上となった場合(S10)、すなわち負荷小の状態が第2の所定時間継続した場合には、現時点では冷却能力が運転能力に比較して大きい(冷却能力>運転能力)と判断し、圧縮機4の回転数を1段階ダウンさせる(S11)。そして、負荷小時間をクリアして(S12)、ステップS2に戻る。   When the small load time becomes equal to or longer than the second predetermined time (for example, 20 minutes) (S10), that is, when the low load state continues for the second predetermined time, the cooling capacity is changed to the driving capacity at the present time. In comparison, it is determined that it is large (cooling capacity> operating capacity), and the rotation speed of the compressor 4 is decreased by one step (S11). Then, the small load time is cleared (S12), and the process returns to step S2.

一方、負荷小時間が第2の所定時間未満であれば(S10)、圧縮機4の回転数をダウンさせることなくそのままの状態を保持し、S4に戻る。すなわち、負荷小と判定した際に直ちに回転数をダウンさせるのではなく、負荷小の状態が第2の所定時間継続した場合に回転数をダウンさせるようにしている。これにより、熱容量の小さい温度センサの検知温度が一瞬だけ低下して実際には部屋全体の冷却が十分でない場合に、圧縮機4の回転数を下げて冷却能力不足に陥るといった不都合を解消できる。   On the other hand, if the small load time is less than the second predetermined time (S10), the state of the compressor 4 is kept as it is without reducing the rotational speed of the compressor 4, and the process returns to S4. That is, instead of immediately reducing the rotation speed when it is determined that the load is low, the rotation speed is reduced when the low load state continues for the second predetermined time. As a result, when the temperature detected by the temperature sensor having a small heat capacity decreases for a moment and the actual cooling of the entire room is not sufficient, it is possible to eliminate the inconvenience of lowering the rotational speed of the compressor 4 and causing insufficient cooling capacity.

なお、負荷小時間が第2の所定時間未満の場合には、ステップS4に戻るようにしており、負荷小の状態が第2の所定時間継続したと判断されるまでの間に、冷凍室温度センサ13の検知温度が停止温度以下となった場合は、圧縮機4を停止する(S4、S13)。また、同様に第2の所定時間継続したと判断されるまでの間に、例えば冷凍庫103の扉113が長時間開かれるなどして運転負荷が負荷大に転じた場合(すなわちステップS7でYESとなった場合)には、圧縮機4の回転数を1段階アップさせ(S8)、ステップS2に戻る。そして、同様の動作を繰り返す。   When the small load time is less than the second predetermined time, the process returns to step S4, and the freezer temperature is determined until it is determined that the low load state has continued for the second predetermined time. When the temperature detected by the sensor 13 is equal to or lower than the stop temperature, the compressor 4 is stopped (S4, S13). Similarly, when it is determined that the operation has continued for the second predetermined time, for example, when the operating load turns to a heavy load due to, for example, the door 113 of the freezer 103 being opened for a long time (that is, YES in step S7). If it is, the rotational speed of the compressor 4 is increased by one step (S8), and the process returns to step S2. Then, the same operation is repeated.

以下、図5の制御フローチャートに従った具体的な冷蔵庫100の動作例を図7〜図10を参照して説明する。図7〜図10は、冷凍室温度センサ13の検知温度が図中の温度線図の変化を取る場合の、圧縮機4の運転例を示しており、以下、図7から順に説明する。なお、図7〜図10において負荷判定結果を圧縮機4の動作の最初から最後まで示しているが、負荷判定処理自体は適宜のタイミング(第1の所定時間経過後等)で行えば十分であり、ここでは説明の便宜上、図示したものである。また、図7〜図10の一点鎖線は、冷凍室103の目標温度(ここでは−18℃)のラインを示している。   Hereinafter, a specific operation example of the refrigerator 100 according to the control flowchart of FIG. 5 will be described with reference to FIGS. 7 to 10 show examples of operation of the compressor 4 in the case where the temperature detected by the freezer temperature sensor 13 takes a change in the temperature diagram in the drawing, which will be described in order from FIG. Although the load determination results are shown from the beginning to the end of the operation of the compressor 4 in FIGS. 7 to 10, it is sufficient that the load determination process itself is performed at an appropriate timing (after the first predetermined time has passed). Yes, it is illustrated here for convenience of explanation. Moreover, the dashed-dotted line of FIGS. 7-10 has shown the line of the target temperature (here -18 degreeC) of the freezer compartment 103. FIG.

