JP6847010B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP6847010B2
JP6847010B2 JP2017179738A JP2017179738A JP6847010B2 JP 6847010 B2 JP6847010 B2 JP 6847010B2 JP 2017179738 A JP2017179738 A JP 2017179738A JP 2017179738 A JP2017179738 A JP 2017179738A JP 6847010 B2 JP6847010 B2 JP 6847010B2
Authority
JP
Japan
Prior art keywords
cold air
refrigerator
temperature
air duct
refrigerating chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017179738A
Other languages
Japanese (ja)
Other versions
JP2019056502A (en
Inventor
圭介 服部
圭介 服部
福太郎 岡田
福太郎 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2017179738A priority Critical patent/JP6847010B2/en
Priority to CN202010976726.4A priority patent/CN112013605B/en
Priority to CN202010975216.5A priority patent/CN112066620A/en
Priority to CN201810182874.1A priority patent/CN108731347A/en
Priority to TW107107740A priority patent/TWI678506B/en
Publication of JP2019056502A publication Critical patent/JP2019056502A/en
Application granted granted Critical
Publication of JP6847010B2 publication Critical patent/JP6847010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は冷蔵庫に関する。 The present invention relates to a refrigerator.

温度検知手段で貯蔵室内の温度を適切に検出することで、食品の保存性や信頼性を向上して、省エネルギー性が高い冷蔵庫を提供する技術が提案されている。例えば、下記特許文献1に記載の冷蔵庫では、第一の冷気ダクト及び第二の冷気ダクトを形成し、それぞれのダクトにより貯蔵室内の所定の領域に冷気を供給している。 A technique has been proposed in which a refrigerator is provided with high energy saving by improving the storage stability and reliability of food by appropriately detecting the temperature in the storage chamber by a temperature detecting means. For example, in the refrigerator described in Patent Document 1 below, a first cold air duct and a second cold air duct are formed, and cold air is supplied to a predetermined area in the storage chamber by the respective ducts.

特開2014−122746号公報Japanese Unexamined Patent Publication No. 2014-122746

上記特許文献1に記載の冷蔵庫では、ボタンを使用者が操作することで、「強」,「中」,「弱」のような複数の冷却レベルの設定を切り替え、それぞれの冷却レベルに対応した設定温度に近づくように、冷蔵運転の制御が行われている。しかし、上記特許文献1に記載の冷蔵庫では、冷蔵室の中でも特に下部について、効率的に冷却するような設定は、備えられていない。 In the refrigerator described in Patent Document 1, the user operates a button to switch a plurality of cooling level settings such as "strong", "medium", and "weak", and correspond to each cooling level. The refrigerating operation is controlled so as to approach the set temperature. However, the refrigerator described in Patent Document 1 is not provided with a setting for efficiently cooling the lower part of the refrigerator compartment.

本発明は、以上のような問題点に鑑みてなされたものであり、冷蔵室下部の冷却効率を高めた冷蔵庫を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a refrigerator having improved cooling efficiency in the lower part of the refrigerating chamber.

所定の設定がONされた場合、冷蔵室下部の所定コーナに食品が投入されたことを検知すると自動で急冷却するとともに、前記冷蔵室下部を低温化してOFF設定時よりも冷蔵室上部との温度差を大きくする。 When a predetermined setting is turned on, when it is detected that food has been put into a predetermined corner at the lower part of the refrigerator compartment, it is automatically rapidly cooled, and the lower part of the refrigerator compartment is cooled to a lower temperature than when it is set to OFF. Increase the temperature difference.

本発明によれば、冷蔵室下部の冷却効率を高めた冷蔵庫を提供することが可能となる。 According to the present invention, it is possible to provide a refrigerator having improved cooling efficiency in the lower part of the refrigerator compartment.

本発明の実施形態に係る冷蔵庫の正面図である。It is a front view of the refrigerator which concerns on embodiment of this invention. 図1のA−A断面図である。FIG. 1 is a cross-sectional view taken along the line AA of FIG. 冷蔵室の正面図である。It is a front view of a refrigerating room. 図3のB−B断面図である。FIG. 3 is a cross-sectional view taken along the line BB of FIG. 本実施形態に係る冷蔵室の冷気ダクトの正面図である。It is a front view of the cold air duct of the refrigerating room which concerns on this embodiment. 図5のC−C断面図である。FIG. 5 is a cross-sectional view taken along the line CC of FIG. 第一冷気ダクト11aで冷却した場合の冷気の流れを示す図である。It is a figure which shows the flow of the cold air at the time of cooling by the 1st cold air duct 11a. 第二冷気ダクト11bで冷却した場合の冷気の流れを示す図である。It is a figure which shows the flow of the cold air at the time of cooling by the 2nd cold air duct 11b. 第一冷気ダクト11aと第二冷気ダクト11bの両方で冷却した場合の冷気の流れを示す図である。It is a figure which shows the flow of the cold air at the time of cooling in both the 1st cold air duct 11a and the 2nd cold air duct 11b. 冷蔵室の冷気ダクトを示す分解斜視図である。It is an exploded perspective view which shows the cold air duct of a refrigerating room. パネルカバー30を背面側から見た斜視図である。It is a perspective view which looked at the panel cover 30 from the back side. 流路形成部材41の背面側から見た斜視図である。It is a perspective view seen from the back side of the flow path forming member 41. パネルカバー30に流路形成部材41を嵌合した状態における、吐出口30b付近を示す拡大斜視図である。FIG. 5 is an enlarged perspective view showing the vicinity of the discharge port 30b in a state where the flow path forming member 41 is fitted to the panel cover 30. パネルカバー30の前面凹部30w1付近を正面側から見た拡大斜視図である。It is an enlarged perspective view which looked at the vicinity of the front concave part 30w1 of a panel cover 30 from the front side. 自動急冷却の制御を示すフローチャートである。It is a flowchart which shows the control of automatic quenching. 自動急冷却のタイムチャートである。It is a time chart of automatic quenching. 下段冷却をONに設定したときのタイムチャートである。It is a time chart when the lower cooling is set to ON. 下段冷却をOFFに設定したときのタイムチャートである。It is a time chart when the lower cooling is set to OFF. 温度保障ヒータのタイムチャートである。It is a time chart of a temperature guarantee heater.

本発明の実施形態について図面を用いて説明する。
図1は本実施形態に係る冷蔵庫の外観である。図1に示すように本実施形態の冷蔵庫1は,上方から冷蔵室2,製氷室3,上段冷凍室4,下段冷凍室5,野菜室6から構成されている。冷蔵室2は左右に分割された冷蔵室ドア2a,2bを備え,製氷室3,上段冷凍室4,下段冷凍室5,野菜室6は,それぞれ引き出し式の製氷室ドア3a,上段冷凍室ドア4a,下段冷凍室ドア5a,野菜室ドア6aを備えている。以下では,冷蔵室ドア2a,2b,製氷室ドア3a,上段冷凍室ドア4a,下段冷凍室ドア5a,野菜室ドア6aを,単にドア2a,2b,3a,4a,5a,6aと呼ぶ。冷蔵庫1とドア2a,2bを固定するドアヒンジが冷蔵庫上部に設けてあり,ドアヒンジはドアヒンジカバー53で覆われている。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is an appearance of the refrigerator according to the present embodiment. As shown in FIG. 1, the refrigerator 1 of the present embodiment is composed of a refrigerating room 2, an ice making room 3, an upper freezing room 4, a lower freezing room 5, and a vegetable room 6 from above. The refrigerating room 2 is provided with the refrigerating room doors 2a and 2b divided into left and right, and the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are the pull-out type ice making room door 3a and the upper freezing room door, respectively. It is provided with 4a, a lower freezing room door 5a, and a vegetable room door 6a. Hereinafter, the refrigerating room doors 2a and 2b, the ice making room door 3a, the upper freezing room door 4a, the lower freezing room door 5a, and the vegetable room door 6a are simply referred to as doors 2a, 2b, 3a, 4a, 5a, 6a. A door hinge for fixing the refrigerator 1 and the doors 2a and 2b is provided on the upper part of the refrigerator, and the door hinge is covered with the door hinge cover 53.

図2は本実施形態に係る冷蔵庫のA−A断面図である。冷蔵庫1の庫外と庫内は,発泡断熱材を充填することにより形成される断熱箱体10により隔てられている。冷蔵庫1の断熱箱体10には,複数の真空断熱材25を実装している。断熱仕切壁28により,冷蔵室2と上段冷凍室4及び製氷室3が隔てられ,また,同様に断熱仕切壁29により,下段冷凍室5と野菜室6が隔てられている。ドア2a,2bの庫内側には複数のドアポケットが上から33a,33b,33cの順番で備えてあり,冷蔵室2は複数の棚が上から34a,34b,34c,34d,34e(図3参照)により,複数の貯蔵スペースに区画されている。また棚34a,34bは一部ガラスで構成された棚になっており,34c,34d,34eは樹脂で構成されている。 FIG. 2 is a sectional view taken along the line AA of the refrigerator according to the present embodiment. The outside of the refrigerator 1 and the inside of the refrigerator 1 are separated by a heat insulating box 10 formed by filling the refrigerator with a foamed heat insulating material. A plurality of vacuum heat insulating materials 25 are mounted on the heat insulating box body 10 of the refrigerator 1. The heat insulating partition wall 28 separates the refrigerating room 2, the upper freezing room 4, and the ice making room 3, and similarly, the heat insulating partition wall 29 separates the lower freezing room 5 and the vegetable room 6. A plurality of door pockets are provided inside the doors 2a and 2b in the order of 33a, 33b, 33c from the top, and the refrigerating room 2 has a plurality of shelves from the top 34a, 34b, 34c, 34d, 34e (FIG. 3). (See), which is divided into multiple storage spaces. The shelves 34a and 34b are partially made of glass, and the shelves 34c, 34d and 34e are made of resin.

