JP2012241975A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2012241975A
JP2012241975A JP2011112194A JP2011112194A JP2012241975A JP 2012241975 A JP2012241975 A JP 2012241975A JP 2011112194 A JP2011112194 A JP 2011112194A JP 2011112194 A JP2011112194 A JP 2011112194A JP 2012241975 A JP2012241975 A JP 2012241975A
Authority
JP
Japan
Prior art keywords
cooling
temperature
refrigerator
temperature sensor
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011112194A
Other languages
Japanese (ja)
Other versions
JP5877301B2 (en
Inventor
Toshikazu Sakai
寿和 境
Koichi Nishimura
晃一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011112194A priority Critical patent/JP5877301B2/en
Priority to PCT/JP2012/003181 priority patent/WO2012157263A1/en
Priority to CN201280024057.4A priority patent/CN103547872B/en
Priority to EP12785019.6A priority patent/EP2711654A4/en
Publication of JP2012241975A publication Critical patent/JP2012241975A/en
Application granted granted Critical
Publication of JP5877301B2 publication Critical patent/JP5877301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To appropriately secure an operation time for PC cooling, and to suppress a change in the temperature of a refrigerating room in a refrigerator having an off-cycle cooling mode (c) which cools the refrigerating room while a freezing cycle is stopped in addition to an FC cooling mode (b) and a PC cooling mode (a).SOLUTION: Independently of the control of the FC cooling mode (b) and the PC cooling mode (a), by controlling the off-cycle cooling mode (c) based on a temperature detected by a DFP temperature sensor, it is possible to appropriately adjust a time for off-cycle cooling, sufficiently secure a time for PC cooling and suppress a change in the temperature of the refrigerator.

Description

本発明は、冷凍室と冷蔵室にそれぞれ冷気を遮断するダンパーを有し、1個の蒸発器を用いて冷凍室と冷蔵室それぞれを単独で冷却することにより、冷凍サイクルの効率を高めた冷蔵庫に関するものである。   The present invention has a damper that has a damper that blocks cold air in a freezing room and a refrigerating room, respectively, and uses a single evaporator to individually cool the freezing room and the refrigerating room, thereby improving the efficiency of the refrigerating cycle. It is about.

省エネルギーの観点から、家庭用冷蔵庫においては、1個の蒸発器を用いて冷凍室と冷蔵室それぞれを単独で冷却することにより、冷凍サイクルの効率を高めた冷蔵庫がある。これは、比較的空気温度の高い冷蔵室を冷却する際に冷凍室よりも高い蒸発温度で冷却することで、冷凍サイクルの効率を高めるものである。   From the viewpoint of energy saving, there are refrigerators for household use that have improved the efficiency of the refrigeration cycle by cooling each of the freezer compartment and the refrigerator compartment by using one evaporator. This enhances the efficiency of the refrigeration cycle by cooling the refrigerator compartment having a relatively high air temperature at an evaporation temperature higher than that of the freezer compartment.

さらに、冷凍室と冷蔵室それぞれに設けられた冷気を遮断するダンパーを用いて、圧縮機停止中に低温である蒸発器の冷熱を利用して冷蔵室を冷却することが提案されている(例えば、特許文献1参照)。これは、蒸発器に付着した霜の融解潜熱を再利用することで、除霜時のヒータ電力を削減しながら冷蔵室の冷却に必要な冷凍サイクルの能力を削減することにより省エネルギー化を図るものである。   Furthermore, it has been proposed to cool the refrigerating chamber using a cooler of the evaporator, which is at a low temperature while the compressor is stopped, using dampers provided in each of the freezing chamber and the refrigerating chamber to block cold air (for example, , See Patent Document 1). This is intended to save energy by reusing the latent heat of melting of frost adhering to the evaporator, thereby reducing the capacity of the refrigeration cycle required for cooling the refrigerator compartment while reducing heater power during defrosting. It is.

以下、図面を参照しながら従来の冷蔵庫を説明する。   Hereinafter, a conventional refrigerator will be described with reference to the drawings.

図4は従来の冷蔵庫の縦断面図、図5は従来の冷蔵庫の冷凍サイクル構成図、図6は従来の冷蔵庫の温度センサおよび冷蔵室上部の温度挙動の模式図である。   FIG. 4 is a longitudinal sectional view of a conventional refrigerator, FIG. 5 is a configuration diagram of a refrigeration cycle of the conventional refrigerator, and FIG. 6 is a schematic diagram of the temperature behavior of the conventional refrigerator temperature sensor and the refrigerator compartment.

図4および図5において、冷蔵庫11は、筐体12、扉13、筐体12を支える脚14、筐体12の下部に設けられた下部機械室15、筐体12の上部に配置された冷蔵室17、筐体12の下部に配置された冷凍室18を有している。   4 and 5, the refrigerator 11 includes a housing 12, a door 13, legs 14 that support the housing 12, a lower machine room 15 provided in a lower portion of the housing 12, and a refrigeration disposed in an upper portion of the housing 12. It has the freezer compartment 18 arrange | positioned at the chamber 17 and the lower part of the housing | casing 12. FIG.

また、冷凍サイクルを構成する部品として、下部機械室15に納められた圧縮機56、冷凍室18の背面側に収められた蒸発器20、下部機械室15内に納められた主凝縮器21を有している。また、下部機械室15を仕切る隔壁22、隔壁22に取り付けられ主凝縮器21を空冷するファン23、圧縮機56の上部に設置された蒸発皿57、下部機械室15の底板25を有している。   In addition, as components constituting the refrigeration cycle, a compressor 56 housed in the lower machine chamber 15, an evaporator 20 housed on the back side of the freezer room 18, and a main condenser 21 housed in the lower machine room 15 are provided. Have. Further, it has a partition wall 22 that partitions the lower machine chamber 15, a fan 23 that is attached to the partition wall 22 to air-cool the main condenser 21, an evaporating dish 57 installed on the top of the compressor 56, and a bottom plate 25 of the lower machine chamber 15. Yes.

底板25に設けられた複数の吸気口26、下部機械室15の背面側に設けられた排出口27、下部機械室15の排出口27と筐体11の上部を繋ぐ連通風路28を有している。ここで、下部機械室15は隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21、風下側に圧縮機56と蒸発皿57を収めている。   It has a plurality of air intakes 26 provided in the bottom plate 25, an exhaust port 27 provided on the back side of the lower machine room 15, and a communication air passage 28 connecting the exhaust port 27 of the lower machine room 15 and the upper part of the housing 11. ing. Here, the lower machine chamber 15 is divided into two chambers by the partition wall 22, and the main condenser 21 is housed on the windward side of the fan 23, and the compressor 56 and the evaporating dish 57 are housed on the leeward side.

さらに、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ37、防露パイプ37の下流側に位置し、循環する冷媒を乾燥するドライヤ38、ドライヤ38と蒸発器20を結合し、循環する冷媒を減圧する絞り39を有している。   Furthermore, as components constituting the refrigeration cycle, a dew-proof pipe 37 and a dew-proof pipe 37 which are located downstream of the main condenser 21 and are thermally coupled to the outer surface of the housing 12 around the opening of the freezer compartment 18. It is located downstream, and has a dryer 38 that dries the circulating refrigerant, a throttle 38 that combines the dryer 38 and the evaporator 20 and depressurizes the circulating refrigerant.

