JP6895605B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP6895605B2
JP6895605B2 JP2017000912A JP2017000912A JP6895605B2 JP 6895605 B2 JP6895605 B2 JP 6895605B2 JP 2017000912 A JP2017000912 A JP 2017000912A JP 2017000912 A JP2017000912 A JP 2017000912A JP 6895605 B2 JP6895605 B2 JP 6895605B2
Authority
JP
Japan
Prior art keywords
chamber
damper
refrigerator
refrigerating
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017000912A
Other languages
Japanese (ja)
Other versions
JP2018109488A (en
Inventor
堀尾 好正
好正 堀尾
一瑳 多賀
一瑳 多賀
孝亮 服部
孝亮 服部
翔太 垣内
翔太 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017000912A priority Critical patent/JP6895605B2/en
Priority to PCT/JP2017/045901 priority patent/WO2018128085A1/en
Publication of JP2018109488A publication Critical patent/JP2018109488A/en
Application granted granted Critical
Publication of JP6895605B2 publication Critical patent/JP6895605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

本発明は各貯蔵室への冷気量を制御するダンパを備えた冷蔵庫に関するものである。 The present invention relates to a refrigerator provided with a damper for controlling the amount of cold air into each storage chamber.

近年、冷蔵庫は、冷蔵庫本体背面の冷却室で冷気を生成し、その冷気を冷却ファンによって冷蔵室、冷凍室、野菜室等に循環させて各室内の食品を冷却するが、その際、冷蔵室への冷気循環量を調整する冷蔵室ダンパを備えるとともに、さらに冷凍室への冷気循環量を制御する冷凍室ダンパを設けて、冷蔵室と冷凍室を効率よく冷却できるようにしたものがある(例えば、特許文献1参照)。 In recent years, refrigerators generate cold air in the cooling chamber on the back of the refrigerator body and circulate the cold air to the refrigerator compartment, freezer compartment, vegetable compartment, etc. by a cooling fan to cool the food in each chamber. In addition to being equipped with a refrigerator compartment damper that adjusts the amount of cold air circulating to the refrigerator, there is also a refrigerator compartment damper that controls the amount of cold air circulation to the freezer compartment so that the refrigerator compartment and the freezer compartment can be cooled efficiently ( For example, see Patent Document 1).

特開2011−7452号公報Japanese Unexamined Patent Publication No. 2011-7452

しかしながら、上記従来の冷蔵庫では、圧縮機運転中に冷却器で生成された冷気が送風機により冷蔵室ダンパおよび冷凍室ダンパを介して冷蔵室と冷凍室に供給され所定の温度に冷却されるが、圧縮機停止後は、送風機も停止され、冷凍室内の温度が高くなると再び圧縮機が運転されるというサイクルを繰り返している。 However, in the above-mentioned conventional refrigerator, the cold air generated by the cooler during the operation of the compressor is supplied to the refrigerator compartment and the freezer compartment by the blower through the refrigerator compartment damper and the freezer compartment damper, and is cooled to a predetermined temperature. After the compressor is stopped, the blower is also stopped, and when the temperature in the freezer chamber rises, the compressor is operated again, repeating the cycle.

しかしながら、圧縮機停止中は送風機も停止しているので、圧縮機停止中に冷却器の冷熱を有効利用することができず、冷却効率が下がるという課題を有していた。 However, since the blower is also stopped while the compressor is stopped, the cold heat of the cooler cannot be effectively used while the compressor is stopped, and there is a problem that the cooling efficiency is lowered.

本発明は上記従来の課題を解決するものであり、圧縮機停止中に冷却器の冷熱を有効利用し、冷凍室への熱影響を抑えて冷蔵室を効率的に冷却できる冷蔵庫を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and provides a refrigerator capable of effectively cooling the refrigerating room by effectively utilizing the cold heat of the cooler while the compressor is stopped and suppressing the heat effect on the freezing room. With the goal.

上記従来の課題を解決するために、本発明の冷蔵庫は、冷蔵室と冷凍室と、前記冷凍室の後方に配置され、前記冷蔵室と前記冷凍室とに冷気を供給する冷却器と送風機とが収納された冷却室と、前記冷却室から前記冷蔵室に供給される冷気を冷蔵室温度センサに基づいて制御する冷蔵室ダンパと、前記冷却室から前記冷凍室に供給される冷気を冷凍室温度センサに基づいて制御する冷凍室ダンパと、前記冷凍室温度センサに基づいて運転が制御される圧縮機と、を備え、前記冷蔵室温度センサが前記冷蔵室ダンパとするOFF温度に達する前で、かつ前記冷凍室温度センサが前記冷凍室ダンパを閉とするOFF温度に達して前記圧縮機が停止した場合、前記圧縮機停止後の所定時間、前記冷凍室ダンパ閉で前記冷蔵室ダンパを開状態として前記送風機を運転して前記冷蔵室を冷却し、前記圧縮機が停止する時点で前記冷蔵室ダンパが閉状態であれば、前記圧縮機停止後も、前記冷蔵室ダンパは閉状態を維持し前記冷蔵室を冷却しないものである。 In order to solve the above-mentioned conventional problems, the refrigerator of the present invention includes a refrigerator and a freezer, and a cooler and a blower which are arranged behind the refrigerator and supply cold air to the refrigerator and the freezer. A cooling chamber in which the cooling chamber is stored, a refrigerating chamber damper that controls the cold air supplied from the cooling chamber to the refrigerating chamber based on a refrigerating chamber temperature sensor, and a refrigerating chamber that controls the cold air supplied from the cooling chamber to the refrigerating chamber. A freezer compartment damper that controls based on a temperature sensor and a compressor whose operation is controlled based on the freezer compartment temperature sensor are provided, and the refrigerating chamber temperature sensor reaches an OFF temperature at which the refrigerating chamber damper is opened. ago, and the case where the compressor refrigerating compartment temperature sensor is the freezing chamber damper reaches the OFF temperature of the closed stops, a predetermined time after the compressor stops, the refrigerating compartment damper by the freezer compartment damper closed If the refrigerator is closed when the compressor is stopped by operating the blower in the open state, the refrigerator damper is still closed even after the compressor is stopped. The refrigerating chamber is not cooled .

これにより、圧縮機停止中に冷却器の冷熱を有効利用でき、冷凍室への熱影響を抑えて冷蔵室を効率的に冷却できる。 As a result, the cold heat of the cooler can be effectively used while the compressor is stopped, the heat effect on the freezer chamber can be suppressed, and the refrigerator compartment can be cooled efficiently.

本発明の冷蔵庫は、冷蔵室ダンパ開、かつ冷凍室ダンパ開状態で圧縮機が停止した場合、圧縮機停止後の所定時間、冷凍室ダンパ閉で冷蔵室ダンパを開状態として送風機を運転することにより、圧縮機停止中に冷却器の冷熱を有効利用でき、冷凍室への熱影響を抑えて冷蔵室を効率的に冷却でき、省エネ性の高い冷蔵庫を提供することができる。 In the refrigerator of the present invention, when the compressor is stopped with the refrigerator damper open and the freezer compartment damper open, the blower is operated with the refrigerator compartment damper open for a predetermined time after the compressor is stopped. As a result, the cold heat of the cooler can be effectively used while the compressor is stopped, the influence of heat on the freezer chamber can be suppressed, the refrigerating chamber can be efficiently cooled, and a highly energy-saving refrigerator can be provided.

本発明の実施の形態1における冷蔵庫の正面図Front view of the refrigerator according to the first embodiment of the present invention 同冷蔵庫の内部を示す正面図Front view showing the inside of the refrigerator 同冷蔵庫の断面図Cross section of the refrigerator 同冷蔵庫の冷気流れを説明する説明図Explanatory drawing explaining the cold air flow of the refrigerator 同冷蔵庫の冷凍室を示す正面図Front view showing the freezer compartment of the refrigerator 同冷蔵庫の冷却室を示す断面図Cross-sectional view showing the cooling chamber of the refrigerator 同冷蔵庫の野菜室ダクトと冷蔵室戻りダクトを示す断面図Cross-sectional view showing the vegetable compartment duct and the refrigerator compartment return duct of the refrigerator 同冷蔵庫の冷却室部分を示す分解斜視図An exploded perspective view showing the cooling chamber portion of the refrigerator. 同冷蔵庫の冷却室部分を冷却室側から見た分解斜視図An exploded perspective view of the cooling chamber part of the refrigerator as seen from the cooling chamber side. 同冷蔵庫の冷却室形成板を一部残して冷却室を冷却室側から見た斜視図A perspective view of the cooling chamber as viewed from the cooling chamber side, leaving a part of the cooling chamber forming plate of the refrigerator. 同冷蔵庫の冷却室形成板と野菜室ダクトとの関係を冷凍室側から見て示す正面図Front view showing the relationship between the cooling chamber forming plate of the refrigerator and the vegetable compartment duct as viewed from the freezer compartment side. 同冷蔵庫の冷却室形成板と野菜室ダクトとの関係を冷凍室側から見て示す斜視図A perspective view showing the relationship between the cooling chamber forming plate of the refrigerator and the vegetable compartment duct as viewed from the freezer compartment side. 同冷蔵庫の冷蔵室を示す斜視図Perspective view showing the refrigerator compartment of the refrigerator 同冷蔵庫の冷蔵室を示す断面図Cross-sectional view showing the refrigerator compartment of the refrigerator 図14のA部と、B部と、C部の水平断面を模式的に示した図FIG. 14 is a diagram schematically showing a horizontal cross section of a portion A, a portion B, and a portion C. 同冷蔵庫の冷蔵室ダクトの水平断面図Horizontal cross-sectional view of the refrigerator compartment duct of the refrigerator 同冷蔵庫の冷蔵室ダクトの吐出口を示す説明図Explanatory drawing showing the discharge port of the refrigerator compartment duct of the refrigerator 同冷蔵庫の冷蔵室を示す要部拡大断面図Enlarged cross-sectional view of the main part showing the refrigerator compartment of the refrigerator 同冷蔵庫の冷蔵室内部を示す正面図Front view showing the inside of the refrigerator compartment 同冷蔵庫の冷蔵室内部の要部を示す拡大正面図Enlarged front view showing the main parts of the refrigerator compartment 同冷蔵庫の貯蔵室を示す分解斜視図An exploded perspective view showing the storage room of the refrigerator 同冷蔵庫の貯蔵室内におけるパーシャル室の後方部を背部から見た斜視図A perspective view of the rear part of the partial room in the storage room of the refrigerator as viewed from the back. 同冷蔵庫の貯蔵室内におけるパーシャル室の後方部を背部から見た拡大斜視図Enlarged perspective view of the rear part of the partial room in the storage room of the refrigerator as seen from the back. 同冷蔵庫の貯蔵室内におけるパーシャル室の後方部を正面寄り背部から見た拡大斜視図Enlarged perspective view of the rear part of the partial room in the storage room of the refrigerator as seen from the back side toward the front. 同冷蔵庫の貯蔵室内におけるパーシャル室の後方部の脱臭ユニット装着部を示す拡大側面図Enlarged side view showing a deodorizing unit mounting part at the rear part of the partial room in the storage room of the refrigerator. 同冷蔵庫の貯蔵室内におけるパーシャル室の後方部の脱臭ユニット装着部を示す拡大斜視図An enlarged perspective view showing a deodorizing unit mounting portion at the rear portion of the partial chamber in the storage chamber of the refrigerator. 同冷蔵庫の冷却器を取り外して冷却室を背部から見た斜視図A perspective view of the cooling chamber from the back with the refrigerator's cooler removed. 同冷蔵庫の冷却器を取り外して冷却室を背部から見た正面図Front view of the cooling room from the back with the refrigerator cooler removed 同冷蔵庫の冷凍室の背面板を示す正面図Front view showing the back plate of the freezer compartment of the refrigerator 同冷蔵庫の冷却室構成部品の分解斜視図An exploded perspective view of the cooling chamber components of the refrigerator 同冷蔵庫の冷却室を前方ななめ情報から見た斜視図Perspective view of the cooling room of the refrigerator from the front licking information 同冷蔵庫の冷却室の要部を示す拡大断面図Enlarged sectional view showing the main part of the cooling chamber of the refrigerator 同冷蔵庫の冷却室の要部を示す他の例の拡大断面図Enlarged sectional view of another example showing the main part of the cooling chamber of the refrigerator. (a)同冷蔵庫の冷凍室ダンパを示す斜視図、(b)同冷凍室ダンパの断面図(A) A perspective view showing a freezer damper of the refrigerator, and (b) a cross-sectional view of the freezer damper. 本実施の形態の冷蔵庫の制御ブロック図Control block diagram of the refrigerator of this embodiment 本実施の形態の冷蔵庫の冷却システムの基本制御を示すフローチャートA flowchart showing the basic control of the refrigerator cooling system of the present embodiment. 本実施の形態の冷蔵庫の冷却システムのダンパ開度制御のフローチャートFlow chart of damper opening control of the refrigerator cooling system of this embodiment 本実施の形態の冷蔵庫の冷却システムのダンパ開度制御のフローチャートFlow chart of damper opening control of the refrigerator cooling system of this embodiment 本実施の形態の冷蔵庫の冷却システムのオフサイクル制御を示すフローチャートFlow chart showing off-cycle control of the refrigerator cooling system of this embodiment 本実施の形態の冷蔵庫の冷却システムのオフサイクル制御を示すタイミングチャートTiming chart showing off-cycle control of the refrigerator cooling system of this embodiment 本実施の形態の冷蔵庫の冷却システムのデフロスト制御を示すフローチャートFlow chart showing defrost control of the refrigerator cooling system of this embodiment 本実施の形態の冷蔵庫の冷却システムのデフロスト制御を示すタイミングチャートTiming chart showing defrost control of the refrigerator cooling system of this embodiment 本実施の形態の冷蔵庫の野菜室の湿度センサによる野菜室ヒータの制御を示すフローチャートFlow chart showing control of vegetable room heater by humidity sensor of vegetable room of refrigerator of this embodiment 本実施の形態の冷蔵庫の野菜室の湿度センサによる野菜室ヒータの外気温度と通電率の関係を示すグラフA graph showing the relationship between the outside air temperature and the energization rate of the vegetable room heater by the humidity sensor of the vegetable room of the refrigerator of the present embodiment. 本実施の形態の冷蔵庫における冷蔵室内の収納量の検知結果に基づいて行なう冷却システム制御を示すフローチャートA flowchart showing a cooling system control performed based on a detection result of a storage amount in a refrigerating room in the refrigerator of the present embodiment.

請求項1に記載の発明は、冷蔵室と冷凍室と、前記冷凍室の後方に配置され、前記冷蔵室と前記冷凍室とに冷気を供給する冷却器と送風機とが収納された冷却室と、前記冷却室から前記冷蔵室に供給される冷気を冷蔵室温度センサに基づいて制御する冷蔵室ダンパと、前記冷却室から前記冷凍室に供給される冷気を冷凍室温度センサに基づいて制御する冷凍室ダンパと、前記冷凍室温度センサに基づいて運転が制御される圧縮機と、を備え、前記冷蔵室温度センサが前記冷蔵室ダンパとするOFF温度に達する前で、かつ前記冷凍室温度センサが前記冷凍室ダンパを閉とするOFF温度に達して前記圧縮機が停止した場合、前記圧縮機停止後の所定時間、前記冷凍室ダンパ閉で前記冷蔵室ダンパを開状態として前記送風機を運転して前記冷蔵室を冷却し、前記圧縮機が停止する時点で前記冷蔵室ダンパが閉状態であれば、前記圧縮機停止後も、前記冷蔵室ダンパは閉状態を維持し前記冷蔵室を冷却しないものであり、圧縮機停止中に冷却器の冷熱を有効利用して、冷蔵室内の温度変動を小さくして目標温度に冷蔵室を効率的に冷却できるThe invention according to claim 1 comprises a refrigerating chamber, a freezing chamber, and a cooling chamber arranged behind the refrigerating chamber and accommodating a cooler and a blower for supplying cold air to the refrigerating chamber and the freezing chamber. , The refrigerating chamber damper that controls the cold air supplied from the cooling chamber to the refrigerating chamber based on the refrigerating chamber temperature sensor, and the cold air supplied from the cooling chamber to the refrigerating chamber are controlled based on the refrigerating chamber temperature sensor. A freezer compartment damper and a compressor whose operation is controlled based on the freezer compartment temperature sensor are provided , and before the refrigerating chamber temperature sensor reaches the OFF temperature at which the refrigerating chamber damper is opened, and the freezer compartment is provided. When the temperature sensor reaches the OFF temperature at which the freezer damper is closed and the compressor is stopped, the refrigerator is opened and the blower is opened for a predetermined time after the compressor is stopped. If the refrigerating chamber damper is closed when the compressor is stopped by operating to cool the refrigerating chamber, the refrigerating chamber damper remains closed even after the compressor is stopped, and the refrigerating chamber is closed. are those without cooling, by effectively utilizing the cold of the cooler in the compressor is stopped, cutting the refrigerating compartment to a target temperature by reducing the temperature fluctuations of the refrigeration compartment by efficiently cooled.