冷蔵室2の最下段棚34eの下部には,減圧して食品を貯蔵する減圧貯蔵室35を設けている。減圧貯蔵室35の内部の圧力を低下させるために,減圧用ポンプ(図示なし)を備えてあり,内部の圧力を維持するために減圧貯蔵室のドア56は,ハンドル55でロックできるようになっている(図3参照)。減圧貯蔵室35内の温度は,外部から設定できるようになっており,減圧貯蔵室35の背面側に設けた吐出口38(風量調整装置(ダンパ)付き)からの冷気で,減圧貯蔵室35の背面側に設けた温度センサ45で検出される温度に従い,温度調整がなされる。なお、本実施形態では減圧貯蔵室35としたが、最下段棚34eによって区画形成し、最下段棚34eを天井とする、減圧しない低温貯蔵室(チルド室)であっても良い。 A decompression storage chamber 35 for storing food under reduced pressure is provided below the lowermost shelf 34e of the refrigerating chamber 2. A decompression pump (not shown) is provided to reduce the pressure inside the decompression storage chamber 35, and the door 56 of the decompression storage chamber can be locked by the handle 55 to maintain the internal pressure. (See Fig. 3). The temperature inside the decompression storage chamber 35 can be set from the outside, and the decompression storage chamber 35 is cooled by the cold air from the discharge port 38 (with an air volume adjusting device (damper)) provided on the back side of the decompression storage chamber 35. The temperature is adjusted according to the temperature detected by the temperature sensor 45 provided on the back side of the above. Although the decompression storage chamber 35 is used in the present embodiment, it may be a low-temperature storage chamber (chilled chamber) that is not decompressed and is partitioned by the lowermost shelf 34e and has the lowermost shelf 34e as the ceiling.

上段冷凍室4と下段冷凍室5の間には,冷凍室の断熱仕切壁40を設けている。上段冷凍室4,下段冷凍室5及び野菜室6には,それぞれの冷却室の前方に備えられたドア3a,4a,5a,6aと一体に収納容器3b,4b,5b,6bがそれぞれ設けられており,ドア4a,5a,6aを手前側に引き出すことにより,収納容器4b,5b,6bも引き出せるようになっている。製氷室3にもドア3aと一体に収納容器が設けられ,ドア3aを手前側に引き出すことにより,収納容器3bも引き出せる。また,庫外温度センサ52は,例えば,冷蔵庫1のドアヒンジカバー53の内部に設けている。 A heat insulating partition wall 40 of the freezing chamber is provided between the upper freezing chamber 4 and the lower freezing chamber 5. The upper freezing chamber 4, the lower freezing chamber 5 and the vegetable compartment 6 are provided with storage containers 3b, 4b, 5b, 6b integrally with the doors 3a, 4a, 5a, 6a provided in front of the respective cooling chambers, respectively. By pulling out the doors 4a, 5a, 6a toward the front side, the storage containers 4b, 5b, 6b can also be pulled out. A storage container is also provided in the ice making chamber 3 integrally with the door 3a, and the storage container 3b can also be pulled out by pulling out the door 3a toward the front side. Further, the outside temperature sensor 52 is provided inside, for example, the door hinge cover 53 of the refrigerator 1.

冷却器7は下段冷凍室5の略背部に備えた冷却器収納室8内に設けてあり,冷却器7の上方に設けた庫内ファン9により,冷却器7と熱交換した冷気が冷蔵室冷気ダクト11(第一冷気ダクト11aと,第二冷気ダクト11b),上段冷凍室冷気ダクト12,下段冷凍室送風ダクト13及び製氷室送風ダクト(図示なし)を介して,冷蔵室2,上段冷凍室4,下段冷凍室5,製氷室3の各貯蔵室へそれぞれ送られる。 The cooler 7 is provided in the cooler storage chamber 8 provided substantially behind the lower freezing chamber 5, and the cold air that has exchanged heat with the cooler 7 by the internal fan 9 provided above the cooler 7 is the refrigerating chamber. Refrigerator chamber 2 and upper refrigeration via the cold air duct 11 (first cold air duct 11a and second cold air duct 11b), upper freezer compartment cold air duct 12, lower freezer compartment air duct 13 and ice making chamber air duct (not shown). It is sent to each storage room of room 4, lower freezer room 5, and ice making room 3.

各貯蔵室への冷気の送風は,風量調整装置,すなわち冷蔵室ツインダンパ20(20a,20b)と,冷凍室ダンパ60の開閉により制御される。冷蔵室ツインダンパ20は,2つのバッフル20aと20bを有しているツインバッフル型のダンパで,モータ駆動部46(図3参照)によって前記バッフルを開閉させて風量を調整する。 The blowing of cold air to each storage chamber is controlled by opening and closing the air volume adjusting device, that is, the refrigerating chamber twin dampers 20 (20a, 20b) and the freezing chamber damper 60. The refrigerator compartment twin damper 20 is a twin baffle type damper having two baffles 20a and 20b, and the baffle is opened and closed by a motor drive unit 46 (see FIG. 3) to adjust the air volume.

冷蔵室2を冷却する冷蔵室冷却運転の場合には,冷蔵室ツインダンパ20を開,冷凍室ダンパ60を閉にし,冷蔵室ダクト11を経て吹き出し口30a,30b,30c,30d,31a,31bから冷蔵室2に冷気が送られる。冷蔵室2に冷気を循環した後,冷蔵室下部の左右一方側に設けた冷蔵室戻り口39(図3参照)に冷気が流入し,その後,冷却器7に戻される。野菜室6の冷却手段については種々の方法があるが,例えば,冷蔵室2を冷却した後に野菜室6に冷気を直接送る方法や,野菜室専用のダンパを用いて冷却器7で発生した冷気を直接野菜室6に送る方法が考えられる。本実施形態においては,野菜室6への冷気の供給方法についてはいずれの場合でも良い。図2に記載の例では,野菜室6に流入した冷気は,断熱仕切壁29の下部前方に設けた,野菜室戻り口18aから野菜室戻りダクト18を介して,野菜室戻り吐出口18bから冷却器7に流入する。 In the case of the refrigerating room cooling operation for cooling the refrigerating room 2, the refrigerating room twin damper 20 is opened, the freezing room damper 60 is closed, and the outlets 30a, 30b, 30c, 30d, 31a, 31b pass through the refrigerating room duct 11. Cold air is sent to the refrigerator compartment 2. After the cold air is circulated in the refrigerating chamber 2, the cold air flows into the refrigerating chamber return port 39 (see FIG. 3) provided on one of the left and right sides of the lower part of the refrigerating chamber, and then returned to the cooler 7. There are various methods for cooling the vegetable compartment 6. For example, a method of directly sending cold air to the vegetable compartment 6 after cooling the refrigerator compartment 2 or a method of sending cold air directly to the vegetable compartment 6 or cold air generated in the cooler 7 using a damper dedicated to the vegetable compartment 6 is used. Can be considered as a method of sending the vegetables directly to the vegetable compartment 6. In the present embodiment, the method of supplying cold air to the vegetable compartment 6 may be any case. In the example described in FIG. 2, the cold air flowing into the vegetable compartment 6 is discharged from the vegetable compartment return port 18a provided in front of the lower part of the heat insulating partition wall 29 through the vegetable compartment return duct 18 and from the vegetable compartment return discharge port 18b. It flows into the cooler 7.

冷凍室4,5(製氷室3含む)を冷却する冷凍室冷却運転の場合には,冷蔵室ツインダンパ20を閉,冷凍室ダンパ60を開にし,冷気は上段冷凍室4,下段冷凍室5及び製氷室3を冷却した後,冷凍室戻り口17から冷却器7に戻される。庫内の温度に応じて,冷蔵室2と冷凍室4,5を同時に冷却する運転もあり,その場合には冷蔵室ツインダンパ20と冷凍室ダンパ60をいずれも開として各貯蔵室に冷気を送風する。 In the case of the freezing room cooling operation for cooling the freezing rooms 4 and 5 (including the ice making room 3), the refrigerating room twin damper 20 is closed, the freezing room damper 60 is opened, and the cold air is supplied to the upper freezing room 4 and the lower freezing room 5. After cooling the ice making chamber 3, the ice making chamber 3 is returned to the cooler 7 through the freezing chamber return port 17. Depending on the temperature inside the refrigerator, the refrigerating chamber 2 and the freezing chambers 4 and 5 may be cooled at the same time. In that case, both the refrigerating chamber twin damper 20 and the freezing chamber damper 60 are opened to provide cold air to each storage chamber. Blow.

冷蔵室の棚34bと天井面で区画された領域の温度を検出する第一の温度センサ43,冷蔵室の棚34bと最下段棚34eで区画された領域の温度を検出する第二の温度センサ42,最下段棚34eと断熱仕切壁28で区画された領域の温度を検出する第三の温度センサ45,等で検出される温度に応じて,冷蔵室ツインダンパ20のバッフル20a,20bの開閉を制御する。 A first temperature sensor 43 that detects the temperature of the area partitioned by the shelves 34b and the ceiling surface of the refrigerating room, and a second temperature sensor that detects the temperature of the area partitioned by the shelves 34b and the lowermost shelf 34e of the refrigerating room. 42, Opening and closing the baffles 20a and 20b of the refrigerating chamber twin damper 20 according to the temperature detected by the third temperature sensor 45, which detects the temperature of the area partitioned by the lowermost shelf 34e and the heat insulating partition wall 28, etc. To control.

冷却器7の下部には除霜ヒータ22を設けてある。除霜時に発生したドレン水は樋23に一旦落下し,ドレン孔27を介して圧縮機24の頭部に設けた蒸発皿21に放出される。冷蔵庫の背面下部に設けた機械室61内には,圧縮機24の他に放熱器と放熱用のファン(図示なし)が配置されている。
冷蔵庫1の天井壁上面にはメモリー,インターフェース回路を搭載した制御基板51が配置されており,制御基板51に記憶された制御に従って冷凍サイクル及び送風系の制御が実施される。制御基板51は基板カバー50で覆われている。
A defrost heater 22 is provided below the cooler 7. The drain water generated during defrosting once falls into the gutter 23 and is discharged to the evaporating dish 21 provided on the head of the compressor 24 through the drain hole 27. In the machine room 61 provided in the lower part of the back surface of the refrigerator, a radiator and a fan for heat dissipation (not shown) are arranged in addition to the compressor 24.
A control board 51 equipped with a memory and an interface circuit is arranged on the upper surface of the ceiling wall of the refrigerator 1, and the refrigeration cycle and the ventilation system are controlled according to the control stored in the control board 51. The control board 51 is covered with a board cover 50.