図7は、第1の所定時間(例えば70分)経過後の負荷判定で負荷小と判定される場合の動作チャートである。
冷凍室温度センサ13の検知温度が起動温度(例えば−15℃)に到達し、圧縮機4が起動を開始する。起動後、第1の所定時間(例えば70分)が経過した時点で、負荷判定が行われる。ここでは、冷凍室温度センサ13の検知温度T1が−17℃(第1の所定温度)を下回っており、また、ここでは図示していないが、その他の温度センサ11,12,14,15の検知温度もそれぞれ対応の第2の所定温度〜第5の所定温度を下回っているため、負荷小と判定される。よって、運転負荷<冷却能力であるため、圧縮機4は回転数を上げずに現在の回転数のまま運転を継続する。その後、負荷小の状態が第2の所定時間(例えば20分)継続するため、圧縮機4の回転数が1段階ダウンする。言い換えれば、圧縮機4を運転した結果、運転負荷が負荷大から負荷小に転じ、更にその負荷小の状態が第2の所定時間継続したため、現時点よりも低い冷却能力で運転可能と判断し、圧縮機4の回転数が下げられている。すなわち、室内の運転負荷状況に見合った適切な圧縮機制御が行われており、無駄な消費電力の低減が実現されている。
FIG. 7 is an operation chart when it is determined that the load is small in the load determination after the first predetermined time (for example, 70 minutes) has elapsed.
The temperature detected by the freezer temperature sensor 13 reaches the starting temperature (for example, −15 ° C.), and the compressor 4 starts to start. The load determination is performed when a first predetermined time (for example, 70 minutes) elapses after activation. Here, the detected temperature T1 of the freezer temperature sensor 13 is lower than −17 ° C. (first predetermined temperature), and although not shown here, the other temperature sensors 11, 12, 14, 15 Since the detected temperatures are also lower than the corresponding second predetermined temperature to fifth predetermined temperature, it is determined that the load is small. Therefore, since the operation load is smaller than the cooling capacity, the compressor 4 continues the operation with the current rotation speed without increasing the rotation speed. Thereafter, since the low load state continues for a second predetermined time (for example, 20 minutes), the rotation speed of the compressor 4 is decreased by one step. In other words, as a result of operating the compressor 4, the operating load has changed from a large load to a small load, and since the low load state has continued for the second predetermined time, it is determined that the operation can be performed with a cooling capacity lower than the present time, The rotation speed of the compressor 4 is lowered. That is, appropriate compressor control corresponding to the indoor operating load situation is performed, and wasteful power consumption is reduced.

そして、圧縮機4の回転数を1段階ダウンした状態で運転を続けた結果、冷凍室温度センサ13の検知温度が停止温度に達したため、圧縮機4は停止する。   And as a result of continuing driving | running in the state which reduced the rotation speed of the compressor 4 1 step | paragraph, since the detection temperature of the freezer compartment temperature sensor 13 reached stop temperature, the compressor 4 stops.