請求項2に記載の発明は、請求項1に記載の発明において、前記冷蔵室ダンパは前記冷蔵室温度センサの検知温度と冷蔵室目標温度とに基づいて、前記冷蔵室ダンパのフラップ角度を変えてフラップ開度制御を行うものであり、冷蔵室を効率的に冷却できる。 The invention according to claim 2 is the invention according to claim 1 , wherein the refrigerating chamber damper changes the flap angle of the refrigerating chamber damper based on the detection temperature of the refrigerating chamber temperature sensor and the refrigerating chamber target temperature. The flap opening is controlled , and the refrigerator compartment can be cooled efficiently.

請求項3に記載の発明は、請求項1または2に記載の発明において、前記圧縮機停止後の所定時間、前記冷凍室ダンパ閉で前記冷蔵室ダンパを開状態として運転する前記送風機の回転数は、前記圧縮機運転中の回転数より小さくしたものであり、圧縮機停止中に冷却器の冷熱をさらに有効利用でき、冷凍室への熱影響を抑えて冷蔵室を効率的に冷却し、省エネ性の高い冷蔵庫を提供することができる。 The invention according to claim 3 is the rotation speed of the blower according to the invention according to claim 1 or 2, which operates the refrigerator compartment damper in the open state with the freezer compartment damper closed for a predetermined time after the compressor is stopped. Is smaller than the number of revolutions during the operation of the compressor, and the cold heat of the cooler can be further effectively used while the compressor is stopped, the influence of heat on the freezer chamber is suppressed, and the refrigerator compartment is efficiently cooled. It is possible to provide a highly energy-saving refrigerator.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.

(実施の形態1)
図1〜図4は冷蔵庫の全体構成を説明する図、図5〜図12は冷却室から野菜室への冷気供給構成を説明する図、図13〜図26は冷蔵室構成を説明する図、図27〜図34は冷凍室から冷却室に跨る部分の構成を説明する図である。
(Embodiment 1)
1 to 4 are diagrams for explaining the overall configuration of the refrigerator, FIGS. 5 to 12 are diagrams for explaining the cold air supply configuration from the cooling chamber to the vegetable chamber, and FIGS. 13 to 26 are diagrams for explaining the refrigerator compartment configuration. 27 to 34 are views for explaining the configuration of the portion extending from the freezer compartment to the cooling chamber.

<1−1.冷蔵庫の全体構成>
まず図1〜図4を用いて冷蔵庫の全体構成を説明する。
<1-1. Overall configuration of refrigerator>
First, the overall configuration of the refrigerator will be described with reference to FIGS. 1 to 4.

図1〜図4において、本実施の形態に係る冷蔵庫は、前方を開口した冷蔵庫本体1を備え、この冷蔵庫本体1は金属製の外箱2と、硬質樹脂製の内箱3と、前記外箱2および内箱3の間に発泡充填された発泡断熱材4とで構成してあり、仕切板5、6等によって複数の貯蔵室が仕切形成してある。また、前記冷蔵庫本体1の各貯蔵室は冷蔵庫本体1と同様の断熱構成を採用した回動式の扉7或いは引出し式の扉8、9、10、11で開閉自在としてある。 In FIGS. 1 to 4, the refrigerator according to the present embodiment includes a refrigerator main body 1 having an open front, and the refrigerator main body 1 includes a metal outer box 2, a hard resin inner box 3, and the outer box. It is composed of a foamed heat insulating material 4 which is foam-filled between the box 2 and the inner box 3, and a plurality of storage chambers are formed by partitions such as partition plates 5 and 6. Further, each storage chamber of the refrigerator main body 1 is openable and closable by a rotary door 7 or a drawer type door 8, 9, 10 and 11 which adopts the same heat insulating structure as the refrigerator main body 1.

冷蔵庫本体1内に形成した貯蔵室は、最上部の冷蔵室14と、冷蔵室14の下に設けた温度帯切り替え可能な切替室15と、切替室15の横に設けた製氷室16と、切替室15および製氷室16と最下部の野菜室17との間に設けた冷凍室18で構成している。そして、前記冷蔵室14には複数の棚板20が設けてあり、その下部には冷却温度帯の異なるパーシャル室21とチルド室22が上下二段に重ねて設けてある。 The storage chambers formed in the refrigerator main body 1 include a refrigerating chamber 14 at the top, a temperature zone switchable switching chamber 15 provided under the refrigerating chamber 14, and an ice making chamber 16 provided next to the switching chamber 15. It is composed of a switching chamber 15, an ice making chamber 16, and a freezing chamber 18 provided between the vegetable compartment 17 at the bottom. A plurality of shelves 20 are provided in the refrigerating chamber 14, and a partial chamber 21 and a chilled chamber 22 having different cooling temperature zones are provided in two upper and lower stages below the shelf plate 20.

上記冷蔵室14は、冷蔵保存するための貯蔵室で、凍らない程度の低い温度、具体的には、通常1〜5℃に設定され冷却される。また、冷蔵室内に設けたパーシャル室21は微凍結保存に適した−2〜−3℃に設定され、チルド室22は冷蔵室14よりも低くパーシャル室21よりは高めの1℃前後の温度に設定され冷却される。 The refrigerating chamber 14 is a storage chamber for refrigerating and storing, and is cooled by setting it to a temperature as low as not to freeze, specifically, usually 1 to 5 ° C. Further, the partial chamber 21 provided in the refrigerator chamber is set to -2 to -3 ° C, which is suitable for slight cryopreservation, and the chilled chamber 22 has a temperature of about 1 ° C, which is lower than that of the refrigerator chamber 14 and higher than that of the partial chamber 21. Set and cooled.

野菜室17は、冷蔵室14と同等もしくは若干高く温度設定される貯蔵室で、具体的には、2〜7℃に設定され冷却される。この野菜室17は野菜等の収納食品から発せられる水分により高湿度となるため、局所的に冷えすぎると結露することがある。そのため、比較的高い温度に設定することで冷却量を少なくし、局所的な冷えすぎによる結露発生を抑制している。 The vegetable compartment 17 is a storage chamber whose temperature is set to be equal to or slightly higher than that of the refrigerator compartment 14, and specifically, the temperature is set to 2 to 7 ° C. for cooling. Since the vegetable compartment 17 becomes highly humid due to the moisture emitted from the stored food such as vegetables, dew condensation may occur if it is locally cooled too much. Therefore, by setting the temperature to a relatively high temperature, the amount of cooling is reduced and the occurrence of dew condensation due to local overcooling is suppressed.

冷凍室18は、冷凍温度帯に設定される貯蔵室で、具体的には、通常−22〜−18℃に設定され冷却されるが、冷凍保存状態向上のため、例えば−30℃や−25℃などの低温に設定され冷却されることもある。 The freezing chamber 18 is a storage chamber set in a freezing temperature zone, and specifically, it is usually set to 22 to -18 ° C. and cooled. It may be cooled by setting it to a low temperature such as ° C.

切替室15は、庫内の温度が変更可能な貯蔵室であり、用途に応じて冷蔵温度帯から冷凍温度帯まで切り換えることができるようになっている。 The switching chamber 15 is a storage chamber in which the temperature inside the refrigerator can be changed, and can be switched from the refrigerating temperature zone to the freezing temperature zone according to the application.

一方、前記冷凍室18の背面には冷却室23が設けてあり、この冷却室23には冷気を生成する冷却器24と、冷気を前記各室に供給する冷却ファン25とが設置してある。そして更に冷却器24の下方にはガラス管ヒータ等で構成した除霜手段26(以下、ガラス管ヒータと称す)が設けてある。 On the other hand, a cooling chamber 23 is provided on the back surface of the freezing chamber 18, and the cooling chamber 23 is provided with a cooler 24 for generating cold air and a cooling fan 25 for supplying cold air to each of the chambers. .. Further below the cooler 24, a defrosting means 26 (hereinafter, referred to as a glass tube heater) composed of a glass tube heater or the like is provided.

冷却器24は、圧縮機27と、コンデンサ(図示せず)と、放熱用の放熱パイプ(図示せず)と、キャピラリーチューブ(図示せず)とを環状に接続して冷凍サイクルを構成しており、圧縮機27によって圧縮された冷媒の循環によって冷却を行う。 The cooler 24 constitutes a refrigerating cycle by connecting a compressor 27, a condenser (not shown), a heat radiating pipe for heat dissipation (not shown), and a capillary tube (not shown) in an annular shape. Cooling is performed by circulating the refrigerant compressed by the compressor 27.

また、冷却ファン25は冷却器24の上方に設けてあり、その下流側に連なる冷蔵室ダクト28、冷凍室ダクト29、野菜室ダクト30を介して冷蔵室14、冷凍室18、野菜室17等に冷気を供給し、これら各室を冷却するようになっている。 Further, the cooling fan 25 is provided above the cooler 24, and the refrigerating room 14, the freezing room 18, the vegetable room 17, etc. are provided via the refrigerating room duct 28, the freezing room duct 29, and the vegetable room duct 30 connected to the downstream side thereof. It is designed to supply cold air to each of these chambers.

以下、上記冷却室23、冷蔵室14、冷凍室18、野菜室17の各室及びその冷却の構成について説明していく。 Hereinafter, each of the cooling chamber 23, the refrigerating chamber 14, the freezing chamber 18, the vegetable compartment 17, and the cooling configuration thereof will be described.

<1−2.冷却室と冷気供給構成>
図3と図5〜図12を用いて冷却室と冷気供給構成について説明する。
<1-2. Cooling chamber and cold air supply configuration>
The cooling chamber and the cold air supply configuration will be described with reference to FIGS. 3 and 5 to 12.

冷却室23は冷凍室18の背面にあって図6に示すよう冷却室形成板31と内箱3とによって形成してあり、冷却室形成板31の上部に冷却ファン25を装着することにより冷却器24上方に冷却ファン25を位置させてある。また、冷却室形成板31の前面側には冷凍室背面板32を装着して冷却ファン25の下流側を覆い冷却室23との間に冷却ファン下流側と連通する冷凍室ダクト29を形成している。 The cooling chamber 23 is located on the back surface of the freezing chamber 18 and is formed by a cooling chamber forming plate 31 and an inner box 3 as shown in FIG. 6, and is cooled by mounting a cooling fan 25 on the upper part of the cooling chamber forming plate 31. The cooling fan 25 is located above the vessel 24. Further, a freezing chamber back plate 32 is attached to the front side of the cooling chamber forming plate 31 to cover the downstream side of the cooling fan 25 and form a freezing chamber duct 29 communicating with the cooling chamber downstream side from the cooling chamber 23. ing.

そして、上記冷却ファン25の下流側には冷蔵室14の冷蔵室ダクト28と、野菜室1
7の野菜室ダクト30が、それぞれ異なる位置で別個に独立した形で接続してある。詳述すると、前記冷却ファン下流側の上部の上面は図4等に示すように冷蔵室14と冷凍室18を仕切る仕切板5に設けた第1冷気供給口33を介して冷蔵室ダクト28につながっており、冷却ファン下流側の上部の側方には図10、図11、図12にも示すように第2冷気供給口34を設けて野菜室ダクト30が接続してある。すなわち、上記冷蔵室ダクト28と野菜室ダクト30は冷却室23に対し、それぞれ異なる位置で別個に独立した形で接続してある。そして、冷却器24で生成した冷気を冷却ファン25によって前記第1冷気供給口33と第2冷気供給口34に別個に独立した形で供給し、冷蔵室ダクト28と野菜室ダクト30へと供給する。
Then, on the downstream side of the cooling fan 25, the refrigerating chamber duct 28 of the refrigerating chamber 14 and the vegetable compartment 1
The vegetable compartment ducts 30 of No. 7 are connected separately and independently at different positions. More specifically, the upper surface of the upper part on the downstream side of the cooling fan is connected to the refrigerating chamber duct 28 via the first cold air supply port 33 provided in the partition plate 5 that separates the refrigerating chamber 14 and the freezing chamber 18 as shown in FIG. As shown in FIGS. 10, 11, and 12, a second cold air supply port 34 is provided on the upper side of the downstream side of the cooling fan, and the vegetable compartment duct 30 is connected. That is, the refrigerating chamber duct 28 and the vegetable compartment duct 30 are connected to the cooling chamber 23 separately and independently at different positions. Then, the cold air generated by the cooler 24 is supplied separately to the first cold air supply port 33 and the second cold air supply port 34 by the cooling fan 25, and is supplied to the refrigerating room duct 28 and the vegetable room duct 30. To do.

なお、上記冷却器24の下方には図6に示すように冷却器24ガラス管ヒータ26を覆う傘状断面のヒータカバー35が設置してあり、冷却室23の底面には除霜水を外部に排出する排水口36が設けてある。 As shown in FIG. 6, a heater cover 35 having an umbrella-shaped cross section covering the cooler 24 glass tube heater 26 is installed below the cooler 24, and defrost water is externally provided on the bottom surface of the cooling chamber 23. A drainage port 36 for discharging water is provided.

<1−3.冷蔵室とその冷却構成>
次に図3と図13〜図26を用いて冷蔵室とその冷却構成を説明する。
<1-3. Refrigerator room and its cooling configuration>
Next, the refrigerating chamber and its cooling configuration will be described with reference to FIGS. 3 and 13 to 26.

冷蔵室14は、冷蔵庫本体1の最上部に位置していて図3、図14に示すように複数の棚板20を有しており、背面に前記した冷蔵室ダクト28が設けてある。 The refrigerating chamber 14 is located at the uppermost part of the refrigerator main body 1, has a plurality of shelf boards 20 as shown in FIGS. 3 and 14, and is provided with the refrigerating chamber duct 28 described above on the back surface.

冷蔵室ダクト28は図21に示すように発泡スチロールからなるダクト部材28aの冷蔵室側表面を樹脂製のダクトカバー28bで覆って構成してあり、冷蔵室14と冷凍室18との間を仕切る仕切板5の第1冷気供給口33を覆う如く冷蔵室背面に装着して冷却室23と連通させてある。そして、上記第1冷気供給口33には冷蔵室ダンパ37を組み込み、この冷蔵室ダンパ37の開閉によって冷却室23から冷蔵室14への冷気供給量を制御するようになっている。なお、この冷蔵室ダンパ37はダンパ固定枠38によって第1冷気供給口33に固定してある。 As shown in FIG. 21, the refrigerating chamber duct 28 is configured by covering the surface of the duct member 28a made of styrofoam on the refrigerating chamber side with a resin duct cover 28b, and partitions between the refrigerating chamber 14 and the freezing chamber 18. It is mounted on the back surface of the refrigerating chamber so as to cover the first cold air supply port 33 of the plate 5 and communicates with the cooling chamber 23. A refrigerating chamber damper 37 is incorporated in the first cold air supply port 33, and the amount of cold air supplied from the cooling chamber 23 to the refrigerating chamber 14 is controlled by opening and closing the refrigerating chamber damper 37. The refrigerating chamber damper 37 is fixed to the first cold air supply port 33 by the damper fixing frame 38.

上記冷蔵室ダンパ37は冷蔵室14への冷気供給量を制御する冷蔵室用ダンパ部39とパーシャル室21への冷気供給量を制御するパーシャル室用ダンパ部40とを有する二連式ダンパで構成してあり、冷蔵ダンパ駆動用モータユニット41内の冷蔵及びパーシャル用の1つのモータ(図示せず)によって駆動する構成となっている。 The refrigerating chamber damper 37 is composed of a double damper having a refrigerating chamber damper section 39 for controlling the amount of cold air supplied to the refrigerating chamber 14 and a partial chamber damper section 40 for controlling the amount of cold air supplied to the partial chamber 21. It is configured to be driven by one motor (not shown) for refrigeration and partial in the refrigerating damper drive motor unit 41.

一方、上記冷蔵室14の下部に設けたパーシャル室21とチルド室22のうち、上方に位置するチルド室22は、図14、図18に示すように最下段の棚板となる天井板43とその下方に位置するパーシャル室21との間の冷蔵室横幅一杯に形成してあり、チルド室容器44が出し入れ自在に設けてある。そして、上記チルド室22の後方には冷蔵室ダクト28の冷蔵室用ダンパ部39下流側に連通する冷気入口22aが設けてあり、この冷気入口22aから冷気を取り込んで冷却するようになっている。 On the other hand, of the partial chamber 21 and the chilled chamber 22 provided in the lower part of the refrigerating chamber 14, the chilled chamber 22 located above is the ceiling plate 43 serving as the lowermost shelf plate as shown in FIGS. 14 and 18. The refrigerating chamber is formed to fill the width of the refrigerating chamber between the partial chamber 21 located below the partial chamber 21, and the chilled chamber container 44 is provided so as to be freely taken in and out. Behind the chilled chamber 22, a cold air inlet 22a communicating with the downstream side of the refrigerator damper portion 39 of the refrigerating chamber duct 28 is provided, and cold air is taken in from the cold air inlet 22a to be cooled. ..

上記チルド室22は図18に示すように天井板43の後部にスリット状の冷気戻り口(チルド側)45を設けるとともに、チルド室容器44の後方部に前記冷気戻り口(チルド側)45を介して冷蔵室14とつながる冷気戻し通路部(チルド側)46が設けてある。更に、前記チルド室容器44の前端部には図14に示すようにチルド室扉兼把手部47の下方との間に冷蔵室14内とつながる開口部48を設けて、冷蔵室14内の冷気がチルド室容器44から溢れ出るチルド室冷却後の冷気とともにチルド室容器44外周の間隙(図示せず)を通って、前記冷気戻し通路部(チルド側)46へと流れるように構成してある。 As shown in FIG. 18, the chilled chamber 22 is provided with a slit-shaped cold air return port (chilled side) 45 at the rear portion of the ceiling plate 43, and the cold air return port (chilled side) 45 is provided at the rear portion of the chilled chamber container 44. A cold air return passage portion (chilled side) 46 connected to the refrigerating chamber 14 via the refrigerator is provided. Further, as shown in FIG. 14, an opening 48 connected to the inside of the refrigerating chamber 14 is provided between the front end portion of the chilled chamber container 44 and the lower part of the chilled chamber door / handle portion 47, and the cold air in the refrigerating chamber 14 is provided. Is configured to flow to the cold air return passage portion (chilled side) 46 through a gap (not shown) on the outer periphery of the chilled chamber container 44 together with the cold air after cooling the chilled chamber overflowing from the chilled chamber container 44. ..