図3は冷蔵室2の内部の正面図で(ドア2a,2bは省略),図4は図3の冷蔵室を拡大したB−B断面図である。第一冷気ダクト11aと第二冷気ダクト11bからなる冷蔵室冷気ダクト11は,冷蔵室ツインダンパ20に設けた2つの開口部からなるバッフル20a,20bにそれぞれ接続されている。具体的には、冷蔵室ツインダンパ20のうち、開口面積の大きいバッフル20a側が、流路断面積が大きく上方まで延びる第一冷気ダクト11aに接続されている。そして、第一冷気ダクト11aで冷却する場合はバッフル20aを開,バッフル20bは閉,第二冷気ダクト11bで冷却する場合はバッフル20aを閉,バッフル20bは開,また,両方のダクトで冷却する場合はバッフル20a,20bをそれぞれ開にする。冷蔵室上部の冷却を行う際は冷気ダクト11aを使用し,冷蔵室下部を冷却する際は冷気ダクト11bを使用する。 FIG. 3 is a front view of the inside of the refrigerating chamber 2 (doors 2a and 2b are omitted), and FIG. 4 is an enlarged BB sectional view of the refrigerating chamber of FIG. The refrigerating chamber cold air duct 11 including the first cold air duct 11a and the second cold air duct 11b is connected to the baffles 20a and 20b formed by two openings provided in the refrigerating chamber twin damper 20, respectively. Specifically, of the refrigerating chamber twin damper 20, the baffle 20a side having a large opening area is connected to the first cold air duct 11a having a large flow path cross-sectional area and extending upward. Then, when cooling in the first cold air duct 11a, the baffle 20a is opened, the baffle 20b is closed, when cooling in the second cold air duct 11b, the baffle 20a is closed, the baffle 20b is opened, and both ducts are used for cooling. In that case, the baffles 20a and 20b are opened, respectively. The cold air duct 11a is used when cooling the upper part of the refrigerating chamber, and the cold air duct 11b is used when cooling the lower part of the refrigerating chamber.

第一冷気ダクト11aには,上から順番に吐出口30e,30f,30a,30bを設けてあり,それぞれの吐出口から送風される冷気で,天井面63と,2段目の棚34bとで区画された領域2A(図2,4参照),すなわち,棚34a,34b,ドアポケット33a,33bに置かれた食品を主に冷却する。第二冷気ダクト11bには吐出口30c,30dを設けてあり,それぞれの吐出口から送風される冷気で,上から2段目の棚34bと上から4段目(最下段)の棚34eとで区画された領域2B(図2,4参照),すなわち棚34c,34d,34eに置かれた食品を主に冷却する。棚34eよりも下部の領域2C(図2,4参照)には減圧貯蔵室35や製氷タンク36が設けられており,第一冷気ダクト11aと第二冷気ダクト11bの両方からの冷気によって共通に冷却され,また冷蔵室2の下部に設けた冷凍温度帯室の影響により冷却され易い領域となる。 The first cold air duct 11a is provided with discharge ports 30e, 30f, 30a, and 30b in order from the top, and the cold air blown from each discharge port is provided by the ceiling surface 63 and the second shelf 34b. It mainly cools the food placed in the compartmentalized area 2A (see FIGS. 2 and 4), that is, the shelves 34a and 34b and the door pockets 33a and 33b. The second cold air duct 11b is provided with discharge ports 30c and 30d, and the cold air blown from the respective discharge ports is used as the second shelf 34b from the top and the fourth (bottom) shelf 34e from the top. Area 2B (see FIGS. 2 and 4) partitioned by, i.e., the food placed on the shelves 34c, 34d, 34e is mainly cooled. A decompression storage chamber 35 and an ice making tank 36 are provided in the area 2C (see FIGS. 2 and 4) below the shelf 34e, and are commonly provided by cold air from both the first cold air duct 11a and the second cold air duct 11b. It is cooled, and it becomes a region that is easily cooled due to the influence of the freezing temperature zone chamber provided in the lower part of the refrigerating chamber 2.

冷蔵室2の領域2A内に第一の温度センサ43,領域2B内に第二の温度センサ42,領域2C内に第三の温度センサ45を設けている。例えば,本実施形態においては第一の温度センサ43は、冷蔵室2の天井面63に設けている。第二の温度センサ42は、棚34dと34eとの間に位置しており,冷蔵室2の奥側に設けた冷蔵室冷気ダクト11を形成するパネルカバー30に設けている。第三の温度センサ45は、同様にパネルカバー30に設けられ,第一冷気ダクト11aの吐出口30e,30f,30a,30bと第二冷気ダクト11bの吐出口30c,30dから送風された冷気が共通して循環する領域2C(製氷タンク36や減圧貯蔵室35の周囲温度)の温度を検出する。 A first temperature sensor 43 is provided in the region 2A of the refrigerating chamber 2, a second temperature sensor 42 is provided in the region 2B, and a third temperature sensor 45 is provided in the region 2C. For example, in the present embodiment, the first temperature sensor 43 is provided on the ceiling surface 63 of the refrigerating chamber 2. The second temperature sensor 42 is located between the shelves 34d and 34e, and is provided on the panel cover 30 forming the refrigerating chamber cold air duct 11 provided on the back side of the refrigerating chamber 2. Similarly, the third temperature sensor 45 is provided on the panel cover 30, and the cold air blown from the discharge ports 30e, 30f, 30a, 30b of the first cold air duct 11a and the discharge ports 30c, 30d of the second cold air duct 11b is blown. The temperature of the commonly circulating region 2C (ambient temperature of the ice making tank 36 and the decompression storage chamber 35) is detected.

図5は冷蔵室冷気ダクト11(第一冷気ダクト11a,第二冷気ダクト11b)を拡大したものであり,それぞれ正面図である。また,図6は,図5のC−C断面図である。図5に示すように、第一冷気ダクト11aは、第二冷気ダクト11bよりも高い位置まで形成され、少なくとも第二冷気ダクト11bの上端の高さまでは、第一冷気ダクト11aの幅寸法が、第二冷気ダクト11bの幅寸法よりも広くなっている。 FIG. 5 is an enlarged view of the refrigerating chamber cold air duct 11 (first cold air duct 11a, second cold air duct 11b), and is a front view of each. Further, FIG. 6 is a cross-sectional view taken along the line CC of FIG. As shown in FIG. 5, the first cold air duct 11a is formed to a position higher than the second cold air duct 11b, and at least at the height of the upper end of the second cold air duct 11b, the width dimension of the first cold air duct 11a is large. It is wider than the width dimension of the second cold air duct 11b.

ここで、一般的な冷蔵庫で冷蔵室内を冷却する場合、冷蔵室上部領域2Aと冷蔵室下部領域2Bは同時に冷却される。しかし、どちらかの領域のみに冷蔵庫外から食品が投入された場合,もう一方の領域で既に冷却されている食品はさらに冷却されることになり、凍結や品質の劣化が懸念される。そこで、本実施形態では、第一の温度センサ43,第二の温度センサ42及び第三の温度センサ45で検出される温度に基づいて、冷蔵室上部領域2Aを冷却する第一冷気ダクト11aと、冷蔵室下部領域2Bを冷却する第二冷気ダクト11bと,を適宜切り替えることにより、過度の冷却を抑制して省エネルギー性を高めている。 Here, when the refrigerating chamber is cooled by a general refrigerator, the refrigerating chamber upper region 2A and the refrigerating chamber lower region 2B are cooled at the same time. However, if food is put into only one of the regions from outside the refrigerator, the food that has already been cooled in the other region will be further cooled, and there is a concern about freezing and deterioration of quality. Therefore, in the present embodiment, the first cold air duct 11a for cooling the upper region 2A of the refrigerating chamber is provided based on the temperatures detected by the first temperature sensor 43, the second temperature sensor 42, and the third temperature sensor 45. By appropriately switching between the second cold air duct 11b for cooling the lower region 2B of the refrigerating chamber and the second cold air duct 11b, excessive cooling is suppressed and energy saving is improved.

図7に、第一冷気ダクト11aで冷却した場合の,冷蔵室2の冷気の流れを示す。冷蔵室ツインダンパ20のバッフル20aを開(バッフル20bは閉)状態にすると,第一冷気ダクト11aに設けた吐出口30a,30b,30e,30fから冷気が吐出する。吐出した冷気は、最上段の棚34a,34bとドアポケット33a,33bの配された領域2Aの食品を主に冷却した後,最下段の棚34eと断熱仕切壁28で区画された領域2Cへ到達して,この空間の冷却を行う。領域2Aに食品が投入され,第一の温度センサ43が領域2Aの温度上昇を検知し,かつ,第二の温度センサ42が領域2Bの温度上昇を検知しなかった場合,冷気ダクト11aでの冷却パターンを実施する。領域2A内に新たに投入された食品のみを主に冷却するため,領域2B内の食品を冷やし過ぎることがなく,省エネルギー性の向上も可能である。 FIG. 7 shows the flow of cold air in the refrigerating chamber 2 when cooled by the first cold air duct 11a. When the baffle 20a of the refrigerating chamber twin damper 20 is opened (the baffle 20b is closed), cold air is discharged from the discharge ports 30a, 30b, 30e, 30f provided in the first cold air duct 11a. The discharged cold air mainly cools the food in the area 2A where the uppermost shelves 34a and 34b and the door pockets 33a and 33b are arranged, and then goes to the lowermost shelf 34e and the area 2C partitioned by the heat insulating partition wall 28. Reach and cool this space. When food is put into the region 2A, the first temperature sensor 43 detects the temperature rise in the region 2A, and the second temperature sensor 42 does not detect the temperature rise in the region 2B, the cold air duct 11a is used. Carry out a cooling pattern. Since only the food newly introduced into the region 2A is mainly cooled, the food in the region 2B is not cooled too much, and energy saving can be improved.