図8〜図10は、第1の所定時間(例えば70分)経過後の負荷判定で負荷大と判定される場合の動作チャートである。以下、図8から順に説明する。
(図8の動作チャート)
冷凍室温度センサ13の検知温度が起動温度(例えば−15℃)に到達し、圧縮機4が起動を開始する。起動後、第1の所定時間(例えば70分)が経過した時点で、負荷判定が行われる。ここでは、冷凍室温度センサ13の検知温度T2が−17℃(第1の所定温度)を上回っているため、負荷大と判定される。なお、ここでは冷凍室温度センサ13の例を示したが、その他の温度センサ11,12,14,15の何れかの検知温度がそれぞれ対応の第1の所定温度〜第5の所定温度以上である場合にも、同様に負荷大と判定されることになる。このように負荷大と判定され、運転負荷>冷却能力であるため、圧縮機4は回転数を1段階(ここでは8rpm)アップする。
8 to 10 are operation charts when it is determined that the load is large in the load determination after the elapse of the first predetermined time (for example, 70 minutes). Hereinafter, description will be made in order from FIG.
(Operation chart of FIG. 8)
The temperature detected by the freezer temperature sensor 13 reaches the starting temperature (for example, −15 ° C.), and the compressor 4 starts to start. The load determination is performed when a first predetermined time (for example, 70 minutes) elapses after activation. Here, since the detected temperature T2 of the freezer temperature sensor 13 is higher than −17 ° C. (first predetermined temperature), it is determined that the load is large. Although the example of the freezer temperature sensor 13 is shown here, the detection temperature of any of the other temperature sensors 11, 12, 14, and 15 is higher than the corresponding first predetermined temperature to the fifth predetermined temperature, respectively. In some cases, the load is similarly determined to be large. Thus, since it is determined that the load is large and the operation load> the cooling capacity, the compressor 4 increases the rotational speed by one step (here, 8 rpm).

そして、圧縮機4の回転数を1段階アップした状態で運転を続けた結果、冷凍室温度センサ13の検知温度が停止温度に達したため、圧縮機4は停止する。   As a result of continuing the operation with the rotational speed of the compressor 4 increased by one step, the detected temperature of the freezer temperature sensor 13 has reached the stop temperature, so the compressor 4 stops.

(図9の動作チャート)
図9の動作は、最初の第1の所定時間経過した時点での負荷判定結果が負荷大であり、圧縮機4の回転数を1段階アップするまでは図8と同様である。そして、図9の例では、2回目の第1の所定時間が経過するまでの間に、冷凍室103の温度が停止温度まで低下しない状態となっている。このため、2回目の第1の所定時間が経過時点で再度負荷判定が行われる。図9の例では、2回目の負荷判定では負荷小と判定されるため、圧縮機4の回転数を現在の回転数に保持したまま、第2の所定時間(例えば20分)のカウントを開始する。そして、第2の所定時間が経過するまでの間、この例では負荷小の状態が継続するため、圧縮機4は回転数を1段階ダウンする。そして、1段階ダウンした状態で運転を続けた結果、第1の所定時間が経過する前に冷凍室温度センサ13の検知温度が停止温度に達したため、圧縮機4は停止する。
(Operation chart of FIG. 9)
The operation of FIG. 9 is the same as that of FIG. 8 until the load determination result at the time when the first predetermined time has passed is large and the rotation speed of the compressor 4 is increased by one stage. In the example of FIG. 9, the temperature of the freezer compartment 103 is not lowered to the stop temperature until the second first predetermined time has elapsed. For this reason, the load determination is performed again when the first predetermined time of the second time has elapsed. In the example of FIG. 9, since it is determined that the load is low in the second load determination, counting of the second predetermined time (for example, 20 minutes) is started while the rotation speed of the compressor 4 is maintained at the current rotation speed. To do. Then, until the second predetermined time elapses, in this example, since the low load state continues, the compressor 4 decreases the rotational speed by one step. Then, as a result of continuing the operation in the state of being lowered by one stage, the compressor 4 stops because the temperature detected by the freezer temperature sensor 13 reaches the stop temperature before the first predetermined time elapses.