また、チルド室22はそのチルド室容器44の下方であるパーシャル室21の天井板部
材50に温度調節用ヒータ49を敷設し、下方に位置するパーシャル室21からの冷輻射によりチルド室温度が設定温度より低くなると温度調節用ヒータ49に通電して設定温度に維持するように構成してある。なお、上記温度調節用ヒータ49はチルド室22内の適所に設けたチルド室温度センサ(図示せず)によって制御する構成としてある。
Further, in the chilled chamber 22, a temperature control heater 49 is laid on the ceiling plate member 50 of the partial chamber 21 below the chilled chamber container 44, and the temperature of the chilled chamber is set by cold radiation from the partial chamber 21 located below. When the temperature becomes lower than the temperature, the temperature control heater 49 is energized to maintain the set temperature. The temperature control heater 49 is controlled by a chilled chamber temperature sensor (not shown) provided at an appropriate position in the chilled chamber 22.

一方、チルド室22の下方に位置するパーシャル室21は、冷蔵庫本体1の内箱内壁面と貯水タンク室形成板(図示せず)と前記チルド室22の底面ともなる天井板部材50とで貯水タンク室横に区画形成してあり、前面開口部分はパーシャル室扉51で開閉自在としてある。そして、パーシャル室21の内部にパーシャル室容器52が出し入れ自在に設けてある。 On the other hand, in the partial chamber 21 located below the chilled chamber 22, water is stored by the inner wall surface of the inner box of the refrigerator main body 1, the water storage tank chamber forming plate (not shown), and the ceiling plate member 50 which is also the bottom surface of the chilled chamber 22. A section is formed on the side of the tank chamber, and the front opening portion can be opened and closed by the partial chamber door 51. A partial chamber container 52 is provided inside the partial chamber 21 so that it can be freely taken in and out.

上記パーシャル室21を構成する天井板部材50には発泡スチロール等からなる断熱材53が組み込んであり、この断熱材53に前記した冷蔵室ダクト28のパーシャル室用ダンパ部40下流側に連通するパーシャル冷気通路54を形成してパーシャル室21内に冷気を供給し冷却する構成としてある。 A heat insulating material 53 made of styrofoam or the like is incorporated in the ceiling plate member 50 constituting the partial chamber 21, and the partial cold air communicating with the heat insulating material 53 on the downstream side of the damper portion 40 for the partial chamber of the refrigerating chamber duct 28 described above. A passage 54 is formed to supply cold air into the partial chamber 21 for cooling.

また、上記パーシャル室21は、図18及び図22〜図24に示すように前記チルド室22と同様、その天井板部材50の後部にスリット状の冷気戻り口(パーシャル側)55を設けるとともに、パーシャル室容器52の後方に空間部を設けて冷気戻り通路部(パーシャル側)56が形成してあり、前記チルド室22後方の冷気戻り通路部(チルド側)46内の冷蔵室冷気とチルド室冷気が冷気戻り通路部(パーシャル側)56へと流れるようにしてある。 Further, as shown in FIGS. 18 and 22 to 24, the partial chamber 21 is provided with a slit-shaped cold air return port (partial side) 55 at the rear portion of the ceiling plate member 50, and is provided with a slit-shaped cold air return port (partial side) 55, similarly to the chilled chamber 22. A space is provided behind the partial chamber container 52 to form a cold air return passage portion (partial side) 56, and a cold air return passage portion (chilled side) 46 behind the chilled chamber 22 is provided with cold air and a chilled chamber. The cold air flows to the cold air return passage portion (partial side) 56.

そして更に、上記パーシャル室21はその底面ともなる仕切板5の後部に冷気戻り通路部(パーシャル側)56と連通する冷気合流戻り口57を設け、この冷気合流戻り口57に冷蔵室戻りダクト58を接続して、前記冷蔵室14、チルド室22を冷却した冷気がパーシャル室容器52から溢れ出るパーシャル室冷却冷気と合流して冷却室23に戻るように構成してある。 Further, the partial chamber 21 is provided with a cold air confluence return port 57 communicating with the cold air return passage portion (partial side) 56 at the rear portion of the partition plate 5 which is also the bottom surface thereof, and the refrigerating chamber return duct 58 is provided at the cold air confluence return port 57. Is connected so that the cold air that has cooled the refrigerating chamber 14 and the chilled chamber 22 merges with the partial chamber cooling air that overflows from the partial chamber container 52 and returns to the cooling chamber 23.

すなわち、冷蔵室14、チルド室22、パーシャル室21の冷気を冷却室23に戻すためのダクト部を、前記チルド室22とパーシャル室21の後方空間を利用して形成した形としてある。 That is, the duct portion for returning the cold air of the refrigerating chamber 14, the chilled chamber 22, and the partial chamber 21 to the cooling chamber 23 is formed by utilizing the rear space of the chilled chamber 22 and the partial chamber 21.

なお、上記冷気戻り口(チルド側)45と冷気戻り口(パーシャル側)55とは上下に対向する位置に設け、冷気戻り口(パーシャル側)55と冷気合流戻り口57は位置ずれした位置に設けてある。 The cold air return port (chilled side) 45 and the cold air return port (partial side) 55 are provided at positions facing each other vertically, and the cold air return port (partial side) 55 and the cold air confluence return port 57 are located at misaligned positions. It is provided.

また、上記冷気を冷却室23へと戻す冷蔵室戻りダクト58は図4や図27、図28等に示すように冷却室23の側部(横)に設置し、その下端側部を冷却室23の下部側面に開口させることにより冷却室23に戻すように構成してある。この冷蔵室戻りダクト58はその後面に設けた凹状溝58bを内箱3の背面内壁面に圧接させて当該背面壁内面との間でダクト通路部を形成している。 Further, the refrigerating chamber return duct 58 for returning the cold air to the cooling chamber 23 is installed on the side (horizontal) of the cooling chamber 23 as shown in FIGS. 4, 27, 28, etc., and the lower end side thereof is the cooling chamber. It is configured to return to the cooling chamber 23 by opening the lower side surface of the 23. In the refrigerating chamber return duct 58, the concave groove 58b provided on the rear surface is pressed against the inner wall surface of the back surface of the inner box 3 to form a duct passage portion with the inner surface of the back wall.

更にまた、前記パーシャル室21には上記冷気戻り通路部(パーシャル側)56の冷気戻り口(パーシャル側)55と冷気合流戻り口57との間の部分に、図19、図20に示すように冷蔵室14の温度を検出して冷蔵室用ダンパ部39を制御する冷蔵室温度センサ59が設けてある。そして、上記冷蔵室温度センサ59と冷蔵室ダクト28を挟んで反対側の対角部分にパーシャル室21の温度を検知してパーシャル室用ダンパ部40を制御するパーシャル室温度センサ60が設けてある。 Furthermore, in the partial chamber 21, the portion between the cold air return port (partial side) 55 and the cold air confluence return port 57 of the cold air return passage portion (partial side) 56, as shown in FIGS. 19 and 20. A refrigerating room temperature sensor 59 is provided to detect the temperature of the refrigerating room 14 and control the damper unit 39 for the refrigerating room. A partial chamber temperature sensor 60 that detects the temperature of the partial chamber 21 and controls the partial chamber damper portion 40 is provided on the diagonal portion on the opposite side of the refrigerating chamber temperature sensor 59 and the refrigerating chamber duct 28. ..

更に、前記冷気戻り通路部(パーシャル側)56の冷気戻り口(パーシャル側)55と冷気合流戻り口57との間には図25、図26に示すように冷気の流れに沿う如く脱臭ユニット61が着脱自在に設けてある。 Further, as shown in FIGS. 25 and 26, the deodorizing unit 61 is located between the cold air return port (partial side) 55 of the cold air return passage portion (partial side) 56 and the cold air confluence return port 57 so as to follow the flow of cold air. Is detachably provided.

なお、上記脱臭ユニット61および冷蔵室温度センサ59およびパーシャル室温度センサ60は、何れも冷蔵室戻りダクト58を構成するダクトカバー28bの一部に設けた装着部28bb(冷蔵室温度センサ59およびパーシャル室温度センサ60用の装着部は図示せず)に取付けて一体化してある。 The deodorizing unit 61, the refrigerating chamber temperature sensor 59, and the partial chamber temperature sensor 60 are all mounted portions 28bb (refrigerating chamber temperature sensor 59 and partial) provided in a part of the duct cover 28b constituting the refrigerating chamber return duct 58. The mounting portion for the room temperature sensor 60 is not shown) and is integrated.

また、図15は、図14の冷蔵室ダクト28における、A部(冷蔵室ダンパ部)水平断面図と、B部(パーシャル室背面部)水平断面図と、C部(冷蔵室ダクト部)水平断面図とを模式的に示したものである。 Further, FIG. 15 shows a horizontal cross-sectional view of part A (refrigerator room damper), a horizontal cross-sectional view of part B (rear part of the partial room), and a horizontal section C (refrigerator room duct) in the refrigerating room duct 28 of FIG. It is a schematic view of a cross section.

図15において、冷蔵室ダクト28におけるダクト部材28aの長辺Wと短辺Dの比で表されるW/D(以下、アスペクト比と言う)は、A部アスペクト比(=W1/D1)、B部アスペクト比(=W2/D2)、C部アスペクト比(=W3/D3)とすると、A部アスペクト比<B部アスペクト比<C部アスペクト比の関係を有している。 In FIG. 15, the W / D (hereinafter referred to as the aspect ratio) represented by the ratio of the long side W and the short side D of the duct member 28a in the refrigerating chamber duct 28 is the aspect ratio of part A (= W1 / D1). Assuming that the aspect ratio of the B part (= W2 / D2) and the aspect ratio of the C part (= W3 / D3), there is a relationship of the aspect ratio of the A part <the aspect ratio of the B part <the aspect ratio of the C part.

また、図16は、冷蔵室ダクト28の水平断面図、図17は、冷蔵室ダクト28の吐出口を示す説明図である。 Further, FIG. 16 is a horizontal cross-sectional view of the refrigerating chamber duct 28, and FIG. 17 is an explanatory view showing a discharge port of the refrigerating chamber duct 28.

図16、図17において、ダクト部材28aの冷蔵室側表面を覆うダクトカバー28bの左右両側部には左右に延出して一体形成された延出リブ28cを備えている。 In FIGS. 16 and 17, extension ribs 28c extending left and right and integrally formed are provided on both left and right sides of the duct cover 28b covering the surface of the duct member 28a on the refrigerating chamber side.

延出リブ28cは奥面側に傾斜した傾斜面を備え、端部はさらに角度を大きくして奥側に延出している。延出リブ28cはユーザーが冷蔵室を前方から見た時に側面吐出口28dが直接見えない程度に延出している。 The extending rib 28c is provided with an inclined surface that is inclined toward the back surface side, and the end portion is further increased in angle and extends toward the back surface side. The extension rib 28c extends to the extent that the side discharge port 28d cannot be directly seen when the user views the refrigerator compartment from the front.

また、側面吐出口28dの下面は冷気の流れに対して上方となる傾斜面を有している。 Further, the lower surface of the side discharge port 28d has an inclined surface that is upward with respect to the flow of cold air.

また、冷蔵室14内の各棚板20の前方で内箱3の側壁には凹部を有し、凹部内に照明であるLED照明80と閉扉時にLED照明80からの光の照度を検出する冷蔵室光センサ81とを備えた基板を埋設し、凹部を覆う透過性の照明カバーを備えている。 Further, a recess is provided in the side wall of the inner box 3 in front of each shelf plate 20 in the refrigerating chamber 14, and the LED lighting 80 which is an illumination in the recess and the refrigerating which detects the illuminance of the light from the LED lighting 80 when the door is closed. A substrate provided with a room light sensor 81 is embedded, and a transparent lighting cover covering the recess is provided.

そして、閉扉時にLEDからの光の照度を検出する冷蔵室光センサ81の検出結果に基づいて、冷蔵庫の冷却システムを制御している。詳細は後述する。 Then, the cooling system of the refrigerator is controlled based on the detection result of the refrigerating room light sensor 81 that detects the illuminance of the light from the LED when the door is closed. Details will be described later.

<1−4.冷凍室とその冷却構成>
次に図2、図3と図24〜図31を用いて冷凍室とその冷却構成を説明する。
<1-4. Freezer and its cooling configuration>
Next, the freezer chamber and its cooling configuration will be described with reference to FIGS. 2, 3 and 24 to 31.

冷凍室18は冷蔵室14の下方で、かつ冷却室23の前方にあって、内部に下段容器62aとその上方に載置した上段容器62bとからなる冷凍室容器62が扉11の引出し開閉によって出し入れ自在なるように設けてある。そして、既に述べた通り冷却室23との間に冷凍室背面板32を配置し、この冷凍室背面板32と冷却室形成板31との間に冷却室23の冷却ファン下流側と連通する冷凍室ダクト29を形成している。 The freezing chamber 18 is located below the refrigerating chamber 14 and in front of the cooling chamber 23, and the freezing chamber container 62 composed of the lower container 62a and the upper container 62b placed above the lower container 62a is opened and closed by the drawer of the door 11. It is provided so that it can be taken in and out freely. Then, as described above, the freezing chamber back plate 32 is arranged between the cooling chamber 23 and the freezing chamber back plate 32 and the cooling chamber forming plate 31 communicate with the cooling fan downstream side of the cooling chamber 23. It forms a chamber duct 29.

冷凍室背面板32には図24等に示すように上下複数段に亘って冷気吹出し口63が設けてあり、最上部の冷気吹出し口63は製氷室16および切替室15に冷気を供給し、中段の冷気吹出し口63は上記冷凍室容器62の上段容器62bに冷気を供給し、最下段の冷気吹出し口63は下段容器62aに冷気を供給するようになっている。 As shown in FIG. 24 and the like, the freezing chamber back plate 32 is provided with cold air outlets 63 in a plurality of upper and lower stages, and the uppermost cold air outlet 63 supplies cold air to the ice making chamber 16 and the switching chamber 15. The cold air outlet 63 in the middle stage supplies cold air to the upper container 62b of the freezer container 62, and the cold air outlet 63 in the lowermost stage supplies cold air to the lower container 62a.

また、上記冷凍室18は図24等に示すようにその冷凍室背面板32の下部に前記冷却室23の下部に連通する冷凍冷気戻り口64が設けてある。この冷凍冷気戻り口64は図29に示すように冷凍室側口枠部65と冷却室側口枠部66とからなっていて、これらの枠は垂線に対し上部にいくほど後方、すなわち冷却室23側に位置するように傾斜させてある。そして、上記冷凍冷気戻り口64にはその冷凍室側口枠部65にグリル67を装着し、冷却室側口枠部66には冷凍室ダンパ68が設けてある。 Further, as shown in FIG. 24 and the like, the freezing chamber 18 is provided with a freezing cold air return port 64 communicating with the lower part of the cooling chamber 23 at the lower part of the freezing chamber back plate 32. As shown in FIG. 29, the refrigerating / cold air return port 64 is composed of a freezing chamber side opening frame portion 65 and a cooling chamber side opening frame portion 66, and these frames are rearward toward the upper part with respect to the vertical line, that is, the cooling chamber. It is tilted so that it is located on the 23rd side. A grill 67 is attached to the freezing chamber side opening frame portion 65 of the freezing cold air return port 64, and a freezing chamber damper 68 is provided in the cooling chamber side opening frame portion 66.

冷凍室側口枠部65に設けたグリル67は、冷凍室18から冷却室23へと流れる冷気を整流するもので、その各グリル片69は冷却室側端部が上方に位置するように傾斜させ、かつ、下方のグリル片69になるほど前後長が長くなるようにして冷凍室18内の冷凍室容器62後面に沿う形としてある。 The grill 67 provided in the freezing chamber side mouth frame portion 65 rectifies the cold air flowing from the freezing chamber 18 to the cooling chamber 23, and each grill piece 69 is inclined so that the cooling chamber side end is located upward. The shape is formed along the rear surface of the freezer container 62 in the freezer 18 so that the front and rear lengths become longer toward the lower grill piece 69.

