WO2018128085A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2018128085A1
WO2018128085A1 PCT/JP2017/045901 JP2017045901W WO2018128085A1 WO 2018128085 A1 WO2018128085 A1 WO 2018128085A1 JP 2017045901 W JP2017045901 W JP 2017045901W WO 2018128085 A1 WO2018128085 A1 WO 2018128085A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerator
damper
compartment
room
chamber
Prior art date
Application number
PCT/JP2017/045901
Other languages
French (fr)
Japanese (ja)
Inventor
堀尾 好正
翔太 垣内
智弘 藤田
芳嘉 紅林
一瑳 多賀
孝亮 服部
和也 平
慶修 有年
淳宏 大島
今田 寛訓
宏亮 佐野
渡邉 正人
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017000914A external-priority patent/JP2018109490A/en
Priority claimed from JP2017000913A external-priority patent/JP2018109489A/en
Priority claimed from JP2017000911A external-priority patent/JP2018109487A/en
Priority claimed from JP2017000912A external-priority patent/JP6895605B2/en
Priority claimed from JP2017000910A external-priority patent/JP6890220B2/en
Priority claimed from JP2017000915A external-priority patent/JP2018109491A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018128085A1 publication Critical patent/WO2018128085A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts

Definitions

  • This disclosure relates to a refrigerator.
  • the refrigerator compartment damper and the freezer compartment damper control the opening and closing of the flaps of the refrigerator compartment damper and the freezer compartment damper according to the temperatures of the refrigerator compartment and the freezer compartment, respectively.
  • cold air is introduced into each room when the flaps of the dampers are open, and cold air is stopped in each room when the flaps of the dampers are closed. For this reason, it has the subject that the temperature fluctuation in each room becomes large.
  • the cold air generated by the cooler during operation of the compressor is supplied to the refrigerator compartment and the freezer compartment by the blower via the refrigerator compartment damper and the freezer compartment damper, It is cooled to a predetermined temperature.
  • the blower is also stopped, and when the temperature in the freezer compartment becomes high, the cycle in which the compressor is operated again is repeated.
  • the precool operation is performed before the start of the defrosting operation, and the rise in the internal temperature during the defrosting operation can be suppressed.
  • the defrosting operation since the defrosting operation is started immediately after the end of the precool operation, the cooling of the cooler after the end of the precool operation, which is supercooled in the precool operation, is not effectively used. It has the subject that cooling efficiency falls.
  • the storage load in the cabinet after the door is closed is detected.
  • the conventional refrigerator as described above detects the amount of change (storage change amount) between the storage amount after the previous door opening and closing and the storage amount after the current door opening and closing in the storage chamber, However, there is a problem that appropriate cooling control according to the storage amount in the storage chamber cannot be performed.
  • the present disclosure has been made in view of the conventional problems as described above, and provides a refrigerator capable of reducing temperature fluctuation in a storage chamber.
  • a refrigerator includes a storage room, a cooler that supplies cold air to the storage room, a cooling room that houses a blower, and a damper that controls the cold air supplied from the cooling room to the storage room.
  • the damper has a flap and a drive device.
  • the refrigerator according to an example of the present disclosure is configured such that the flap operation by the driving device is performed by dividing the flap opening / closing control for controlling the opening / closing of the flap and the flap opening degree control for controlling the opening / closing angle of the flap. ing.
  • Such a configuration makes it possible to control the flap opening of the damper when it is necessary to reduce the temperature fluctuation in the storage chamber. Therefore, with such a configuration, it is possible to reduce complicated control such as flap origin position confirmation control required for damper flap opening control by a stepping motor or the like of the driving device. Therefore, with such a configuration, it is possible to provide a refrigerator that can improve energy saving with simple specifications and can perform cooling with high reliability.
  • the refrigerator according to an example of the present disclosure may include a refrigerator room and a freezer room as a storage room.
  • the cooling chamber may be disposed behind the freezing chamber.
  • the damper includes a refrigerator compartment damper that controls cold air supplied from the cooling chamber to the refrigerator compartment, and a freezer compartment damper that controls cold air supplied from the cooling chamber to the freezer compartment. You may do it.
  • the refrigerator according to an example of the present disclosure is configured such that the flaps of the refrigerator compartment damper and the freezer compartment damper are controlled independently.
  • a refrigerator according to an example of the present disclosure may have an energy saving operation condition and a normal operation condition as operation conditions.
  • the refrigerator according to an example of the present disclosure may be configured such that the flap opening degree control is performed during the energy saving operation condition and the flap opening / closing control is performed during the normal operation condition.
  • the present disclosure provides a refrigerator that can reduce temperature fluctuation in each storage chamber.
  • a refrigerator includes a storage chamber, a cooler that supplies cool air to the storage chamber, a cooling chamber in which a blower is stored, and cold air supplied from the cooling chamber to the storage chamber in a duct.
  • a storage room temperature sensor for detecting the temperature in the storage room may be provided.
  • the damper may have a flap and a drive device as described above.
  • the refrigerator according to an example of the present disclosure may be configured such that the flap operation by the driving device is performed by flap opening control that controls the opening (opening / closing angle) of the flap.
  • the refrigerator according to an example of the present disclosure is configured such that the flap opening degree is changed by changing the flap angle by the driving device based on the average temperature of the storage room temperature sensor and the storage room target temperature during a predetermined time before the flap operation in the damper. You may be comprised so that control may be performed.
  • the temperature fluctuation in the storage chamber can be reduced to approach the storage chamber target temperature. Therefore, with such a configuration, an easy-to-use refrigerator with improved energy saving can be provided.
  • the refrigerator according to an example of the present disclosure may have a refrigerator compartment and a freezer compartment as a storage compartment.
  • the cooling chamber may be disposed behind the freezing chamber.
  • a refrigerator according to an example of the present disclosure includes, as dampers, a refrigerator compartment damper that controls cool air supplied from the refrigerator compartment to the refrigerator compartment, and a freezer compartment damper that controls cool air supplied from the refrigerator compartment to the freezer compartment. You may do it.
  • the refrigerator according to an example of the present disclosure may be configured such that the flaps of the refrigerator compartment damper and the freezer compartment damper are independently controlled.
  • the refrigerator according to an example of the present disclosure may have energy saving operation conditions as operation conditions.
  • the refrigerator according to an example of the present disclosure may be configured such that the flap opening degree control is performed during the energy saving operation condition.
  • the present disclosure provides a refrigerator that can efficiently cool the refrigerator compartment by effectively using the cold energy of the cooler while the compressor is stopped and suppressing the thermal influence on the freezer compartment.
  • a refrigerator according to an example of the present disclosure includes a refrigerator room and a freezer room as a storage room.
  • a refrigerator according to an example of the present disclosure includes a cooling chamber that is disposed behind the freezer compartment and that stores a cooler and a blower that supply cold air to the refrigerator compartment and the freezer compartment.
  • the refrigerator by an example of this indication has the refrigerating room temperature sensor provided in the refrigerating room, and the refrigerating room temperature sensor provided in the freezer compartment.
  • a refrigerator according to an example of the present disclosure includes a refrigerating room damper that controls cold air supplied from the cooling room to the refrigerating room based on the refrigerating room temperature sensor, and cool air supplied from the cooling room to the freezing room.
  • a refrigerator includes a compressor whose operation is controlled based on a detection result of a freezer temperature sensor.
  • the freezer damper when the refrigerator is in the open state, the freezer damper is in the open state, and the compressor is stopped, the freezer damper is in the closed state for a predetermined time after the compressor is stopped.
  • the blower is configured to operate with the damper opened.
  • the refrigerator according to an example of the present disclosure may be configured such that the predetermined time after the compressor is stopped is the time until the temperature detected by the refrigerator temperature sensor reaches the temperature at which the refrigerator damper is closed. Good.
  • the rotation speed of the blower that operates with the freezer damper closed and the refrigerating chamber damper open for a predetermined time after the compressor is stopped is smaller than the rotation speed during the compressor operation. It may be set as follows.
  • the present disclosure provides a refrigerator that can effectively use the cooling energy of the cooler after the end of the precooling operation performed before the start of the defrosting operation.
  • a refrigerator according to an example of the present disclosure includes a refrigerator room and a freezer room as a storage room.
  • a refrigerator according to an example of the present disclosure includes a cooling chamber that is disposed behind the freezer compartment and that stores a cooler and a blower that supply cold air to the refrigerator compartment and the freezer compartment.
  • a refrigerator according to an example of the present disclosure includes a refrigerating room temperature sensor provided in the refrigerating room, and a freezing room temperature sensor provided in the freezing room.
  • a refrigerator according to an example of the present disclosure includes a refrigerating room damper that controls cold air supplied from the cooling room to the refrigerating room based on the refrigerating room temperature sensor, and cool air supplied from the cooling room to the freezing room.
  • a refrigerator that controls based on the above.
  • the refrigerator by an example of this indication is provided with the compressor by which an operation is controlled based on a freezer temperature sensor, and the defrost heater which melts the frost of a cooler.
  • a refrigerator according to an example of the present disclosure has a refrigerator in which a refrigeration chamber damper is closed and a freezing chamber damper is opened before a defrost heater is energized, and the fan and the compressor are continuously operated for a predetermined time (first predetermined time). After the cool mode and the precool mode, the compressor is stopped, the refrigerator compartment damper is opened, the freezer compartment damper is closed, and the fan is operated for a predetermined time (second predetermined time). Have.
  • the cooler after the precooling operation performed before the start of the defrosting operation can be effectively used for cooling the refrigerator compartment, and a highly energy-saving refrigerator can be provided.
  • the refrigerator according to an example of the present disclosure may be configured to close the refrigerator compartment damper and open the freezer compartment damper when energizing the defrost heater that melts the frost of the cooler.
  • close the refrigerator compartment damper and open the freezer compartment damper when energizing the defrost heater that melts the frost of the cooler.
  • the freezer compartment damper may be provided in the freezer compartment cold air return passage through which the cold air supplied to the freezer compartment is returned to the cooler chamber.
  • the present disclosure provides a refrigerator that has a simple structure and can prevent condensation in the vegetable compartment while keeping the vegetable compartment in high humidity.
  • a refrigerator includes a refrigerator room, a freezer room, and a vegetable room as a storage room.
  • a refrigerator includes a cooling chamber that is disposed behind the freezer compartment and that stores a cooler that supplies cold air to the refrigerator compartment, the freezer compartment, and the vegetable compartment and a blower.
  • a refrigerator includes a refrigerator compartment damper that controls cold air supplied from the cooling chamber to the refrigerator compartment, and a vegetable compartment damper that controls cold air supplied from the refrigerator compartment to the vegetable compartment.
  • the refrigerator by an example of this indication is provided with the humidity sensor which detects the humidity in a vegetable compartment, and the vegetable compartment heater which heats a vegetable compartment.
  • the vegetable room damper is controlled to open and close based on the detected temperature in the vegetable room, and the vegetable room heater is configured to be energized and controlled based on the detected humidity of the humidity sensor.
  • the humidity sensor may be disposed on the top surface of the vegetable room. With such a configuration, the humidity in the vegetable compartment can be detected with high accuracy.
  • the vegetable room heater may be disposed on a partition wall with the storage room above the vegetable room. With such a configuration, it is possible to reliably prevent condensation in the vegetable room, particularly on the top surface where condensation easily occurs.
  • the present disclosure provides a refrigerator that can perform appropriate cooling control according to the amount of storage in the storage room.
  • a refrigerator according to an example of the present disclosure includes a refrigerator room as a storage room.
  • the refrigerator according to an example of the present disclosure may include a light source and an optical sensor in the refrigerator compartment.
  • the refrigerator according to an example of the present disclosure may include a door opening / closing detection sensor that detects opening / closing of the door of the refrigerator compartment.
  • the refrigerator according to an example of the present disclosure detects the storage change amount between the previous time and the current time in the refrigeration room by the light source and the optical sensor after the door closing detection by the door opening / closing detection sensor, and detects the door closing and opens the door for a predetermined time.
  • the absolute storage amount in the refrigerator compartment may be detected by the light source and the optical sensor.
  • a refrigerator according to an example of the present disclosure is controlled so that it is determined whether to continue or cancel the energy-saving operation based on the storage change amount between the previous time and the current time in the refrigerator compartment detected by the light source and the optical sensor. It may be configured. With such a configuration, it is possible to perform appropriate cooling control taking into account the usage of the user.
  • the refrigerator controls an operation for increasing the rotation speed of the compressor (rotational speed shift-up operation) based on the absolute storage amount in the refrigerator compartment detected by the light source and the optical sensor. It may be configured. With such a configuration, it is possible to select the rotation speed of the compressor according to the absolute storage amount in the refrigerator compartment, and it is possible to perform appropriate cooling control according to the storage amount in the storage chamber.
  • FIG. 1 is a front view of a refrigerator according to an example of an embodiment of the present disclosure.
  • Drawing 2 is a top view which looked at the inside of the refrigerator by an example of an embodiment of this indication from the front.
  • FIG. 3 is a cross-sectional view of a refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 4 is a diagram for explaining a cold air flow of the refrigerator according to an example of the embodiment of the present disclosure.
  • Drawing 5 is a top view which looked at the freezer compartment of the refrigerator by an example of an embodiment of this indication from the front.
  • FIG. 6 is a cross-sectional view illustrating a cooling chamber portion of a refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 7 is a cross-sectional view illustrating a vegetable compartment duct and a refrigerator compartment return duct of a refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 8 is an exploded perspective view illustrating a cooling chamber portion of a refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 9 is an exploded perspective view of a cooling chamber portion of a refrigerator according to an example of the embodiment of the present disclosure as viewed from the cooling chamber side.
  • FIG. 10 is a perspective view of the cooling chamber as viewed from the cooling chamber side while leaving a part of the cooling chamber forming plate of the refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 11 is a plan view illustrating a relationship between a cooling room forming plate and a vegetable room duct of a refrigerator according to an example of the embodiment of the present disclosure as viewed from the freezer room side.
  • FIG. 12 is a perspective view of a relationship between a cooling room forming plate and a vegetable room duct of a refrigerator according to an example of the embodiment of the present disclosure as viewed from the freezer room side.
  • FIG. 13 is a perspective view illustrating a refrigerator compartment of a refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 14 is a cross-sectional view of the inside of a refrigerator compartment of a refrigerator according to an example of an embodiment of the present disclosure as viewed from the side.
  • FIG. 15A is a diagram schematically showing a cross section of the A part of FIG. 14 cut in the horizontal direction.
  • FIG. 15B is a diagram schematically showing a cross section of the portion B in FIG. 14 cut in the horizontal direction.
  • FIG. 15C is a diagram schematically showing a cross section of the portion C in FIG. 14 cut in the horizontal direction.
  • FIG. 16 is a cross-sectional view of the refrigerator compartment duct of the refrigerator according to an example of the embodiment of the present disclosure cut in the horizontal direction.
  • FIG. 17 is a diagram for describing the configuration of the discharge port of the refrigerator compartment duct of the refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 18 is an essential part enlarged cross-sectional view showing a refrigerator compartment of a refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 19 is a plan view of the inside of the refrigerator compartment of the refrigerator according to an example of the embodiment of the present disclosure as viewed from the front.
  • FIG. 20 is an enlarged view of a main part when the refrigerator compartment inside the refrigerator according to an example of the embodiment of the present disclosure is viewed from the front.
  • FIG. 21 is an exploded perspective view illustrating a storage room of a refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 22 is a perspective view of the rear part of the partial chamber in the storage chamber of the refrigerator according to an example of the embodiment of the present disclosure as viewed from the back side of the refrigerator.
  • FIG. 19 is a plan view of the inside of the refrigerator compartment of the refrigerator according to an example of the embodiment of the present disclosure as viewed from the front.
  • FIG. 20 is an enlarged view of a main part when the refrigerator compartment inside the refrigerator according
  • FIG. 23 is an enlarged perspective view of the rear part of the partial chamber in the storage chamber of the refrigerator according to an example of the embodiment of the present disclosure as viewed from the back side of the refrigerator.
  • FIG. 24 is another enlarged perspective view of the rear part of the partial chamber in the storage chamber of the refrigerator according to an example of the embodiment of the present disclosure as viewed from the back side of the refrigerator.
  • FIG. 25 is an enlarged view of a main part when a deodorizing unit mounting portion in the rear part of the partial chamber in the storage chamber of the refrigerator according to an example of the embodiment of the present disclosure is viewed from the side.
  • FIG. 26 is an enlarged perspective view showing a deodorizing unit mounting portion at the rear of the partial chamber in the refrigerator storage chamber according to an example of the embodiment of the present disclosure.
  • FIG. 27 is a perspective view of the cooling chamber as viewed from the back side of the refrigerator with the refrigerator cooler according to an example of the embodiment of the present disclosure removed.
  • FIG. 28 is a plan view of the cooling chamber as viewed from the rear side of the refrigerator with the refrigerator cooler according to an example of the embodiment of the present disclosure removed.
  • FIG. 29 is a plan view showing a back plate of a freezer compartment of a refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 30 is an exploded perspective view of a cooling chamber of a refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 31 is a perspective view of the cooling chamber of the refrigerator according to an example of the embodiment of the present disclosure as viewed from the front lick.
  • FIG. 32 is an enlarged view of a main part of a cooling chamber of a refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 33 is an enlarged view of another main part of the cooling chamber of the refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 34A is a perspective view illustrating a freezer damper of a refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 34B is a diagram for describing a configuration of a freezer damper of a refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 35 is a control block diagram of a refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 36 is a flowchart illustrating basic control of the refrigerator cooling system according to an example of the embodiment of the present disclosure.
  • FIG. 37 is a flowchart of flap opening control of the refrigerator cooling system according to an example of the embodiment of the present disclosure.
  • FIG. 38 is a flowchart of flap opening control of the refrigerator cooling system according to an example of the embodiment of the present disclosure.
  • FIG. 39 is a flowchart illustrating off-cycle control of the refrigerator cooling system according to an example of the embodiment of the present disclosure.
  • FIG. 40 is a timing chart illustrating off-cycle control of the refrigerator cooling system according to an example of the embodiment of the present disclosure.
  • FIG. 41 is a flowchart illustrating the defrost control of the refrigerator cooling system according to an example of the embodiment of the present disclosure.
  • FIG. 42 is a timing chart illustrating the defrost control of the refrigerator cooling system according to an example of the embodiment of the present disclosure.
  • FIG. 43 is a flowchart illustrating control of the vegetable room heater by the humidity sensor of the vegetable room of the refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 44 is a diagram illustrating a relationship between an outside temperature of a vegetable room heater and a current supply rate by a humidity sensor of a vegetable room of a refrigerator according to an example of an embodiment of the present disclosure.
  • FIG. 45 is a flowchart illustrating the cooling system control performed based on the detection result of the storage amount in the refrigerator compartment in the refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 1 to 4 are diagrams for explaining the overall configuration of the refrigerator.
  • FIG. 5 to FIG. 12 are diagrams for explaining the cold air supply configuration from the cooling room to the vegetable room.
  • 13 to 26 are diagrams for explaining the structure of the refrigerator compartment.
  • FIG. 27 to FIG. 34 are diagrams for explaining a configuration of a portion extending from the freezing chamber to the cooling chamber.
  • a refrigerator 100 includes a refrigerator body 1 having an opening at the front.
  • the refrigerator main body 1 includes a metal outer box 2, a hard resin inner box 3, and a foam insulation 4 filled between the outer box 2 and the inner box 3.
  • the refrigerator main body 1 has a plurality of storage chambers formed by partitioning the inside thereof by partition plates 5 and 6.
  • Each of the plurality of storage rooms of the refrigerator main body 1 has a rotary door 7 or a drawer-type door 8, 9, 10, 11 in which the same heat insulation configuration as that of the refrigerator main body 1 is adopted.
  • Each of the plurality of storage rooms is configured to be openable and closable by doors 7, 8, 9, 10, and 11.
  • the plurality of storage chambers formed in the refrigerator main body 1 are provided next to the uppermost refrigeration chamber 14, a switching chamber 15 provided under the refrigeration chamber 14 and capable of switching a temperature zone, and the switching chamber 15.
  • the ice making room 16 is constituted by a switching room 15 and a freezing room 18 provided under the ice making room 16 and a lowermost vegetable room 17.
  • the refrigerator compartment 14 is provided with a plurality of shelf boards 20. In the lower part of the refrigerator compartment 14, a partial chamber 21 and a chilled chamber 22 having different cooling temperature zones are provided in two upper and lower stages.
  • the refrigerated room 14 is a storage room for refrigerated storage, and is cooled at a low temperature that does not freeze, specifically, normally set to 1 ° C. to 5 ° C.
  • the partial chamber 21 provided in the refrigerator compartment 14 is set to ⁇ 2 ° C. to ⁇ 3 ° C. suitable for micro freezing storage and cooled.
  • the chilled chamber 22 is set to a temperature around 1 ° C., which is lower than the refrigerator compartment 14 and higher than the partial chamber 21, and is cooled.
  • the vegetable room 17 is a storage room whose temperature is set equal to or slightly higher than that of the refrigerated room 14, and is specifically set to 2 to 7 ° C. and cooled. Since the vegetable compartment 17 becomes high humidity due to moisture emitted from stored foods such as vegetables, condensation may occur if it is too cold locally. Therefore, the temperature of the vegetable compartment 17 is set to a relatively high temperature to reduce the amount of cooling (amount of cold air) and suppress the occurrence of condensation due to local overcooling.
  • the freezing room 18 is a storage room set in a freezing temperature zone, and specifically, it is normally set to ⁇ 22 ° C. to ⁇ 18 ° C. and cooled. Note that the freezer compartment 18 may be cooled at a low temperature such as ⁇ 30 ° C. or ⁇ 25 ° C., for example, in order to improve the frozen storage state.
  • the switching chamber 15 is a storage chamber in which the temperature in the warehouse can be changed, and is configured to be switched from a refrigeration temperature zone to a freezing temperature zone according to the application.
  • a cooling chamber 23 is provided behind the freezing chamber 18.
  • the cooling chamber 23 is provided with a cooler 24 that generates cool air and a cooling fan 25 that supplies the cool air to each storage chamber.
  • a defrosting section 26 (hereinafter referred to as a glass tube heater 26; FIG. 6) composed of a glass tube heater or the like is provided below the cooler 24.
  • a compressor (comp) 27 In the cooler 24, a compressor (comp) 27, a condenser (not shown), a heat radiating pipe (not shown), and a capillary tube (not shown) are annularly connected to form a refrigeration cycle. Is configured. Each storage chamber is cooled by the circulation of the refrigerant compressed by the compressor 27.
  • the cooling fan 25 is provided above the cooler 24.
  • the cooling fan 25 cools the refrigeration room 14, the freezing room 18, the vegetable room 17 and the like through the refrigerating room duct 28, the freezing room duct 29 (FIG. 6), and the vegetable room duct 30 connected to the downstream side thereof. And each of the storage chambers is cooled.
  • Cooling chamber and cool air supply configuration The cooling chamber and the cold air supply configuration will be described with reference to FIG. 3 and FIGS.
  • the cooling chamber 23 is provided behind the freezing chamber 18 and is formed of a cooling chamber forming plate 31 and an inner box 3 as shown in FIG.
  • the cooling fan 25 is positioned above the cooler 24 by being mounted on the upper part of the cooling chamber forming plate 31.
  • a freezer compartment back plate 32 is mounted on the front side of the cooling chamber forming plate 31, and the downstream side of the cooling fan 25 is covered with the freezer compartment back plate 32.
  • a freezer compartment duct 29 that communicates with the downstream side of the cooling fan 25 is formed between the freezer compartment back plate 32 and the cooling compartment 23.
  • the cold room duct 28 of the cold room 14 and the vegetable room duct 30 of the vegetable room 17 are connected to the cooling room 23 separately and independently at different positions on the downstream side of the cooling fan 25. More specifically, the upper surface of the upper portion of the cooling chamber 23 on the downstream side of the cooling fan has a first cold air supply port 33 provided in the partition plate 5 that partitions the refrigerator compartment 14 and the freezer compartment 18 as shown in FIG. To the refrigerator compartment duct 28. As shown in FIGS. 10, 11, and 12, a second cold air supply port 34 is provided on the side of the upper portion of the cooling chamber 23 on the downstream side of the cooling fan 25 to which the vegetable compartment duct 30 is connected. Yes.
  • the refrigerator compartment duct 28 and the vegetable compartment duct 30 are individually and independently connected to the cooling compartment 23 at different positions. Thereby, the cold air produced
  • a cross-sectional umbrella-shaped heater cover 35 that covers the glass tube heater 26 is installed below the cooler 24, as shown in FIG. 6, a cross-sectional umbrella-shaped heater cover 35 that covers the glass tube heater 26 is installed. Further, a drain port 36 for discharging defrost water to the outside is provided on the bottom surface of the cooling chamber 23.
  • the refrigerator compartment 14 is located in the uppermost part of the refrigerator main body 1 and has a plurality of shelf boards 20 as shown in FIGS. 3 and 14. In addition, the refrigerator compartment 14 is provided with a refrigerator compartment duct 28 on the back surface.
  • the refrigerator compartment duct 28 is configured such that the refrigerator compartment side surface of the duct member 28a is covered with a resin duct cover 28b.
  • the duct member 28a is made of, for example, polystyrene foam.
  • the refrigerator compartment duct 28 is attached to the back of the refrigerator compartment 14 so as to cover the first cold air supply port 33 of the partition plate 5 that partitions the refrigerator compartment 14 and the freezer compartment 18, and communicates with the cooling compartment 23.
  • a refrigerator compartment damper 37 is incorporated in the first cold air supply port 33. The amount of cold air supplied from the cooling chamber 23 to the refrigerator compartment 14 is controlled by opening and closing the refrigerator compartment damper 37.
  • the refrigerator compartment damper 37 is fixed to the first cold air supply port 33 by a damper fixing frame 38.
  • the refrigerating room damper 37 includes a double damper having a refrigerating room damper unit 39 that controls the amount of cold air supplied to the refrigerating room 14 and a partial room damper unit 40 that controls the amount of cold air supplied to the partial room 21. It consists of The refrigeration chamber damper 37 is configured to be driven by one refrigeration and partial motor (not shown) in the refrigeration damper driving motor unit 41.
  • the chilled chamber 22 located above is a ceiling plate 43 serving as the lowest shelf as shown in FIGS. And the partial chamber 21 located therebelow is formed in the full width of the refrigerator compartment 14. Further, a chilled chamber container 44 is provided in the chilled chamber 22 so as to be freely inserted and removed. At the rear of the chilled chamber 22, there is provided a cold air inlet 22 a communicating with the downstream side of the cold room damper portion 39 of the cold room duct 28. The chilled chamber 22 is configured to be cooled by taking in cold air from the cold air inlet 22a.
  • a slit-like cold air return port (chilled side) 45 is provided at the rear part of the ceiling plate 43. Further, the chilled chamber 22 is provided with a cold air return passage portion (chilled side) 46 connected to the refrigerator compartment 14 via a cold air return port (chilled side) 45 at the rear portion of the chilled chamber container 44. As shown in FIG. 14, an opening 48 connected to the inside of the refrigerator compartment 14 is provided at the front end of the chilled chamber container 44 between the chilled chamber door / handle portion 47.
  • the cold air in the refrigerator compartment 14 flows through the gap (not shown) on the outer periphery of the chilled chamber container 44 together with the cold air after cooling the chilled chamber 22 overflowing from the chilled chamber container 44, and returns to the cold air return passage (chilled side). ) 46.
  • a temperature adjusting heater 49 is laid on the ceiling plate member 50 of the partial chamber 21 located below the chilled chamber container 44.
  • the temperature adjusting heater 49 is energized, and the chilled chamber 22 is maintained at the set temperature. It is configured as follows.
  • the temperature adjusting heater 49 is configured to be controlled based on a temperature detected by a chilled chamber temperature sensor (not shown) provided at an appropriate position in the chilled chamber 22.
  • the partial chamber 21 located below the chilled chamber 22 is configured to store water by an inner wall surface of the inner box 3 of the refrigerator body 1, a water tank chamber 12 forming plate, and a ceiling plate member 50 that also serves as a bottom surface of the chilled chamber 22.
  • a compartment is formed beside the tank chamber 12 (see FIGS. 13 and 14).
  • a front opening portion of the partial chamber 21 is configured to be freely opened and closed by a partial chamber door 51.
  • a partial chamber container 52 is provided inside the partial chamber 21 so as to be freely inserted and removed.
  • a heat insulating material 53 made of foamed polystyrene or the like is incorporated in the ceiling plate member 50 constituting the partial chamber 21.
  • a partial cold air passage 54 communicating with the downstream side of the partial chamber damper portion 40 of the refrigerator compartment duct 28 is formed in the heat insulating material 53 (see FIG. 14). The cold air is supplied into the partial chamber 21 through the partial cold air passage 54, and the partial chamber 21 is cooled.
  • the partial chamber 21 is provided with a slit-like cold air return port (partial side) 55 at the rear portion of the ceiling plate member 50, as in the chilled chamber 22.
  • a space portion is provided behind the partial chamber container 52 to form a cold air return passage portion (partial side) 56.
  • a cool air confluence return port 57 that communicates with the cool air return passage portion (partial side) 56 is provided at the rear of the partition plate 5 that also serves as the bottom surface of the partial chamber 21.
  • a cold room cooling duct return duct 58 is connected to the cold air confluence return port 57 (see FIGS. 4 and 7), and the cold air that has cooled the cold room 14 and the chilled room 22 overflows from the partial room container 52. It is configured to merge with the cooling air and return to the cooling chamber 23.
  • a duct portion for returning the cool air in the refrigerator compartment 14, the chilled chamber 22 and the partial chamber 21 to the cooling chamber 23 is formed using the rear space of the chilled chamber 22 and the partial chamber 21.
  • cold air return port (chilled side) 45 and the cold air return port (partial side) 55 are provided at positions facing vertically as shown in FIG. Further, the cold air return port (partial side) 55 and the cold air merging return port 57 are provided at positions shifted in the left-right direction as shown in FIG.
  • the refrigeration chamber return duct 58 for returning the cold air to the cooling chamber 23 is installed on the side (side) of the cooling chamber 23 as shown in FIGS.
  • the lower end of the refrigerator compartment return duct 58 is open to the lower side surface of the cooling chamber 23.
  • the cool air is returned to the cooling chamber 23.
  • a concave groove 58b (see FIG. 27) provided on the rear surface thereof is pressed against the back inner wall surface of the inner box 3, and between the concave groove 58b and the rear inner wall surface of the inner box 3, A duct passage portion is formed.
  • a refrigerating room temperature sensor 59 for detecting the temperature of the refrigerating room 14 and controlling the refrigerating room damper unit 39 is provided in the portion between the cold air return port (partial side) 55 of the cold air return passage portion (partial side) 56 and the cold air merging return port 57.
  • a partial chamber temperature sensor 60 for detecting the temperature of the partial chamber 21 and controlling the partial chamber damper 40 is provided at the opposite diagonal portion across the refrigerator compartment temperature sensor 59 and the refrigerator compartment duct 28.
  • a deodorizing unit 61 is detachably provided between the cold air return port (partial side) 55 of the cold air return passage portion (partial side) 56 and the cold air confluence return port 57, as shown in FIGS. 25 and 26, along the flow of the cold air.
  • the deodorizing unit 61 is attached to and integrated with a mounting portion 28bb provided in a part of the duct cover 28b constituting the refrigerator compartment return duct 58.
  • the refrigerating room temperature sensor 59 and the partial room temperature sensor 60 are attached to respective mounting portions (not shown) provided in a part of the duct cover 28 b constituting the refrigerating room return duct 58.
  • 15A to 15C are a horizontal cross-sectional view (a cross-sectional view cut in the horizontal direction of the refrigerating chamber damper portion) in the refrigerating chamber duct 28 shown in FIG.
  • the room rear surface part) horizontal sectional view and the C part (refrigeration room duct part) horizontal sectional view are respectively schematically shown.
  • D1 A portion aspect ratio
  • B portion aspect ratio W2 / D2
  • C portion aspect ratio W3 / D3
  • FIG. 16 is a cross-sectional view of the refrigerator compartment duct 28 cut in the horizontal direction
  • FIG. 17 is a diagram for explaining the configuration of the discharge port of the refrigerator compartment duct 28.
  • ribs 28c that are integrally formed extending left and right.
  • the extending rib 28 c includes an inclined surface that is inclined from the surface on the refrigerator compartment 14 side of the duct cover 28 b toward the back side of the refrigerator 100. Further, as shown in FIG. 16, the end portion of the extending rib 28c extends from the surface of the duct cover 28b on the refrigerator compartment 14 (see FIG. 14) side to the back side of the refrigerator 100 at a larger inclination angle. Yes. The extension rib 28c extends to such an extent that the side discharge port 28d is not directly visible when the user of the refrigerator 100 views the refrigerator compartment 14 from the front.
  • the lower surface of the side discharge port 28d has a slope that is inclined so that the cool air discharged from the side discharge port 28d flows upward.
  • a recess is formed in the side wall of the inner box 3 in front of each shelf board 20 in the refrigerator compartment 14.
  • a substrate having an LED illumination 80 (see FIG. 14) for illuminating the inside of the refrigerator compartment 14 and a refrigerator compartment light sensor 81 for detecting the illuminance of light from the LED illumination 80 when the door is closed is embedded in the recess. Yes.
  • a transmissive illumination cover that covers the recess is provided on the side wall in the refrigerator compartment 14.
  • the cooling system of the refrigerator 100 is controlled based on the detection result of the refrigerator light sensor 81 that detects the illuminance of light from the LED lighting 80 when the door is closed. Details thereof will be described later.
  • the freezer compartment 18 is provided below the refrigerating compartment 14 and in front of the cooling compartment 23.
  • a freezer compartment container 62 which is composed of a lower container 62 a and an upper container 62 b placed thereabove, is provided so that it can be taken in and out as the door 11 is opened and closed.
  • the freezer compartment back plate 32 is disposed between the freezer compartment 18 and the cooling compartment 23.
  • a freezer compartment duct 29 is formed between the freezer compartment back plate 32 and the cooling chamber forming plate 31 and communicates with the downstream side of the cooling fan 25 provided in the cooling chamber 23 (see FIG. 6).
  • the freezer compartment back plate 32 is provided with cold air outlets 63 in a plurality of upper and lower stages as shown in FIG.
  • the uppermost cold air outlet 63 supplies cold air to the ice making chamber 16 and the switching chamber 15, and the middle cold air outlet 63 supplies cold air to the upper container 62 b of the freezer compartment 62, and the lowermost cold air outlet 63 is configured to supply cold air to the lower container 62a.
  • the freezer compartment 18 is provided with a freezer cold air return port 64 communicating with the lower portion of the cooling chamber 23 at the lower portion of the freezer rear plate 32.
  • the refrigerated cold air return port 64 is composed of a freezer compartment side frame portion 65 and a cooling compartment side mouth frame portion 66.
  • the freezer compartment side rim portion 65 and the cooling compartment side rim portion 66 are inclined so as to be located at the rear, that is, on the cooling chamber 23 side with respect to the vertical line as they go upward.
  • the freezing cold air return port 64 is provided with a grill 67 on the freezing chamber side opening frame portion 65, and a freezing chamber damper 68 is provided on the cooling chamber side opening frame portion 66.
  • the grill 67 provided in the freezer compartment side frame portion 65 rectifies the cold air flowing from the freezer compartment 18 to the cooling compartment 23.
  • the grille piece 69 constituting the grille 67 is inclined so that the end on the cooling chamber 23 side is located above the end on the freezer compartment 18 side, and the length of the grille piece 69 becomes the lower grille piece 69. It is configured to be long. That is, the grill 67 is configured to have a shape along the shape of the rear surface of the freezer compartment 62 in the freezer compartment 18.
  • the freezer compartment damper 68 provided in the cooling compartment side frame 66 controls the amount of cold air supplied to the freezer compartment 18.
  • the freezer compartment damper 68 is formed of a similar heat resistant resin on a damper frame 70 formed of a heat resistant resin, for example, polyphenylene sulfide resin (PPS resin).
  • PPS resin polyphenylene sulfide resin
  • a plurality of flaps 71 in the present embodiment, three flaps 71 are provided.
  • the freezer compartment damper 68 is pivotally supported at each cooling chamber side end of each of the plurality of flaps 71, and as shown in FIGS. 31 to 34A and 34B, on the cooling chamber 23 side opposite to the freezer compartment 18. Configured to open.
  • the freezer compartment damper 68 is configured to be driven by a freezing damper driving motor unit 72 fixed to one end portion of the damper frame 70.
  • the solid line of the flap 71 indicates a state where the plurality of flaps 71 are closed, and the broken line of the flap 71 indicates a state where the plurality of flaps 71 are opened.
  • the freezer compartment damper 68 has a damper frame body 70 in a state where the freezer damper driving motor unit 72 is fixed to a claw piece 73 provided in the cooling compartment side opening frame portion 66.
  • the cooling chamber forming plate 31 is mounted and unitized. Thereby, along the inclination of the cooling chamber side opening frame part 66, the cooling chamber 23 side of the freezer compartment damper 68 is inclined so as to be positioned below the freezing chamber 18 side.