(図10の動作チャート)
図10の動作は、第2の所定時間経過後、回転数を1段階ダウンさせるまでの動作は図9と同様である。そして、図10の例では、第2の所定時間経過後の3回目の第1の所定時間のカウント中に、冷凍室103の温度が上昇し、運転負荷が負荷小から負荷大に転じている。これは、例えば冷凍庫103の扉113が長時間開かれるなどした場合が該当する。そして、3回目の第1の所定時間経過後の負荷判定では、この場合、負荷大と判定され、圧縮機4は回転数を1段階(ここでは8rpm)アップする。
(Operation chart of FIG. 10)
The operation of FIG. 10 is the same as that of FIG. 9 until the rotation speed is decreased by one step after the second predetermined time has elapsed. In the example of FIG. 10, the temperature of the freezer compartment 103 rises during the third first predetermined time after the second predetermined time elapses, and the operating load changes from a small load to a large load. . This is the case, for example, when the door 113 of the freezer 103 is opened for a long time. In the load determination after the first first predetermined time has elapsed, in this case, it is determined that the load is large, and the compressor 4 increases the rotation speed by one step (here, 8 rpm).

そして、圧縮機4の回転数を1段階アップした状態で運転を続けた結果、冷凍室温度センサ13の検知温度が停止温度に達したため、圧縮機4は停止する。   As a result of continuing the operation with the rotational speed of the compressor 4 increased by one step, the detected temperature of the freezer temperature sensor 13 has reached the stop temperature, so the compressor 4 stops.

以上のように本実施の形態では、圧縮機4の運転を開始して第1の所定時間連続運転しても、冷凍室103の温度を停止温度まで低下させることができない場合、その時点の冷蔵庫100の運転負荷を判定し、負荷判定結果に応じて圧縮機4の回転数を決定している。すなわち、第1の所定時間の連続運転後の時点で、冷蔵庫100の運転負荷の状態がどうなっているのかをチェックし、庫内の状態に見合った適切な圧縮機制御を行っている。このため、無駄な消費電力の低減や、冷却能力不足の回避が可能となっている。   As described above, in the present embodiment, if the temperature of the freezer compartment 103 cannot be lowered to the stop temperature even after starting the operation of the compressor 4 and continuously operating for the first predetermined time, the refrigerator at that time 100 operating loads are determined, and the rotational speed of the compressor 4 is determined according to the load determination result. That is, at the time after the continuous operation for the first predetermined time, the state of the operating load of the refrigerator 100 is checked, and appropriate compressor control corresponding to the state in the refrigerator is performed. For this reason, it is possible to reduce wasteful power consumption and avoid a lack of cooling capacity.

具体的には、第1の所定時間経過後の負荷判定で負荷小と判定した場合には圧縮機4の回転数を上げずに保持するようにしたため、無駄に電力を消費するのを抑制することができる。すなわち、所定時間運転後の運転負荷が負荷小の場合には、圧縮機4の回転数を上げなくとも単に圧縮機4の運転を続ければ停止温度まで温度を下げることが可能である。したがって、圧縮機4の回転数を上げずにそのままの回転数で運転を継続し、過剰な運転を行わないようにしているため、無駄な消費電力の低減が可能となる。   Specifically, when it is determined that the load is low in the load determination after the elapse of the first predetermined time, since the rotation speed of the compressor 4 is maintained without increasing, it is possible to suppress wasteful power consumption. be able to. That is, when the operation load after the predetermined time operation is small, the temperature can be lowered to the stop temperature by simply continuing the operation of the compressor 4 without increasing the rotation speed of the compressor 4. Therefore, since the operation is continued at the same rotation speed without increasing the rotation speed of the compressor 4 and the excessive operation is not performed, it is possible to reduce useless power consumption.

また、第1の所定時間経過後の負荷判定で負荷小と判定し、その状態が第2の所定時間継続した場合には、圧縮機4の回転数を下げるようにしたため、冷却能力が過剰な状態で圧縮機4を運転することがなく、無駄な電力消費を抑制することができる。言い換えれば、負荷小の状態が第2の所定時間継続しないと回転数を下げないため、熱容量の小さい温度センサの検知温度が一瞬だけ低下し、実際には部屋全体の冷却が十分でないにも拘わらず、負荷小と誤判定して圧縮機4の回転数を下げてしまうようなことがない。よって、冷却能力不足となってしまう事態を防止することができる。   Further, when it is determined that the load is small in the load determination after the elapse of the first predetermined time and the state continues for the second predetermined time, the rotation speed of the compressor 4 is decreased, so that the cooling capacity is excessive. The compressor 4 is not operated in a state, and wasteful power consumption can be suppressed. In other words, since the rotation speed is not reduced unless the low load state continues for the second predetermined time, the temperature detected by the temperature sensor having a small heat capacity is reduced for a moment, and the actual cooling of the entire room is not sufficient. Therefore, there is no case where the load of the compressor 4 is erroneously determined and the rotational speed of the compressor 4 is lowered. Therefore, the situation where the cooling capacity is insufficient can be prevented.

