JP2018109488A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2018109488A
JP2018109488A JP2017000912A JP2017000912A JP2018109488A JP 2018109488 A JP2018109488 A JP 2018109488A JP 2017000912 A JP2017000912 A JP 2017000912A JP 2017000912 A JP2017000912 A JP 2017000912A JP 2018109488 A JP2018109488 A JP 2018109488A
Authority
JP
Japan
Prior art keywords
damper
room
refrigerator
compartment
freezer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017000912A
Other languages
Japanese (ja)
Other versions
JP6895605B2 (en
Inventor
堀尾 好正
Yoshimasa Horio
好正 堀尾
一瑳 多賀
Issa Taga
一瑳 多賀
孝亮 服部
Kosuke HATTORI
孝亮 服部
翔太 垣内
Shota Kakiuchi
翔太 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017000912A priority Critical patent/JP6895605B2/en
Priority to PCT/JP2017/045901 priority patent/WO2018128085A1/en
Publication of JP2018109488A publication Critical patent/JP2018109488A/en
Application granted granted Critical
Publication of JP6895605B2 publication Critical patent/JP6895605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator capable of effectively using cold of a cooler during stop of a compressor and efficiently cooling a refrigeration chamber by suppressing thermal effects on a freezer in the refrigerator having a damper for controlling cold air amount to each storage chamber.SOLUTION: A refrigerator includes: a refrigeration chamber damper for controlling cold air to be supplied from a cooling chamber to a refrigeration chamber on the basis of a refrigeration chamber temperature sensor; a freezer damper for controlling cold air to be supplied from the cooling chamber to a freezer on the basis of a freezer temperature sensor; and a compressor of which operation is controlled on the basis of the freezer temperature sensor. When the compressor is stopped with the refrigeration chamber damper opened and with the freezer damper opened, a cooling fan is operated with the freezer damper closed and the refrigeration chamber damper opened for a predetermined time after the stop of the compressor. During the stop of the compressor, cold of the cooler can be effectively used and the refrigeration chamber can be efficiently cooled by suppressing thermal effects on the freezer.SELECTED DRAWING: Figure 39

Description

本発明は各貯蔵室への冷気量を制御するダンパを備えた冷蔵庫に関するものである。   The present invention relates to a refrigerator provided with a damper for controlling the amount of cool air to each storage room.

近年、冷蔵庫は、冷蔵庫本体背面の冷却室で冷気を生成し、その冷気を冷却ファンによって冷蔵室、冷凍室、野菜室等に循環させて各室内の食品を冷却するが、その際、冷蔵室への冷気循環量を調整する冷蔵室ダンパを備えるとともに、さらに冷凍室への冷気循環量を制御する冷凍室ダンパを設けて、冷蔵室と冷凍室を効率よく冷却できるようにしたものがある(例えば、特許文献1参照)。   In recent years, refrigerators generate cold air in the cooling room on the back of the refrigerator body, and cool the food in each room by circulating the cold air to the refrigerator room, freezer room, vegetable room, etc. by the cooling fan. In addition to a refrigerator compartment damper that adjusts the amount of cold air circulation to the freezer compartment and a freezer compartment damper that controls the amount of cold air circulation to the freezer compartment, the refrigerator compartment and freezer compartment can be efficiently cooled ( For example, see Patent Document 1).

特開2011−7452号公報JP 2011-7451 A

しかしながら、上記従来の冷蔵庫では、圧縮機運転中に冷却器で生成された冷気が送風機により冷蔵室ダンパおよび冷凍室ダンパを介して冷蔵室と冷凍室に供給され所定の温度に冷却されるが、圧縮機停止後は、送風機も停止され、冷凍室内の温度が高くなると再び圧縮機が運転されるというサイクルを繰り返している。   However, in the above conventional refrigerator, the cold air generated by the cooler during operation of the compressor is supplied to the refrigerator compartment and the freezer compartment by the blower via the refrigerator compartment damper and the freezer compartment damper, and is cooled to a predetermined temperature. After the compressor is stopped, the blower is also stopped, and when the temperature in the freezer compartment increases, the compressor is operated again.

しかしながら、圧縮機停止中は送風機も停止しているので、圧縮機停止中に冷却器の冷熱を有効利用することができず、冷却効率が下がるという課題を有していた。   However, since the blower is also stopped when the compressor is stopped, the cooler of the cooler cannot be effectively used while the compressor is stopped, and the cooling efficiency is lowered.

本発明は上記従来の課題を解決するものであり、圧縮機停止中に冷却器の冷熱を有効利用し、冷凍室への熱影響を抑えて冷蔵室を効率的に冷却できる冷蔵庫を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a refrigerator capable of efficiently cooling the refrigerator compartment by effectively using the cooler of the cooler while the compressor is stopped and suppressing the heat effect on the freezer compartment. With the goal.

上記従来の課題を解決するために、本発明の冷蔵庫は、冷蔵室と冷凍室と、前記冷凍室の後方に配置され、前記冷蔵室と前記冷凍室とに冷気を供給する冷却器と送風機とが収納された冷却室と、前記冷却室から前記冷蔵室に供給される冷気を冷蔵室温度センサに基づいて制御する冷蔵室ダンパと、前記冷却室から前記冷凍室に供給される冷気を冷凍室温度センサに基づいて制御する冷凍室ダンパと、前記冷凍室温度センサに基づいて運転が制御される圧縮機と、を備え、前記冷蔵室ダンパ開、かつ前記冷凍室ダンパ開状態で前記圧縮機が停止した場合、前記圧縮機停止後の所定時間、前記冷凍室ダンパ閉で前記冷蔵室ダンパを開状態として前記送風機を運転するものである。   In order to solve the above-described conventional problems, a refrigerator according to the present invention includes a refrigerating room, a freezing room, a cooler and a blower that are arranged behind the freezing room and supply cold air to the refrigerating room and the freezing room. A cooling chamber in which the cooling air is supplied to the refrigerating chamber from the cooling chamber based on a refrigerating chamber temperature sensor, and the cooling air supplied from the cooling chamber to the freezing chamber is stored in the freezing chamber. A freezer compartment damper controlled based on a temperature sensor; and a compressor whose operation is controlled based on the freezer temperature sensor, wherein the compressor is open when the refrigerator compartment damper is open and the freezer compartment damper is open. When stopped, the blower is operated for a predetermined time after the compressor stops, with the freezer damper closed and the refrigerator compartment damper opened.

これにより、圧縮機停止中に冷却器の冷熱を有効利用でき、冷凍室への熱影響を抑えて冷蔵室を効率的に冷却できる。   Thereby, the cooler of the cooler can be effectively utilized while the compressor is stopped, and the refrigerator can be efficiently cooled while suppressing the influence of heat on the freezer.

本発明の冷蔵庫は、冷蔵室ダンパ開、かつ冷凍室ダンパ開状態で圧縮機が停止した場合、圧縮機停止後の所定時間、冷凍室ダンパ閉で冷蔵室ダンパを開状態として送風機を運転することにより、圧縮機停止中に冷却器の冷熱を有効利用でき、冷凍室への熱影響を抑えて冷蔵室を効率的に冷却でき、省エネ性の高い冷蔵庫を提供することができる。   The refrigerator of the present invention operates the blower with the refrigerator compartment damper opened and the refrigerator compartment damper closed for a predetermined time after the compressor stops when the compressor is stopped with the refrigerator compartment damper opened and the refrigerator compartment damper opened. As a result, it is possible to effectively use the cold energy of the cooler while the compressor is stopped, to efficiently cool the refrigerating room while suppressing the heat effect on the freezing room, and to provide a refrigerator with high energy savings.

本発明の実施の形態1における冷蔵庫の正面図Front view of the refrigerator in Embodiment 1 of the present invention 同冷蔵庫の内部を示す正面図Front view showing the inside of the refrigerator 同冷蔵庫の断面図Cross section of the refrigerator 同冷蔵庫の冷気流れを説明する説明図Explanatory drawing explaining the cold air flow of the refrigerator 同冷蔵庫の冷凍室を示す正面図Front view showing the freezer of the refrigerator 同冷蔵庫の冷却室を示す断面図Sectional drawing which shows the cooling chamber of the refrigerator 同冷蔵庫の野菜室ダクトと冷蔵室戻りダクトを示す断面図Sectional view showing vegetable compartment duct and refrigerator compartment return duct of the refrigerator 同冷蔵庫の冷却室部分を示す分解斜視図An exploded perspective view showing a cooling chamber portion of the refrigerator 同冷蔵庫の冷却室部分を冷却室側から見た分解斜視図The exploded perspective view which looked at the cooling room part of the refrigerator from the cooling room side 同冷蔵庫の冷却室形成板を一部残して冷却室を冷却室側から見た斜視図The perspective view which looked at the cooling chamber from the cooling chamber side, leaving a part of the cooling chamber forming plate of the refrigerator 同冷蔵庫の冷却室形成板と野菜室ダクトとの関係を冷凍室側から見て示す正面図Front view showing the relationship between the cooling chamber forming plate and the vegetable compartment duct of the refrigerator as viewed from the freezer compartment side 同冷蔵庫の冷却室形成板と野菜室ダクトとの関係を冷凍室側から見て示す斜視図The perspective view which shows the relationship between the cooling chamber formation board and vegetable compartment duct of the refrigerator seeing from the freezer compartment side 同冷蔵庫の冷蔵室を示す斜視図Perspective view showing the refrigerator compartment of the refrigerator 同冷蔵庫の冷蔵室を示す断面図Sectional drawing which shows the refrigerator compartment of the refrigerator 図14のA部と、B部と、C部の水平断面を模式的に示した図The figure which showed typically the horizontal cross section of the A section of FIG. 14, the B section, and the C section. 同冷蔵庫の冷蔵室ダクトの水平断面図Horizontal sectional view of the refrigerator compartment duct of the refrigerator 同冷蔵庫の冷蔵室ダクトの吐出口を示す説明図Explanatory drawing which shows the discharge port of the refrigerator compartment duct of the refrigerator 同冷蔵庫の冷蔵室を示す要部拡大断面図The principal part expanded sectional view which shows the refrigerator compartment of the refrigerator 同冷蔵庫の冷蔵室内部を示す正面図Front view showing the inside of the refrigerator in the refrigerator 同冷蔵庫の冷蔵室内部の要部を示す拡大正面図The enlarged front view which shows the principal part of the refrigerator compartment inside the refrigerator 同冷蔵庫の貯蔵室を示す分解斜視図An exploded perspective view showing a storage room of the refrigerator 同冷蔵庫の貯蔵室内におけるパーシャル室の後方部を背部から見た斜視図The perspective view which looked at the rear part of the partial room in the storage room of the refrigerator from the back 同冷蔵庫の貯蔵室内におけるパーシャル室の後方部を背部から見た拡大斜視図The enlarged perspective view which looked at the rear part of the partial room in the storage room of the refrigerator from the back 同冷蔵庫の貯蔵室内におけるパーシャル室の後方部を正面寄り背部から見た拡大斜視図The enlarged perspective view which looked at the rear part of the partial room in the storage room of the refrigerator from the front side back part 同冷蔵庫の貯蔵室内におけるパーシャル室の後方部の脱臭ユニット装着部を示す拡大側面図The expanded side view which shows the deodorizing unit mounting part of the rear part of the partial chamber in the storage room of the refrigerator 同冷蔵庫の貯蔵室内におけるパーシャル室の後方部の脱臭ユニット装着部を示す拡大斜視図The expansion perspective view which shows the deodorizing unit mounting part of the rear part of the partial chamber in the storage room of the refrigerator 同冷蔵庫の冷却器を取り外して冷却室を背部から見た斜視図The perspective view which removed the cooler of the refrigerator and looked at the cooling room from the back 同冷蔵庫の冷却器を取り外して冷却室を背部から見た正面図Front view of the refrigerator seen from the back with the refrigerator cooler removed 同冷蔵庫の冷凍室の背面板を示す正面図Front view showing the back plate of the freezer compartment of the refrigerator 同冷蔵庫の冷却室構成部品の分解斜視図Disassembled perspective view of cooling chamber components of the refrigerator 同冷蔵庫の冷却室を前方ななめ情報から見た斜視図The perspective view which looked at the cooling room of the refrigerator from the front lick information 同冷蔵庫の冷却室の要部を示す拡大断面図The expanded sectional view which shows the principal part of the cooling chamber of the refrigerator 同冷蔵庫の冷却室の要部を示す他の例の拡大断面図The expanded sectional view of the other example which shows the principal part of the cooling chamber of the refrigerator (a)同冷蔵庫の冷凍室ダンパを示す斜視図、(b)同冷凍室ダンパの断面図(A) The perspective view which shows the freezer compartment damper of the refrigerator, (b) Sectional drawing of the freezer compartment damper 本実施の形態の冷蔵庫の制御ブロック図Control block diagram of refrigerator of this embodiment 本実施の形態の冷蔵庫の冷却システムの基本制御を示すフローチャートThe flowchart which shows the basic control of the cooling system of the refrigerator of this Embodiment 本実施の形態の冷蔵庫の冷却システムのダンパ開度制御のフローチャートFlow chart of damper opening control of refrigerator cooling system of the present embodiment 本実施の形態の冷蔵庫の冷却システムのダンパ開度制御のフローチャートFlow chart of damper opening control of refrigerator cooling system of the present embodiment 本実施の形態の冷蔵庫の冷却システムのオフサイクル制御を示すフローチャートThe flowchart which shows the off cycle control of the cooling system of the refrigerator of this Embodiment 本実施の形態の冷蔵庫の冷却システムのオフサイクル制御を示すタイミングチャートTiming chart showing off-cycle control of the refrigerator cooling system of the present embodiment 本実施の形態の冷蔵庫の冷却システムのデフロスト制御を示すフローチャートThe flowchart which shows the defrost control of the cooling system of the refrigerator of this Embodiment 本実施の形態の冷蔵庫の冷却システムのデフロスト制御を示すタイミングチャートTiming chart showing the defrost control of the refrigerator cooling system of the present embodiment 本実施の形態の冷蔵庫の野菜室の湿度センサによる野菜室ヒータの制御を示すフローチャートThe flowchart which shows control of the vegetable compartment heater by the humidity sensor of the vegetable compartment of the refrigerator of this Embodiment 本実施の形態の冷蔵庫の野菜室の湿度センサによる野菜室ヒータの外気温度と通電率の関係を示すグラフThe graph which shows the relationship between the external temperature of the vegetable compartment heater by the humidity sensor of the vegetable compartment of the refrigerator of this Embodiment, and an electricity supply rate 本実施の形態の冷蔵庫における冷蔵室内の収納量の検知結果に基づいて行なう冷却システム制御を示すフローチャートThe flowchart which shows the cooling system control performed based on the detection result of the storage amount in the refrigerator compartment in the refrigerator of this Embodiment

請求項1に記載の発明は、冷蔵室と冷凍室と、前記冷凍室の後方に配置され、前記冷蔵室と前記冷凍室とに冷気を供給する冷却器と送風機とが収納された冷却室と、前記冷却室から前記冷蔵室に供給される冷気を冷蔵室温度センサに基づいて制御する冷蔵室ダンパと、前記冷却室から前記冷凍室に供給される冷気を冷凍室温度センサに基づいて制御する冷凍室ダンパと、前記冷凍室温度センサに基づいて運転が制御される圧縮機と、を備え、前記冷蔵室ダンパ開、かつ前記冷凍室ダンパ開状態で前記圧縮機が停止した場合、前記圧縮機停止後の所定時間、前記冷凍室ダンパ閉で前記冷蔵室ダンパを開状態として前記送風機を運転するものであり、圧縮機停止中に冷却器の冷熱を有効利用でき、冷凍室への熱影響を抑えて冷蔵室を効率的に冷却でき、省エネ性の高い冷蔵庫を提供することができる。   The invention according to claim 1 is a refrigerating room, a freezing room, a cooling room which is disposed behind the freezing room and which supplies a cooler and a blower for supplying cold air to the refrigerating room and the freezing room; A refrigerating room damper for controlling the cold air supplied from the cooling room to the refrigerating room based on a refrigerating room temperature sensor, and a cold air supplied from the cooling room to the freezing room based on a freezer temperature sensor. A freezer compartment damper and a compressor whose operation is controlled based on the freezer compartment temperature sensor, and when the compressor is stopped when the refrigerator compartment damper is open and the freezer compartment damper is open, the compressor The blower is operated with the freezer damper closed and the refrigerator colder damper open for a predetermined time after the stop, and the cooler cooler can be used effectively while the compressor is stopped, and the heat effect on the freezer can be reduced. Efficiently cools the refrigerator compartment Come, it is possible to provide a highly energy-efficient refrigerator.

請求項2に記載の発明は、請求項1に記載の発明において、前記圧縮機停止後の所定時間は、前記冷蔵室温度センサが前記冷蔵室ダンパを閉動作させる温度に達するまでとしたものであり、圧縮機停止中の冷却器の冷熱を適正に有効利用することができる。   According to a second aspect of the present invention, in the first aspect of the present invention, the predetermined time after the compressor is stopped is a time until the cold room temperature sensor reaches a temperature at which the cold room damper is closed. Yes, it is possible to effectively use the cool heat of the cooler while the compressor is stopped.