また、蒸発器20で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン50、冷凍室18に供給される冷気を遮断する冷凍室ダンパー51、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー52、冷蔵室17に冷気を供給するダクト53、冷凍室18の温度を検知するFCC温度センサ54、冷蔵室17の温度を検知するPCC温度センサ55を有している。   In addition, an evaporator fan 50 that supplies cold air generated in the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18, a freezer damper 51 that shuts off the cold air supplied to the freezer compartment 18, and cold air supplied to the refrigerator compartment 17 It has a refrigerator compartment damper 52 that shuts off, a duct 53 that supplies cold air to the refrigerator compartment 17, an FCC temperature sensor 54 that detects the temperature of the freezer compartment 18, and a PCC temperature sensor 55 that detects the temperature of the refrigerator compartment 17.

以上のように構成された従来の冷蔵庫について以下にその動作を説明する。   The operation of the conventional refrigerator configured as described above will be described below.

PCC温度センサ55の検知する温度が所定値のON温度まで上昇すると、圧縮機56を停止した状態で冷凍室ダンパー51を閉とし、冷蔵室ダンパー52を開として蒸発器ファン50を駆動する。これによって、蒸発器20とこれに付着している霜の低温の顕熱と霜の融解潜熱を利用して冷蔵室17を冷却する(以下、この動作を「オフサイクル冷却」という)。   When the temperature detected by the PCC temperature sensor 55 rises to a predetermined ON temperature, the freezer compartment damper 51 is closed while the compressor 56 is stopped, the refrigerator compartment damper 52 is opened, and the evaporator fan 50 is driven. Thereby, the refrigerator compartment 17 is cooled using the evaporator 20 and the low-temperature sensible heat of the frost adhering to the evaporator 20 and the latent heat of fusion of the frost (hereinafter, this operation is referred to as “off-cycle cooling”).

オフサイクル冷却の開始から所定時間後に、冷凍室ダンパー51を閉とし、冷蔵室ダンパー52を開として、圧縮機56とファン23、蒸発器ファン50を駆動する。ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、圧縮機56と蒸発皿57側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。   After a predetermined time from the start of off-cycle cooling, the freezer damper 51 is closed, the refrigerator compartment damper 52 is opened, and the compressor 56, the fan 23, and the evaporator fan 50 are driven. By driving the fan 23, the main condenser 21 side of the lower machine chamber 15 partitioned by the partition wall 22 becomes negative pressure, and external air is sucked from the plurality of intake ports 26, and the compressor 56 and the evaporating dish 57 side become positive pressure. The air in the machine room 15 is discharged to the outside through a plurality of discharge ports 27.

一方、圧縮機56から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、防露パイプ37へ供給される。防露パイプ37を通過した冷媒は冷凍室18の開口部を暖めながら、筐体12を介して外部に放熱して凝縮する。防露パイプ37を通過した液冷媒は、ドライヤ38で水分除去され、絞り39で減圧されて蒸発器20で蒸発しながら冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、気体冷媒として圧縮機56に還流する(以下、この動作を「PC冷却」という)。   On the other hand, the refrigerant discharged from the compressor 56 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21 and then supplied to the dewproof pipe 37. The refrigerant that has passed through the dew-proof pipe 37 radiates heat through the housing 12 and condenses while warming the opening of the freezer compartment 18. The liquid refrigerant that has passed through the dew-proof pipe 37 is dehydrated by the dryer 38, depressurized by the throttle 39, and is evaporated by the evaporator 20, while exchanging heat with the air in the refrigerator compartment 17 and cooling the refrigerator compartment 17. Then, it is returned to the compressor 56 as a gaseous refrigerant (hereinafter, this operation is referred to as “PC cooling”).

このとき、冷蔵室17の庫内空気が冷凍室18よりも温度が高く、かつ、オフサイクル冷却によって蒸発器20の温度が上昇しているため、PC冷却時は高い蒸発温度に速やかに到達することができる。   At this time, since the temperature of the air in the refrigerator compartment 17 is higher than that of the freezer compartment 18 and the temperature of the evaporator 20 is increased by off-cycle cooling, it quickly reaches a high evaporation temperature during PC cooling. be able to.

次に、PCC温度センサ55の検知する温度が所定値のOFF温度まで下降するか、あるいはFCC温度センサ54の検知する温度が所定値のON温度まで上昇すると、冷凍室ダンパー51を開とし、冷蔵室ダンパー52を閉として、圧縮機56とファン23、蒸発器ファン50を駆動する。以下、PC冷却と同様に冷凍サイクルを稼動させることにより、冷凍室18の庫内空気と蒸発器20を熱交換して冷凍室18を冷却する(以下、この動作を「FC冷却」という)。   Next, when the temperature detected by the PCC temperature sensor 55 falls to a predetermined OFF temperature or when the temperature detected by the FCC temperature sensor 54 rises to a predetermined ON temperature, the freezer damper 51 is opened and refrigerated. The chamber damper 52 is closed, and the compressor 56, the fan 23, and the evaporator fan 50 are driven. Thereafter, by operating the refrigeration cycle in the same manner as PC cooling, the freezer compartment 18 is cooled by exchanging heat between the inside air of the freezer compartment 18 and the evaporator 20 (hereinafter, this operation is referred to as “FC cooling”).

次に、FCC温度センサ54の検知する温度が所定値のOFF温度まで下降すると、冷凍室ダンパー51と冷蔵室ダンパー52を閉として、圧縮機56とファン23、蒸発器ファン50を停止する(以下、この動作を「冷却停止」という)。そして、通常運転中は、オフサイクル冷却、PC冷却、FC冷却、冷却停止の一連の動作を順に繰り返す。   Next, when the temperature detected by the FCC temperature sensor 54 decreases to an OFF temperature of a predetermined value, the freezer damper 51 and the refrigerator compartment damper 52 are closed, and the compressor 56, the fan 23, and the evaporator fan 50 are stopped (hereinafter referred to as the “cooling chamber damper 51”). This operation is called “cooling stop”). During normal operation, a series of operations of off-cycle cooling, PC cooling, FC cooling, and cooling stop are repeated in order.

図6において、区間eはオフサイクル冷却、区間fはPC冷却、区間gはFC冷却、区間hは冷却停止の動作に対応する。圧縮機56は区間fと区間gの間に駆動し、区間hと区間eの間に停止する。また、冷凍室18は区間gの間に冷却され、冷蔵室17は区間eと区間fの間に冷却される。ここで、冷蔵室17上部の温度変化が大きい理由は、その上部が温度の高い外気に隣接している一方、その下部が温度の低い冷凍室18に隣接しているため、非冷却期間中に上下の温度差が大きくなるとともに、冷却時に上部の風量を大きくして高温の上部を速やかに冷却するためである。   In FIG. 6, section e corresponds to off-cycle cooling, section f corresponds to PC cooling, section g corresponds to FC cooling, and section h corresponds to cooling stop operation. The compressor 56 is driven between the section f and the section g, and is stopped between the section h and the section e. Moreover, the freezer compartment 18 is cooled during the section g, and the refrigerator compartment 17 is cooled between the section e and the section f. Here, the reason why the temperature change in the upper part of the refrigerating chamber 17 is large is that the upper part is adjacent to the high temperature outside air, while the lower part is adjacent to the low temperature freezing room 18, so during the non-cooling period. This is because the temperature difference between the upper and lower sides becomes larger and the air volume at the upper part is increased during cooling to quickly cool the upper part at a high temperature.