  • the freezer compartment damper 68 is provided so that the cold air flowing to the cooling chamber 23 along the plurality of flaps 71 flows to the lower edge of the cooler 24.
  • the freezer compartment damper 68 has an upper part (an upper piece part of the damper frame 70) located above the lower end edge of the cooler 24 and a lower part (a lower part part of the damper frame 70). ) Is located below the lower end of the cooler 24.
  • the refrigerator 100 according to the present embodiment is configured such that the cold air flows from the lower end edge of the cooler 24 to the lower portion.
  • the freezer compartment damper 68 is provided such that its lower part (lower part of the damper frame 70) is located above the glass tube heater 26. That is, the warm / cool air heated by the glass tube heater 26 at the time of defrosting is set so as to surely touch the freezer compartment damper 68.
  • the lower side 66a of the cooling chamber side opening frame portion 66 supporting the freezing chamber damper 68 is formed of a double wall.
  • the double wall has a shape in which the bottom surface is formed in an arc shape and protrudes into the cooling chamber 23 (a shape protruding from the bottom surface of the cooling chamber 23 toward the glass tube heater 26).
  • the gap portion 66 b of the double wall portion of the cooling chamber side frame portion 66 is open facing the freezing chamber 18.
  • the freezer damper 68 includes a heater unit 26a so that the motor unit 72 for driving the freezing damper does not face the heater unit 26a of the glass tube heater 26 in the longitudinal direction of the glass tube heater 26. It is arranged at a position shifted from the outside.
  • the refrigeration damper driving motor unit 72 is located on the side of the refrigeration chamber return duct 58 next to the cooling chamber 23. With such a configuration, the refrigeration damper driving motor unit 72 is positioned outside the heater portion 26a, and the plurality of flaps 71 of the freezing chamber damper 68 are center lines in the left-right direction of the cooler 24. It is comprised so that it may be located in a side part.
  • freezer damper 68 is provided only in the freezing cold air return port 64, and no freezer is provided in the freezing chamber duct 29 from the cooling chamber 23 to the cold air outlet 63, and the freezing chamber 23 and the freezer The chamber 18 is kept in communication.
  • the vegetable compartment 17 is arrange
  • the vegetable compartment duct 30 for supplying cold air to the vegetable compartment 17 is disposed in front of and behind the refrigeration compartment return duct 58 next to the cooling compartment 23.
  • the upper part of the vegetable compartment duct 30 is connected to a second cold air supply port 34 provided in the cooling chamber 23.
  • the second cold air supply port 34 is formed separately and independently from the first cold air supply port 33 serving as the cold air supply port to the refrigerator compartment 14. That is, the second cold air supply port 34 is below the partition plate 5 that partitions the refrigerator compartment 14 and the freezer compartment 18 positioned above the cooler compartment 23, that is, within the rear projection area of the freezer compartment 18, and the cooling fan 25. Are provided at the downstream side portion of the cooling fan 25 at substantially the same height.
  • the lower end of the vegetable compartment duct 30 connected to the second cold air supply port 34 opens to the upper portion of the vegetable compartment 17 and is configured to supply cold air to the vegetable compartment 17.
  • the opening 74 is provided in the side part of the upper end part of the vegetable compartment duct 30. As shown in FIG. The opening 74 is abutted and connected to the second cold air supply port 34.
  • a vegetable room damper 75 is incorporated in the vicinity of the connecting portion, specifically, in the height position range substantially the same as that of the cooling fan 25.
  • the vegetable compartment damper 75 is fitted in a concave groove 58b that is formed in the front surface of the refrigerator compartment return duct 58 and serves as a vegetable compartment duct passage portion.
  • the vegetable compartment duct 30 is fitted and attached to the front surface of the concave groove 58b of the refrigerator compartment return duct 58 in a state in which the vegetable compartment damper 75 is fitted. With such a configuration, the vegetable compartment damper 75 is sandwiched and fixed between the refrigerator compartment return duct 58 and the vegetable compartment duct 30.
  • the vegetable compartment duct 30 and the refrigerator compartment return duct 58 are formed of a material having elastic force such as foamed polystyrene, and the airtightness between the two is ensured by the elastic force, and the airtightness of the vegetable compartment damper 75 is also ensured. It is configured to be secured.
  • the vegetable compartment damper 75 is configured such that a damper piece 75a driven by the vegetable damper drive motor unit 76 opens in a direction opposite to the cold air flowing through the vegetable compartment duct 30, upward in the present embodiment. Yes. This is the direction opposite to the damper opening direction of the refrigerator compartment duct 28 described above.
  • the cold air after cooling the vegetable compartment 17 is returned to the cooling compartment 23 via a vegetable compartment return duct (not shown) provided on the ceiling surface of the vegetable compartment 17.
  • the side of the vegetable compartment container 17a so that the vegetable compartment container 17a supported by the door frame fixed to the door 10 of the vegetable compartment and pulled out forward, and the upper surface of the vegetable compartment container 17a may be covered.
  • Each of the vegetable compartment container 17a and the upper vegetable case has a structure with improved sealing performance. Thereby, the transpiration
  • a recess is provided on the vegetable compartment 17 side of the partition plate 6 that insulates the vegetable compartment 17 and the freezing compartment 18 from each other.
  • a mist generator is provided inside the recess.
  • the mist generator has a high voltage generator and an electrode, and the electrode is configured to be supplied with moisture collected by condensing moisture in the storage.
  • a vegetable room humidity sensor 78 that detects the humidity in the vegetable room 17 is provided on the substrate that houses the high voltage generating unit (see FIG. 3).
  • a vegetable room heater 79 is provided on the vegetable compartment 17 side of the partition plate 6 that insulates the vegetable compartment 17 and the freezing compartment 18 (see FIG. 3).
  • the energization of the vegetable room heater 79 is controlled in accordance with the humidity detected by the vegetable room humidity sensor 78 provided on the top of the vegetable room 17. Details of this control will be described later.
  • FIG. 35 is a control block diagram of refrigerator 100 of the present embodiment
  • FIG. 36 is a flowchart showing basic control of the refrigerator cooling system of the present embodiment.
  • input information of a microcomputer 90 that controls the cooling system of the refrigerator 100 includes an outside air temperature sensor (ATC) 91, a freezer temperature sensor (FCC) 92, a refrigerator temperature sensor (PCC) 59, a partial A room temperature sensor (PFC) 60, a vegetable room temperature sensor (VCC) 93, a cooler temperature sensor (DFC) 94, a door open / close detection unit 95, an external illuminance sensor 96, and a refrigerator room light sensor 81.
  • ATC outside air temperature sensor
  • FCC freezer temperature sensor
  • PCC refrigerator temperature sensor
  • PFC partial A room temperature sensor
  • VCC vegetable room temperature sensor
  • DFC cooler temperature sensor
  • the output control device of the microcomputer 90 includes a compressor (comp) 27, a cooling fan (FC fan) 25, a cold room damper (PC damper) 37, a partial room damper (PF damper) 98, a vegetable room damper (VC damper) 75, They are a freezer compartment damper (FC damper) 68 and a defrosting section (defrost heater) 26.
  • step S-2 when the refrigerator 100 is turned on (step S-1), normal temperature control is started (step S-2).
  • the outside temperature sensor (ATC) 91, the freezer temperature sensor (FCC) 92, the refrigerating room temperature sensor (PCC) 59, the partial room temperature sensor (PFC) 60, and the vegetable room temperature sensor (VCC) On the basis of each temperature information of 93, the microcomputer 90 makes a compressor (comp) 27, a cooling fan (FC fan) 25, a cold room damper (PC damper) 37, a partial room damper (PF damper) 98, a vegetable room damper ( VC damper) 75 and freezer damper (FC damper) 68 are controlled.
  • a compressor comp
  • FC fan cold room damper
  • PC damper cold room damper
  • PF damper partial room damper
  • VC damper vegetable room damper
  • FC damper freezer damper
  • the microcomputer 90 uses the information from the door opening / closing detection unit 95, the information from the external illuminance sensor 96 that detects the brightness around the refrigerator, or the storage amount information from the refrigerator light sensor 81, so that the refrigerator 100 is less used.
  • a band is predicted and it is determined whether or not to shift to an energy saving mode (hereinafter referred to as an energy saving mode) (step S-3).
  • the operation in the energy saving mode is referred to as energy saving operation (abbreviated energy saving operation). If the mode does not shift to the energy saving mode (N in step S-3), the microcomputer 90 performs flap opening / closing control to fully open or close the flaps of each damper (step S-7).
  • the microcomputer 90 determines whether the outside air temperature sensor (ATC) 91 is higher than a predetermined temperature (ATC ⁇ T1) (step S-4).
  • the energy saving operation condition refers to a condition in which the microcomputer 90 determines that the microcomputer 90 shifts to the energy saving mode and the outside air temperature sensor (ATC) 91 is higher than a predetermined temperature (Y in step S-4).
  • the microcomputer 90 controls the opening / closing angles of the flaps of the refrigerator compartment damper (PC damper) 37 and the freezer compartment damper (FC damper) 68.
  • the flap opening degree control is performed (step S-5). The specific control in the flap opening control (step S-5) will be described later.
  • step S-4 if the outside air temperature sensor (ATC) 91 is lower than the predetermined temperature (T1) (N in step S-4), the microcomputer 90 is in the initial state where the compressor (comp) 27 is stopped. Then, the refrigerating room damper (PC damper) 37 is opened and the cooling fan (FC fan) 25 is operated to perform off-cycle control (step S-6). The specific control in the off cycle control (step S-6) will be described later.
  • step S-8 a defrost signal for starting the defrosting section (defrosting heater) 26 of the cooler 24 is input (N in step S-8).
  • the microcomputer 90 performs defrost control (step S-9). The specific control in the defrost control (step S-9) will be described later.
  • the refrigerator 100 includes the storage chamber, the cooling chamber 23 that supplies the cool air to the storage chamber, and stores the cooler 24 and the blower (cooling fan 25). And a damper for controlling the cool air supplied from the cooling chamber 23 to the storage chamber in the duct.
  • the damper has a flap and a drive device.
  • the refrigerator 100 according to an example of the embodiment of the present disclosure includes a flap opening / closing control (step S-7) that controls opening / closing of the flap by a driving device according to whether or not the operation of the flap shifts to the energy saving mode.
  • flap opening control step S-5 for controlling the opening / closing angle of the flap is performed.
  • the refrigerator 100 of the present embodiment has flap opening control (step S-5) for controlling the opening / closing angle of the damper flap when it is desired to reduce the temperature fluctuation in each storage chamber in the energy saving mode. It is configured to be performed.
  • the refrigerator 100 of the present embodiment is configured such that the flap opening degree control of the damper is not performed more than necessary. With such a configuration, complicated control such as flap origin position confirmation control required for flap opening control by a stepping motor or the like of the drive device can be reduced. Therefore, according to the configuration of the refrigerator 100 of the present embodiment, it is possible to provide a refrigerator capable of cooling with high reliability and high energy saving with simple specifications.
  • the refrigerator 100 of the present embodiment may be configured to be operated under at least one of the energy-saving operation conditions and the normal operation conditions.
  • the refrigerator 100 may be configured such that the flap opening degree control is performed during the energy saving operation condition, and the flap opening / closing control is performed during the normal operation condition.
  • the refrigerator 100 may be configured such that the flap opening degree control of each damper is performed only when energy saving operation is required. With such a configuration, it is possible to provide a refrigerator capable of cooling with high energy saving and reliability with simple specifications.
  • FIG. 37 and 38 are flowcharts showing details of flap opening control (step S-5 in FIG. 36) of the cooling system of the refrigerator according to an example of the embodiment of the present disclosure.
  • the various controls described below are performed by the microcomputer 90 unless otherwise specified.
  • the temperature of the refrigerator temperature sensor (PCC) 59 is measured every minute for N minutes (for example, 10 minutes) (step S-10). Thereafter, the measurement results for N minutes (for example, 10 minutes) are averaged (step S-11).
  • the measured average temperature is compared with the set value of the refrigerator temperature sensor (PCC) 59 (step S-12), and the temperature difference ⁇ T between the average temperature for N minutes and the set value of the refrigerator temperature sensor (PCC) 59 is calculated.
  • step S-13 The flap opening degree (angle) of the refrigerator compartment damper (PC damper) 37 is changed according to the temperature difference ⁇ T (step S-14).
  • the set value (target temperature) of the refrigerator compartment temperature sensor (PCC) 59, the upper limit value, and the lower limit value are confirmed (step S-15).
  • the upper limit value and the lower limit value are a set value (target temperature) having a range, and an upper limit value and a lower limit value of the range.
  • the average temperature of the refrigerator temperature sensor (PCC) 59 for the latest several minutes (for example, 10 minutes every minute) is confirmed (step S-16).
  • Step S-17 the set value (target temperature) of the refrigerating room temperature sensor (PCC) 59 is compared with the average temperature of the latest several minutes (for example, 10 minutes every minute), and the temperature difference ( ⁇ T) is confirmed ( Step S-17).
  • the temperature difference ( ⁇ T) is large and the average value is lower than the lower limit value of the set value (target temperature)
  • the opening degree (angle) of the flap of the refrigerator compartment damper (PC damper) 37 is set to a predetermined angle (of the driving device). (Step number of stepping motor or the like) is reduced (step S-18).
  • step S-17 if the average value is between the upper limit value and the lower limit value of the set value (target temperature), the flap opening degree (angle) of the refrigerator compartment damper (PC damper) 37 is not changed (step S-19).
  • step S-17 when the temperature difference ( ⁇ T) is large and the average value is higher than the upper limit value of the set value (target temperature), the opening degree (angle) of the flap of the refrigerator compartment damper (PC damper) 37 is set.
  • a predetermined angle (the number of steps of the stepping motor or the like of the driving device) is increased (step S-20).
  • step S-16 the process returns to step S-16, and the above control is repeated every predetermined time (for example, every 10 minutes). That is, the average temperature of the cold room temperature sensor (PCC) 59 before a predetermined time (for example, 10 minutes every minute) is compared with a set value (target temperature), and the temperature difference ⁇ T is set according to the value (level). Thereafter, the opening (angle) of the flap of the refrigerator compartment damper (PC damper) 37 is controlled.
  • PCC cold room temperature sensor
  • the refrigerator 100 includes the refrigerator compartment 14 as a storage compartment.
  • the refrigerator 100 according to an example of the embodiment of the present disclosure includes a cooling chamber 23 in which a cooler 24 and a blower (cooling fan 25) that supply cold air to the refrigerator compartment 14 are housed.
  • the refrigerator 100 may include a cold room damper (PC damper) 37 that controls the cold air supplied from the cooling room 23 to the cold room 14 in the duct.
  • the refrigerator 100 may include a refrigerator temperature sensor (PCC) 59 that detects the temperature in the refrigerator compartment 14.
  • PC damper cold room damper
  • PCC refrigerator temperature sensor
  • the refrigerator compartment damper (PC damper) 37 may include a flap and a driving device.
  • the refrigerator 100 according to an example of the embodiment of the present disclosure may be configured such that the flap operation is controlled by a drive device to perform flap opening control for controlling the opening of the flap.
  • the refrigerator compartment damper (PC damper) 37 includes the average temperature of the refrigerator compartment temperature sensor (PCC) 59 and the refrigerator compartment target temperature during a predetermined time before the flap operation. Based on the above, the flap opening degree control may be performed by changing the flap angle by the driving device. With such a configuration, it is possible to reduce the temperature fluctuation in the refrigerator compartment 14 and to bring it closer to the storage room target temperature, and to provide an easy-to-use refrigerator with improved energy saving.
  • the refrigerator 100 may be configured such that the flap opening degree control is performed during the energy saving operation condition.
  • the opening degree control of the damper flap is performed. Therefore, it is possible to provide a refrigerator capable of cooling with high energy saving and high reliability with a simple specification.
  • the refrigerator 100 has been described by taking the refrigerator compartment damper (PC damper) 37 that controls the supply of cold air to the refrigerator compartment 14 as an example, but is not limited to this aspect, and is not limited to this embodiment.
  • FC damper freezer damper
  • the present invention can also be applied to a switching chamber damper (SC damper) that controls the supply of cold air to the switching chamber 15 or a vegetable chamber damper (VC damper) 75 that controls the supply of cold air to the vegetable chamber 17.
  • SC damper switching chamber damper
  • VC damper vegetable chamber damper
  • FIG. 39 is a flowchart showing off-cycle control of the refrigerator cooling system according to an example of the embodiment of the present disclosure.
  • FIG. 40 is a timing chart illustrating off-cycle control of the refrigerator cooling system according to an example of the embodiment of the present disclosure.
  • step S-21 when an ON signal is output to the compressor (comp) 27 (step S-21), the compressor (comp) 27 and the cooling fan (FC fan) 25 are operated, and at the same time, the freezer compartment damper (FC damper) ) 68 is opened (step S-27).
  • the cold air generated by the cooler 24 is supplied to the freezer compartment 18, and the freezer compartment 18 is cooled, and the cold air is supplied to the refrigerator compartment damper (PC damper) 37 disposed in the cold air duct to the refrigerator compartment 14. Is supplied.
  • step S-22 it is determined whether the refrigerator compartment temperature sensor (PCC) 59 is equal to or higher than the OFF temperature (step S-22). If the cold room temperature sensor (PCC) 59 is equal to or lower than the OFF temperature in step S-22 (N in step S-22), the cold room damper (PC damper) 37 is closed (step S-26). In step S-22, if the cold room temperature sensor (PCC) 59 is not lower than the OFF temperature (Y in step S-22), the cold room damper (PC damper) 37 is opened (step S-23). Thereafter, it is determined whether the refrigerator temperature sensor (PCC) 59 reaches the OFF temperature (step S-24).
  • the cold room damper (PC damper) 37 is closed (step S-26).
  • the freezer temperature sensor (FCC) 92 reaches the OFF temperature, and an OFF signal is output to the compressor (comp) 27.
  • the compressor (comp) 27 is stopped.
  • the cold room damper (PC damper) 37 is closed (step S-30). .
  • the cold room damper (PC damper) 37 is opened and the cooling fan (FC fan) 25 is Off-cycle cooling control is performed in which the compressor (comp) 27 is operated at a speed lower than the rotational speed at the time of ON (step S-29).
  • step S-29 The off-cycle cooling control (step S-29) is performed until an initial predetermined time (Tpc) immediately after the compressor (comp) 27 receives the OFF signal or until the refrigerator temperature sensor (PCC) 59 reaches the OFF temperature. Thereafter, the refrigerator compartment damper (PC damper) 37 is closed (step S-30).
  • the compressor (comp) 27 when the compressor (comp) 27 is turned on, the cooling fan (FC fan) 25 is turned on, and the freezer compartment damper (FC damper) 68 and the refrigerator compartment damper (PC damper) 37 are opened. (ON) (point e).
  • the refrigerator compartment damper (PC damper) 37 performs open / close control (ON and OFF) according to the temperature of the refrigerator compartment temperature sensor (PCC) 59 while the compressor 27 is ON.
  • the cooling fan (FC fan) 25 When the compressor (comp) 27 is turned off, the cooling fan (FC fan) 25 is also turned off, and the freezer damper (FC damper) 68 is closed (OFF) (point f).
  • the refrigerator 100 includes the refrigerator compartment 14 and the freezer compartment 18 as storage rooms.
  • the refrigerator 100 according to an example of the embodiment of the present disclosure is disposed at the rear of the freezer compartment 18, and includes a cooler 24 that supplies cold air to the refrigerating chamber 14 and the freezer compartment 18, and a cooling chamber 23 in which the cooling fan 25 is housed. Is provided.
  • the refrigerator 100 according to an example of the embodiment of the present disclosure includes a refrigerating room damper 37 that controls the cold air supplied from the cooling room 23 to the refrigerating room 14 based on the refrigerating room temperature sensor 59, and the cooling room 23 to the freezing room.
  • the refrigerator 100 includes the compressor 27 whose operation is controlled based on the freezer temperature sensor 92. Furthermore, in the refrigerator 100 according to an example of the embodiment of the present disclosure, when the refrigerator 27 is in an open state and the freezer compartment damper 68 is in an open state and the compressor 27 is stopped, a predetermined time after the compressor 27 is stopped. The cooling fan 25 is operated with the freezer compartment damper 68 closed and the refrigerator compartment damper 37 opened. With such a configuration, the cooler 24 can be effectively used while the compressor 27 is stopped, the heat effect on the freezer 18 can be suppressed, the refrigerator 14 can be efficiently cooled, and a highly energy-saving refrigerator can be obtained. Can be provided.
  • the predetermined time after the compressor 27 is stopped may be set to be a time until the refrigerator compartment temperature sensor 59 reaches a temperature at which the refrigerator compartment damper 37 is closed.
  • the rotational speed of the cooling fan 25 that is operated with the freezer damper 68 closed and the refrigerator compartment damper 37 open is smaller than the rotational speed during the compressor 27 operation. It may be set as follows. With such a configuration, the cooler 24 can be used more effectively while the compressor 27 is stopped, the thermal effect on the freezer compartment 18 is suppressed, the refrigerator compartment 14 is efficiently cooled, and the energy-saving refrigerator. Can be provided.
  • the refrigerator compartment damper (PC damper) 37 is described as being controlled to open and close, but the refrigerator 100 is configured to control the opening degree (angle) of the flap described above. Also good. In this case, the temperature fluctuation in the refrigerator compartment 14 can be reduced to approach the storage room target temperature, and energy saving can be further enhanced.
  • FIG. 41 is a flowchart illustrating the defrost control of the refrigerator cooling system according to an example of the embodiment of the present disclosure.
  • FIG. 42 is a timing chart illustrating the defrost control of the refrigerator cooling system according to an example of the embodiment of the present disclosure.
  • step S-32 when a defrost signal is input (step S-32), the compressor 27 performs a continuous operation (precool control) for a predetermined time. Then, it is determined whether the cooler temperature sensor (DFC) is equal to or lower than the T2 temperature (step S-33). If the temperature is equal to or lower than the T2 temperature (Y in step S-33), the refrigerator compartment damper (PC damper) 37 is opened, and the freezer compartment The damper (FC damper) 68 is closed, and the cooling fan (FC fan) 25 is turned on (step S-34). The operation is continued in this state until the cooler temperature sensor (DFC) rises to the T2 temperature (step S-35).
  • precool control it is determined whether the cooler temperature sensor (DFC) is equal to or lower than the T2 temperature (step S-33). If the temperature is equal to or lower than the T2 temperature (Y in step S-33), the refrigerator compartment damper (PC damper) 37 is opened, and the freezer compartment The damper (FC damper) 68 is
  • step S-35 When the cooler temperature sensor (DFC) reaches the T2 temperature in step S-35 (Y in step S-35), the refrigerator compartment damper 37 is closed, the freezer compartment damper 68 is opened, and the cooling fan (FC fan) 25 is The defroster (defrost heater) 26 is turned on (step S-37). In addition, while the defrosting part (defrost heater) 26 is ON, the freezer compartment damper 68 is open. If the cooler temperature sensor (DFC) is equal to or higher than the T2 temperature in step S-33 (N in step S-33), steps S-34 and S-35 are not performed, and step S-36 is performed. Migrate to
  • step S-37 it is determined whether the cooler temperature sensor (DFC) is equal to or higher than the T4 temperature (step S-38). If the temperature is equal to or higher than the T4 temperature (Y in step S-38), the defrosting section (defrost heater) 26 Is turned off and start waiting control is performed (step S-39). After the startup waiting time has elapsed, the compressor 27 is started to operate by a comp ON signal (step S-40), and FC fan delay control is performed in which the cooling fan (FC fan) 25 is turned on after being turned off for a predetermined time. Further, when the cooler temperature sensor (DFC) becomes lower than the freezer temperature sensor (FCC), the freezer damper 68 is opened (step S-41). Thereafter, a normal cooling operation is performed (step S-42).
  • the precooling is performed such that the compressor (comp) 27 and the cooling fan (FC fan) 25 are continuously operated for a predetermined time. Control is performed (1 point to m point).
  • the freezer compartment 18 (FC damper) 37 is closed and the freezer compartment damper (FC damper) 68 is opened to preferentially cool the freezer compartment 18.
  • the compressor 27 is stopped.
  • the refrigerator compartment damper 37 is opened and the freezer damper 68 is opened until the cooler temperature sensor (DFC) rises to the T2 temperature.
  • the cooling fan pre-cooling and pre-defrosting control for operating the cooling fan (FC fan) 25 is performed (m point to n point). Then, the defrosting section 26 is energized, and the frost stacked on the cooler 24 is melted by the heat of the defrost heater (n point to o point). During the defrosting, the refrigerator compartment damper 37 is closed and the freezer compartment damper 68 is opened.
  • the defrosting section (defrost heater) 26 is turned off and start waiting control is performed (points o to p).
  • start-up control the refrigerator compartment damper 37 is opened and the freezer compartment damper 68 is opened. Thereafter, the compressor 27 is started.
  • fan delay control is performed (p point to q point) in which the cooling fan (FC fan) 25 is turned off for a predetermined time.
  • the refrigerator compartment damper 37 is opened and the freezer compartment damper 68 is closed.
  • FC fan cooling fan
  • FC damper 68 is kept closed until the cooler temperature sensor (DFC) becomes lower than the freezer temperature sensor (FCC).
  • FC damper delay control is performed (q point to r point).
  • the freezer damper 68 is opened, and then normal cooling operation is performed (from the point r).
  • the refrigerator 100 includes the refrigerator compartment 14 and the freezer compartment 18 as storage rooms.
  • the refrigerator 100 according to an example of the embodiment of the present disclosure is disposed at the rear of the freezer compartment 18 and is provided with a cooler 24 and a cooling fan 25 that supply cold air to the refrigerator compartment 14 and the freezer compartment 18.
  • a chamber 23 is provided.
  • the refrigerator 100 according to an example of the embodiment of the present disclosure includes a refrigerating room temperature sensor 59 that detects the temperature in the refrigerating room 14 and a freezing room temperature sensor 92 that detects the temperature of the freezing room 18.
  • the refrigerator 100 includes a refrigerating room damper 37 that controls the cold air supplied from the cooling room 23 to the refrigerating room 14 based on the refrigerating room temperature sensor 59, and the cooling room 23 to the freezing room. 18 may be provided with a freezer damper 68 that controls the cold air supplied to 18 based on the freezer temperature sensor 92.
  • the refrigerator 100 according to an example of the embodiment of the present disclosure includes a compressor 27 whose operation is controlled based on the freezer temperature sensor 92 and a defrosting unit (defrosting heater) 26 that melts the frost of the cooler 24. You may have.
  • the refrigerator compartment damper 37 before the defrosting unit 26 is energized, the refrigerator compartment damper 37 is closed and the freezer compartment damper 68 is opened, and the cooling fan 25 and the compressor 27 are installed.
  • the compressor 27 In the precool mode and the precool mode, the compressor 27 is stopped, the refrigerator compartment damper 37 is opened, the freezer compartment damper 68 is closed, and the cooling fan 25 is operated for a prescribed time.
  • the refrigerator 100 is configured such that the refrigerator compartment damper 37 is closed and the freezer compartment damper 68 is opened when the defrosting unit 26 that melts the frost of the cooler 24 is energized. It may be configured. With such a configuration, by introducing cold air by natural convection from the freezer compartment 18, it is possible to promote an updraft around the cooler when the defroster (defrosting heater) 26 is energized and to improve the defrosting efficiency of the cooler 24. it can.
  • the freezer compartment damper 68 may be provided in a freezer compartment cold air return passage through which the cold air supplied to the freezer compartment 18 is returned to the cooling chamber 23.
  • the cooling fan (FC fan) 25 is turned on after the fan delay control, but the cooler temperature sensor (DFC) is lower than the freezer temperature sensor (FCC).
  • the freezer damper 68 may be configured to perform FC damper delay control to maintain a closed state. With such a configuration, until the cooler 24 is sufficiently cooled, the cool air is not supplied to the freezer compartment 18 and can be supplied to the refrigerating compartment 14 side, preventing the temperature rise of the freezer compartment 18 and the refrigerating compartment 14. This makes it possible to efficiently cool.
  • the refrigerator 100 is configured such that the freezer damper 68 is opened when the cooler temperature sensor (DFC) becomes lower than the freezer temperature sensor (FCC). May be.
  • the cold air sufficiently cooled by the cooler 24 can be supplied to the freezer compartment 18 and the temperature rise of the freezer compartment 18 can be reliably prevented.
  • the refrigerator compartment damper 37 is opened and the freezer compartment damper 68 is closed until the cooler temperature sensor (DFC) rises to the T2 temperature.
  • the number of rotations of the cooling fan (FC fan) 25 that operates the fan (FC fan) 25 during the pre-cooling (pre-cooling) and pre-defrosting control of the refrigerator is set to be higher than the number of rotations when the compressor 27 is ON. May be. In this case, it is possible to shorten the refrigerating room pre-cooling and pre-defrosting control time, to efficiently use the cooling heat of the cooler 24, to shorten the total defrosting time, and to remove the freezing room 18 Temperature rise due to frost can be suppressed.
  • the refrigerator 100 is configured to start at least one of the modes during start-up waiting control after completion of defrosting, during fan delay control, and during FC damper delay control, or each mode.
  • opening / closing control that forcibly fully opens and closes at least one of the flaps of the refrigerator compartment damper 37 and the freezer compartment damper 68.
  • FIG. 43 is a flowchart showing the control of the vegetable room heater by the humidity sensor of the vegetable room of the refrigerator according to an example of the embodiment of the present disclosure.
  • FIG. 44 is a diagram illustrating a relationship between an outside temperature of a vegetable room heater and a current supply rate by a humidity sensor of a vegetable room of a refrigerator according to an example of an embodiment of the present disclosure.
  • the humidity in the vegetable compartment 17 is measured by the vegetable compartment humidity sensor 78 (step S-51).
  • the microcomputer 90 determines whether the humidity in the vegetable compartment 17 is H1 or less (step S-52), and if it is H1 or less (Y in step S-52), the vegetable compartment heater 79 is energized and controlled at an energization rate K ( Step S-53). Then, energization control is performed at an energization rate K for a predetermined time (T4) (step S-54). If the humidity in the vegetable compartment 17 is H1 or higher in step S-52 (N in step S-52), it is further determined whether it is H2 or higher (step S-55).
  • step S-55 If the humidity in the vegetable compartment 17 is equal to or higher than H2 in step S-55 (Y in step S-55), the vegetable compartment heater 79 is energized and controlled with the energization rate L (step S-56). Then, energization control is performed at an energization rate L for a predetermined time (T4) (step S-57). If the humidity in the vegetable compartment 17 is equal to or lower than H2 in step S-55 (ie, the humidity in the vegetable compartment 17 is between H1 and H2) (N in step S-55), the vegetable compartment heater 79 is turned on at an energization rate M. Energization control is performed (step S-58). Then, energization control is performed at an energization rate M for a predetermined time (T4) (step S-59).
  • the energization rate of the vegetable room heater 79 by the vegetable room humidity sensor 78 is determined for each outside air temperature.
  • the energization rate of the vegetable room heater 79 is higher at high humidity (RH 85% or more) than at medium humidity (RH 20 to 85%), and at low humidity (RH 20% or less) at medium humidity (20 to 85%). %) To lower the energization rate of the vegetable room heater 79.
  • the energization rate at high humidity is represented by VCTH energization rate M
  • the energization rate at medium humidity is represented by VCTH energization rate L
  • the energization rate at low humidity is represented by VCTH energization rate K.
  • the energization rate of the vegetable room heater is determined based on medium humidity conditions from the balance of reliability against condensation and energy saving, but in this embodiment, the vegetable room humidity sensor Appropriate energization control of the vegetable room heater 79 is possible according to the detection result of 78. Therefore, with such a configuration, it is possible to balance the reliability of condensation and energy saving on a high level, and to achieve both energy saving and freshness of the vegetable compartment.
  • the refrigerator 100 may include the refrigerator compartment 14, the freezer compartment 18, and the vegetable compartment 17 as storage rooms.
  • the refrigerator 100 according to an example of the embodiment of the present disclosure is disposed behind the freezer compartment 18 and supplies a cooler 24 to each storage compartment (the refrigerator compartment 14, the freezer compartment 18 and the vegetable compartment 17), A cooling chamber 23 in which the cooling fan 25 is housed is provided.
  • a refrigerator 100 according to an example of the embodiment of the present disclosure includes a refrigerator compartment damper 37 that controls the cold air supplied from the cooling chamber 23 to the refrigerator compartment 14, and a vegetable that controls the cold air supplied from the cooling chamber 23 to the vegetable compartment 17.
  • a chamber damper 75 may be provided.
  • the refrigerator 100 may include a vegetable room humidity sensor 78 that detects the humidity in the vegetable room 17 and a vegetable room heater 79 that heats the vegetable room 17. Furthermore, in the refrigerator 100 according to an example of the embodiment of the present disclosure, the vegetable room damper 75 is controlled to open and close based on the detected temperature in the vegetable room 17, and the vegetable room heater 79 is based on the detected humidity of the vegetable room humidity sensor 78. It may be configured to be energized. With such a configuration, it becomes possible to control the energization rate of the vegetable room heater 79 according to the humidity in the vegetable room 17, and with a simple structure, the condensation in the vegetable room 17 is maintained while keeping the inside of the vegetable room 17 highly humid. It is possible to provide a refrigerator that can prevent the above.
  • the vegetable room humidity sensor 78 may be disposed on the top surface portion of the vegetable room 17. With such a configuration, the humidity in the vegetable compartment 17 can be detected with high accuracy.
  • the vegetable room heater 79 may be disposed on a partition wall with the storage room above the vegetable room 17. With such a configuration, it is possible to reliably prevent condensation on the top surface of the vegetable compartment 17 that is particularly susceptible to condensation.
  • FIG. 45 is a flowchart showing cooling system control performed based on the detection result of the storage amount in the refrigerator compartment of the refrigerator according to an example of the embodiment of the present disclosure. As described above, the various controls described below are performed by the microcomputer 90 unless otherwise specified.
  • step S-61 when the door switch detects that the door 7 (PC door) of the refrigerator compartment 14 is closed (step S-61), the LED which is the illumination in the refrigerator compartment 14 is irradiated, and the illuminance is detected by the refrigerator compartment optical sensor 81.
  • the difference between the previous illuminance (converted voltage value) detected and stored in the memory and the current illuminance (converted voltage value) is determined.
  • the previous illuminance (converted voltage value) is compared with the current illuminance (converted voltage value) to calculate the amount of change (difference) in the storage amount in the refrigerator compartment 14 (step S-62). ).
  • control for canceling the energy saving operation is performed.
  • the increase amount of the storage amount does not exceed the predetermined threshold, the energy saving operation is continued.
  • Step S-63 it is determined whether the door 7 of the refrigerator compartment 14 is opened within a predetermined time (for example, 30 minutes) after the door switch detects that the door 7 (PC door) of the refrigerator compartment 14 is closed (step S-63). ). If the door 7 is opened (N in Step S-63), the process returns to Step S-61.
  • a predetermined time for example, 30 minutes
  • step S-63 if the door 7 is not opened for a predetermined time (for example, 30 minutes) (Y in step S-63), the LED that is the illumination in the refrigerator compartment 14 is irradiated, and a storage unit such as a memory
  • the absolute storage amount in the refrigerator compartment 14 is calculated from the correlation data between the illuminance (converted voltage value) of the refrigerator compartment light sensor 81 stored in advance and the storage amount in the refrigerator compartment 14 (step S-64).
  • step 65 it is determined whether the absolute storage amount is larger or smaller than S2 (step 65).
  • step 65 if the absolute storage amount is larger than S2 (Y in step 65), select the mode P when the storage amount is large (step S-67), change the fan voltage and the temperature control setting of each room, The rotational speed increase control of the compressor 27 is suppressed (shift-up control) (step S-70).
  • step S-65 if the absolute storage amount is S2 or less in step S-65 (N in step 65), it is determined whether the absolute storage amount is between S1 and S2 (step S-66).
  • step S-66 If the absolute storage amount is between S1 and S2 in step S-66 (Y in step S-66), the mode Q when the storage amount is medium is selected (step S-68), and the compressor 27 Is suppressed (step S-71).
  • step S-66 when the absolute storage amount is smaller than S1 (N in step S-66), the mode R when the storage amount is small is selected (step S-69), and the rotation speed of the compressor 27 is increased. Control is suppressed (step S-72).
  • control change in the mode P, mode Q, and mode R is not immediately after the determination in step S-65 or step S-66, but when the compressor 27 is temporarily turned OFF and the next compressor 27 is turned ON.
  • the control of each mode P, mode Q, and mode R is changed.
  • the refrigerator 100 may include the refrigerator compartment 14 as a storage compartment.
  • the refrigerator 100 according to an example of the embodiment of the present disclosure may include the LED lighting 80 and the refrigerator compartment light sensor 81 in the refrigerator compartment 14.
  • the refrigerator 100 according to an example of the embodiment of the present disclosure detects the amount of change in storage between the previous time and the current time in the refrigerating room 14 by the LED lighting 80 and the refrigerating room light sensor 81 after detecting the closing of the door.
  • the microcomputer 90 determines that the door is not opened for a predetermined time
  • the LED storage 80 and the refrigerator light sensor 81 detect the absolute storage amount in the refrigerator compartment 14. Also good. With such a configuration, it is possible to perform appropriate cooling control according to the amount of storage in the storage room, and it is possible to provide a user-friendly refrigerator.
  • the refrigerator 100 is configured to perform energy saving operation based on the amount of change in storage between the previous time and the current time in the cold room 14 detected by the LED lighting 80 and the cold room light sensor 81.
  • the microcomputer 90 may be configured to determine whether to continue or cancel the operation and to control the operation. With such a configuration, it is possible to perform appropriate cooling control taking into account the usage of the user.
  • the rotation speed of the compressor 27 is controlled based on the absolute storage amount in the refrigerator compartment 14 detected by the LED lighting 80 and the refrigerator compartment light sensor 81. You may be comprised so that. With such a configuration, it is possible to select the number of rotations of the compressor 27 according to the absolute storage amount in the refrigerator compartment 14, and it is possible to perform appropriate cooling control according to the storage amount in the storage chamber.
  • the refrigerator 100 includes the door 7 of the refrigerator compartment 14 within a predetermined time (for example, 30 minutes) after the door switch detects that the door 7 (PC door) of the refrigerator compartment 14 is closed. If the microcomputer 90 determines that there is no opening, the room is illuminated by the LED lighting 80 that is the lighting in the refrigerator compartment 14. And the refrigerator 100 by an example of embodiment of this indication is a correlation with the illumination intensity (converted voltage value) of the refrigerator compartment optical sensor 81 preserve
  • the control change in the mode P, the mode Q, and the mode R is not performed immediately after the determination in step S-65 or step S-66, but the compressor 27 May be configured such that the control of each mode P, mode Q, and mode R is changed when the compressor 27 is once turned off and the next compressor 27 is turned on. With such a configuration, more stable cooling control can be performed.
  • This disclosure provides a simple specification and highly reliable refrigerator configured to control the opening degree of the flap of the damper when it is desired to reduce the temperature fluctuation in each storage chamber. Therefore, it can be applied to various types and sizes of refrigerators and freezing / refrigeration apparatuses for home use and business use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