一方、冷却室側口枠部66に設けた冷凍室ダンパ68は、冷凍室18に供給される冷気を開閉制御するもので、図31に示すように耐熱性樹脂、例えばポリフェニレンサルファイド樹脂(PPS樹脂)で形成したダンパ枠体70に同様の耐熱性樹脂で形成した複数のフラップ71、この例では三つのフラップ71を設けて構成してある。そして、上記冷凍室ダンパ68は各複数のフラップ71の冷却室側端部を軸支して図29に示すように冷凍室18とは反対の冷却室23側に開くように構成してあり、ダンパ枠体70の一端部に固定した冷凍ダンパ駆動用モータユニット72によって駆動する構成としてある。なお、図31において複数のフラップ71は実線の図番付与線のものが閉じたとき、破線図番付与線のものが開いた時を示している。 On the other hand, the freezer damper 68 provided in the cooling chamber side mouth frame 66 controls the opening and closing of the cold air supplied to the freezer 18, and as shown in FIG. 31, a heat-resistant resin, for example, a polyphenylene sulfide resin (PPS resin). ) Is provided with a plurality of flaps 71 formed of the same heat-resistant resin, and in this example, three flaps 71. The freezer damper 68 is configured to pivotally support the cooling chamber side ends of each of the plurality of flaps 71 and open to the cooling chamber 23 side opposite to the freezing chamber 18 as shown in FIG. 29. It is configured to be driven by a refrigerating damper driving motor unit 72 fixed to one end of the damper frame 70. In FIG. 31, the plurality of flaps 71 indicate when the solid line drawing numbering line is closed and when the broken line drawing numbering line is opened.

また、上記冷凍室ダンパ68は図25に示すように冷却室側口枠部66に設けた爪片73に冷凍ダンパ駆動用モータユニット72を固定した状態のダンパ枠体70を弾着係合させることにより冷却室形成板31に装着しユニット化してあり、冷却室側口枠部66の傾斜に沿って冷蔵室ダンパ37の冷却室側が冷凍室側より下方に位置するように傾斜させて設けてある。 Further, as shown in FIG. 25, the refrigerating chamber damper 68 has a damper frame 70 in a state where the refrigerating damper driving motor unit 72 is fixed to a claw piece 73 provided in the cooling chamber side opening frame portion 66. As a result, it is mounted on the cooling chamber forming plate 31 to form a unit, and is provided so as to be inclined so that the cooling chamber side of the refrigerating chamber damper 37 is located below the freezing chamber side along the inclination of the cooling chamber side mouth frame portion 66. is there.

さらに、冷凍室ダンパ68は図29から理解できるように各複数のフラップ71に沿って冷却室23へと流れる冷気が冷却器24の下端縁に流れるように設けてある。この例では冷凍室ダンパ68はその上部(ダンパ枠体70の上片部分)が冷却器24の下端縁より上方に位置し、かつ、その下部(ダンパ枠体70の下辺部分)が冷却器24の下端より下方に位置する如く設けることによって冷気を冷却器24の下端縁より下方部分に流れるようにしてある。 Further, as can be understood from FIG. 29, the freezer damper 68 is provided so that the cold air flowing to the cooling chamber 23 along each of the plurality of flaps 71 flows to the lower end edge of the cooler 24. In this example, the upper portion (upper piece portion of the damper frame 70) of the freezer damper 68 is located above the lower end edge of the cooler 24, and the lower portion (lower side portion of the damper frame 70) is the cooler 24. Cold air is allowed to flow to a portion below the lower end edge of the cooler 24 by being provided so as to be located below the lower end of the refrigerator 24.

さらに加えて、上記冷凍室ダンパ68はその下部(ダンパ枠体70の下辺部分)がガラス管ヒータ26より上方に位置するように設け、除霜時にガラス管ヒータ26で熱せられた暖冷気が確実に触れるように設定してある。 Furthermore, the freezer compartment damper 68 is provided so that its lower portion (lower side portion of the damper frame 70) is located above the glass tube heater 26, so that the warm and cold air heated by the glass tube heater 26 at the time of defrosting is ensured. It is set to touch.

その一方で、冷凍室ダンパ68を支持している冷却室側口枠部66の下辺66aは二重壁とし、その下面を円弧状にして冷却室23に突き出す形(冷却室23の底面23aよりガラス管ヒータ26側に突き出す形)としてガラス管ヒータ26からの輻射熱が直接照射するのを防止する構成とし、かつ、更に二重壁部分の間隙部分66bは冷凍室18に面して開放させて冷凍室冷気で冷却し過度に昇温するのを抑制する構成としてある。 On the other hand, the lower side 66a of the cooling chamber side mouth frame 66 supporting the freezer damper 68 is a double wall, and the lower surface thereof is formed into an arc shape and protrudes into the cooling chamber 23 (from the bottom surface 23a of the cooling chamber 23). The shape is such that it protrudes toward the glass tube heater 26) to prevent the radiant heat from the glass tube heater 26 from being directly irradiated, and the gap portion 66b of the double wall portion is opened facing the freezing chamber 18. It is configured to prevent excessive temperature rise by cooling with cold air in the freezer.

更にまた、前記冷凍室ダンパ68は図25に示すようにその冷凍ダンパ駆動用モータユニット72がガラス管ヒータ26の長手方向において、ガラス管ヒータ26のヒータ部26aと対向しないようヒータ部26aから外方にずれた場所に位置するように配置してある。そしてこの例では上記冷凍ダンパ駆動用モータユニット72を冷却室23横の冷蔵室
戻りダクト58側に位置させることによって、冷凍ダンパ駆動用モータユニット72がヒータ部26aの外方に位置する形をとりつつ、冷凍室ダンパ68の複数のフラップ71部分が冷却器24の中心線寄り部分に位置するようにしてある。
Furthermore, as shown in FIG. 25, the freezing chamber damper 68 is outside the heater portion 26a so that the refrigerating damper driving motor unit 72 does not face the heater portion 26a of the glass tube heater 26 in the longitudinal direction of the glass tube heater 26. It is arranged so that it is located in a place shifted to the side. In this example, the refrigerating damper drive motor unit 72 is located on the refrigerating chamber return duct 58 side next to the cooling chamber 23, so that the refrigerating damper driving motor unit 72 is located outside the heater portion 26a. At the same time, the plurality of flaps 71 portions of the freezer damper 68 are located closer to the center line of the cooler 24.

なお、冷凍室ダンパ68は冷凍冷気戻り口64のみに設けられており、冷却室23から冷気吹出し口63に至る冷気吐出通路にはダンパを備えず、冷却室23と冷凍室18とは連通状態に保たれている。 The freezing chamber damper 68 is provided only in the freezing cold air return port 64, and the cold air discharge passage from the cooling chamber 23 to the cold air outlet 63 is not provided with a damper, and the cooling chamber 23 and the freezing chamber 18 communicate with each other. It is kept in.

<1−5.野菜室とその冷却構成>
次に図3、図4と図8〜図12を用いて野菜室とその冷却構成について説明する。
<1-5. Vegetable room and its cooling configuration>
Next, the vegetable compartment and its cooling configuration will be described with reference to FIGS. 3, 4 and 8 to 12.

野菜室17は、図3に示すように冷凍室18下方の冷蔵庫本体1最下部に位置していて、冷凍室18と同様、野菜室容器17aが扉10の引出し開閉によって出し入れ自在なるように設けてある。この野菜室17に冷気を供給する野菜室ダクト30は、図8、図9に示すように冷却室23横の冷蔵室戻りダクト58前面に重合させて配置してあり、その上部は図4及び図10に示すように前記冷却室23に設けた第2冷気供給口34に接続してある。 As shown in FIG. 3, the vegetable compartment 17 is located at the bottom of the refrigerator body 1 below the freezer compartment 18, and like the freezer compartment 18, the vegetable compartment container 17a is provided so that it can be freely taken in and out by opening and closing the drawer of the door 10. There is. As shown in FIGS. 8 and 9, the vegetable compartment duct 30 for supplying cold air to the vegetable compartment 17 is superposed on the front surface of the refrigerating chamber return duct 58 next to the cooling chamber 23, and the upper portion thereof is arranged in FIG. 4 and FIG. As shown in FIG. 10, it is connected to the second cold air supply port 34 provided in the cooling chamber 23.

この第2冷気供給口34は既述した通り冷蔵室14への冷気供給口となる第1冷気供給口33とは別個に独立した形で形成してある。すなわち、第2冷気供給口34は冷却室23の上方に位置する冷蔵室14と冷凍室18とを仕切る仕切板5より下方、即ち冷凍室18の背面投影面積内であって、前記冷却ファン25と略同じ高さ位置の冷却ファン下流側部分に設けてある。そして、この第2冷気供給口34に接続した野菜室ダクト30の下端は野菜室17の上部に開口していて、野菜室17に冷気を供給するようになっている。 As described above, the second cold air supply port 34 is formed separately from the first cold air supply port 33, which is the cold air supply port to the refrigerating chamber 14. That is, the second cold air supply port 34 is below the partition plate 5 that separates the refrigerating chamber 14 and the freezing chamber 18 located above the cooling chamber 23, that is, within the back projection area of the freezing chamber 18, and the cooling fan 25. It is provided on the downstream side of the cooling fan at approximately the same height as the above. The lower end of the vegetable compartment duct 30 connected to the second cold air supply port 34 is open to the upper part of the vegetable compartment 17 to supply cold air to the vegetable compartment 17.

上記野菜室ダクト30はその上端部の側部を開口74させて第2冷気供給口34に突き合わせ接続してあり、この接続部近傍、具体的には冷却ファン25と略同じ高さ位置範囲に野菜室ダンパ75を組み込んである。 The vegetable compartment duct 30 has an opening 74 at the upper end thereof and is butt-connected to the second cold air supply port 34, and is connected to the second cold air supply port 34 in the vicinity of the connection portion, specifically, in a position range substantially the same as the cooling fan 25. A vegetable compartment damper 75 is incorporated.

またこの野菜室ダンパ75は図8に示すように冷蔵室戻りダクト58の前面に形成した野菜室ダクト通路部となる凹状溝58bに嵌め込み、この状態の冷蔵室戻りダクト58の凹状溝58b前面に野菜室ダクト30を嵌め込み装着することにより冷蔵室戻りダクト58と野菜室ダクト30との間で挟持固定してある。そして、上記野菜室ダクト30および冷蔵室戻りダクト58は発泡スチロール等の弾性力を有する材料で形成してあり、その弾性力によって両者間の気密性を確保すると同時に野菜室ダンパ75の気密性も確保する構成としてある。 Further, as shown in FIG. 8, the vegetable compartment damper 75 is fitted into the concave groove 58b formed in the front surface of the refrigerating chamber return duct 58, which serves as the passage portion of the vegetable compartment duct, and is fitted in the concave groove 58b front surface of the refrigerating chamber return duct 58 in this state. By fitting and mounting the vegetable compartment duct 30, it is sandwiched and fixed between the refrigerating chamber return duct 58 and the vegetable compartment duct 30. The vegetable compartment duct 30 and the refrigerating chamber return duct 58 are made of a material having an elastic force such as foamed styrol, and the elastic force secures the airtightness between the two and at the same time secures the airtightness of the vegetable compartment damper 75. It is a configuration to do.

なお、野菜室ダンパ75は野菜ダンパ駆動用モータユニット76によって駆動されるダンパ片75aが野菜室ダクト30を流れる冷気と逆の方向、この例では上向きに開くように構成してある。これは前記した冷蔵室ダクト28のダンパ開き方向とは反対の方向である。 The vegetable compartment damper 75 is configured such that the damper piece 75a driven by the vegetable damper driving motor unit 76 opens in the direction opposite to the cold air flowing through the vegetable compartment duct 30, in this example, upward. This is the direction opposite to the damper opening direction of the refrigerating chamber duct 28 described above.

また、野菜室17を冷却した後の冷気はその天井面に設けた野菜室戻りダクト(図示せず)を介して冷却室23に戻すようになっている。 Further, the cold air after cooling the vegetable compartment 17 is returned to the cooling chamber 23 via a vegetable compartment return duct (not shown) provided on the ceiling surface thereof.

また、野菜室17内には、野菜室の扉10に固定された扉フレームに支持されて前方に引き出される野菜ケースと野菜ケースの上面を覆うように野菜ケース側面上部フランジに支持される上部野菜ケースとを備え、野菜ケースと上部野菜ケースはそれぞれシール性を高めた構造となっている。これにより、内部に収納される野菜、果物等から発生する水分の蒸散を抑制して野菜、果物等の保鮮性を高めることができる。 Further, in the vegetable compartment 17, the vegetable case supported by the door frame fixed to the door 10 of the vegetable compartment and pulled out forward, and the upper vegetables supported by the upper flange on the side surface of the vegetable case so as to cover the upper surface of the vegetable case. It is equipped with a case, and the vegetable case and the upper vegetable case each have a structure with improved sealing properties. As a result, it is possible to suppress the transpiration of water generated from the vegetables, fruits, etc. stored inside, and improve the freshness of the vegetables, fruits, etc.

また、野菜室17と冷凍室18とを断熱区画する仕切板6の野菜室17側には凹部を有し、前記凹部の内部にミスト発生装置を備えている。ミスト発生装置は、高電圧発生部と電極を有し、電極には庫内を結露させ収集した水分が供給されるものである。 Further, the vegetable compartment 17 side of the partition plate 6 for insulatingly partitioning the vegetable compartment 17 and the freezing chamber 18 has a recess, and a mist generator is provided inside the recess. The mist generator has a high voltage generating unit and an electrode, and the electrode is supplied with the collected water by dew condensation inside the refrigerator.

また、高電圧発生部を収納する基板には野菜室17内の湿度を検知する野菜室湿度センサ78を備えている。 Further, the substrate for accommodating the high voltage generating portion is provided with a vegetable room humidity sensor 78 for detecting the humidity in the vegetable room 17.

また、野菜室17と冷凍室18とを断熱区画する仕切板6の野菜室17側には野菜室ヒータ79を備え、野菜室17の天面に設けられた野菜室湿度センサ78の検出湿度に応じて野菜室ヒータ79の通電を制御している。詳細は後述する。 Further, a vegetable room heater 79 is provided on the vegetable room 17 side of the partition plate 6 that insulates the vegetable room 17 and the freezing room 18, and the humidity is detected by the vegetable room humidity sensor 78 provided on the top surface of the vegetable room 17. The energization of the vegetable compartment heater 79 is controlled accordingly. Details will be described later.

以上のように構成した冷蔵庫について、以下、ブロック図、フローチャートを用いて、その制御フロー、作用効果を説明する。 The control flow and operation / effect of the refrigerator configured as described above will be described below using a block diagram and a flowchart.

<2−1.基本冷却制御>
図35は本実施の形態の冷蔵庫の制御ブロック図、図36は本実施の形態の冷蔵庫の冷却システムの基本制御を示すフローチャートである。
<2-1. Basic cooling control>
FIG. 35 is a control block diagram of the refrigerator of the present embodiment, and FIG. 36 is a flowchart showing the basic control of the cooling system of the refrigerator of the present embodiment.

図35において、冷蔵庫の冷却システムを制御するマイコン90の入力情報は、外気温度センサ(ATC)91、冷凍室温度センサ(FCC)92、冷蔵室温度センサ(PCC)59、パーシャル室温度センサ(PFC)60、野菜室温度センサ(VCC)93、冷却器温度センサ(DFC)94、扉開閉検知手段95、外部照度センサ96、冷蔵室光センサ97であり、マイコン90の出力制御デバイスは、圧縮機(コンプ)27、冷却ファン(FCファン)25、冷蔵室ダンパ(PCダンパ)37、パーシャル室ダンパ(PFダンパ)98、野菜室ダンパ(VCダンパ)75、冷凍室ダンパ(FCダンパ)68、除霜手段(霜取りヒータ)26である。 In FIG. 35, the input information of the microcomputer 90 that controls the cooling system of the refrigerator is the outside air temperature sensor (ATC) 91, the freezer room temperature sensor (FCC) 92, the refrigerating room temperature sensor (PCC) 59, and the partial room temperature sensor (PFC). ) 60, vegetable room temperature sensor (VCC) 93, cooler temperature sensor (DFC) 94, door open / close detection means 95, external illuminance sensor 96, refrigerating room optical sensor 97, and the output control device of the microcomputer 90 is a compressor. (Comp) 27, Cooling fan (FC fan) 25, Refrigerator room damper (PC damper) 37, Partial room damper (PF damper) 98, Vegetable room damper (VC damper) 75, Freezer room damper (FC damper) 68, Excluded The defrosting means (defrosting heater) 26.

図36において、冷蔵庫に電源投入されると(S−1)、外気温度センサ(ATC)91、冷凍室温度センサ(FCC)92、冷蔵室温度センサ(PCC)59、パーシャル室温度センサ(PFC)60、野菜室温度センサ(VCC)93の各温度情報に基づいて、圧縮機(コンプ)27、冷却ファン(FCファン)25、冷蔵室ダンパ(PCダンパ)37、パーシャル室ダンパ(PFダンパ)98、野菜室ダンパ(VCダンパ)75、冷凍室ダンパ(FCダンパ)68を制御する通常温調制御が開始される(S−2)。 In FIG. 36, when the power is turned on to the refrigerator (S-1), the outside air temperature sensor (ATC) 91, the freezer compartment temperature sensor (FCC) 92, the refrigerator compartment temperature sensor (PCC) 59, and the partial chamber temperature sensor (PFC). 60, based on each temperature information of the vegetable room temperature sensor (VCC) 93, compressor (comp) 27, cooling fan (FC fan) 25, refrigerating room damper (PC damper) 37, partial room damper (PF damper) 98 , Normal temperature control that controls the vegetable compartment damper (VC damper) 75 and the freezer compartment damper (FC damper) 68 is started (S-2).