この一連の動作によって、PC冷却時の蒸発器20の温度をFC冷却時よりも高く保つことで、冷凍サイクルの効率を高めることができるとともに、オフサイクル冷却によって蒸発器20に付着した霜の融解潜熱を再利用することで、除霜時のヒータ電力(図示せず)を削減しながら冷蔵室17の冷却に必要な冷凍サイクルの能力を削減することにより省
エネルギー化を図ることができる。
By this series of operations, the efficiency of the refrigeration cycle can be increased by keeping the temperature of the evaporator 20 at the time of PC cooling higher than that at the time of FC cooling, and the frost adhering to the evaporator 20 is melted by off-cycle cooling. By reusing latent heat, energy can be saved by reducing the capacity of the refrigeration cycle necessary for cooling the refrigerator compartment 17 while reducing heater power (not shown) during defrosting.

特開平9−236369号公報Japanese Patent Laid-Open No. 9-236369

しかしながら、従来の冷蔵庫の構成では、オフサイクル冷却によってPC冷却の時間が削減され、結果としてPC冷却時に高い冷凍サイクルの効率が得られないという問題が発生する。これは、冷凍サイクルの起動初期は循環する冷媒が過渡状態にあり、蒸発温度に見合った冷凍能力を十分に発揮することができないためである。   However, in the conventional refrigerator configuration, the PC cooling time is reduced by off-cycle cooling, and as a result, there is a problem that high refrigeration cycle efficiency cannot be obtained during PC cooling. This is because the circulating refrigerant is in a transitional state at the start of the refrigeration cycle, and the refrigeration capacity corresponding to the evaporation temperature cannot be fully exhibited.

また、蒸発器20の温度を上昇させるために、オフサイクル冷却とPC冷却を連続して行う場合、オフサイクル冷却の時間を適正に制限してPC冷却の時間を確保することが難しい。これは、オフサイクル冷却の冷却速度が蒸発器20の着霜状態や温度によって大きく変化し、またPC冷却の冷却速度とも異なるため、冷蔵室17内の空気の温度変化に対して時間遅れがあるPCC温度センサ55を用いてオフサイクル冷却とPC冷却の比率を精度よく制御することができないためである。   Moreover, when performing off cycle cooling and PC cooling continuously in order to raise the temperature of the evaporator 20, it is difficult to ensure the PC cooling time by appropriately limiting the time of off cycle cooling. This is because the cooling rate of off-cycle cooling varies greatly depending on the frosting state and temperature of the evaporator 20 and also differs from the cooling rate of PC cooling, so there is a time delay with respect to the temperature change of the air in the refrigerator compartment 17. This is because the PCC temperature sensor 55 cannot be used to accurately control the ratio between off-cycle cooling and PC cooling.

また、従来の冷蔵庫の構成では、冷蔵室17の温度変化、特に上部の温度変化が大きくなるという問題が発生する。これは、冷蔵室17を単独で冷却する場合、冷蔵室17と冷凍室18を同時に冷却するのに比べて冷蔵室17の吹出し口近傍の空気温度が急激に低下するとともに、冷蔵室17を冷却しない非冷却時間が長くなるためである。この問題を解決するためには、オフサイクル冷却とPC冷却の時間をさらに短縮して、冷蔵室17の冷却と非冷却を頻繁に繰り返す必要があり、結果としてPC冷却時に高い冷凍サイクルの効率が得られないという問題が発生する。   Moreover, in the structure of the conventional refrigerator, the problem that the temperature change of the refrigerator compartment 17, especially the temperature change of upper part becomes large generate | occur | produces. This is because when the refrigerator compartment 17 is cooled alone, the air temperature in the vicinity of the outlet of the refrigerator compartment 17 is drastically lowered and the refrigerator compartment 17 is cooled as compared to cooling the refrigerator compartment 17 and the refrigerator compartment 18 simultaneously. This is because the non-cooling time is not increased. In order to solve this problem, it is necessary to further reduce the time of off-cycle cooling and PC cooling, and to frequently repeat cooling and non-cooling of the refrigerator compartment 17, resulting in high refrigeration cycle efficiency during PC cooling. The problem that it cannot be obtained occurs.

本発明は、従来の課題を解決するもので、PC冷却の運転時間を適正に確保するとともに、冷蔵室の温度変化を抑制することを目的とする。   An object of the present invention is to solve the conventional problems, and it is an object of the present invention to appropriately secure an operation time for PC cooling and to suppress a temperature change in a refrigerator compartment.

従来の課題を解決するために、本発明の冷蔵庫は、冷凍室の温度を検知するFCC温度センサと、冷蔵室の温度を検知するPCC温度センサと、PCC温度センサより上部に設置され、冷蔵室の上部の温度を検知するDFP温度センサとを有し、冷凍室ダンパーを開放し、冷蔵室ダンパーを閉塞して、冷凍サイクルを稼動しながら冷凍室を冷却するFC冷却モードと、冷凍室ダンパーを閉塞し、冷蔵室ダンパーを開放して、冷凍サイクルを稼動しながら冷蔵室を冷却するPC冷却モードと、冷凍室ダンパーを閉塞し、冷蔵室ダンパーを開放して、冷凍サイクルを停止しながら蒸発器ファンを運転することで、蒸発器と冷蔵室内の空気を熱交換するオフサイクル冷却モードとを有し、FCC温度センサあるいはPCC温度センサの検知温度に基づいてFC冷却モードおよびPC冷却モードのON/OFFを判定するとともに、DFP温度センサの検知温度に基づいてオフサイクル冷却モードのON/OFFを判定することを特徴とするものである。   In order to solve the conventional problems, a refrigerator according to the present invention is installed in an upper part of an FCC temperature sensor that detects the temperature of the freezer, a PCC temperature sensor that detects the temperature of the refrigerator, and the refrigerator. A DFP temperature sensor that detects the temperature of the upper part of the chiller, opens the freezer damper, closes the refrigerator compartment damper, cools the freezer compartment while operating the refrigeration cycle, and has a freezer damper PC cooling mode that closes and opens the refrigerator compartment damper and cools the refrigerator compartment while operating the refrigeration cycle, and the evaporator while closing the refrigerator compartment damper and opens the refrigerator compartment damper and stops the refrigeration cycle By operating the fan, it has an off-cycle cooling mode that exchanges heat between the evaporator and the air in the refrigerator compartment, and is based on the temperature detected by the FCC temperature sensor or PCC temperature sensor. With determining the ON / OFF of the FC cooling mode and PC cooling mode it has, is characterized in determining the ON / OFF of the off cycle cooling mode based on the temperature detected by the DFP temperature sensor.

これによって、オフサイクル冷却の時間を適正に調整して、PC冷却の時間を十分確保することができるとともに、冷蔵室上部の温度変化を抑制することができる。   Accordingly, it is possible to appropriately adjust the off-cycle cooling time to ensure a sufficient PC cooling time, and to suppress a temperature change in the upper part of the refrigerator compartment.

本発明の冷蔵庫は、FC冷却モードおよびPC冷却モードの制御と独立して、DFP温度センサの検知温度に基づいてオフサイクル冷却モードを制御することにより、オフサイ
クル冷却の時間を適正に調整して、PC冷却の時間を十分確保することができるとともに、冷蔵室上部の温度変化を抑制することができ、PC冷却時に高い冷凍サイクルの効率を得ることで冷蔵庫の省エネルギー化を図ることができる。
In the refrigerator of the present invention, the off-cycle cooling time is appropriately adjusted by controlling the off-cycle cooling mode based on the temperature detected by the DFP temperature sensor independently of the control of the FC cooling mode and the PC cooling mode. The PC cooling time can be secured sufficiently, the temperature change in the upper part of the refrigerator compartment can be suppressed, and the efficiency of the refrigerator can be saved by obtaining high efficiency of the refrigeration cycle during PC cooling.