This refrigerator is provided with: a storage compartment; a cooling compartment that accommodates a cooler and a cooling fan, which supply cool air to the storage compartment; and a damper that controls, in a duct, the cool air supplied from the cooling compartment to the storage compartment. The damper has a flap and a drive device. The operation of the flap by the drive device is controlled through case analysis of flap opening and closing control and flap opening degree control.

Description

冷蔵庫refrigerator
 本開示は、冷蔵庫に関する。 This disclosure relates to a refrigerator.
 近年、冷蔵庫においては、冷蔵庫本体の背面側に設けられた冷却室で冷気が生成され、その冷気が冷却ファンによって、冷蔵室、冷凍室、および、野菜室等に循環されて、各室内の食品が冷却される。この種の冷蔵庫には、冷蔵室への冷気循環量を調整する冷蔵室ダンパに加えて、冷凍室への冷気循環量を制御する冷凍室ダンパが設けられて、冷蔵室および冷凍室それぞれを効率よく冷却できるようにしたものがある(例えば、特許文献1参照)。 In recent years, in a refrigerator, cold air is generated in a cooling room provided on the back side of the refrigerator body, and the cold air is circulated to a refrigerator room, a freezer room, a vegetable room, etc. by a cooling fan, and food in each room Is cooled. In this type of refrigerator, in addition to the refrigerator compartment damper that adjusts the amount of cold air circulation to the refrigerator compartment, a refrigerator compartment damper that controls the amount of cold air circulation to the freezer compartment is provided. There is one that can be cooled well (for example, see Patent Document 1).
 しかしながら、上記のような従来の冷蔵庫では、冷蔵室ダンパおよび冷凍室ダンパは、冷蔵室および冷凍室の温度に応じて、冷蔵室ダンパおよび冷凍室ダンパそれぞれのフラップを開閉制御している。このように構成された従来の冷蔵庫では、各ダンパのフラップが開状態では、各室内に冷気が導入され、各ダンパのフラップが閉状態では、各室内に冷気が停止される。このため、各室内の温度変動が大きくなるという課題を有している。 However, in the conventional refrigerator as described above, the refrigerator compartment damper and the freezer compartment damper control the opening and closing of the flaps of the refrigerator compartment damper and the freezer compartment damper according to the temperatures of the refrigerator compartment and the freezer compartment, respectively. In the conventional refrigerator configured as described above, cold air is introduced into each room when the flaps of the dampers are open, and cold air is stopped in each room when the flaps of the dampers are closed. For this reason, it has the subject that the temperature fluctuation in each room becomes large.
 また、上記のような従来の冷蔵庫では、圧縮機の運転中に冷却器で生成された冷気が、送風機により、冷蔵室ダンパおよび冷凍室ダンパを介して、冷蔵室および冷凍室それぞれに供給され、所定の温度に冷却される。このように構成された従来の冷蔵庫では、圧縮機の停止後は、送風機も停止され、冷凍室内の温度が高くなると、再び圧縮機が運転されるというサイクルが繰り返される。 Further, in the conventional refrigerator as described above, the cold air generated by the cooler during operation of the compressor is supplied to the refrigerator compartment and the freezer compartment by the blower via the refrigerator compartment damper and the freezer compartment damper, It is cooled to a predetermined temperature. In the conventional refrigerator configured as described above, after the compressor is stopped, the blower is also stopped, and when the temperature in the freezer compartment becomes high, the cycle in which the compressor is operated again is repeated.
 しかしながら、上記のような従来の冷蔵庫では、圧縮機の停止中は、送風機も停止しているので、圧縮機の停止中に冷却器の冷熱を有効利用することができず、冷却効率が下がるという課題を有している。 However, in the conventional refrigerator as described above, since the blower is also stopped while the compressor is stopped, the cooler heat cannot be effectively used while the compressor is stopped, and the cooling efficiency is reduced. Has a problem.
 また、近年の冷蔵庫には、庫内の保存食品への熱影響を抑制するために、除霜運転開始前にプリクール運転が行われ、除霜運転時の庫内温度の上昇を抑制するものがある(例えば、特許文献2参照)。 In addition, in recent refrigerators, in order to suppress the heat effect on the stored food in the refrigerator, a precool operation is performed before the start of the defrosting operation, and a rise in the internal temperature during the defrosting operation is suppressed. Yes (see, for example, Patent Document 2).
 上記のような従来の冷蔵庫では、除霜運転開始前にプリクール運転が行われ、除霜運転時の庫内温度の上昇を抑制することはできる。しかしながら、上記のような従来の冷蔵庫では、プリクール運転終了直後に除霜運転が開始されるために、プリクール運転で過冷却された、プリクール運転終了後の冷却器の冷熱は、有効利用されず、冷却効率が下がるという課題を有している。 In the conventional refrigerator as described above, the precool operation is performed before the start of the defrosting operation, and the rise in the internal temperature during the defrosting operation can be suppressed. However, in the conventional refrigerator as described above, since the defrosting operation is started immediately after the end of the precool operation, the cooling of the cooler after the end of the precool operation, which is supercooled in the precool operation, is not effectively used. It has the subject that cooling efficiency falls.
 また、近年、野菜室の保鮮性を高めるために、野菜室内に湿度センサが設けられ、その湿度センサの検出した湿度に基づいて、外部から野菜室へ空気が供給され、野菜室内の湿度を高める冷蔵庫が提案されている(例えば、特許文献3参照)。 In recent years, in order to improve the freshness of the vegetable compartment, a humidity sensor is provided in the vegetable compartment, and air is supplied from the outside to the vegetable compartment based on the humidity detected by the humidity sensor, thereby increasing the humidity in the vegetable compartment. A refrigerator has been proposed (see, for example, Patent Document 3).
 しかしながら、上記のような従来の冷蔵庫では、外部から野菜室へ空気を供給するために、庫内と外部とを連結する連結ダクト等が必要であり、構造の複雑化および外気の取り込みによる吸熱量増加等の課題を有している。 However, in the conventional refrigerator as described above, in order to supply air from the outside to the vegetable room, a connection duct or the like that connects the inside and the outside of the refrigerator is necessary, and the heat absorption due to the complicated structure and the intake of outside air There are issues such as increase.
 また、近年、貯蔵室内に光を照射する光源および光を検知可能な光センサが設けられ、扉開閉検知部が閉扉を検知した場合に、光源から光を照射して、庫内の収納負荷を検出する冷蔵庫が提案されている(例えば、特許文献4参照)。 In recent years, a light source for irradiating light and a light sensor capable of detecting light have been provided in the storage chamber, and when the door opening / closing detection unit detects a closed door, light is emitted from the light source to reduce the storage load in the warehouse. A refrigerator for detection has been proposed (see, for example, Patent Document 4).
 上記のような従来の冷蔵庫では、閉扉後の庫内の収納負荷が検出される。しかしながら、上記のような従来の冷蔵庫は、貯蔵室内の、前回の扉開閉後の収納量と、今回の扉開閉後の収納量との変化量(収納変化量)を検出する場合と、貯蔵室内の絶対収納量を検出する場合とを使い分けるものではなく、貯蔵室内の収納量に応じた適切な冷却制御ができないという課題を有している。 In the conventional refrigerator as described above, the storage load in the cabinet after the door is closed is detected. However, the conventional refrigerator as described above detects the amount of change (storage change amount) between the storage amount after the previous door opening and closing and the storage amount after the current door opening and closing in the storage chamber, However, there is a problem that appropriate cooling control according to the storage amount in the storage chamber cannot be performed.
特開2011-7452号公報JP 2011-7451 A 特開平11-201621号公報JP-A-11-201621 特開2009-8326号公報JP 2009-8326 A 特開2011-99579号公報JP 2011-99579 A
 本開示は、上記のような従来の課題に鑑みてなされたものであり、貯蔵室内の温度変動を小さくできる冷蔵庫を提供する。 The present disclosure has been made in view of the conventional problems as described above, and provides a refrigerator capable of reducing temperature fluctuation in a storage chamber.
 具体的には、本開示の一例による冷蔵庫は、貯蔵室と、貯蔵室に冷気を供給する冷却器および送風機が収納された冷却室と、冷却室から貯蔵室に供給される冷気を制御するダンパとを備える。ダンパは、フラップおよび駆動装置を有する。本開示の一例による冷蔵庫は、駆動装置によるフラップの動作が、フラップの開閉を制御するフラップ開閉制御と、フラップの開閉角度を制御するフラップ開度制御とが、場合分けされて行われるよう構成されている。 Specifically, a refrigerator according to an example of the present disclosure includes a storage room, a cooler that supplies cold air to the storage room, a cooling room that houses a blower, and a damper that controls the cold air supplied from the cooling room to the storage room. With. The damper has a flap and a drive device. The refrigerator according to an example of the present disclosure is configured such that the flap operation by the driving device is performed by dividing the flap opening / closing control for controlling the opening / closing of the flap and the flap opening degree control for controlling the opening / closing angle of the flap. ing.
 このような構成により、貯蔵室内の温度変動を小さくする必要がある場合に、ダンパのフラップ開度制御が行なわれることが可能となる。よって、このような構成により、駆動装置のステッピングモータ等による、ダンパのフラップ開度制御に必要な、フラップ原点位置確認制御等の複雑な制御を減らすことができる。したがって、このような構成により、簡素な仕様で省エネルギ性を高め、信頼性の高い冷却ができる冷蔵庫を提供することができる。 Such a configuration makes it possible to control the flap opening of the damper when it is necessary to reduce the temperature fluctuation in the storage chamber. Therefore, with such a configuration, it is possible to reduce complicated control such as flap origin position confirmation control required for damper flap opening control by a stepping motor or the like of the driving device. Therefore, with such a configuration, it is possible to provide a refrigerator that can improve energy saving with simple specifications and can perform cooling with high reliability.
 また、本開示の一例による冷蔵庫は、貯蔵室として、冷蔵室と、冷凍室とを有していてもよい。また、本開示の一例による冷蔵庫において、冷却室が、冷凍室の後方に配置されていてもよい。また、本開示の一例による冷蔵庫において、ダンパとして、冷却室から冷蔵室に供給される冷気を制御する冷蔵室ダンパと、冷却室から冷凍室に供給される冷気を制御する冷凍室ダンパとを有していてもよい。また、本開示の一例による冷蔵庫は、冷蔵室ダンパのフラップおよび冷凍室ダンパのフラップがそれぞれ独立して制御されるように構成されたものである。 Moreover, the refrigerator according to an example of the present disclosure may include a refrigerator room and a freezer room as a storage room. Moreover, in the refrigerator according to an example of the present disclosure, the cooling chamber may be disposed behind the freezing chamber. Further, in the refrigerator according to an example of the present disclosure, the damper includes a refrigerator compartment damper that controls cold air supplied from the cooling chamber to the refrigerator compartment, and a freezer compartment damper that controls cold air supplied from the cooling chamber to the freezer compartment. You may do it. The refrigerator according to an example of the present disclosure is configured such that the flaps of the refrigerator compartment damper and the freezer compartment damper are controlled independently.
 このような構成により、冷凍室および冷蔵室それぞれの室内の温度変動を小さくしたい場合に、冷蔵室ダンパのフラップおよび冷凍室ダンパのフラップそれぞれの開度制御を、それぞれ行なうことができ、簡素な仕様で信頼性の高い冷却ができる冷蔵庫を提供することができる。 With such a configuration, when it is desired to reduce the temperature fluctuations in the freezer compartment and the refrigerator compartment, it is possible to control the opening of the refrigerator compartment damper flap and the freezer compartment flap, respectively. A refrigerator capable of highly reliable cooling can be provided.
 また、本開示の一例による冷蔵庫は、運転条件として、省エネルギ運転条件と通常運転条件とを有していてもよい。この場合、本開示の一例による冷蔵庫は、フラップ開度制御が省エネルギ運転条件時に行なわれ、フラップの開閉制御が通常運転条件時に行なわれるように構成されていてもよい。 In addition, a refrigerator according to an example of the present disclosure may have an energy saving operation condition and a normal operation condition as operation conditions. In this case, the refrigerator according to an example of the present disclosure may be configured such that the flap opening degree control is performed during the energy saving operation condition and the flap opening / closing control is performed during the normal operation condition.
 このような構成により、省エネルギ運転が必要な時に、各ダンパのフラップ開度制御を行なうことができ、簡素な仕様で省エネルギ性および信頼性の高い冷却ができる冷蔵庫を提供することができる。 With such a configuration, when energy saving operation is required, the flap opening degree of each damper can be controlled, and a refrigerator capable of cooling with high energy saving and high reliability with a simple specification can be provided.
 また、本開示は、各貯蔵室内の温度変動を小さくできる冷蔵庫を提供する。 Also, the present disclosure provides a refrigerator that can reduce temperature fluctuation in each storage chamber.
 具体的には、本開示の一例による冷蔵庫は、貯蔵室、貯蔵室に冷気を供給する冷却器および送風機が収納された冷却室、および、冷却室から貯蔵室に供給される冷気をダクト内で制御するダンパに加え、貯蔵室内の温度を検出する貯蔵室温度センサを備えていてもよい。ダンパは、上述したように、フラップおよび駆動装置を有していてもよい。本開示の一例による冷蔵庫は、駆動装置によるフラップ動作が、フラップの開度(開閉角度)を制御するフラップ開度制御により行なわれるように構成されていてもよい。また、本開示の一例による冷蔵庫は、ダンパにおいて、フラップ動作前の所定時間中の貯蔵室温度センサの平均温度と貯蔵室目標温度とに基づいて、駆動装置によるフラップの角度を変えてフラップ開度制御が行なわれるように構成されていてもよい。 Specifically, a refrigerator according to an example of the present disclosure includes a storage chamber, a cooler that supplies cool air to the storage chamber, a cooling chamber in which a blower is stored, and cold air supplied from the cooling chamber to the storage chamber in a duct. In addition to the damper to be controlled, a storage room temperature sensor for detecting the temperature in the storage room may be provided. The damper may have a flap and a drive device as described above. The refrigerator according to an example of the present disclosure may be configured such that the flap operation by the driving device is performed by flap opening control that controls the opening (opening / closing angle) of the flap. Further, the refrigerator according to an example of the present disclosure is configured such that the flap opening degree is changed by changing the flap angle by the driving device based on the average temperature of the storage room temperature sensor and the storage room target temperature during a predetermined time before the flap operation in the damper. You may be comprised so that control may be performed.
 このような構成により、貯蔵室内の温度変動を小さくして貯蔵室目標温度に近づけることができる。よって、このような構成により、省エネルギ性を高めた使い勝手のよい冷蔵庫を提供することができる。 With such a configuration, the temperature fluctuation in the storage chamber can be reduced to approach the storage chamber target temperature. Therefore, with such a configuration, an easy-to-use refrigerator with improved energy saving can be provided.
 また、本開示の一例による冷蔵庫は、貯蔵室として、冷蔵室および冷凍室を有していてもよい。また、本開示の一例による冷蔵庫は、冷却室が、冷凍室の後方に配置されていてもよい。また、本開示の一例による冷蔵庫は、ダンパとして、冷却室から冷蔵室に供給される冷気を制御する冷蔵室ダンパと、冷却室から冷凍室に供給される冷気を制御する冷凍室ダンパとを有していてもよい。この場合、本開示の一例による冷蔵庫は、冷蔵室ダンパのフラップおよび冷凍室ダンパのフラップがそれぞれ独立して制御されるように構成されていてもよい。 Moreover, the refrigerator according to an example of the present disclosure may have a refrigerator compartment and a freezer compartment as a storage compartment. In the refrigerator according to the example of the present disclosure, the cooling chamber may be disposed behind the freezing chamber. In addition, a refrigerator according to an example of the present disclosure includes, as dampers, a refrigerator compartment damper that controls cool air supplied from the refrigerator compartment to the refrigerator compartment, and a freezer compartment damper that controls cool air supplied from the refrigerator compartment to the freezer compartment. You may do it. In this case, the refrigerator according to an example of the present disclosure may be configured such that the flaps of the refrigerator compartment damper and the freezer compartment damper are independently controlled.
 このような構成により、冷凍室および冷蔵室それぞれの室内の温度変動を小さくすることができ、省エネルギ性を高めた使い勝手のよい冷蔵庫を提供することができる。 With such a configuration, it is possible to reduce the temperature fluctuations in the freezer compartment and the refrigerator compartment, and to provide an easy-to-use refrigerator with improved energy saving.
 また、本開示の一例による冷蔵庫は、運転条件として、省エネルギ運転条件を有していてもよい。この場合、本開示の一例による冷蔵庫は、フラップ開度制御が省エネルギ運転条件時に行なわれるように構成されていてもよい。 In addition, the refrigerator according to an example of the present disclosure may have energy saving operation conditions as operation conditions. In this case, the refrigerator according to an example of the present disclosure may be configured such that the flap opening degree control is performed during the energy saving operation condition.
 このような構成により、省エネルギ運転(以下、省エネ運転と称す)が必要な時に、各ダンパのフラップ開度制御を行なうことができ、簡素な仕様で省エネルギ性および信頼性の高い冷却ができる冷蔵庫を提供することができる。 With this configuration, when energy-saving operation (hereinafter referred to as energy-saving operation) is required, the flap opening degree of each damper can be controlled, and energy-saving and highly reliable cooling can be achieved with a simple specification. A refrigerator can be provided.
 また、本開示は、圧縮機停止中に冷却器の冷熱を有効利用し、冷凍室への熱影響を抑えて、冷蔵室を効率的に冷却できる冷蔵庫を提供する。 In addition, the present disclosure provides a refrigerator that can efficiently cool the refrigerator compartment by effectively using the cold energy of the cooler while the compressor is stopped and suppressing the thermal influence on the freezer compartment.
 具体的には、本開示の一例による冷蔵庫は、貯蔵室として、冷蔵室および冷凍室を備える。また、本開示の一例による冷蔵庫は、冷凍室の後方に配置され、冷蔵室および冷凍室に冷気を供給する冷却器および送風機が収納された冷却室を備える。また、本開示の一例による冷蔵庫は、冷蔵室に設けられた冷蔵室温度センサと、冷凍室に設けられた冷蔵室温度センサとを有する。また、本開示の一例による冷蔵庫は、冷却室から冷蔵室に供給される冷気を冷蔵室温度センサに基づいて制御する冷蔵室ダンパと、冷却室から冷凍室に供給される冷気を冷凍室温度センサに基づいて制御する冷凍室ダンパとを備える。また、本開示の一例による冷蔵庫は、冷凍室温度センサの検知結果に基づいて運転が制御される圧縮機を備える。本開示の一例による冷蔵庫は、冷蔵室ダンパが開状態で、かつ、冷凍室ダンパが開状態で、圧縮機が停止した場合、圧縮機停止後の所定時間、冷凍室ダンパが閉状態で冷蔵室ダンパを開状態として送風機を運転するように構成されている。 Specifically, a refrigerator according to an example of the present disclosure includes a refrigerator room and a freezer room as a storage room. In addition, a refrigerator according to an example of the present disclosure includes a cooling chamber that is disposed behind the freezer compartment and that stores a cooler and a blower that supply cold air to the refrigerator compartment and the freezer compartment. Moreover, the refrigerator by an example of this indication has the refrigerating room temperature sensor provided in the refrigerating room, and the refrigerating room temperature sensor provided in the freezer compartment. In addition, a refrigerator according to an example of the present disclosure includes a refrigerating room damper that controls cold air supplied from the cooling room to the refrigerating room based on the refrigerating room temperature sensor, and cool air supplied from the cooling room to the freezing room. And a freezer damper that controls based on the above. A refrigerator according to an example of the present disclosure includes a compressor whose operation is controlled based on a detection result of a freezer temperature sensor. In the refrigerator according to an example of the present disclosure, when the refrigerator is in the open state, the freezer damper is in the open state, and the compressor is stopped, the freezer damper is in the closed state for a predetermined time after the compressor is stopped. The blower is configured to operate with the damper opened.
 このような構成により、圧縮機停止中に冷却器の冷熱を有効利用でき、冷凍室への熱影響を抑えて冷蔵室を効率的に冷却でき、省エネルギ性の高い冷蔵庫を提供することができる。 With such a configuration, it is possible to effectively use the cooler cooler while the compressor is stopped, to efficiently cool the refrigerator compartment while suppressing the heat effect on the freezer compartment, and to provide a highly energy-saving refrigerator. .
 また、本開示の一例による冷蔵庫は、圧縮機停止後の所定時間が、冷蔵室温度センサで検知される温度が冷蔵室ダンパを閉動作させる温度に達するまでの時間となるよう設定されていてもよい。 Further, the refrigerator according to an example of the present disclosure may be configured such that the predetermined time after the compressor is stopped is the time until the temperature detected by the refrigerator temperature sensor reaches the temperature at which the refrigerator damper is closed. Good.
 このような構成により、圧縮機停止中の冷却器の冷熱を適正に有効利用することができる。 With this configuration, it is possible to appropriately and effectively use the cooling energy of the cooler when the compressor is stopped.
 また、本開示の一例による冷蔵庫は、圧縮機停止後の所定時間、冷凍室ダンパが閉状態で冷蔵室ダンパを開状態として運転する送風機の回転数が、圧縮機運転中の回転数より小さくなるよう設定されていてもよい。 In addition, in the refrigerator according to an example of the present disclosure, the rotation speed of the blower that operates with the freezer damper closed and the refrigerating chamber damper open for a predetermined time after the compressor is stopped is smaller than the rotation speed during the compressor operation. It may be set as follows.
 このような構成により、圧縮機停止中に、冷却器の冷熱をさらに有効利用でき、冷凍室への熱影響を抑えて冷蔵室を効率的に冷却し、省エネルギ性の高い冷蔵庫を提供することができる。 With such a configuration, it is possible to further effectively use the cooler's cold energy while the compressor is stopped, to efficiently cool the refrigerator compartment while suppressing the heat effect on the freezer room, and to provide a highly energy-saving refrigerator. Can do.
 また、本開示は、除霜運転開始前に行なわれるプリクール運転終了後の冷却器の冷熱を有効利用できる冷蔵庫を提供する。 In addition, the present disclosure provides a refrigerator that can effectively use the cooling energy of the cooler after the end of the precooling operation performed before the start of the defrosting operation.
 具体的には、本開示の一例による冷蔵庫は、貯蔵室として、冷蔵室および冷凍室を備える。また、本開示の一例による冷蔵庫は、冷凍室の後方に配置され、冷蔵室および冷凍室に冷気を供給する冷却器および送風機が収納された冷却室を備える。また、本開示の一例による冷蔵庫は、冷蔵室に設けられた冷蔵室温度センサと、冷凍室に設けられた冷凍室温度センサとを備える。また、本開示の一例による冷蔵庫は、冷却室から冷蔵室に供給される冷気を冷蔵室温度センサに基づいて制御する冷蔵室ダンパと、冷却室から冷凍室に供給される冷気を冷凍室温度センサに基づいて制御する冷凍室ダンパとを備える。また、本開示の一例による冷蔵庫は、冷凍室温度センサに基づいて運転が制御される圧縮機と、冷却器の霜を溶かす霜取りヒータとを備える。また、本開示の一例による冷蔵庫は、霜取りヒータ通電前に、冷蔵室ダンパを閉状態とし、冷凍室ダンパを開状態とし、送風機および圧縮機を所定時間(第1の所定時間)連続運転するプリクールモードと、プリクールモード後に、圧縮機を停止し、冷蔵室ダンパを開状態とし、冷凍室ダンパを閉状態とし、送風機を所定時間(第2の所定時間)運転するプリ除霜モードとを有する。 Specifically, a refrigerator according to an example of the present disclosure includes a refrigerator room and a freezer room as a storage room. In addition, a refrigerator according to an example of the present disclosure includes a cooling chamber that is disposed behind the freezer compartment and that stores a cooler and a blower that supply cold air to the refrigerator compartment and the freezer compartment. A refrigerator according to an example of the present disclosure includes a refrigerating room temperature sensor provided in the refrigerating room, and a freezing room temperature sensor provided in the freezing room. In addition, a refrigerator according to an example of the present disclosure includes a refrigerating room damper that controls cold air supplied from the cooling room to the refrigerating room based on the refrigerating room temperature sensor, and cool air supplied from the cooling room to the freezing room. And a freezer damper that controls based on the above. Moreover, the refrigerator by an example of this indication is provided with the compressor by which an operation is controlled based on a freezer temperature sensor, and the defrost heater which melts the frost of a cooler. In addition, a refrigerator according to an example of the present disclosure has a refrigerator in which a refrigeration chamber damper is closed and a freezing chamber damper is opened before a defrost heater is energized, and the fan and the compressor are continuously operated for a predetermined time (first predetermined time). After the cool mode and the precool mode, the compressor is stopped, the refrigerator compartment damper is opened, the freezer compartment damper is closed, and the fan is operated for a predetermined time (second predetermined time). Have.
 このような構成により、除霜運転開始前に行なわれるプリクール運転終了後の冷却器の冷熱を冷蔵室の冷却に有効利用することができ、省エネルギ性の高い冷蔵庫を提供することができる。 With such a configuration, the cooler after the precooling operation performed before the start of the defrosting operation can be effectively used for cooling the refrigerator compartment, and a highly energy-saving refrigerator can be provided.
 また、本開示の一例による冷蔵庫は、冷却器の霜を溶かす霜取りヒータ通電時は、冷蔵室ダンパを閉状態にし、冷凍室ダンパを開状態とするように構成されていてもよい。このような構成により、冷凍室からの自然対流による冷気導入により、霜取りヒータ通電時の冷却器周辺の上昇気流を促進でき、冷却器の除霜効率を高めることができる。 Further, the refrigerator according to an example of the present disclosure may be configured to close the refrigerator compartment damper and open the freezer compartment damper when energizing the defrost heater that melts the frost of the cooler. With such a configuration, by introducing cold air by natural convection from the freezer compartment, it is possible to promote upward airflow around the cooler when the defrosting heater is energized, and to improve the defrosting efficiency of the cooler.
 また、本開示の一例による冷蔵庫は、冷凍室に供給された冷気が冷却室に戻される冷凍室冷気戻り通路に、冷凍室ダンパが設けられていてもよい。このような構成により、冷却室スペースの有効活用を図りながら冷却器の除霜効率を高めることができる。 Further, in the refrigerator according to an example of the present disclosure, the freezer compartment damper may be provided in the freezer compartment cold air return passage through which the cold air supplied to the freezer compartment is returned to the cooler chamber. With such a configuration, the defrosting efficiency of the cooler can be increased while effectively utilizing the cooling chamber space.
 また、本開示は、簡素な構造で、野菜室内を高湿に保ちながら野菜室内の結露を防止することができる冷蔵庫を提供する。 Also, the present disclosure provides a refrigerator that has a simple structure and can prevent condensation in the vegetable compartment while keeping the vegetable compartment in high humidity.
 具体的には、本開示の一例による冷蔵庫は、貯蔵室として、冷蔵室、冷凍室および野菜室を備える。また、本開示の一例による冷蔵庫は、冷凍室の後方に配置され、冷蔵室、冷凍室および野菜室に冷気を供給する冷却器および送風機が収納された冷却室を備える。また、本開示の一例による冷蔵庫は、冷却室から冷蔵室に供給される冷気を制御する冷蔵室ダンパと、冷却室から野菜室に供給される冷気を制御する野菜室ダンパとを備える。また、本開示の一例による冷蔵庫は、野菜室内の湿度を検出する湿度センサと、野菜室を加温する野菜室ヒータとを備える。野菜室内の検出温度に基づいて野菜室ダンパは開閉制御され、野菜室ヒータは、湿度センサの検出湿度に基づいて通電制御されるように構成されている。 Specifically, a refrigerator according to an example of the present disclosure includes a refrigerator room, a freezer room, and a vegetable room as a storage room. In addition, a refrigerator according to an example of the present disclosure includes a cooling chamber that is disposed behind the freezer compartment and that stores a cooler that supplies cold air to the refrigerator compartment, the freezer compartment, and the vegetable compartment and a blower. In addition, a refrigerator according to an example of the present disclosure includes a refrigerator compartment damper that controls cold air supplied from the cooling chamber to the refrigerator compartment, and a vegetable compartment damper that controls cold air supplied from the refrigerator compartment to the vegetable compartment. Moreover, the refrigerator by an example of this indication is provided with the humidity sensor which detects the humidity in a vegetable compartment, and the vegetable compartment heater which heats a vegetable compartment. The vegetable room damper is controlled to open and close based on the detected temperature in the vegetable room, and the vegetable room heater is configured to be energized and controlled based on the detected humidity of the humidity sensor.
 このような構成により、簡素な構造で、野菜室内を高湿に保ちながら野菜室内の結露を防止することができる。 With such a configuration, it is possible to prevent condensation in the vegetable compartment while keeping the vegetable compartment in a high humidity with a simple structure.
 また、本開示の一例による冷蔵庫は、湿度センサが、野菜室の天面部に配置されていてもよい。このような構成により、野菜室内の湿度を精度良く検知することができる。 In the refrigerator according to the example of the present disclosure, the humidity sensor may be disposed on the top surface of the vegetable room. With such a configuration, the humidity in the vegetable compartment can be detected with high accuracy.
 また、本開示の一例による冷蔵庫は、野菜室ヒータが、野菜室の上方の貯蔵室との区画壁に配置されていてもよい。このような構成により、野菜室内の、特に結露し易い天面の結露を確実に防止することができる。 In the refrigerator according to an example of the present disclosure, the vegetable room heater may be disposed on a partition wall with the storage room above the vegetable room. With such a configuration, it is possible to reliably prevent condensation in the vegetable room, particularly on the top surface where condensation easily occurs.
 また、本開示は、貯蔵室内の収納量に応じた適切な冷却制御ができる冷蔵庫を提供する。 Also, the present disclosure provides a refrigerator that can perform appropriate cooling control according to the amount of storage in the storage room.
 具体的には、本開示の一例による冷蔵庫は、貯蔵室として冷蔵室を備える。本開示の一例による冷蔵庫は、冷蔵室内に光源および光センサを備えていてもよい。また、本開示の一例による冷蔵庫は、冷蔵室の扉の開閉を検知する扉開閉検知センサを備えていてもよい。この場合、本開示の一例による冷蔵庫は、扉開閉検知センサによる閉扉検知後に、光源および光センサにより冷蔵室内の前回と今回との収納変化量を検出するとともに、閉扉検知して所定時間、開扉が行なわれない場合、光源および光センサにより冷蔵室内の絶対収納量を検出するように構成されていてもよい。 Specifically, a refrigerator according to an example of the present disclosure includes a refrigerator room as a storage room. The refrigerator according to an example of the present disclosure may include a light source and an optical sensor in the refrigerator compartment. The refrigerator according to an example of the present disclosure may include a door opening / closing detection sensor that detects opening / closing of the door of the refrigerator compartment. In this case, the refrigerator according to an example of the present disclosure detects the storage change amount between the previous time and the current time in the refrigeration room by the light source and the optical sensor after the door closing detection by the door opening / closing detection sensor, and detects the door closing and opens the door for a predetermined time. When the operation is not performed, the absolute storage amount in the refrigerator compartment may be detected by the light source and the optical sensor.
 このような構成により、貯蔵室内の前回と今回の収納変化量の検出と、貯蔵室内の絶対収納量の検出とを使い分けることが可能となる。よって、このような構成により、貯蔵室内の収納量に応じた適切な冷却制御ができる。 With this configuration, it is possible to selectively use the previous and current storage change detections in the storage chamber and the absolute storage detection in the storage chamber. Therefore, with such a configuration, it is possible to perform appropriate cooling control according to the storage amount in the storage chamber.
 また、本開示の一例による冷蔵庫は、光源および光センサにより検出された冷蔵室内の前回と今回との収納変化量に基づいて、省エネ運転の継続か解除かが判断されて運転制御されるように構成されていてもよい。このような構成により、使用者の使い方を加味した適切な冷却制御ができる。 In addition, a refrigerator according to an example of the present disclosure is controlled so that it is determined whether to continue or cancel the energy-saving operation based on the storage change amount between the previous time and the current time in the refrigerator compartment detected by the light source and the optical sensor. It may be configured. With such a configuration, it is possible to perform appropriate cooling control taking into account the usage of the user.
 また、本開示の一例による冷蔵庫は、光源および光センサにより検出された冷蔵室内の絶対収納量に基づいて、圧縮機の回転数をシフトアップする運転(回転数シフトアップ運転)を制御するように構成されていてもよい。このような構成により、冷蔵室内の絶対収納量に応じた圧縮機の回転数を選択することができ、より貯蔵室内の収納量に応じた適切な冷却制御ができる。 In addition, the refrigerator according to an example of the present disclosure controls an operation for increasing the rotation speed of the compressor (rotational speed shift-up operation) based on the absolute storage amount in the refrigerator compartment detected by the light source and the optical sensor. It may be configured. With such a configuration, it is possible to select the rotation speed of the compressor according to the absolute storage amount in the refrigerator compartment, and it is possible to perform appropriate cooling control according to the storage amount in the storage chamber.