請求項3に記載の発明は、請求項1または2に記載の発明において、前記圧縮機停止後の所定時間、前記冷凍室ダンパ閉で前記冷蔵室ダンパを開状態として運転する前記送風機の回転数は、前記圧縮機運転中の回転数より小さくしたものであり、圧縮機停止中に冷却器の冷熱をさらに有効利用でき、冷凍室への熱影響を抑えて冷蔵室を効率的に冷却し、省エネ性の高い冷蔵庫を提供することができる。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the rotational speed of the blower that operates with the freezer compartment damper closed and the refrigerator compartment damper open for a predetermined time after the compressor is stopped. Is smaller than the number of revolutions during the operation of the compressor, can further effectively use the cooler of the cooler while the compressor is stopped, efficiently cool the refrigerator compartment by suppressing the heat effect on the freezer, A refrigerator with high energy saving can be provided.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1〜図4は冷蔵庫の全体構成を説明する図、図5〜図12は冷却室から野菜室への冷気供給構成を説明する図、図13〜図26は冷蔵室構成を説明する図、図27〜図34は冷凍室から冷却室に跨る部分の構成を説明する図である。
(Embodiment 1)
1-4 is a figure explaining the whole refrigerator structure, FIGS. 5-12 is a figure explaining the cold-air supply structure from a cooling room to a vegetable room, FIGS. 13-26 is a figure explaining a refrigerator compartment structure, FIG. 27 to FIG. 34 are diagrams for explaining a configuration of a portion extending from the freezing chamber to the cooling chamber.

<1−1.冷蔵庫の全体構成>
まず図1〜図4を用いて冷蔵庫の全体構成を説明する。
<1-1. Overall configuration of refrigerator>
First, the whole structure of a refrigerator is demonstrated using FIGS.

図1〜図4において、本実施の形態に係る冷蔵庫は、前方を開口した冷蔵庫本体1を備え、この冷蔵庫本体1は金属製の外箱2と、硬質樹脂製の内箱3と、前記外箱2および内箱3の間に発泡充填された発泡断熱材4とで構成してあり、仕切板5、6等によって複数の貯蔵室が仕切形成してある。また、前記冷蔵庫本体1の各貯蔵室は冷蔵庫本体1と同様の断熱構成を採用した回動式の扉7或いは引出し式の扉8、9、10、11で開閉自在としてある。   1 to 4, the refrigerator according to the present embodiment includes a refrigerator body 1 having an opening at the front. The refrigerator body 1 includes a metal outer box 2, a hard resin inner box 3, and the outside. It is comprised with the foam heat insulating material 4 filled with foam between the box 2 and the inner box 3, and the several storage chamber is partition-formed by the partition plates 5, 6 grade | etc.,. Each storage chamber of the refrigerator main body 1 is openable and closable by a rotary door 7 or drawer type doors 8, 9, 10, 11 adopting the same heat insulation structure as the refrigerator main body 1.

冷蔵庫本体1内に形成した貯蔵室は、最上部の冷蔵室14と、冷蔵室14の下に設けた温度帯切り替え可能な切替室15と、切替室15の横に設けた製氷室16と、切替室15および製氷室16と最下部の野菜室17との間に設けた冷凍室18で構成している。そして、前記冷蔵室14には複数の棚板20が設けてあり、その下部には冷却温度帯の異なるパーシャル室21とチルド室22が上下二段に重ねて設けてある。   The storage room formed in the refrigerator main body 1 includes an uppermost refrigeration room 14, a switching room 15 provided under the refrigeration room 14 and capable of switching a temperature zone, an ice making room 16 provided beside the switching room 15, The freezing room 18 provided between the switching room 15 and the ice making room 16 and the lowermost vegetable room 17 is comprised. The refrigerating chamber 14 is provided with a plurality of shelf plates 20, and a lower portion thereof is provided with a partial chamber 21 and a chilled chamber 22 having different cooling temperature zones, which are stacked in two upper and lower stages.

上記冷蔵室14は、冷蔵保存するための貯蔵室で、凍らない程度の低い温度、具体的には、通常1〜5℃に設定され冷却される。また、冷蔵室内に設けたパーシャル室21は微凍結保存に適した−2〜−3℃に設定され、チルド室22は冷蔵室14よりも低くパーシャル室21よりは高めの1℃前後の温度に設定され冷却される。   The refrigerator compartment 14 is a storage compartment for refrigerated storage, and is cooled at a low temperature that does not freeze, specifically, usually set to 1 to 5 ° C. Further, the partial chamber 21 provided in the refrigerator compartment is set to −2 to −3 ° C. suitable for micro-freezing preservation, and the chilled chamber 22 is set to a temperature around 1 ° C. lower than the refrigerator compartment 14 and higher than the partial chamber 21. Set and cooled.

野菜室17は、冷蔵室14と同等もしくは若干高く温度設定される貯蔵室で、具体的には、2〜7℃に設定され冷却される。この野菜室17は野菜等の収納食品から発せられる水分により高湿度となるため、局所的に冷えすぎると結露することがある。そのため、比較的高い温度に設定することで冷却量を少なくし、局所的な冷えすぎによる結露発生を抑制している。   The vegetable room 17 is a storage room whose temperature is set equal to or slightly higher than that of the refrigerated room 14, and is specifically set to 2 to 7 ° C. and cooled. Since the vegetable compartment 17 becomes high humidity due to moisture generated from stored food such as vegetables, condensation may occur if it is too cold locally. For this reason, the amount of cooling is reduced by setting the temperature relatively high, and the occurrence of condensation due to local overcooling is suppressed.

冷凍室18は、冷凍温度帯に設定される貯蔵室で、具体的には、通常−22〜−18℃に設定され冷却されるが、冷凍保存状態向上のため、例えば−30℃や−25℃などの低温に設定され冷却されることもある。   The freezing room 18 is a storage room set in a freezing temperature zone, specifically, normally set at −22 to −18 ° C. and cooled, but for example, −30 ° C. and −25 for improving the frozen storage state. It may be cooled at a low temperature such as ° C.

切替室15は、庫内の温度が変更可能な貯蔵室であり、用途に応じて冷蔵温度帯から冷凍温度帯まで切り換えることができるようになっている。   The switching chamber 15 is a storage chamber in which the temperature in the warehouse can be changed, and can be switched from a refrigeration temperature zone to a freezing temperature zone according to the application.

一方、前記冷凍室18の背面には冷却室23が設けてあり、この冷却室23には冷気を生成する冷却器24と、冷気を前記各室に供給する冷却ファン25とが設置してある。そして更に冷却器24の下方にはガラス管ヒータ等で構成した除霜手段26(以下、ガラス管ヒータと称す)が設けてある。   On the other hand, a cooling chamber 23 is provided on the back surface of the freezing chamber 18, and a cooling device 24 that generates cold air and a cooling fan 25 that supplies the cold air to the chambers are installed in the cooling chamber 23. . Further, a defrosting means 26 (hereinafter referred to as a glass tube heater) constituted by a glass tube heater or the like is provided below the cooler 24.

冷却器24は、圧縮機27と、コンデンサ(図示せず)と、放熱用の放熱パイプ(図示せず)と、キャピラリーチューブ(図示せず)とを環状に接続して冷凍サイクルを構成しており、圧縮機27によって圧縮された冷媒の循環によって冷却を行う。   The cooler 24 includes a compressor 27, a condenser (not shown), a heat radiating pipe (not shown), and a capillary tube (not shown) connected in a ring shape to form a refrigeration cycle. Then, cooling is performed by circulation of the refrigerant compressed by the compressor 27.

また、冷却ファン25は冷却器24の上方に設けてあり、その下流側に連なる冷蔵室ダクト28、冷凍室ダクト29、野菜室ダクト30を介して冷蔵室14、冷凍室18、野菜室17等に冷気を供給し、これら各室を冷却するようになっている。   Moreover, the cooling fan 25 is provided above the cooler 24, and the refrigerator compartment 14, the freezer compartment 29, the vegetable compartment duct 30, and the refrigerator compartment 14, the freezer compartment 18, the vegetable compartment 17, etc. which are connected to the downstream side thereof. Cooling air is supplied to each of these chambers to cool them.

以下、上記冷却室23、冷蔵室14、冷凍室18、野菜室17の各室及びその冷却の構成について説明していく。   Hereinafter, the cooling chamber 23, the refrigerator compartment 14, the freezing compartment 18, the vegetable compartment 17, and the cooling configuration thereof will be described.

<1−2.冷却室と冷気供給構成>
図3と図5〜図12を用いて冷却室と冷気供給構成について説明する。
<1-2. Cooling chamber and cool air supply configuration>
The cooling chamber and the cold air supply configuration will be described with reference to FIGS. 3 and 5 to 12.

冷却室23は冷凍室18の背面にあって図6に示すよう冷却室形成板31と内箱3とによって形成してあり、冷却室形成板31の上部に冷却ファン25を装着することにより冷却器24上方に冷却ファン25を位置させてある。また、冷却室形成板31の前面側には冷凍室背面板32を装着して冷却ファン25の下流側を覆い冷却室23との間に冷却ファン下流側と連通する冷凍室ダクト29を形成している。   The cooling chamber 23 is on the back of the freezing chamber 18 and is formed by the cooling chamber forming plate 31 and the inner box 3 as shown in FIG. 6, and cooling is performed by mounting the cooling fan 25 on the upper portion of the cooling chamber forming plate 31. A cooling fan 25 is positioned above the vessel 24. A freezer compartment back plate 32 is mounted on the front side of the cooling chamber forming plate 31 to cover the downstream side of the cooling fan 25 and to form a freezer compartment duct 29 communicating with the cooling fan downstream side between the cooling chamber 23. ing.

そして、上記冷却ファン25の下流側には冷蔵室14の冷蔵室ダクト28と、野菜室1
7の野菜室ダクト30が、それぞれ異なる位置で別個に独立した形で接続してある。詳述すると、前記冷却ファン下流側の上部の上面は図4等に示すように冷蔵室14と冷凍室18を仕切る仕切板5に設けた第1冷気供給口33を介して冷蔵室ダクト28につながっており、冷却ファン下流側の上部の側方には図10、図11、図12にも示すように第2冷気供給口34を設けて野菜室ダクト30が接続してある。すなわち、上記冷蔵室ダクト28と野菜室ダクト30は冷却室23に対し、それぞれ異なる位置で別個に独立した形で接続してある。そして、冷却器24で生成した冷気を冷却ファン25によって前記第1冷気供給口33と第2冷気供給口34に別個に独立した形で供給し、冷蔵室ダクト28と野菜室ダクト30へと供給する。
And in the downstream of the said cooling fan 25, the refrigerator compartment duct 28 of the refrigerator compartment 14 and the vegetable compartment 1
Seven vegetable compartment ducts 30 are individually and independently connected at different positions. More specifically, the upper surface of the upper part on the downstream side of the cooling fan is connected to the refrigerator compartment duct 28 via the first cold air supply port 33 provided in the partition plate 5 that partitions the refrigerator compartment 14 and the freezer compartment 18 as shown in FIG. As shown in FIGS. 10, 11 and 12, the second cold air supply port 34 is provided on the side of the upper part downstream of the cooling fan, and the vegetable compartment duct 30 is connected thereto. That is, the refrigerator compartment duct 28 and the vegetable compartment duct 30 are individually connected to the cooling compartment 23 at different positions. Then, the cold air generated by the cooler 24 is supplied to the first cold air supply port 33 and the second cold air supply port 34 separately by the cooling fan 25 and supplied to the refrigerator compartment duct 28 and the vegetable compartment duct 30. To do.

なお、上記冷却器24の下方には図6に示すように冷却器24ガラス管ヒータ26を覆う傘状断面のヒータカバー35が設置してあり、冷却室23の底面には除霜水を外部に排出する排水口36が設けてある。   A heater cover 35 having an umbrella-like cross section covering the cooler 24 glass tube heater 26 is installed below the cooler 24 as shown in FIG. A drain outlet 36 for discharging is provided.

<1−3.冷蔵室とその冷却構成>
次に図3と図13〜図26を用いて冷蔵室とその冷却構成を説明する。
<1-3. Cold room and its cooling configuration>
Next, the refrigerator compartment and its cooling configuration will be described with reference to FIG. 3 and FIGS.

冷蔵室14は、冷蔵庫本体1の最上部に位置していて図3、図14に示すように複数の棚板20を有しており、背面に前記した冷蔵室ダクト28が設けてある。   The refrigerator compartment 14 is located in the uppermost part of the refrigerator main body 1 and has a plurality of shelf boards 20 as shown in FIGS. 3 and 14, and the refrigerator compartment duct 28 described above is provided on the back surface.

冷蔵室ダクト28は図21に示すように発泡スチロールからなるダクト部材28aの冷蔵室側表面を樹脂製のダクトカバー28bで覆って構成してあり、冷蔵室14と冷凍室18との間を仕切る仕切板5の第1冷気供給口33を覆う如く冷蔵室背面に装着して冷却室23と連通させてある。そして、上記第1冷気供給口33には冷蔵室ダンパ37を組み込み、この冷蔵室ダンパ37の開閉によって冷却室23から冷蔵室14への冷気供給量を制御するようになっている。なお、この冷蔵室ダンパ37はダンパ固定枠38によって第1冷気供給口33に固定してある。   As shown in FIG. 21, the refrigerator compartment duct 28 is configured by covering the refrigerator compartment side surface of a duct member 28a made of foamed polystyrene with a resin duct cover 28b, and partitioning the refrigerator compartment 14 and the freezer compartment 18 from each other. The first cold air supply port 33 of the plate 5 is attached to the back of the refrigerator compartment so as to cover the first cold air supply port 33 and communicated with the cooling chamber 23. A refrigeration room damper 37 is incorporated in the first cold air supply port 33, and the amount of cold air supplied from the cooling chamber 23 to the refrigeration room 14 is controlled by opening and closing the refrigeration room damper 37. The refrigerator compartment damper 37 is fixed to the first cold air supply port 33 by a damper fixing frame 38.

上記冷蔵室ダンパ37は冷蔵室14への冷気供給量を制御する冷蔵室用ダンパ部39とパーシャル室21への冷気供給量を制御するパーシャル室用ダンパ部40とを有する二連式ダンパで構成してあり、冷蔵ダンパ駆動用モータユニット41内の冷蔵及びパーシャル用の1つのモータ(図示せず)によって駆動する構成となっている。   The refrigerating room damper 37 is a double damper having a refrigerating room damper part 39 for controlling the amount of cold air supplied to the refrigerating room 14 and a partial room damper part 40 for controlling the amount of cold air supplied to the partial room 21. It is configured to be driven by one refrigeration and partial motor (not shown) in the refrigeration damper drive motor unit 41.

一方、上記冷蔵室14の下部に設けたパーシャル室21とチルド室22のうち、上方に位置するチルド室22は、図14、図18に示すように最下段の棚板となる天井板43とその下方に位置するパーシャル室21との間の冷蔵室横幅一杯に形成してあり、チルド室容器44が出し入れ自在に設けてある。そして、上記チルド室22の後方には冷蔵室ダクト28の冷蔵室用ダンパ部39下流側に連通する冷気入口22aが設けてあり、この冷気入口22aから冷気を取り込んで冷却するようになっている。   On the other hand, among the partial chamber 21 and the chilled chamber 22 provided in the lower part of the refrigerator compartment 14, the chilled chamber 22 positioned above is provided with a ceiling plate 43 serving as a bottom shelf as shown in FIGS. The chilled room container 44 is formed so as to be fully inserted into and out of the refrigerating room between the partial room 21 located below the chilled room. A chilled air inlet 22a is provided behind the chilled chamber 22 so as to communicate with the downstream side of the refrigerated room damper portion 39 of the refrigerated chamber duct 28. The chilled air inlet 22a is used to cool the chilled air inlet 22a. .

上記チルド室22は図18に示すように天井板43の後部にスリット状の冷気戻り口(チルド側)45を設けるとともに、チルド室容器44の後方部に前記冷気戻り口(チルド側)45を介して冷蔵室14とつながる冷気戻し通路部(チルド側)46が設けてある。更に、前記チルド室容器44の前端部には図14に示すようにチルド室扉兼把手部47の下方との間に冷蔵室14内とつながる開口部48を設けて、冷蔵室14内の冷気がチルド室容器44から溢れ出るチルド室冷却後の冷気とともにチルド室容器44外周の間隙(図示せず)を通って、前記冷気戻し通路部(チルド側)46へと流れるように構成してある。   As shown in FIG. 18, the chilled chamber 22 is provided with a slit-like cold air return port (chilled side) 45 at the rear part of the ceiling plate 43, and the cold air return port (chilled side) 45 at the rear part of the chilled chamber container 44. A cold air return passage portion (chilled side) 46 connected to the refrigerator compartment 14 is provided. Further, an opening 48 connected to the inside of the refrigerator compartment 14 is provided at the front end of the chilled compartment container 44 between the lower portion of the chilled compartment door / handle portion 47 as shown in FIG. Flows through the gap (not shown) on the outer periphery of the chilled chamber container 44 and flows into the cold return passage section (chilled side) 46 together with the cold air after cooling the chilled chamber overflowing from the chilled chamber container 44. .