一方、第1の所定時間運転後の負荷判定で負荷大と判定した場合には回転数を上げるため、すなわち本当に冷却能力不足の場合には回転数を上げるため、室内の運転負荷状況に見合った適切な圧縮機制御が可能となっている。   On the other hand, in order to increase the rotational speed when the load is determined to be large in the load determination after the first predetermined time operation, that is, when the cooling capacity is really insufficient, the rotational speed is increased. Appropriate compressor control is possible.

また、第1の所定時間のカウント中に、例えば温度センサ11〜15の検知温度が一瞬上昇しても、第1の所定時間経過するまでの間は圧縮機4の回転数を変化させないので、無駄な消費電力を低減することができる。   Further, during the counting of the first predetermined time, for example, even if the detected temperature of the temperature sensors 11 to 15 rises for a moment, the rotation speed of the compressor 4 is not changed until the first predetermined time elapses. Wasteful power consumption can be reduced.

上述したように、本実施の形態によれば、圧縮機4の回転数の変更を、瞬間の検知温度に基づいて行うのではなく、検知温度が高温または低温の状態が継続することに基づいて行うため、扉開閉等による一時的な温度変動で負荷大になったと誤判定して回転数を上げたり、負荷小になったと誤判定して早まって回転数を下げてしまうことを抑制できる。   As described above, according to the present embodiment, the rotation speed of the compressor 4 is not changed based on the instantaneous detected temperature, but based on the fact that the detected temperature continues to be high or low. Therefore, it is possible to suppress erroneously determining that the load has increased due to temporary temperature fluctuations caused by opening and closing of the door or the like and increasing the rotational speed, or erroneously determining that the load has been decreased and reducing the rotational speed prematurely.

なお、本実施の形態では、圧縮機4の回転数を1段階上昇/下降させているが、これに限らず、2段階又はそれ以上の段階を上昇/下降させてもよい。また、本実施の形態では、運転負荷の判定の基準となる第1の所定温度を、動作温度範囲(停止温度以上、起動温度以下)内に設定しているが、起動温度以上の高い温度に設定してもよい。   In the present embodiment, the rotational speed of the compressor 4 is increased / decreased by one stage. However, the present invention is not limited to this, and two or more stages may be increased / decreased. In the present embodiment, the first predetermined temperature that is the reference for determining the operating load is set within the operating temperature range (the stop temperature or more and the start temperature or less), but the temperature is higher than the start temperature. It may be set.

また、本実施の形態では、起動開始してから負荷判定までの時間を第1の所定時間とし、その負荷判定の結果が負荷小の場合の次の負荷判定までの時間を最初と同様の第1の所定時間としているが、必ずしも同じ時間でなくても良い。例えば、最初は70分、次は30分などとしてもよい。   Further, in the present embodiment, the time from the start of activation to the load determination is set as the first predetermined time, and the time until the next load determination when the load determination result is low is the same as the first time. 1 is a predetermined time, but it is not necessarily the same time. For example, the first time may be 70 minutes, and the next time may be 30 minutes.