本発明の実施の形態1における冷蔵庫の縦断面図The longitudinal cross-sectional view of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫のサイクル構成図Cycle configuration diagram of refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の温度センサ挙動の模式図Schematic diagram of temperature sensor behavior of refrigerator in embodiment 1 of the present invention 従来の冷蔵庫の縦断面図Vertical section of a conventional refrigerator 従来の冷蔵庫のサイクル構成図Cycle configuration diagram of a conventional refrigerator 従来の冷蔵庫の温度センサおよび冷蔵室上部の温度挙動の模式図Schematic diagram of temperature behavior of conventional refrigerator temperature sensor and refrigerated room

第1の発明は、冷蔵室と、冷凍室と、冷凍サイクルと、前記冷凍サイクルの構成要素である蒸発器と、前記蒸発器で発生した冷気を前記冷蔵室および前記冷凍室へ供給する蒸発器ファンと、前記蒸発器から前記冷蔵室へ供給される冷気を遮断する冷蔵室ダンパーと、前記蒸発器から前記冷凍室へ供給される冷気を遮断する冷凍室ダンパーと、前記冷凍室の温度を検知するFCC温度センサと、前記冷蔵室の温度を検知するPCC温度センサと、前記PCC温度センサより上部に設置され、前記冷蔵室の上部の温度を検知するDFP温度センサとを有する冷蔵庫において、前記冷凍室ダンパーを開放し、前記冷蔵室ダンパーを閉塞して、前記冷凍サイクルを稼動しながら前記蒸発器で発生した冷気を供給して前記冷凍室を冷却するFC冷却モードと、前記冷凍室ダンパーを閉塞し、前記冷蔵室ダンパーを開放して、前記冷凍サイクルを稼動しながら前記蒸発器で発生した冷気を供給して前記冷蔵室を冷却するPC冷却モードと、前記冷凍室ダンパーを閉塞し、前記冷蔵室ダンパーを開放して、前記冷凍サイクルを停止しながら前記蒸発器ファンを運転することで、前記蒸発器と前記冷蔵室内の空気を熱交換するオフサイクル冷却モードとを有し、前記FCC温度センサあるいは前記PCC温度センサの検知温度に基づいて前記FC冷却モードおよび前記PC冷却モードのON/OFFを判定するとともに、前記DFP温度センサの検知温度に基づいて前記オフサイクル冷却モードのON/OFFを判定することを特徴とする冷蔵庫であるので、PC冷却の運転時間を適正に確保することができる。   The first invention includes a refrigerator compartment, a freezer compartment, a refrigeration cycle, an evaporator that is a component of the refrigeration cycle, and an evaporator that supplies cold air generated in the evaporator to the refrigerator compartment and the freezer compartment. Detecting the temperature of the freezer, a fan, a refrigerating room damper that blocks cool air supplied from the evaporator to the refrigerating room, a freezer damper that blocks cool air supplied from the evaporator to the freezer In the refrigerator comprising: an FCC temperature sensor that detects the temperature of the refrigerator compartment; a PCC temperature sensor that detects the temperature of the refrigerator compartment; and a DFP temperature sensor that is installed above the PCC temperature sensor and detects the temperature of the upper portion of the refrigerator compartment. An FC cooling mode for opening the chamber damper, closing the refrigerator compartment damper, and supplying the cool air generated by the evaporator while operating the refrigeration cycle to cool the freezing chamber. A PC cooling mode for closing the freezer damper, opening the refrigerator compartment damper, supplying cold air generated by the evaporator while operating the refrigeration cycle, and cooling the refrigerator compartment; and An off-cycle cooling mode for exchanging heat between the evaporator and air in the refrigerator compartment by closing the compartment damper, opening the refrigerator compartment damper, and operating the evaporator fan while stopping the refrigeration cycle And determining whether the FC cooling mode and the PC cooling mode are ON / OFF based on the detected temperature of the FCC temperature sensor or the PCC temperature sensor, and determining the off cycle based on the detected temperature of the DFP temperature sensor. Since the refrigerator is characterized by determining whether the cooling mode is ON / OFF, the PC cooling operation time can be appropriately secured. Can.

これは、比較的温度変化の大きい冷蔵室上部に設けたDFP温度センサに基づいてオフサイクル冷却の運転時間を制御することにより、冷蔵室を冷却するオフサイクル冷却とPC冷却の割合を精度よく調整することができるので、PC冷却の運転時間を適正に確保できるものである。   This is because the off-cycle cooling operation time is controlled based on the DFP temperature sensor provided in the upper part of the refrigerating room where the temperature change is relatively large, thereby accurately adjusting the ratio between off-cycle cooling and PC cooling for cooling the refrigerating room. Therefore, the PC cooling operation time can be appropriately secured.

第2の発明は、前記FCC温度センサあるいは前記PCC温度センサの検知温度が上昇した場合には、オフサイクル冷却モードよりもFC冷却モードおよびPC冷却モードを優先して実施することを特徴とする冷蔵庫であるので、オフサイクル冷却によるPC冷却およびFC冷却の運転時間の減少を抑制することができ、冷蔵室および冷凍室の温度変化を抑制することができる。これは、PCC温度センサあるいはFCC温度センサの検知温度の上昇に伴い、オフサイクル冷却であってもこれを中止して、優先してPC冷却あるいはFC冷却に切り換えることでPC冷却およびFC冷却の運転時間を適正に確保することができ、冷蔵室および冷凍室の温度変化を抑制することができるものである。   According to a second aspect of the present invention, when the temperature detected by the FCC temperature sensor or the PCC temperature sensor rises, the FC cooling mode and the PC cooling mode are given priority over the off-cycle cooling mode. Therefore, it is possible to suppress a decrease in the operation time of PC cooling and FC cooling due to off-cycle cooling, and it is possible to suppress temperature changes in the refrigerator compartment and the freezer compartment. This is because the PCC temperature sensor or FCC temperature sensor operation is stopped by switching to PC cooling or FC cooling by preferentially switching to PC cooling or FC cooling even if it is off-cycle cooling as the temperature detected by the PCC temperature sensor or FCC temperature sensor rises. Time can be secured appropriately and temperature changes in the refrigerator compartment and the freezer compartment can be suppressed.

第3の発明は、オフサイクル冷却モードの終了を検知するDFP温度センサのOFF温度を、PC冷却モードの開始を検知するPCC温度センサのON温度よりも高い温度に設定することを特徴とする冷蔵庫であるので、オフサイクル冷却による冷蔵室上部の過冷を抑制することができ、冷蔵室の上部の温度変化を抑制することができる。これは、比較的温度の高い冷蔵室上部に設けたDFP温度センサの温度をPCC温度センサより比較的高
く保ちながらオフサイクル冷却の制御を行うことにより、冷蔵室の上部の温度変化を抑制することができるものである。
According to a third aspect of the present invention, the OFF temperature of the DFP temperature sensor that detects the end of the off-cycle cooling mode is set to a temperature that is higher than the ON temperature of the PCC temperature sensor that detects the start of the PC cooling mode. Therefore, the overcooling of the upper part of the refrigerator compartment due to off-cycle cooling can be suppressed, and the temperature change of the upper part of the refrigerator compartment can be suppressed. This suppresses the temperature change of the upper part of the refrigerator compartment by controlling off-cycle cooling while keeping the temperature of the DFP temperature sensor provided in the upper part of the refrigerator compartment having a relatively high temperature relatively higher than that of the PCC temperature sensor. It is something that can be done.