また、チルド室22はそのチルド室容器44の下方であるパーシャル室21の天井板部
材50に温度調節用ヒータ49を敷設し、下方に位置するパーシャル室21からの冷輻射によりチルド室温度が設定温度より低くなると温度調節用ヒータ49に通電して設定温度に維持するように構成してある。なお、上記温度調節用ヒータ49はチルド室22内の適所に設けたチルド室温度センサ(図示せず)によって制御する構成としてある。
In the chilled chamber 22, a temperature adjusting heater 49 is laid on the ceiling plate member 50 of the partial chamber 21 below the chilled chamber container 44, and the chilled chamber temperature is set by cold radiation from the partial chamber 21 located below. When the temperature is lower than the temperature, the temperature adjusting heater 49 is energized and maintained at the set temperature. The temperature adjusting heater 49 is controlled by a chilled chamber temperature sensor (not shown) provided at an appropriate position in the chilled chamber 22.

一方、チルド室22の下方に位置するパーシャル室21は、冷蔵庫本体1の内箱内壁面と貯水タンク室形成板(図示せず)と前記チルド室22の底面ともなる天井板部材50とで貯水タンク室横に区画形成してあり、前面開口部分はパーシャル室扉51で開閉自在としてある。そして、パーシャル室21の内部にパーシャル室容器52が出し入れ自在に設けてある。   On the other hand, the partial chamber 21 located below the chilled chamber 22 stores water by an inner wall surface of the inner box of the refrigerator body 1, a water tank chamber forming plate (not shown), and a ceiling plate member 50 that also serves as a bottom surface of the chilled chamber 22. A compartment is formed on the side of the tank chamber, and the front opening is openable and closable by a partial chamber door 51. A partial chamber container 52 is provided inside the partial chamber 21 so as to be freely inserted and removed.

上記パーシャル室21を構成する天井板部材50には発泡スチロール等からなる断熱材53が組み込んであり、この断熱材53に前記した冷蔵室ダクト28のパーシャル室用ダンパ部40下流側に連通するパーシャル冷気通路54を形成してパーシャル室21内に冷気を供給し冷却する構成としてある。   A heat insulating material 53 made of foamed polystyrene or the like is incorporated in the ceiling plate member 50 constituting the partial chamber 21, and the partial cold air communicating with the heat insulating material 53 on the downstream side of the partial chamber damper portion 40 of the refrigerator compartment duct 28 described above. A passage 54 is formed to supply cold air into the partial chamber 21 for cooling.

また、上記パーシャル室21は、図18及び図22〜図24に示すように前記チルド室22と同様、その天井板部材50の後部にスリット状の冷気戻り口(パーシャル側)55を設けるとともに、パーシャル室容器52の後方に空間部を設けて冷気戻り通路部(パーシャル側)56が形成してあり、前記チルド室22後方の冷気戻り通路部(チルド側)46内の冷蔵室冷気とチルド室冷気が冷気戻り通路部(パーシャル側)56へと流れるようにしてある。   Further, as shown in FIGS. 18 and 22 to 24, the partial chamber 21 is provided with a slit-like cold air return port (partial side) 55 at the rear portion of the ceiling plate member 50, as shown in the chilled chamber 22. A cold air return passage portion (partial side) 56 is formed by providing a space behind the partial chamber container 52, and the refrigeration chamber cold air and the chilled chamber in the cold air return passage portion (chilled side) 46 behind the chilled chamber 22. The cool air flows to the cool air return passage portion (partial side) 56.

そして更に、上記パーシャル室21はその底面ともなる仕切板5の後部に冷気戻り通路部(パーシャル側)56と連通する冷気合流戻り口57を設け、この冷気合流戻り口57に冷蔵室戻りダクト58を接続して、前記冷蔵室14、チルド室22を冷却した冷気がパーシャル室容器52から溢れ出るパーシャル室冷却冷気と合流して冷却室23に戻るように構成してある。   Further, the partial chamber 21 is provided with a cold air confluence return port 57 communicating with the cold air return passage portion (partial side) 56 at the rear portion of the partition plate 5 serving as a bottom surface thereof, and the cold air confluence return port 57 is provided with a cold room return duct 58. Are connected so that the cold air that has cooled the refrigerator compartment 14 and the chilled chamber 22 merges with the partial chamber cooling cold air that overflows from the partial chamber container 52 and returns to the cooling chamber 23.

すなわち、冷蔵室14、チルド室22、パーシャル室21の冷気を冷却室23に戻すためのダクト部を、前記チルド室22とパーシャル室21の後方空間を利用して形成した形としてある。   That is, the duct part for returning the cold air in the refrigerator compartment 14, the chilled compartment 22, and the partial compartment 21 to the cooling compartment 23 is formed using the rear space of the chilled compartment 22 and the partial compartment 21.

なお、上記冷気戻り口(チルド側)45と冷気戻り口(パーシャル側)55とは上下に対向する位置に設け、冷気戻り口(パーシャル側)55と冷気合流戻り口57は位置ずれした位置に設けてある。   The cold air return port (chilled side) 45 and the cold air return port (partial side) 55 are provided at positions vertically opposite to each other, and the cold air return port (partial side) 55 and the cold air merging return port 57 are shifted from each other. It is provided.

また、上記冷気を冷却室23へと戻す冷蔵室戻りダクト58は図4や図27、図28等に示すように冷却室23の側部(横)に設置し、その下端側部を冷却室23の下部側面に開口させることにより冷却室23に戻すように構成してある。この冷蔵室戻りダクト58はその後面に設けた凹状溝58bを内箱3の背面内壁面に圧接させて当該背面壁内面との間でダクト通路部を形成している。   Further, the refrigeration chamber return duct 58 for returning the cold air to the cooling chamber 23 is installed on the side (side) of the cooling chamber 23 as shown in FIG. 4, FIG. 27, FIG. It is configured to return to the cooling chamber 23 by opening it in the lower side surface of 23. The refrigerating chamber return duct 58 forms a duct passage portion with the inner surface of the rear wall by pressing a concave groove 58b provided on the rear surface thereof against the inner wall surface of the rear surface of the inner box 3.

更にまた、前記パーシャル室21には上記冷気戻り通路部(パーシャル側)56の冷気戻り口(パーシャル側)55と冷気合流戻り口57との間の部分に、図19、図20に示すように冷蔵室14の温度を検出して冷蔵室用ダンパ部39を制御する冷蔵室温度センサ59が設けてある。そして、上記冷蔵室温度センサ59と冷蔵室ダクト28を挟んで反対側の対角部分にパーシャル室21の温度を検知してパーシャル室用ダンパ部40を制御するパーシャル室温度センサ60が設けてある。   Furthermore, in the partial chamber 21, the portion between the cold air return port (partial side) 55 and the cold air merging return port 57 of the cold air return passage portion (partial side) 56, as shown in FIG. 19 and FIG. A refrigerator temperature sensor 59 for detecting the temperature of the refrigerator compartment 14 to control the refrigerator compartment 39 is provided. A partial chamber temperature sensor 60 for detecting the temperature of the partial chamber 21 and controlling the partial chamber damper section 40 is provided at the opposite diagonal portion across the refrigerator compartment temperature sensor 59 and the refrigerator compartment duct 28. .

更に、前記冷気戻り通路部(パーシャル側)56の冷気戻り口(パーシャル側)55と冷気合流戻り口57との間には図25、図26に示すように冷気の流れに沿う如く脱臭ユニット61が着脱自在に設けてある。   Further, a deodorizing unit 61 is provided between the cold air return port (partial side) 55 of the cold air return passage portion (partial side) 56 and the cold air merging return port 57 so as to follow the flow of the cold air as shown in FIGS. Is detachably provided.

なお、上記脱臭ユニット61および冷蔵室温度センサ59およびパーシャル室温度センサ60は、何れも冷蔵室戻りダクト58を構成するダクトカバー28bの一部に設けた装着部28bb(冷蔵室温度センサ59およびパーシャル室温度センサ60用の装着部は図示せず)に取付けて一体化してある。   The deodorizing unit 61, the refrigerating room temperature sensor 59, and the partial room temperature sensor 60 are all equipped with a mounting portion 28bb (a refrigerating room temperature sensor 59 and a partial room temperature sensor 59) provided in a part of the duct cover 28b constituting the refrigerating room return duct 58. A mounting portion for the room temperature sensor 60 is attached to and integrated with a chamber temperature sensor 60 (not shown).

また、図15は、図14の冷蔵室ダクト28における、A部(冷蔵室ダンパ部)水平断面図と、B部(パーシャル室背面部)水平断面図と、C部(冷蔵室ダクト部)水平断面図とを模式的に示したものである。   15 is a horizontal cross-sectional view of part A (refrigerating room damper part), a horizontal part of B part (back of the partial room), and a horizontal part of C (refrigerating room duct part) in the refrigerating room duct 28 of FIG. A cross-sectional view is schematically shown.

図15において、冷蔵室ダクト28におけるダクト部材28aの長辺Wと短辺Dの比で表されるW/D(以下、アスペクト比と言う)は、A部アスペクト比(=W1/D1)、B部アスペクト比(=W2/D2)、C部アスペクト比(=W3/D3)とすると、A部アスペクト比<B部アスペクト比<C部アスペクト比の関係を有している。   In FIG. 15, W / D (hereinafter referred to as aspect ratio) represented by the ratio of the long side W and the short side D of the duct member 28a in the refrigerator compartment duct 28 is an A portion aspect ratio (= W1 / D1), Assuming that the B part aspect ratio (= W2 / D2) and the C part aspect ratio (= W3 / D3), there is a relationship of A part aspect ratio <B part aspect ratio <C part aspect ratio.

また、図16は、冷蔵室ダクト28の水平断面図、図17は、冷蔵室ダクト28の吐出口を示す説明図である。   16 is a horizontal sectional view of the refrigerator compartment duct 28, and FIG. 17 is an explanatory view showing a discharge port of the refrigerator compartment duct 28. As shown in FIG.

図16、図17において、ダクト部材28aの冷蔵室側表面を覆うダクトカバー28bの左右両側部には左右に延出して一体形成された延出リブ28cを備えている。   16 and 17, the right and left side portions of the duct cover 28b covering the refrigerator compartment side surface of the duct member 28a are provided with extending ribs 28c that are integrally formed extending left and right.

延出リブ28cは奥面側に傾斜した傾斜面を備え、端部はさらに角度を大きくして奥側に延出している。延出リブ28cはユーザーが冷蔵室を前方から見た時に側面吐出口28dが直接見えない程度に延出している。   The extending rib 28c has an inclined surface inclined to the back surface side, and the end portion extends further to the back side with a larger angle. The extending rib 28c extends to such an extent that the side discharge port 28d is not directly visible when the user views the refrigerator compartment from the front.

また、側面吐出口28dの下面は冷気の流れに対して上方となる傾斜面を有している。   Further, the lower surface of the side discharge port 28d has an inclined surface that is upward with respect to the flow of cold air.

また、冷蔵室14内の各棚板20の前方で内箱3の側壁には凹部を有し、凹部内に照明であるLED照明80と閉扉時にLED照明80からの光の照度を検出する冷蔵室光センサ81とを備えた基板を埋設し、凹部を覆う透過性の照明カバーを備えている。   Moreover, the side wall of the inner box 3 has a recessed part in front of each shelf board 20 in the refrigerator compartment 14, and the refrigeration which detects the illumination intensity of the light from the LED illumination 80 at the time of closing and the LED illumination 80 which is illumination in a recessed part. A substrate including the room light sensor 81 is embedded, and a transmissive illumination cover is provided to cover the recess.

そして、閉扉時にLEDからの光の照度を検出する冷蔵室光センサ81の検出結果に基づいて、冷蔵庫の冷却システムを制御している。詳細は後述する。   And the cooling system of a refrigerator is controlled based on the detection result of the refrigerator compartment light sensor 81 which detects the illumination intensity of light from LED at the time of a door closing. Details will be described later.

<1−4.冷凍室とその冷却構成>
次に図2、図3と図24〜図31を用いて冷凍室とその冷却構成を説明する。
<1-4. Freezer room and its cooling configuration>
Next, the freezer compartment and its cooling configuration will be described with reference to FIGS. 2 and 3 and FIGS.

冷凍室18は冷蔵室14の下方で、かつ冷却室23の前方にあって、内部に下段容器62aとその上方に載置した上段容器62bとからなる冷凍室容器62が扉11の引出し開閉によって出し入れ自在なるように設けてある。そして、既に述べた通り冷却室23との間に冷凍室背面板32を配置し、この冷凍室背面板32と冷却室形成板31との間に冷却室23の冷却ファン下流側と連通する冷凍室ダクト29を形成している。   The freezer compartment 18 is below the refrigerator compartment 14 and in front of the cooler compartment 23, and the freezer compartment container 62, which is composed of a lower container 62a and an upper container 62b placed thereabove, is opened and closed by the drawer 11 being opened and closed. It is provided so that it can be inserted and removed freely. Then, as described above, the freezer compartment back plate 32 is disposed between the freezer compartment plate 23 and the freezer compartment back plate 32 and the cooler chamber forming plate 31 so as to communicate with the cooling fan downstream side of the cooler chamber 23. A chamber duct 29 is formed.

冷凍室背面板32には図24等に示すように上下複数段に亘って冷気吹出し口63が設けてあり、最上部の冷気吹出し口63は製氷室16および切替室15に冷気を供給し、中段の冷気吹出し口63は上記冷凍室容器62の上段容器62bに冷気を供給し、最下段の冷気吹出し口63は下段容器62aに冷気を供給するようになっている。   As shown in FIG. 24 and the like, the freezer compartment back plate 32 is provided with cold air outlets 63 in a plurality of upper and lower stages, and the uppermost cold air outlet 63 supplies cold air to the ice making chamber 16 and the switching chamber 15. The cold air outlet 63 in the middle stage supplies cold air to the upper container 62b of the freezer compartment 62, and the cold air outlet 63 in the lowermost stage supplies cold air to the lower container 62a.

また、上記冷凍室18は図24等に示すようにその冷凍室背面板32の下部に前記冷却室23の下部に連通する冷凍冷気戻り口64が設けてある。この冷凍冷気戻り口64は図29に示すように冷凍室側口枠部65と冷却室側口枠部66とからなっていて、これらの枠は垂線に対し上部にいくほど後方、すなわち冷却室23側に位置するように傾斜させてある。そして、上記冷凍冷気戻り口64にはその冷凍室側口枠部65にグリル67を装着し、冷却室側口枠部66には冷凍室ダンパ68が設けてある。   Further, as shown in FIG. 24 and the like, the freezing chamber 18 is provided with a freezing cold air return port 64 communicating with the lower portion of the cooling chamber 23 at the lower portion of the freezer rear plate 32. As shown in FIG. 29, the freezing / cooling air return port 64 is composed of a freezing chamber side opening frame portion 65 and a cooling chamber side opening frame portion 66. It is inclined so as to be located on the 23 side. The freezing / cooling air return port 64 is provided with a grill 67 on the freezer side opening frame portion 65, and a freezing chamber damper 68 is provided on the cooling chamber side opening frame portion 66.

冷凍室側口枠部65に設けたグリル67は、冷凍室18から冷却室23へと流れる冷気を整流するもので、その各グリル片69は冷却室側端部が上方に位置するように傾斜させ、かつ、下方のグリル片69になるほど前後長が長くなるようにして冷凍室18内の冷凍室容器62後面に沿う形としてある。   The grill 67 provided in the freezer compartment side frame 65 rectifies the cold air flowing from the freezer compartment 18 to the cooling compartment 23, and each grille piece 69 is inclined so that the end portion of the cooling compartment is located above. In addition, the length of the front and rear is increased as the lower grill piece 69 is formed, and the shape is along the rear face of the freezer compartment 62 in the freezer compartment 18.

一方、冷却室側口枠部66に設けた冷凍室ダンパ68は、冷凍室18に供給される冷気を開閉制御するもので、図31に示すように耐熱性樹脂、例えばポリフェニレンサルファイド樹脂(PPS樹脂)で形成したダンパ枠体70に同様の耐熱性樹脂で形成した複数のフラップ71、この例では三つのフラップ71を設けて構成してある。そして、上記冷凍室ダンパ68は各複数のフラップ71の冷却室側端部を軸支して図29に示すように冷凍室18とは反対の冷却室23側に開くように構成してあり、ダンパ枠体70の一端部に固定した冷凍ダンパ駆動用モータユニット72によって駆動する構成としてある。なお、図31において複数のフラップ71は実線の図番付与線のものが閉じたとき、破線図番付与線のものが開いた時を示している。   On the other hand, the freezer compartment damper 68 provided in the cooling chamber side opening frame portion 66 controls the opening and closing of the cool air supplied to the freezer compartment 18, and as shown in FIG. 31, a heat resistant resin such as polyphenylene sulfide resin (PPS resin). A plurality of flaps 71 formed of the same heat-resistant resin, in this example, three flaps 71 are provided on the damper frame 70 formed in (1). The freezer damper 68 is configured to pivot on the cooling chamber side end of each of the plurality of flaps 71 and open to the cooling chamber 23 side opposite to the freezer chamber 18 as shown in FIG. The structure is driven by a refrigeration damper driving motor unit 72 fixed to one end of the damper frame 70. In FIG. 31, a plurality of flaps 71 are shown when the solid line number assignment line is closed and when the broken line number assignment line is opened.