本発明の一実施の形態に係る冷蔵庫100の正面図である。It is a front view of the refrigerator 100 which concerns on one embodiment of this invention. 本発明の一実施の形態に係る冷蔵庫100の横断面図である。It is a cross-sectional view of the refrigerator 100 according to an embodiment of the present invention. 本発明の一実施の形態に係る冷蔵庫100の電気的な構成を示すブロック図である。It is a block diagram which shows the electric constitution of the refrigerator 100 which concerns on one embodiment of this invention. 本発明の一実施の形態の冷蔵庫100における圧縮機4の動作概要を説明するための図である。It is a figure for demonstrating the operation | movement outline | summary of the compressor 4 in the refrigerator 100 of one embodiment of this invention. 図1の冷蔵庫100の制御フローチャートである。It is a control flowchart of the refrigerator 100 of FIG. 図5の負荷判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the load determination process of FIG. 本発明の一実施の形態に係る冷蔵庫100の動作タイムチャート(運転時間が第1の所定時間経過した後の負荷判定で負荷小と判定される場合)である。It is an operation | movement time chart of the refrigerator 100 which concerns on one embodiment of this invention (when it is determined that load is small by load determination after driving time passes 1st predetermined time). 本発明の一実施の形態に係る冷蔵庫100の動作タイムチャート(運転時間が第1の所定時間経過した後の負荷判定で負荷大と判定される場合)である。It is an operation | movement time chart of the refrigerator 100 which concerns on one embodiment of this invention (when it is determined that the load is large by load determination after 1st predetermined time passes). 本発明の一実施の形態に係る冷蔵庫100の動作タイムチャート(回転数を1段階上げた後に負荷小となった場合)である。It is an operation | movement time chart of the refrigerator 100 which concerns on one embodiment of this invention (when the load becomes small after increasing the rotation speed by one step). 本発明の一実施の形態に係る冷蔵庫100の動作タイムチャート(回転数を1段階上げた後に負荷大となった場合)である。It is an operation | movement time chart of the refrigerator 100 which concerns on one embodiment of this invention (when load becomes large after raising rotation speed one step).

符号の説明Explanation of symbols

1 操作パネル、2 制御装置、3 冷却器、4 圧縮機、5 庫内ファン、6 風路、11〜15 温度センサ、16 ドアセンサ、100 冷蔵庫、102 切替室、103 冷凍庫、104 野菜室、105 製氷室、111〜115 扉、121〜125 ダンパ。   DESCRIPTION OF SYMBOLS 1 Operation panel, 2 Control apparatus, 3 Cooler, 4 Compressor, 5 Internal fan, 6 Air path, 11-15 Temperature sensor, 16 Door sensor, 100 Refrigerator, 102 Switching room, 103 Freezer, 104 Vegetable room, 105 Ice making Chamber, 111-115 door, 121-125 damper.

Claims (6)