一方,図8に、第二冷気ダクト11bで冷却した場合の,冷蔵室2の冷気の流れを示す。冷蔵室ツインダンパ20のバッフル20bを開(バッフル20aは閉)状態にすると,第二冷気ダクト11bに設けた吐出口30c,30dから冷気が吐出する。吐出した冷気は、棚34c,34d,34eの配された領域Bの食品を主に冷却した後,最下段の棚34eと断熱仕切壁28で区画された領域2Cへ到達して,この空間の冷却を行う。領域2Bに食品が投入され、第一の温度センサ43が領域2Aの温度上昇を検知せず,かつ,第二の温度センサ42が領域2Bの温度上昇を検知した場合,冷気ダクト11bでの冷却パターンを実施する。冷気ダクト11aでの冷却パターンに対して,領域2B内を効率よく冷却できる。 On the other hand, FIG. 8 shows the flow of cold air in the refrigerating chamber 2 when cooled by the second cold air duct 11b. When the baffle 20b of the refrigerating chamber twin damper 20 is opened (the baffle 20a is closed), cold air is discharged from the discharge ports 30c and 30d provided in the second cold air duct 11b. The discharged cold air mainly cools the food in the area B where the shelves 34c, 34d, and 34e are arranged, and then reaches the area 2C partitioned by the lowermost shelf 34e and the heat insulating partition wall 28, and then reaches the area 2C of this space. Perform cooling. When food is put into the area 2B, the first temperature sensor 43 does not detect the temperature rise in the area 2A, and the second temperature sensor 42 detects the temperature rise in the area 2B, the cooling in the cold air duct 11b is performed. Implement the pattern. The inside of the region 2B can be efficiently cooled with respect to the cooling pattern in the cold air duct 11a.

さらに,図9に示すように,冷蔵室ツインダンパ20のバッフル20aと20bの両方を開状態にすれば,第一冷気ダクト11aと第二冷気ダクト11bの両方を用いた冷却パターンも実施できる。この冷却パターンを実施すれば、領域2A,2B内に同時に食品が投入された場合でも効率よく冷却できる。 Further, as shown in FIG. 9, if both the baffles 20a and 20b of the refrigerating chamber twin damper 20 are opened, a cooling pattern using both the first cold air duct 11a and the second cold air duct 11b can be implemented. If this cooling pattern is implemented, even when food is put into the regions 2A and 2B at the same time, it can be efficiently cooled.

本実施形態では,各温度センサを用いて、冷蔵室内の各領域の温度を検知し,その検知結果に応じて、風量調整装置を制御することで,それぞれの領域の温度が適切になるように冷却できる。このため、既に冷えている領域を過度に冷却することがなく,省エネルギー性を高めた冷却が実施でき,食品の凍結や品質の劣化を抑止する効果が得られる。 In the present embodiment, the temperature of each region in the refrigerating chamber is detected by using each temperature sensor, and the air volume adjusting device is controlled according to the detection result so that the temperature of each region becomes appropriate. Can be cooled. Therefore, it is possible to carry out cooling with improved energy saving without excessively cooling the already cold region, and it is possible to obtain the effect of suppressing freezing of food and deterioration of quality.

また、本実施形態の冷蔵庫では、上述の第一の温度センサ43,第二の温度センサ42,第三の温度センサ45とは別に、冷蔵室下部への食品投入を検知するための第四の温度センサ(食品検知センサ)48を設けている。 Further, in the refrigerator of the present embodiment, apart from the above-mentioned first temperature sensor 43, second temperature sensor 42, and third temperature sensor 45, a fourth for detecting food input to the lower part of the refrigerating chamber. A temperature sensor (food detection sensor) 48 is provided.

図3に示すように、食品検知センサ48は、高さ位置として、減圧貯蔵室35のすぐ上にある棚34eと、その次の棚34cとの間であり、左右方向位置として、左右中央よりも冷蔵室戻り口39のある側にある。より具体的な左右方向位置としては、最下段の棚34eとその上段の棚34cとの間に設けられた冷蔵室下部冷却用の吐出口30dと、冷気戻り口39との間が望ましい。なお、吐出口30dは、パネルカバー30の左右中央より一方側(本実施形態では右側)に偏在しており、冷気戻り口39も最下段棚34eの下方における一方側(本実施形態では中央より右側)に形成されている。 As shown in FIG. 3, the food detection sensor 48 is located between the shelf 34e immediately above the decompression storage chamber 35 and the next shelf 34c as a height position, and is located in the left-right direction from the left-right center. Is also on the side with the refrigerating room return port 39. As a more specific position in the left-right direction, it is desirable that there is a discharge port 30d for cooling the lower part of the refrigerating chamber provided between the lowermost shelf 34e and the upper shelf 34c, and a cold air return port 39. The discharge port 30d is unevenly distributed on one side (right side in this embodiment) from the left and right center of the panel cover 30, and the cold air return port 39 is also on one side below the lowermost shelf 34e (from the center in this embodiment). It is formed on the right side).

したがって、吐出口30dから冷気戻り口39に至る冷気の通り道となっている、少なくとも最下段棚34eとその上の棚34dとの間で中央より右側(図3の領域2D)を、急速冷却コーナとすることで、冷却効率を高めることができる。そして、本実施形態では、吐出口30dと冷気戻り口39のとの間に食品検知センサ48を配置することで、この急速冷却コーナに温かい食品が置かれたことを精度よく検知し、自動的に急速冷却を開始できる。なお、急速冷却コーナに、アルミトレイを配置すれば、使用者が急速冷却用の空間であることを認識しやすくなる。 Therefore, a rapid cooling corner is located on the right side of the center (region 2D in FIG. 3) between at least the lowermost shelf 34e and the shelf 34d above it, which is a path for cold air from the discharge port 30d to the cold air return port 39. By doing so, the cooling efficiency can be improved. Then, in the present embodiment, by arranging the food detection sensor 48 between the discharge port 30d and the cold air return port 39, it is possible to accurately detect that warm food is placed in this rapid cooling corner and automatically detect it. Rapid cooling can be started. If an aluminum tray is placed in the rapid cooling corner, it becomes easier for the user to recognize that the space is for rapid cooling.

なお、第二冷気ダクト11bは、冷蔵室2の中間高さ付近にある棚34bのすぐ下にも吐出口30cが設けられているため、棚34cと棚34bとの間の空間(図3の領域2E)も急速冷却コーナにすることができる。ここで、食品検知センサ48は棚34cのすぐ下にあり、棚34cの上の空間に食品が置かれた場合でも検知が可能である。また、領域2Eには、左右を仕切る部材が存在しないので、領域2Cと比べて幅広い空間、すなわち、左側の棚34dのすぐ上の領域を、急速冷却の対象にすることもできる。 Since the second cold air duct 11b is provided with a discharge port 30c just below the shelf 34b near the intermediate height of the refrigerating chamber 2, the space between the shelf 34c and the shelf 34b (FIG. 3). Region 2E) can also be a rapid cooling corner. Here, the food detection sensor 48 is located immediately below the shelf 34c, and can detect even when food is placed in the space above the shelf 34c. Further, since the region 2E does not have a member for partitioning the left and right sides, a wider space than the region 2C, that is, a region immediately above the left shelf 34d can be targeted for rapid cooling.

ここで、食品検知センサ48による自動急冷却の制御について、図15および図16を用いて説明する。まず、自動急冷却モードの設定がONであるか否かを判定する(ステップS1)。自動急冷却モードの設定がONの状態のときに、ステップS2においてドア2a,2bの開閉動作が行われた場合、急速冷却を許可するか否かを判定するための監視状態に移行する。ステップS3において、監視状態へ移行した後、急冷却許可判定閾値以上の状態を食品検知センサ48が一定時間(急冷却開始判定時間)維持した場合、冷蔵室2の下部に食品が投入されたとみなして、急速冷却を開始する。ここで、急冷却許可判定閾値は、ドア2a,2bを閉じたときの食品検知センサ48の検知温度に対して一定温度高い値を設定する。 Here, the control of automatic rapid cooling by the food detection sensor 48 will be described with reference to FIGS. 15 and 16. First, it is determined whether or not the automatic rapid cooling mode setting is ON (step S1). When the doors 2a and 2b are opened and closed in step S2 when the automatic rapid cooling mode is set to ON, the state shifts to the monitoring state for determining whether or not rapid cooling is permitted. In step S3, when the food detection sensor 48 maintains a state equal to or higher than the rapid cooling permission determination threshold value for a certain period of time (rapid cooling start determination time) after shifting to the monitoring state, it is considered that the food has been put into the lower part of the refrigerating chamber 2. And start rapid cooling. Here, the rapid cooling permission determination threshold value is set to a value that is constant temperature higher than the detection temperature of the food detection sensor 48 when the doors 2a and 2b are closed.

急速冷却が開始されると、圧縮機24を高速回転(2000rpm〜4000rpm)させ、庫内ファン9も高速回転させるとともに、第一冷気ダクト11a用のバッフル20aと第二冷気ダクト11b用のバッフル20bの両方を開状態にし、冷蔵室2の上部と下部の両方に冷気が供給され、まず冷蔵室2の全体を冷却する。その後、食品検知センサ48の検知した温度が、所定の閾値(バッフル20a閾値)以下になった場合、第一冷気ダクト11aのバッフル20aを閉状態にする。このとき、第二冷気ダクト11bからのみ冷気が供給されるが、第二冷気ダクト11bは冷蔵室2の下部にしか吐出口がないため、冷蔵室2の下部である領域2D及び領域2Eが集中的に冷却される。 When rapid cooling is started, the compressor 24 is rotated at high speed (2000 rpm to 4000 rpm), the internal fan 9 is also rotated at high speed, and the baffle 20a for the first cold air duct 11a and the baffle 20b for the second cold air duct 11b are rotated. Both of them are opened, and cold air is supplied to both the upper part and the lower part of the refrigerating chamber 2, and the entire refrigerating chamber 2 is first cooled. After that, when the temperature detected by the food detection sensor 48 becomes equal to or lower than a predetermined threshold value (baffle 20a threshold value), the baffle 20a of the first cold air duct 11a is closed. At this time, cold air is supplied only from the second cold air duct 11b, but since the second cold air duct 11b has a discharge port only in the lower part of the refrigerating chamber 2, the regions 2D and 2E which are the lower parts of the refrigerating chamber 2 are concentrated. Is cooled.