また、上記冷凍室ダンパ68は図25に示すように冷却室側口枠部66に設けた爪片73に冷凍ダンパ駆動用モータユニット72を固定した状態のダンパ枠体70を弾着係合させることにより冷却室形成板31に装着しユニット化してあり、冷却室側口枠部66の傾斜に沿って冷蔵室ダンパ37の冷却室側が冷凍室側より下方に位置するように傾斜させて設けてある。   Further, the freezer compartment damper 68 is elastically engaged with a damper frame 70 in a state where the freezer damper driving motor unit 72 is fixed to a claw piece 73 provided in the cooling chamber side opening frame 66 as shown in FIG. Accordingly, the cooling chamber forming plate 31 is attached to the cooling chamber forming plate 31 as a unit, and the cooling chamber damper 37 has a cooling chamber side inclined along the inclination of the cooling chamber side opening frame portion 66 so as to be positioned below the freezing chamber side. is there.

さらに、冷凍室ダンパ68は図29から理解できるように各複数のフラップ71に沿って冷却室23へと流れる冷気が冷却器24の下端縁に流れるように設けてある。この例では冷凍室ダンパ68はその上部(ダンパ枠体70の上片部分)が冷却器24の下端縁より上方に位置し、かつ、その下部(ダンパ枠体70の下辺部分)が冷却器24の下端より下方に位置する如く設けることによって冷気を冷却器24の下端縁より下方部分に流れるようにしてある。   Furthermore, as can be understood from FIG. 29, the freezer compartment damper 68 is provided so that the cool air flowing to the cooling chamber 23 along each of the plurality of flaps 71 flows to the lower end edge of the cooler 24. In this example, the upper part of the freezer damper 68 (the upper piece of the damper frame 70) is located above the lower edge of the cooler 24, and the lower part (the lower part of the damper frame 70) is the cooler 24. By providing it so as to be located below the lower end of the cooler, the cool air flows from the lower end edge of the cooler 24 to the lower part.

さらに加えて、上記冷凍室ダンパ68はその下部(ダンパ枠体70の下辺部分)がガラス管ヒータ26より上方に位置するように設け、除霜時にガラス管ヒータ26で熱せられた暖冷気が確実に触れるように設定してある。   In addition, the freezer compartment damper 68 is provided such that its lower part (the lower part of the damper frame 70) is located above the glass tube heater 26, so that the warm and cool air heated by the glass tube heater 26 during defrosting is ensured. It is set to touch.

その一方で、冷凍室ダンパ68を支持している冷却室側口枠部66の下辺66aは二重壁とし、その下面を円弧状にして冷却室23に突き出す形(冷却室23の底面23aよりガラス管ヒータ26側に突き出す形)としてガラス管ヒータ26からの輻射熱が直接照射するのを防止する構成とし、かつ、更に二重壁部分の間隙部分66bは冷凍室18に面して開放させて冷凍室冷気で冷却し過度に昇温するのを抑制する構成としてある。   On the other hand, the lower side 66a of the cooling chamber side opening frame portion 66 supporting the freezing chamber damper 68 is a double wall, and its lower surface is arcuate and protrudes into the cooling chamber 23 (from the bottom surface 23a of the cooling chamber 23). As a form protruding to the glass tube heater 26 side), the radiation heat from the glass tube heater 26 is prevented from being directly irradiated, and the gap portion 66b of the double wall portion faces the freezer compartment 18 and is opened. It is set as the structure which suppresses cooling with freezer compartment cold air and heating up excessively.

更にまた、前記冷凍室ダンパ68は図25に示すようにその冷凍ダンパ駆動用モータユニット72がガラス管ヒータ26の長手方向において、ガラス管ヒータ26のヒータ部26aと対向しないようヒータ部26aから外方にずれた場所に位置するように配置してある。そしてこの例では上記冷凍ダンパ駆動用モータユニット72を冷却室23横の冷蔵室
戻りダクト58側に位置させることによって、冷凍ダンパ駆動用モータユニット72がヒータ部26aの外方に位置する形をとりつつ、冷凍室ダンパ68の複数のフラップ71部分が冷却器24の中心線寄り部分に位置するようにしてある。
Further, as shown in FIG. 25, the freezing chamber damper 68 is arranged so that the freezing damper driving motor unit 72 is removed from the heater portion 26a so as not to face the heater portion 26a of the glass tube heater 26 in the longitudinal direction of the glass tube heater 26. It is arranged so as to be located in a place shifted toward the direction. In this example, the refrigeration damper driving motor unit 72 is positioned on the side of the refrigeration chamber return duct 58 beside the cooling chamber 23 so that the refrigeration damper driving motor unit 72 is positioned outside the heater portion 26a. However, the plurality of flaps 71 of the freezer damper 68 are positioned closer to the center line of the cooler 24.

なお、冷凍室ダンパ68は冷凍冷気戻り口64のみに設けられており、冷却室23から冷気吹出し口63に至る冷気吐出通路にはダンパを備えず、冷却室23と冷凍室18とは連通状態に保たれている。   In addition, the freezer compartment damper 68 is provided only in the freezer cold air return port 64, and no cooler discharge passage is provided from the cooler chamber 23 to the cool air outlet 63, and the cooler chamber 23 and the freezer compartment 18 are in communication with each other. It is kept in.

<1−5.野菜室とその冷却構成>
次に図3、図4と図8〜図12を用いて野菜室とその冷却構成について説明する。
<1-5. Vegetable room and its cooling configuration>
Next, the vegetable room and its cooling configuration will be described with reference to FIGS. 3, 4 and 8 to 12.

野菜室17は、図3に示すように冷凍室18下方の冷蔵庫本体1最下部に位置していて、冷凍室18と同様、野菜室容器17aが扉10の引出し開閉によって出し入れ自在なるように設けてある。この野菜室17に冷気を供給する野菜室ダクト30は、図8、図9に示すように冷却室23横の冷蔵室戻りダクト58前面に重合させて配置してあり、その上部は図4及び図10に示すように前記冷却室23に設けた第2冷気供給口34に接続してある。   As shown in FIG. 3, the vegetable compartment 17 is located at the lowermost part of the refrigerator body 1 below the freezer compartment 18, and, like the freezer compartment 18, the vegetable compartment container 17 a is provided so that it can be freely inserted and removed by opening and closing the door 10. It is. The vegetable compartment duct 30 for supplying cold air to the vegetable compartment 17 is arranged by being superposed on the front surface of the refrigeration compartment return duct 58 beside the cooling compartment 23 as shown in FIGS. As shown in FIG. 10, it is connected to a second cold air supply port 34 provided in the cooling chamber 23.

この第2冷気供給口34は既述した通り冷蔵室14への冷気供給口となる第1冷気供給口33とは別個に独立した形で形成してある。すなわち、第2冷気供給口34は冷却室23の上方に位置する冷蔵室14と冷凍室18とを仕切る仕切板5より下方、即ち冷凍室18の背面投影面積内であって、前記冷却ファン25と略同じ高さ位置の冷却ファン下流側部分に設けてある。そして、この第2冷気供給口34に接続した野菜室ダクト30の下端は野菜室17の上部に開口していて、野菜室17に冷気を供給するようになっている。   As described above, the second cold air supply port 34 is formed separately and independently from the first cold air supply port 33 serving as the cold air supply port to the refrigerator compartment 14. That is, the second cold air supply port 34 is below the partition plate 5 that partitions the refrigerator compartment 14 and the freezer compartment 18 located above the cooler compartment 23, that is, within the rear projection area of the freezer compartment 18, and the cooling fan 25. Is provided in the downstream portion of the cooling fan at substantially the same height. And the lower end of the vegetable compartment duct 30 connected to this 2nd cold air supply port 34 is opened to the upper part of the vegetable compartment 17, and cold air is supplied to the vegetable compartment 17.

上記野菜室ダクト30はその上端部の側部を開口74させて第2冷気供給口34に突き合わせ接続してあり、この接続部近傍、具体的には冷却ファン25と略同じ高さ位置範囲に野菜室ダンパ75を組み込んである。   The vegetable compartment duct 30 has an opening 74 at its upper end and an abutment connection to the second cold air supply port 34. In the vicinity of this connection portion, specifically, in the height position range substantially the same as that of the cooling fan 25. A vegetable room damper 75 is incorporated.

またこの野菜室ダンパ75は図8に示すように冷蔵室戻りダクト58の前面に形成した野菜室ダクト通路部となる凹状溝58bに嵌め込み、この状態の冷蔵室戻りダクト58の凹状溝58b前面に野菜室ダクト30を嵌め込み装着することにより冷蔵室戻りダクト58と野菜室ダクト30との間で挟持固定してある。そして、上記野菜室ダクト30および冷蔵室戻りダクト58は発泡スチロール等の弾性力を有する材料で形成してあり、その弾性力によって両者間の気密性を確保すると同時に野菜室ダンパ75の気密性も確保する構成としてある。   Further, as shown in FIG. 8, the vegetable compartment damper 75 is fitted into a concave groove 58b which is a vegetable compartment duct passage portion formed on the front surface of the refrigerating room return duct 58, and is formed on the front surface of the concave groove 58b of the refrigerating room return duct 58 in this state. The vegetable compartment duct 30 is fitted and mounted so as to be sandwiched and fixed between the refrigerator compartment return duct 58 and the vegetable compartment duct 30. The vegetable compartment duct 30 and the refrigerating compartment return duct 58 are formed of a material having elastic force such as foamed polystyrene, and the airtightness of the vegetable compartment damper 75 is secured at the same time by the elastic force. It is as composition to do.

なお、野菜室ダンパ75は野菜ダンパ駆動用モータユニット76によって駆動されるダンパ片75aが野菜室ダクト30を流れる冷気と逆の方向、この例では上向きに開くように構成してある。これは前記した冷蔵室ダクト28のダンパ開き方向とは反対の方向である。   The vegetable compartment damper 75 is configured such that a damper piece 75a driven by the vegetable damper drive motor unit 76 opens in the opposite direction to the cold air flowing through the vegetable compartment duct 30, in this example, upward. This is the direction opposite to the damper opening direction of the refrigerator compartment duct 28 described above.

また、野菜室17を冷却した後の冷気はその天井面に設けた野菜室戻りダクト(図示せず)を介して冷却室23に戻すようになっている。   The cold air after cooling the vegetable compartment 17 is returned to the cooling chamber 23 through a vegetable compartment return duct (not shown) provided on the ceiling surface.

また、野菜室17内には、野菜室の扉10に固定された扉フレームに支持されて前方に引き出される野菜ケースと野菜ケースの上面を覆うように野菜ケース側面上部フランジに支持される上部野菜ケースとを備え、野菜ケースと上部野菜ケースはそれぞれシール性を高めた構造となっている。これにより、内部に収納される野菜、果物等から発生する水分の蒸散を抑制して野菜、果物等の保鮮性を高めることができる。   Also, in the vegetable compartment 17, the vegetable case supported by the door frame fixed to the door 10 of the vegetable compartment and the upper vegetable supported by the vegetable case side upper flange so as to cover the upper surface of the vegetable case are covered. The vegetable case and the upper vegetable case each have a structure with improved sealing performance. Thereby, the transpiration | evaporation of the water | moisture content generate | occur | produced from the vegetable accommodated inside, a fruit, etc. can be suppressed, and the freshness of vegetables, a fruit, etc. can be improved.

また、野菜室17と冷凍室18とを断熱区画する仕切板6の野菜室17側には凹部を有し、前記凹部の内部にミスト発生装置を備えている。ミスト発生装置は、高電圧発生部と電極を有し、電極には庫内を結露させ収集した水分が供給されるものである。   Moreover, the vegetable compartment 17 side of the partition plate 6 that insulates the vegetable compartment 17 and the freezer compartment 18 from heat has a recess, and a mist generating device is provided inside the recess. The mist generator has a high voltage generator and an electrode, and the electrode is supplied with moisture collected by dew condensation inside the storage.

また、高電圧発生部を収納する基板には野菜室17内の湿度を検知する野菜室湿度センサ78を備えている。   In addition, the substrate that houses the high voltage generator is provided with a vegetable room humidity sensor 78 that detects the humidity in the vegetable room 17.

また、野菜室17と冷凍室18とを断熱区画する仕切板6の野菜室17側には野菜室ヒータ79を備え、野菜室17の天面に設けられた野菜室湿度センサ78の検出湿度に応じて野菜室ヒータ79の通電を制御している。詳細は後述する。   Further, a vegetable room heater 79 is provided on the vegetable room 17 side of the partition plate 6 that insulates the vegetable room 17 and the freezing room 18 from each other, and the detected humidity of the vegetable room humidity sensor 78 provided on the top surface of the vegetable room 17 is adjusted. Accordingly, the energization of the vegetable room heater 79 is controlled. Details will be described later.

以上のように構成した冷蔵庫について、以下、ブロック図、フローチャートを用いて、その制御フロー、作用効果を説明する。   About the refrigerator comprised as mentioned above, the control flow and an effect are demonstrated below using a block diagram and a flowchart.

<2−1.基本冷却制御>
図35は本実施の形態の冷蔵庫の制御ブロック図、図36は本実施の形態の冷蔵庫の冷却システムの基本制御を示すフローチャートである。
<2-1. Basic cooling control>
FIG. 35 is a control block diagram of the refrigerator of the present embodiment, and FIG. 36 is a flowchart showing basic control of the refrigerator cooling system of the present embodiment.

図35において、冷蔵庫の冷却システムを制御するマイコン90の入力情報は、外気温度センサ(ATC)91、冷凍室温度センサ(FCC)92、冷蔵室温度センサ(PCC)59、パーシャル室温度センサ(PFC)60、野菜室温度センサ(VCC)93、冷却器温度センサ(DFC)94、扉開閉検知手段95、外部照度センサ96、冷蔵室光センサ97であり、マイコン90の出力制御デバイスは、圧縮機(コンプ)27、冷却ファン(FCファン)25、冷蔵室ダンパ(PCダンパ)37、パーシャル室ダンパ(PFダンパ)98、野菜室ダンパ(VCダンパ)75、冷凍室ダンパ(FCダンパ)68、除霜手段(霜取りヒータ)26である。   In FIG. 35, the input information of the microcomputer 90 that controls the cooling system of the refrigerator includes the outside air temperature sensor (ATC) 91, the freezer temperature sensor (FCC) 92, the refrigerating room temperature sensor (PCC) 59, the partial room temperature sensor (PFC). ) 60, vegetable room temperature sensor (VCC) 93, cooler temperature sensor (DFC) 94, door open / close detection means 95, external illuminance sensor 96, refrigerating room light sensor 97, and the output control device of the microcomputer 90 is a compressor (Comp) 27, Cooling fan (FC fan) 25, Cold room damper (PC damper) 37, Partial room damper (PF damper) 98, Vegetable room damper (VC damper) 75, Freezer room damper (FC damper) 68, Removal A frosting means (defrosting heater) 26 is provided.

図36において、冷蔵庫に電源投入されると(S−1)、外気温度センサ(ATC)91、冷凍室温度センサ(FCC)92、冷蔵室温度センサ(PCC)59、パーシャル室温度センサ(PFC)60、野菜室温度センサ(VCC)93の各温度情報に基づいて、圧縮機(コンプ)27、冷却ファン(FCファン)25、冷蔵室ダンパ(PCダンパ)37、パーシャル室ダンパ(PFダンパ)98、野菜室ダンパ(VCダンパ)75、冷凍室ダンパ(FCダンパ)68を制御する通常温調制御が開始される(S−2)。   In FIG. 36, when the refrigerator is turned on (S-1), the outside temperature sensor (ATC) 91, the freezer temperature sensor (FCC) 92, the refrigerating room temperature sensor (PCC) 59, and the partial room temperature sensor (PFC). 60, compressor (comp) 27, cooling fan (FC fan) 25, refrigeration room damper (PC damper) 37, partial room damper (PF damper) 98 based on each temperature information of vegetable room temperature sensor (VCC) 93 The normal temperature control for controlling the vegetable compartment damper (VC damper) 75 and the freezer compartment damper (FC damper) 68 is started (S-2).

そして、扉開閉検知手段95や、冷蔵庫周辺の明るさを検知する外部照度センサ96の情報、あるいは、冷蔵室光センサ97による収納量情報から、冷蔵庫の使用が少ない時間帯を予測して、省エネモードに移行するかどうかを判断する(S−3)。   Then, the information on the door opening / closing detection means 95, the external illuminance sensor 96 for detecting the brightness around the refrigerator, or the storage amount information by the refrigerator light sensor 97 is used to predict a time zone when the refrigerator is less used, thereby saving energy. It is determined whether or not to shift to the mode (S-3).

省エネモードに移行しない場合、各ダンパのフラップは全開または全閉するダンパ開閉制御を行なう(S−7)。   If the energy saving mode is not entered, damper opening / closing control is performed so that the flaps of the dampers are fully opened or fully closed (S-7).