そして、扉開閉検知手段95や、冷蔵庫周辺の明るさを検知する外部照度センサ96の情報、あるいは、冷蔵室光センサ97による収納量情報から、冷蔵庫の使用が少ない時間帯を予測して、省エネモードに移行するかどうかを判断する(S−3)。 Then, from the information of the door open / close detection means 95, the external illuminance sensor 96 that detects the brightness around the refrigerator, or the storage amount information by the refrigerator room light sensor 97, the time zone when the refrigerator is used less is predicted to save energy. It is determined whether or not to shift to the mode (S-3).

省エネモードに移行しない場合、各ダンパのフラップは全開または全閉するダンパ開閉制御を行なう(S−7)。 If the mode does not shift to the energy saving mode, the flaps of each damper perform damper opening / closing control to fully open or fully close (S-7).

省エネモードに移行する場合、外気温度センサ(ATC)91が所定温度より高いか(ATC≧T1)を判断する(S−4)。外気温度センサ(ATC)91が所定温度より高い場合、冷蔵室ダンパ(PCダンパ)37および冷凍室ダンパ(FCダンパ)68のフラップの開閉角度を制御するダンパ開度制御を行なう(S−5)。なお、ダンパ開度制御(S−5)での具体的な制御については後述する。 When shifting to the energy saving mode, it is determined whether the outside air temperature sensor (ATC) 91 is higher than the predetermined temperature (ATC ≧ T1) (S-4). When the outside air temperature sensor (ATC) 91 is higher than the predetermined temperature, the damper opening degree control for controlling the opening / closing angle of the flaps of the refrigerator compartment damper (PC damper) 37 and the freezer compartment damper (FC damper) 68 is performed (S-5). .. The specific control by the damper opening degree control (S-5) will be described later.

また、S−4で、外気温度センサ(ATC)91が所定温度(T1)より低い場合、圧縮機(コンプ)27が停止した状態の初期に冷蔵室ダンパ(PCダンパ)37を開とし、
冷却ファン(FCファン)25を運転するオフサイクル制御を行なう(S−6)。なお、オフサイクル制御(S−6)での具体的な制御については後述する。
Further, in S-4, when the outside air temperature sensor (ATC) 91 is lower than the predetermined temperature (T1), the refrigerating chamber damper (PC damper) 37 is opened at the initial stage when the compressor (compressor) 27 is stopped.
Off-cycle control for operating the cooling fan (FC fan) 25 is performed (S-6). The specific control in the off-cycle control (S-6) will be described later.

そして、上記各制御は、冷却器24の除霜手段(霜取りヒータ)26を開始するデフロスト信号が入るまで(S−8)繰り返し行なわれる。デフロスト信号が入るとデフロスト制御を行なう(S−9)。なお、デフロスト制御(S−9)での具体的な制御については後述する。 Then, each of the above controls is repeated (S-8) until a defrost signal for starting the defrosting means (defrosting heater) 26 of the cooler 24 is input. When a defrost signal is input, defrost control is performed (S-9). The specific control by the defrost control (S-9) will be described later.

以上説明したように、本実施の形態の冷蔵庫は、貯蔵室と、前記貯蔵室に冷気を供給する冷却器24と送風機(冷却ファン25)とが収納された冷却室23と、冷却室23から前記貯蔵室に供給される冷気をダクト内で制御するダンパと、を備え、前記ダンパはフラップと駆動装置を有し、前記駆動装置による前記フラップの動作は、フラップ開閉制御(S−7)とフラップ開度制御(S−5)とを、省エネモードに移行するかどうかを判断し(S−3)、その結果に応じて場合分けして制御されるものであり、省エネモードで各室内の温度変動を小さくしたい場合のみ、各ダンパのフラップ開度制御(S−5)を行なうことができる。 As described above, the refrigerator of the present embodiment is composed of a storage chamber, a cooling chamber 23 in which a cooler 24 for supplying cold air to the storage chamber and a blower (cooling fan 25) are housed, and a cooling chamber 23. A damper for controlling the cold air supplied to the storage chamber in a duct is provided, the damper has a flap and a driving device, and the operation of the flap by the driving device is a flap opening / closing control (S-7). The flap opening control (S-5) is controlled by determining whether or not to shift to the energy saving mode (S-3), and is controlled in each case according to the result. In the energy saving mode, each room is controlled. The flap opening degree control (S-5) of each damper can be performed only when it is desired to reduce the temperature fluctuation.

すなわち、必要以上に各ダンパのフラップ開度制御を行なわない点を技術的特徴とするもので、駆動装置のステッピングモータ等によるフラップ開度制御に必要なフラップ原点位置確認制御等の複雑な制御を減らすことができ、簡素な仕様で省エネ性を高め、信頼性の高い冷却ができる冷蔵庫を提供することができる。 That is, the technical feature is that the flap opening degree of each damper is not controlled more than necessary, and complicated control such as flap origin position confirmation control necessary for flap opening degree control by a stepping motor of a drive device or the like is performed. It is possible to provide a refrigerator that can be reduced, has simple specifications, enhances energy saving, and can be cooled with high reliability.

また、省エネ運転条件と通常運転条件とを有し、省エネ運転条件時はフラップ開度制御が行なわれ、通常運転条件時はフラップ開閉制御が行なわれるものであり、省エネ運転が必要な時のみ各ダンパのフラップ開度制御を行なうことができ、簡素な仕様で省エネ性および信頼性の高い冷却ができる冷蔵庫を提供することができる。 In addition, it has energy-saving operation conditions and normal operation conditions, flap opening control is performed under energy-saving operation conditions, flap opening / closing control is performed under normal operation conditions, and each is performed only when energy-saving operation is required. It is possible to provide a refrigerator capable of controlling the flap opening degree of the damper and capable of energy-saving and highly reliable cooling with simple specifications.

<2−2.ダンパフラップ開度制御>
図37、図38は本実施の形態の冷蔵庫の冷却システムのダンパ開度制御(図36のS−5)の詳細を示すフローチャートである。
<2-2. Damper flap opening control>
37 and 38 are flowcharts showing the details of the damper opening degree control (S-5 of FIG. 36) of the refrigerator cooling system of the present embodiment.

まず、1分毎に冷蔵室温度センサ(PCC)59の温度をN分間(例えば10分間)計測する(S−9)。その後、N分間(例えば10分間)の計測結果を平均する(S−10)。そして、計測した平均温度と冷蔵室温度センサ(PCC)59の設定値とを比較し(S−11)、N分間の平均温度と冷蔵室温度センサ(PCC)59の設定値との温度差ΔTを算出する(S−12)。そして、温度差ΔTの値により、冷蔵室ダンパ(PCダンパ)37のフラップの開度(角度)を変更する(S−13)。 First, the temperature of the refrigerator compartment temperature sensor (PCC) 59 is measured every minute for N minutes (for example, 10 minutes) (S-9). Then, the measurement results for N minutes (for example, 10 minutes) are averaged (S-10). Then, the measured average temperature is compared with the set value of the refrigerating room temperature sensor (PCC) 59 (S-11), and the temperature difference between the average temperature for N minutes and the set value of the refrigerating room temperature sensor (PCC) 59 is ΔT. Is calculated (S-12). Then, the opening degree (angle) of the flap of the refrigerator compartment damper (PC damper) 37 is changed according to the value of the temperature difference ΔT (S-13).

より具体的には、図38に示すように、冷蔵室温度センサ(PCC)59の設定値(目標温度)と上限値、下限値を確認する(S−14)。上限値、下限値とは、設定値(目標温度)に幅を持たせており、その幅の上限と下限の値である。次に、直近の数分間(例えば1分毎の10分間)の冷蔵室温度センサ(PCC)59の平均温度を確認する(S−15)。 More specifically, as shown in FIG. 38, the set value (target temperature), the upper limit value, and the lower limit value of the refrigerating room temperature sensor (PCC) 59 are confirmed (S-14). The upper limit value and the lower limit value are values of the upper limit and the lower limit of the set value (target temperature) having a range. Next, the average temperature of the refrigerating room temperature sensor (PCC) 59 for the last few minutes (for example, 10 minutes every minute) is confirmed (S-15).

次に、冷蔵室温度センサ(PCC)59の設定値(目標温度)と直近の直近の数分間(例えば1分毎の10分間)の平均温度を比較し、温度差(ΔT)を確認する(S−16)。そして、温度差(ΔT)が大きく、平均値が設定値(目標温度)の下限値より低い場合は、冷蔵室ダンパ(PCダンパ)37のフラップの開度(角度)を所定角度(駆動装置のステッピングモータ等のステップ数)小さくする(S−17)。 Next, the set value (target temperature) of the refrigerator compartment temperature sensor (PCC) 59 is compared with the average temperature of the last few minutes (for example, 10 minutes every 1 minute), and the temperature difference (ΔT) is confirmed (ΔT). S-16). When the temperature difference (ΔT) is large and the average value is lower than the lower limit of the set value (target temperature), the flap opening (angle) of the refrigerator compartment damper (PC damper) 37 is set to a predetermined angle (driving device). The number of steps of the stepping motor or the like) is reduced (S-17).

また、S−16で、平均値が設定値(目標温度)の上限値と下限値の間であれば、冷蔵室ダンパ(PCダンパ)37のフラップの開度(角度)は変更しない(S−18)。また、S−16で、温度差(ΔT)が大きく、平均値が設定値(目標温度)の上限値より高い場合は、冷蔵室ダンパ(PCダンパ)37のフラップの開度(角度)を所定角度(駆動装置のステッピングモータ等のステップ数)大きくする(S−19)。 Further, in S-16, if the average value is between the upper limit value and the lower limit value of the set value (target temperature), the opening (angle) of the flap of the refrigerator compartment damper (PC damper) 37 is not changed (S-). 18). Further, in S-16, when the temperature difference (ΔT) is large and the average value is higher than the upper limit of the set value (target temperature), the flap opening (angle) of the refrigerator compartment damper (PC damper) 37 is predetermined. Increase the angle (the number of steps of the stepping motor of the drive device) (S-19).

その後、S−15に戻り、上記制御を所定時間毎(例えば10分毎)に繰り返す。すなわち、所定時間前(例えば1分毎の10分間)の冷蔵室温度センサ(PCC)59の平均温度と設定値(目標温度)とを比較し、その温度差ΔTの値(レベル)に応じてその後の冷蔵室ダンパ(PCダンパ)37のフラップの開度(角度)を制御するものである。 After that, the process returns to S-15, and the above control is repeated every predetermined time (for example, every 10 minutes). That is, the average temperature of the refrigerator compartment temperature sensor (PCC) 59 before a predetermined time (for example, 10 minutes every 1 minute) is compared with the set value (target temperature), and the temperature difference ΔT is adjusted according to the value (level). After that, the opening degree (angle) of the flap of the refrigerating room damper (PC damper) 37 is controlled.

以上説明したように、本実施の形態の冷蔵庫は、冷蔵室14と、冷蔵室14に冷気を供給する冷却器24と送風機(冷却ファン25)とが収納された冷却室23と、冷却室23から冷蔵室14に供給される冷気をダクト内で制御する冷蔵室ダンパ(PCダンパ)37と、冷蔵室14内の温度を検出する冷蔵室温度センサ(PCC)59と、を備え、冷蔵室ダンパ(PCダンパ)37はフラップと駆動装置を有し、駆動装置によるフラップ動作は、フラップの開度を制御するフラップ開度制御が行なわれるもので、冷蔵室ダンパ(PCダンパ)37は、フラップ動作前の所定時間中の冷蔵室温度センサ(PCC)59の平均温度と冷蔵室目標温度とに基づいて、駆動装置によるフラップの角度を変えてフラップ開度制御が行なわれることにより、冷蔵室14内の温度変動を小さくして貯蔵室目標温度に近づけることができ、省エネ性を高めた使い勝手のよい冷蔵庫を提供することができる。 As described above, the refrigerator of the present embodiment has a refrigerating chamber 14, a cooling chamber 23 in which a cooler 24 for supplying cold air to the refrigerating chamber 14 and a blower (cooling fan 25) are housed, and a cooling chamber 23. A refrigerating room damper (PC damper) 37 that controls the cold air supplied from the refrigerator to the refrigerating room 14 in a duct, and a refrigerating room temperature sensor (PCC) 59 that detects the temperature inside the refrigerating room 14 are provided. (PC damper) 37 has a flap and a drive device, and the flap operation by the drive device controls the flap opening degree to control the opening degree of the flap, and the refrigerator compartment damper (PC damper) 37 has a flap operation. Based on the average temperature of the refrigerating room temperature sensor (PCC) 59 and the refrigerating room target temperature during the previous predetermined time, the flap opening is controlled by changing the flap angle by the drive device, so that the inside of the refrigerating room 14 is controlled. It is possible to reduce the temperature fluctuation of the refrigerator and bring it closer to the target temperature of the storage room, and to provide an easy-to-use refrigerator with improved energy saving.

また、省エネ運転条件を有し、省エネ運転条件時にフラップ開度制御が行なわれるものであり、省エネ運転が必要な時のみ各ダンパのフラップ開度制御を行なうことができ、簡素な仕様で省エネ性および信頼性の高い冷却ができる冷蔵庫を提供することができる。 In addition, it has energy-saving operation conditions, and flap opening control is performed under energy-saving operation conditions.Flap opening control of each damper can be performed only when energy-saving operation is required, and energy saving is achieved with simple specifications. And a refrigerator capable of reliable cooling can be provided.

なお、本実施の形態では、冷蔵室への冷気供給を制御する冷蔵室ダンパ(PCダンパ)について説明したが、同様に冷凍室への冷気供給を制御する冷凍室ダンパ(FCダンパ)に適用することができる。さらに、切替室への冷気供給を制御する切替室ダンパ(SCダンパ)や野菜室への冷気供給を制御する野菜室ダンパ(VCダンパ)にも適用することができる。 In the present embodiment, the refrigerating room damper (PC damper) that controls the supply of cold air to the refrigerating room has been described, but the same applies to the freezing room damper (FC damper) that controls the supply of cold air to the freezing room. be able to. Further, it can be applied to a switching chamber damper (SC damper) that controls the supply of cold air to the switching chamber and a vegetable compartment damper (VC damper) that controls the supply of cold air to the vegetable chamber.

<2−3.オフサイクル制御>
図39は本実施の形態の冷蔵庫の冷却システムのオフサイクル制御を示すフローチャート、図40は本実施の形態の冷蔵庫の冷却システムのオフサイクル制御を示すタイミングチャートである。
<2-3. Off-cycle control>
FIG. 39 is a flowchart showing the off-cycle control of the refrigerator cooling system of the present embodiment, and FIG. 40 is a timing chart showing the off-cycle control of the refrigerator cooling system of the present embodiment.

図39において、圧縮機(コンプ)27にON信号が出力される(S−20)と、圧縮機(コンプ)27、および冷却ファン(FCファン)25が運転され、同時に冷凍室ダンパ(FCダンパ)68が開状態となり(S−26)、冷却器24で生成された冷気は、冷凍室18に供給され、冷凍室18が冷却されるとともに、冷蔵室14への冷気ダクトに配置された冷蔵室ダンパ(PCダンパ)37に冷気が供給される。 In FIG. 39, when an ON signal is output to the compressor (comp) 27 (S-20), the compressor (comp) 27 and the cooling fan (FC fan) 25 are operated, and at the same time, the freezer damper (FC damper) is operated. ) 68 is opened (S-26), and the cold air generated by the cooler 24 is supplied to the freezer chamber 18, the freezer compartment 18 is cooled, and the refrigerator is arranged in the cold air duct to the refrigerator compartment 14. Cold air is supplied to the chamber damper (PC damper) 37.

そして、冷蔵室14では冷蔵室温度センサ(PCC)59がOFF温度以上かを判断し(S−21)、OFF温度以下であれば、冷蔵室ダンパ(PCダンパ)37を閉とする(S−25)。S−21で、冷蔵室温度センサ(PCC)59がOFF温度以上であれば、冷蔵室ダンパ(PCダンパ)37を開とし(S−22)、その後、冷蔵室温度センサ(PCC)59がOFF温度に達するかを判断する(S−23)。 Then, in the refrigerating chamber 14, it is determined whether the refrigerating chamber temperature sensor (PCC) 59 is above the OFF temperature (S-21), and if it is below the OFF temperature, the refrigerating chamber damper (PC damper) 37 is closed (S-). 25). In S-21, if the refrigerating room temperature sensor (PCC) 59 is at or above the OFF temperature, the refrigerating room damper (PC damper) 37 is opened (S-22), and then the refrigerating room temperature sensor (PCC) 59 is turned off. Determine if the temperature is reached (S-23).

冷蔵室温度センサ(PCC)59がOFF温度に達すれば、冷蔵室ダンパ(PCダンパ
)37を閉とする(S−25)が、冷蔵室温度センサ(PCC)59がOFF温度に達する前に、冷凍室温度センサ(FCC)92がOFF温度に達して、圧縮機(コンプ)27にOFF信号が出力される(S−24)と、圧縮機(コンプ)27が停止されるが、冷蔵室温度センサ(PCC)59がOFF温度に達する前に圧縮機(コンプ)27が停止された状態では、冷蔵室温度センサ(PCC)59が所定温度(Poff)以上かどうか判断する(S−27)。
When the refrigerating room temperature sensor (PCC) 59 reaches the OFF temperature, the refrigerating room damper (PC damper) 37 is closed (S-25), but before the refrigerating room temperature sensor (PCC) 59 reaches the OFF temperature. When the freezer room temperature sensor (FCC) 92 reaches the OFF temperature and an OFF signal is output to the compressor (Comp) 27 (S-24), the compressor (Comp) 27 is stopped, but the refrigerating room temperature. When the compressor (comp) 27 is stopped before the sensor (PCC) 59 reaches the OFF temperature, it is determined whether or not the refrigerator compartment temperature sensor (PCC) 59 is at a predetermined temperature (Poff) or higher (S-27).