次に、食品検知センサ48の検知した値が、バッフル20a閾値より低い所定の閾値(バッフル20b閾値)以下になった場合、第二冷気ダクト11bのバッフル20bも閉状態にし、圧縮機24および庫内ファン9の回転を停止させて、急速冷却を終了する。なお、バッフル20aやバッフル20bを閉状態にするタイミングは、急速冷却が開始してから所定時間が経過したか否かを基にして判定しても良い(ステップS4)。 Next, when the value detected by the food detection sensor 48 becomes equal to or less than a predetermined threshold value (baffle 20b threshold value) lower than the baffle 20a threshold value, the baffle 20b of the second cold air duct 11b is also closed, and the compressor 24 and the refrigerator are closed. The rotation of the inner fan 9 is stopped to end the rapid cooling. The timing of closing the baffle 20a and the baffle 20b may be determined based on whether or not a predetermined time has elapsed since the start of rapid cooling (step S4).

このように、本実施形態では、ドア2a,2bの開閉後、冷蔵室下部に食品が投入されたことを食品検知センサ48で検知した場合、上部を主に冷却する第一冷気ダクト11aと、下部を主に冷却する第二冷気ダクト11bと、の両方を用いて冷気を供給して冷蔵室全体をまず冷却した後、第二冷気ダクト11bだけを用いて冷気を供給して冷蔵室下部を集中的に冷却する。特に、本実施形態では、第一冷気ダクト11aに設けられた吐出口30e,30f,30a,30bの開口面積の合計より、第二冷気ダクト11bに設けられた吐出口30c,30dの開口面積の合計が小さくなっているので、冷蔵室2下部の急速冷却コーナへ供給される冷気の風速が高まり、この空間を効果的に冷却できる。なお、ドア2a,2bの開閉後、すぐ第二冷気ダクト11bだけを用いた冷却を行った場合、冷蔵室全体の温度の高いことが影響して、下部の食品も冷え難くなっているので、上述のように、まず両方のダクトを用いた冷却を行う。 As described above, in the present embodiment, when the food detection sensor 48 detects that food has been put into the lower part of the refrigerator after opening and closing the doors 2a and 2b, the first cold air duct 11a that mainly cools the upper part and the first cold air duct 11a. The second cold air duct 11b, which mainly cools the lower part, is used to supply cold air to cool the entire refrigerating chamber first, and then only the second cold air duct 11b is used to supply cold air to lower the lower part of the refrigerating chamber. Cool intensively. In particular, in the present embodiment, the opening area of the discharge ports 30c and 30d provided in the second cold air duct 11b is calculated from the total opening area of the discharge ports 30e, 30f, 30a and 30b provided in the first cold air duct 11a. Since the total is small, the wind speed of the cold air supplied to the rapid cooling corner at the lower part of the refrigerating chamber 2 increases, and this space can be effectively cooled. If cooling is performed using only the second cold air duct 11b immediately after opening and closing the doors 2a and 2b, the high temperature of the entire refrigerating chamber affects the food at the bottom, which makes it difficult to cool. As described above, cooling is first performed using both ducts.

その結果、温かい鍋物を冷蔵室下部に収納しても、冷蔵室下部における鍋物の周囲にある食品の温度上昇を抑えて劣化を防ぐことが可能となる。また、温かい鍋物から遠い冷蔵室上部を過剰に冷却するのを抑制し、消費電力を低減できる。 As a result, even if the hot pot is stored in the lower part of the refrigerator, it is possible to suppress the temperature rise of the food around the pot in the lower part of the refrigerator and prevent deterioration. In addition, it is possible to suppress excessive cooling of the upper part of the refrigerator compartment far from the hot pot, and reduce power consumption.

ここで、上述の図8における冷却パターンでも、第二冷気ダクト11bで冷却することを説明したが、図8の冷却パターンでは、冷蔵室下部のあくまで庫内温度を検知する第二の温度センサ42を用いて制御しており、圧縮機24および庫内ファン9の回転速度も低速回転となっている。これに対して、自動急冷却の冷却パターンでは、冷蔵室下部の急速冷却コーナの近傍に設けた食品検知センサ48を用いて制御しており、圧縮機24および庫内ファン9の回転速度を高速回転に上昇させている。このため、温かい食品の投入を精度よく検知し、かつ、その食品に対してすばやく効果的に冷気を当てることが可能となる。 Here, the cooling pattern in FIG. 8 described above also describes that the cooling is performed by the second cold air duct 11b, but in the cooling pattern of FIG. 8, the second temperature sensor 42 that detects the temperature inside the refrigerator chamber to the last. The rotation speed of the compressor 24 and the refrigerator fan 9 is also low. On the other hand, in the cooling pattern of automatic rapid cooling, the food detection sensor 48 provided near the rapid cooling corner in the lower part of the refrigerating chamber is used for control, and the rotation speeds of the compressor 24 and the internal fan 9 are increased. It is raised to rotation. Therefore, it is possible to accurately detect the input of hot food and to quickly and effectively apply cold air to the food.

なお、冷蔵室2の下部に食品が投入されたら自動で急速冷却するだけでなく、コントロールパネル等による選択により、使用者が設定した場合には、食品検知の有無にかかわらず、冷蔵室2の下部を強制的に急速冷却させても良い。 In addition, when food is put into the lower part of the refrigerating room 2, it is not only automatically cooled rapidly, but also when the user sets it by selection by a control panel or the like, the refrigerating room 2 is set regardless of the presence or absence of food detection. The lower part may be forcibly cooled rapidly.

次に、各温度センサと各冷気ダクトを利用して、冷蔵室2の下部の温度を、冷蔵室2の上部の温度と比べて2℃以上低くなるように保つ、下段冷却の制御について説明する。下段冷却モードはコントロールパネルでON/OFFの設定が可能であり、このモードがONに設定された場合には、設定されなかった場合と比べて、バッフル20bの開状態を長く(バッフル20aの開状態時間に対するバッフル20bの開状態時間の割合を高く)する。具体的には、OFF設定の場合と異なり、バッフル20aが閉状態でバッフル20bのみ開状態となる時間を設ける。ただし、下段冷却の運転中における圧縮機24の回転速度は、急速冷却のときのような高速回転にはせず、低速回転(1000rpm〜2000rpm)を維持している。 Next, the control of lower cooling that keeps the temperature of the lower part of the refrigerating chamber 2 lower than the temperature of the upper part of the refrigerating chamber 2 by 2 ° C. or more by using each temperature sensor and each cold air duct will be described. .. The lower cooling mode can be set to ON / OFF on the control panel, and when this mode is set to ON, the open state of the baffle 20b is longer (opening of the baffle 20a) than when it is not set. Increase the ratio of the open state time of the baffle 20b to the state time). Specifically, unlike the case of the OFF setting, a time is provided during which the baffle 20a is closed and only the baffle 20b is open. However, the rotation speed of the compressor 24 during the operation of the lower stage cooling is not the high speed rotation as in the case of rapid cooling, but maintains the low speed rotation (1000 rpm to 2000 rpm).

次に、下段冷却モードがONに設定された場合における制御に関し、図17を用いて説明する。下段冷却の運転では、圧縮機24が停止してから所定時間が経過した場合、または第二の温度センサ42の検知温度が所定の閾値(バッフル開閾値)以上になった場合、圧縮機24を低速回転させると共に、バッフル20a,20bを両方開状態にする。その後、第二の温度センサ42の検知温度が所定の閾値(バッフル20a閾値)以下になった場合、バッフル20aを閉状態にする。さらに、第二の温度センサ42の検知温度が所定の閾値(バッフル20b閾値)以下になった場合、バッフル20bも閉状態にする。 Next, the control when the lower cooling mode is set to ON will be described with reference to FIG. In the lower cooling operation, when a predetermined time has elapsed after the compressor 24 is stopped, or when the detection temperature of the second temperature sensor 42 becomes equal to or higher than a predetermined threshold value (baffle opening threshold value), the compressor 24 is operated. While rotating at a low speed, both the baffles 20a and 20b are opened. After that, when the detection temperature of the second temperature sensor 42 becomes equal to or lower than a predetermined threshold value (baffle 20a threshold value), the baffle 20a is closed. Further, when the detection temperature of the second temperature sensor 42 becomes equal to or lower than a predetermined threshold value (baffle 20b threshold value), the baffle 20b is also closed.

一般の冷蔵庫でも、冷蔵室内の低温空気は下方へ集まり易く、冷蔵室内でも上部より下部の方が低温化される傾向にあるが、本実施形態によれば、上部と下部の温度をより差別化でき、保存に適した温度帯が異なる食品であっても収納場所を選び分けることが可能となる。特に、冷蔵室下部が一般の冷蔵庫と比べて低温に保たれるので、低温保存用の減圧貯蔵室35等が食品で一杯の場合に、この冷蔵室下部の空間を代わりに利用でき、使い勝手が良くなる。なお、下段冷却モードがOFFに設定された場合は、図18のような制御となり、ダンパ20a,20bは常に同じタイミングで両方を開状態にし、常に同じタイミングで閉状態にする。また、下段冷却モードの対象空間は、上述の自動急冷却モードの対象空間である2D+2E(図3)よりも広く、棚34bと棚34eとの間の空間全体である。 Even in a general refrigerator, the low temperature air in the refrigerating room tends to collect downward, and even in the refrigerating room, the temperature of the lower part tends to be lower than that of the upper part. It is possible to select the storage location even for foods in different temperature zones suitable for storage. In particular, since the lower part of the refrigerator compartment is kept at a lower temperature than a general refrigerator, when the decompression storage chamber 35 for low temperature storage is full of food, the space under the refrigerator compartment can be used instead, which is convenient. Get better. When the lower cooling mode is set to OFF, the control is as shown in FIG. 18, and the dampers 20a and 20b are always opened at the same timing and closed at the same timing. Further, the target space of the lower cooling mode is wider than the target space of the above-mentioned automatic rapid cooling mode 2D + 2E (FIG. 3), and is the entire space between the shelves 34b and the shelves 34e.