省エネモードに移行する場合、外気温度センサ(ATC)91が所定温度より高いか(ATC≧T1)を判断する(S−4)。外気温度センサ(ATC)91が所定温度より高い場合、冷蔵室ダンパ(PCダンパ)37および冷凍室ダンパ(FCダンパ)68のフラップの開閉角度を制御するダンパ開度制御を行なう(S−5)。なお、ダンパ開度制御(S−5)での具体的な制御については後述する。   When shifting to the energy saving mode, it is determined whether the outside air temperature sensor (ATC) 91 is higher than a predetermined temperature (ATC ≧ T1) (S-4). When the outside air temperature sensor (ATC) 91 is higher than a predetermined temperature, damper opening control is performed to control the opening / closing angle of the flaps of the refrigerator compartment damper (PC damper) 37 and the freezer compartment damper (FC damper) 68 (S-5). . In addition, the concrete control in damper opening degree control (S-5) is mentioned later.

また、S−4で、外気温度センサ(ATC)91が所定温度(T1)より低い場合、圧縮機(コンプ)27が停止した状態の初期に冷蔵室ダンパ(PCダンパ)37を開とし、
冷却ファン(FCファン)25を運転するオフサイクル制御を行なう(S−6)。なお、オフサイクル制御(S−6)での具体的な制御については後述する。
In S-4, when the outside temperature sensor (ATC) 91 is lower than the predetermined temperature (T1), the refrigerator compartment damper (PC damper) 37 is opened at the initial stage when the compressor (comp) 27 is stopped,
Off-cycle control for operating the cooling fan (FC fan) 25 is performed (S-6). The specific control in the off cycle control (S-6) will be described later.

そして、上記各制御は、冷却器24の除霜手段(霜取りヒータ)26を開始するデフロスト信号が入るまで(S−8)繰り返し行なわれる。デフロスト信号が入るとデフロスト制御を行なう(S−9)。なお、デフロスト制御(S−9)での具体的な制御については後述する。   The above-described controls are repeated until a defrost signal for starting the defrosting means (defrosting heater) 26 of the cooler 24 is input (S-8). When a defrost signal is received, defrost control is performed (S-9). Note that specific control in the defrost control (S-9) will be described later.

以上説明したように、本実施の形態の冷蔵庫は、貯蔵室と、前記貯蔵室に冷気を供給する冷却器24と送風機(冷却ファン25)とが収納された冷却室23と、冷却室23から前記貯蔵室に供給される冷気をダクト内で制御するダンパと、を備え、前記ダンパはフラップと駆動装置を有し、前記駆動装置による前記フラップの動作は、フラップ開閉制御(S−7)とフラップ開度制御(S−5)とを、省エネモードに移行するかどうかを判断し(S−3)、その結果に応じて場合分けして制御されるものであり、省エネモードで各室内の温度変動を小さくしたい場合のみ、各ダンパのフラップ開度制御(S−5)を行なうことができる。   As described above, the refrigerator according to the present embodiment includes a storage chamber, a cooling chamber 23 in which a cooler 24 for supplying cold air to the storage chamber and a blower (cooling fan 25) are housed, and a cooling chamber 23. A damper that controls the cool air supplied to the storage chamber in a duct, and the damper includes a flap and a drive device, and the operation of the flap by the drive device is performed by flap opening / closing control (S-7). It is determined whether or not the flap opening degree control (S-5) shifts to the energy saving mode (S-3), and is controlled according to the result according to the result. Only when it is desired to reduce the temperature fluctuation, the flap opening degree control (S-5) of each damper can be performed.

すなわち、必要以上に各ダンパのフラップ開度制御を行なわない点を技術的特徴とするもので、駆動装置のステッピングモータ等によるフラップ開度制御に必要なフラップ原点位置確認制御等の複雑な制御を減らすことができ、簡素な仕様で省エネ性を高め、信頼性の高い冷却ができる冷蔵庫を提供することができる。   In other words, it is a technical feature that it does not perform flap opening control of each damper more than necessary, and it performs complicated control such as flap origin position confirmation control necessary for flap opening control by a stepping motor of the driving device etc. It is possible to provide a refrigerator that can be reduced, can improve energy saving performance with simple specifications, and can perform cooling with high reliability.

また、省エネ運転条件と通常運転条件とを有し、省エネ運転条件時はフラップ開度制御が行なわれ、通常運転条件時はフラップ開閉制御が行なわれるものであり、省エネ運転が必要な時のみ各ダンパのフラップ開度制御を行なうことができ、簡素な仕様で省エネ性および信頼性の高い冷却ができる冷蔵庫を提供することができる。   In addition, it has energy-saving operation conditions and normal operation conditions, and flap opening control is performed during energy-saving operation conditions, and flap opening / closing control is performed under normal operation conditions. It is possible to provide a refrigerator capable of performing flap opening control of a damper and capable of cooling with high energy saving and high reliability with a simple specification.

<2−2.ダンパフラップ開度制御>
図37、図38は本実施の形態の冷蔵庫の冷却システムのダンパ開度制御(図36のS−5)の詳細を示すフローチャートである。
<2-2. Damper flap opening control>
37 and 38 are flowcharts showing details of damper opening degree control (S-5 in FIG. 36) of the refrigerator cooling system of the present embodiment.

まず、1分毎に冷蔵室温度センサ(PCC)59の温度をN分間(例えば10分間)計測する(S−9)。その後、N分間(例えば10分間)の計測結果を平均する(S−10)。そして、計測した平均温度と冷蔵室温度センサ(PCC)59の設定値とを比較し(S−11)、N分間の平均温度と冷蔵室温度センサ(PCC)59の設定値との温度差ΔTを算出する(S−12)。そして、温度差ΔTの値により、冷蔵室ダンパ(PCダンパ)37のフラップの開度(角度)を変更する(S−13)。   First, the temperature of the refrigerator compartment temperature sensor (PCC) 59 is measured every minute for N minutes (for example, 10 minutes) (S-9). Thereafter, the measurement results for N minutes (for example, 10 minutes) are averaged (S-10). Then, the measured average temperature is compared with the set value of the refrigerator compartment temperature sensor (PCC) 59 (S-11), and the temperature difference ΔT between the average temperature for N minutes and the set value of the refrigerator compartment temperature sensor (PCC) 59 is compared. Is calculated (S-12). And the opening degree (angle) of the flap of the refrigerator compartment damper (PC damper) 37 is changed by the value of temperature difference (DELTA) T (S-13).

より具体的には、図38に示すように、冷蔵室温度センサ(PCC)59の設定値(目標温度)と上限値、下限値を確認する(S−14)。上限値、下限値とは、設定値(目標温度)に幅を持たせており、その幅の上限と下限の値である。次に、直近の数分間(例えば1分毎の10分間)の冷蔵室温度センサ(PCC)59の平均温度を確認する(S−15)。   More specifically, as shown in FIG. 38, the set value (target temperature), upper limit value, and lower limit value of the refrigerator compartment temperature sensor (PCC) 59 are confirmed (S-14). The upper limit value and the lower limit value are values of an upper limit and a lower limit of a range in which a set value (target temperature) is given a range. Next, the average temperature of the refrigerator temperature sensor (PCC) 59 for the latest several minutes (for example, 10 minutes every minute) is confirmed (S-15).

次に、冷蔵室温度センサ(PCC)59の設定値(目標温度)と直近の直近の数分間(例えば1分毎の10分間)の平均温度を比較し、温度差(ΔT)を確認する(S−16)。そして、温度差(ΔT)が大きく、平均値が設定値(目標温度)の下限値より低い場合は、冷蔵室ダンパ(PCダンパ)37のフラップの開度(角度)を所定角度(駆動装置のステッピングモータ等のステップ数)小さくする(S−17)。   Next, the set value (target temperature) of the refrigerating room temperature sensor (PCC) 59 is compared with the average temperature of the latest several minutes (for example, 10 minutes every minute), and the temperature difference (ΔT) is confirmed ( S-16). When the temperature difference (ΔT) is large and the average value is lower than the lower limit value of the set value (target temperature), the opening degree (angle) of the flap of the refrigerator compartment damper (PC damper) 37 is set to a predetermined angle (of the driving device). Step number of stepping motor or the like) is reduced (S-17).

また、S−16で、平均値が設定値(目標温度)の上限値と下限値の間であれば、冷蔵室ダンパ(PCダンパ)37のフラップの開度(角度)は変更しない(S−18)。また、S−16で、温度差(ΔT)が大きく、平均値が設定値(目標温度)の上限値より高い場合は、冷蔵室ダンパ(PCダンパ)37のフラップの開度(角度)を所定角度(駆動装置のステッピングモータ等のステップ数)大きくする(S−19)。   In S-16, if the average value is between the upper limit value and the lower limit value of the set value (target temperature), the flap opening degree (angle) of the refrigerator compartment damper (PC damper) 37 is not changed (S-). 18). In S-16, when the temperature difference (ΔT) is large and the average value is higher than the upper limit value of the set value (target temperature), the flap opening degree (angle) of the refrigerator compartment damper (PC damper) 37 is predetermined. The angle (number of steps of the stepping motor or the like of the driving device) is increased (S-19).

その後、S−15に戻り、上記制御を所定時間毎(例えば10分毎)に繰り返す。すなわち、所定時間前(例えば1分毎の10分間)の冷蔵室温度センサ(PCC)59の平均温度と設定値(目標温度)とを比較し、その温度差ΔTの値(レベル)に応じてその後の冷蔵室ダンパ(PCダンパ)37のフラップの開度(角度)を制御するものである。   Then, it returns to S-15 and repeats the said control for every predetermined time (for example, every 10 minutes). That is, the average temperature of the cold room temperature sensor (PCC) 59 before a predetermined time (for example, 10 minutes every minute) is compared with a set value (target temperature), and the temperature difference ΔT is set according to the value (level). The flap opening degree (angle) of the subsequent refrigerator compartment damper (PC damper) 37 is controlled.

以上説明したように、本実施の形態の冷蔵庫は、冷蔵室14と、冷蔵室14に冷気を供給する冷却器24と送風機(冷却ファン25)とが収納された冷却室23と、冷却室23から冷蔵室14に供給される冷気をダクト内で制御する冷蔵室ダンパ(PCダンパ)37と、冷蔵室14内の温度を検出する冷蔵室温度センサ(PCC)59と、を備え、冷蔵室ダンパ(PCダンパ)37はフラップと駆動装置を有し、駆動装置によるフラップ動作は、フラップの開度を制御するフラップ開度制御が行なわれるもので、冷蔵室ダンパ(PCダンパ)37は、フラップ動作前の所定時間中の冷蔵室温度センサ(PCC)59の平均温度と冷蔵室目標温度とに基づいて、駆動装置によるフラップの角度を変えてフラップ開度制御が行なわれることにより、冷蔵室14内の温度変動を小さくして貯蔵室目標温度に近づけることができ、省エネ性を高めた使い勝手のよい冷蔵庫を提供することができる。   As described above, the refrigerator according to the present embodiment includes the refrigerating chamber 14, the cooling chamber 23 in which the cooler 24 that supplies cold air to the refrigerating chamber 14, and the blower (cooling fan 25) are housed, and the cooling chamber 23. A cold room damper (PC damper) 37 for controlling the cold air supplied from the inside to the cold room 14 in the duct, and a cold room temperature sensor (PCC) 59 for detecting the temperature in the cold room 14. The (PC damper) 37 has a flap and a driving device. The flap operation by the driving device is performed by flap opening control for controlling the opening of the flap, and the refrigerator compartment damper (PC damper) 37 is operated by the flap operation. Based on the average temperature of the refrigerator compartment temperature sensor (PCC) 59 during the previous predetermined time and the refrigerator compartment target temperature, the flap opening angle is controlled by changing the flap angle by the driving device. To reduce the temperature variation of the refrigerating compartment 14 can be brought close to the storage chamber target temperature, it is possible to provide a refrigerator easy to use with increased energy efficiency.

また、省エネ運転条件を有し、省エネ運転条件時にフラップ開度制御が行なわれるものであり、省エネ運転が必要な時のみ各ダンパのフラップ開度制御を行なうことができ、簡素な仕様で省エネ性および信頼性の高い冷却ができる冷蔵庫を提供することができる。   In addition, it has energy-saving operation conditions, and flap opening control is performed under energy-saving operation conditions. The flap opening control of each damper can be performed only when energy-saving operation is required. In addition, a refrigerator capable of highly reliable cooling can be provided.

なお、本実施の形態では、冷蔵室への冷気供給を制御する冷蔵室ダンパ(PCダンパ)について説明したが、同様に冷凍室への冷気供給を制御する冷凍室ダンパ(FCダンパ)に適用することができる。さらに、切替室への冷気供給を制御する切替室ダンパ(SCダンパ)や野菜室への冷気供給を制御する野菜室ダンパ(VCダンパ)にも適用することができる。   In the present embodiment, the refrigeration room damper (PC damper) for controlling the cold air supply to the refrigeration room has been described. However, the present invention is similarly applied to a freezer room damper (FC damper) for controlling the cold air supply to the freezer room. be able to. Furthermore, the present invention can also be applied to a switching chamber damper (SC damper) that controls the cold air supply to the switching chamber and a vegetable room damper (VC damper) that controls the cold air supply to the vegetable chamber.

<2−3.オフサイクル制御>
図39は本実施の形態の冷蔵庫の冷却システムのオフサイクル制御を示すフローチャート、図40は本実施の形態の冷蔵庫の冷却システムのオフサイクル制御を示すタイミングチャートである。
<2-3. Off-cycle control>
FIG. 39 is a flowchart showing off-cycle control of the refrigerator cooling system of the present embodiment, and FIG. 40 is a timing chart showing off-cycle control of the refrigerator cooling system of the present embodiment.

図39において、圧縮機(コンプ)27にON信号が出力される(S−20)と、圧縮機(コンプ)27、および冷却ファン(FCファン)25が運転され、同時に冷凍室ダンパ(FCダンパ)68が開状態となり(S−26)、冷却器24で生成された冷気は、冷凍室18に供給され、冷凍室18が冷却されるとともに、冷蔵室14への冷気ダクトに配置された冷蔵室ダンパ(PCダンパ)37に冷気が供給される。   In FIG. 39, when an ON signal is output to the compressor (comp) 27 (S-20), the compressor (comp) 27 and the cooling fan (FC fan) 25 are operated, and at the same time, the freezer compartment damper (FC damper). ) 68 is opened (S-26), and the cold air generated by the cooler 24 is supplied to the freezer compartment 18 so that the freezer compartment 18 is cooled and refrigerated in the cold air duct to the refrigerator compartment 14. Cold air is supplied to the room damper (PC damper) 37.

そして、冷蔵室14では冷蔵室温度センサ(PCC)59がOFF温度以上かを判断し(S−21)、OFF温度以下であれば、冷蔵室ダンパ(PCダンパ)37を閉とする(S−25)。S−21で、冷蔵室温度センサ(PCC)59がOFF温度以上であれば、冷蔵室ダンパ(PCダンパ)37を開とし(S−22)、その後、冷蔵室温度センサ(PCC)59がOFF温度に達するかを判断する(S−23)。   Then, the refrigerator compartment 14 determines whether the refrigerator compartment temperature sensor (PCC) 59 is equal to or higher than the OFF temperature (S-21). If it is lower than the OFF temperature, the refrigerator compartment damper (PC damper) 37 is closed (S-). 25). If the cold room temperature sensor (PCC) 59 is not less than the OFF temperature in S-21, the cold room damper (PC damper) 37 is opened (S-22), and then the cold room temperature sensor (PCC) 59 is turned off. It is determined whether the temperature is reached (S-23).

冷蔵室温度センサ(PCC)59がOFF温度に達すれば、冷蔵室ダンパ(PCダンパ
)37を閉とする(S−25)が、冷蔵室温度センサ(PCC)59がOFF温度に達する前に、冷凍室温度センサ(FCC)92がOFF温度に達して、圧縮機(コンプ)27にOFF信号が出力される(S−24)と、圧縮機(コンプ)27が停止されるが、冷蔵室温度センサ(PCC)59がOFF温度に達する前に圧縮機(コンプ)27が停止された状態では、冷蔵室温度センサ(PCC)59が所定温度(Poff)以上かどうか判断する(S−27)。
If the cold room temperature sensor (PCC) 59 reaches the OFF temperature, the cold room damper (PC damper) 37 is closed (S-25), but before the cold room temperature sensor (PCC) 59 reaches the OFF temperature, When the freezer temperature sensor (FCC) 92 reaches the OFF temperature and an OFF signal is output to the compressor (comp) 27 (S-24), the compressor (comp) 27 is stopped. In a state where the compressor (comp) 27 is stopped before the sensor (PCC) 59 reaches the OFF temperature, it is determined whether or not the refrigerator temperature sensor (PCC) 59 is equal to or higher than a predetermined temperature (Poff) (S-27).