第4の発明は、冷凍サイクルの構成要素である圧縮機と、前記圧縮機を収納し、冷蔵室の上部に配置された上部機械室と、前記上部機械室に隣接し、前記冷蔵室を冷却する冷気が流通するダクトとを有することを特徴とする冷蔵庫であるので、冷蔵室を冷却する冷気の温度を上昇することができ、冷蔵室の上部の温度変動をさらに抑制することができる。これは、外気よりも高温となる上部機械室に隣接する冷蔵室の壁面にダクトを形成することにより、オフサイクル冷却およびPC冷却の際に冷蔵室を冷却する冷気、特に冷蔵室の上部を冷却する冷気の温度を上昇させることで、冷蔵室上部の過冷を回避して冷蔵室の上部の温度変動をさらに抑制することができるものである。また、冷蔵室上部の過冷が回避できるので、PC冷却の際に冷蔵室を冷却する冷気の風量を増やすことができ、蒸発器の熱交換効率を向上してPC冷却時にさらに高い冷凍サイクルの効率を得ることができる。   According to a fourth aspect of the present invention, there is provided a compressor that is a component of a refrigeration cycle, an upper machine room that houses the compressor, and is disposed at an upper part of the refrigeration room, and is adjacent to the upper machine room and cools the refrigeration room. Since the refrigerator has a duct through which the cool air flows, the temperature of the cool air for cooling the refrigerating room can be increased, and temperature fluctuations in the upper part of the refrigerating room can be further suppressed. This is because a duct is formed on the wall of the refrigeration room adjacent to the upper machine room that is hotter than the outside air, thereby cooling the refrigeration room, especially the upper part of the refrigeration room, during off-cycle cooling and PC cooling. By raising the temperature of the cold air to be heated, overcooling of the upper part of the refrigerator compartment can be avoided and temperature fluctuations of the upper part of the refrigerator compartment can be further suppressed. In addition, since overcooling of the upper part of the refrigerator compartment can be avoided, it is possible to increase the amount of cool air that cools the refrigerator compartment during PC cooling, improving the heat exchange efficiency of the evaporator, and increasing the refrigeration cycle during PC cooling. Efficiency can be obtained.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the same reference numerals are given to the same components as those of the conventional example, and detailed description thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1における冷蔵庫の縦断面図、図2は本発明の実施の形態1における冷蔵庫のサイクル構成図、図3は本発明の実施の形態1における冷蔵庫の温度センサ挙動の模式図である。
(Embodiment 1)
1 is a longitudinal sectional view of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a cycle configuration diagram of the refrigerator according to Embodiment 1 of the present invention, and FIG. 3 is a temperature sensor behavior of the refrigerator according to Embodiment 1 of the present invention. FIG.

図1および図2において、冷蔵庫11は、筐体12、扉13、筐体12を支える脚14、筐体12の下部に設けられた下部機械室15、筐体12の上部に設けられた上部機械室16、筐体12の上部に配置された冷蔵室17、筐体12の下部に配置された冷凍室18を有する。また、冷凍サイクルを構成する部品として、上部機械室16に納められた圧縮機19、冷凍室18の背面側に収められた蒸発器20、下部機械室15内に納められた主凝縮器21を有している。また、下部機械室15を仕切る隔壁22、隔壁22に取り付けられ主凝縮器21を空冷するファン23、隔壁22の風下側に設置された蒸発皿24、下部機械室15の底板25を有している。   In FIG. 1 and FIG. 2, the refrigerator 11 includes a housing 12, a door 13, legs 14 that support the housing 12, a lower machine room 15 provided in the lower portion of the housing 12, and an upper portion provided in the upper portion of the housing 12. It has a machine room 16, a refrigeration room 17 disposed at the upper part of the casing 12, and a freezing room 18 disposed at the lower part of the casing 12. In addition, as components constituting the refrigeration cycle, a compressor 19 housed in the upper machine room 16, an evaporator 20 housed in the back side of the freezer room 18, and a main condenser 21 housed in the lower machine room 15 are provided. Have. In addition, it has a partition wall 22 that partitions the lower machine chamber 15, a fan 23 that is attached to the partition wall 22 and cools the main condenser 21, an evaporating dish 24 installed on the leeward side of the partition wall 22, and a bottom plate 25 of the lower machine chamber 15. Yes.

また、底板25に設けられた複数の吸気口26、下部機械室15の背面側に設けられた排出口27、下部機械室15の排出口27と上部機械室16を繋ぐ連通風路28を有している。ここで、下部機械室15は隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21、風下側に蒸発皿24を収めている。   In addition, a plurality of air intakes 26 provided in the bottom plate 25, an exhaust port 27 provided on the back side of the lower machine room 15, and a communication air passage 28 connecting the exhaust port 27 of the lower machine room 15 and the upper machine room 16 are provided. doing. Here, the lower machine chamber 15 is divided into two chambers by a partition wall 22, and a main condenser 21 is housed on the windward side of the fan 23 and an evaporating dish 24 is housed on the leeward side.

また、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ37、防露パイプ37の下流側に位置し、循環する冷媒を乾燥するドライヤ38、ドライヤ38と蒸発器20を結合し、循環する冷媒を減圧する絞り39を有している。   Further, as components constituting the refrigeration cycle, a dew-proof pipe 37 and a dew-proof pipe 37 which are located on the downstream side of the main condenser 21 and are thermally coupled to the outer surface of the housing 12 around the opening of the freezer compartment 18. It is located downstream, and has a dryer 38 that dries the circulating refrigerant, a throttle 38 that combines the dryer 38 and the evaporator 20 and depressurizes the circulating refrigerant.

また、蒸発器20で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン30、冷凍室18に供給される冷気を遮断する冷凍室ダンパー31、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー32、冷蔵室17に冷気を供給するダクト33、冷凍室18の温度を検知するFCC温度センサ34、冷蔵室17の温度を検知するPCC温度センサ35、冷蔵室17の上部、特にPCC温度センサ35よりも上部の冷蔵室17の温度を検知するDFP温度センサ36を有している。ここで、ダクト33は冷蔵室17と上部機械室16が隣接する壁面に沿って形成され、ダクト33を通過する冷気の一部を冷蔵室の中央付近から排出するとともに、冷気の多くは上部機械室16が隣接する壁面を冷却し
ながら通過した後に冷蔵室17の上部から排出する。
In addition, an evaporator fan 30 that supplies cold air generated in the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18, a freezer damper 31 that blocks cold air supplied to the freezer compartment 18, and cold air supplied to the refrigerator compartment 17 The refrigerator compartment damper 32 to be shut off, the duct 33 for supplying cold air to the refrigerator compartment 17, the FCC temperature sensor 34 for detecting the temperature of the freezer compartment 18, the PCC temperature sensor 35 for detecting the temperature of the refrigerator compartment 17, the upper part of the refrigerator compartment 17, In particular, it has a DFP temperature sensor 36 that detects the temperature of the refrigerator compartment 17 above the PCC temperature sensor 35. Here, the duct 33 is formed along a wall surface where the refrigerator compartment 17 and the upper machine room 16 are adjacent to each other, and a part of the cold air passing through the duct 33 is discharged from the vicinity of the center of the refrigerator compartment, and most of the cold air is in the upper machine. After passing through the wall 16 while cooling the adjacent wall surface, it is discharged from the upper part of the refrigerator compartment 17.

以上のように構成された本発明の実施の形態1における冷蔵庫について、以下その動作を説明する。   About the refrigerator in Embodiment 1 of this invention comprised as mentioned above, the operation | movement is demonstrated below.