本実施形態では、冷蔵室下部の所定コーナに食品が投入されたことを検知すると自動で急冷却する上記自動急冷却モードと、冷蔵室下部を低温化してOFF設定時よりも冷蔵室上部との温度差を大きくする上記下段冷却モードと、を有しているが、これらのモードの設定のON/OFFは1度の動作で常に同時に行われるようにしている。つまり、上記自動急冷却モードのみをONにして下段冷却モードをOFFにしたり、上記自動急冷却モードをOFFにして下段冷却モードのみをONにしたり、は設定できないようにしている。このように、1度の操作で上記2つのモードを同時に切り替えられるので、使用者の利便性が向上する。 In the present embodiment, the above-mentioned automatic rapid cooling mode in which food is automatically rapidly cooled when it is detected that food has been put into a predetermined corner at the lower part of the refrigerating room, and the upper part of the refrigerating room are lower than when the lower part of the refrigerating room is set to OFF. It has the above-mentioned lower cooling mode that increases the temperature difference, and ON / OFF of the setting of these modes is always performed at the same time by one operation. That is, it is not possible to set only the automatic rapid cooling mode to be ON and the lower cooling mode to be OFF, or the automatic rapid cooling mode to be OFF and only the lower cooling mode to be ON. In this way, since the above two modes can be switched at the same time with one operation, the convenience of the user is improved.

また、上記2つのモードが同時にONに設定された場合、1つずつONに設定された場合よりも、冷却効果が向上する。すなわち、仮に上記自動急冷却モードだけONに設定されていた場合、急速冷却コーナに投入した食品を早く冷やすことはできるが、急速冷却コーナ以外の冷蔵室スペースに既に置かれていた他の食品は、比較的温度が高い状態にある。したがって、急速冷却コーナに食品を投入した直後、既存の他の食品の温度が上昇した場合に、冷蔵温度帯を超えてしまう可能性がある。一方、仮に上記下段冷却モードだけONに設定されていた場合、急速冷却コーナに投入した食品を冷やすのが遅くなるのは勿論のこと、既に比較的温度が低い状態にあった他の食品が過剰に冷却されてしまう可能性がある。このように、上記自動急冷却モードと上記下段冷却モードとを同時にONに設定することで、新たに投入された食品を早く冷やしつつ、既存の食品への温度影響を抑えた冷却運転が可能となる。 Further, when the above two modes are set to ON at the same time, the cooling effect is improved as compared with the case where they are set to ON one by one. That is, if only the automatic rapid cooling mode is set to ON, the food put into the rapid cooling corner can be cooled quickly, but other foods already placed in the refrigerating room space other than the rapid cooling corner can be cooled quickly. , The temperature is relatively high. Therefore, if the temperature of other existing foods rises immediately after the food is put into the rapid cooling corner, the refrigerating temperature range may be exceeded. On the other hand, if only the lower cooling mode is set to ON, not only the food put into the rapid cooling corner will be slowed down, but also other foods that have already been in a relatively low temperature state will be excessive. It may be cooled down. In this way, by setting the automatic rapid cooling mode and the lower cooling mode to ON at the same time, it is possible to perform cooling operation that suppresses the temperature effect on existing food while cooling the newly introduced food quickly. Become.

また、減圧貯蔵室35、冷蔵室2と製氷室3や上段冷凍室4との間に設けられる断熱仕切壁28、製氷用の給水パイプ64等の部品は、冷凍温度帯にある製氷室3や上段冷凍室4の近くに位置するため、低温になり易い。そこで、これらの部品が凍結に至らない温度に保つため、断熱仕切壁28内であって減圧貯蔵室35の底面側に減圧貯蔵室温度保障ヒータ65を設けるとともに、断熱仕切壁28内であって給水パイプ64の底面側に給水パイプ温度保障ヒータ66を設けている(図4)。 Further, parts such as the decompression storage chamber 35, the heat insulating partition wall 28 provided between the refrigerating chamber 2 and the ice making chamber 3 and the upper freezing chamber 4, and the water supply pipe 64 for ice making are the ice making chamber 3 in the freezing temperature zone. Since it is located near the upper freezer chamber 4, it tends to get cold. Therefore, in order to keep these parts at a temperature that does not lead to freezing, a decompression storage chamber temperature guarantee heater 65 is provided in the heat insulating partition wall 28 on the bottom surface side of the decompression storage chamber 35, and inside the heat insulating partition wall 28. A water supply pipe temperature guarantee heater 66 is provided on the bottom surface side of the water supply pipe 64 (FIG. 4).

特に、下段冷却モードや自動急冷却モードの設定をONにすると、上記部品が更に低温化し易くなる。このため、これらの設定がONのときは、図19に示すように、減圧貯蔵室温度保障ヒータ65や給水パイプ温度保障ヒータ66の通電時間を、OFF設定時と比べて長くし、凍結をより確実に防止している。なお、これらの温度保障ヒータの目的は、温度の低下を防ぐことであるので、ヒータの通電時間を長くする方法だけでなく、ヒータの出力を高める他の方法であっても、その目的は達成できる。 In particular, when the lower cooling mode and the automatic rapid cooling mode are set to ON, the temperature of the above-mentioned parts becomes more likely to be lowered. Therefore, when these settings are ON, as shown in FIG. 19, the energizing time of the decompression storage chamber temperature guarantee heater 65 and the water supply pipe temperature guarantee heater 66 is lengthened as compared with the time when they are set to OFF, and freezing is further increased. It is definitely prevented. Since the purpose of these temperature-guaranteed heaters is to prevent a decrease in temperature, the purpose is achieved not only by a method of lengthening the energizing time of the heater but also by another method of increasing the output of the heater. it can.

次に、冷蔵室冷気ダクト11の構成について、詳細に説明する。本実施形態における第一冷気ダクト11aおよび第二冷気ダクト11bは、図10のように、パネルカバー30、流路形成部材41、シール部材62及びダンパカバー32等で構成されている。 Next, the configuration of the refrigerating chamber cold air duct 11 will be described in detail. As shown in FIG. 10, the first cold air duct 11a and the second cold air duct 11b in the present embodiment are composed of a panel cover 30, a flow path forming member 41, a seal member 62, a damper cover 32, and the like.

まず、パネルカバー30は、合成樹脂製であり、冷蔵室ダンパが収容されるベース部30vと、このベース部30vから鉛直方向上方へ向かって延びる垂直部30uと、を有している。パネルカバー30の垂直部30uのうち冷蔵室を臨む側は、吐出口30a〜30dに対応する異なる高さ位置に、複数の前面凹部30wが形成されている。そして、このパネルカバー30は、冷蔵室2の背面側の左右方向中央に配置される。また、パネルカバー30の上端部には、左右2つの吐出口30e,30fが形成されており、この天井側の吐出口30e,30fからの冷気を、最上部のドアポケット33aに向けることが可能である。 First, the panel cover 30 is made of synthetic resin and has a base portion 30v in which a refrigerator damper is housed, and a vertical portion 30u extending vertically upward from the base portion 30v. On the side of the vertical portion 30u of the panel cover 30 facing the refrigerating chamber, a plurality of front recesses 30w are formed at different height positions corresponding to the discharge ports 30a to 30d. Then, the panel cover 30 is arranged at the center in the left-right direction on the back side of the refrigerating chamber 2. Further, two left and right discharge ports 30e and 30f are formed at the upper end portion of the panel cover 30, and cold air from the discharge ports 30e and 30f on the ceiling side can be directed to the uppermost door pocket 33a. Is.

図11は、パネルカバー30を背面(裏面)側から見たときの斜視図である。パネルカバー30の背面側には、上述の前面凹部30wに対応する箇所に、案内凸部30tが形成されている。なお、これら案内凸部30tの下面(上流側面)には、それぞれ冷気流入口30t0が形成されており、これら冷気流入口30t0から案内凸部30t内に流入した冷気は、前面凹部30wの上壁面を介して冷蔵室2内の前面側へ誘導される。 FIG. 11 is a perspective view of the panel cover 30 when viewed from the back surface (back surface) side. On the back side of the panel cover 30, a guide convex portion 30t is formed at a position corresponding to the above-mentioned front concave portion 30w. A cold airflow inlet 30t0 is formed on the lower surface (upstream side surface) of each of the guide convex portions 30t, and the cold air flowing into the guide convex portion 30t from the cold airflow inlet 30t0 is the upper wall surface of the front concave portion 30w. It is guided to the front side in the refrigerating room 2 through.

次に、流路形成部材41について説明する。流路形成部材41は、発泡ポリスチレンなどを切削加工するなどして形成され、図10に示すように、パネルカバー30のベース部30vに嵌合する下方流路部41vと、パネルカバー30の垂直部30xに嵌合する本体流路部41xと、を有している。下方流路部41vは、冷蔵室ツインダンパ22が取り付けられる共に、冷蔵室ツインダンパ22のバッフル22aと連通する第一冷気ダクト11aの一部と、冷蔵室ツインダンパ22のバッフル20bと連通する第二冷気ダクト11bの一部と、を構成している。 Next, the flow path forming member 41 will be described. The flow path forming member 41 is formed by cutting expanded polystyrene or the like, and as shown in FIG. 10, the lower flow path portion 41v fitted to the base portion 30v of the panel cover 30 and the vertical flow path portion 41v of the panel cover 30. It has a main body flow path portion 41x that fits into the portion 30x. A part of the first cold air duct 11a that communicates with the baffle 22a of the refrigerating chamber twin damper 22 and a baffle 20b of the refrigerating chamber twin damper 22 communicate with the lower flow path portion 41v. (Ii) It constitutes a part of the cold air duct 11b.