S−27で、冷蔵室温度センサ(PCC)59が所定温度(Poff)より低い場合、冷蔵室ダンパ(PCダンパ)37を閉とする(S−29)が、冷蔵室温度センサ(PCC)59が所定温度(Poff)以上の場合、冷蔵室ダンパ(PCダンパ)37を開状態で、冷却ファン(FCファン)25は、圧縮機(コンプ)27ON時の回転数より低い回転で運転するオフサイクル冷却制御を行なう(S−28)。オフサイクル冷却制御(S−28)は、圧縮機(コンプ)27がOFF信号を受けた直後の初期の所定時間(Tpc)もしくは、冷蔵室温度センサ(PCC)59がOFF温度になるまで行なわれ、その後、冷蔵室ダンパ(PCダンパ)37を閉とする(S−29)。   If the cold room temperature sensor (PCC) 59 is lower than the predetermined temperature (Poff) in S-27, the cold room damper (PC damper) 37 is closed (S-29), but the cold room temperature sensor (PCC) 59 is closed. When the temperature is equal to or higher than a predetermined temperature (Poff), the refrigerating room damper (PC damper) 37 is opened, and the cooling fan (FC fan) 25 is operated at a lower speed than the rotation speed when the compressor (comp) 27 is ON. Cooling control is performed (S-28). The off-cycle cooling control (S-28) is performed until an initial predetermined time (Tpc) immediately after the compressor (comp) 27 receives the OFF signal or until the refrigerator temperature sensor (PCC) 59 reaches the OFF temperature. Thereafter, the refrigerator compartment damper (PC damper) 37 is closed (S-29).

図40のタイミングチャートで説明すると、圧縮機(コンプ)27がONすると、冷却ファン(FCファン)25はON、冷凍室ダンパ(FCダンパ)68、および冷蔵室ダンパ(PCダンパ)37が開状態となり(e点)、冷蔵室ダンパ(PCダンパ)37は、圧縮機(コンプ)27がON中、冷蔵室温度センサ(PCC)59の温度により開閉制御を行なう。そして、圧縮機(コンプ)27がOFFすると、冷却ファン(FCファン)25もOFF、冷凍室ダンパ(FCダンパ)68が閉状態となる(f点)。この時点(f点)で、冷蔵室ダンパ(PCダンパ)37が開の状態であれば、冷蔵室ダンパ(PCダンパ)37を開状態で、冷却ファン(FCファン)25は、圧縮機(コンプ)27ON時の回転数より低い回転で所定時間運転する(f〜g点)オフサイクル冷却制御を行なう。その後、冷却ファン(FCファン)25は停止し、冷蔵室ダンパ(PCダンパ)37が閉状態となる(g点)。   Referring to the timing chart of FIG. 40, when the compressor (comp) 27 is turned on, the cooling fan (FC fan) 25 is turned on, and the freezer compartment damper (FC damper) 68 and the refrigerator compartment damper (PC damper) 37 are opened. Next (point e), the refrigerator compartment damper (PC damper) 37 performs opening / closing control according to the temperature of the refrigerator compartment temperature sensor (PCC) 59 while the compressor (comp) 27 is ON. When the compressor (comp) 27 is turned off, the cooling fan (FC fan) 25 is also turned off, and the freezer compartment damper (FC damper) 68 is closed (point f). At this point (point f), if the refrigerator compartment damper (PC damper) 37 is open, the refrigerator compartment damper (PC damper) 37 is opened and the cooling fan (FC fan) 25 is connected to the compressor (compressor). ) Off-cycle cooling control is performed for a predetermined time at a speed lower than the rotational speed at 27 ON (points f to g). Thereafter, the cooling fan (FC fan) 25 is stopped and the refrigerator compartment damper (PC damper) 37 is closed (point g).

その後も同様な制御が行なわれるが、圧縮機(コンプ)27がOFFする時点(i点)で冷蔵室ダンパ(PCダンパ)37が閉の状態であれば、前述の制御(オフサイクル冷却制御)は行なわない。   Thereafter, similar control is performed. However, if the refrigerator compartment damper (PC damper) 37 is closed when the compressor (comp) 27 is turned off (point i), the above-described control (off-cycle cooling control) is performed. Does not.

以上説明したように、本実施の形態の冷蔵庫は、冷蔵室14と冷凍室18と、冷凍室18の後方に配置され、冷蔵室14と冷凍室18とに冷気を供給する冷却器24と冷却ファン25とが収納された冷却室23と、冷却室23から冷蔵室14に供給される冷気を冷蔵室温度センサ59に基づいて制御する冷蔵室ダンパ37と、冷却室23から冷凍室18に供給される冷気を冷凍室温度センサ92に基づいて制御する冷凍室ダンパ68と、冷凍室温度センサ92に基づいて運転が制御される圧縮機27と、を備え、冷蔵室ダンパ37が開、かつ冷凍室ダンパ68が開状態で圧縮機27が停止した場合、圧縮機停止後の所定時間、冷凍室ダンパ68を閉で冷蔵室ダンパ37を開状態として冷却ファン25を運転するものであり、圧縮機停止中に冷却器24の冷熱を有効利用でき、冷凍室18への熱影響を抑えて冷蔵室14を効率的に冷却でき、省エネ性の高い冷蔵庫を提供することができる。   As described above, the refrigerator according to the present embodiment is arranged in the refrigerator compartment 14, the freezer compartment 18, and the freezer compartment 18, the cooler 24 that supplies cold air to the refrigerator compartment 14 and the refrigerator compartment 18, and cooling. A cooling chamber 23 in which the fan 25 is housed, a refrigerating chamber damper 37 that controls the cooling air supplied from the cooling chamber 23 to the refrigerating chamber 14 based on the refrigerating chamber temperature sensor 59, and a cooling chamber 23 that supplies the freezing chamber 18 And a compressor 27 whose operation is controlled based on the freezer temperature sensor 92, the refrigerator compartment damper 37 is opened, and freezing is performed. When the compressor 27 is stopped with the chamber damper 68 open, the cooling fan 25 is operated by closing the freezer damper 68 and opening the refrigerator compartment damper 37 for a predetermined time after the compressor stops. Cold during stop The cold of the vessel 24 can be effectively utilized, the refrigerating compartment 14 by suppressing the thermal influence on the freezing chamber 18 can efficiently cooled, it is possible to provide a highly energy-saving refrigerator.

また、圧縮機27の停止後の所定時間は、冷蔵室温度センサ59が冷蔵室ダンパ37を閉動作させる温度に達するまでとしたものであり、圧縮機27の停止中の冷却器24の冷熱を適正に有効利用することができる。   Further, the predetermined time after the compressor 27 is stopped is the time until the refrigerator temperature sensor 59 reaches a temperature at which the refrigerator compartment damper 37 is closed, and the cooler 24 is stopped while the compressor 27 is stopped. It can be effectively used properly.

また、圧縮機27の停止後の所定時間、冷凍室ダンパ68を閉で冷蔵室ダンパ37を開状態として運転する冷却ファン25の回転数は、圧縮機運転中の回転数より小さくしたものであり、圧縮機停止中に冷却器24の冷熱をさらに有効利用でき、冷凍室18への熱影
響を抑えて冷蔵室14を効率的に冷却し、省エネ性の高い冷蔵庫を提供することができる。
なお、本実施の形態では、冷蔵室ダンパ(PCダンパ)37は開閉制御するもので説明したが、前述したフラップの開度(角度)制御するものでもよい。この場合、冷蔵室内の温度変動を小さくして貯蔵室目標温度に近づけることができ、省エネ性をさらに高めることができる。
Further, for a predetermined time after the compressor 27 is stopped, the rotational speed of the cooling fan 25 that operates with the freezer compartment damper 68 closed and the refrigerator compartment damper 37 opened is made smaller than the rotational speed during compressor operation. Further, it is possible to further effectively use the cold heat of the cooler 24 while the compressor is stopped, to efficiently cool the refrigerator compartment 14 while suppressing the heat effect on the freezer compartment 18, and to provide a highly energy-saving refrigerator.
In the present embodiment, the refrigerator compartment damper (PC damper) 37 is controlled to be opened and closed. However, the flap opening degree (angle) may be controlled. In this case, the temperature fluctuation in the refrigerator compartment can be reduced to approach the storage room target temperature, and energy saving can be further improved.

<2−4.デフロスト制御>
図41は本実施の形態の冷蔵庫の冷却システムのデフロスト制御を示すフローチャート、図42は本実施の形態の冷蔵庫の冷却システムのデフロスト制御を示すタイミングチャートである。
<2-4. Defrost control>
FIG. 41 is a flowchart showing the defrost control of the refrigerator cooling system of the present embodiment, and FIG. 42 is a timing chart showing the defrost control of the refrigerator cooling system of the present embodiment.

図41において、デフロスト信号が入ると(S―31)、圧縮機27は連続運転(プリクール制御)を所定時間行なう。そして、冷却器温度センサ(DFC)がT2温度以下か判断し(S−32)、T2温度以下の場合、冷蔵室ダンパ37を開、冷凍室ダンパ68を閉として冷却ファン(FCファン)25をONする(S−33)。そして、冷却器温度センサ(DFC)がT2温度に上昇するまで行なう(S−34)。S−34で冷却器温度センサ(DFC)がT2温度に達すると、冷蔵室ダンパ37を閉、冷凍室ダンパ68を開として冷却ファン(FCファン)25をOFFし(S−35)、除霜手段(デフロストヒータ)26をONする(S−36)。なお、除霜手段(デフロストヒータ)26をON中は冷凍室ダンパ68は開状態としている。また、S−32で冷却器温度センサ(DFC)がT2温度以上の場合、S−33、S−34のステップを行なわず、S−35のステップに移行する。   In FIG. 41, when a defrost signal is input (S-31), the compressor 27 performs a continuous operation (precool control) for a predetermined time. Then, it is determined whether the cooler temperature sensor (DFC) is equal to or lower than the T2 temperature (S-32). If the temperature is equal to or lower than the T2 temperature, the refrigerator compartment damper 37 is opened, the freezer compartment damper 68 is closed, and the cooling fan (FC fan) 25 is turned on. Turns on (S-33). The process is continued until the cooler temperature sensor (DFC) rises to the T2 temperature (S-34). When the cooler temperature sensor (DFC) reaches the T2 temperature in S-34, the refrigerator compartment damper 37 is closed, the freezer compartment damper 68 is opened, the cooling fan (FC fan) 25 is turned off (S-35), and defrosting is performed. The means (defrost heater) 26 is turned on (S-36). The freezer compartment damper 68 is open while the defrosting means (defrost heater) 26 is ON. If the cooler temperature sensor (DFC) is equal to or higher than the T2 temperature in S-32, the steps S-33 and S-34 are not performed, and the process proceeds to the step S-35.

冷却器温度センサ(DFC)がT4温度以上か判断し(S−37)、T4温度以上になると、除霜手段(デフロストヒータ)26をOFFするとともに、起動待ち制御を行なう(S−38)。起動待ち時間経過後、コンプON信号により圧縮機27が運転開始し(S−39)、冷却ファン(FCファン)25を所定時間OFFした後にONするFCファン遅延制御を行なうとともに、冷却器温度センサ(DFC)が冷凍室温度センサ(FCC)より低くなった時点で冷凍室ダンパ68は開状態となる(S−40)。その後、通常の冷却運転を行なう(S−41)。   It is determined whether or not the cooler temperature sensor (DFC) is equal to or higher than the T4 temperature (S-37). When the temperature is equal to or higher than the T4 temperature, the defrosting means (defrost heater) 26 is turned off and start-up control is performed (S-38). After the start-up waiting time has elapsed, the compressor 27 is started to operate by a compressor ON signal (S-39), and the FC fan 25 is controlled to be turned on after the cooling fan (FC fan) 25 is turned off for a predetermined time. When (DFC) becomes lower than the freezer temperature sensor (FCC), the freezer damper 68 is opened (S-40). Thereafter, a normal cooling operation is performed (S-41).

図42のタイミングチャートで説明すると、通常冷却運転中(k〜l点)にデフロスト信号が入ると、圧縮機27と冷却ファン(FCファン)25が所定時間連続運転するプリクール制御を行なう(l〜m点)。プリクール制御中は冷蔵室ダンパ37を閉、冷凍室ダンパ68を開として冷凍室18を優先的に冷却する。プリクール制御終了後、圧縮機は停止するが、冷却器24の冷熱の有効利用と冷却器の予備除霜のために、冷却器温度センサ(DFC)がT2温度に上昇するまで、冷蔵室ダンパ37を開、冷凍室ダンパ68を閉として冷却ファン(FCファン)25を運転する冷蔵室プリ冷却&プリ除霜制御を行なう(m〜n)。そして、除霜手段26に通電しデフロストヒータの熱で冷却器24に積層した霜を溶かす(n〜o)。除霜中は冷蔵室ダンパ37を閉、冷凍室ダンパ68を開としている。   Referring to the timing chart of FIG. 42, when a defrost signal is input during normal cooling operation (points k to l), precool control is performed in which the compressor 27 and the cooling fan (FC fan) 25 continuously operate for a predetermined time (l to m points). During the precool control, the refrigerator compartment damper 37 is closed and the freezer compartment damper 68 is opened to preferentially cool the freezer compartment 18. After completion of the precool control, the compressor is stopped, but the refrigerator temperature damper (37) is increased until the cooler temperature sensor (DFC) rises to the T2 temperature for effective use of the cooler 24 and the preliminary defrosting of the cooler. Is opened, the freezer compartment damper 68 is closed, and the refrigerating room pre-cooling & pre-defrosting control for operating the cooling fan (FC fan) 25 is performed (mn). Then, the defrosting means 26 is energized to melt the frost stacked on the cooler 24 with the heat of the defrost heater (no). During the defrosting, the refrigerator compartment damper 37 is closed and the freezer compartment damper 68 is opened.

冷却器温度センサ(DFC)がT4温度以上になると除霜手段(デフロストヒータ)26をOFFするとともに、起動待ち制御を行なう(o〜p)。起動待ち制御中は、冷蔵室ダンパ37を開、冷凍室ダンパ68を開としている。その後、圧縮機27が起動するが、その時、冷却ファン(FCファン)25を所定時間OFFとするファン遅延制御を行なう(p〜q点)。ファン遅延制御中は、冷蔵室ダンパ37を開、冷凍室ダンパ68を閉としている。そして、ファン遅延制御後に冷却ファン(FCファン)25をONとするが、冷却器温度センサ(DFC)が冷凍室温度センサ(FCC)より低くなるまでは冷凍室ダン
パ68は閉状態を維持するFCダンパ遅延制御を行なう(q〜r点)。その後、冷却器温度センサ(DFC)が冷凍室温度センサ(FCC)より低くなった時点で冷凍室ダンパ68は開状態となり、その後、通常の冷却運転を行なう(r〜点)。
When the cooler temperature sensor (DFC) reaches the T4 temperature or higher, the defrosting means (defrost heater) 26 is turned off, and activation waiting control is performed (op). During start-up waiting control, the refrigerator compartment damper 37 is opened and the freezer compartment damper 68 is opened. Thereafter, the compressor 27 is started. At that time, fan delay control is performed to turn off the cooling fan (FC fan) 25 for a predetermined time (points p to q). During the fan delay control, the refrigerator compartment damper 37 is opened and the freezer compartment damper 68 is closed. Then, the cooling fan (FC fan) 25 is turned on after the fan delay control, but the freezer compartment damper 68 is kept closed until the cooler temperature sensor (DFC) becomes lower than the freezer temperature sensor (FCC). Damper delay control is performed (q to r points). Thereafter, when the cooler temperature sensor (DFC) becomes lower than the freezer temperature sensor (FCC), the freezer damper 68 is opened, and then normal cooling operation is performed (r to point).

以上説明したように、本実施の形態の冷蔵庫は、冷蔵室14と冷凍室18と、冷凍室18の後方に配置され、冷蔵室14と冷凍室18とに冷気を供給する冷却器24冷却ファン25とが収納された冷却室23と、冷却室23から冷蔵室14に供給される冷気を冷蔵室温度センサ59に基づいて制御する冷蔵室ダンパ37と、冷却室23から冷凍室18に供給される冷気を冷凍室温度センサ92に基づいて制御する冷凍室ダンパ68と、冷凍室温度センサ92に基づいて運転が制御される圧縮機27と、冷却器24の霜を溶かす除霜手段(霜取りヒータ)26と、を備え、除霜手段26通電前に、冷蔵室ダンパ37を閉、冷凍室ダンパ68を開、冷却ファン25と圧縮機27を所定時間連続運転するプリクールモードと、前記プリクールモード後に、圧縮機27を停止し、冷蔵室ダンパ37を開、冷凍室ダンパ68を閉、冷却ファン25を所定時間運転するプリ除霜モードとを有するものであり、除霜運転開始前に行なわれるプリクール運転終了後の冷却器24の冷熱を冷蔵室14の冷却に有効利用することができ、省エネ性の高い冷蔵庫を提供することができる。   As described above, the refrigerator according to the present embodiment is provided in the refrigerator compartment 14, the freezer compartment 18, the rear of the refrigerator compartment 18, and the cooler 24 cooling fan that supplies cold air to the refrigerator compartment 14 and the refrigerator compartment 18. 25, a cooling room damper 37 that controls the cooling air supplied from the cooling room 23 to the refrigerating room 14 based on the refrigerating room temperature sensor 59, and the cooling room 23 that is supplied to the freezing room 18. A freezer damper 68 for controlling the cool air based on the freezer temperature sensor 92, a compressor 27 whose operation is controlled based on the freezer temperature sensor 92, and a defrosting means (defrosting heater) for melting frost in the cooler 24. 26), and before the defrosting means 26 is energized, the precool mode in which the refrigerator compartment damper 37 is closed, the freezer compartment damper 68 is opened, and the cooling fan 25 and the compressor 27 are continuously operated for a predetermined time, and the precool mode In addition, the compressor 27 is stopped, the refrigerator compartment damper 37 is opened, the freezer compartment damper 68 is closed, and the cooling fan 25 is operated for a predetermined time, which is performed before the start of the defrosting operation. The cool heat of the cooler 24 after the end of the precool operation can be effectively used for cooling the refrigerator compartment 14, and a refrigerator with high energy saving can be provided.