図1は、本開示の実施の形態の一例による冷蔵庫の正面図である。FIG. 1 is a front view of a refrigerator according to an example of an embodiment of the present disclosure. 図2は、本開示の実施の形態の一例による冷蔵庫の内部を前方から見た平面図である。Drawing 2 is a top view which looked at the inside of the refrigerator by an example of an embodiment of this indication from the front. 図3は、本開示の実施の形態の一例による冷蔵庫の断面図である。FIG. 3 is a cross-sectional view of a refrigerator according to an example of the embodiment of the present disclosure. 図4は、本開示の実施の形態の一例による冷蔵庫の冷気流れを説明するための図である。FIG. 4 is a diagram for explaining a cold air flow of the refrigerator according to an example of the embodiment of the present disclosure. 図5は、本開示の実施の形態の一例による冷蔵庫の冷凍室を前方から見た平面図である。Drawing 5 is a top view which looked at the freezer compartment of the refrigerator by an example of an embodiment of this indication from the front. 図6は、本開示の実施の形態の一例による冷蔵庫の冷却室部分を示す断面図である。FIG. 6 is a cross-sectional view illustrating a cooling chamber portion of a refrigerator according to an example of the embodiment of the present disclosure. 図7は、本開示の実施の形態の一例による冷蔵庫の野菜室ダクトおよび冷蔵室戻りダクトを示す断面図である。FIG. 7 is a cross-sectional view illustrating a vegetable compartment duct and a refrigerator compartment return duct of a refrigerator according to an example of the embodiment of the present disclosure. 図8は、本開示の実施の形態の一例による冷蔵庫の冷却室部分を示す分解斜視図である。FIG. 8 is an exploded perspective view illustrating a cooling chamber portion of a refrigerator according to an example of the embodiment of the present disclosure. 図9は、本開示の実施の形態の一例による冷蔵庫の冷却室部分を冷却室側から見た分解斜視図である。FIG. 9 is an exploded perspective view of a cooling chamber portion of a refrigerator according to an example of the embodiment of the present disclosure as viewed from the cooling chamber side. 図10は、本開示の実施の形態の一例による冷蔵庫の冷却室形成板を一部残して冷却室を冷却室側から見た斜視図である。FIG. 10 is a perspective view of the cooling chamber as viewed from the cooling chamber side while leaving a part of the cooling chamber forming plate of the refrigerator according to an example of the embodiment of the present disclosure. 図11は、本開示の実施の形態の一例による冷蔵庫の冷却室形成板と野菜室ダクトとの関係を冷凍室側から見て示す平面図である。FIG. 11 is a plan view illustrating a relationship between a cooling room forming plate and a vegetable room duct of a refrigerator according to an example of the embodiment of the present disclosure as viewed from the freezer room side. 図12は、本開示の実施の形態の一例による冷蔵庫の冷却室形成板と野菜室ダクトとの関係を冷凍室側から見た斜視図である。FIG. 12 is a perspective view of a relationship between a cooling room forming plate and a vegetable room duct of a refrigerator according to an example of the embodiment of the present disclosure as viewed from the freezer room side. 図13は、本開示の実施の形態の一例による冷蔵庫の冷蔵室を示す斜視図である。FIG. 13 is a perspective view illustrating a refrigerator compartment of a refrigerator according to an example of the embodiment of the present disclosure. 図14は、本開示の実施の形態の一例による冷蔵庫の冷蔵室の内部を側方から見た断面図である。FIG. 14 is a cross-sectional view of the inside of a refrigerator compartment of a refrigerator according to an example of an embodiment of the present disclosure as viewed from the side. 図15Aは、図14のA部を水平方向に切断した断面を模式的に示した図である。FIG. 15A is a diagram schematically showing a cross section of the A part of FIG. 14 cut in the horizontal direction. 図15Bは、図14のB部を水平方向に切断した断面を模式的に示した図である。FIG. 15B is a diagram schematically showing a cross section of the portion B in FIG. 14 cut in the horizontal direction. 図15Cは、図14のC部を水平方向に切断した断面を模式的に示した図である。FIG. 15C is a diagram schematically showing a cross section of the portion C in FIG. 14 cut in the horizontal direction. 図16は、本開示の実施の形態の一例による冷蔵庫の冷蔵室ダクトを水平方向に切断した断面図である。FIG. 16 is a cross-sectional view of the refrigerator compartment duct of the refrigerator according to an example of the embodiment of the present disclosure cut in the horizontal direction. 図17は、本開示の実施の形態の一例による冷蔵庫の冷蔵室ダクトの吐出口の構成を説明するための図である。FIG. 17 is a diagram for describing the configuration of the discharge port of the refrigerator compartment duct of the refrigerator according to an example of the embodiment of the present disclosure. 図18は、本開示の実施の形態の一例による冷蔵庫の冷蔵室を示す要部拡大断面図である。FIG. 18 is an essential part enlarged cross-sectional view showing a refrigerator compartment of a refrigerator according to an example of the embodiment of the present disclosure. 図19は、本開示の実施の形態の一例による冷蔵庫の冷蔵室内部を前方から見たときの平面図である。FIG. 19 is a plan view of the inside of the refrigerator compartment of the refrigerator according to an example of the embodiment of the present disclosure as viewed from the front. 図20は、本開示の実施の形態の一例による冷蔵庫の冷蔵室内部を前方から見たときの要部拡大図である。FIG. 20 is an enlarged view of a main part when the refrigerator compartment inside the refrigerator according to an example of the embodiment of the present disclosure is viewed from the front. 図21は、本開示の実施の形態の一例による冷蔵庫の貯蔵室を示す分解斜視図である。FIG. 21 is an exploded perspective view illustrating a storage room of a refrigerator according to an example of the embodiment of the present disclosure. 図22は、本開示の実施の形態の一例による冷蔵庫の貯蔵室内におけるパーシャル室の後方部を冷蔵庫の背面側から見た斜視図である。FIG. 22 is a perspective view of the rear part of the partial chamber in the storage chamber of the refrigerator according to an example of the embodiment of the present disclosure as viewed from the back side of the refrigerator. 図23は、本開示の実施の形態の一例による冷蔵庫の貯蔵室内におけるパーシャル室の後方部を冷蔵庫の背面側から見た拡大斜視図である。FIG. 23 is an enlarged perspective view of the rear part of the partial chamber in the storage chamber of the refrigerator according to an example of the embodiment of the present disclosure as viewed from the back side of the refrigerator. 図24は、本開示の実施の形態の一例による冷蔵庫の貯蔵室内におけるパーシャル室の後方部を冷蔵庫の背面側から見た別の拡大斜視図である。FIG. 24 is another enlarged perspective view of the rear part of the partial chamber in the storage chamber of the refrigerator according to an example of the embodiment of the present disclosure as viewed from the back side of the refrigerator. 図25は、本開示の実施の形態の一例による冷蔵庫の貯蔵室内におけるパーシャル室の後方部の脱臭ユニット装着部を側方から見た要部拡大図である。FIG. 25 is an enlarged view of a main part when a deodorizing unit mounting portion in the rear part of the partial chamber in the storage chamber of the refrigerator according to an example of the embodiment of the present disclosure is viewed from the side. 図26は、本開示の実施の形態の一例による冷蔵庫の貯蔵室内におけるパーシャル室の後方部の脱臭ユニット装着部を示す拡大斜視図である。FIG. 26 is an enlarged perspective view showing a deodorizing unit mounting portion at the rear of the partial chamber in the refrigerator storage chamber according to an example of the embodiment of the present disclosure. 図27は、本開示の実施の形態の一例による冷蔵庫の冷却器を取り外して冷却室を冷蔵庫の背面側からから見た斜視図である。FIG. 27 is a perspective view of the cooling chamber as viewed from the back side of the refrigerator with the refrigerator cooler according to an example of the embodiment of the present disclosure removed. 図28は、本開示の実施の形態の一例による冷蔵庫の冷却器を取り外して冷却室を冷蔵庫の背面側からから見た平面図である。FIG. 28 is a plan view of the cooling chamber as viewed from the rear side of the refrigerator with the refrigerator cooler according to an example of the embodiment of the present disclosure removed. 図29は、本開示の実施の形態の一例による冷蔵庫の冷凍室の背面板を示す平面図である。FIG. 29 is a plan view showing a back plate of a freezer compartment of a refrigerator according to an example of the embodiment of the present disclosure. 図30は、本開示の実施の形態の一例による冷蔵庫の冷却室の分解斜視図である。FIG. 30 is an exploded perspective view of a cooling chamber of a refrigerator according to an example of the embodiment of the present disclosure. 図31は、本開示の実施の形態の一例による冷蔵庫の冷却室を前方ななめ上方から見た斜視図である。FIG. 31 is a perspective view of the cooling chamber of the refrigerator according to an example of the embodiment of the present disclosure as viewed from the front lick. 図32は、本開示の実施の形態の一例による冷蔵庫の冷却室の要部拡大図である。FIG. 32 is an enlarged view of a main part of a cooling chamber of a refrigerator according to an example of the embodiment of the present disclosure. 図33は、本開示の実施の形態の一例による冷蔵庫の冷却室の別の要部拡大図である。FIG. 33 is an enlarged view of another main part of the cooling chamber of the refrigerator according to an example of the embodiment of the present disclosure. 図34Aは、本開示の実施の形態の一例による冷蔵庫の冷凍室ダンパを示す斜視図である。FIG. 34A is a perspective view illustrating a freezer damper of a refrigerator according to an example of the embodiment of the present disclosure. 図34Bは、本開示の実施の形態の一例による冷蔵庫の冷凍室ダンパの構成を説明するための図である。FIG. 34B is a diagram for describing a configuration of a freezer damper of a refrigerator according to an example of the embodiment of the present disclosure. 図35は、本開示の実施の形態の一例による冷蔵庫の制御ブロック図である。FIG. 35 is a control block diagram of a refrigerator according to an example of the embodiment of the present disclosure. 図36は、本開示の実施の形態の一例による冷蔵庫の冷却システムの基本制御を示すフローチャートである。FIG. 36 is a flowchart illustrating basic control of the refrigerator cooling system according to an example of the embodiment of the present disclosure. 図37は、本開示の実施の形態の一例による冷蔵庫の冷却システムのフラップ開度制御のフローチャートである。FIG. 37 is a flowchart of flap opening control of the refrigerator cooling system according to an example of the embodiment of the present disclosure. 図38は、本開示の実施の形態の一例による冷蔵庫の冷却システムのフラップ開度制御のフローチャートである。FIG. 38 is a flowchart of flap opening control of the refrigerator cooling system according to an example of the embodiment of the present disclosure. 図39は、本開示の実施の形態の一例による冷蔵庫の冷却システムのオフサイクル制御を示すフローチャートである。FIG. 39 is a flowchart illustrating off-cycle control of the refrigerator cooling system according to an example of the embodiment of the present disclosure. 図40は、本開示の実施の形態の一例による冷蔵庫の冷却システムのオフサイクル制御を示すタイミングチャートである。FIG. 40 is a timing chart illustrating off-cycle control of the refrigerator cooling system according to an example of the embodiment of the present disclosure. 図41は、本開示の実施の形態の一例による冷蔵庫の冷却システムのデフロスト制御を示すフローチャートである。FIG. 41 is a flowchart illustrating the defrost control of the refrigerator cooling system according to an example of the embodiment of the present disclosure. 図42は、本開示の実施の形態の一例による冷蔵庫の冷却システムのデフロスト制御を示すタイミングチャートである。FIG. 42 is a timing chart illustrating the defrost control of the refrigerator cooling system according to an example of the embodiment of the present disclosure. 図43は、本開示の実施の形態の一例による冷蔵庫の野菜室の湿度センサによる野菜室ヒータの制御を示すフローチャートである。FIG. 43 is a flowchart illustrating control of the vegetable room heater by the humidity sensor of the vegetable room of the refrigerator according to an example of the embodiment of the present disclosure. 図44は、本開示の実施の形態の一例による冷蔵庫の野菜室の湿度センサによる野菜室ヒータの外気温度と通電率との関係を示す図である。FIG. 44 is a diagram illustrating a relationship between an outside temperature of a vegetable room heater and a current supply rate by a humidity sensor of a vegetable room of a refrigerator according to an example of an embodiment of the present disclosure. 図45は、本開示の実施の形態の一例による冷蔵庫における冷蔵室内の収納量の検知結果に基づいて行なわれる冷却システム制御を示すフローチャートである。FIG. 45 is a flowchart illustrating the cooling system control performed based on the detection result of the storage amount in the refrigerator compartment in the refrigerator according to an example of the embodiment of the present disclosure.
 以下、本開示の実施の形態の例について、図面を参照しながら説明する。なお、以下の実施の形態によって本開示が限定されるものではない。 Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings. Note that the present disclosure is not limited to the following embodiments.
 (実施の形態1)
 図1~図4は、冷蔵庫の全体構成を説明するための図である。図5~図12は、冷却室から野菜室への冷気供給構成を説明するための図である。図13~図26は、冷蔵室構成を説明するための図である。図27~図34は、冷凍室から冷却室に跨る部分の構成を説明するための図である。
(Embodiment 1)
1 to 4 are diagrams for explaining the overall configuration of the refrigerator. FIG. 5 to FIG. 12 are diagrams for explaining the cold air supply configuration from the cooling room to the vegetable room. 13 to 26 are diagrams for explaining the structure of the refrigerator compartment. FIG. 27 to FIG. 34 are diagrams for explaining a configuration of a portion extending from the freezing chamber to the cooling chamber.
 <1-1.冷蔵庫の全体構成>
 まず、図1~図4を用いて冷蔵庫の全体構成を説明する。
<1-1. Overall configuration of refrigerator>
First, the overall configuration of the refrigerator will be described with reference to FIGS.
 図1~図4において、本開示の実施の形態の一例による冷蔵庫100は、前方が開口した冷蔵庫本体1を備えている。冷蔵庫本体1は、金属製の外箱2と、硬質樹脂製の内箱3と、外箱2および内箱3の間に発泡充填された発泡断熱材4とで構成されている。冷蔵庫本体1は、その内部が仕切板5,6等によって仕切られて形成された複数の貯蔵室を有する。また、冷蔵庫本体1の複数の貯蔵室それぞれは、冷蔵庫本体1と同様の断熱構成が採用された、回動式の扉7或いは引出し式の扉8,9,10,11を有する。複数の貯蔵室それぞれは、扉7,8,9,10,11により開閉自在となるよう構成されている。 1 to 4, a refrigerator 100 according to an example of the embodiment of the present disclosure includes a refrigerator body 1 having an opening at the front. The refrigerator main body 1 includes a metal outer box 2, a hard resin inner box 3, and a foam insulation 4 filled between the outer box 2 and the inner box 3. The refrigerator main body 1 has a plurality of storage chambers formed by partitioning the inside thereof by partition plates 5 and 6. Each of the plurality of storage rooms of the refrigerator main body 1 has a rotary door 7 or a drawer- type door 8, 9, 10, 11 in which the same heat insulation configuration as that of the refrigerator main body 1 is adopted. Each of the plurality of storage rooms is configured to be openable and closable by doors 7, 8, 9, 10, and 11.
 冷蔵庫本体1内に形成された複数の貯蔵室は、最上部の冷蔵室14と、冷蔵室14の下に設けられた温度帯切り替え可能な切替室15と、切替室15の横に設けられた製氷室16と、切替室15および製氷室16の下に設けられた冷凍室18と、最下部の野菜室17とで構成されている。冷蔵室14には、複数の棚板20が設けられている。冷蔵室14の下部には、冷却温度帯の異なるパーシャル室21とチルド室22とが、上下二段に重ねて設けられている。 The plurality of storage chambers formed in the refrigerator main body 1 are provided next to the uppermost refrigeration chamber 14, a switching chamber 15 provided under the refrigeration chamber 14 and capable of switching a temperature zone, and the switching chamber 15. The ice making room 16 is constituted by a switching room 15 and a freezing room 18 provided under the ice making room 16 and a lowermost vegetable room 17. The refrigerator compartment 14 is provided with a plurality of shelf boards 20. In the lower part of the refrigerator compartment 14, a partial chamber 21 and a chilled chamber 22 having different cooling temperature zones are provided in two upper and lower stages.
 冷蔵室14は、冷蔵保存するための貯蔵室であり、凍らない程度の低い温度、具体的には、通常1℃~5℃に設定され冷却される。また、冷蔵室14内に設けられたパーシャル室21は、微凍結保存に適した-2℃~-3℃に設定され冷却される。チルド室22は、冷蔵室14よりも低く、パーシャル室21よりは高めの1℃前後の温度に設定され冷却される。 The refrigerated room 14 is a storage room for refrigerated storage, and is cooled at a low temperature that does not freeze, specifically, normally set to 1 ° C. to 5 ° C. In addition, the partial chamber 21 provided in the refrigerator compartment 14 is set to −2 ° C. to −3 ° C. suitable for micro freezing storage and cooled. The chilled chamber 22 is set to a temperature around 1 ° C., which is lower than the refrigerator compartment 14 and higher than the partial chamber 21, and is cooled.
 野菜室17は、冷蔵室14と同等、もしくは若干それより高く温度設定される貯蔵室であり、具体的には、2℃~7℃に設定され冷却される。野菜室17は、野菜等の収納食品から発せられる水分により高湿度となるため、局所的に冷えすぎると結露することがある。そのため、野菜室17の温度は、比較的高い温度に設定することで冷却量(冷気の量)を少なくし、局所的な冷えすぎによる結露発生を抑制している。 The vegetable room 17 is a storage room whose temperature is set equal to or slightly higher than that of the refrigerated room 14, and is specifically set to 2 to 7 ° C. and cooled. Since the vegetable compartment 17 becomes high humidity due to moisture emitted from stored foods such as vegetables, condensation may occur if it is too cold locally. Therefore, the temperature of the vegetable compartment 17 is set to a relatively high temperature to reduce the amount of cooling (amount of cold air) and suppress the occurrence of condensation due to local overcooling.
 冷凍室18は、冷凍温度帯に設定される貯蔵室であり、具体的には、通常-22℃~-18℃に設定され冷却される。なお、冷凍室18は、冷凍保存状態向上のため、例えば-30℃または-25℃などの低温に設定され冷却されることもある。 The freezing room 18 is a storage room set in a freezing temperature zone, and specifically, it is normally set to −22 ° C. to −18 ° C. and cooled. Note that the freezer compartment 18 may be cooled at a low temperature such as −30 ° C. or −25 ° C., for example, in order to improve the frozen storage state.
 切替室15は、庫内の温度が変更可能な貯蔵室であり、用途に応じて冷蔵温度帯から冷凍温度帯まで切り換えることができるように構成されている。 The switching chamber 15 is a storage chamber in which the temperature in the warehouse can be changed, and is configured to be switched from a refrigeration temperature zone to a freezing temperature zone according to the application.
 一方、冷凍室18の後方には、冷却室23が設けられている。冷却室23には、冷気を生成する冷却器24と、冷気を各貯蔵室に供給する冷却ファン25とが設置されている。更に、冷却器24の下方には、ガラス管ヒータ等で構成された除霜部26(以下、ガラス管ヒータ26と称す。図6)が設けられている。 On the other hand, a cooling chamber 23 is provided behind the freezing chamber 18. The cooling chamber 23 is provided with a cooler 24 that generates cool air and a cooling fan 25 that supplies the cool air to each storage chamber. Further, a defrosting section 26 (hereinafter referred to as a glass tube heater 26; FIG. 6) composed of a glass tube heater or the like is provided below the cooler 24.
 冷却器24では、圧縮機(コンプ)27と、コンデンサ(図示せず)と、放熱用の放熱パイプ(図示せず)と、キャピラリーチューブ(図示せず)とが、環状に接続されて冷凍サイクルを構成している。圧縮機27によって圧縮された冷媒の循環によって、各貯蔵室の冷却が行われる。 In the cooler 24, a compressor (comp) 27, a condenser (not shown), a heat radiating pipe (not shown), and a capillary tube (not shown) are annularly connected to form a refrigeration cycle. Is configured. Each storage chamber is cooled by the circulation of the refrigerant compressed by the compressor 27.
 冷却ファン25は、冷却器24の上方に設けられている。冷却ファン25は、その下流側に連なる、冷蔵室ダクト28、冷凍室ダクト29(図6)、および野菜室ダクト30を介して、冷蔵室14、冷凍室18、および野菜室17等にそれぞれ冷気を供給し、これら各貯蔵室を冷却するように構成されている。 The cooling fan 25 is provided above the cooler 24. The cooling fan 25 cools the refrigeration room 14, the freezing room 18, the vegetable room 17 and the like through the refrigerating room duct 28, the freezing room duct 29 (FIG. 6), and the vegetable room duct 30 connected to the downstream side thereof. And each of the storage chambers is cooled.
 以下、冷却室23、冷蔵室14、冷凍室18および野菜室17それぞれの構成、および、各室の冷却の構成について説明する。 Hereinafter, the configuration of each of the cooling chamber 23, the refrigerator compartment 14, the freezer compartment 18 and the vegetable compartment 17 and the configuration of cooling of each compartment will be described.
 <1-2.冷却室と冷気供給構成>
 図3および図5~図12を用いて冷却室と冷気供給構成について説明する。
<1-2. Cooling chamber and cool air supply configuration>
The cooling chamber and the cold air supply configuration will be described with reference to FIG. 3 and FIGS.
 冷却室23は、冷凍室18の後方に設けられており、図6に示すように、冷却室形成板31と内箱3とによって形成されている。冷却ファン25は、冷却室形成板31の上部に装着されることにより、冷却器24上方に位置している。冷却室形成板31の前面側には、冷凍室背面板32が装着されて、冷却ファン25の下流側が冷凍室背面板32により覆われている。冷凍室背面板32と冷却室23との間に、冷却ファン25下流側と連通する冷凍室ダクト29が形成されている。 The cooling chamber 23 is provided behind the freezing chamber 18 and is formed of a cooling chamber forming plate 31 and an inner box 3 as shown in FIG. The cooling fan 25 is positioned above the cooler 24 by being mounted on the upper part of the cooling chamber forming plate 31. A freezer compartment back plate 32 is mounted on the front side of the cooling chamber forming plate 31, and the downstream side of the cooling fan 25 is covered with the freezer compartment back plate 32. A freezer compartment duct 29 that communicates with the downstream side of the cooling fan 25 is formed between the freezer compartment back plate 32 and the cooling compartment 23.
 冷却ファン25の下流側には、冷蔵室14の冷蔵室ダクト28と、野菜室17の野菜室ダクト30とが、それぞれ異なる位置で別個に独立した形で、冷却室23に接続されている。詳述すると、冷却室23の冷却ファン下流側の上部の上面は、図4等に示すように、冷蔵室14と冷凍室18とを仕切る仕切板5に設けられた第1冷気供給口33を介して、冷蔵室ダクト28につながっている。冷却室23の冷却ファン25の下流側の上部の側方には、図10、図11および図12にも示すように、第2冷気供給口34が設けられて野菜室ダクト30が接続されている。すなわち、冷蔵室ダクト28および野菜室ダクト30は、冷却室23に、それぞれ異なる位置で別個に独立した形で接続されている。これにより、冷却器24で生成された冷気は、冷却ファン25によって、第1冷気供給口33と第2冷気供給口34とにそれぞれ別個に独立して供給され、冷蔵室ダクト28および野菜室ダクト30それぞれへと供給される。 The cold room duct 28 of the cold room 14 and the vegetable room duct 30 of the vegetable room 17 are connected to the cooling room 23 separately and independently at different positions on the downstream side of the cooling fan 25. More specifically, the upper surface of the upper portion of the cooling chamber 23 on the downstream side of the cooling fan has a first cold air supply port 33 provided in the partition plate 5 that partitions the refrigerator compartment 14 and the freezer compartment 18 as shown in FIG. To the refrigerator compartment duct 28. As shown in FIGS. 10, 11, and 12, a second cold air supply port 34 is provided on the side of the upper portion of the cooling chamber 23 on the downstream side of the cooling fan 25 to which the vegetable compartment duct 30 is connected. Yes. That is, the refrigerator compartment duct 28 and the vegetable compartment duct 30 are individually and independently connected to the cooling compartment 23 at different positions. Thereby, the cold air produced | generated by the cooler 24 is separately supplied by the cooling fan 25 to the 1st cold air supply port 33 and the 2nd cold air supply port 34 separately, respectively. 30 each.
 冷却器24の下方には、図6に示すように、ガラス管ヒータ26を覆う断面傘状のヒータカバー35が設置されている。また、冷却室23の底面には、除霜水を外部に排出する排水口36が設けられている。 Below the cooler 24, as shown in FIG. 6, a cross-sectional umbrella-shaped heater cover 35 that covers the glass tube heater 26 is installed. Further, a drain port 36 for discharging defrost water to the outside is provided on the bottom surface of the cooling chamber 23.
 <1-3.冷蔵室とその冷却構成>
 次に、図3および図13~図26を用いて、冷蔵室とその冷却構成を説明する。
<1-3. Cold room and its cooling configuration>
Next, the refrigerator compartment and its cooling configuration will be described with reference to FIG. 3 and FIGS.
 冷蔵室14は、冷蔵庫本体1の最上部に位置していて、図3および図14に示すように、複数の棚板20を有している。また、冷蔵室14は、背面に冷蔵室ダクト28が設けられている。 The refrigerator compartment 14 is located in the uppermost part of the refrigerator main body 1 and has a plurality of shelf boards 20 as shown in FIGS. 3 and 14. In addition, the refrigerator compartment 14 is provided with a refrigerator compartment duct 28 on the back surface.
 冷蔵室ダクト28は、図21に示すように、ダクト部材28aの冷蔵室側表面が樹脂製のダクトカバー28bで覆われて構成されている。ダクト部材28aは、例えば発泡スチロール等で構成されている。冷蔵室ダクト28は、冷蔵室14と冷凍室18との間を仕切る仕切板5の第1冷気供給口33を覆うように、冷蔵室14背面に装着されて冷却室23と連通されている。第1冷気供給口33には、冷蔵室ダンパ37が組み込まれている。冷蔵室ダンパ37の開閉によって、冷却室23から冷蔵室14への冷気供給量が制御される。なお、冷蔵室ダンパ37は、ダンパ固定枠38によって第1冷気供給口33に固定されている。 As shown in FIG. 21, the refrigerator compartment duct 28 is configured such that the refrigerator compartment side surface of the duct member 28a is covered with a resin duct cover 28b. The duct member 28a is made of, for example, polystyrene foam. The refrigerator compartment duct 28 is attached to the back of the refrigerator compartment 14 so as to cover the first cold air supply port 33 of the partition plate 5 that partitions the refrigerator compartment 14 and the freezer compartment 18, and communicates with the cooling compartment 23. A refrigerator compartment damper 37 is incorporated in the first cold air supply port 33. The amount of cold air supplied from the cooling chamber 23 to the refrigerator compartment 14 is controlled by opening and closing the refrigerator compartment damper 37. The refrigerator compartment damper 37 is fixed to the first cold air supply port 33 by a damper fixing frame 38.
 冷蔵室ダンパ37は、冷蔵室14への冷気供給量を制御する冷蔵室用ダンパ部39と、パーシャル室21への冷気供給量を制御するパーシャル室用ダンパ部40とを有する、二連式ダンパで構成されている。冷蔵室ダンパ37は、冷蔵ダンパ駆動用モータユニット41内の冷蔵およびパーシャル用の1つのモータ(図示せず)によって駆動されるよう構成されている。 The refrigerating room damper 37 includes a double damper having a refrigerating room damper unit 39 that controls the amount of cold air supplied to the refrigerating room 14 and a partial room damper unit 40 that controls the amount of cold air supplied to the partial room 21. It consists of The refrigeration chamber damper 37 is configured to be driven by one refrigeration and partial motor (not shown) in the refrigeration damper driving motor unit 41.
 一方、冷蔵室14の下部に設けられたパーシャル室21およびチルド室22のうち、上方に位置するチルド室22は、図14および図18に示すように、最下段の棚板となる天井板43と、その下方に位置するパーシャル室21との間に、冷蔵室14の横幅一杯に形成されている。また、チルド室22には、チルド室容器44が出し入れ自在に設けられている。チルド室22の後方には、冷蔵室ダクト28の冷蔵室用ダンパ部39下流側に連通する、冷気入口22aが設けられている。チルド室22は、冷気入口22aから冷気が取り込まれて冷却されるように構成されている。 On the other hand, among the partial chamber 21 and the chilled chamber 22 provided in the lower part of the refrigerator compartment 14, the chilled chamber 22 located above is a ceiling plate 43 serving as the lowest shelf as shown in FIGS. And the partial chamber 21 located therebelow is formed in the full width of the refrigerator compartment 14. Further, a chilled chamber container 44 is provided in the chilled chamber 22 so as to be freely inserted and removed. At the rear of the chilled chamber 22, there is provided a cold air inlet 22 a communicating with the downstream side of the cold room damper portion 39 of the cold room duct 28. The chilled chamber 22 is configured to be cooled by taking in cold air from the cold air inlet 22a.
 チルド室22には、図18に示すように、天井板43の後部にスリット状の冷気戻り口(チルド側)45が設けられている。さらに、チルド室22には、チルド室容器44の後方部に、冷気戻り口(チルド側)45を介して冷蔵室14とつながる、冷気戻し通路部(チルド側)46が設けられている。チルド室容器44の前端部には、図14に示すように、チルド室扉兼把手部47の下方との間に、冷蔵室14内とつながる開口部48が設けられている。これにより、冷蔵室14内の冷気が、チルド室容器44から溢れ出るチルド室22冷却後の冷気とともに、チルド室容器44外周の間隙(図示せず)を通って、冷気戻し通路部(チルド側)46へと流れるように構成されている。 In the chilled chamber 22, as shown in FIG. 18, a slit-like cold air return port (chilled side) 45 is provided at the rear part of the ceiling plate 43. Further, the chilled chamber 22 is provided with a cold air return passage portion (chilled side) 46 connected to the refrigerator compartment 14 via a cold air return port (chilled side) 45 at the rear portion of the chilled chamber container 44. As shown in FIG. 14, an opening 48 connected to the inside of the refrigerator compartment 14 is provided at the front end of the chilled chamber container 44 between the chilled chamber door / handle portion 47. Thereby, the cold air in the refrigerator compartment 14 flows through the gap (not shown) on the outer periphery of the chilled chamber container 44 together with the cold air after cooling the chilled chamber 22 overflowing from the chilled chamber container 44, and returns to the cold air return passage (chilled side). ) 46.
 また、チルド室22には、チルド室容器44の下方に位置する、パーシャル室21の天井板部材50に、温度調節用ヒータ49が敷設されている。チルド室22の下方に位置するパーシャル室21からの冷輻射により、チルド室22の温度が設定温度より低くなると、温度調節用ヒータ49が通電されて、チルド室22は、設定温度に維持されるように構成されている。なお、温度調節用ヒータ49は、チルド室22内の適所に設けられたチルド室温度センサ(図示せず)による検知温度に基づいて制御されるように構成されている。 In the chilled chamber 22, a temperature adjusting heater 49 is laid on the ceiling plate member 50 of the partial chamber 21 located below the chilled chamber container 44. When the temperature of the chilled chamber 22 becomes lower than the set temperature due to cold radiation from the partial chamber 21 located below the chilled chamber 22, the temperature adjusting heater 49 is energized, and the chilled chamber 22 is maintained at the set temperature. It is configured as follows. The temperature adjusting heater 49 is configured to be controlled based on a temperature detected by a chilled chamber temperature sensor (not shown) provided at an appropriate position in the chilled chamber 22.
 一方、チルド室22の下方に位置するパーシャル室21は、冷蔵庫本体1の内箱3の内壁面と、貯水タンク室12形成板と、チルド室22の底面ともなる天井板部材50とで、貯水タンク室12横に区画形成されている(図13および図14参照)。パーシャル室21の前面開口部分は、パーシャル室扉51で開閉自在に構成されている。パーシャル室21の内部には、パーシャル室容器52が出し入れ自在に設けられている。 On the other hand, the partial chamber 21 located below the chilled chamber 22 is configured to store water by an inner wall surface of the inner box 3 of the refrigerator body 1, a water tank chamber 12 forming plate, and a ceiling plate member 50 that also serves as a bottom surface of the chilled chamber 22. A compartment is formed beside the tank chamber 12 (see FIGS. 13 and 14). A front opening portion of the partial chamber 21 is configured to be freely opened and closed by a partial chamber door 51. A partial chamber container 52 is provided inside the partial chamber 21 so as to be freely inserted and removed.
 パーシャル室21を構成する天井板部材50には、発泡スチロール等からなる断熱材53が組み込まれている。断熱材53に、冷蔵室ダクト28のパーシャル室用ダンパ部40下流側に連通する、パーシャル冷気通路54が形成されている(図14参照)。冷気は、パーシャル冷気通路54を通って、パーシャル室21内に供給され、パーシャル室21が冷却される。 A heat insulating material 53 made of foamed polystyrene or the like is incorporated in the ceiling plate member 50 constituting the partial chamber 21. A partial cold air passage 54 communicating with the downstream side of the partial chamber damper portion 40 of the refrigerator compartment duct 28 is formed in the heat insulating material 53 (see FIG. 14). The cold air is supplied into the partial chamber 21 through the partial cold air passage 54, and the partial chamber 21 is cooled.
 また、パーシャル室21は、図18および図22~図24に示すように、チルド室22と同様に、天井板部材50の後部に、スリット状の冷気戻り口(パーシャル側)55が設けられるとともに、パーシャル室容器52の後方に、空間部が設けられて冷気戻り通路部(パーシャル側)56が形成されている。このような構成により、チルド室22後方の冷気戻り通路部(チルド側)46内の冷蔵室冷気と、チルド室冷気とが、冷気戻り通路部(パーシャル側)56へと流れる。 Further, as shown in FIGS. 18 and 22 to 24, the partial chamber 21 is provided with a slit-like cold air return port (partial side) 55 at the rear portion of the ceiling plate member 50, as in the chilled chamber 22. A space portion is provided behind the partial chamber container 52 to form a cold air return passage portion (partial side) 56. With such a configuration, the refrigeration chamber cold air in the cold air return passage portion (chilled side) 46 behind the chilled chamber 22 and the chilled chamber cold air flow to the cold air return passage portion (partial side) 56.
 更に、パーシャル室21の底面ともなる仕切板5の後部に、冷気戻り通路部(パーシャル側)56と連通する、冷気合流戻り口57が設けられている。冷蔵庫100は、冷気合流戻り口57に冷蔵室戻りダクト58が接続されて(図4および図7参照)、冷蔵室14およびチルド室22を冷却した冷気が、パーシャル室容器52から溢れ出るパーシャル室冷却冷気と合流して、冷却室23に戻るように構成されている。 Furthermore, a cool air confluence return port 57 that communicates with the cool air return passage portion (partial side) 56 is provided at the rear of the partition plate 5 that also serves as the bottom surface of the partial chamber 21. In the refrigerator 100, a cold room cooling duct return duct 58 is connected to the cold air confluence return port 57 (see FIGS. 4 and 7), and the cold air that has cooled the cold room 14 and the chilled room 22 overflows from the partial room container 52. It is configured to merge with the cooling air and return to the cooling chamber 23.
 すなわち、冷蔵室14、チルド室22およびパーシャル室21の冷気を冷却室23に戻すためのダクト部が、チルド室22およびパーシャル室21の後方空間を利用して形成されている。 That is, a duct portion for returning the cool air in the refrigerator compartment 14, the chilled chamber 22 and the partial chamber 21 to the cooling chamber 23 is formed using the rear space of the chilled chamber 22 and the partial chamber 21.
 なお、冷気戻り口(チルド側)45と冷気戻り口(パーシャル側)55とは、図18に示すように、上下に対向する位置に設けられている。また、冷気戻り口(パーシャル側)55と冷気合流戻り口57とは、図23に示すように、左右方向に位置ずれした位置に設けられている。 Note that the cold air return port (chilled side) 45 and the cold air return port (partial side) 55 are provided at positions facing vertically as shown in FIG. Further, the cold air return port (partial side) 55 and the cold air merging return port 57 are provided at positions shifted in the left-right direction as shown in FIG.