DFP温度センサ36の検知する温度が所定値のON温度まで上昇すると、圧縮機19を停止した状態で冷凍室ダンパー31を閉とし、冷蔵室ダンパー32を開として蒸発器ファン30を駆動する。これによって、蒸発器20とこれに付着している霜の低温の顕熱と霜の融解潜熱を利用して冷蔵室17を冷却する(以下、この動作を「オフサイクル冷却」という)。そして、DFP温度センサ36の検知する温度が所定値のOFF温度まで下降すると、冷凍室ダンパー31を閉とし、冷蔵室ダンパー32を閉として蒸発器ファン30を停止する(以下、この動作を「冷却停止」という)。   When the temperature detected by the DFP temperature sensor 36 rises to a predetermined ON temperature, the freezer compartment damper 31 is closed while the compressor 19 is stopped, the refrigerator compartment damper 32 is opened, and the evaporator fan 30 is driven. Thereby, the refrigerator compartment 17 is cooled using the evaporator 20 and the low-temperature sensible heat of the frost adhering to the evaporator 20 and the latent heat of fusion of the frost (hereinafter, this operation is referred to as “off-cycle cooling”). When the temperature detected by the DFP temperature sensor 36 falls to a predetermined OFF temperature, the freezer damper 31 is closed, the refrigerator compartment damper 32 is closed, and the evaporator fan 30 is stopped (hereinafter, this operation is referred to as “cooling”). Stopped)).

オフサイクル冷却あるいは冷却停止中にPCC温度センサ35の検知する温度が所定値のON温度まで上昇すると、冷凍室ダンパー31を閉とし、冷蔵室ダンパー32を開として、圧縮機19とファン23を駆動する。ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、蒸発皿24側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。そして、下部機械室15から排出された空気は連通風路28を介して、上部機械室16へ送られて圧縮機19を冷却する。   When the temperature detected by the PCC temperature sensor 35 rises to a predetermined ON temperature during off-cycle cooling or cooling stop, the freezer damper 31 is closed, the refrigerator compartment damper 32 is opened, and the compressor 19 and the fan 23 are driven. To do. By driving the fan 23, the main condenser 21 side of the lower machine chamber 15 partitioned by the partition wall 22 has a negative pressure, and external air is sucked from the plurality of intake ports 26, and the evaporating dish 24 side has a positive pressure. The air is discharged from the plurality of discharge ports 27 to the outside. The air discharged from the lower machine room 15 is sent to the upper machine room 16 via the communication air passage 28 to cool the compressor 19.

一方、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、防露パイプ37へ供給される。防露パイプ37を通過した冷媒は冷凍室18の開口部を暖めながら、筐体12を介して外部に放熱して凝縮する。防露パイプ37を通過した液冷媒は、ドライヤ38で水分除去され、絞り39で減圧されて蒸発器20で蒸発しながら冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、気体冷媒として圧縮機19に還流する(以下、この動作を「PC冷却」という)。   On the other hand, the refrigerant discharged from the compressor 19 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21 and then supplied to the dewproof pipe 37. The refrigerant that has passed through the dew-proof pipe 37 radiates heat through the housing 12 and condenses while warming the opening of the freezer compartment 18. The liquid refrigerant that has passed through the dew-proof pipe 37 is dehydrated by the dryer 38, depressurized by the throttle 39, and is evaporated by the evaporator 20, while exchanging heat with the air in the refrigerator compartment 17 and cooling the refrigerator compartment 17. Then, it returns to the compressor 19 as a gaseous refrigerant (hereinafter, this operation is referred to as “PC cooling”).

次に、PCC温度センサ35の検知する温度が所定値のOFF温度まで下降するか、あるいはFCC温度センサ34の検知する温度が所定値のON温度まで上昇すると、冷凍室ダンパー31を開とし、冷蔵室ダンパー32を閉として、圧縮機19とファン23、蒸発器ファン30を駆動する。以下、PC冷却と同様に冷凍サイクルを稼動させることにより、冷凍室18の庫内空気と蒸発器20を熱交換して冷凍室18を冷却する(以下、この動作を「FC冷却」という)。次に、FCC温度センサ34の検知する温度が所定値のOFF温度まで下降すると、冷却停止の動作を行う。   Next, when the temperature detected by the PCC temperature sensor 35 falls to a predetermined OFF temperature or when the temperature detected by the FCC temperature sensor 34 rises to a predetermined ON temperature, the freezer damper 31 is opened and refrigerated. The chamber damper 32 is closed, and the compressor 19, the fan 23, and the evaporator fan 30 are driven. Thereafter, by operating the refrigeration cycle in the same manner as PC cooling, the freezer compartment 18 is cooled by exchanging heat between the inside air of the freezer compartment 18 and the evaporator 20 (hereinafter, this operation is referred to as “FC cooling”). Next, when the temperature detected by the FCC temperature sensor 34 falls to a predetermined OFF temperature, the cooling stop operation is performed.

なお、オフサイクル冷却は冷却停止中に冷却停止に対して優先して動作し、PC冷却中およびFC冷却中は動作しない。また、オフサイクル冷却に対してPC冷却およびFC冷却を優先して動作させる。また、オフサイクル冷却を停止するOFF温度を、PC冷却を開始するON温度よりも高く設定している。この結果、通常運転中は、PC冷却、FC冷却、冷却停止の一連の動作を順に繰り返すことを基本動作とし、PC冷却およびFC冷却の動作を行わない間に、冷却停止とオフサイクル冷却を数回繰り返して行う。   Note that off-cycle cooling operates in preference to cooling stop during cooling stop, and does not operate during PC cooling and FC cooling. In addition, PC cooling and FC cooling are operated with priority over off-cycle cooling. Further, the OFF temperature at which the off-cycle cooling is stopped is set higher than the ON temperature at which the PC cooling is started. As a result, during normal operation, the basic operation is to repeat a series of operations of PC cooling, FC cooling, and cooling stop in order, and while the PC cooling and FC cooling operations are not performed, the cooling stop and off-cycle cooling are performed several times. Repeat repeatedly.

図3において、区間aはPC冷却、区間bはFC冷却、区間cはオフサイクル冷却、区間dは冷却停止の動作に対応する。この一連の動作によって、PC冷却時の蒸発器20の温度をFC冷却時よりも高く保つことで、冷凍サイクルの効率を高めることができるとともに、オフサイクル冷却によって蒸発器20に付着した霜の融解潜熱を再利用することで、除霜時のヒータ電力(図示せず)を削減しながら冷蔵室17の冷却に必要な冷凍サイクルの能力を削減することにより省エネルギー化を図ることができる。   In FIG. 3, section a corresponds to PC cooling, section b corresponds to FC cooling, section c corresponds to off-cycle cooling, and section d corresponds to cooling stop operation. By this series of operations, the efficiency of the refrigeration cycle can be increased by keeping the temperature of the evaporator 20 at the time of PC cooling higher than that at the time of FC cooling, and the frost adhering to the evaporator 20 is melted by off-cycle cooling. By reusing latent heat, energy can be saved by reducing the capacity of the refrigeration cycle necessary for cooling the refrigerator compartment 17 while reducing heater power (not shown) during defrosting.

また、比較的温度変化の大きい冷蔵室17の上部に設けたDFP温度センサ36に基づいて、PC冷却およびFC冷却の動作を行わない間に、数回のオフサイクル冷却を行うことにより、冷蔵室17を冷却するオフサイクル冷却とPC冷却の割合を精度よく調整することができるので、PC冷却の運転時間を適正に確保することができる。   Further, based on the DFP temperature sensor 36 provided in the upper part of the refrigerating chamber 17 having a relatively large temperature change, the off-cooling is performed several times while the PC cooling operation and the FC cooling operation are not performed. Since the ratio between the off-cycle cooling and the PC cooling for cooling 17 can be accurately adjusted, the PC cooling operation time can be appropriately ensured.