また、冷却器24の霜を溶かす除霜手段26通電時は、冷蔵室ダンパ37を閉、冷凍室ダンパ68を開とするものであり、冷凍室18からの自然対流による冷気導入により、除霜手段(霜取りヒータ)26通電時の冷却器周辺の上昇気流を促進でき、冷却器24の除霜効率を高めることができる冷蔵庫を提供することができる。   When the defrosting means 26 for melting the frost in the cooler 24 is energized, the refrigerator compartment damper 37 is closed and the freezer compartment damper 68 is opened. By introducing cold air from the freezer compartment 18 by natural convection, defrosting is performed. Ascending airflow around the cooler when the means (defrosting heater) 26 is energized can be promoted, and a refrigerator capable of improving the defrosting efficiency of the cooler 24 can be provided.

また、冷凍室ダンパ68は、冷凍室18に供給された冷気が冷却室23に戻される冷凍室冷気戻り通路に設けられたものであり、冷却室23のスペースの有効活用を図りながら冷却器24の除霜効率を高めることができる。   The freezer damper 68 is provided in a freezer compartment cool air return passage through which the cool air supplied to the freezer compartment 18 is returned to the cooler chamber 23, and the cooler 24 is used while effectively utilizing the space of the cooler chamber 23. The defrosting efficiency can be increased.

また、ファン遅延制御後に冷却ファン(FCファン)25をONとするが、冷却器温度センサ(DFC)が冷凍室温度センサ(FCC)より低くなるまでは冷凍室ダンパ68は閉状態を維持するFCダンパ遅延制御を行なうので、冷却器24が十分に冷却されるまでは、冷凍室18へ冷気を供給せず、冷蔵室14側に供給することができ、冷凍室18の温度上昇防止と冷蔵室14の効率的な冷却ができる。   The cooling fan (FC fan) 25 is turned ON after the fan delay control, but the freezer damper 68 is kept closed until the cooler temperature sensor (DFC) becomes lower than the freezer temperature sensor (FCC). Since the damper delay control is performed, until the cooler 24 is sufficiently cooled, the cool air is not supplied to the freezer compartment 18 but can be supplied to the refrigerating compartment 14 side, preventing the temperature rise of the freezer compartment 18 and the refrigerator compartment. 14 efficient cooling.

また、冷却器温度センサ(DFC)が冷凍室温度センサ(FCC)より低くなった時点で冷凍室ダンパ68は開状態となるので、冷却器24で十分に冷却された冷気を冷凍室18へ供給することができ、冷凍室18の温度上昇防止を確実に行なうことができる。   Further, since the freezer damper 68 is opened when the cooler temperature sensor (DFC) becomes lower than the freezer temperature sensor (FCC), the cold air sufficiently cooled by the cooler 24 is supplied to the freezer 18. Therefore, it is possible to reliably prevent the temperature increase in the freezer compartment 18.

なお、冷却器温度センサ(DFC)がT2温度に上昇するまで、冷蔵室ダンパ37を開、冷凍室ダンパ68を閉として冷却ファン(FCファン)25を運転する冷蔵室プリ冷却&プリ除霜制御中の冷却ファン(FCファン)25の回転数は圧縮機27がON中の回転数より大きくしてもよい。この場合、冷蔵室プリ冷却&プリ除霜制御時間を短縮でき、冷却器24の冷熱の効率的な利用と、総合的な除霜時間を短縮することができ、冷凍室18の除霜による温度上昇を抑制することができる。   It should be noted that the refrigerator compartment pre-cooling & pre-defrost control for operating the cooling fan (FC fan) 25 with the refrigerator compartment damper 37 open and the refrigerator compartment damper 68 closed until the cooler temperature sensor (DFC) rises to the T2 temperature. The rotational speed of the cooling fan (FC fan) 25 inside may be larger than the rotational speed when the compressor 27 is ON. In this case, the refrigerating room pre-cooling & pre-defrosting control time can be shortened, the cooler 24 can be efficiently used, and the overall defrosting time can be shortened. The rise can be suppressed.

また、除霜終了後の起動待ち制御中、ファン遅延制御中、FCダンパ遅延制御中、のいずれかのモード開始時、または各モード開始時に、冷蔵室ダンパ37、および/または、冷凍室ダンパ68のフラップを強制的に全開、前閉を1往復する開閉制御を行なうことが望ましい。これにより除霜後に各ダンパのフラップ近傍に付着した水分を取り除くことができ、水分の氷結による各ダンパの不具合を抑制することができ、冷蔵庫の信頼性を高めることができる。   In addition, the refrigerator compartment damper 37 and / or the freezer compartment damper 68 at the start of any mode of start waiting control after completion of defrosting, fan delay control, FC damper delay control, or at the start of each mode. It is desirable to perform open / close control that forcibly opens the flaps fully and reciprocates once before and after. Thereby, the moisture adhering to the vicinity of the flap of each damper after defrosting can be removed, the malfunction of each damper due to moisture icing can be suppressed, and the reliability of the refrigerator can be improved.

<2−5.野菜室の温湿度制御>
図43は本実施の形態の冷蔵庫の野菜室の湿度センサによる野菜室ヒータの制御を示すフローチャート、図44は本実施の形態の冷蔵庫の野菜室の湿度センサによる野菜室ヒータの外気温度と通電率の関係を示すグラフである。
<2-5. Temperature and humidity control in vegetable room>
FIG. 43 is a flowchart showing the control of the vegetable room heater by the humidity sensor in the vegetable room of the refrigerator of the present embodiment, and FIG. 44 is the outside temperature and the energization rate of the vegetable room heater by the humidity sensor of the vegetable room of the refrigerator of the present embodiment. It is a graph which shows the relationship.

図43において、野菜室湿度センサ78で野菜室内の湿度を測定する(S−51)。野菜室内の湿度がH1以下かを判断し(S−52)、H1以下であれば野菜室ヒータ79を通電率Kで通電制御する(S−53)。そして所定時間(T4)通電率Kで通電制御する(S−54)。また、S−52で野菜室内の湿度がH1以上であれば、さらにH2以上かを判断する(S−55)。H2以上であれば野菜室ヒータ79を通電率Lで通電制御する(S−56)。そして所定時間(T4)通電率Lで通電制御する(S−57)。また、S−55で野菜室内の湿度がH2以下(すなわち野菜室内の湿度がH1〜H2の間)であれば、野菜室ヒータ79を通電率Mで通電制御する(S−58)。そして所定時間(T4)通電率Mで通電制御する(S−59)。   In FIG. 43, the humidity in the vegetable compartment is measured by the vegetable compartment humidity sensor 78 (S-51). It is determined whether the humidity in the vegetable compartment is H1 or less (S-52), and if it is H1 or less, the vegetable compartment heater 79 is energized and controlled at an energization rate K (S-53). Then, energization control is performed at an energization rate K for a predetermined time (T4) (S-54). If the humidity in the vegetable room is H1 or higher in S-52, it is further determined whether it is H2 or higher (S-55). If it is H2 or more, the vegetable room heater 79 is energized at the energization rate L (S-56). Then, energization control is performed at an energization rate L for a predetermined time (T4) (S-57). If the humidity in the vegetable compartment is equal to or lower than H2 in S-55 (that is, the humidity in the vegetable compartment is between H1 and H2), the vegetable compartment heater 79 is energized and controlled at the energization rate M (S-58). Then, energization control is performed at an energization rate M for a predetermined time (T4) (S-59).

具体的には、図44に示すように、野菜室湿度センサ78による野菜室ヒータ79の通電率は外気温度毎に決められており、例えば高湿時(85%以上)は、中湿時(20〜85%)より野菜室ヒータ79の通電率を高くし、低湿時(20%以下)は、中湿時(20〜85%)より野菜室ヒータ79の通電率を低くする。   Specifically, as shown in FIG. 44, the energization rate of the vegetable room heater 79 by the vegetable room humidity sensor 78 is determined for each outside air temperature. For example, when the humidity is high (85% or more) The energization rate of the vegetable room heater 79 is set higher than 20 to 85%, and the energization rate of the vegetable room heater 79 is made lower during low humidity (20% or less) than during medium humidity (20 to 85%).

これにより、野菜室野菜室内の湿度に応じた野菜室ヒータの通電率の制御が可能となり、簡素な構造で、野菜室17内を高湿に保ちながら野菜室17内の結露を防止することができる。そして、野菜室湿度センサがない従来の冷蔵庫では、結露に対する信頼性と省エネ性のバランスから中湿条件を基に野菜室ヒータの通電率を決定するが、本実施の形態では、野菜室湿度センサ78の検出結果に応じて野菜室ヒータ79の適切な通電制御が可能となり、結露に対する信頼性と省エネ性を高次元でバランスさせることができ、省エネ性と野菜室の保鮮性を両立することができる。   Thereby, it becomes possible to control the energization rate of the vegetable room heater according to the humidity in the vegetable room vegetable room, and with a simple structure, it is possible to prevent condensation in the vegetable room 17 while keeping the inside of the vegetable room 17 highly humid. it can. And in the conventional refrigerator without the vegetable room humidity sensor, the energization rate of the vegetable room heater is determined based on the medium humidity condition from the balance of reliability against condensation and energy saving, but in this embodiment, the vegetable room humidity sensor Appropriate energization control of the vegetable room heater 79 is possible according to the detection result of 78, the reliability against condensation and energy saving can be balanced at a high level, and both energy saving and freshness of the vegetable room can be achieved. it can.

以上説明したように、本実施の形態の冷蔵庫は、冷蔵室14と冷凍室18と野菜室17と、冷凍室18の後方に配置され、冷蔵室14と冷凍室18と野菜室17に冷気を供給する冷却器24と冷却ファン25とが収納された冷却室23と、冷却室23から冷蔵室14に供給される冷気を制御する冷蔵室ダンパ37と、冷却室23から野菜室17に供給される冷気を制御する野菜室ダンパ75と、野菜室内の湿度を検出する野菜室湿度センサ78と、野菜室17を加温する野菜室ヒータ79と、を備え、野菜室内の検出温度に基づいて野菜室ダンパ75は開閉制御され、野菜室ヒータ79は野菜室湿度センサ78の検出湿度に基づいて通電制御されるものであり、野菜室内の湿度に応じた野菜室ヒータ79の通電率の制御が可能となり、簡素な構造で、野菜室内を高湿に保ちながら野菜室内の結露を防止することができる冷蔵庫を提供することができる。   As described above, the refrigerator according to the present embodiment is disposed at the rear of the refrigerator compartment 14, the freezer compartment 18, the vegetable compartment 17, and the freezer compartment 18, and cools the refrigerator compartment 14, the freezer compartment 18, and the vegetable compartment 17. A cooling chamber 23 in which a cooler 24 and a cooling fan 25 to be supplied are housed, a refrigerating chamber damper 37 for controlling the cool air supplied from the cooling chamber 23 to the refrigerating chamber 14, and the vegetable compartment 17 from the cooling chamber 23 are supplied. A vegetable room damper 75 for controlling the cold air, a vegetable room humidity sensor 78 for detecting the humidity in the vegetable room, and a vegetable room heater 79 for heating the vegetable room 17, and vegetables based on the detected temperature in the vegetable room The room damper 75 is controlled to open and close, and the vegetable room heater 79 is energized and controlled based on the humidity detected by the vegetable room humidity sensor 78, and the energization rate of the vegetable room heater 79 can be controlled in accordance with the humidity in the vegetable room. And simple In concrete, it is possible to provide a refrigerator that it is possible to prevent the condensation of vegetable room while maintaining the vegetable room in high humidity.

また、野菜室湿度センサ78は野菜室17の天面部に配置されたものであり、野菜室内の湿度を精度良く検知することができる。   Moreover, the vegetable room humidity sensor 78 is arrange | positioned at the top | upper surface part of the vegetable room 17, and can detect the humidity in a vegetable room accurately.

また、野菜室ヒータ79は野菜室17の上方の貯蔵室との区画壁に配置されたものであり、野菜室内の特に結露し易い天面の結露を確実に防止することができる。   Further, the vegetable room heater 79 is disposed on a partition wall with the storage room above the vegetable room 17, and can reliably prevent condensation on the top surface that is particularly likely to condense in the vegetable room.

<2−6.冷蔵室の収納量検知制御>
図45は本実施の形態の冷蔵庫における冷蔵室内の収納量の検知結果に基づいて行なう冷却システム制御を示すフローチャートである。
<2-6. Storage amount detection control of refrigerator compartment>
FIG. 45 is a flowchart showing cooling system control performed based on the detection result of the storage amount in the refrigerator in the refrigerator of the present embodiment.

図において、冷蔵室14の扉7(PCドア)の閉扉をドアスイッチが検知すると(S−
61)、冷蔵室14内の照明であるLEDが照射され、冷蔵室光センサ97で照度を検出し、メモリーに記憶された前回の照度(変換された電圧値)と今回の照度(変換された電圧値)との差分を判定する(S−62)。そして、前回の照度(変換された電圧値)と今回の照度(変換された電圧値)とを比較して、冷蔵室14内の収納量の変化量を算出する(S−62)。そして、収納量の増加量が所定閾値を超えた場合は、省エネ運転を解除する制御を行なう。一方、収納量の増加量が所定閾値を超えない場合は、省エネ運転を継続する。
In the figure, when the door switch detects that the door 7 (PC door) of the refrigerator compartment 14 is closed (S-
61) The LED, which is the illumination in the refrigerator compartment 14, is irradiated, the illuminance is detected by the refrigerator compartment optical sensor 97, and the previous illuminance (converted voltage value) stored in the memory and the current illuminance (converted) The difference from the voltage value is determined (S-62). Then, the previous illuminance (converted voltage value) and the current illuminance (converted voltage value) are compared to calculate the amount of change in the storage amount in the refrigerator compartment 14 (S-62). Then, when the increase amount of the storage amount exceeds a predetermined threshold, control for canceling the energy saving operation is performed. On the other hand, when the increase amount of the storage amount does not exceed the predetermined threshold, the energy saving operation is continued.

そして、冷蔵室14の扉7(PCドア)の閉扉をドアスイッチが検知してから所定時間(例えば30分)以内に冷蔵室14の扉7が開放されたかを判定し(S−63)、扉7の開放があれば、S−61に戻る。S−63で所定時間(例えば30分)の間、扉7の開放がなければ、冷蔵室14内の照明であるLEDを照射し、予め保有する冷蔵室光センサの照度(変換された電圧値)と冷蔵室内収納量との相関データから冷蔵室14内の絶対収納量を算出する(S―64)。   Then, it is determined whether the door 7 of the refrigerator compartment 14 is opened within a predetermined time (for example, 30 minutes) after the door switch detects that the door 7 (PC door) of the refrigerator compartment 14 is closed (S-63). If the door 7 is opened, the process returns to S-61. If the door 7 is not opened for a predetermined time (e.g., 30 minutes) in S-63, the LED (illumination) in the refrigerator compartment 14 is irradiated and the illuminance (converted voltage value) of the refrigerator compartment light sensor held in advance. ) And the stored data in the refrigerator compartment, the absolute storage quantity in the refrigerator compartment 14 is calculated (S-64).

そして、絶対収納量がS2より多い場合、収納量が多い場合のモードPを選択し(S−67)、ファン電圧や各室の温調設定を変更し、圧縮機の回転数上昇制御を抑制する(S−70)。一方、S−65で絶対収納量がS2以下の場合、絶対収納量がS1からS2の間かを判定する(S−66)。そして、絶対収納量がS1からS2の間であれば、収納量が中位の場合のモードQを選択し(S−68)、圧縮機の回転数上昇制御を抑制する(S−71)。また、絶対収納量がS1より少ない場合、収納量が少ない場合のモードRを選択し(S−69)、圧縮機の回転数上昇制御を抑制する(S−72)。   Then, when the absolute storage amount is larger than S2, the mode P when the storage amount is large is selected (S-67), the fan voltage and the temperature control setting of each chamber are changed, and the compressor speed increase control is suppressed. (S-70). On the other hand, if the absolute storage amount is S2 or less in S-65, it is determined whether the absolute storage amount is between S1 and S2 (S-66). If the absolute storage amount is between S1 and S2, the mode Q when the storage amount is medium is selected (S-68), and the compressor speed increase control is suppressed (S-71). Further, when the absolute storage amount is smaller than S1, the mode R when the storage amount is small is selected (S-69), and the compressor speed increase control is suppressed (S-72).