S−27で、冷蔵室温度センサ(PCC)59が所定温度(Poff)より低い場合、冷蔵室ダンパ(PCダンパ)37を閉とする(S−29)が、冷蔵室温度センサ(PCC)59が所定温度(Poff)以上の場合、冷蔵室ダンパ(PCダンパ)37を開状態で、冷却ファン(FCファン)25は、圧縮機(コンプ)27ON時の回転数より低い回転で運転するオフサイクル冷却制御を行なう(S−28)。オフサイクル冷却制御(S−28)は、圧縮機(コンプ)27がOFF信号を受けた直後の初期の所定時間(Tpc)もしくは、冷蔵室温度センサ(PCC)59がOFF温度になるまで行なわれ、その後、冷蔵室ダンパ(PCダンパ)37を閉とする(S−29)。 In S-27, when the refrigerating room temperature sensor (PCC) 59 is lower than the predetermined temperature (Poff), the refrigerating room damper (PC damper) 37 is closed (S-29), but the refrigerating room temperature sensor (PCC) 59 When is above a predetermined temperature (Poff), the refrigerating chamber damper (PC damper) 37 is open, and the cooling fan (FC fan) 25 operates at a rotation speed lower than the rotation speed when the compressor (comp) 27 is ON. Cooling control is performed (S-28). The off-cycle cooling control (S-28) is performed until the initial predetermined time (Tpc) immediately after the compressor (comp) 27 receives the OFF signal or until the refrigerating room temperature sensor (PCC) 59 reaches the OFF temperature. After that, the refrigerator compartment damper (PC damper) 37 is closed (S-29).

図40のタイミングチャートで説明すると、圧縮機(コンプ)27がONすると、冷却ファン(FCファン)25はON、冷凍室ダンパ(FCダンパ)68、および冷蔵室ダンパ(PCダンパ)37が開状態となり(e点)、冷蔵室ダンパ(PCダンパ)37は、圧縮機(コンプ)27がON中、冷蔵室温度センサ(PCC)59の温度により開閉制御を行なう。そして、圧縮機(コンプ)27がOFFすると、冷却ファン(FCファン)25もOFF、冷凍室ダンパ(FCダンパ)68が閉状態となる(f点)。この時点(f点)で、冷蔵室ダンパ(PCダンパ)37が開の状態であれば、冷蔵室ダンパ(PCダンパ)37を開状態で、冷却ファン(FCファン)25は、圧縮機(コンプ)27ON時の回転数より低い回転で所定時間運転する(f〜g点)オフサイクル冷却制御を行なう。その後、冷却ファン(FCファン)25は停止し、冷蔵室ダンパ(PCダンパ)37が閉状態となる(g点)。 Explaining with the timing chart of FIG. 40, when the compressor (comp) 27 is turned on, the cooling fan (FC fan) 25 is turned on, the freezer compartment damper (FC damper) 68, and the refrigerating chamber damper (PC damper) 37 are in the open state. Next (point e), the refrigerating room damper (PC damper) 37 controls opening and closing according to the temperature of the refrigerating room temperature sensor (PCC) 59 while the compressor (comp) 27 is ON. Then, when the compressor 27 is turned off, the cooling fan (FC fan) 25 is also turned off, and the freezer damper (FC damper) 68 is closed (point f). At this point (point f), if the refrigerator compartment damper (PC damper) 37 is in the open state, the refrigerator compartment damper (PC damper) 37 is in the open state, and the cooling fan (FC fan) 25 is a compressor (compressor). ) Off-cycle cooling control is performed by operating for a predetermined time at a rotation speed lower than the rotation speed at 27ON (points f to g). After that, the cooling fan (FC fan) 25 is stopped, and the refrigerator compartment damper (PC damper) 37 is closed (point g).

その後も同様な制御が行なわれるが、圧縮機(コンプ)27がOFFする時点(i点)で冷蔵室ダンパ(PCダンパ)37が閉の状態であれば、前述の制御(オフサイクル冷却制御)は行なわない。 The same control is performed thereafter, but if the refrigerator compartment damper (PC damper) 37 is closed at the time when the compressor (compressor) 27 is turned off (point i), the above-mentioned control (off-cycle cooling control) is performed. Do not do.

以上説明したように、本実施の形態の冷蔵庫は、冷蔵室14と冷凍室18と、冷凍室18の後方に配置され、冷蔵室14と冷凍室18とに冷気を供給する冷却器24と冷却ファン25とが収納された冷却室23と、冷却室23から冷蔵室14に供給される冷気を冷蔵室温度センサ59に基づいて制御する冷蔵室ダンパ37と、冷却室23から冷凍室18に供給される冷気を冷凍室温度センサ92に基づいて制御する冷凍室ダンパ68と、冷凍室温度センサ92に基づいて運転が制御される圧縮機27と、を備え、冷蔵室ダンパ37が開、かつ冷凍室ダンパ68が開状態で圧縮機27が停止した場合、圧縮機停止後の所定時間、冷凍室ダンパ68を閉で冷蔵室ダンパ37を開状態として冷却ファン25を運転するものであり、圧縮機停止中に冷却器24の冷熱を有効利用でき、冷凍室18への熱影響を抑えて冷蔵室14を効率的に冷却でき、省エネ性の高い冷蔵庫を提供することができる。 As described above, the refrigerator of the present embodiment is arranged behind the refrigerating chamber 14, the freezing chamber 18, and the refrigerating chamber 18, and is cooled by the cooler 24 that supplies cold air to the refrigerating chamber 14 and the freezing chamber 18. The cooling chamber 23 in which the fan 25 is housed, the refrigerating chamber damper 37 that controls the cold air supplied from the cooling chamber 23 to the refrigerating chamber 14 based on the refrigerating chamber temperature sensor 59, and the refrigerating chamber 23 to supply the freezing chamber 18 A freezer compartment damper 68 that controls the cold air to be produced based on the freezer compartment temperature sensor 92 and a compressor 27 whose operation is controlled based on the freezer compartment temperature sensor 92 are provided, and the refrigerator compartment damper 37 is opened and frozen. When the chamber damper 68 is open and the compressor 27 is stopped, the refrigerating chamber damper 68 is closed and the refrigerating chamber damper 37 is opened for a predetermined time after the compressor is stopped, and the cooling fan 25 is operated. The cold heat of the cooler 24 can be effectively used during the stoppage, the heat influence on the freezer chamber 18 can be suppressed, the refrigerating chamber 14 can be efficiently cooled, and a highly energy-saving refrigerator can be provided.

また、圧縮機27の停止後の所定時間は、冷蔵室温度センサ59が冷蔵室ダンパ37を閉動作させる温度に達するまでとしたものであり、圧縮機27の停止中の冷却器24の冷熱を適正に有効利用することができる。 Further, the predetermined time after the compressor 27 is stopped is until the temperature at which the refrigerating chamber temperature sensor 59 reaches the temperature at which the refrigerating chamber damper 37 is closed, and the cooling heat of the cooler 24 while the compressor 27 is stopped is cooled. It can be used properly and effectively.

また、圧縮機27の停止後の所定時間、冷凍室ダンパ68を閉で冷蔵室ダンパ37を開状態として運転する冷却ファン25の回転数は、圧縮機運転中の回転数より小さくしたものであり、圧縮機停止中に冷却器24の冷熱をさらに有効利用でき、冷凍室18への熱影
響を抑えて冷蔵室14を効率的に冷却し、省エネ性の高い冷蔵庫を提供することができる。
なお、本実施の形態では、冷蔵室ダンパ(PCダンパ)37は開閉制御するもので説明したが、前述したフラップの開度(角度)制御するものでもよい。この場合、冷蔵室内の温度変動を小さくして貯蔵室目標温度に近づけることができ、省エネ性をさらに高めることができる。
Further, the rotation speed of the cooling fan 25, which operates with the freezer compartment damper 68 closed and the refrigerator compartment damper 37 open for a predetermined time after the compressor 27 is stopped, is smaller than the rotation speed during the compressor operation. It is possible to more effectively utilize the cold heat of the cooler 24 while the compressor is stopped, suppress the thermal influence on the freezer chamber 18, efficiently cool the refrigerator compartment 14, and provide a highly energy-saving refrigerator.
In the present embodiment, the refrigerating chamber damper (PC damper) 37 has been described in that it controls opening and closing, but it may also control the opening degree (angle) of the flap described above. In this case, the temperature fluctuation in the refrigerating chamber can be reduced to approach the target temperature in the storage chamber, and energy saving can be further improved.

<2−4.デフロスト制御>
図41は本実施の形態の冷蔵庫の冷却システムのデフロスト制御を示すフローチャート、図42は本実施の形態の冷蔵庫の冷却システムのデフロスト制御を示すタイミングチャートである。
<2-4. Defrost control>
FIG. 41 is a flowchart showing the defrost control of the refrigerator cooling system of the present embodiment, and FIG. 42 is a timing chart showing the defrost control of the refrigerator cooling system of the present embodiment.

図41において、デフロスト信号が入ると(S―31)、圧縮機27は連続運転(プリクール制御)を所定時間行なう。そして、冷却器温度センサ(DFC)がT2温度以下か判断し(S−32)、T2温度以下の場合、冷蔵室ダンパ37を開、冷凍室ダンパ68を閉として冷却ファン(FCファン)25をONする(S−33)。そして、冷却器温度センサ(DFC)がT2温度に上昇するまで行なう(S−34)。S−34で冷却器温度センサ(DFC)がT2温度に達すると、冷蔵室ダンパ37を閉、冷凍室ダンパ68を開として冷却ファン(FCファン)25をOFFし(S−35)、除霜手段(デフロストヒータ)26をONする(S−36)。なお、除霜手段(デフロストヒータ)26をON中は冷凍室ダンパ68は開状態としている。また、S−32で冷却器温度センサ(DFC)がT2温度以上の場合、S−33、S−34のステップを行なわず、S−35のステップに移行する。 In FIG. 41, when the defrost signal is input (S-31), the compressor 27 performs continuous operation (pre-cool control) for a predetermined time. Then, the cooler temperature sensor (DFC) determines whether the temperature is T2 or less (S-32), and if the temperature is T2 or less, the refrigerator compartment damper 37 is opened, the freezer compartment damper 68 is closed, and the cooling fan (FC fan) 25 is opened. Turn on (S-33). Then, it is performed until the cooler temperature sensor (DFC) rises to the T2 temperature (S-34). When the cooler temperature sensor (DFC) reaches the T2 temperature in S-34, the refrigerator compartment damper 37 is closed, the freezer compartment damper 68 is opened, the cooling fan (FC fan) 25 is turned off (S-35), and defrosting is performed. The means (defrost heater) 26 is turned on (S-36). While the defrosting means (defrost heater) 26 is ON, the freezer damper 68 is in the open state. Further, when the cooler temperature sensor (DFC) is T2 temperature or higher in S-32, the steps of S-33 and S-34 are not performed, and the process shifts to the step of S-35.

冷却器温度センサ(DFC)がT4温度以上か判断し(S−37)、T4温度以上になると、除霜手段(デフロストヒータ)26をOFFするとともに、起動待ち制御を行なう(S−38)。起動待ち時間経過後、コンプON信号により圧縮機27が運転開始し(S−39)、冷却ファン(FCファン)25を所定時間OFFした後にONするFCファン遅延制御を行なうとともに、冷却器温度センサ(DFC)が冷凍室温度センサ(FCC)より低くなった時点で冷凍室ダンパ68は開状態となる(S−40)。その後、通常の冷却運転を行なう(S−41)。 The cooler temperature sensor (DFC) determines whether the temperature is T4 or higher (S-37), and when the temperature reaches T4 or higher, the defrosting means (defrost heater) 26 is turned off and start-waiting control is performed (S-38). After the start waiting time has elapsed, the compressor 27 starts operation (S-39) by the compressor ON signal, and the FC fan delay control is performed to turn on the cooling fan (FC fan) 25 after turning it off for a predetermined time, and the cooler temperature sensor. When (DFC) becomes lower than the freezing room temperature sensor (FCC), the freezing room damper 68 is opened (S-40). After that, a normal cooling operation is performed (S-41).

図42のタイミングチャートで説明すると、通常冷却運転中(k〜l点)にデフロスト信号が入ると、圧縮機27と冷却ファン(FCファン)25が所定時間連続運転するプリクール制御を行なう(l〜m点)。プリクール制御中は冷蔵室ダンパ37を閉、冷凍室ダンパ68を開として冷凍室18を優先的に冷却する。プリクール制御終了後、圧縮機は停止するが、冷却器24の冷熱の有効利用と冷却器の予備除霜のために、冷却器温度センサ(DFC)がT2温度に上昇するまで、冷蔵室ダンパ37を開、冷凍室ダンパ68を閉として冷却ファン(FCファン)25を運転する冷蔵室プリ冷却&プリ除霜制御を行なう(m〜n)。そして、除霜手段26に通電しデフロストヒータの熱で冷却器24に積層した霜を溶かす(n〜o)。除霜中は冷蔵室ダンパ37を閉、冷凍室ダンパ68を開としている。 Explaining with the timing chart of FIG. 42, when a defrost signal is input during the normal cooling operation (points k to l), the compressor 27 and the cooling fan (FC fan) 25 perform precool control for continuous operation for a predetermined time (l to l). m point). During the pre-cool control, the refrigerator compartment damper 37 is closed and the freezer compartment damper 68 is opened to preferentially cool the freezer compartment 18. After the pre-cool control is completed, the compressor is stopped, but the refrigerator damper 37 is used until the cooler temperature sensor (DFC) rises to the T2 temperature for effective use of the cold heat of the cooler 24 and preliminary defrosting of the cooler. The refrigerating room pre-cooling and pre-defrosting control for operating the cooling fan (FC fan) 25 with the freezing room damper 68 closed is performed (mn). Then, the defrosting means 26 is energized and the heat of the defrost heater melts the frost laminated on the cooler 24 (no). During defrosting, the refrigerator damper 37 is closed and the freezer damper 68 is open.

冷却器温度センサ(DFC)がT4温度以上になると除霜手段(デフロストヒータ)26をOFFするとともに、起動待ち制御を行なう(o〜p)。起動待ち制御中は、冷蔵室ダンパ37を開、冷凍室ダンパ68を開としている。その後、圧縮機27が起動するが、その時、冷却ファン(FCファン)25を所定時間OFFとするファン遅延制御を行なう(p〜q点)。ファン遅延制御中は、冷蔵室ダンパ37を開、冷凍室ダンパ68を閉としている。そして、ファン遅延制御後に冷却ファン(FCファン)25をONとするが、冷却器温度センサ(DFC)が冷凍室温度センサ(FCC)より低くなるまでは冷凍室ダン
パ68は閉状態を維持するFCダンパ遅延制御を行なう(q〜r点)。その後、冷却器温度センサ(DFC)が冷凍室温度センサ(FCC)より低くなった時点で冷凍室ダンパ68は開状態となり、その後、通常の冷却運転を行なう(r〜点)。
When the cooler temperature sensor (DFC) reaches the T4 temperature or higher, the defrosting means (defrost heater) 26 is turned off and the start waiting control is performed (op). During the start-up waiting control, the refrigerator compartment damper 37 is opened and the freezer compartment damper 68 is opened. After that, the compressor 27 is started, and at that time, fan delay control is performed to turn off the cooling fan (FC fan) 25 for a predetermined time (points p to q). During the fan delay control, the refrigerator compartment damper 37 is opened and the freezer compartment damper 68 is closed. Then, after the fan delay control, the cooling fan (FC fan) 25 is turned on, but the freezer damper 68 keeps the closed state until the cooler temperature sensor (DFC) becomes lower than the freezer temperature sensor (FCC). Damper delay control is performed (points q to r). After that, when the cooler temperature sensor (DFC) becomes lower than the freezer temperature sensor (FCC), the freezer damper 68 is opened, and then a normal cooling operation is performed (r to point).