冷却器と回転数可変の圧縮機とを有する冷凍サイクルと、
冷凍室の温度を検知する温度検知手段と、
該温度検知手段の検知温度が起動温度以上の場合には前記圧縮機を運転し、停止温度未満の場合には前記圧縮機の運転を停止する制御手段とを有し、
該制御手段は、前記圧縮機を起動してから第1の所定時間連続運転しても、前記温度検知手段の検知温度が前記停止温度まで低下していない場合、冷蔵庫の運転負荷を判定し、該運転負荷の判定結果に応じて前記圧縮機の回転数を決定し、該決定した回転数となるように前記圧縮機を制御することを特徴とする冷蔵庫。
A refrigeration cycle having a cooler and a variable speed compressor;
Temperature detecting means for detecting the temperature of the freezer;
Control means for operating the compressor when the detected temperature of the temperature detecting means is equal to or higher than the starting temperature, and for stopping the operation of the compressor when the temperature is lower than the stop temperature,
The control means determines the operation load of the refrigerator when the temperature detected by the temperature detection means does not decrease to the stop temperature even after continuous operation for a first predetermined time after starting the compressor, A refrigerator characterized in that the number of rotations of the compressor is determined in accordance with the determination result of the operating load, and the compressor is controlled to be the determined number of rotations.
前記制御手段は、前記判定した運転負荷が負荷小の条件を満たす場合には、前記圧縮機の回転数を上げずに保持することを特徴とする請求項1記載の冷蔵庫。   2. The refrigerator according to claim 1, wherein the controller holds the compressor without increasing the number of rotations when the determined operation load satisfies a condition of low load. 前記制御手段は、前記圧縮機の回転数を上げずに保持することを開始してから第2の所定時間以上、冷蔵庫の運転負荷が前記負荷小の条件を満たす状態を継続した場合は、前記圧縮機の回転数を下げることを特徴とする請求項2記載の冷蔵庫。   When the control means continues the state where the operation load of the refrigerator satisfies the condition of low load for a second predetermined time or more after starting to hold without increasing the rotation speed of the compressor, The refrigerator according to claim 2, wherein the rotation speed of the compressor is lowered. 前記制御手段は、前記圧縮機の回転数を上げずに保持している間、又は保持した回転数から更に回転数を下げている間に、冷蔵庫の運転負荷が所定の負荷大の条件を満たす状態に変化した場合には、前記圧縮機の回転数を上げることを特徴とする請求項2又は請求項3記載の冷蔵庫。   While the control means holds the compressor without increasing the rotational speed, or while further reducing the rotational speed from the held rotational speed, the operating load of the refrigerator satisfies a predetermined large load condition. The refrigerator according to claim 2 or 3, wherein when the state is changed, the number of rotations of the compressor is increased. 複数の部屋を有し、そのうちの一室又は全ての部屋に温度を検知する温度センサをそれぞれ備え、前記制御手段は、全ての前記温度センサの検知温度が、前記各温度センサそれぞれ対応の各所定温度未満の場合、負荷小と判定することを特徴とする請求項2又は請求項3記載の冷蔵庫。   A plurality of rooms, each of which includes a temperature sensor for detecting the temperature, and the control means has a predetermined temperature corresponding to each of the temperature sensors. 4. The refrigerator according to claim 2, wherein when the temperature is lower than the temperature, it is determined that the load is small. 複数の部屋を有し、そのうちの一室又は全ての部屋に温度を検知する温度センサをそれぞれ備え、前記制御手段は、前記各温度センサの検知温度の何れか一つでも、前記各温度センサそれぞれ対応の各所定温度以上の場合、負荷大と判定することを特徴とする請求項4記載の冷蔵庫。   Each of the temperature sensors includes a plurality of rooms, each of which includes a temperature sensor that detects temperature in one or all of the rooms, and the control means includes any one of the detected temperatures of each of the temperature sensors. The refrigerator according to claim 4, wherein the load is determined to be large when the temperature is higher than the corresponding predetermined temperature.
JP2008236276A 2008-09-16 2008-09-16 Refrigerator Pending JP2010071480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008236276A JP2010071480A (en) 2008-09-16 2008-09-16 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008236276A JP2010071480A (en) 2008-09-16 2008-09-16 Refrigerator

Publications (1)

Publication Number Publication Date
JP2010071480A true JP2010071480A (en) 2010-04-02

Family

ID=42203455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008236276A Pending JP2010071480A (en) 2008-09-16 2008-09-16 Refrigerator

Country Status (1)