また、流路形成部材41の本体流路部41xには、高さの異なる位置に複数の切欠孔41hが形成されている。具体的には、最も高い位置と、それより一段低い位置とには、第一冷気ダクト11a用の切欠孔41h1が形成され、最も低い位置と、それより一段高い位置とには、第二冷気ダクト11b用の切欠孔41h2が形成されている。ここで、上方に形成される切欠孔41h1は、下方に形成される切欠孔41h2と比べて、幅寸法が大きくなっている。これは、第一冷気ダクト11aの上方にある吐出口30a,30bが形成される幅領域が、第二冷気ダクト11bの吐出口30c,30dが形成される幅領域よりも広いためである。 Further, a plurality of notch holes 41h are formed in the main body flow path portion 41x of the flow path forming member 41 at positions having different heights. Specifically, a notch hole 41h1 for the first cold air duct 11a is formed at the highest position and one step lower, and the second cold air is formed at the lowest position and one step higher. A notch hole 41h2 for the duct 11b is formed. Here, the notch hole 41h1 formed above has a larger width than the notch hole 41h2 formed below. This is because the width region in which the discharge ports 30a and 30b above the first cold air duct 11a are formed is wider than the width region in which the discharge ports 30c and 30d of the second cold air duct 11b are formed.

なお、上方にあって隣接する複数の切欠孔41h1の間には、図12に示すように、上下方向へ延びる突出片である整流部41kが設けられている。この整流部41kは、上流側からの冷気を上方へ導き、天井側の吐出口30e,30fからドアポケット33aへ冷気を効果的に流す働きをする。また、この整流部41kは、切欠孔41h1で挟まれた部分の流路形成部材41を補強する効果や、シール部材62のたわみを防止する効果もある。 As shown in FIG. 12, a rectifying unit 41k, which is a protruding piece extending in the vertical direction, is provided between the plurality of notch holes 41h1 that are above and adjacent to each other. The rectifying unit 41k guides the cold air from the upstream side upward, and effectively flows the cold air from the discharge ports 30e and 30f on the ceiling side to the door pocket 33a. Further, the rectifying unit 41k also has an effect of reinforcing the flow path forming member 41 of the portion sandwiched by the notch hole 41h1 and an effect of preventing the sealing member 62 from bending.

また、流路形成部材41の背面(裏面)側には、第一溝部41uaと第二溝部41ubとが形成されており、シール部材62との間で、それぞれ第一冷気ダクト11aと第二冷気ダクト11bとを構成している。第一溝部41uaは、左右方向一端側(図12では右側)に、鉛直方向へ延びる延設壁11aaが形成され、左右方向他端側(図12では左側)に、第二溝部41ubの上端より高い所定の位置まで延設壁11aa、その下流側には天井へ向けて直線状または円弧状に延びる拡幅壁11abが形成されている。これにより、第一冷気ダクト11aには、第二溝部41ubと併設される高さにある上流部と、流路断面積を徐々に拡大する流路拡大部と、上流部よりも流路断面積が大きい下流部とが形成される。ここで、第一冷気ダクト11aのバッフル20aの鉛直投影と、吐出口30eの鉛直投影とは、少なくとも一部が重なるような位置関係となっている。従って、パネルカバー30の下端部一方(左)側にあるバッフル20aから流入した冷気が、大きな通風抵抗を受けずに、パネルカバー30の上端部一方(左)側にある吐出口30eへ向かって流れるので、冷蔵室2内に効率よく冷気を送風できる。 Further, a first groove portion 41ua and a second groove portion 41ub are formed on the back surface (back surface) side of the flow path forming member 41, and the first cold air duct 11a and the second cold air are formed between the seal member 62, respectively. It constitutes a duct 11b. In the first groove portion 41ua, an extended wall 11aa extending in the vertical direction is formed on one end side in the left-right direction (right side in FIG. 12), and on the other end side in the left-right direction (left side in FIG. 12) from the upper end of the second groove portion 41ub. An extending wall 11aa is formed up to a high predetermined position, and a widening wall 11ab extending linearly or arcuately toward the ceiling is formed on the downstream side thereof. As a result, the first cold air duct 11a has an upstream portion at a height adjacent to the second groove portion 41ub, a channel expansion portion that gradually expands the flow path cross-sectional area, and a flow path cross-sectional area than the upstream portion. Is formed with a large downstream area. Here, the vertical projection of the baffle 20a of the first cold air duct 11a and the vertical projection of the discharge port 30e are in a positional relationship such that at least a part thereof overlaps. Therefore, the cold air flowing in from the baffle 20a on the one (left) side of the lower end of the panel cover 30 is directed toward the discharge port 30e on the one (left) side of the upper end of the panel cover 30 without receiving a large ventilation resistance. Since it flows, cold air can be efficiently blown into the refrigerating room 2.

さらに、流路形成部材41の下流部の背面側には、第1冷気ダクト11a内の冷気を左右方向に分岐させる分岐部41vが形成されており、分岐後の冷気は、吐出口30e,30fに対応して流路形成部材41の上端に設けられた溝出口41h3,41h4へ流れる。これにより、左右のドア2a,2b内にある最上段のドアポケット33aへ、効率よく冷気を供給できる。 Further, on the back surface side of the downstream portion of the flow path forming member 41, a branch portion 41v for branching the cold air in the first cold air duct 11a in the left-right direction is formed, and the cold air after the branch is discharged ports 30e and 30f. Correspondingly, it flows to the groove outlets 41h3 and 41h4 provided at the upper end of the flow path forming member 41. As a result, cold air can be efficiently supplied to the uppermost door pocket 33a in the left and right doors 2a and 2b.

図13は、パネルカバー30の背面に流路形成部材41を嵌合した状態における、2段目の棚34bの高さ付近の拡大斜視図である。流路形成部材41の溝部41u内面とシール部材62内面とで囲まれた空間を、上流側から下流側へ流れる冷気は、下流側へ行くほど徐々に前面側へ凹む(深くなる)傾斜部41sにより、パネルカバー30の冷気流入口30t0へ案内される。このように、冷気流入口30t0の上流側に位置する流路形成部材41壁面に傾斜部41sを設けることで、案内凸部30tの高さを低くでき、案内凸部30tによるダクト内の通風抵抗の影響を抑制することが可能である。なお、傾斜部41sの鉛直方向寸法は、切欠孔41hの鉛直方向寸法より小さくすることにより、傾斜部41sの形成に伴う流路形成部材41の厚み縮小を抑え、断熱性能の低下を防ぐことが可能である。 FIG. 13 is an enlarged perspective view of the vicinity of the height of the second shelf 34b in a state where the flow path forming member 41 is fitted to the back surface of the panel cover 30. The cold air flowing from the upstream side to the downstream side in the space surrounded by the inner surface of the groove portion 41u of the flow path forming member 41 and the inner surface of the seal member 62 gradually dents (becomes deeper) toward the front side toward the downstream side. Guides the panel cover 30 to the cold airflow inlet 30t0. In this way, by providing the inclined portion 41s on the wall surface of the flow path forming member 41 located on the upstream side of the cold air flow inlet 30t0, the height of the guide convex portion 30t can be lowered, and the ventilation resistance in the duct by the guide convex portion 30t can be lowered. It is possible to suppress the influence of. By making the vertical dimension of the inclined portion 41s smaller than the vertical dimension of the notch hole 41h, it is possible to suppress the thickness reduction of the flow path forming member 41 due to the formation of the inclined portion 41s and prevent the deterioration of the heat insulating performance. It is possible.

ここで、案内凸部30tの上流側面には冷気流入口30t0が左右方向に複数形成されるが、隣接する冷気流入口30t0の間には仕切壁30t2が設けられているので、実質的に幅の広い吐出口を形成するだけでなく、パネルカバー30の強度を確保しつつゴミの侵入を防止できる。なお、吐出口30bに限らず、吐出口30a,30c,30dについても同様の構成となっている。 Here, a plurality of cold airflow inlets 30t0 are formed in the left-right direction on the upstream side surface of the guide convex portion 30t, but since the partition wall 30t2 is provided between the adjacent cold airflow inlets 30t0, the width is substantially wide. Not only is it possible to form a wide discharge port, but it is also possible to prevent dust from entering while ensuring the strength of the panel cover 30. Not only the discharge port 30b but also the discharge ports 30a, 30c and 30d have the same configuration.

また、流路形成部材41は、左右方向について中央部が正面側へ膨らむような湾曲状となっている。このため、流路形成部材41とシール部材62とで形成される冷気ダクトの流路断面積を拡大することが可能である。一方のパネルカバー30も同様に、水平断面が湾曲状となっている。このため、パネルカバー30から冷蔵室2内へ向かって、冷気が放射状に広がって吐出されやすく、冷蔵室2内を効率的に冷却できる。 Further, the flow path forming member 41 has a curved shape such that the central portion bulges toward the front side in the left-right direction. Therefore, it is possible to expand the flow path cross-sectional area of the cold air duct formed by the flow path forming member 41 and the seal member 62. Similarly, the panel cover 30 has a curved horizontal cross section. Therefore, the cold air spreads radially from the panel cover 30 toward the inside of the refrigerating chamber 2 and is easily discharged, so that the inside of the refrigerating chamber 2 can be efficiently cooled.

さらに、図14に示すように、パネルカバー30の案内凸部30tの下流側内壁面(前面凹部30w1の上壁面)30t1も曲面を有している。このため、流路形成部材41の傾斜部41sから冷気流入口30t0を通って案内凸部30t内に流入した冷気が、通風抵抗を抑制しながら前方へ誘導され、冷却効率向上に寄与する。 Further, as shown in FIG. 14, the downstream inner wall surface (upper wall surface of the front concave portion 30w1) 30t1 of the guide convex portion 30t of the panel cover 30 also has a curved surface. Therefore, the cold air flowing from the inclined portion 41s of the flow path forming member 41 through the cold air flow inlet 30t0 into the guide convex portion 30t is guided forward while suppressing the ventilation resistance, which contributes to the improvement of the cooling efficiency.

本実施形態では、この冷蔵室側(前面側)を臨む各前面凹部30wが、見かけ上、吐出口30a〜30dに相当する。しかし、実際に冷気が吐出されるのは、冷気流入口30t0の存在する領域であるため、各吐出口30a〜30dの開口面積という場合は、各冷気流入口30t0の合計面積を指す。 In the present embodiment, each front recess 30w facing the refrigerator compartment side (front side) apparently corresponds to the discharge ports 30a to 30d. However, since the cold air is actually discharged in the region where the cold airflow inlet 30t0 exists, the opening area of each discharge port 30a to 30d refers to the total area of each cold airflow inlet 30t0.