以上説明したように、本実施の形態の冷蔵庫は、冷蔵室14と冷凍室18と、冷凍室18の後方に配置され、冷蔵室14と冷凍室18とに冷気を供給する冷却器24冷却ファン25とが収納された冷却室23と、冷却室23から冷蔵室14に供給される冷気を冷蔵室温度センサ59に基づいて制御する冷蔵室ダンパ37と、冷却室23から冷凍室18に供給される冷気を冷凍室温度センサ92に基づいて制御する冷凍室ダンパ68と、冷凍室温度センサ92に基づいて運転が制御される圧縮機27と、冷却器24の霜を溶かす除霜手段(霜取りヒータ)26と、を備え、除霜手段26通電前に、冷蔵室ダンパ37を閉、冷凍室ダンパ68を開、冷却ファン25と圧縮機27を所定時間連続運転するプリクールモードと、前記プリクールモード後に、圧縮機27を停止し、冷蔵室ダンパ37を開、冷凍室ダンパ68を閉、冷却ファン25を所定時間運転するプリ除霜モードとを有するものであり、除霜運転開始前に行なわれるプリクール運転終了後の冷却器24の冷熱を冷蔵室14の冷却に有効利用することができ、省エネ性の高い冷蔵庫を提供することができる。 As described above, the refrigerator of the present embodiment is arranged behind the refrigerating chamber 14, the refrigerating chamber 18, and the refrigerating chamber 18, and is a cooler 24 cooling fan that supplies cold air to the refrigerating chamber 14 and the freezing chamber 18. The cooling chamber 23 in which the 25 is housed, the refrigerating chamber damper 37 that controls the cold air supplied from the cooling chamber 23 to the refrigerating chamber 14 based on the refrigerating chamber temperature sensor 59, and the refrigerating chamber 23 are supplied from the cooling chamber 23 to the freezing chamber 18. A freezer damper 68 that controls the cold air based on the freezer temperature sensor 92, a compressor 27 whose operation is controlled based on the freezer temperature sensor 92, and a defrosting means (defrosting heater) for melting the frost of the cooler 24. ) 26, the precool mode in which the refrigerator compartment damper 37 is closed, the freezer compartment damper 68 is opened, and the cooling fan 25 and the compressor 27 are continuously operated for a predetermined time before the defrosting means 26 is energized, and the precool After the mode, the compressor 27 is stopped, the refrigerator compartment damper 37 is opened, the freezer compartment damper 68 is closed, and the cooling fan 25 is operated for a predetermined time. The cold heat of the cooler 24 after the completion of the pre-cool operation can be effectively used for cooling the refrigerating chamber 14, and a highly energy-saving refrigerator can be provided.

また、冷却器24の霜を溶かす除霜手段26通電時は、冷蔵室ダンパ37を閉、冷凍室ダンパ68を開とするものであり、冷凍室18からの自然対流による冷気導入により、除霜手段(霜取りヒータ)26通電時の冷却器周辺の上昇気流を促進でき、冷却器24の除霜効率を高めることができる冷蔵庫を提供することができる。 Further, when the defrosting means 26 for melting the frost of the cooler 24 is energized, the refrigerator damper 37 is closed and the freezer damper 68 is opened, and the defrost is removed by introducing cold air by natural convection from the freezer chamber 18. Means (defrosting heater) 26 It is possible to provide a refrigerator capable of promoting an updraft around the cooler when energized and increasing the defrosting efficiency of the cooler 24.

また、冷凍室ダンパ68は、冷凍室18に供給された冷気が冷却室23に戻される冷凍室冷気戻り通路に設けられたものであり、冷却室23のスペースの有効活用を図りながら冷却器24の除霜効率を高めることができる。 Further, the freezing chamber damper 68 is provided in the freezing chamber cold air return passage where the cold air supplied to the freezing chamber 18 is returned to the cooling chamber 23, and the cooler 24 is provided while effectively utilizing the space of the cooling chamber 23. Defrosting efficiency can be increased.

また、ファン遅延制御後に冷却ファン(FCファン)25をONとするが、冷却器温度センサ(DFC)が冷凍室温度センサ(FCC)より低くなるまでは冷凍室ダンパ68は閉状態を維持するFCダンパ遅延制御を行なうので、冷却器24が十分に冷却されるまでは、冷凍室18へ冷気を供給せず、冷蔵室14側に供給することができ、冷凍室18の温度上昇防止と冷蔵室14の効率的な冷却ができる。 Further, the cooling fan (FC fan) 25 is turned on after the fan delay control, but the freezer damper 68 remains closed until the cooler temperature sensor (DFC) becomes lower than the freezer temperature sensor (FCC). Since the damper delay control is performed, cold air can be supplied to the refrigerating chamber 14 side without supplying cold air to the refrigerating chamber 18 until the cooler 24 is sufficiently cooled. 14 efficient cooling is possible.

また、冷却器温度センサ(DFC)が冷凍室温度センサ(FCC)より低くなった時点で冷凍室ダンパ68は開状態となるので、冷却器24で十分に冷却された冷気を冷凍室18へ供給することができ、冷凍室18の温度上昇防止を確実に行なうことができる。 Further, since the freezer damper 68 is opened when the cooler temperature sensor (DFC) becomes lower than the freezer temperature sensor (FCC), the cold air sufficiently cooled by the cooler 24 is supplied to the freezer 18. This makes it possible to reliably prevent the temperature rise of the freezer chamber 18.

なお、冷却器温度センサ(DFC)がT2温度に上昇するまで、冷蔵室ダンパ37を開、冷凍室ダンパ68を閉として冷却ファン(FCファン)25を運転する冷蔵室プリ冷却&プリ除霜制御中の冷却ファン(FCファン)25の回転数は圧縮機27がON中の回転数より大きくしてもよい。この場合、冷蔵室プリ冷却&プリ除霜制御時間を短縮でき、冷却器24の冷熱の効率的な利用と、総合的な除霜時間を短縮することができ、冷凍室18の除霜による温度上昇を抑制することができる。 Refrigerator room pre-cooling & pre-defrost control in which the refrigerating room damper 37 is opened, the freezing room damper 68 is closed, and the cooling fan (FC fan) 25 is operated until the cooler temperature sensor (DFC) rises to the T2 temperature. The rotation speed of the cooling fan (FC fan) 25 inside may be higher than the rotation speed while the compressor 27 is ON. In this case, the refrigerating chamber pre-cooling & pre-frosting control time can be shortened, the efficient use of the cold heat of the cooler 24 and the overall defrosting time can be shortened, and the temperature due to defrosting of the freezer chamber 18 The rise can be suppressed.

また、除霜終了後の起動待ち制御中、ファン遅延制御中、FCダンパ遅延制御中、のいずれかのモード開始時、または各モード開始時に、冷蔵室ダンパ37、および/または、冷凍室ダンパ68のフラップを強制的に全開、前閉を1往復する開閉制御を行なうことが望ましい。これにより除霜後に各ダンパのフラップ近傍に付着した水分を取り除くことができ、水分の氷結による各ダンパの不具合を抑制することができ、冷蔵庫の信頼性を高めることができる。 Further, at the start of any of the modes of the start waiting control, the fan delay control, and the FC damper delay control after the completion of defrosting, or at the start of each mode, the refrigerator compartment damper 37 and / or the freezer compartment damper 68 It is desirable to perform opening / closing control that forcibly fully opens the flap and reciprocates the front closing once. As a result, the moisture adhering to the vicinity of the flap of each damper can be removed after defrosting, the trouble of each damper due to the freezing of moisture can be suppressed, and the reliability of the refrigerator can be improved.

<2−5.野菜室の温湿度制御>
図43は本実施の形態の冷蔵庫の野菜室の湿度センサによる野菜室ヒータの制御を示すフローチャート、図44は本実施の形態の冷蔵庫の野菜室の湿度センサによる野菜室ヒータの外気温度と通電率の関係を示すグラフである。
<2-5. Temperature and humidity control of vegetable room >
FIG. 43 is a flowchart showing the control of the vegetable compartment heater by the humidity sensor of the vegetable compartment of the refrigerator of the present embodiment, and FIG. 44 is the outside air temperature and the energization rate of the vegetable chamber heater by the humidity sensor of the vegetable compartment of the refrigerator of the present embodiment. It is a graph which shows the relationship of.

図43において、野菜室湿度センサ78で野菜室内の湿度を測定する(S−51)。野菜室内の湿度がH1以下かを判断し(S−52)、H1以下であれば野菜室ヒータ79を通電率Kで通電制御する(S−53)。そして所定時間(T4)通電率Kで通電制御する(S−54)。また、S−52で野菜室内の湿度がH1以上であれば、さらにH2以上かを判断する(S−55)。H2以上であれば野菜室ヒータ79を通電率Lで通電制御する(S−56)。そして所定時間(T4)通電率Lで通電制御する(S−57)。また、S−55で野菜室内の湿度がH2以下(すなわち野菜室内の湿度がH1〜H2の間)であれば、野菜室ヒータ79を通電率Mで通電制御する(S−58)。そして所定時間(T4)通電率Mで通電制御する(S−59)。 In FIG. 43, the humidity in the vegetable room is measured by the vegetable room humidity sensor 78 (S-51). It is determined whether the humidity in the vegetable chamber is H1 or less (S-52), and if it is H1 or less, the vegetable chamber heater 79 is energized and controlled by the energization rate K (S-53). Then, the energization is controlled at the energization rate K for a predetermined time (T4) (S-54). Further, if the humidity in the vegetable chamber is H1 or higher in S-52, it is further determined whether it is H2 or higher (S-55). If it is H2 or higher, the vegetable chamber heater 79 is energized and controlled at an energization rate L (S-56). Then, the energization is controlled at the energization rate L for a predetermined time (T4) (S-57). Further, if the humidity in the vegetable chamber is H2 or less (that is, the humidity in the vegetable chamber is between H1 and H2) in S-55, the energization control of the vegetable chamber heater 79 is performed by the energization rate M (S-58). Then, the energization is controlled at the energization rate M for a predetermined time (T4) (S-59).

具体的には、図44に示すように、野菜室湿度センサ78による野菜室ヒータ79の通電率は外気温度毎に決められており、例えば高湿時(85%以上)は、中湿時(20〜85%)より野菜室ヒータ79の通電率を高くし、低湿時(20%以下)は、中湿時(20〜85%)より野菜室ヒータ79の通電率を低くする。 Specifically, as shown in FIG. 44, the energization rate of the vegetable room heater 79 by the vegetable room humidity sensor 78 is determined for each outside air temperature. For example, when the humidity is high (85% or more), the humidity is medium (85% or more). The energization rate of the vegetable chamber heater 79 is higher than that of 20 to 85%), and the energization rate of the vegetable chamber heater 79 is lower when the humidity is low (20% or less) than when the humidity is medium (20 to 85%).

これにより、野菜室野菜室内の湿度に応じた野菜室ヒータの通電率の制御が可能となり、簡素な構造で、野菜室17内を高湿に保ちながら野菜室17内の結露を防止することができる。そして、野菜室湿度センサがない従来の冷蔵庫では、結露に対する信頼性と省エネ性のバランスから中湿条件を基に野菜室ヒータの通電率を決定するが、本実施の形態では、野菜室湿度センサ78の検出結果に応じて野菜室ヒータ79の適切な通電制御が可能となり、結露に対する信頼性と省エネ性を高次元でバランスさせることができ、省エネ性と野菜室の保鮮性を両立することができる。 This makes it possible to control the energization rate of the vegetable room heater according to the humidity in the vegetable room, and with a simple structure, it is possible to prevent dew condensation in the vegetable room 17 while keeping the inside of the vegetable room 17 high humidity. it can. In a conventional refrigerator without a vegetable room humidity sensor, the energization rate of the vegetable room heater is determined based on medium humidity conditions from the balance between reliability against dew condensation and energy saving. However, in the present embodiment, the vegetable room humidity sensor is used. Appropriate energization control of the vegetable compartment heater 79 is possible according to the detection result of 78, and it is possible to balance reliability against dew condensation and energy saving at a high level, and it is possible to achieve both energy saving and freshness of the vegetable chamber. it can.

以上説明したように、本実施の形態の冷蔵庫は、冷蔵室14と冷凍室18と野菜室17と、冷凍室18の後方に配置され、冷蔵室14と冷凍室18と野菜室17に冷気を供給する冷却器24と冷却ファン25とが収納された冷却室23と、冷却室23から冷蔵室14に供給される冷気を制御する冷蔵室ダンパ37と、冷却室23から野菜室17に供給される冷気を制御する野菜室ダンパ75と、野菜室内の湿度を検出する野菜室湿度センサ78と、野菜室17を加温する野菜室ヒータ79と、を備え、野菜室内の検出温度に基づいて野菜室ダンパ75は開閉制御され、野菜室ヒータ79は野菜室湿度センサ78の検出湿度に基づいて通電制御されるものであり、野菜室内の湿度に応じた野菜室ヒータ79の通電率の制御が可能となり、簡素な構造で、野菜室内を高湿に保ちながら野菜室内の結露を防止することができる冷蔵庫を提供することができる。 As described above, the refrigerator of the present embodiment is arranged behind the refrigerating room 14, the freezing room 18, the vegetable room 17, and the freezing room 18, and cool air is supplied to the refrigerating room 14, the freezing room 18, and the vegetable room 17. The cooling chamber 23 in which the cooling cooler 24 and the cooling fan 25 are housed, the refrigerating chamber damper 37 that controls the cold air supplied from the cooling chamber 23 to the refrigerating chamber 14, and the vegetable compartment 17 are supplied from the cooling chamber 23. It is equipped with a vegetable compartment damper 75 that controls cold air, a vegetable compartment humidity sensor 78 that detects the humidity in the vegetable compartment, and a vegetable compartment heater 79 that heats the vegetable compartment 17, and vegetables based on the detected temperature in the vegetable compartment. The chamber damper 75 is open / closed controlled, and the vegetable compartment heater 79 is energized based on the detected humidity of the vegetable chamber humidity sensor 78, and the energization rate of the vegetable chamber heater 79 can be controlled according to the humidity in the vegetable chamber. Therefore, it is possible to provide a refrigerator having a simple structure and capable of preventing dew condensation in the vegetable chamber while keeping the vegetable chamber highly humid.

また、野菜室湿度センサ78は野菜室17の天面部に配置されたものであり、野菜室内の湿度を精度良く検知することができる。 Further, the vegetable room humidity sensor 78 is arranged on the top surface of the vegetable room 17, and can accurately detect the humidity in the vegetable room.

また、野菜室ヒータ79は野菜室17の上方の貯蔵室との区画壁に配置されたものであり、野菜室内の特に結露し易い天面の結露を確実に防止することができる。 Further, the vegetable compartment heater 79 is arranged on the partition wall with the storage chamber above the vegetable compartment 17, and can surely prevent dew condensation on the top surface of the vegetable chamber, which is particularly prone to dew condensation.

<2−6.冷蔵室の収納量検知制御>
図45は本実施の形態の冷蔵庫における冷蔵室内の収納量の検知結果に基づいて行なう冷却システム制御を示すフローチャートである。
<2-6. Refrigerator storage capacity detection control>
FIG. 45 is a flowchart showing a cooling system control performed based on a detection result of a storage amount in a refrigerating room in the refrigerator of the present embodiment.

図において、冷蔵室14の扉7(PCドア)の閉扉をドアスイッチが検知すると(S−
61)、冷蔵室14内の照明であるLEDが照射され、冷蔵室光センサ97で照度を検出し、メモリーに記憶された前回の照度(変換された電圧値)と今回の照度(変換された電圧値)との差分を判定する(S−62)。そして、前回の照度(変換された電圧値)と今回の照度(変換された電圧値)とを比較して、冷蔵室14内の収納量の変化量を算出する(S−62)。そして、収納量の増加量が所定閾値を超えた場合は、省エネ運転を解除する制御を行なう。一方、収納量の増加量が所定閾値を超えない場合は、省エネ運転を継続する。
In the figure, when the door switch detects that the door 7 (PC door) of the refrigerator compartment 14 is closed (S-
61), the LED that is the lighting in the refrigerating room 14 is illuminated, the illuminance is detected by the refrigerating room light sensor 97, and the previous illuminance (converted voltage value) and the current illuminance (converted) stored in the memory. The difference from the voltage value) is determined (S-62). Then, the change amount of the stored amount in the refrigerating chamber 14 is calculated by comparing the previous illuminance (converted voltage value) and the current illuminance (converted voltage value) (S-62). Then, when the amount of increase in the stored amount exceeds a predetermined threshold value, control is performed to cancel the energy-saving operation. On the other hand, if the increase in the stored amount does not exceed the predetermined threshold value, the energy-saving operation is continued.

そして、冷蔵室14の扉7(PCドア)の閉扉をドアスイッチが検知してから所定時間(例えば30分)以内に冷蔵室14の扉7が開放されたかを判定し(S−63)、扉7の開放があれば、S−61に戻る。S−63で所定時間(例えば30分)の間、扉7の開放がなければ、冷蔵室14内の照明であるLEDを照射し、予め保有する冷蔵室光センサの照度(変換された電圧値)と冷蔵室内収納量との相関データから冷蔵室14内の絶対収納量を算出する(S―64)。 Then, it is determined whether the door 7 of the refrigerating room 14 is opened within a predetermined time (for example, 30 minutes) after the door switch detects the closing of the door 7 (PC door) of the refrigerating room 14 (S-63). If the door 7 is opened, the process returns to S-61. If the door 7 is not opened for a predetermined time (for example, 30 minutes) in S-63, the LED that is the illumination in the refrigerator compartment 14 is irradiated, and the illuminance (converted voltage value) of the refrigerator compartment optical sensor that is held in advance ) And the storage capacity in the refrigerator compartment 14 to calculate the absolute storage capacity in the refrigerator compartment 14 (S-64).

そして、絶対収納量がS2より多い場合、収納量が多い場合のモードPを選択し(S−67)、ファン電圧や各室の温調設定を変更し、圧縮機の回転数上昇制御を抑制する(S−70)。一方、S−65で絶対収納量がS2以下の場合、絶対収納量がS1からS2の間かを判定する(S−66)。そして、絶対収納量がS1からS2の間であれば、収納量が中位の場合のモードQを選択し(S−68)、圧縮機の回転数上昇制御を抑制する(S−71)。また、絶対収納量がS1より少ない場合、収納量が少ない場合のモードRを選択し(S−69)、圧縮機の回転数上昇制御を抑制する(S−72)。 Then, when the absolute storage capacity is larger than S2, the mode P when the storage capacity is large is selected (S-67), the fan voltage and the temperature control setting of each room are changed, and the compressor rotation speed increase control is suppressed. (S-70). On the other hand, when the absolute storage amount is S2 or less in S-65, it is determined whether the absolute storage amount is between S1 and S2 (S-66). Then, if the absolute storage amount is between S1 and S2, the mode Q when the storage amount is medium is selected (S-68), and the compressor rotation speed increase control is suppressed (S-71). Further, when the absolute storage amount is smaller than S1, mode R when the storage amount is small is selected (S-69), and the compressor rotation speed increase control is suppressed (S-72).