 また、冷気を冷却室23へと戻す冷蔵室戻りダクト58は、図4、図27および図28等に示すように、冷却室23の側方(横)に設置されている。冷蔵室戻りダクト58は、その下端部が、冷却室23の下部側面に開口している。このような構成により、冷気が冷却室23に戻される。冷蔵室戻りダクト58は、その後面に設けられた凹状溝58b(図27参照)が、内箱3の背面内壁面に圧接され、凹状溝58bと内箱3の背面内壁壁面との間で、ダクト通路部が形成されている。 Further, the refrigeration chamber return duct 58 for returning the cold air to the cooling chamber 23 is installed on the side (side) of the cooling chamber 23 as shown in FIGS. The lower end of the refrigerator compartment return duct 58 is open to the lower side surface of the cooling chamber 23. With such a configuration, the cool air is returned to the cooling chamber 23. In the refrigerator compartment return duct 58, a concave groove 58b (see FIG. 27) provided on the rear surface thereof is pressed against the back inner wall surface of the inner box 3, and between the concave groove 58b and the rear inner wall surface of the inner box 3, A duct passage portion is formed.
 また、パーシャル室21には、冷気戻り通路部(パーシャル側)56の冷気戻り口(パーシャル側)55と、冷気合流戻り口57との間の部分に、図19および図20に示すように、冷蔵室14の温度を検出して冷蔵室用ダンパ部39を制御する冷蔵室温度センサ59が設けられている。冷蔵室温度センサ59と冷蔵室ダクト28を挟んで反対側の対角部分に、パーシャル室21の温度を検知してパーシャル室用ダンパ部40を制御するパーシャル室温度センサ60が設けられている。 Further, in the partial chamber 21, as shown in FIG. 19 and FIG. 20, in the portion between the cold air return port (partial side) 55 of the cold air return passage portion (partial side) 56 and the cold air merging return port 57, A refrigerating room temperature sensor 59 for detecting the temperature of the refrigerating room 14 and controlling the refrigerating room damper unit 39 is provided. A partial chamber temperature sensor 60 for detecting the temperature of the partial chamber 21 and controlling the partial chamber damper 40 is provided at the opposite diagonal portion across the refrigerator compartment temperature sensor 59 and the refrigerator compartment duct 28.
 更に、冷気戻り通路部(パーシャル側)56の冷気戻り口(パーシャル側)55と冷気合流戻り口57との間には、図25および図26に示すように、冷気の流れに沿うように、脱臭ユニット61が着脱自在に設けられている。 Further, between the cold air return port (partial side) 55 of the cold air return passage portion (partial side) 56 and the cold air confluence return port 57, as shown in FIGS. 25 and 26, along the flow of the cold air, A deodorizing unit 61 is detachably provided.
 なお、脱臭ユニット61は、冷蔵室戻りダクト58を構成するダクトカバー28bの一部に設けられた装着部28bbに、取付けられて一体化されている。冷蔵室温度センサ59およびパーシャル室温度センサ60も同様に、冷蔵室戻りダクト58を構成するダクトカバー28bの一部に設けられた、それぞれの装着部(図示せず)に取付けられている。 The deodorizing unit 61 is attached to and integrated with a mounting portion 28bb provided in a part of the duct cover 28b constituting the refrigerator compartment return duct 58. Similarly, the refrigerating room temperature sensor 59 and the partial room temperature sensor 60 are attached to respective mounting portions (not shown) provided in a part of the duct cover 28 b constituting the refrigerating room return duct 58.
 また、図15A~図15Cは、図14に示す冷蔵室ダクト28における、A部(冷蔵室ダンパ部分)水平断面図(水平方向に切断された断面図。以下同じ。)と、B部(チルド室背面部分)水平断面図と、C部(冷蔵室ダクト部分)水平断面図とを、それぞれ模式的に示したものである。 15A to 15C are a horizontal cross-sectional view (a cross-sectional view cut in the horizontal direction of the refrigerating chamber damper portion) in the refrigerating chamber duct 28 shown in FIG. The room rear surface part) horizontal sectional view and the C part (refrigeration room duct part) horizontal sectional view are respectively schematically shown.
 図15A~図15Cにおいて、冷蔵室ダクト28におけるダクト部材28aの長辺Wと短辺Dとの比で表されるW/D(以下、アスペクト比と言う)は、A部アスペクト比=W1/D1、B部アスペクト比=W2/D2、および、C部アスペクト比=W3/D3とすると、A部アスペクト比<B部アスペクト比<C部アスペクト比の関係を有している。 15A to 15C, W / D (hereinafter referred to as aspect ratio) represented by the ratio of the long side W and the short side D of the duct member 28a in the refrigerator compartment duct 28 is the A portion aspect ratio = W1 /. When D1, B portion aspect ratio = W2 / D2, and C portion aspect ratio = W3 / D3, there is a relationship of A portion aspect ratio <B portion aspect ratio <C portion aspect ratio.
 また、図16は、冷蔵室ダクト28を水平方向に切断した断面図であり、図17は、冷蔵室ダクト28の吐出口の構成を説明するための図である。 FIG. 16 is a cross-sectional view of the refrigerator compartment duct 28 cut in the horizontal direction, and FIG. 17 is a diagram for explaining the configuration of the discharge port of the refrigerator compartment duct 28.
 図16に示すように、ダクト部材28aの冷蔵室14側の表面を覆うダクトカバー28bの左右両側部には、左右に延出して一体形成された延出リブ28cが備えられている。 As shown in FIG. 16, on both the left and right sides of the duct cover 28b that covers the surface of the duct member 28a on the refrigerator compartment 14 side, there are provided extending ribs 28c that are integrally formed extending left and right.
 延出リブ28cは、図16に示すように、ダクトカバー28bの冷蔵室14側の表面から冷蔵庫100の背面側へ傾斜した傾斜面を備える。また、延出リブ28cの端部は、図16に示すように、ダクトカバー28bの冷蔵室14(図14参照)側の表面から冷蔵庫100の背面側へ、さらに大きい傾斜角度で、延出している。延出リブ28cは、冷蔵庫100の使用者が冷蔵室14を前方から見た時に、側面吐出口28dが直接見えない程度に延出している。 As shown in FIG. 16, the extending rib 28 c includes an inclined surface that is inclined from the surface on the refrigerator compartment 14 side of the duct cover 28 b toward the back side of the refrigerator 100. Further, as shown in FIG. 16, the end portion of the extending rib 28c extends from the surface of the duct cover 28b on the refrigerator compartment 14 (see FIG. 14) side to the back side of the refrigerator 100 at a larger inclination angle. Yes. The extension rib 28c extends to such an extent that the side discharge port 28d is not directly visible when the user of the refrigerator 100 views the refrigerator compartment 14 from the front.
 また、側面吐出口28dの下面は、図17に示すように、側面吐出口28dから吐出する冷気が上方へ流れるように傾斜された斜面を有している。 Further, as shown in FIG. 17, the lower surface of the side discharge port 28d has a slope that is inclined so that the cool air discharged from the side discharge port 28d flows upward.
 また、冷蔵室14内の各棚板20の前方で内箱3の側壁には、凹部が形成されている。凹部内には、冷蔵室14内を照明するLED照明80(図14参照)と、閉扉時にLED照明80からの光の照度を検出する冷蔵室光センサ81とを備えた、基板が埋設されている。さらに、冷蔵室14内の側壁には、凹部を覆う透過性の照明カバーが設けられている。 Further, a recess is formed in the side wall of the inner box 3 in front of each shelf board 20 in the refrigerator compartment 14. A substrate having an LED illumination 80 (see FIG. 14) for illuminating the inside of the refrigerator compartment 14 and a refrigerator compartment light sensor 81 for detecting the illuminance of light from the LED illumination 80 when the door is closed is embedded in the recess. Yes. Further, a transmissive illumination cover that covers the recess is provided on the side wall in the refrigerator compartment 14.
 閉扉時にLED照明80からの光の照度を検出する冷蔵室光センサ81の検出結果に基づいて、冷蔵庫100の冷却システムの制御が行われている。その詳細は後述する。 The cooling system of the refrigerator 100 is controlled based on the detection result of the refrigerator light sensor 81 that detects the illuminance of light from the LED lighting 80 when the door is closed. Details thereof will be described later.
 <1-4.冷凍室とその冷却構成>
 次に、図2、図3および図24~図31を用いて、冷凍室とその冷却構成を説明する。
<1-4. Freezer room and its cooling configuration>
Next, the freezer compartment and its cooling configuration will be described with reference to FIG. 2, FIG. 3 and FIGS.
 図3に示すように、冷凍室18は、冷蔵室14の下方で、かつ冷却室23の前方に設けられている。冷凍室18の内部には、下段容器62aとその上方に載置された上段容器62bとからなる、冷凍室容器62が、扉11の引出し開閉に伴って出し入れ自在となるように設けられている。上述した通り、冷凍室18と冷却室23との間には、冷凍室背面板32が配置されている。また、冷凍室背面板32と冷却室形成板31との間に、冷却室23に設けられた冷却ファン25の下流側と連通する、冷凍室ダクト29が形成されている(図6参照)。 As shown in FIG. 3, the freezer compartment 18 is provided below the refrigerating compartment 14 and in front of the cooling compartment 23. Inside the freezer compartment 18, a freezer compartment container 62, which is composed of a lower container 62 a and an upper container 62 b placed thereabove, is provided so that it can be taken in and out as the door 11 is opened and closed. . As described above, the freezer compartment back plate 32 is disposed between the freezer compartment 18 and the cooling compartment 23. Further, a freezer compartment duct 29 is formed between the freezer compartment back plate 32 and the cooling chamber forming plate 31 and communicates with the downstream side of the cooling fan 25 provided in the cooling chamber 23 (see FIG. 6).
 冷凍室背面板32には、図27等に示すように、上下複数段に冷気吹出し口63が設けられている。最上部の冷気吹出し口63は、製氷室16および切替室15に冷気を供給し、中段の冷気吹出し口63は、冷凍室容器62の上段容器62bに冷気を供給し、最下段の冷気吹出し口63は、下段容器62aに冷気を供給するように構成されている。 The freezer compartment back plate 32 is provided with cold air outlets 63 in a plurality of upper and lower stages as shown in FIG. The uppermost cold air outlet 63 supplies cold air to the ice making chamber 16 and the switching chamber 15, and the middle cold air outlet 63 supplies cold air to the upper container 62 b of the freezer compartment 62, and the lowermost cold air outlet 63 is configured to supply cold air to the lower container 62a.
 また、冷凍室18は、図27等に示すように、冷凍室背面板32の下部に、冷却室23の下部に連通する、冷凍冷気戻り口64が設けられている。冷凍冷気戻り口64は、図32に示すように、冷凍室側口枠部65と冷却室側口枠部66とから構成されている。冷凍室側口枠部65および冷却室側口枠部66は、それぞれ上部にいくほど、垂線に対し後方、すなわち冷却室23側に、位置するように傾斜されている。冷凍冷気戻り口64には、冷凍室側口枠部65に、グリル67が装着され、冷却室側口枠部66には、冷凍室ダンパ68が設けられている。 Further, as shown in FIG. 27 and the like, the freezer compartment 18 is provided with a freezer cold air return port 64 communicating with the lower portion of the cooling chamber 23 at the lower portion of the freezer rear plate 32. As shown in FIG. 32, the refrigerated cold air return port 64 is composed of a freezer compartment side frame portion 65 and a cooling compartment side mouth frame portion 66. The freezer compartment side rim portion 65 and the cooling compartment side rim portion 66 are inclined so as to be located at the rear, that is, on the cooling chamber 23 side with respect to the vertical line as they go upward. The freezing cold air return port 64 is provided with a grill 67 on the freezing chamber side opening frame portion 65, and a freezing chamber damper 68 is provided on the cooling chamber side opening frame portion 66.
 冷凍室側口枠部65に設けられたグリル67は、冷凍室18から冷却室23へと流れる冷気を整流するものである。グリル67を構成するグリル片69は、冷却室23側の端部が、冷凍室18側の端部より、上方に位置するように傾斜され、かつ、下方のグリル片69になるほど、前後長が長くなるように構成されている。すなわち、グリル67は、冷凍室18内の冷凍室容器62の後面の形状に沿う形状を有するよう構成されている。 The grill 67 provided in the freezer compartment side frame portion 65 rectifies the cold air flowing from the freezer compartment 18 to the cooling compartment 23. The grille piece 69 constituting the grille 67 is inclined so that the end on the cooling chamber 23 side is located above the end on the freezer compartment 18 side, and the length of the grille piece 69 becomes the lower grille piece 69. It is configured to be long. That is, the grill 67 is configured to have a shape along the shape of the rear surface of the freezer compartment 62 in the freezer compartment 18.
 一方、冷却室側口枠部66に設けられた冷凍室ダンパ68は、冷凍室18に供給される冷気の量を制御するものである。冷凍室ダンパ68は、図31、図34Aおよび図34Bに示すように、耐熱性樹脂、例えばポリフェニレンサルファイド樹脂(PPS樹脂)で形成されたダンパ枠体70に、同様の耐熱性樹脂で形成された複数のフラップ71、本実施の形態では、三つのフラップ71、が設けられて構成されている。冷凍室ダンパ68は、複数のフラップ71それぞれの冷却室側端部が軸支されて、図31~図34Aおよび図34Bに示すように、冷凍室18とは反対側の、冷却室23側に開くように構成されている。また、冷凍室ダンパ68は、ダンパ枠体70の一端部分に固定された冷凍ダンパ駆動用モータユニット72によって駆動するように構成されている。なお、図34Bにおいて、フラップ71の実線引き出し線は、複数のフラップ71が閉じた状態を示し、フラップ71の破線引き出し線は、複数のフラップ71が開いた状態を、それぞれ示している。また、冷凍室ダンパ68は、図28に示すように、冷却室側口枠部66に設けられた爪片73に、冷凍ダンパ駆動用モータユニット72が固定された状態のダンパ枠体70が弾着係合されることにより、冷却室形成板31に装着されてユニット化されている。これにより、冷却室側口枠部66の傾斜に沿って、冷凍室ダンパ68の冷却室23側が、冷凍室18側より下方に位置するように傾斜させて設けられている。 On the other hand, the freezer compartment damper 68 provided in the cooling compartment side frame 66 controls the amount of cold air supplied to the freezer compartment 18. As shown in FIG. 31, FIG. 34A and FIG. 34B, the freezer compartment damper 68 is formed of a similar heat resistant resin on a damper frame 70 formed of a heat resistant resin, for example, polyphenylene sulfide resin (PPS resin). A plurality of flaps 71, in the present embodiment, three flaps 71 are provided. The freezer compartment damper 68 is pivotally supported at each cooling chamber side end of each of the plurality of flaps 71, and as shown in FIGS. 31 to 34A and 34B, on the cooling chamber 23 side opposite to the freezer compartment 18. Configured to open. The freezer compartment damper 68 is configured to be driven by a freezing damper driving motor unit 72 fixed to one end portion of the damper frame 70. In FIG. 34B, the solid line of the flap 71 indicates a state where the plurality of flaps 71 are closed, and the broken line of the flap 71 indicates a state where the plurality of flaps 71 are opened. Further, as shown in FIG. 28, the freezer compartment damper 68 has a damper frame body 70 in a state where the freezer damper driving motor unit 72 is fixed to a claw piece 73 provided in the cooling compartment side opening frame portion 66. By being engaged and engaged, the cooling chamber forming plate 31 is mounted and unitized. Thereby, along the inclination of the cooling chamber side opening frame part 66, the cooling chamber 23 side of the freezer compartment damper 68 is inclined so as to be positioned below the freezing chamber 18 side.
 さらに、冷凍室ダンパ68は、図32に示すように、複数のフラップ71に沿って冷却室23へと流れる冷気が、冷却器24の下端縁に流れるように設けられている。本実施の形態では、冷凍室ダンパ68は、その上部(ダンパ枠体70の上片部分)が、冷却器24の下端縁より上方に位置し、かつ、その下部(ダンパ枠体70の下辺部分)が冷却器24の下端より下方に位置するように設けられている。このように、本実施の形態の冷蔵庫100は、冷気が、冷却器24の下端縁より下方部分に流れるように構成されている。 Furthermore, as shown in FIG. 32, the freezer compartment damper 68 is provided so that the cold air flowing to the cooling chamber 23 along the plurality of flaps 71 flows to the lower edge of the cooler 24. In the present embodiment, the freezer compartment damper 68 has an upper part (an upper piece part of the damper frame 70) located above the lower end edge of the cooler 24 and a lower part (a lower part part of the damper frame 70). ) Is located below the lower end of the cooler 24. As described above, the refrigerator 100 according to the present embodiment is configured such that the cold air flows from the lower end edge of the cooler 24 to the lower portion.
 さらに、冷凍室ダンパ68は、その下部(ダンパ枠体70の下辺部分)が、ガラス管ヒータ26より上方に位置するように設けられている。すなわち、除霜時にガラス管ヒータ26で熱せられた暖冷気が、確実に冷凍室ダンパ68に触れるように設定されている。 Furthermore, the freezer compartment damper 68 is provided such that its lower part (lower part of the damper frame 70) is located above the glass tube heater 26. That is, the warm / cool air heated by the glass tube heater 26 at the time of defrosting is set so as to surely touch the freezer compartment damper 68.
 一方、冷凍室ダンパ68を支持している冷却室側口枠部66の下辺66aは、図32に示すように、二重壁で形成されている。二重壁は、下面が円弧状に形成され、冷却室23に突き出す形状を有する(冷却室23の底面よりガラス管ヒータ26側に突き出す形状)。これにより、ガラス管ヒータ26からの輻射熱が、冷凍室ダンパ68を直接照射することを防止するように構成されている。更に、冷却室側口枠部66の二重壁部分の間隙部分66bは、冷凍室18に面して開放している。このような構成により、間隙部分66bは、冷凍室冷気で冷却され、冷凍室ダンパ68が過度に昇温することを抑制するように構成されている。 On the other hand, as shown in FIG. 32, the lower side 66a of the cooling chamber side opening frame portion 66 supporting the freezing chamber damper 68 is formed of a double wall. The double wall has a shape in which the bottom surface is formed in an arc shape and protrudes into the cooling chamber 23 (a shape protruding from the bottom surface of the cooling chamber 23 toward the glass tube heater 26). Thereby, it is comprised so that the radiant heat from the glass tube heater 26 may prevent direct irradiation to the freezer compartment damper 68. Further, the gap portion 66 b of the double wall portion of the cooling chamber side frame portion 66 is open facing the freezing chamber 18. With such a configuration, the gap portion 66b is configured to be cooled by the cold air in the freezer compartment, and to prevent the freezer compartment damper 68 from being excessively heated.
 また、冷凍室ダンパ68は、図28に示すように、冷凍ダンパ駆動用モータユニット72が、ガラス管ヒータ26の長手方向において、ガラス管ヒータ26のヒータ部26aと対向しないように、ヒータ部26aから外方にずらされた位置に配置されている。本実施の形態では、冷凍ダンパ駆動用モータユニット72が、冷却室23横の冷蔵室戻りダクト58側に位置している。このような構成により、冷凍ダンパ駆動用モータユニット72が、ヒータ部26aの外方に位置する状態をとりつつ、冷凍室ダンパ68の複数のフラップ71部分が、冷却器24の左右方向における中心線寄り部分に位置するように構成されている。 In addition, as shown in FIG. 28, the freezer damper 68 includes a heater unit 26a so that the motor unit 72 for driving the freezing damper does not face the heater unit 26a of the glass tube heater 26 in the longitudinal direction of the glass tube heater 26. It is arranged at a position shifted from the outside. In the present embodiment, the refrigeration damper driving motor unit 72 is located on the side of the refrigeration chamber return duct 58 next to the cooling chamber 23. With such a configuration, the refrigeration damper driving motor unit 72 is positioned outside the heater portion 26a, and the plurality of flaps 71 of the freezing chamber damper 68 are center lines in the left-right direction of the cooler 24. It is comprised so that it may be located in a side part.
 なお、冷凍室ダンパ68は、冷凍冷気戻り口64のみに設けられており、冷却室23から冷気吹出し口63に至る冷凍室ダクト29には、ダンパは設けられておらず、冷却室23と冷凍室18とは連通状態に保たれている。 Note that the freezer damper 68 is provided only in the freezing cold air return port 64, and no freezer is provided in the freezing chamber duct 29 from the cooling chamber 23 to the cold air outlet 63, and the freezing chamber 23 and the freezer The chamber 18 is kept in communication.
 <1-5.野菜室とその冷却構成>
 次に、図3、図4および図8~図12を用いて、野菜室とその冷却構成について説明する。
<1-5. Vegetable room and its cooling configuration>
Next, the vegetable room and its cooling configuration will be described with reference to FIGS. 3, 4 and 8 to 12.
 野菜室17は、図3に示すように、冷凍室18下方の冷蔵庫本体1の最下部に配置されている。野菜室17には、冷凍室18と同様、野菜室容器17aが扉10の引出し開閉に伴って出し入れ自在となるように設けられている。野菜室17に冷気を供給する野菜室ダクト30は、図8および図9に示すように、冷却室23横の冷蔵室戻りダクト58前面に、前後に重ね合わされて配置されている。野菜室ダクト30の上部は、図4および図10に示すように、冷却室23に設けられた第2冷気供給口34に接続されている。 The vegetable compartment 17 is arrange | positioned at the lowest part of the refrigerator main body 1 below the freezer compartment 18, as shown in FIG. Similar to the freezer compartment 18, a vegetable compartment container 17 a is provided in the vegetable compartment 17 so that it can be taken in and out as the door 10 is pulled out. As shown in FIGS. 8 and 9, the vegetable compartment duct 30 for supplying cold air to the vegetable compartment 17 is disposed in front of and behind the refrigeration compartment return duct 58 next to the cooling compartment 23. As shown in FIGS. 4 and 10, the upper part of the vegetable compartment duct 30 is connected to a second cold air supply port 34 provided in the cooling chamber 23.
 第2冷気供給口34は、上述したように、冷蔵室14への冷気供給口となる第1冷気供給口33とは別個に独立して形成されている。すなわち、第2冷気供給口34は、冷却室23の上方に位置する冷蔵室14と冷凍室18とを仕切る仕切板5より下方、即ち冷凍室18の背面投影面積内であって、冷却ファン25と実質的に同じ高さ位置の、冷却ファン25の下流側部分に設けられている。第2冷気供給口34に接続された野菜室ダクト30の下端は、野菜室17の上部に開口していて、野菜室17に冷気を供給するように構成されている。 As described above, the second cold air supply port 34 is formed separately and independently from the first cold air supply port 33 serving as the cold air supply port to the refrigerator compartment 14. That is, the second cold air supply port 34 is below the partition plate 5 that partitions the refrigerator compartment 14 and the freezer compartment 18 positioned above the cooler compartment 23, that is, within the rear projection area of the freezer compartment 18, and the cooling fan 25. Are provided at the downstream side portion of the cooling fan 25 at substantially the same height. The lower end of the vegetable compartment duct 30 connected to the second cold air supply port 34 opens to the upper portion of the vegetable compartment 17 and is configured to supply cold air to the vegetable compartment 17.
 野菜室ダクト30の上端部の側部には、開口74が設けられている。開口74は、第2冷気供給口34に突き合わされて接続されている。接続部近傍、具体的には冷却ファン25と実質的に同じ高さ位置範囲に、野菜室ダンパ75が組み込まれている。 The opening 74 is provided in the side part of the upper end part of the vegetable compartment duct 30. As shown in FIG. The opening 74 is abutted and connected to the second cold air supply port 34. A vegetable room damper 75 is incorporated in the vicinity of the connecting portion, specifically, in the height position range substantially the same as that of the cooling fan 25.
 また、野菜室ダンパ75は、図8に示すように、冷蔵室戻りダクト58の前面に形成された、野菜室ダクト通路部となる、凹状溝58bに嵌め込まれている。野菜室ダンパ75が嵌め込まれた状態の冷蔵室戻りダクト58の凹状溝58b前面に、野菜室ダクト30が、嵌め込まれて装着されている。このような構成により、野菜室ダンパ75は、冷蔵室戻りダクト58と野菜室ダクト30との間で挟持固定されている。野菜室ダクト30および冷蔵室戻りダクト58は、発泡スチロール等の弾性力を有する材料で形成されており、その弾性力によって両者間の気密性が確保されると同時に、野菜室ダンパ75の気密性も確保されるように構成されている。 Further, as shown in FIG. 8, the vegetable compartment damper 75 is fitted in a concave groove 58b that is formed in the front surface of the refrigerator compartment return duct 58 and serves as a vegetable compartment duct passage portion. The vegetable compartment duct 30 is fitted and attached to the front surface of the concave groove 58b of the refrigerator compartment return duct 58 in a state in which the vegetable compartment damper 75 is fitted. With such a configuration, the vegetable compartment damper 75 is sandwiched and fixed between the refrigerator compartment return duct 58 and the vegetable compartment duct 30. The vegetable compartment duct 30 and the refrigerator compartment return duct 58 are formed of a material having elastic force such as foamed polystyrene, and the airtightness between the two is ensured by the elastic force, and the airtightness of the vegetable compartment damper 75 is also ensured. It is configured to be secured.
 なお、野菜室ダンパ75は、野菜ダンパ駆動用モータユニット76によって駆動されるダンパ片75aが、野菜室ダクト30を流れる冷気と逆の方向、本実施の形態では上向き、に開くように構成されている。これは上記した冷蔵室ダクト28のダンパ開き方向とは反対の方向である。 The vegetable compartment damper 75 is configured such that a damper piece 75a driven by the vegetable damper drive motor unit 76 opens in a direction opposite to the cold air flowing through the vegetable compartment duct 30, upward in the present embodiment. Yes. This is the direction opposite to the damper opening direction of the refrigerator compartment duct 28 described above.
 また、野菜室17を冷却した後の冷気は、野菜室17の天井面に設けられた野菜室戻りダクト(図示せず)を介して、冷却室23に戻される。 Also, the cold air after cooling the vegetable compartment 17 is returned to the cooling compartment 23 via a vegetable compartment return duct (not shown) provided on the ceiling surface of the vegetable compartment 17.
 また、野菜室17内には、野菜室の扉10に固定された扉フレームに支持されて前方に引き出される野菜室容器17aと、野菜室容器17aの上面を覆うように野菜室容器17aの側面上部フランジに支持される、上部野菜ケースとを備える。野菜室容器17aおよび上部野菜ケースは、それぞれシール性を高めた構造を備えている。これにより、内部に収納される野菜および果物等から発生する水分の蒸散を抑制して野菜および果物等の保鮮性を高めることができる。 Moreover, in the vegetable compartment 17, the side of the vegetable compartment container 17a so that the vegetable compartment container 17a supported by the door frame fixed to the door 10 of the vegetable compartment and pulled out forward, and the upper surface of the vegetable compartment container 17a may be covered. An upper vegetable case supported by the upper flange. Each of the vegetable compartment container 17a and the upper vegetable case has a structure with improved sealing performance. Thereby, the transpiration | evaporation of the water | moisture content generate | occur | produced from the vegetable stored in an inside, a fruit, etc. can be suppressed and the freshness of vegetables, a fruit, etc. can be improved.
 また、野菜室17と冷凍室18とを断熱区画する仕切板6の野菜室17側には、凹部が設けられている。この凹部の内部には、ミスト発生装置が設けられている。ミスト発生装置は、高電圧発生部と電極とを有し、電極には庫内の水分を結露させて収集された水分が供給されるよう構成されている。 Also, a recess is provided on the vegetable compartment 17 side of the partition plate 6 that insulates the vegetable compartment 17 and the freezing compartment 18 from each other. A mist generator is provided inside the recess. The mist generator has a high voltage generator and an electrode, and the electrode is configured to be supplied with moisture collected by condensing moisture in the storage.
 また、高電圧発生部を収納する基板には、野菜室17内の湿度を検知する野菜室湿度センサ78が設けられている(図3参照)。 In addition, a vegetable room humidity sensor 78 that detects the humidity in the vegetable room 17 is provided on the substrate that houses the high voltage generating unit (see FIG. 3).
 また、野菜室17と冷凍室18とを断熱区画する仕切板6の野菜室17側には、野菜室ヒータ79が設けられている(図3参照)。野菜室17の天面に設けられた野菜室湿度センサ78の検出湿度に応じて、野菜室ヒータ79の通電が制御される。この制御の詳細は後述する。 Also, a vegetable room heater 79 is provided on the vegetable compartment 17 side of the partition plate 6 that insulates the vegetable compartment 17 and the freezing compartment 18 (see FIG. 3). The energization of the vegetable room heater 79 is controlled in accordance with the humidity detected by the vegetable room humidity sensor 78 provided on the top of the vegetable room 17. Details of this control will be described later.
 以上のように構成された冷蔵庫100について、以下、ブロック図およびフローチャートを用いて、制御フローおよび作用効果を説明する。 For the refrigerator 100 configured as described above, a control flow and operational effects will be described below using a block diagram and a flowchart.
 <2-1.基本冷却制御>
 図35は、本実施の形態の冷蔵庫100の制御ブロック図であり、図36は、本実施の形態の冷蔵庫の冷却システムの基本制御を示すフローチャートである。
<2-1. Basic cooling control>
FIG. 35 is a control block diagram of refrigerator 100 of the present embodiment, and FIG. 36 is a flowchart showing basic control of the refrigerator cooling system of the present embodiment.
 図35において、冷蔵庫100の冷却システムを制御するマイクロコンピュータ(マイコン)90の入力情報は、外気温度センサ(ATC)91、冷凍室温度センサ(FCC)92、冷蔵室温度センサ(PCC)59、パーシャル室温度センサ(PFC)60、野菜室温度センサ(VCC)93、冷却器温度センサ(DFC)94、扉開閉検知部95、外部照度センサ96、および、冷蔵室光センサ81である。マイコン90の出力制御デバイスは、圧縮機(コンプ)27、冷却ファン(FCファン)25、冷蔵室ダンパ(PCダンパ)37、パーシャル室ダンパ(PFダンパ)98、野菜室ダンパ(VCダンパ)75、冷凍室ダンパ(FCダンパ)68、および、除霜部(霜取りヒータ)26である。 In FIG. 35, input information of a microcomputer 90 that controls the cooling system of the refrigerator 100 includes an outside air temperature sensor (ATC) 91, a freezer temperature sensor (FCC) 92, a refrigerator temperature sensor (PCC) 59, a partial A room temperature sensor (PFC) 60, a vegetable room temperature sensor (VCC) 93, a cooler temperature sensor (DFC) 94, a door open / close detection unit 95, an external illuminance sensor 96, and a refrigerator room light sensor 81. The output control device of the microcomputer 90 includes a compressor (comp) 27, a cooling fan (FC fan) 25, a cold room damper (PC damper) 37, a partial room damper (PF damper) 98, a vegetable room damper (VC damper) 75, They are a freezer compartment damper (FC damper) 68 and a defrosting section (defrost heater) 26.
 図36において、冷蔵庫100に電源投入されると(ステップS-1)、通常温調制御が開始される(ステップS-2)。通常温調制御では、外気温度センサ(ATC)91、冷凍室温度センサ(FCC)92、冷蔵室温度センサ(PCC)59、パーシャル室温度センサ(PFC)60、および、野菜室温度センサ(VCC)93の各温度情報に基づいて、マイコン90により、圧縮機(コンプ)27、冷却ファン(FCファン)25、冷蔵室ダンパ(PCダンパ)37、パーシャル室ダンパ(PFダンパ)98、野菜室ダンパ(VCダンパ)75、および、冷凍室ダンパ(FCダンパ)68が制御される。 In FIG. 36, when the refrigerator 100 is turned on (step S-1), normal temperature control is started (step S-2). In the normal temperature control, the outside temperature sensor (ATC) 91, the freezer temperature sensor (FCC) 92, the refrigerating room temperature sensor (PCC) 59, the partial room temperature sensor (PFC) 60, and the vegetable room temperature sensor (VCC) On the basis of each temperature information of 93, the microcomputer 90 makes a compressor (comp) 27, a cooling fan (FC fan) 25, a cold room damper (PC damper) 37, a partial room damper (PF damper) 98, a vegetable room damper ( VC damper) 75 and freezer damper (FC damper) 68 are controlled.
 その後、マイコン90は、扉開閉検知部95からの情報、冷蔵庫周辺の明るさを検知する外部照度センサ96の情報、あるいは、冷蔵室光センサ81による収納量情報から、冷蔵庫100の使用が少ない時間帯を予測して、省エネルギモード(以下、省エネモードと称す)に移行するかどうかを判断する(ステップS-3)。なお、本開示では、省エネモードで運転することを、省エネルギ運転(略して、省エネ運転)と称す。また、省エネモードに移行しない場合(ステップS-3のN)、マイコン90は、各ダンパのフラップを全開または全閉する、フラップ開閉制御を行なう(ステップS-7)。 After that, the microcomputer 90 uses the information from the door opening / closing detection unit 95, the information from the external illuminance sensor 96 that detects the brightness around the refrigerator, or the storage amount information from the refrigerator light sensor 81, so that the refrigerator 100 is less used. A band is predicted and it is determined whether or not to shift to an energy saving mode (hereinafter referred to as an energy saving mode) (step S-3). In the present disclosure, the operation in the energy saving mode is referred to as energy saving operation (abbreviated energy saving operation). If the mode does not shift to the energy saving mode (N in step S-3), the microcomputer 90 performs flap opening / closing control to fully open or close the flaps of each damper (step S-7).
 省エネモードに移行する場合(ステップS-3のY)、マイコン90は、外気温度センサ(ATC)91が所定温度より高いか(ATC≧T1)を判断する(ステップS-4)。なお、省エネルギ運転条件とは、マイコン90により、省エネルギモードに移行すると判断され、外気温度センサ(ATC)91が所定温度より高い(ステップS-4のY)条件を言う。外気温度センサ(ATC)91が所定温度より高い場合(ステップS-4のY)、マイコン90は、冷蔵室ダンパ(PCダンパ)37および冷凍室ダンパ(FCダンパ)68のフラップの開閉角度を制御する、フラップ開度制御を行なう(ステップS-5)。なお、フラップ開度制御(ステップS-5)での具体的な制御については後述する。 When shifting to the energy saving mode (Y in step S-3), the microcomputer 90 determines whether the outside air temperature sensor (ATC) 91 is higher than a predetermined temperature (ATC ≧ T1) (step S-4). The energy saving operation condition refers to a condition in which the microcomputer 90 determines that the microcomputer 90 shifts to the energy saving mode and the outside air temperature sensor (ATC) 91 is higher than a predetermined temperature (Y in step S-4). When the outside air temperature sensor (ATC) 91 is higher than the predetermined temperature (Y in Step S-4), the microcomputer 90 controls the opening / closing angles of the flaps of the refrigerator compartment damper (PC damper) 37 and the freezer compartment damper (FC damper) 68. The flap opening degree control is performed (step S-5). The specific control in the flap opening control (step S-5) will be described later.
 また、ステップS-4で、外気温度センサ(ATC)91が所定温度(T1)より低い場合(ステップS-4のN)、マイコン90は、圧縮機(コンプ)27が停止した状態の初期に、冷蔵室ダンパ(PCダンパ)37を開とし、冷却ファン(FCファン)25を運転させる、オフサイクル制御を行なう(ステップS-6)。なお、オフサイクル制御(ステップS-6)での具体的な制御については後述する。 In step S-4, if the outside air temperature sensor (ATC) 91 is lower than the predetermined temperature (T1) (N in step S-4), the microcomputer 90 is in the initial state where the compressor (comp) 27 is stopped. Then, the refrigerating room damper (PC damper) 37 is opened and the cooling fan (FC fan) 25 is operated to perform off-cycle control (step S-6). The specific control in the off cycle control (step S-6) will be described later.
 上記各制御は、冷却器24の除霜部(霜取りヒータ)26を開始するデフロスト信号が入るまで(ステップS-8のN)繰り返し行なわれる。デフロスト信号が入ると(ステップS-8のY)、マイコン90は、デフロスト制御を行なう(ステップS-9)。なお、デフロスト制御(ステップS-9)での具体的な制御については後述する。 The above-described controls are repeated until a defrost signal for starting the defrosting section (defrosting heater) 26 of the cooler 24 is input (N in step S-8). When the defrost signal is input (Y in step S-8), the microcomputer 90 performs defrost control (step S-9). The specific control in the defrost control (step S-9) will be described later.