また、PCC温度センサ35あるいはFCC温度センサ34の検知温度の上昇に伴い、オフサイクル冷却であってもこれを中止して、優先してPC冷却あるいはFC冷却に切り換えることでPC冷却およびFC冷却の運転時間を適正に確保することができ、冷蔵室17および冷凍室18の温度変化を抑制することができる。   In addition, as the detection temperature of the PCC temperature sensor 35 or the FCC temperature sensor 34 increases, even in the case of off-cycle cooling, this is stopped, and PC cooling or FC cooling is preferentially switched to PC cooling or FC cooling. An operation time can be ensured appropriately, and temperature changes in the refrigerator compartment 17 and the freezer compartment 18 can be suppressed.

また、オフサイクル冷却を停止するOFF温度を、PC冷却を開始するON温度よりも高く設定することにより、比較的温度の高い冷蔵室17の上部に設けたDFP温度センサ36の温度をPCC温度センサより比較的高く保ちながらオフサイクル冷却の制御を行うことにより、冷蔵室17の上部の温度変化を抑制することができる。なお、本実施の形態1においては、オフサイクル冷却を停止するOFF温度を、PC冷却を開始するON温度よりも高く設定したが、オフサイクル冷却を停止するOFF温度を、PC冷却を停止するOFF温度よりも高く設定しても同様の効果を得ることができる。   Further, by setting the OFF temperature at which the off-cycle cooling is stopped higher than the ON temperature at which the PC cooling is started, the temperature of the DFP temperature sensor 36 provided in the upper part of the refrigerating chamber 17 having a relatively high temperature is set as the PCC temperature sensor. By controlling the off-cycle cooling while keeping it relatively high, the temperature change in the upper part of the refrigerator compartment 17 can be suppressed. In the first embodiment, the OFF temperature for stopping off-cycle cooling is set higher than the ON temperature for starting PC cooling. However, the OFF temperature for stopping off-cycle cooling is set to OFF for stopping PC cooling. The same effect can be obtained even if the temperature is set higher than the temperature.

また、外気よりも高温となる上部機械室16に隣接する冷蔵室17の壁面にダクト33を形成することにより、オフサイクル冷却およびPC冷却の際に冷蔵室17を冷却する冷気、特に冷蔵室17の上部を冷却する冷気の温度を上昇させることで、冷蔵室17の上部の過冷を回避して冷蔵室17の上部の温度変動をさらに抑制することができるとともに、冷蔵室17の上部の過冷が回避できるので、PC冷却の際に冷蔵室17を冷却する冷気の風量を増やすことができ、蒸発器20の熱交換効率を向上してPC冷却時にさらに高い冷凍サイクルの効率を得ることができる。   Further, the duct 33 is formed on the wall surface of the refrigerating room 17 adjacent to the upper machine room 16 that is hotter than the outside air, thereby cooling the refrigerating room 17 during off-cycle cooling and PC cooling, particularly the refrigerating room 17. By raising the temperature of the cool air that cools the upper part of the refrigerator, it is possible to avoid overcooling of the upper part of the refrigerator compartment 17 and further suppress temperature fluctuations of the upper part of the refrigerator compartment 17, and Since cooling can be avoided, the amount of cool air that cools the refrigerator compartment 17 during PC cooling can be increased, and the efficiency of the heat exchange of the evaporator 20 can be improved to obtain higher refrigeration cycle efficiency during PC cooling. it can.

以上のように、本発明の冷蔵庫は、FC冷却モード(b)およびPC冷却モード(a)に加えて、冷凍サイクル停止中に冷蔵室17を冷却するオフサイクル冷却モード(c)を有する冷蔵庫において、FC冷却モード(b)およびPC冷却モード(a)の制御と独立して、PC冷却を制御するPCC温度センサ35より上部に設置され、PCC温度センサ35よりも温度変化の大きいDFP温度センサ36の検知温度に基づいてオフサイクル冷却モード(c)を制御することにより、オフサイクル冷却の時間を適正に調整して、PC冷却の時間を十分確保することができるとともに、冷蔵室17の温度変化を抑制することができる。   As described above, the refrigerator of the present invention is a refrigerator having an off-cycle cooling mode (c) for cooling the refrigerator compartment 17 while the refrigeration cycle is stopped, in addition to the FC cooling mode (b) and the PC cooling mode (a). Independently of the control of the FC cooling mode (b) and the PC cooling mode (a), the DFP temperature sensor 36 is installed above the PCC temperature sensor 35 that controls the PC cooling and has a temperature change larger than that of the PCC temperature sensor 35. By controlling the off-cycle cooling mode (c) based on the detected temperature, it is possible to appropriately adjust the off-cycle cooling time to ensure sufficient PC cooling time, and to change the temperature of the refrigerator compartment 17 Can be suppressed.

以上のように、本発明にかかる冷蔵庫は、FC冷却モードおよびPC冷却モードに加えて、冷凍サイクル停止中に冷蔵室を冷却するオフサイクル冷却モードを有する冷蔵庫において、PC冷却の運転時間を適正に確保するとともに、冷蔵室の温度変化を抑制することができるので、業務用冷蔵庫など他の冷凍冷蔵応用商品にも適用できる。   As described above, in the refrigerator according to the present invention, in addition to the FC cooling mode and the PC cooling mode, in the refrigerator having the off-cycle cooling mode for cooling the refrigerator compartment while the refrigeration cycle is stopped, the PC cooling operation time is appropriately set. As well as ensuring the temperature change of the refrigerator compartment, it can be applied to other refrigerator-freezer products such as commercial refrigerators.

11 冷蔵庫
12 筐体
15 下部機械室
16 上部機械室
19 圧縮機
20 蒸発器
30 蒸発器ファン
31 冷凍室ダンパー
32 冷蔵室ダンパー
33 ダクト
34 FCC温度センサ
35 PCC温度センサ
36 DFP温度センサ
DESCRIPTION OF SYMBOLS 11 Refrigerator 12 Case 15 Lower machine room 16 Upper machine room 19 Compressor 20 Evaporator 30 Evaporator fan 31 Freezer compartment damper 32 Refrigerating room damper 33 Duct 34 FCC temperature sensor 35 PCC temperature sensor 36 DFP temperature sensor

Claims (4)