なお、上記モードP、Q、Rでの制御の変更は、S−65,S−66の判定直後ではなく、圧縮機が一旦OFFとなり、次の圧縮機27のON時にそれぞれのードP、Q、Rの制御の変更を行なう。   Note that the control change in the modes P, Q, and R is not immediately after the determination of S-65 and S-66, but the compressor is temporarily turned OFF, and each of the nodes P and P when the next compressor 27 is turned ON. The control of Q and R is changed.

以上説明したように、本実施の形態の冷蔵庫は、冷蔵室内にLED照明80と冷蔵室光センサ81を備え、閉扉検知後にLED照明80と冷蔵室光センサ81とにより冷蔵室内の前回と今回との収納変化量を検出するとともに、閉扉検知して所定時間、開扉が行なわれない場合、LED照明80と冷蔵室光センサ81とにより冷蔵室内の絶対収納量を検出するものであり、貯蔵室内の収納量に応じた適切な冷却制御ができ、使い勝手のよい冷蔵庫を提供することができる。   As described above, the refrigerator according to the present embodiment includes the LED illumination 80 and the refrigerator compartment light sensor 81 in the refrigerator compartment, and the LED illumination 80 and the refrigerator compartment light sensor 81 detect the previous and present times in the refrigerator compartment after the closing of the door is detected. When the door is not opened for a predetermined time after the door is detected, the LED lighting 80 and the refrigerator light sensor 81 detect the absolute storage amount in the refrigerator compartment. Therefore, it is possible to provide an easy-to-use refrigerator that can perform appropriate cooling control in accordance with the amount of storage.

また、LED照明80と冷蔵室光センサ81とにより検出された冷蔵室内の前回と今回との収納変化量に基づいて、省エネ運転の継続か解除かを判断し運転制御するものであり、使用者の使い方を加味した適切な冷却制御ができる。   Further, based on the storage change amount between the previous time and the current time in the refrigerator compartment detected by the LED lighting 80 and the refrigerator compartment light sensor 81, it is determined whether to continue or cancel the energy saving operation, and the operation is controlled. Appropriate cooling control that takes into account how to use is possible.

また、LED照明80と冷蔵室光センサ81とにより検出された冷蔵室内の絶対収納量に基づいて、圧縮機の回転数シフトアップ運転を制御するものであり、冷蔵室内の絶対収納量に応じた圧縮機27の回転数を選択することができ、より貯蔵室内の収納量に応じた適切な冷却制御ができる。   Moreover, based on the absolute storage amount in the refrigerator compartment detected by the LED lighting 80 and the refrigerator compartment light sensor 81, the rotation speed up-shifting operation of the compressor is controlled, and according to the absolute storage amount in the refrigerator compartment. The number of rotations of the compressor 27 can be selected, and more appropriate cooling control according to the storage amount in the storage chamber can be performed.

また、本実施の形態では、冷蔵室14の扉7(PCドア)の閉扉をドアスイッチが検知してから所定時間(例えば30分)以内に冷蔵室14の扉7の開放がない場合に、冷蔵室14内の照明であるLEDを照射し、予め保有する冷蔵室光センサ81の照度(変換された電圧値)と冷蔵室内収納量との相関データから冷蔵室14内の絶対収納量を算出するので、冷蔵室14の扉7開閉による外気侵入で、一時的に冷蔵室14内の照明であるLED近傍や冷蔵室光センサ81近傍に結露や曇りが発生しても、所定時間(例えば30分)閉扉の状態を確保しているので、結露や曇り等の外乱を排除でき、冷蔵室14内の絶対収納
量を精度よく算出することができる。
Further, in the present embodiment, when the door 7 of the refrigerator compartment 14 is not opened within a predetermined time (for example, 30 minutes) after the door switch detects that the door 7 (PC door) of the refrigerator compartment 14 is closed, The LED, which is the illumination in the refrigerator compartment 14, is irradiated, and the absolute storage amount in the refrigerator compartment 14 is calculated from the correlation data between the illuminance (converted voltage value) of the cold compartment optical sensor 81 and the storage amount in the refrigerator compartment. Therefore, even if dew condensation or clouding occurs in the vicinity of the LED or the refrigeration room light sensor 81 that is temporarily illuminated in the refrigeration room 14 due to the intrusion of outside air by opening and closing the door 7 of the refrigeration room 14, a predetermined time (for example, 30 Min) Since the closed state is ensured, disturbances such as condensation and cloudiness can be eliminated, and the absolute storage amount in the refrigerator compartment 14 can be calculated with high accuracy.

そして、上記モードP、Q、Rでの制御の変更は、S−65,S−66の判定直後ではなく、圧縮機が一旦OFFとなり、次の圧縮機27のON時にそれぞれのードP、Q、Rの制御の変更を行なうことにより、より安定した冷却制御を行なうことができる。   The control change in the modes P, Q, and R is not immediately after the determination of S-65 and S-66, but the compressor is temporarily turned off, and each of the nodes P, By changing the control of Q and R, more stable cooling control can be performed.

本発明は、各貯蔵室への冷気量を制御するダンパを備えた冷蔵庫において、冷蔵室ダンパ開、かつ冷凍室ダンパ開状態で圧縮機が停止した場合、圧縮機停止後の所定時間、冷凍室ダンパ閉で冷蔵室ダンパを開状態として送風機を運転するものであり、家庭用および業務用など様々な種類および大きさの間冷式の冷蔵庫に適用することができる。   The present invention relates to a refrigerator provided with a damper for controlling the amount of cold air to each storage room, when the compressor is stopped when the refrigerator compartment damper is open and the freezer damper is open, for a predetermined time after the compressor is stopped. The blower is operated with the damper closed and the refrigerating room damper opened, and can be applied to refrigerators of various types and sizes such as home use and business use.

1 冷蔵庫本体
2 外箱
3 内箱
4 発泡断熱材
5、6 仕切板
7、8、9、10、11 扉
14 冷蔵室
15 切替室
16 製氷室
17 野菜室
17a 野菜室容器
18 冷凍室
20 棚板
21 パーシャル室(低温室)
22 チルド室(低温室)
22a 冷気入口
23 冷却室
23a 底面
24 冷却器
25 冷却ファン
26 除霜手段(ガラス管ヒータ、霜取りヒータ、デフロストヒータ)
26a ヒータ部
27 圧縮機
28 冷蔵室ダクト
28a ダクト部材
28b ダクトカバー
28bb 装着部
28c 延出リブ
28d 側面吐出口
29 冷凍室ダクト
30 野菜室ダクト
31 冷却室形成板
32 冷凍室背面板
33 第1冷気供給口
34 第2冷気供給口
35 ヒータカバー
36 排水口
37 冷蔵室ダンパ
38 ダンパ固定枠
39 冷蔵室用ダンパ部
40 パーシャル室用ダンパ部
41 冷蔵ダンパ駆動用モータユニット
43 天井板
44 チルド室容器
45 冷気戻り口(チルド側)
46 冷気戻り通路部(チルド側)
47 チルド室扉兼把手部
48 開口部
49 温度調節用ヒータ
50 天井板部材
51 パーシャル室扉
52 パーシャル室容器
53 断熱材
54 パーシャル冷気通路
55 冷気戻り口(パーシャル側)
56 冷気戻り通路部(パーシャル側)
57 冷気合流戻り口
58 冷蔵室戻りダクト
58a、58b 凹状溝
59 冷蔵室温度センサ
60 パーシャル室温度センサ
61 脱臭ユニット
62 冷凍室容器
62a 下段容器
62b 上段容器
63 冷気吹出し口
64 冷凍冷気戻り口
65 冷凍室側口枠部
66 冷却室側口枠部
66a 下辺
66b 間隙部分
67 グリル
68 冷凍室ダンパ
69 グリル片
70 ダンパ枠体
71 フラップ
72 冷凍ダンパ駆動用モータユニット
73 爪片
74 開口
75 野菜室ダンパ
75a ダンパ片
76 野菜ダンパ駆動用モータユニット
77 遮熱板
78 野菜室湿度センサ
79 野菜室ヒータ(VCヒータ)
80 LED照明
81 冷蔵室光センサ
90 マイコン
91 外気温度センサ(ATC)
92 冷凍室温度センサ(FCC)
93 野菜室温度センサ(VCC)
94 冷却器温度センサ(DFC)
95 扉開閉検知手段(ドアスイッチ)
96 外部照度センサ
97 冷蔵室光センサ
98 パーシャル室ダンパ(PFダンパ)
DESCRIPTION OF SYMBOLS 1 Refrigerator main body 2 Outer box 3 Inner box 4 Foam insulation material 5, 6 Partition plate 7, 8, 9, 10, 11 Door 14 Refrigeration room 15 Switching room 16 Ice making room 17 Vegetable room 17a Vegetable room container 18 Freezing room 20 Shelf board 21 Partial room (low temperature room)
22 Chilled room (low temperature room)
22a Cold air inlet 23 Cooling chamber 23a Bottom 24 Cooler 25 Cooling fan 26 Defrosting means (glass tube heater, defrost heater, defrost heater)
26a heater section 27 compressor 28 refrigerator compartment duct 28a duct member 28b duct cover 28bb mounting section 28c extension rib 28d side outlet 29 freezer compartment duct 30 vegetable compartment duct 31 cooling compartment forming plate 32 freezer compartment rear plate 33 first cold air supply Port 34 Second cold air supply port 35 Heater cover 36 Drain port 37 Refrigeration room damper 38 Damper fixing frame 39 Refrigeration room damper part 40 Partial room damper part 41 Refrigeration damper drive motor unit 43 Ceiling plate 44 Chilled room container 45 Cold air return Mouth (chilled side)
46 Cool air return passage (chilled side)
47 Chilled chamber door / grip 48 Opening 49 Temperature control heater 50 Ceiling plate member 51 Partial chamber door 52 Partial chamber container 53 Thermal insulation material 54 Partial cold air passage 55 Cold air return port (partial side)
56 Cold air return passage (partial side)
57 Cold air confluence return port 58 Refrigerating chamber return ducts 58a, 58b Recessed groove 59 Refrigerating chamber temperature sensor 60 Partial chamber temperature sensor 61 Deodorizing unit 62 Freezer chamber vessel 62a Lower vessel 62b Upper vessel 63 Cold air outlet 64 Freezing cold air return port 65 Freezer chamber Side opening frame portion 66 Cooling chamber side opening frame portion 66a Lower side 66b Gap portion 67 Grill 68 Freezer compartment damper 69 Grill piece 70 Damper frame body 71 Flap 72 Freezing damper drive motor unit 73 Claw piece 74 Opening 75 Vegetable room damper 75a Damper piece 76 Vegetable damper drive motor unit 77 Heat shield plate 78 Vegetable room humidity sensor 79 Vegetable room heater (VC heater)
80 LED lighting 81 Light sensor in refrigerator compartment 90 Microcomputer 91 Outside temperature sensor (ATC)
92 Freezer temperature sensor (FCC)
93 Vegetable room temperature sensor (VCC)
94 Cooler temperature sensor (DFC)
95 Door open / close detection means (door switch)
96 External illuminance sensor 97 Refrigeration room light sensor 98 Partial room damper (PF damper)

Claims (3)

冷蔵室と冷凍室と、前記冷凍室の後方に配置され、前記冷蔵室と前記冷凍室とに冷気を供給する冷却器と送風機とが収納された冷却室と、前記冷却室から前記冷蔵室に供給される冷気を冷蔵室温度センサに基づいて制御する冷蔵室ダンパと、前記冷却室から前記冷凍室に供給される冷気を冷凍室温度センサに基づいて制御する冷凍室ダンパと、前記冷凍室温度センサに基づいて運転が制御される圧縮機と、を備え、前記冷蔵室ダンパ開、かつ前記冷凍室ダンパ開状態で前記圧縮機が停止した場合、前記圧縮機停止後の所定時間、前記冷凍室ダンパ閉で前記冷蔵室ダンパを開状態として前記送風機を運転する冷蔵庫。 A refrigerating room, a freezing room, a cooling room disposed behind the freezing room, for supplying a cooler for supplying cold air to the refrigerating room and the freezing room, and a blower; and from the cooling room to the refrigerating room A refrigeration room damper that controls the supplied cold air based on a refrigeration room temperature sensor, a freezer room damper that controls the cold air supplied from the cooling room to the freezer room, based on a freezer temperature sensor, and the freezer temperature. A compressor whose operation is controlled based on a sensor, and when the compressor is stopped in the open state of the refrigerating chamber damper and in the open state of the freezer chamber damper, the freezing chamber for a predetermined time after the compressor stops A refrigerator that operates the blower by closing the damper and opening the refrigerator compartment damper. 前記圧縮機停止後の所定時間は、前記冷蔵室温度センサが前記冷蔵室ダンパを閉動作させる温度に達するまでとした請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the predetermined time after the compressor is stopped is a temperature until the cold room temperature sensor reaches a temperature at which the cold room damper is closed. 前記圧縮機停止後の所定時間、前記冷凍室ダンパ閉で前記冷蔵室ダンパを開状態として運転する前記送風機の回転数は、前記圧縮機運転中の回転数より小さくした請求項1または2に記載の冷蔵庫。 3. The rotation speed of the blower that operates with the freezer compartment damper closed and the refrigerator compartment damper open for a predetermined time after the compressor is stopped is smaller than the rotation speed during the compressor operation. Refrigerator.
JP2017000912A 2017-01-06 2017-01-06 refrigerator Active JP6895605B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017000912A JP6895605B2 (en) 2017-01-06 2017-01-06 refrigerator
PCT/JP2017/045901 WO2018128085A1 (en) 2017-01-06 2017-12-21 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017000912A JP6895605B2 (en) 2017-01-06 2017-01-06 refrigerator

Publications (2)

Publication Number Publication Date
JP2018109488A true JP2018109488A (en) 2018-07-12
JP6895605B2 JP6895605B2 (en) 2021-06-30

Family

ID=62844341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017000912A Active JP6895605B2 (en) 2017-01-06 2017-01-06 refrigerator

Country Status (1)

Country Link
JP (1) JP6895605B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111201A (en) * 2021-11-09 2022-03-01 Tcl家用电器(合肥)有限公司 Refrigerator refrigeration control method and device, control equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101005A (en) * 2002-09-06 2004-04-02 Mitsubishi Electric Corp Refrigerator and operation method for refrigerator
JP2011058689A (en) * 2009-09-09 2011-03-24 Hitachi Appliances Inc Refrigerator
JP2013100926A (en) * 2011-11-07 2013-05-23 Sharp Corp Refrigerator
JP2015222131A (en) * 2014-05-22 2015-12-10 ハイアールアジア株式会社 refrigerator
JP2016065711A (en) * 2015-12-15 2016-04-28 シャープ株式会社 refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101005A (en) * 2002-09-06 2004-04-02 Mitsubishi Electric Corp Refrigerator and operation method for refrigerator
JP2011058689A (en) * 2009-09-09 2011-03-24 Hitachi Appliances Inc Refrigerator
JP2013100926A (en) * 2011-11-07 2013-05-23 Sharp Corp Refrigerator
JP2015222131A (en) * 2014-05-22 2015-12-10 ハイアールアジア株式会社 refrigerator
JP2016065711A (en) * 2015-12-15 2016-04-28 シャープ株式会社 refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111201A (en) * 2021-11-09 2022-03-01 Tcl家用电器(合肥)有限公司 Refrigerator refrigeration control method and device, control equipment and storage medium
CN114111201B (en) * 2021-11-09 2023-09-19 Tcl家用电器(合肥)有限公司 Refrigerator refrigeration control method, device, control equipment and storage medium

Also Published As

Publication number Publication date
JP6895605B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
US7698902B2 (en) Defrost operating method for refrigerator
JP6925514B2 (en) refrigerator
AU2007339559A1 (en) Cooling a separate room in a refrigerator
JP2018109491A (en) refrigerator
JP2018109489A (en) refrigerator
JP4872558B2 (en) refrigerator
JP6861336B2 (en) refrigerator
JP6890220B2 (en) refrigerator
JP6895605B2 (en) refrigerator
JP6890502B2 (en) refrigerator
JP2018109487A (en) refrigerator
CN110345695B (en) Refrigerator with a door
JP2018109490A (en) refrigerator
WO2018128085A1 (en) Refrigerator
TWI678506B (en) refrigerator
CN109416212B (en) Refrigeration device
JPH11148759A (en) Refrigerator equipped with two sets of evaporators
KR20080076269A (en) Refrigerator
KR100678777B1 (en) Refrigerator
JP2021081180A (en) refrigerator
JP2009293808A (en) Refrigerator
JP5271134B2 (en) Freezer refrigerator
JP2018109501A (en) refrigerator
JP5596932B2 (en) Control method and control device for door heater in cooling storage
JP2010230221A (en) Method and device for controlling door heater in cooling storage

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210503

R151 Written notification of patent or utility model registration

Ref document number: 6895605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151