 以上説明したように、本開示の実施の形態の一例による冷蔵庫100は、貯蔵室と、貯蔵室に冷気を供給する、冷却器24および送風機(冷却ファン25)が収納された冷却室23と、冷却室23から貯蔵室に供給される冷気をダクト内で制御するダンパとを備える。本実施の形態の冷蔵庫100においては、ダンパは、フラップおよび駆動装置を有する。本開示の実施の形態の一例による冷蔵庫100は、フラップの動作が、省エネモードに移行するか否かに応じて、駆動装置により、フラップの開閉を制御するフラップ開閉制御(ステップS-7)、および、フラップの開閉角度を制御するフラップ開度制御(ステップS-5)の少なくともいずれか一方が行われるよう構成されている。より具体的には、本実施の形態の冷蔵庫100は、省エネモードで各貯蔵室内の温度変動を小さくしたい場合に、ダンパのフラップの開閉角度を制御するフラップ開度制御(ステップS-5)が行なわれるよう構成されている。 As described above, the refrigerator 100 according to an example of the embodiment of the present disclosure includes the storage chamber, the cooling chamber 23 that supplies the cool air to the storage chamber, and stores the cooler 24 and the blower (cooling fan 25). And a damper for controlling the cool air supplied from the cooling chamber 23 to the storage chamber in the duct. In refrigerator 100 of the present embodiment, the damper has a flap and a drive device. The refrigerator 100 according to an example of the embodiment of the present disclosure includes a flap opening / closing control (step S-7) that controls opening / closing of the flap by a driving device according to whether or not the operation of the flap shifts to the energy saving mode. In addition, at least one of flap opening control (step S-5) for controlling the opening / closing angle of the flap is performed. More specifically, the refrigerator 100 of the present embodiment has flap opening control (step S-5) for controlling the opening / closing angle of the damper flap when it is desired to reduce the temperature fluctuation in each storage chamber in the energy saving mode. It is configured to be performed.
 すなわち、本実施の形態の冷蔵庫100は、必要以上にダンパのフラップ開度制御が行なわれないよう構成されている。このような構成により、駆動装置のステッピングモータ等による、フラップ開度制御に必要な、フラップ原点位置確認制御等の複雑な制御を減らすことができる。よって、本実施の形態の冷蔵庫100の構成によれば、簡素な仕様で省エネルギ性を高め、信頼性の高い冷却ができる冷蔵庫を提供することができる。 That is, the refrigerator 100 of the present embodiment is configured such that the flap opening degree control of the damper is not performed more than necessary. With such a configuration, complicated control such as flap origin position confirmation control required for flap opening control by a stepping motor or the like of the drive device can be reduced. Therefore, according to the configuration of the refrigerator 100 of the present embodiment, it is possible to provide a refrigerator capable of cooling with high reliability and high energy saving with simple specifications.
 また、本実施の形態の冷蔵庫100は、省エネ運転条件および通常運転条件の少なくともいずれか一方の運転条件により運転されるよう構成されていてもよい。この場合、冷蔵庫100は、省エネ運転条件時は、フラップ開度制御が行なわれ、通常運転条件時は、フラップ開閉制御が行なわれるよう構成されていてもよい。例えば、冷蔵庫100は、省エネ運転が必要な時のみ、各ダンパのフラップ開度制御が行なわれるよう構成されていてもよい。このような構成により、簡素な仕様で省エネルギ性および信頼性の高い冷却が可能な冷蔵庫を提供することができる。 Moreover, the refrigerator 100 of the present embodiment may be configured to be operated under at least one of the energy-saving operation conditions and the normal operation conditions. In this case, the refrigerator 100 may be configured such that the flap opening degree control is performed during the energy saving operation condition, and the flap opening / closing control is performed during the normal operation condition. For example, the refrigerator 100 may be configured such that the flap opening degree control of each damper is performed only when energy saving operation is required. With such a configuration, it is possible to provide a refrigerator capable of cooling with high energy saving and reliability with simple specifications.
 <2-2.フラップ開度制御>
 次に、フラップ開度制御について説明する。
<2-2. Flap opening control>
Next, flap opening degree control is demonstrated.
 図37および図38は、本開示の実施の形態の一例による冷蔵庫の冷却システムのフラップ開度制御(図36のステップS-5)の詳細を示すフローチャートである。 37 and 38 are flowcharts showing details of flap opening control (step S-5 in FIG. 36) of the cooling system of the refrigerator according to an example of the embodiment of the present disclosure.
 以下に説明する各種の制御は、特記しない限り、マイコン90により行われる。図37に示すように、まず、1分毎に冷蔵室温度センサ(PCC)59の温度をN分間(例えば10分間)計測する(ステップS-10)。その後、N分間(例えば10分間)の計測結果を平均する(ステップS-11)。計測した平均温度と冷蔵室温度センサ(PCC)59の設定値とを比較し(ステップS-12)、N分間の平均温度と冷蔵室温度センサ(PCC)59の設定値との温度差ΔTを算出する(ステップS-13)。温度差ΔTの値により、冷蔵室ダンパ(PCダンパ)37のフラップの開度(角度)を変更する(ステップS-14)。 The various controls described below are performed by the microcomputer 90 unless otherwise specified. As shown in FIG. 37, first, the temperature of the refrigerator temperature sensor (PCC) 59 is measured every minute for N minutes (for example, 10 minutes) (step S-10). Thereafter, the measurement results for N minutes (for example, 10 minutes) are averaged (step S-11). The measured average temperature is compared with the set value of the refrigerator temperature sensor (PCC) 59 (step S-12), and the temperature difference ΔT between the average temperature for N minutes and the set value of the refrigerator temperature sensor (PCC) 59 is calculated. Calculate (step S-13). The flap opening degree (angle) of the refrigerator compartment damper (PC damper) 37 is changed according to the temperature difference ΔT (step S-14).
 より具体的には、図38に示すように、冷蔵室温度センサ(PCC)59の設定値(目標温度)と、上限値および下限値とを確認する(ステップS-15)。上限値および下限値は、設定値(目標温度)に幅を持たせており、その幅の上限の値および下限の値である。次に、直近の数分間(例えば1分毎の10分間)の冷蔵室温度センサ(PCC)59の平均温度を確認する(ステップS-16)。 More specifically, as shown in FIG. 38, the set value (target temperature) of the refrigerator compartment temperature sensor (PCC) 59, the upper limit value, and the lower limit value are confirmed (step S-15). The upper limit value and the lower limit value are a set value (target temperature) having a range, and an upper limit value and a lower limit value of the range. Next, the average temperature of the refrigerator temperature sensor (PCC) 59 for the latest several minutes (for example, 10 minutes every minute) is confirmed (step S-16).
 次に、冷蔵室温度センサ(PCC)59の設定値(目標温度)と直近の直近の数分間(例えば1分毎の10分間)の平均温度を比較し、温度差(ΔT)を確認する(ステップS-17)。そして、温度差(ΔT)が大きく、平均値が設定値(目標温度)の下限値より低い場合は、冷蔵室ダンパ(PCダンパ)37のフラップの開度(角度)を所定角度(駆動装置のステッピングモータ等のステップ数)小さくする(ステップS-18)。 Next, the set value (target temperature) of the refrigerating room temperature sensor (PCC) 59 is compared with the average temperature of the latest several minutes (for example, 10 minutes every minute), and the temperature difference (ΔT) is confirmed ( Step S-17). When the temperature difference (ΔT) is large and the average value is lower than the lower limit value of the set value (target temperature), the opening degree (angle) of the flap of the refrigerator compartment damper (PC damper) 37 is set to a predetermined angle (of the driving device). (Step number of stepping motor or the like) is reduced (step S-18).
 また、ステップS-17で、平均値が設定値(目標温度)の上限値と下限値の間であれば、冷蔵室ダンパ(PCダンパ)37のフラップの開度(角度)は変更しない(ステップS-19)。また、ステップS-17で、温度差(ΔT)が大きく、平均値が設定値(目標温度)の上限値より高い場合は、冷蔵室ダンパ(PCダンパ)37のフラップの開度(角度)を所定角度(駆動装置のステッピングモータ等のステップ数)大きくする(ステップS-20)。 In step S-17, if the average value is between the upper limit value and the lower limit value of the set value (target temperature), the flap opening degree (angle) of the refrigerator compartment damper (PC damper) 37 is not changed (step S-19). In step S-17, when the temperature difference (ΔT) is large and the average value is higher than the upper limit value of the set value (target temperature), the opening degree (angle) of the flap of the refrigerator compartment damper (PC damper) 37 is set. A predetermined angle (the number of steps of the stepping motor or the like of the driving device) is increased (step S-20).
 その後、ステップS-16に戻り、上記制御を所定時間毎(例えば10分毎)に繰り返す。すなわち、所定時間前(例えば1分毎の10分間)の冷蔵室温度センサ(PCC)59の平均温度と設定値(目標温度)とを比較し、その温度差ΔTの値(レベル)に応じてその後の冷蔵室ダンパ(PCダンパ)37のフラップの開度(角度)を制御する。 Thereafter, the process returns to step S-16, and the above control is repeated every predetermined time (for example, every 10 minutes). That is, the average temperature of the cold room temperature sensor (PCC) 59 before a predetermined time (for example, 10 minutes every minute) is compared with a set value (target temperature), and the temperature difference ΔT is set according to the value (level). Thereafter, the opening (angle) of the flap of the refrigerator compartment damper (PC damper) 37 is controlled.
 以上説明したように、本開示の実施の形態の一例による冷蔵庫100は、貯蔵室として冷蔵室14を備える。また、本開示の実施の形態の一例による冷蔵庫100は、冷蔵室14に冷気を供給する、冷却器24と送風機(冷却ファン25)とが収納された、冷却室23を備える。本開示の実施の形態の一例による冷蔵庫100は、冷却室23から冷蔵室14に供給される冷気をダクト内で制御する冷蔵室ダンパ(PCダンパ)37を備えていてもよい。また、本開示の実施の形態の一例による冷蔵庫100は、冷蔵室14内の温度を検出する冷蔵室温度センサ(PCC)59を備えていてもよい。本開示の実施の形態の一例による冷蔵庫100において、冷蔵室ダンパ(PCダンパ)37は、フラップおよび駆動装置を有していてもよい。本開示の実施の形態の一例による冷蔵庫100は、フラップ動作は、駆動装置により、フラップの開度を制御するフラップ開度制御が行なわれるよう構成されていてもよい。また、本開示の実施の形態の一例による冷蔵庫100においては、冷蔵室ダンパ(PCダンパ)37は、フラップ動作前の所定時間中の冷蔵室温度センサ(PCC)59の平均温度と冷蔵室目標温度とに基づいて、駆動装置によりフラップの角度を変えてフラップ開度制御が行なわれるよう構成されていてもよい。このような構成により、冷蔵室14内の温度変動を小さくして、貯蔵室目標温度に近づけることができ、省エネルギ性が高められた、使い勝手のよい冷蔵庫を提供することができる。 As described above, the refrigerator 100 according to an example of the embodiment of the present disclosure includes the refrigerator compartment 14 as a storage compartment. In addition, the refrigerator 100 according to an example of the embodiment of the present disclosure includes a cooling chamber 23 in which a cooler 24 and a blower (cooling fan 25) that supply cold air to the refrigerator compartment 14 are housed. The refrigerator 100 according to an example of the embodiment of the present disclosure may include a cold room damper (PC damper) 37 that controls the cold air supplied from the cooling room 23 to the cold room 14 in the duct. Further, the refrigerator 100 according to an example of the embodiment of the present disclosure may include a refrigerator temperature sensor (PCC) 59 that detects the temperature in the refrigerator compartment 14. In the refrigerator 100 according to an example of the embodiment of the present disclosure, the refrigerator compartment damper (PC damper) 37 may include a flap and a driving device. The refrigerator 100 according to an example of the embodiment of the present disclosure may be configured such that the flap operation is controlled by a drive device to perform flap opening control for controlling the opening of the flap. Moreover, in the refrigerator 100 according to an example of the embodiment of the present disclosure, the refrigerator compartment damper (PC damper) 37 includes the average temperature of the refrigerator compartment temperature sensor (PCC) 59 and the refrigerator compartment target temperature during a predetermined time before the flap operation. Based on the above, the flap opening degree control may be performed by changing the flap angle by the driving device. With such a configuration, it is possible to reduce the temperature fluctuation in the refrigerator compartment 14 and to bring it closer to the storage room target temperature, and to provide an easy-to-use refrigerator with improved energy saving.
 また、本開示の実施の形態の一例による冷蔵庫100は、省エネ運転条件時に、フラップ開度制御が行なわれるよう構成されていてもよい。このような構成により、省エネ運転が必要な時に、ダンパのフラップの開度制御が行なわれるので、簡素な仕様で省エネルギ性および信頼性の高い冷却が可能な冷蔵庫を提供することができる。 Further, the refrigerator 100 according to an example of the embodiment of the present disclosure may be configured such that the flap opening degree control is performed during the energy saving operation condition. With such a configuration, when the energy saving operation is necessary, the opening degree control of the damper flap is performed. Therefore, it is possible to provide a refrigerator capable of cooling with high energy saving and high reliability with a simple specification.
 なお、本開示の実施の形態の一例による冷蔵庫100は、冷蔵室14への冷気供給を制御する冷蔵室ダンパ(PCダンパ)37を例に説明したが、この態様に限られず、本実施の形態は、冷凍室18への冷気供給を制御する冷凍室ダンパ(FCダンパ)68等にも適用することができる。さらに、切替室15への冷気供給を制御する切替室ダンパ(SCダンパ)または野菜室17への冷気供給を制御する野菜室ダンパ(VCダンパ)75にも適用することができる。 Note that the refrigerator 100 according to the example of the embodiment of the present disclosure has been described by taking the refrigerator compartment damper (PC damper) 37 that controls the supply of cold air to the refrigerator compartment 14 as an example, but is not limited to this aspect, and is not limited to this embodiment. Can also be applied to a freezer damper (FC damper) 68 that controls the supply of cold air to the freezer 18. Furthermore, the present invention can also be applied to a switching chamber damper (SC damper) that controls the supply of cold air to the switching chamber 15 or a vegetable chamber damper (VC damper) 75 that controls the supply of cold air to the vegetable chamber 17.
 <2-3.オフサイクル制御>
 次に、オフサイクル制御について説明する。
<2-3. Off-cycle control>
Next, the off cycle control will be described.
 図39は、本開示の実施の形態の一例による冷蔵庫の冷却システムのオフサイクル制御を示すフローチャートである。図40は、本開示の実施の形態の一例による冷蔵庫の冷却システムのオフサイクル制御を示すタイミングチャートである。 FIG. 39 is a flowchart showing off-cycle control of the refrigerator cooling system according to an example of the embodiment of the present disclosure. FIG. 40 is a timing chart illustrating off-cycle control of the refrigerator cooling system according to an example of the embodiment of the present disclosure.
 図39において、圧縮機(コンプ)27にON信号が出力される(ステップS-21)と、圧縮機(コンプ)27および冷却ファン(FCファン)25が運転され、同時に冷凍室ダンパ(FCダンパ)68が開状態となる(ステップS-27)。これにより、冷却器24で生成された冷気は、冷凍室18に供給され、冷凍室18が冷却されるとともに、冷蔵室14への冷気ダクトに配置された冷蔵室ダンパ(PCダンパ)37に冷気が供給される。 In FIG. 39, when an ON signal is output to the compressor (comp) 27 (step S-21), the compressor (comp) 27 and the cooling fan (FC fan) 25 are operated, and at the same time, the freezer compartment damper (FC damper) ) 68 is opened (step S-27). Thereby, the cold air generated by the cooler 24 is supplied to the freezer compartment 18, and the freezer compartment 18 is cooled, and the cold air is supplied to the refrigerator compartment damper (PC damper) 37 disposed in the cold air duct to the refrigerator compartment 14. Is supplied.
 冷蔵室14では、冷蔵室温度センサ(PCC)59がOFF温度以上かを判断する(ステップS-22)。ステップS-22で、冷蔵室温度センサ(PCC)59がOFF温度以下であれば(ステップS-22のN)、冷蔵室ダンパ(PCダンパ)37を閉とする(ステップS-26)。ステップS-22で、冷蔵室温度センサ(PCC)59がOFF温度以上であれば(ステップS-22のY)、冷蔵室ダンパ(PCダンパ)37を開とする(ステップS-23)。その後、冷蔵室温度センサ(PCC)59がOFF温度に達するかを判断する(ステップS-24)。 In the refrigerator compartment 14, it is determined whether the refrigerator compartment temperature sensor (PCC) 59 is equal to or higher than the OFF temperature (step S-22). If the cold room temperature sensor (PCC) 59 is equal to or lower than the OFF temperature in step S-22 (N in step S-22), the cold room damper (PC damper) 37 is closed (step S-26). In step S-22, if the cold room temperature sensor (PCC) 59 is not lower than the OFF temperature (Y in step S-22), the cold room damper (PC damper) 37 is opened (step S-23). Thereafter, it is determined whether the refrigerator temperature sensor (PCC) 59 reaches the OFF temperature (step S-24).
 冷蔵室温度センサ(PCC)59がOFF温度に達すれば(ステップS-24のY)、冷蔵室ダンパ(PCダンパ)37を閉とする(ステップS-26)。冷蔵室温度センサ(PCC)59がOFF温度に達する前に(ステップS-24のN)、冷凍室温度センサ(FCC)92がOFF温度に達して、圧縮機(コンプ)27にOFF信号が出力される(ステップS-25)と、圧縮機(コンプ)27が停止される。しかし、冷蔵室温度センサ(PCC)59がOFF温度に達する前に圧縮機(コンプ)27が停止された状態では、冷蔵室温度センサ(PCC)59が、所定温度(Poff)以上かどうか判断する(ステップS-28)。 When the cold room temperature sensor (PCC) 59 reaches the OFF temperature (Y in step S-24), the cold room damper (PC damper) 37 is closed (step S-26). Before the refrigerator temperature sensor (PCC) 59 reaches the OFF temperature (N in Step S-24), the freezer temperature sensor (FCC) 92 reaches the OFF temperature, and an OFF signal is output to the compressor (comp) 27. When this is done (step S-25), the compressor (comp) 27 is stopped. However, in a state where the compressor (comp) 27 is stopped before the refrigerator compartment temperature sensor (PCC) 59 reaches the OFF temperature, it is determined whether the refrigerator compartment temperature sensor (PCC) 59 is equal to or higher than a predetermined temperature (Poff). (Step S-28).
 ステップS-28で、冷蔵室温度センサ(PCC)59が所定温度(Poff)より低い場合(ステップS-28のN)、冷蔵室ダンパ(PCダンパ)37を閉とする(ステップS-30)。しかし、冷蔵室温度センサ(PCC)59が所定温度(Poff)以上の場合(ステップS-28のY)、冷蔵室ダンパ(PCダンパ)37を開状態で、冷却ファン(FCファン)25は、圧縮機(コンプ)27のON時の回転数より低い回転で運転する、オフサイクル冷却制御が行なわれる(ステップS-29)。オフサイクル冷却制御(ステップS-29)は、圧縮機(コンプ)27がOFF信号を受けた直後の初期の所定時間(Tpc)もしくは、冷蔵室温度センサ(PCC)59がOFF温度になるまで行なわれ、その後、冷蔵室ダンパ(PCダンパ)37を閉とする(ステップS-30)。 If the cold room temperature sensor (PCC) 59 is lower than the predetermined temperature (Poff) in step S-28 (N in step S-28), the cold room damper (PC damper) 37 is closed (step S-30). . However, when the cold room temperature sensor (PCC) 59 is equal to or higher than the predetermined temperature (Poff) (Y in step S-28), the cold room damper (PC damper) 37 is opened and the cooling fan (FC fan) 25 is Off-cycle cooling control is performed in which the compressor (comp) 27 is operated at a speed lower than the rotational speed at the time of ON (step S-29). The off-cycle cooling control (step S-29) is performed until an initial predetermined time (Tpc) immediately after the compressor (comp) 27 receives the OFF signal or until the refrigerator temperature sensor (PCC) 59 reaches the OFF temperature. Thereafter, the refrigerator compartment damper (PC damper) 37 is closed (step S-30).
 図40のタイミングチャートで説明すると、圧縮機(コンプ)27がONすると、冷却ファン(FCファン)25はON、冷凍室ダンパ(FCダンパ)68、および冷蔵室ダンパ(PCダンパ)37が開状態(ON)となる(e点)。冷蔵室ダンパ(PCダンパ)37は、圧縮機(コンプ)27がON中、冷蔵室温度センサ(PCC)59の温度により開閉制御(ONおよびOFF)を行なう。圧縮機(コンプ)27がOFFされると、冷却ファン(FCファン)25もOFFされ、冷凍室ダンパ(FCダンパ)68が閉状態(OFF)となる(f点)。この時点(f点)で、冷蔵室ダンパ(PCダンパ)37が開の状態であれば、冷蔵室ダンパ(PCダンパ)37を開状態で、冷却ファン(FCファン)25は、圧縮機(コンプ)27ON時の回転数より低い回転で所定時間運転する(f点~g点)、オフサイクル冷却制御が行なわれる。その後、冷却ファン(FCファン)25は停止され、冷蔵室ダンパ(PCダンパ)37が閉状態(OFF)となる(g点)。 Referring to the timing chart of FIG. 40, when the compressor (comp) 27 is turned on, the cooling fan (FC fan) 25 is turned on, and the freezer compartment damper (FC damper) 68 and the refrigerator compartment damper (PC damper) 37 are opened. (ON) (point e). The refrigerator compartment damper (PC damper) 37 performs open / close control (ON and OFF) according to the temperature of the refrigerator compartment temperature sensor (PCC) 59 while the compressor 27 is ON. When the compressor (comp) 27 is turned off, the cooling fan (FC fan) 25 is also turned off, and the freezer damper (FC damper) 68 is closed (OFF) (point f). At this point (point f), if the refrigerator compartment damper (PC damper) 37 is open, the refrigerator compartment damper (PC damper) 37 is opened and the cooling fan (FC fan) 25 is connected to the compressor (compressor). ) Off-cycle cooling control is performed when the engine is operated for a predetermined time at a speed lower than the rotational speed at 27 ON (points f to g). Thereafter, the cooling fan (FC fan) 25 is stopped, and the refrigerator compartment damper (PC damper) 37 is closed (OFF) (point g).
 その後も同様な制御が行なわれるが、圧縮機(コンプ)27がOFFされる時点(i点)で冷蔵室ダンパ(PCダンパ)37が閉の状態(OFF)であれば、上述の制御(オフサイクル冷却制御)は行なわれない。 Thereafter, similar control is performed. However, if the refrigerator compartment damper (PC damper) 37 is closed (OFF) at the time (point i) when the compressor (comp) 27 is turned OFF (the above control (OFF)). (Cycle cooling control) is not performed.
 以上説明したように、本開示の実施の形態の一例による冷蔵庫100は、貯蔵室として、冷蔵室14と、冷凍室18とを備える。また、本開示の実施の形態の一例による冷蔵庫100は、冷凍室18の後方に配置され、冷蔵室14および冷凍室18に冷気を供給する冷却器24および冷却ファン25が収納された冷却室23を備える。また、本開示の実施の形態の一例による冷蔵庫100は、冷却室23から冷蔵室14に供給される冷気を冷蔵室温度センサ59に基づいて制御する冷蔵室ダンパ37と、冷却室23から冷凍室18に供給される冷気を冷凍室温度センサ92に基づいて制御する冷凍室ダンパ68とを備える。また、本開示の実施の形態の一例による冷蔵庫100は、冷凍室温度センサ92に基づいて運転が制御される圧縮機27を備える。さらに、本開示の実施の形態の一例による冷蔵庫100は、冷蔵室ダンパ37が開状態、かつ、冷凍室ダンパ68が開状態で、圧縮機27が停止した場合、圧縮機27停止後の所定時間、冷凍室ダンパ68を閉状態で冷蔵室ダンパ37を開状態として冷却ファン25を運転させるよう構成されている。このような構成により、圧縮機27停止中に冷却器24の冷熱を有効利用でき、冷凍室18への熱影響を抑えて、冷蔵室14を効率的に冷却でき、省エネルギ性の高い冷蔵庫を提供することができる。 As described above, the refrigerator 100 according to an example of the embodiment of the present disclosure includes the refrigerator compartment 14 and the freezer compartment 18 as storage rooms. In addition, the refrigerator 100 according to an example of the embodiment of the present disclosure is disposed at the rear of the freezer compartment 18, and includes a cooler 24 that supplies cold air to the refrigerating chamber 14 and the freezer compartment 18, and a cooling chamber 23 in which the cooling fan 25 is housed. Is provided. In addition, the refrigerator 100 according to an example of the embodiment of the present disclosure includes a refrigerating room damper 37 that controls the cold air supplied from the cooling room 23 to the refrigerating room 14 based on the refrigerating room temperature sensor 59, and the cooling room 23 to the freezing room. 18 is provided with a freezer damper 68 that controls the cool air supplied to 18 based on a freezer temperature sensor 92. The refrigerator 100 according to an example of the embodiment of the present disclosure includes the compressor 27 whose operation is controlled based on the freezer temperature sensor 92. Furthermore, in the refrigerator 100 according to an example of the embodiment of the present disclosure, when the refrigerator 27 is in an open state and the freezer compartment damper 68 is in an open state and the compressor 27 is stopped, a predetermined time after the compressor 27 is stopped. The cooling fan 25 is operated with the freezer compartment damper 68 closed and the refrigerator compartment damper 37 opened. With such a configuration, the cooler 24 can be effectively used while the compressor 27 is stopped, the heat effect on the freezer 18 can be suppressed, the refrigerator 14 can be efficiently cooled, and a highly energy-saving refrigerator can be obtained. Can be provided.
 また、圧縮機27の停止後の所定時間は、冷蔵室温度センサ59が冷蔵室ダンパ37を閉動作させる温度に達するまでの時間となるよう設定されていてもよい。このような構成により、圧縮機27の停止中の冷却器24の冷熱を適正に有効利用することができる。 Further, the predetermined time after the compressor 27 is stopped may be set to be a time until the refrigerator compartment temperature sensor 59 reaches a temperature at which the refrigerator compartment damper 37 is closed. With such a configuration, the cool heat of the cooler 24 when the compressor 27 is stopped can be appropriately used effectively.
 また、圧縮機27の停止後の所定時間、冷凍室ダンパ68を閉状態で冷蔵室ダンパ37を開状態として運転される冷却ファン25の回転数は、圧縮機27運転中の回転数より小さくなるよう設定されていてもよい。このような構成により、圧縮機27停止中に冷却器24の冷熱をさらに有効利用でき、冷凍室18への熱影響を抑えて、冷蔵室14を効率的に冷却し、省エネルギ性の高い冷蔵庫を提供することができる。 Further, for a predetermined time after the compressor 27 is stopped, the rotational speed of the cooling fan 25 that is operated with the freezer damper 68 closed and the refrigerator compartment damper 37 open is smaller than the rotational speed during the compressor 27 operation. It may be set as follows. With such a configuration, the cooler 24 can be used more effectively while the compressor 27 is stopped, the thermal effect on the freezer compartment 18 is suppressed, the refrigerator compartment 14 is efficiently cooled, and the energy-saving refrigerator. Can be provided.
 なお、本実施の形態では、冷蔵室ダンパ(PCダンパ)37は、開閉制御される態様で説明したが、冷蔵庫100は、上述したフラップの開度(角度)を制御されるよう構成されていてもよい。この場合、冷蔵室14内の温度変動を小さくして貯蔵室目標温度に近づけることができ、省エネルギ性をさらに高めることができる。 In the present embodiment, the refrigerator compartment damper (PC damper) 37 is described as being controlled to open and close, but the refrigerator 100 is configured to control the opening degree (angle) of the flap described above. Also good. In this case, the temperature fluctuation in the refrigerator compartment 14 can be reduced to approach the storage room target temperature, and energy saving can be further enhanced.
 <2-4.デフロスト制御>
 次に、デフロスト制御について説明する。
<2-4. Defrost control>
Next, defrost control will be described.
 図41は、本開示の実施の形態の一例による冷蔵庫の冷却システムのデフロスト制御を示すフローチャートである。図42は、本開示の実施の形態の一例による冷蔵庫の冷却システムのデフロスト制御を示すタイミングチャートである。 FIG. 41 is a flowchart illustrating the defrost control of the refrigerator cooling system according to an example of the embodiment of the present disclosure. FIG. 42 is a timing chart illustrating the defrost control of the refrigerator cooling system according to an example of the embodiment of the present disclosure.
 図41に示すように、デフロスト信号が入ると(ステップS―32)、圧縮機27は、連続運転(プリクール制御)を所定時間行なう。そして、冷却器温度センサ(DFC)がT2温度以下か判断し(ステップS-33)、T2温度以下の場合(ステップS-33のY)、冷蔵室ダンパ(PCダンパ)37を開、冷凍室ダンパ(FCダンパ)68を閉として、冷却ファン(FCファン)25がONされる(ステップS-34)。そして、冷却器温度センサ(DFC)がT2温度に上昇するまで、この状態で運転が継続される(ステップS-35)。ステップS-35で冷却器温度センサ(DFC)がT2温度に達すると(ステップS-35のY)、冷蔵室ダンパ37を閉、冷凍室ダンパ68を開として、冷却ファン(FCファン)25がOFFされ(ステップS-36)、除霜部(デフロストヒータ)26がONされる(ステップS-37)。なお、除霜部(デフロストヒータ)26がON中は、冷凍室ダンパ68は開状態としている。また、ステップS-33で冷却器温度センサ(DFC)がT2温度以上の場合(ステップS-33のN)、ステップS-34およびステップS-35のステップは行なわれず、ステップS-36のステップに移行する。 As shown in FIG. 41, when a defrost signal is input (step S-32), the compressor 27 performs a continuous operation (precool control) for a predetermined time. Then, it is determined whether the cooler temperature sensor (DFC) is equal to or lower than the T2 temperature (step S-33). If the temperature is equal to or lower than the T2 temperature (Y in step S-33), the refrigerator compartment damper (PC damper) 37 is opened, and the freezer compartment The damper (FC damper) 68 is closed, and the cooling fan (FC fan) 25 is turned on (step S-34). The operation is continued in this state until the cooler temperature sensor (DFC) rises to the T2 temperature (step S-35). When the cooler temperature sensor (DFC) reaches the T2 temperature in step S-35 (Y in step S-35), the refrigerator compartment damper 37 is closed, the freezer compartment damper 68 is opened, and the cooling fan (FC fan) 25 is The defroster (defrost heater) 26 is turned on (step S-37). In addition, while the defrosting part (defrost heater) 26 is ON, the freezer compartment damper 68 is open. If the cooler temperature sensor (DFC) is equal to or higher than the T2 temperature in step S-33 (N in step S-33), steps S-34 and S-35 are not performed, and step S-36 is performed. Migrate to
 ステップS-37の後、冷却器温度センサ(DFC)がT4温度以上か判断され(ステップS-38)、T4温度以上になると(ステップS-38のY)、除霜部(デフロストヒータ)26をOFFするとともに、起動待ち制御を行なう(ステップS-39)。起動待ち時間経過後、コンプON信号により圧縮機27の運転が開始され(ステップS-40)、冷却ファン(FCファン)25が所定時間OFFされた後にONする、FCファン遅延制御が行なわれる。また、冷却器温度センサ(DFC)が冷凍室温度センサ(FCC)より低くなった時点で、冷凍室ダンパ68は開状態となる(ステップS-41)。その後、通常の冷却運転を行なう(ステップS-42)。 After step S-37, it is determined whether the cooler temperature sensor (DFC) is equal to or higher than the T4 temperature (step S-38). If the temperature is equal to or higher than the T4 temperature (Y in step S-38), the defrosting section (defrost heater) 26 Is turned off and start waiting control is performed (step S-39). After the startup waiting time has elapsed, the compressor 27 is started to operate by a comp ON signal (step S-40), and FC fan delay control is performed in which the cooling fan (FC fan) 25 is turned on after being turned off for a predetermined time. Further, when the cooler temperature sensor (DFC) becomes lower than the freezer temperature sensor (FCC), the freezer damper 68 is opened (step S-41). Thereafter, a normal cooling operation is performed (step S-42).
 図42のタイミングチャートで説明すると、通常冷却運転中(k点~l点)にデフロスト信号が入ると、圧縮機(コンプ)27および冷却ファン(FCファン)25が所定時間連続運転される、プリクール制御が行なわれる(l点~m点)。プリクール制御中は、冷蔵室ダンパ(FCダンパ)37を閉、冷凍室ダンパ(FCダンパ)68を開として、冷凍室18を優先的に冷却する。プリクール制御終了後、圧縮機27は停止される。しかし、冷却器24の冷熱の有効利用および冷却器の予備除霜のために、冷却器温度センサ(DFC)がT2温度に上昇するまで、冷蔵室ダンパ37を開、および、冷凍室ダンパ68を閉として、冷却ファン(FCファン)25を運転する、冷蔵室プリ冷却およびプリ除霜制御が行なわれる(m点~n点)。そして、除霜部26に通電し、デフロストヒータの熱で冷却器24に積層した霜を溶かす(n点~o点)。除霜中は冷蔵室ダンパ37を閉、および、冷凍室ダンパ68を開としている。 Referring to the timing chart of FIG. 42, when a defrost signal is input during normal cooling operation (points k to l), the precooling is performed such that the compressor (comp) 27 and the cooling fan (FC fan) 25 are continuously operated for a predetermined time. Control is performed (1 point to m point). During the precool control, the freezer compartment 18 (FC damper) 37 is closed and the freezer compartment damper (FC damper) 68 is opened to preferentially cool the freezer compartment 18. After the precool control is finished, the compressor 27 is stopped. However, for effective use of the cooler 24 cooler and preliminary defrosting of the cooler, the refrigerator compartment damper 37 is opened and the freezer damper 68 is opened until the cooler temperature sensor (DFC) rises to the T2 temperature. The cooling fan pre-cooling and pre-defrosting control for operating the cooling fan (FC fan) 25 is performed (m point to n point). Then, the defrosting section 26 is energized, and the frost stacked on the cooler 24 is melted by the heat of the defrost heater (n point to o point). During the defrosting, the refrigerator compartment damper 37 is closed and the freezer compartment damper 68 is opened.
 冷却器温度センサ(DFC)がT4温度以上になると、除霜部(デフロストヒータ)26がOFFされるとともに、起動待ち制御が行なわれる(o点~p点)。起動待ち制御中は、冷蔵室ダンパ37を開、および、冷凍室ダンパ68を開としている。その後、圧縮機27が起動するが、この時、冷却ファン(FCファン)25を所定時間OFFとする、ファン遅延制御が行なわれる(p点~q点)。ファン遅延制御中は、冷蔵室ダンパ37を開、および、冷凍室ダンパ68を閉としている。その後、ファン遅延制御後に、冷却ファン(FCファン)25がONされるが、冷却器温度センサ(DFC)が冷凍室温度センサ(FCC)より低くなるまでは、冷凍室ダンパ68は閉状態を維持する、FCダンパ遅延制御が行なわれる(q点~r点)。その後、冷却器温度センサ(DFC)が冷凍室温度センサ(FCC)より低くなった時点で、冷凍室ダンパ68は開状態となり、その後、通常の冷却運転が行なわれる(r点~)。 When the cooler temperature sensor (DFC) reaches the T4 temperature or higher, the defrosting section (defrost heater) 26 is turned off and start waiting control is performed (points o to p). During start-up control, the refrigerator compartment damper 37 is opened and the freezer compartment damper 68 is opened. Thereafter, the compressor 27 is started. At this time, fan delay control is performed (p point to q point) in which the cooling fan (FC fan) 25 is turned off for a predetermined time. During the fan delay control, the refrigerator compartment damper 37 is opened and the freezer compartment damper 68 is closed. Thereafter, the cooling fan (FC fan) 25 is turned on after the fan delay control, but the freezer damper 68 is kept closed until the cooler temperature sensor (DFC) becomes lower than the freezer temperature sensor (FCC). FC damper delay control is performed (q point to r point). Thereafter, when the cooler temperature sensor (DFC) becomes lower than the freezer temperature sensor (FCC), the freezer damper 68 is opened, and then normal cooling operation is performed (from the point r).