Country Link
JP (1) JP2010071480A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102927781A (en) * 2012-11-21 2013-02-13 合肥美的荣事达电冰箱有限公司 Anti-interference method and device for loads of refrigerator
JP2013092340A (en) * 2011-10-27 2013-05-16 Sharp Corp Refrigerator
JP2013100926A (en) * 2011-11-07 2013-05-23 Sharp Corp Refrigerator
CN108302895A (en) * 2018-01-08 2018-07-20 合肥华凌股份有限公司 The energy-saving control method and refrigerator of refrigerator
JP2020134120A (en) * 2019-02-18 2020-08-31 エンブラコ インドゥストリア デ コンプレッソレス エー ソリューションズ エン レフリジラサン リミターダ Control method and system in refrigeration system and compressor of refrigeration system
WO2023241880A1 (en) * 2022-06-14 2023-12-21 Sunswap Ltd Control system for vapour compression cycle and related methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273068A (en) * 1985-09-25 1987-04-03 株式会社日立製作所 Method of controlling refrigerator
JPH09196535A (en) * 1996-01-22 1997-07-31 Matsushita Refrig Co Ltd Refrigerator
JP2001056173A (en) * 2000-01-01 2001-02-27 Sharp Corp Freezer/refrigerator
JP2001141347A (en) * 1999-11-15 2001-05-25 Sharp Corp Refrigerator
JP2005134091A (en) * 2003-10-31 2005-05-26 Hoshizaki Electric Co Ltd Cooling storage device and operation control method therefor
JP2008057905A (en) * 2006-09-01 2008-03-13 Hitachi Appliances Inc Refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273068A (en) * 1985-09-25 1987-04-03 株式会社日立製作所 Method of controlling refrigerator
JPH09196535A (en) * 1996-01-22 1997-07-31 Matsushita Refrig Co Ltd Refrigerator
JP2001141347A (en) * 1999-11-15 2001-05-25 Sharp Corp Refrigerator
JP2001056173A (en) * 2000-01-01 2001-02-27 Sharp Corp Freezer/refrigerator
JP2005134091A (en) * 2003-10-31 2005-05-26 Hoshizaki Electric Co Ltd Cooling storage device and operation control method therefor
JP2008057905A (en) * 2006-09-01 2008-03-13 Hitachi Appliances Inc Refrigerator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092340A (en) * 2011-10-27 2013-05-16 Sharp Corp Refrigerator
JP2013100926A (en) * 2011-11-07 2013-05-23 Sharp Corp Refrigerator
CN102927781A (en) * 2012-11-21 2013-02-13 合肥美的荣事达电冰箱有限公司 Anti-interference method and device for loads of refrigerator
CN108302895A (en) * 2018-01-08 2018-07-20 合肥华凌股份有限公司 The energy-saving control method and refrigerator of refrigerator
JP2020134120A (en) * 2019-02-18 2020-08-31 エンブラコ インドゥストリア デ コンプレッソレス エー ソリューションズ エン レフリジラサン リミターダ Control method and system in refrigeration system and compressor of refrigeration system
JP7323319B2 (en) 2019-02-18 2023-08-08 エンブラコ インドゥストリア デ コンプレッソレス エー ソリューションズ エン レフリジラサン リミターダ Method and system for controlling refrigeration systems and compressors of refrigeration systems
WO2023241880A1 (en) * 2022-06-14 2023-12-21 Sunswap Ltd Control system for vapour compression cycle and related methods

Similar Documents

Publication Publication Date Title
WO2017076002A1 (en) Refrigerator adopting linear compressor and control method thereof
JP6334146B2 (en) refrigerator
JP2009063238A (en) Inside temperature control device for cooling storage
JP2010071480A (en) Refrigerator
WO2015133173A1 (en) Refrigerator
JP2014031947A (en) Refrigerator-freezer
JP4564947B2 (en) refrigerator
KR102136415B1 (en) control method of refrigerator
JP2009097781A (en) Cooling storage
JP2007139255A (en) Refrigerator
JP6120367B2 (en) refrigerator
JP5884010B2 (en) refrigerator
JP5262259B2 (en) refrigerator
KR20090101000A (en) Refrigerator and operation control method thereof
JP2001056173A (en) Freezer/refrigerator
JP6309156B2 (en) refrigerator
JPH1183274A (en) Freezer/refrigerator
JP5670792B2 (en) Cooling storage
JP2018009709A (en) refrigerator
JP2012078077A (en) Refrigerating device
JP2011153788A (en) Refrigerator
JP2007278668A (en) Control method for inside fan motor and refrigerator, freezer, ice temperature chamber, and refrigerator-freezer using it
KR20160023460A (en) Method for control fan motor of refrigerator
JP4331007B2 (en) Freezer refrigerator
JP2005127661A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100510

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20111114

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20111122

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120321

Free format text: JAPANESE INTERMEDIATE CODE: A02