冷蔵室と、冷凍室と、冷凍サイクルと、前記冷凍サイクルの構成要素である蒸発器と、前記蒸発器で発生した冷気を前記冷蔵室および前記冷凍室へ供給する蒸発器ファンと、前記蒸発器から前記冷蔵室へ供給される冷気を遮断する冷蔵室ダンパーと、前記蒸発器から前記冷凍室へ供給される冷気を遮断する冷凍室ダンパーと、前記冷凍室の温度を検知するFCC温度センサと、前記冷蔵室の温度を検知するPCC温度センサと、前記PCC温度センサより上部に設置され、前記冷蔵室の上部の温度を検知するDFP温度センサとを有する冷蔵庫において、前記冷凍室ダンパーを開放し、前記冷蔵室ダンパーを閉塞して、前記冷凍サイクルを稼動しながら前記蒸発器で発生した冷気を供給して前記冷凍室を冷却するFC冷却モードと、前記冷凍室ダンパーを閉塞し、前記冷蔵室ダンパーを開放して、前記冷凍サイクルを稼動しながら前記蒸発器で発生した冷気を供給して前記冷蔵室を冷却するPC冷却モードと、前記冷凍室ダンパーを閉塞し、前記冷蔵室ダンパーを開放して、前記冷凍サイクルを停止しながら前記蒸発器ファンを運転することで、前記蒸発器と前記冷蔵室内の空気を熱交換するオフサイクル冷却モードとを有し、前記FCC温度センサあるいは前記PCC温度センサの検知温度に基づいて前記FC冷却モードおよび前記PC冷却モードのON/OFFを判定するとともに、前記DFP温度センサの検知温度に基づいて前記オフサイクル冷却モードのON/OFFを判定することを特徴とする冷蔵庫。 Refrigeration room, freezing room, refrigeration cycle, evaporator as a component of the refrigeration cycle, evaporator fan for supplying cold air generated in the evaporator to the refrigeration room and the freezing room, and the evaporator A refrigeration room damper for blocking cold air supplied from the evaporator to the freezer room, a freezer damper for blocking cold air supplied from the evaporator to the freezer room, an FCC temperature sensor for detecting the temperature of the freezer room, In a refrigerator having a PCC temperature sensor that detects the temperature of the refrigerator compartment and a DFP temperature sensor that is installed above the PCC temperature sensor and detects the temperature of the upper portion of the refrigerator compartment, the freezer damper is opened, An FC cooling mode for closing the refrigerator compartment damper and supplying the cool air generated by the evaporator while operating the refrigeration cycle to cool the freezer compartment; and A damper is closed, the refrigerator compartment damper is opened, a PC cooling mode for cooling the refrigerator compartment by supplying cold air generated in the evaporator while operating the refrigeration cycle, and the refrigerator compartment damper is closed. And opening the refrigerator compartment damper and operating the evaporator fan while stopping the refrigeration cycle, thereby having an off-cycle cooling mode for exchanging heat between the evaporator and the air in the refrigerator compartment, Whether the FC cooling mode and the PC cooling mode are ON / OFF is determined based on the detected temperature of the FCC temperature sensor or the PCC temperature sensor, and the ON / OFF of the off-cycle cooling mode is determined based on the detected temperature of the DFP temperature sensor. A refrigerator characterized by determining OFF. 前記FCC温度センサあるいは前記PCC温度センサの検知温度が上昇した場合には、オフサイクル冷却モードよりもFC冷却モードおよびPC冷却モードを優先して実施することを特徴とする請求項1記載の冷蔵庫。 The refrigerator according to claim 1, wherein when the temperature detected by the FCC temperature sensor or the PCC temperature sensor rises, the FC cooling mode and the PC cooling mode are prioritized over the off-cycle cooling mode. オフサイクル冷却モードの終了を検知するDFP温度センサのOFF温度を、PC冷却モードの開始を検知するPCC温度センサのON温度よりも高い温度に設定することを特徴とする請求項1または2記載の冷蔵庫。 The OFF temperature of the DFP temperature sensor that detects the end of the off-cycle cooling mode is set to a temperature that is higher than the ON temperature of the PCC temperature sensor that detects the start of the PC cooling mode. refrigerator. 冷凍サイクルの構成要素である圧縮機と、前記圧縮機を収納し、冷蔵室の上部に配置された上部機械室と、前記上部機械室に隣接し、前記冷蔵室を冷却する冷気が流通するダクトとを有することを特徴とする請求項1から3のいずれか一項記載の冷蔵庫。 A compressor that is a component of a refrigeration cycle, an upper machine room that houses the compressor, and that is disposed in the upper part of the refrigerating room, and a duct that is adjacent to the upper machine room and through which cool air that cools the refrigerating room flows. The refrigerator according to any one of claims 1 to 3, wherein the refrigerator is provided.
JP2011112194A 2011-05-18 2011-05-19 refrigerator Active JP5877301B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011112194A JP5877301B2 (en) 2011-05-19 2011-05-19 refrigerator
PCT/JP2012/003181 WO2012157263A1 (en) 2011-05-18 2012-05-16 Refrigerator
CN201280024057.4A CN103547872B (en) 2011-05-18 2012-05-16 Freezer
EP12785019.6A EP2711654A4 (en) 2011-05-18 2012-05-16 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011112194A JP5877301B2 (en) 2011-05-19 2011-05-19 refrigerator

Publications (2)

Publication Number Publication Date
JP2012241975A true JP2012241975A (en) 2012-12-10
JP5877301B2 JP5877301B2 (en) 2016-03-08

Family

ID=47463878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011112194A Active JP5877301B2 (en) 2011-05-18 2011-05-19 refrigerator

Country Status (1)

Country Link
JP (1) JP5877301B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057441A (en) * 2011-09-08 2013-03-28 Panasonic Corp Refrigerator
JP2015001358A (en) * 2013-06-18 2015-01-05 パナソニック株式会社 Refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151449A (en) * 1993-11-30 1995-06-16 Sanyo Electric Co Ltd Device for defrosting cooler
JPH1019437A (en) * 1996-06-28 1998-01-23 Nakano Reiki Kk Temperature control device of show case
JPH11183014A (en) * 1997-12-18 1999-07-06 Hitachi Ltd Refrigerator
JP2003083667A (en) * 2001-09-06 2003-03-19 Mitsubishi Electric Corp Controller for freezer/refrigerator
JP2011002228A (en) * 2010-10-04 2011-01-06 Hitachi Appliances Inc Refrigerator
JP2011058693A (en) * 2009-09-09 2011-03-24 Hitachi Appliances Inc Refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151449A (en) * 1993-11-30 1995-06-16 Sanyo Electric Co Ltd Device for defrosting cooler
JPH1019437A (en) * 1996-06-28 1998-01-23 Nakano Reiki Kk Temperature control device of show case
JPH11183014A (en) * 1997-12-18 1999-07-06 Hitachi Ltd Refrigerator
JP2003083667A (en) * 2001-09-06 2003-03-19 Mitsubishi Electric Corp Controller for freezer/refrigerator
JP2011058693A (en) * 2009-09-09 2011-03-24 Hitachi Appliances Inc Refrigerator
JP2011002228A (en) * 2010-10-04 2011-01-06 Hitachi Appliances Inc Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057441A (en) * 2011-09-08 2013-03-28 Panasonic Corp Refrigerator
JP2015001358A (en) * 2013-06-18 2015-01-05 パナソニック株式会社 Refrigerator

Also Published As

Publication number Publication date
JP5877301B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
KR101306536B1 (en) Refrigerator
WO2012157263A1 (en) Refrigerator
JP6074596B2 (en) refrigerator
WO2018032607A1 (en) Air-cooled refrigerator and control method therefor
KR102126401B1 (en) Refrigerator and colntrol method for refrigerator
JP6019386B2 (en) refrigerator
JP6355325B2 (en) Refrigerator and control method of refrigerator
JP2015010815A (en) Refrigerator
KR102383607B1 (en) Refrigerator
JP6448991B2 (en) refrigerator
JP2014044025A (en) Refrigerator
JP5877301B2 (en) refrigerator
JP2013068388A (en) Refrigerator
JP5870237B2 (en) refrigerator
JP5927409B2 (en) refrigerator
JP2012241949A (en) Refrigerator
JP6109520B2 (en) refrigerator
JP5743867B2 (en) Cooling storage
JP5862867B2 (en) refrigerator
KR20080068233A (en) Method and apparatus for prevention supercooling of refrigerator
JP2015036600A (en) Refrigerator
JP6017886B2 (en) refrigerator
JP2012082985A (en) Refrigerator
JP6846599B2 (en) refrigerator
JP2012251682A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140513

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150831

R151 Written notification of patent or utility model registration

Ref document number: 5877301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151