 以上説明したように、本開示の実施の形態の一例による冷蔵庫100は、貯蔵室として、冷蔵室14と、冷凍室18とを備える。また、本開示の実施の形態の一例による冷蔵庫100は、冷凍室18の後方に配置され、冷蔵室14および冷凍室18に冷気を供給する、冷却器24および冷却ファン25が収納された、冷却室23を備える。また、本開示の実施の形態の一例による冷蔵庫100は、冷蔵室14内の温度を検知する冷蔵室温度センサ59と、冷凍室18の温度を検知する冷凍室温度センサ92とを備える。また、本開示の実施の形態の一例による冷蔵庫100は、冷却室23から冷蔵室14に供給される冷気を冷蔵室温度センサ59に基づいて制御する冷蔵室ダンパ37と、冷却室23から冷凍室18に供給される冷気を冷凍室温度センサ92に基づいて制御する、冷凍室ダンパ68とを備えていてもよい。また、本開示の実施の形態の一例による冷蔵庫100は、冷凍室温度センサ92に基づいて運転が制御される圧縮機27と、冷却器24の霜を溶かす除霜部(霜取りヒータ)26とを備えていてもよい。さらに、本開示の実施の形態の一例による冷蔵庫100は、除霜部26通電前に、冷蔵室ダンパ37を閉状態、および、冷凍室ダンパ68を開状態にし、冷却ファン25および圧縮機27を、所定時間連続運転する、プリクールモードと、プリクールモード後に、圧縮機27を停止し、冷蔵室ダンパ37を開状態、および、冷凍室ダンパ68を閉状態にし、冷却ファン25を所定時間運転する、プリ除霜モードとを有していてもよい。このような構成により、除霜運転開始前に行なわれるプリクール運転終了後の冷却器24の冷熱を、冷蔵室14の冷却に有効利用することができ、省エネルギ性の高い冷蔵庫を提供することができる。 As described above, the refrigerator 100 according to an example of the embodiment of the present disclosure includes the refrigerator compartment 14 and the freezer compartment 18 as storage rooms. In addition, the refrigerator 100 according to an example of the embodiment of the present disclosure is disposed at the rear of the freezer compartment 18 and is provided with a cooler 24 and a cooling fan 25 that supply cold air to the refrigerator compartment 14 and the freezer compartment 18. A chamber 23 is provided. The refrigerator 100 according to an example of the embodiment of the present disclosure includes a refrigerating room temperature sensor 59 that detects the temperature in the refrigerating room 14 and a freezing room temperature sensor 92 that detects the temperature of the freezing room 18. In addition, the refrigerator 100 according to an example of the embodiment of the present disclosure includes a refrigerating room damper 37 that controls the cold air supplied from the cooling room 23 to the refrigerating room 14 based on the refrigerating room temperature sensor 59, and the cooling room 23 to the freezing room. 18 may be provided with a freezer damper 68 that controls the cold air supplied to 18 based on the freezer temperature sensor 92. In addition, the refrigerator 100 according to an example of the embodiment of the present disclosure includes a compressor 27 whose operation is controlled based on the freezer temperature sensor 92 and a defrosting unit (defrosting heater) 26 that melts the frost of the cooler 24. You may have. Furthermore, in the refrigerator 100 according to an example of the embodiment of the present disclosure, before the defrosting unit 26 is energized, the refrigerator compartment damper 37 is closed and the freezer compartment damper 68 is opened, and the cooling fan 25 and the compressor 27 are installed. In the precool mode and the precool mode, the compressor 27 is stopped, the refrigerator compartment damper 37 is opened, the freezer compartment damper 68 is closed, and the cooling fan 25 is operated for a prescribed time. You may have pre-defrost mode. With such a configuration, it is possible to effectively use the cooling heat of the cooler 24 after the end of the precooling operation performed before the start of the defrosting operation for cooling the refrigerator compartment 14, and provide a refrigerator with high energy saving. it can.
 また、本開示の実施の形態の一例による冷蔵庫100は、冷却器24の霜を溶かす除霜部26通電時は、冷蔵室ダンパ37を閉状態、および、冷凍室ダンパ68を開状態とするよう構成されていてもよい。このような構成により、冷凍室18からの自然対流による冷気導入により、除霜部(霜取りヒータ)26通電時の冷却器周辺の上昇気流を促進でき、冷却器24の除霜効率を高めることができる。 In addition, the refrigerator 100 according to an example of the embodiment of the present disclosure is configured such that the refrigerator compartment damper 37 is closed and the freezer compartment damper 68 is opened when the defrosting unit 26 that melts the frost of the cooler 24 is energized. It may be configured. With such a configuration, by introducing cold air by natural convection from the freezer compartment 18, it is possible to promote an updraft around the cooler when the defroster (defrosting heater) 26 is energized and to improve the defrosting efficiency of the cooler 24. it can.
 また、本開示の実施の形態の一例による冷蔵庫100において、冷凍室ダンパ68は、冷凍室18に供給された冷気が冷却室23に戻される冷凍室冷気戻り通路に設けられていてもよい。このような構成により、冷却室23のスペースの有効活用を図りながら、冷却器24の除霜効率を高めることができる。 Further, in the refrigerator 100 according to an example of the embodiment of the present disclosure, the freezer compartment damper 68 may be provided in a freezer compartment cold air return passage through which the cold air supplied to the freezer compartment 18 is returned to the cooling chamber 23. With such a configuration, the defrosting efficiency of the cooler 24 can be increased while effectively utilizing the space of the cooling chamber 23.
 また、本開示の実施の形態の一例による冷蔵庫100においては、ファン遅延制御後に冷却ファン(FCファン)25がONされるが、冷却器温度センサ(DFC)が冷凍室温度センサ(FCC)より低くなるまでは、冷凍室ダンパ68は閉状態を維持する、FCダンパ遅延制御が行なわれるよう構成されていてもよい。このような構成により、冷却器24が十分に冷却されるまでは、冷凍室18へ冷気は供給されず、冷蔵室14側に供給することができ、冷凍室18の温度上昇防止および冷蔵室14の効率的な冷却が可能となる。 In the refrigerator 100 according to an example of the embodiment of the present disclosure, the cooling fan (FC fan) 25 is turned on after the fan delay control, but the cooler temperature sensor (DFC) is lower than the freezer temperature sensor (FCC). Until that happens, the freezer damper 68 may be configured to perform FC damper delay control to maintain a closed state. With such a configuration, until the cooler 24 is sufficiently cooled, the cool air is not supplied to the freezer compartment 18 and can be supplied to the refrigerating compartment 14 side, preventing the temperature rise of the freezer compartment 18 and the refrigerating compartment 14. This makes it possible to efficiently cool.
 また、本開示の実施の形態の一例による冷蔵庫100は、冷却器温度センサ(DFC)が冷凍室温度センサ(FCC)より低くなった時点で、冷凍室ダンパ68が開状態となるよう構成されていてもよい。このような構成により、冷却器24で十分に冷却された冷気を冷凍室18へ供給することができ、冷凍室18の温度上昇防止を確実に行なうことができる。 In addition, the refrigerator 100 according to an example of the embodiment of the present disclosure is configured such that the freezer damper 68 is opened when the cooler temperature sensor (DFC) becomes lower than the freezer temperature sensor (FCC). May be. With such a configuration, the cold air sufficiently cooled by the cooler 24 can be supplied to the freezer compartment 18 and the temperature rise of the freezer compartment 18 can be reliably prevented.
 なお、本開示の実施の形態の一例による冷蔵庫100において、冷却器温度センサ(DFC)がT2温度に上昇するまで、冷蔵室ダンパ37を開状態、および、冷凍室ダンパ68を閉状態として、冷却ファン(FCファン)25を運転する、冷蔵室プリ冷却(プリクール)およびプリ除霜制御中の冷却ファン(FCファン)25の回転数は、圧縮機27がON中の回転数より大きくなるよう設定されていてもよい。この場合、冷蔵室プリ冷却およびプリ除霜制御時間を短縮でき、冷却器24の冷熱の効率的な利用が可能となり、総合的な除霜時間を短縮することができるとともに、冷凍室18の除霜による温度上昇を抑制することができる。 Note that, in the refrigerator 100 according to the example of the embodiment of the present disclosure, the refrigerator compartment damper 37 is opened and the freezer compartment damper 68 is closed until the cooler temperature sensor (DFC) rises to the T2 temperature. The number of rotations of the cooling fan (FC fan) 25 that operates the fan (FC fan) 25 during the pre-cooling (pre-cooling) and pre-defrosting control of the refrigerator is set to be higher than the number of rotations when the compressor 27 is ON. May be. In this case, it is possible to shorten the refrigerating room pre-cooling and pre-defrosting control time, to efficiently use the cooling heat of the cooler 24, to shorten the total defrosting time, and to remove the freezing room 18 Temperature rise due to frost can be suppressed.
 また、本開示の実施の形態の一例による冷蔵庫100は、除霜終了後の起動待ち制御中、ファン遅延制御中およびFCダンパ遅延制御中の少なくともいずれか1つのモードの開始時、または、各モードの開始時に、冷蔵室ダンパ37のフラップ、および、冷凍室ダンパ68の少なくともいずれか一方のフラップを強制的に全開および全閉を1往復する開閉制御が行なわれることが望ましい。このような構成により、除霜後に各ダンパのフラップ近傍に付着した水分を取り除くことができ、水分の氷結による各ダンパの不具合を抑制することができ、冷蔵庫の信頼性を高めることができる。 In addition, the refrigerator 100 according to an example of the embodiment of the present disclosure is configured to start at least one of the modes during start-up waiting control after completion of defrosting, during fan delay control, and during FC damper delay control, or each mode. At the start of this, it is desirable to perform opening / closing control that forcibly fully opens and closes at least one of the flaps of the refrigerator compartment damper 37 and the freezer compartment damper 68. With such a configuration, it is possible to remove water adhering to the vicinity of the flap of each damper after defrosting, to suppress problems of each damper due to moisture icing, and to improve the reliability of the refrigerator.
 <2-5.野菜室の温湿度制御>
 次に、野菜室の温湿度制御について説明する。
<2-5. Temperature and humidity control in vegetable room>
Next, temperature and humidity control of the vegetable room will be described.
 図43は、本開示の実施の形態の一例による冷蔵庫の野菜室の湿度センサによる野菜室ヒータの制御を示すフローチャートである。図44は、本開示の実施の形態の一例による冷蔵庫の野菜室の湿度センサによる野菜室ヒータの外気温度と通電率との関係を示す図である。 FIG. 43 is a flowchart showing the control of the vegetable room heater by the humidity sensor of the vegetable room of the refrigerator according to an example of the embodiment of the present disclosure. FIG. 44 is a diagram illustrating a relationship between an outside temperature of a vegetable room heater and a current supply rate by a humidity sensor of a vegetable room of a refrigerator according to an example of an embodiment of the present disclosure.
 図43に示すように、野菜室17の温湿度制御において、まず、野菜室湿度センサ78で野菜室17内の湿度を測定する(ステップS-51)。野菜室17内の湿度がH1以下かをマイコン90が判断し(ステップS-52)、H1以下であれば(ステップS-52のY)、野菜室ヒータ79を通電率Kで通電制御する(ステップS-53)。そして、所定時間(T4)、通電率Kで通電制御する(ステップS-54)。また、ステップS-52で野菜室17内の湿度がH1以上であれば(ステップS-52のN)、さらにH2以上かを判断する(ステップS-55)。ステップS-55で、野菜室17内の湿度がH2以上であれば(ステップS-55のY)、野菜室ヒータ79を通電率Lで通電制御する(ステップS-56)。そして、所定時間(T4)、通電率Lで通電制御する(ステップS-57)。ステップS-55で野菜室17内の湿度がH2以下(すなわち野菜室17内の湿度がH1~H2の間)であれば(ステップS-55のN)、野菜室ヒータ79を通電率Mで通電制御する(ステップS-58)。そして、所定時間(T4)、通電率Mで通電制御する(ステップS-59)。 43, in the temperature and humidity control of the vegetable compartment 17, first, the humidity in the vegetable compartment 17 is measured by the vegetable compartment humidity sensor 78 (step S-51). The microcomputer 90 determines whether the humidity in the vegetable compartment 17 is H1 or less (step S-52), and if it is H1 or less (Y in step S-52), the vegetable compartment heater 79 is energized and controlled at an energization rate K ( Step S-53). Then, energization control is performed at an energization rate K for a predetermined time (T4) (step S-54). If the humidity in the vegetable compartment 17 is H1 or higher in step S-52 (N in step S-52), it is further determined whether it is H2 or higher (step S-55). If the humidity in the vegetable compartment 17 is equal to or higher than H2 in step S-55 (Y in step S-55), the vegetable compartment heater 79 is energized and controlled with the energization rate L (step S-56). Then, energization control is performed at an energization rate L for a predetermined time (T4) (step S-57). If the humidity in the vegetable compartment 17 is equal to or lower than H2 in step S-55 (ie, the humidity in the vegetable compartment 17 is between H1 and H2) (N in step S-55), the vegetable compartment heater 79 is turned on at an energization rate M. Energization control is performed (step S-58). Then, energization control is performed at an energization rate M for a predetermined time (T4) (step S-59).
 具体的には、図44に示すように、野菜室湿度センサ78による野菜室ヒータ79の通電率は、外気温度毎に決められている。例えば、高湿時(RH85%以上)は、中湿時(RH20~85%)より、野菜室ヒータ79の通電率を高くし、低湿時(RH20%以下)は、中湿時(20~85%)より野菜室ヒータ79の通電率を低くする。 Specifically, as shown in FIG. 44, the energization rate of the vegetable room heater 79 by the vegetable room humidity sensor 78 is determined for each outside air temperature. For example, the energization rate of the vegetable room heater 79 is higher at high humidity (RH 85% or more) than at medium humidity (RH 20 to 85%), and at low humidity (RH 20% or less) at medium humidity (20 to 85%). %) To lower the energization rate of the vegetable room heater 79.
 なお、図44では、高湿時の通電率をVCTH通電率M、中湿時の通電率をVCTH通電率L、および、低湿時の通電率をVCTH通電率Kで示している。 In FIG. 44, the energization rate at high humidity is represented by VCTH energization rate M, the energization rate at medium humidity is represented by VCTH energization rate L, and the energization rate at low humidity is represented by VCTH energization rate K.
 このような構成により、野菜室17内の湿度に応じた野菜室ヒータの通電率の制御が可能となり、簡素な構造で、野菜室17内を高湿に保ちながら、野菜室17内の結露を防止することができる。野菜室湿度センサがない従来の冷蔵庫では、結露に対する信頼性と省エネルギ性のバランスから、中湿条件を基に野菜室ヒータの通電率を決定するが、本実施の形態では、野菜室湿度センサ78の検出結果に応じて、野菜室ヒータ79の適切な通電制御が可能である。したがって、このような構成により、結露に対する信頼性と省エネルギ性を高次元でバランスさせることができ、省エネルギ性と野菜室の保鮮性を両立することができる。 With such a configuration, it becomes possible to control the energization rate of the vegetable room heater according to the humidity in the vegetable room 17, and with a simple structure, while keeping the inside of the vegetable room 17 at high humidity, condensation in the vegetable room 17 can be achieved. Can be prevented. In a conventional refrigerator without a vegetable room humidity sensor, the energization rate of the vegetable room heater is determined based on medium humidity conditions from the balance of reliability against condensation and energy saving, but in this embodiment, the vegetable room humidity sensor Appropriate energization control of the vegetable room heater 79 is possible according to the detection result of 78. Therefore, with such a configuration, it is possible to balance the reliability of condensation and energy saving on a high level, and to achieve both energy saving and freshness of the vegetable compartment.
 以上説明したように、本開示の実施の形態の一例による冷蔵庫100は、貯蔵室として、冷蔵室14と、冷凍室18と、野菜室17とを有していてもよい。また、本開示の実施の形態の一例による冷蔵庫100は、冷凍室18の後方に配置され、各貯蔵室(冷蔵室14、冷凍室18および野菜室17)に冷気を供給する、冷却器24と冷却ファン25とが収納された、冷却室23を備える。本開示の実施の形態の一例による冷蔵庫100は、冷却室23から冷蔵室14に供給される冷気を制御する冷蔵室ダンパ37と、冷却室23から野菜室17に供給される冷気を制御する野菜室ダンパ75とを備えていてもよい。また、本開示の実施の形態の一例による冷蔵庫100は、野菜室17内の湿度を検出する野菜室湿度センサ78と、野菜室17を加温する野菜室ヒータ79とを備えていてもよい。さらに、本開示の実施の形態の一例による冷蔵庫100は、野菜室17内の検出温度に基づいて野菜室ダンパ75が開閉制御され、野菜室湿度センサ78の検出湿度に基づいて野菜室ヒータ79が通電制御されるよう構成されていてもよい。このような構成により、野菜室17内の湿度に応じた野菜室ヒータ79の通電率の制御が可能となり、簡素な構造で、野菜室17内を高湿に保ちながら、野菜室17内の結露を防止することができる冷蔵庫を提供することができる。 As described above, the refrigerator 100 according to an example of the embodiment of the present disclosure may include the refrigerator compartment 14, the freezer compartment 18, and the vegetable compartment 17 as storage rooms. In addition, the refrigerator 100 according to an example of the embodiment of the present disclosure is disposed behind the freezer compartment 18 and supplies a cooler 24 to each storage compartment (the refrigerator compartment 14, the freezer compartment 18 and the vegetable compartment 17), A cooling chamber 23 in which the cooling fan 25 is housed is provided. A refrigerator 100 according to an example of the embodiment of the present disclosure includes a refrigerator compartment damper 37 that controls the cold air supplied from the cooling chamber 23 to the refrigerator compartment 14, and a vegetable that controls the cold air supplied from the cooling chamber 23 to the vegetable compartment 17. A chamber damper 75 may be provided. The refrigerator 100 according to an example of the embodiment of the present disclosure may include a vegetable room humidity sensor 78 that detects the humidity in the vegetable room 17 and a vegetable room heater 79 that heats the vegetable room 17. Furthermore, in the refrigerator 100 according to an example of the embodiment of the present disclosure, the vegetable room damper 75 is controlled to open and close based on the detected temperature in the vegetable room 17, and the vegetable room heater 79 is based on the detected humidity of the vegetable room humidity sensor 78. It may be configured to be energized. With such a configuration, it becomes possible to control the energization rate of the vegetable room heater 79 according to the humidity in the vegetable room 17, and with a simple structure, the condensation in the vegetable room 17 is maintained while keeping the inside of the vegetable room 17 highly humid. It is possible to provide a refrigerator that can prevent the above.
 また、本開示の実施の形態の一例による冷蔵庫100において、野菜室湿度センサ78は、野菜室17の天面部に配置されていてもよい。このような構成により、野菜室17内の湿度を精度良く検知することができる。 Further, in the refrigerator 100 according to an example of the embodiment of the present disclosure, the vegetable room humidity sensor 78 may be disposed on the top surface portion of the vegetable room 17. With such a configuration, the humidity in the vegetable compartment 17 can be detected with high accuracy.
 また、本開示の実施の形態の一例による冷蔵庫100において、野菜室ヒータ79は、野菜室17の上方の貯蔵室との区画壁に配置されていてもよい。このような構成により、野菜室17内の特に結露し易い天面の結露を確実に防止することができる。 Further, in the refrigerator 100 according to an example of the embodiment of the present disclosure, the vegetable room heater 79 may be disposed on a partition wall with the storage room above the vegetable room 17. With such a configuration, it is possible to reliably prevent condensation on the top surface of the vegetable compartment 17 that is particularly susceptible to condensation.
 <2-6.冷蔵室の収納量検知制御>
 次に、冷蔵室14の収納量検知制御について説明する。
<2-6. Storage amount detection control of refrigerator compartment>
Next, the storage amount detection control of the refrigerator compartment 14 will be described.
 図45は、本開示の実施の形態の一例による冷蔵庫の冷蔵室内の収納量の検知結果に基づいて行なわれる冷却システム制御を示すフローチャートである。なお、上述の通り、以下に述べる各種の制御は、特記しない限り、マイコン90により行われる。 FIG. 45 is a flowchart showing cooling system control performed based on the detection result of the storage amount in the refrigerator compartment of the refrigerator according to an example of the embodiment of the present disclosure. As described above, the various controls described below are performed by the microcomputer 90 unless otherwise specified.
 図45において、冷蔵室14の扉7(PCドア)の閉扉をドアスイッチが検知すると(ステップS-61)、冷蔵室14内の照明であるLEDが照射され、冷蔵室光センサ81で照度を検出し、メモリに記憶された前回の照度(変換された電圧値)と今回の照度(変換された電圧値)との差分を判定する。そして、前回の照度(変換された電圧値)と今回の照度(変換された電圧値)とを比較して、冷蔵室14内の収納量の変化量(差分)を算出する(ステップS-62)。収納量の増加量が所定閾値を超えた場合は、省エネ運転を解除する制御を行なう。一方、収納量の増加量が所定閾値を超えない場合は、省エネ運転を継続する。 In FIG. 45, when the door switch detects that the door 7 (PC door) of the refrigerator compartment 14 is closed (step S-61), the LED which is the illumination in the refrigerator compartment 14 is irradiated, and the illuminance is detected by the refrigerator compartment optical sensor 81. The difference between the previous illuminance (converted voltage value) detected and stored in the memory and the current illuminance (converted voltage value) is determined. Then, the previous illuminance (converted voltage value) is compared with the current illuminance (converted voltage value) to calculate the amount of change (difference) in the storage amount in the refrigerator compartment 14 (step S-62). ). When the increase amount of the storage amount exceeds a predetermined threshold value, control for canceling the energy saving operation is performed. On the other hand, when the increase amount of the storage amount does not exceed the predetermined threshold, the energy saving operation is continued.
 次に、冷蔵室14の扉7(PCドア)の閉扉をドアスイッチが検知してから所定時間(例えば30分)以内に冷蔵室14の扉7が開放されたかを判定する(ステップS-63)。扉7の開放があれば(ステップS-63のN)、ステップS-61に戻る。ステップS-63で、所定時間(例えば30分)の間、扉7の開放がなければ(ステップS-63のY)、冷蔵室14内の照明であるLEDを照射し、メモリ等の記憶部に予め保存されている冷蔵室光センサ81の照度(変換された電圧値)と、冷蔵室14内収納量との相関データから、冷蔵室14内の絶対収納量を算出する(ステップS―64)。 Next, it is determined whether the door 7 of the refrigerator compartment 14 is opened within a predetermined time (for example, 30 minutes) after the door switch detects that the door 7 (PC door) of the refrigerator compartment 14 is closed (step S-63). ). If the door 7 is opened (N in Step S-63), the process returns to Step S-61. In step S-63, if the door 7 is not opened for a predetermined time (for example, 30 minutes) (Y in step S-63), the LED that is the illumination in the refrigerator compartment 14 is irradiated, and a storage unit such as a memory The absolute storage amount in the refrigerator compartment 14 is calculated from the correlation data between the illuminance (converted voltage value) of the refrigerator compartment light sensor 81 stored in advance and the storage amount in the refrigerator compartment 14 (step S-64). ).
 次に、絶対収納量が、S2より多いか少ないかを判定する(ステップ65)。ステップ65で、絶対収納量がS2より多い場合(ステップ65のY)、収納量が多い場合のモードPを選択し(ステップS-67)、ファン電圧や各室の温調設定を変更し、圧縮機27の回転数上昇制御を抑制(シフトアップ制御)する(ステップS-70)。一方、ステップS-65で絶対収納量がS2以下の場合(ステップ65のN)、絶対収納量がS1からS2の間かを判定する(ステップS-66)。ステップS-66で、絶対収納量がS1からS2の間であれば(ステップS-66のY)、収納量が中位の場合のモードQを選択し(ステップS-68)、圧縮機27の回転数上昇制御を抑制する(ステップS-71)。また、ステップS-66で、絶対収納量がS1より少ない場合(ステップS-66のN)、収納量が少ない場合のモードRを選択し(ステップS-69)、圧縮機27の回転数上昇制御を抑制する(ステップS-72)。 Next, it is determined whether the absolute storage amount is larger or smaller than S2 (step 65). In step 65, if the absolute storage amount is larger than S2 (Y in step 65), select the mode P when the storage amount is large (step S-67), change the fan voltage and the temperature control setting of each room, The rotational speed increase control of the compressor 27 is suppressed (shift-up control) (step S-70). On the other hand, if the absolute storage amount is S2 or less in step S-65 (N in step 65), it is determined whether the absolute storage amount is between S1 and S2 (step S-66). If the absolute storage amount is between S1 and S2 in step S-66 (Y in step S-66), the mode Q when the storage amount is medium is selected (step S-68), and the compressor 27 Is suppressed (step S-71). In step S-66, when the absolute storage amount is smaller than S1 (N in step S-66), the mode R when the storage amount is small is selected (step S-69), and the rotation speed of the compressor 27 is increased. Control is suppressed (step S-72).
 なお、上記モードP、モードQ、およびモードRでの制御の変更は、ステップS-65またはステップS-66の判定直後ではなく、圧縮機27が一旦OFFとなり、次の圧縮機27のON時に、それぞれのモードP、モードQ、および、モードRの制御の変更を行なう。 Note that the control change in the mode P, mode Q, and mode R is not immediately after the determination in step S-65 or step S-66, but when the compressor 27 is temporarily turned OFF and the next compressor 27 is turned ON. The control of each mode P, mode Q, and mode R is changed.
 以上説明したように、本開示の実施の形態の一例による冷蔵庫100は、貯蔵室として冷蔵室14を備えていてもよい。また、本開示の実施の形態の一例による冷蔵庫100は、冷蔵室14内に、LED照明80と冷蔵室光センサ81とを備えていてもよい。また、本開示の実施の形態の一例による冷蔵庫100は、閉扉検知後にLED照明80と冷蔵室光センサ81とにより、冷蔵室14内の前回と今回との収納変化量を検出するとともに、閉扉検知の結果、所定時間、開扉が行なわれないと、マイコン90により判断された場合、LED照明80と冷蔵室光センサ81とにより、冷蔵室14内の絶対収納量を検出するよう構成されていてもよい。このような構成により、貯蔵室内の収納量に応じた適切な冷却制御ができ、使い勝手のよい冷蔵庫を提供することができる。 As described above, the refrigerator 100 according to an example of the embodiment of the present disclosure may include the refrigerator compartment 14 as a storage compartment. In addition, the refrigerator 100 according to an example of the embodiment of the present disclosure may include the LED lighting 80 and the refrigerator compartment light sensor 81 in the refrigerator compartment 14. In addition, the refrigerator 100 according to an example of the embodiment of the present disclosure detects the amount of change in storage between the previous time and the current time in the refrigerating room 14 by the LED lighting 80 and the refrigerating room light sensor 81 after detecting the closing of the door. As a result, when the microcomputer 90 determines that the door is not opened for a predetermined time, the LED storage 80 and the refrigerator light sensor 81 detect the absolute storage amount in the refrigerator compartment 14. Also good. With such a configuration, it is possible to perform appropriate cooling control according to the amount of storage in the storage room, and it is possible to provide a user-friendly refrigerator.
 また、本開示の実施の形態の一例による冷蔵庫100は、LED照明80と冷蔵室光センサ81とにより検出された、冷蔵室14内の前回と今回との収納変化量に基づいて、省エネ運転の継続か解除かがマイコン90によって判断され運転制御されるよう構成されていてもよい。このような構成により、使用者の使い方を加味した適切な冷却制御ができる。 In addition, the refrigerator 100 according to an example of the embodiment of the present disclosure is configured to perform energy saving operation based on the amount of change in storage between the previous time and the current time in the cold room 14 detected by the LED lighting 80 and the cold room light sensor 81. The microcomputer 90 may be configured to determine whether to continue or cancel the operation and to control the operation. With such a configuration, it is possible to perform appropriate cooling control taking into account the usage of the user.
 また、本開示の実施の形態の一例による冷蔵庫100は、LED照明80と冷蔵室光センサ81とにより検出された冷蔵室14内の絶対収納量に基づいて、圧縮機27の回転数が制御されるよう構成されていてもよい。このような構成により、冷蔵室14内の絶対収納量に応じた圧縮機27の回転数を選択することができ、より貯蔵室内の収納量に応じた適切な冷却制御ができる。 Further, in the refrigerator 100 according to an example of the embodiment of the present disclosure, the rotation speed of the compressor 27 is controlled based on the absolute storage amount in the refrigerator compartment 14 detected by the LED lighting 80 and the refrigerator compartment light sensor 81. You may be comprised so that. With such a configuration, it is possible to select the number of rotations of the compressor 27 according to the absolute storage amount in the refrigerator compartment 14, and it is possible to perform appropriate cooling control according to the storage amount in the storage chamber.
 また、本開示の実施の形態の一例による冷蔵庫100は、冷蔵室14の扉7(PCドア)の閉扉をドアスイッチが検知してから所定時間(例えば30分)以内に冷蔵室14の扉7の開放がないと、マイコン90により判断された場合に、冷蔵室14内の照明であるLED照明80により室内が照射される。そして、本開示の実施の形態の一例による冷蔵庫100は、メモリ等の記憶部に予め保存されている冷蔵室光センサ81の照度(変換された電圧値)と冷蔵室14内収納量との相関データから、冷蔵室14内の絶対収納量を算出するよう構成されていてもよい。このような構成により、冷蔵室14の扉7開閉による外気侵入で、一時的に冷蔵室14内の照明であるLED照明80近傍または冷蔵室光センサ81近傍に結露または曇りが発生しても、所定時間(例えば30分)閉扉の状態を確保しているので、結露および曇り等の外乱を排除でき、冷蔵室14内の絶対収納量を精度よく算出することができる。 In addition, the refrigerator 100 according to an example of the embodiment of the present disclosure includes the door 7 of the refrigerator compartment 14 within a predetermined time (for example, 30 minutes) after the door switch detects that the door 7 (PC door) of the refrigerator compartment 14 is closed. If the microcomputer 90 determines that there is no opening, the room is illuminated by the LED lighting 80 that is the lighting in the refrigerator compartment 14. And the refrigerator 100 by an example of embodiment of this indication is a correlation with the illumination intensity (converted voltage value) of the refrigerator compartment optical sensor 81 preserve | saved previously at memory | storage parts, such as memory, and the storage amount in the refrigerator compartment 14. FIG. The absolute storage amount in the refrigerator compartment 14 may be calculated from the data. With such a configuration, even if condensation or clouding occurs in the vicinity of the LED illumination 80 or the refrigeration room light sensor 81 that is temporarily illuminating in the refrigeration room 14 due to intrusion of outside air by opening and closing the door 7 of the refrigeration room 14, Since the door is closed for a predetermined time (for example, 30 minutes), disturbances such as condensation and clouding can be eliminated, and the absolute storage amount in the refrigerator compartment 14 can be calculated with high accuracy.
 また、本開示の実施の形態の一例による冷蔵庫100は、モードP、モードQ、および、モードRでの制御の変更は、ステップS-65またはステップS-66の判定直後ではなく、圧縮機27が一旦OFFとなり、次の圧縮機27のON時に、それぞれのモードP、モードQ、および、モードRの制御の変更が行なわれるよう構成されていてもよい。このような構成により、より安定した冷却制御を行なうことができる。 Further, in the refrigerator 100 according to the example of the embodiment of the present disclosure, the control change in the mode P, the mode Q, and the mode R is not performed immediately after the determination in step S-65 or step S-66, but the compressor 27 May be configured such that the control of each mode P, mode Q, and mode R is changed when the compressor 27 is once turned off and the next compressor 27 is turned on. With such a configuration, more stable cooling control can be performed.
 本開示は、各貯蔵室内の温度変動を小さくしたい場合に、ダンパのフラップの開度制御が行なわれるよう構成された、簡素な仕様で信頼性の高い冷蔵庫を提供する。よって、家庭用および業務用など、様々な種類および大きさの冷蔵庫並びに冷凍冷蔵装置等に適用することができる。 This disclosure provides a simple specification and highly reliable refrigerator configured to control the opening degree of the flap of the damper when it is desired to reduce the temperature fluctuation in each storage chamber. Therefore, it can be applied to various types and sizes of refrigerators and freezing / refrigeration apparatuses for home use and business use.
 1 冷蔵庫本体
 2 外箱
 3 内箱
 4 発泡断熱材
 5,6 仕切板
 7,8,9,10,11 扉
 12 貯水タンク室
 14 冷蔵室
 15 切替室
 16 製氷室
 17 野菜室
 17a 野菜室容器
 18 冷凍室
 20 棚板
 21 パーシャル室(低温室)
 22 チルド室(低温室)
 22a 冷気入口
 23 冷却室
 23a 底面
 24 冷却器
 25 冷却ファン
 26 除霜部(ガラス管ヒータ、霜取りヒータ、デフロストヒータ)
 26a ヒータ部
 27 圧縮機
 28 冷蔵室ダクト
 28a ダクト部材
 28b ダクトカバー
 28bb 装着部
 28c 延出リブ
 28d 側面吐出口
 29 冷凍室ダクト
 30 野菜室ダクト
 31 冷却室形成板
 32 冷凍室背面板
 33 第1冷気供給口
 34 第2冷気供給口
 35 ヒータカバー
 36 排水口
 37 冷蔵室ダンパ
 38 ダンパ固定枠
 39 冷蔵室用ダンパ部
 40 パーシャル室用ダンパ部
 41 冷蔵ダンパ駆動用モータユニット
 43 天井板
 44 チルド室容器
 45 冷気戻り口(チルド側)
 46 冷気戻り通路部(チルド側)
 47 チルド室扉兼把手部
 48 開口部
 49 温度調節用ヒータ
 50 天井板部材
 51 パーシャル室扉
 52 パーシャル室容器
 53 断熱材
 54 パーシャル冷気通路
 55 冷気戻り口(パーシャル側)
 56 冷気戻り通路部(パーシャル側)
 57 冷気合流戻り口
 58 冷蔵室戻りダクト
 58a,58b 凹状溝
 59 冷蔵室温度センサ
 60 パーシャル室温度センサ
 61 脱臭ユニット
 62 冷凍室容器
 62a 下段容器
 62b 上段容器
 63 冷気吹出し口
 64 冷凍冷気戻り口
 65 冷凍室側口枠部
 66 冷却室側口枠部
 66a 下辺
 66b 間隙部分
 67 グリル
 68 冷凍室ダンパ
 69 グリル片
 70 ダンパ枠体
 71 フラップ
 72 冷凍ダンパ駆動用モータユニット
 73 爪片
 74 開口
 75 野菜室ダンパ
 75a ダンパ片
 76 野菜ダンパ駆動用モータユニット
 77 遮熱板
 78 野菜室湿度センサ
 79 野菜室ヒータ(VCヒータ)
 80 LED照明
 81 冷蔵室光センサ
 90 マイコン
 91 外気温度センサ(ATC)
 92 冷凍室温度センサ(FCC)
 93 野菜室温度センサ(VCC)
 94 冷却器温度センサ(DFC)
 95 扉開閉検知部(ドアスイッチ)
 96 外部照度センサ
 98 パーシャル室ダンパ(PFダンパ)
DESCRIPTION OF SYMBOLS 1 Refrigerator main body 2 Outer box 3 Inner box 4 Foam insulation material 5,6 Partition plate 7,8,9,10,11 Door 12 Water storage tank room 14 Refrigeration room 15 Switching room 16 Ice making room 17 Vegetable room 17a Vegetable room container 18 Freezing Room 20 Shelf 21 Partial room (low temperature room)
22 Chilled room (low temperature room)
22a Cold air inlet 23 Cooling chamber 23a Bottom surface 24 Cooler 25 Cooling fan 26 Defrosting part (glass tube heater, defrost heater, defrost heater)
26a heater section 27 compressor 28 refrigerator compartment duct 28a duct member 28b duct cover 28bb mounting section 28c extension rib 28d side outlet 29 freezer compartment duct 30 vegetable compartment duct 31 cooling compartment forming plate 32 freezer compartment rear plate 33 first cold air supply Port 34 Second cold air supply port 35 Heater cover 36 Drain port 37 Refrigeration room damper 38 Damper fixing frame 39 Refrigeration room damper part 40 Partial room damper part 41 Refrigeration damper drive motor unit 43 Ceiling plate 44 Chilled room container 45 Cold air return Mouth (chilled side)
46 Cool air return passage (chilled side)
47 Chilled chamber door / grip 48 Opening 49 Temperature control heater 50 Ceiling plate member 51 Partial chamber door 52 Partial chamber container 53 Thermal insulation material 54 Partial cold air passage 55 Cold air return port (partial side)
56 Cold air return passage (partial side)
57 Cold air confluence return port 58 Refrigerating chamber return ducts 58a, 58b Recessed groove 59 Refrigerating chamber temperature sensor 60 Partial chamber temperature sensor 61 Deodorizing unit 62 Freezer chamber vessel 62a Lower vessel 62b Upper vessel 63 Cold air outlet 64 Freezing cold air return port 65 Freezer chamber Side opening frame portion 66 Cooling chamber side opening frame portion 66a Lower side 66b Gap portion 67 Grill 68 Freezer compartment damper 69 Grill piece 70 Damper frame body 71 Flap 72 Freezing damper drive motor unit 73 Claw piece 74 Opening 75 Vegetable room damper 75a Damper piece 76 Vegetable damper drive motor unit 77 Heat shield plate 78 Vegetable room humidity sensor 79 Vegetable room heater (VC heater)
80 LED lighting 81 Light sensor in refrigerator compartment 90 Microcomputer 91 Outside temperature sensor (ATC)
92 Freezer temperature sensor (FCC)
93 Vegetable room temperature sensor (VCC)
94 Cooler temperature sensor (DFC)
95 Door open / close detector (door switch)
96 External illumination sensor 98 Partial room damper (PF damper)