なお、上記モードP、Q、Rでの制御の変更は、S−65,S−66の判定直後ではなく、圧縮機が一旦OFFとなり、次の圧縮機27のON時にそれぞれのードP、Q、Rの制御の変更を行なう。 Note that the control change in the modes P, Q, and R is not immediately after the determination of S-65 and S-66, but the compressor is temporarily turned off, and when the next compressor 27 is turned on, each mode P, Change the control of Q and R.

以上説明したように、本実施の形態の冷蔵庫は、冷蔵室内にLED照明80と冷蔵室光センサ81を備え、閉扉検知後にLED照明80と冷蔵室光センサ81とにより冷蔵室内の前回と今回との収納変化量を検出するとともに、閉扉検知して所定時間、開扉が行なわれない場合、LED照明80と冷蔵室光センサ81とにより冷蔵室内の絶対収納量を検出するものであり、貯蔵室内の収納量に応じた適切な冷却制御ができ、使い勝手のよい冷蔵庫を提供することができる。 As described above, the refrigerator of the present embodiment is provided with the LED lighting 80 and the refrigerating room light sensor 81 in the refrigerating room, and after the door is closed, the LED lighting 80 and the refrigerating room light sensor 81 are used to perform the previous and current times in the refrigerating room. When the door is closed and the door is not opened for a predetermined time, the LED lighting 80 and the refrigerating room light sensor 81 detect the absolute storage amount in the refrigerating room. Appropriate cooling control can be performed according to the storage capacity of the refrigerator, and a convenient refrigerator can be provided.

また、LED照明80と冷蔵室光センサ81とにより検出された冷蔵室内の前回と今回との収納変化量に基づいて、省エネ運転の継続か解除かを判断し運転制御するものであり、使用者の使い方を加味した適切な冷却制御ができる。 Further, based on the amount of change in storage between the previous time and the current time in the refrigerating room detected by the LED lighting 80 and the refrigerating room optical sensor 81, it is determined whether to continue or cancel the energy-saving operation, and the operation is controlled by the user. Appropriate cooling control can be performed in consideration of how to use.

また、LED照明80と冷蔵室光センサ81とにより検出された冷蔵室内の絶対収納量に基づいて、圧縮機の回転数シフトアップ運転を制御するものであり、冷蔵室内の絶対収納量に応じた圧縮機27の回転数を選択することができ、より貯蔵室内の収納量に応じた適切な冷却制御ができる。 Further, the operation of shifting up the rotation speed of the compressor is controlled based on the absolute storage amount in the refrigerating room detected by the LED lighting 80 and the refrigerating room optical sensor 81, and it corresponds to the absolute storage amount in the refrigerating room. The rotation speed of the compressor 27 can be selected, and more appropriate cooling control can be performed according to the amount of storage in the storage chamber.

また、本実施の形態では、冷蔵室14の扉7(PCドア)の閉扉をドアスイッチが検知してから所定時間(例えば30分)以内に冷蔵室14の扉7の開放がない場合に、冷蔵室14内の照明であるLEDを照射し、予め保有する冷蔵室光センサ81の照度(変換された電圧値)と冷蔵室内収納量との相関データから冷蔵室14内の絶対収納量を算出するので、冷蔵室14の扉7開閉による外気侵入で、一時的に冷蔵室14内の照明であるLED近傍や冷蔵室光センサ81近傍に結露や曇りが発生しても、所定時間(例えば30分)閉扉の状態を確保しているので、結露や曇り等の外乱を排除でき、冷蔵室14内の絶対収納
量を精度よく算出することができる。
Further, in the present embodiment, when the door 7 of the refrigerating room 14 is not opened within a predetermined time (for example, 30 minutes) after the door switch detects the closing of the door 7 (PC door) of the refrigerating room 14. The absolute storage amount in the refrigerating room 14 is calculated from the correlation data between the illuminance (converted voltage value) of the refrigerating room optical sensor 81 held in advance and the storage amount in the refrigerating room 14 by irradiating the LED which is the illumination in the refrigerating room 14. Therefore, even if dew condensation or cloudiness temporarily occurs in the vicinity of the LED or the refrigerating room optical sensor 81, which is the lighting in the refrigerating room 14, due to the intrusion of outside air by opening and closing the door 7 of the refrigerating room 14, a predetermined time (for example, 30) Minutes) Since the closed door state is ensured, disturbances such as dew condensation and cloudiness can be eliminated, and the absolute storage capacity in the refrigerator compartment 14 can be calculated accurately.

そして、上記モードP、Q、Rでの制御の変更は、S−65,S−66の判定直後ではなく、圧縮機が一旦OFFとなり、次の圧縮機27のON時にそれぞれのードP、Q、Rの制御の変更を行なうことにより、より安定した冷却制御を行なうことができる。 Then, the control change in the modes P, Q, and R is not immediately after the determination of S-65 and S-66, but the compressor is temporarily turned off, and when the next compressor 27 is turned on, each mode P, By changing the control of Q and R, more stable cooling control can be performed.

本発明は、各貯蔵室への冷気量を制御するダンパを備えた冷蔵庫において、冷蔵室ダンパ開、かつ冷凍室ダンパ開状態で圧縮機が停止した場合、圧縮機停止後の所定時間、冷凍室ダンパ閉で冷蔵室ダンパを開状態として送風機を運転するものであり、家庭用および業務用など様々な種類および大きさの間冷式の冷蔵庫に適用することができる。 According to the present invention, in a refrigerator provided with a damper for controlling the amount of cold air to each storage chamber, when the compressor is stopped with the refrigerator damper open and the freezer compartment damper open, the freezer compartment is used for a predetermined time after the compressor is stopped. The blower is operated with the damper closed and the refrigerator damper open, and can be applied to refrigerators of various types and sizes such as household and commercial use.

1 冷蔵庫本体
2 外箱
3 内箱
4 発泡断熱材
5、6 仕切板
7、8、9、10、11 扉
14 冷蔵室
15 切替室
16 製氷室
17 野菜室
17a 野菜室容器
18 冷凍室
20 棚板
21 パーシャル室(低温室)
22 チルド室(低温室)
22a 冷気入口
23 冷却室
23a 底面
24 冷却器
25 冷却ファン
26 除霜手段(ガラス管ヒータ、霜取りヒータ、デフロストヒータ)
26a ヒータ部
27 圧縮機
28 冷蔵室ダクト
28a ダクト部材
28b ダクトカバー
28bb 装着部
28c 延出リブ
28d 側面吐出口
29 冷凍室ダクト
30 野菜室ダクト
31 冷却室形成板
32 冷凍室背面板
33 第1冷気供給口
34 第2冷気供給口
35 ヒータカバー
36 排水口
37 冷蔵室ダンパ
38 ダンパ固定枠
39 冷蔵室用ダンパ部
40 パーシャル室用ダンパ部
41 冷蔵ダンパ駆動用モータユニット
43 天井板
44 チルド室容器
45 冷気戻り口(チルド側)
46 冷気戻り通路部(チルド側)
47 チルド室扉兼把手部
48 開口部
49 温度調節用ヒータ
50 天井板部材
51 パーシャル室扉
52 パーシャル室容器
53 断熱材
54 パーシャル冷気通路
55 冷気戻り口(パーシャル側)
56 冷気戻り通路部(パーシャル側)
57 冷気合流戻り口
58 冷蔵室戻りダクト
58a、58b 凹状溝
59 冷蔵室温度センサ
60 パーシャル室温度センサ
61 脱臭ユニット
62 冷凍室容器
62a 下段容器
62b 上段容器
63 冷気吹出し口
64 冷凍冷気戻り口
65 冷凍室側口枠部
66 冷却室側口枠部
66a 下辺
66b 間隙部分
67 グリル
68 冷凍室ダンパ
69 グリル片
70 ダンパ枠体
71 フラップ
72 冷凍ダンパ駆動用モータユニット
73 爪片
74 開口
75 野菜室ダンパ
75a ダンパ片
76 野菜ダンパ駆動用モータユニット
77 遮熱板
78 野菜室湿度センサ
79 野菜室ヒータ(VCヒータ)
80 LED照明
81 冷蔵室光センサ
90 マイコン
91 外気温度センサ(ATC)
92 冷凍室温度センサ(FCC)
93 野菜室温度センサ(VCC)
94 冷却器温度センサ(DFC)
95 扉開閉検知手段(ドアスイッチ)
96 外部照度センサ
97 冷蔵室光センサ
98 パーシャル室ダンパ(PFダンパ)
1 Refrigerator body 2 Outer box 3 Inner box 4 Foam insulation 5, 6 Partition plate 7, 8, 9, 10, 11 Door 14 Refrigerator room 15 Switching room 16 Ice making room 17 Vegetable room 17a Vegetable room container 18 Freezing room 20 Shelf board 21 Partial room (low temperature room)
22 Chilled room (low temperature room)
22a Cold air inlet 23 Cooling chamber 23a Bottom surface 24 Cooler 25 Cooling fan 26 Defrosting means (glass tube heater, defrosting heater, defrost heater)
26a Heater part 27 Compressor 28 Refrigerator room duct 28a Refrigerator member 28b Duct cover 28bb Mounting part 28c Extension rib 28d Side discharge port 29 Freezer room duct 30 Vegetable room duct 31 Cooling room forming plate 32 Freezing room back plate 33 First cold air supply Port 34 Second cold air supply port 35 Heater cover 36 Drain port 37 Refrigerator room damper 38 Damper fixing frame 39 Refrigerator room damper part 40 Partial room damper part 41 Refrigerator damper drive motor unit 43 Ceiling plate 44 Chilled room container 45 Cold air return Mouth (chilled side)
46 Cold air return passage (chilled side)
47 Chilled room door and handle 48 Opening 49 Temperature control heater 50 Ceiling plate member 51 Partial room door 52 Partial room container 53 Insulation material 54 Partial cold air passage 55 Cold air return port (partial side)
56 Cold air return passage (partial side)
57 Cold air confluence return port 58 Refrigerator room return duct 58a, 58b Concave groove 59 Refrigerator room temperature sensor 60 Partial room temperature sensor 61 Deodorizing unit 62 Freezer room container 62a Lower container 62b Upper container 63 Cold air outlet 64 Refrigerator cold air return port 65 Freezer room Side mouth frame part 66 Cooling room side mouth frame part 66a Lower side 66b Gap part 67 Grill 68 Freezer room damper 69 Grill piece 70 Damper frame 71 Flap 72 Refrigerator damper drive motor unit 73 Claw piece 74 Opening 75 Vegetable room damper 75a Damper piece 76 Vegetable damper drive motor unit 77 Heat shield plate 78 Vegetable room humidity sensor 79 Vegetable room heater (VC heater)
80 LED lighting 81 Refrigerator room light sensor 90 Microcomputer 91 Outside air temperature sensor (ATC)
92 Freezer room temperature sensor (FCC)
93 Vegetable room temperature sensor (VCC)
94 Cooler temperature sensor (DFC)
95 Door open / close detection means (door switch)
96 External illuminance sensor 97 Refrigerator room light sensor 98 Partial room damper (PF damper)

Claims (3)

冷蔵室と冷凍室と、前記冷凍室の後方に配置され、前記冷蔵室と前記冷凍室とに冷気を供給する冷却器と送風機とが収納された冷却室と、前記冷却室から前記冷蔵室に供給される冷気を冷蔵室温度センサに基づいて制御する冷蔵室ダンパと、前記冷却室から前記冷凍室に供給される冷気を冷凍室温度センサに基づいて制御する冷凍室ダンパと、前記冷凍室温度センサに基づいて運転が制御される圧縮機と、を備え、前記冷蔵室温度センサが前記冷蔵室ダンパとするOFF温度に達する前で、かつ前記冷凍室温度センサが前記冷凍室ダンパを閉とするOFF温度に達して前記圧縮機が停止した場合、前記圧縮機停止後の所定時間、前記冷凍室ダンパ閉で前記冷蔵室ダンパを開状態として前記送風機を運転して前記冷蔵室を冷却し、前記圧縮機が停止する時点で前記冷蔵室ダンパが閉状態であれば、前記圧縮機停止後も、前記冷蔵室ダンパは閉状態を維持し前記冷蔵室を冷却しないことを特徴とする冷蔵庫。 A cooling chamber, a freezing chamber, a cooling chamber arranged behind the freezing chamber and accommodating a cooler and a blower for supplying cold air to the refrigerating chamber and the freezing chamber, and from the cooling chamber to the refrigerating chamber. A refrigerating room damper that controls the supplied cold air based on the refrigerating room temperature sensor, a freezing room damper that controls the cold air supplied from the cooling room to the freezing room based on the freezing room temperature sensor, and the freezing room temperature. comprising a compressor operation is controlled on the basis of the sensor, and in front the refrigerating chamber temperature sensor reaches the OFF temperature to open the refrigerator compartment damper, and the freezing compartment temperature sensor is closed to the freezing chamber damper When the OFF temperature is reached and the compressor is stopped, the refrigerator is cooled by operating the blower with the refrigerator damper closed for a predetermined time after the compressor is stopped. If the refrigerating chamber damper is in the closed state when the compressor is stopped, the refrigerating chamber damper remains in the closed state and does not cool the refrigerating chamber even after the compressor is stopped . 前記冷蔵室ダンパは前記冷蔵室温度センサの検知温度と冷蔵室目標温度とに基づいて、前記冷蔵室ダンパのフラップ角度を変えてフラップ開度制御を行うことを特徴とする請求項1に記載の冷蔵庫。 The first aspect of claim 1 , wherein the refrigerating chamber damper controls the flap opening degree by changing the flap angle of the refrigerating chamber damper based on the detection temperature of the refrigerating chamber temperature sensor and the target temperature of the refrigerating chamber. refrigerator. 前記圧縮機停止後の所定時間、前記冷凍室ダンパ閉で前記冷蔵室ダンパを開状態として運転する前記送風機の回転数は、前記圧縮機運転中の回転数より小さくした請求項1または2に記載の冷蔵庫。 The rotation speed of the blower that operates with the refrigerator compartment damper open for a predetermined time after the compressor is stopped is set to be smaller than the rotation speed during the compressor operation according to claim 1 or 2. Refrigerator.
JP2017000912A 2017-01-06 2017-01-06 refrigerator Active JP6895605B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017000912A JP6895605B2 (en) 2017-01-06 2017-01-06 refrigerator
PCT/JP2017/045901 WO2018128085A1 (en) 2017-01-06 2017-12-21 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017000912A JP6895605B2 (en) 2017-01-06 2017-01-06 refrigerator

Publications (2)

Publication Number Publication Date
JP2018109488A JP2018109488A (en) 2018-07-12
JP6895605B2 true JP6895605B2 (en) 2021-06-30

Family

ID=62844341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017000912A Active JP6895605B2 (en) 2017-01-06 2017-01-06 refrigerator

Country Status (1)

Country Link
JP (1) JP6895605B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111201B (en) * 2021-11-09 2023-09-19 Tcl家用电器(合肥)有限公司 Refrigerator refrigeration control method, device, control equipment and storage medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3912233B2 (en) * 2002-09-06 2007-05-09 三菱電機株式会社 Refrigerator, how to operate the refrigerator
JP5017340B2 (en) * 2009-09-09 2012-09-05 日立アプライアンス株式会社 refrigerator
JP5862867B2 (en) * 2011-11-07 2016-02-16 シャープ株式会社 refrigerator
JP2015222131A (en) * 2014-05-22 2015-12-10 ハイアールアジア株式会社 refrigerator
JP6166771B2 (en) * 2015-12-15 2017-07-19 シャープ株式会社 refrigerator

Also Published As

Publication number Publication date
JP2018109488A (en) 2018-07-12

Similar Documents

Publication Publication Date Title
JP5847626B2 (en) Refrigerator and operation method thereof
CA2638349C (en) Ice in bucket detection for an icemaker
JP2004191042A (en) Refrigerator
JP6895605B2 (en) refrigerator
JP6890220B2 (en) refrigerator
JP2018109491A (en) refrigerator
JP2018109489A (en) refrigerator
CN110345695B (en) Refrigerator with a door
JP2018109487A (en) refrigerator
JP2018109490A (en) refrigerator
JP6861336B2 (en) refrigerator
TWI678506B (en) refrigerator
WO2018128085A1 (en) Refrigerator
JP7064031B2 (en) refrigerator
KR100678777B1 (en) Refrigerator
JP2777398B2 (en) Cooling storage
JP2009293808A (en) Refrigerator
JP2018109501A (en) refrigerator
JP6446665B2 (en) refrigerator
JP6847010B2 (en) refrigerator
JP2005076980A (en) Refrigerator
JP5596932B2 (en) Control method and control device for door heater in cooling storage
JP2022038572A (en) refrigerator
JP2951015B2 (en) High humidity refrigerated showcase
JP2003028551A (en) Refrigerator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210503

R151 Written notification of patent or utility model registration

Ref document number: 6895605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151