Claims (3)

  1. 貯蔵室と、
    前記貯蔵室に冷気を供給する、冷却器および送風機が収納された冷却室と、
    前記冷却室から前記貯蔵室に供給される前記冷気の量を制御するダンパとを備え、
    前記ダンパは、フラップおよび駆動装置を有し、前記駆動装置による前記フラップの動作は、前記フラップの開閉を制御するフラップ開閉制御と、前記フラップの開度を制御するフラップ開度制御とが、場合分けされて制御されるように構成された
    冷蔵庫。
    A storage room;
    A cooling chamber containing a cooler and a blower for supplying cold air to the storage chamber;
    A damper for controlling the amount of the cold air supplied from the cooling chamber to the storage chamber,
    The damper has a flap and a driving device, and the operation of the flap by the driving device includes a flap opening / closing control for controlling opening / closing of the flap and a flap opening control for controlling the opening of the flap. A refrigerator configured to be divided and controlled.
  2. 前記貯蔵室として、冷蔵室と、冷凍室とを有し、
    前記冷凍室の後方には、前記冷却室が配置され、
    前記ダンパとして、前記冷却室から前記冷蔵室に供給される前記冷気の量を制御する冷蔵室ダンパと、前記冷却室から前記冷凍室に供給される前記冷気の量を制御する冷凍室ダンパとを有し、
    前記冷蔵室ダンパの前記フラップおよび前記冷凍室ダンパの前記フラップが、それぞれ独立して制御されるように構成された
    請求項1に記載の冷蔵庫。
    As the storage room, it has a refrigerator compartment and a freezer compartment,
    The cooling chamber is arranged behind the freezing chamber,
    As the damper, a refrigerator compartment damper that controls the amount of cold air supplied from the cooling chamber to the refrigerator compartment, and a freezer compartment damper that controls the amount of cold air supplied from the cooling chamber to the refrigerator compartment. Have
    The refrigerator according to claim 1, wherein the flap of the refrigerator compartment damper and the flap of the freezer compartment damper are controlled independently of each other.
  3. 前記フラップの前記開度制御は、省エネルギ運転条件において行われ、
    前記フラップの前記開閉制御は、通常運転条件において行なわれるように構成された
    請求項1または2に記載の冷蔵庫。
    The opening control of the flap is performed under energy saving operation conditions,
    The refrigerator according to claim 1 or 2, wherein the opening / closing control of the flap is configured to be performed under normal operating conditions.
PCT/JP2017/045901 2017-01-06 2017-12-21 Refrigerator WO2018128085A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2017-000912 2017-01-06
JP2017-000910 2017-01-06
JP2017000914A JP2018109490A (en) 2017-01-06 2017-01-06 refrigerator
JP2017000913A JP2018109489A (en) 2017-01-06 2017-01-06 refrigerator
JP2017-000915 2017-01-06
JP2017000911A JP2018109487A (en) 2017-01-06 2017-01-06 refrigerator
JP2017000912A JP6895605B2 (en) 2017-01-06 2017-01-06 refrigerator
JP2017000910A JP6890220B2 (en) 2017-01-06 2017-01-06 refrigerator
JP2017-000914 2017-01-06
JP2017000915A JP2018109491A (en) 2017-01-06 2017-01-06 refrigerator
JP2017-000913 2017-01-06
JP2017-000911 2017-01-06

Publications (1)

Publication Number Publication Date
WO2018128085A1 true WO2018128085A1 (en) 2018-07-12

Family

ID=62791058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045901 WO2018128085A1 (en) 2017-01-06 2017-12-21 Refrigerator

Country Status (1)

Country Link
WO (1) WO2018128085A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002051A1 (en) * 2014-07-03 2016-01-07 三菱電機株式会社 Refrigerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002051A1 (en) * 2014-07-03 2016-01-07 三菱電機株式会社 Refrigerator

Similar Documents

Publication Publication Date Title
CA2638349C (en) Ice in bucket detection for an icemaker
US7096936B1 (en) Refrigerator with quick chill and thaw system
JP2018109491A (en) refrigerator
JP2018109489A (en) refrigerator
JP6890220B2 (en) refrigerator
JP6895605B2 (en) refrigerator
CN101484764A (en) Refrigerator having a temperature controlled compartment
JP2018109490A (en) refrigerator
JP2018109487A (en) refrigerator
CN110345695B (en) Refrigerator with a door
WO2018128085A1 (en) Refrigerator
JP6861336B2 (en) refrigerator
CN112013605B (en) Refrigerator with a door
JPH11148759A (en) Refrigerator equipped with two sets of evaporators
JP2008180450A (en) Refrigerator
US7260957B2 (en) Damper for refrigeration apparatus
JP3440025B2 (en) refrigerator
WO2012007807A2 (en) Lighting system for refrigerators
KR100678777B1 (en) Refrigerator
JP2009293808A (en) Refrigerator
JP2005016903A (en) Refrigerator
JP2018109501A (en) refrigerator
JP2019132503A (en) refrigerator
TW201827774A (en) refrigerator
JPH08105679A (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889662

Country of ref document: EP

Kind code of ref document: A1