シール部材62は、合成樹脂材料などで形成された板状部材であり、流路形成部材41の第一溝部41ua及び第二溝部41ubの全体を覆うように配置される。また、シール部材62を用いて内箱47に接続することで、冷気ダクトを冷蔵室の背面側に設置することが可能となっている。 The seal member 62 is a plate-shaped member made of a synthetic resin material or the like, and is arranged so as to cover the entire first groove portion 41ua and the second groove portion 41ub of the flow path forming member 41. Further, by connecting to the inner box 47 using the seal member 62, the cold air duct can be installed on the back side of the refrigerating chamber.

以上述べた本実施形態の構成により、次のような効果が得られる。 The following effects can be obtained by the configuration of the present embodiment described above.

まず、流路が長いことにより通風抵抗が大きくなる第一冷気ダクト11aについて、流路の断面積を第二冷気ダクト11bよりも大きくすることで、冷気が下流に達するまでの通風抵抗を全体として抑制でき、結果として、冷蔵室2上部空間へ効率よく冷気を送風し、省エネルギー性の向上が可能となる。 First, regarding the first cold air duct 11a whose ventilation resistance increases due to the long flow path, the ventilation resistance until the cold air reaches the downstream is made as a whole by making the cross-sectional area of the flow path larger than that of the second cold air duct 11b. As a result, cold air can be efficiently blown to the upper space of the refrigerating chamber 2, and energy saving can be improved.

次に、冷気ダクト11の前面側を形成する壁面の内側に、水平方向に延びて上流側から至る冷気を受け止める案内凸部30tが形成され、この案内凸部30tの上流側壁面(下面)に冷気流入口30t0が形成されているので、冷気ダクト11内の冷気を効率良く引き込むことができる。また、この冷気流入口30t0から流入した冷気が、案内凸部30tの内部を通り、前面凹部30wの上壁面を介して冷蔵室2内の前面側へ誘導される。結果として、吐出される冷気の風量が増大するため、冷却効率が向上する。 Next, a guide convex portion 30t extending in the horizontal direction to receive cold air extending from the upstream side is formed inside the wall surface forming the front side of the cold air duct 11, and is formed on the upstream side wall surface (lower surface) of the guide convex portion 30t. Since the cold airflow inlet 30t0 is formed, the cold air in the cold air duct 11 can be efficiently drawn in. Further, the cold air flowing in from the cold air flow inlet 30t0 passes through the inside of the guide convex portion 30t and is guided to the front side in the refrigerating chamber 2 through the upper wall surface of the front concave portion 30w. As a result, the air volume of the discharged cold air is increased, so that the cooling efficiency is improved.

また、案内凸部30tの下面を鉛直方向に貫通するように吐出口が形成されているので、使用者が正面側から冷蔵室2内を見た場合でも吐出口が認識し難くなっており、意匠性が向上する。なお、案内凸部30tの下面は水平に限られず、鉛直方向よりも水平方向に近いものであれば、吐出口が見え難くなる効果や、吐出風量を増大させる効果は、一定程度奏する。 Further, since the discharge port is formed so as to penetrate the lower surface of the guide convex portion 30t in the vertical direction, it is difficult for the user to recognize the discharge port even when the inside of the refrigerating chamber 2 is viewed from the front side. The design is improved. The lower surface of the guide convex portion 30t is not limited to horizontal, and if it is closer to the horizontal direction than the vertical direction, the effect of making the discharge port difficult to see and the effect of increasing the discharge air volume are exhibited to a certain extent.

さらに、高さの異なる位置にある横長矩形状の前面凹部30wが、吐出口の幅領域の大小にかかわらず同じ幅としてあるため、使用者にとって違和感がなく、意匠性を高く保つことができる。なお、各前面凹部30wの幅寸法は厳密な同一に限らず、90%〜110%の範囲内であれば構わない。 Further, since the horizontally long rectangular front recesses 30w at different heights have the same width regardless of the size of the width region of the discharge port, the user does not feel uncomfortable and the design can be kept high. The width dimension of each front recess 30w is not limited to exactly the same, and may be within the range of 90% to 110%.

また、本実施形態では、第一冷気ダクト11aの前面側に形成される吐出口が、第二冷気ダクト11bの前面に形成される吐出口よりも広いため、一般に冷え難い冷蔵室2上部へ広範囲に冷気を供給でき、冷却効率が高まる。そして、第二冷気ダクト11bよりも高くまで延びる第一冷気ダクト11aは、第二冷気ダクト11bの最上段の吐出口30cよりも高い場所に、すべての吐出口30a,30bを形成しているので、冷蔵室2上部へ集中して冷気を供給でき、冷却効率が高まる。 Further, in the present embodiment, since the discharge port formed on the front surface side of the first cold air duct 11a is wider than the discharge port formed on the front surface of the second cold air duct 11b, it is generally widespread to the upper part of the refrigerating chamber 2 which is difficult to cool. Cool air can be supplied to the air, and the cooling efficiency is improved. Since the first cold air duct 11a extending higher than the second cold air duct 11b forms all the discharge ports 30a and 30b at a position higher than the uppermost discharge port 30c of the second cold air duct 11b. , Cold air can be concentrated and supplied to the upper part of the refrigerating chamber 2, and the cooling efficiency is improved.

一方、第二冷気ダクト11bの上端は、冷蔵室2の高さのうち半分より低い位置にあり、第二冷気ダクト11bのすべての吐出口も、冷蔵室2の高さのうち半分より低い位置にある。従って、冷蔵室ツインダンパ20のバッフル20aを閉にしつつバッフル20bを開にすれば、冷蔵室2の下部に冷気を集中して供給できるため、冷蔵室2下部に温かい食品が投入された際の急速冷却や、冷蔵室2下部を上部と比べて低温に保つ下段冷却が、可能である。ここで、冷蔵室2の高さの半分から下の空間は、平均的な使用者のウエストラインに近い断熱仕切壁28に対して、少し高い位置に相当し、使用頻度が高いので、この空間を急速冷却や下段冷却の対象とするのは有効である。特に、冷蔵室2下部を2℃以下に保つと、作り置き食品等の長期保存性が大幅に向上する。また、冷蔵室2の一部空間に温かい食品が投入されても、その空間が急速冷却されるので、他の空間の温度が上がるのも抑制でき、結果として冷蔵室2全体の保存性も高まる。 On the other hand, the upper end of the second cold air duct 11b is located at a position lower than half of the height of the refrigerating chamber 2, and all the discharge ports of the second cold air duct 11b are also located at a position lower than half of the height of the refrigerating chamber 2. It is in. Therefore, if the baffle 20b of the refrigerating room twin damper 20 is closed and the baffle 20b is opened, cold air can be concentrated and supplied to the lower part of the refrigerating room 2, so that when warm food is put into the lower part of the refrigerating room 2. Rapid cooling and lower cooling that keeps the lower part of the refrigerator compartment 2 at a lower temperature than the upper part are possible. Here, the space below half the height of the refrigerating room 2 corresponds to a position slightly higher than the heat insulating partition wall 28 near the waistline of the average user, and is frequently used, so this space. It is effective to target the rapid cooling and lower cooling. In particular, if the lower part of the refrigerator compartment 2 is kept at 2 ° C. or lower, the long-term storage stability of prepared foods and the like is greatly improved. Further, even if warm food is put into a part of the refrigerating room 2, the space is rapidly cooled, so that the temperature of the other space can be suppressed from rising, and as a result, the storage stability of the entire refrigerating room 2 is improved. ..

1 冷蔵庫、2 冷蔵室、2a,2b 冷蔵室ドア、3 製氷室、3a 製氷室ドア、3b 収納容器、4 上段冷凍室、4a 上段冷凍室ドア、4b 収納容器、5 下段冷凍室、5a 下段冷凍室ドア、5b 収納容器、6 野菜室、6a 野菜室ドア、6b 収納容器、7 冷却器、8 冷却器収納室、9 庫内ファン、10 断熱箱体、11 冷蔵室冷気ダクト、11a 第一冷気ダクト、11aa 第一冷気ダクトの延設壁、11ab 第一冷気ダクトの拡幅壁、11b 第二冷気ダクト、12 上段冷凍室冷気ダクト、13 下段冷凍室冷気ダクト、17 冷凍室戻り口、18 野菜室戻りダクト、18a 野菜室戻り口、18b 野菜室戻り吐出口、20 冷蔵室ツインダンパ、20a バッフル、20b バッフル、21 蒸発皿、22 除霜ヒータ、23 樋、24 圧縮機、25 真空断熱材、27 ドレン孔、28,29,40 断熱仕切壁、30 パネルカバー、30a,30b,30c,30d,30e,30f 吐出口、30t 案内凸部、30w 前面凹部、33a,33b,33c ドアポケット、34a,34b,34c,34d,34e 棚、35 減圧貯蔵室、36 製氷タンク、39 冷蔵室戻り口、41 流路形成部材、41h 切欠孔、41h 整流部、41s 傾斜部、41v 分岐部、42 第二の温度センサ、43 第一の温度センサ、45 第三の温度センサ、46 モータ駆動部、47 背面カバー、48 食品検知センサ、50 基板カバー、51 制御基板、52 庫外温度センサ、53 ドアヒンジカバー、55 ハンドル、56 減圧貯蔵室ドア、60 冷凍室ダンパ、61 機械室、62 シール部材、63 天井面 64 給水パイプ 65 減圧貯蔵室温度保障ヒータ 66 給水パイプ温度保障ヒータ 1 Refrigerator, 2 Refrigerator room, 2a, 2b Refrigerator room door, 3 Ice room, 3a Ice room door, 3b Storage container, 4 Upper freezer room, 4a Upper freezer door, 4b Storage container, 5 Lower freezer room, 5a Lower freezer Room door, 5b storage container, 6 vegetable room, 6a vegetable room door, 6b storage container, 7 cooler, 8 cooler storage room, 9 refrigerator fan, 10 heat insulating box, 11 refrigerating room cold air duct, 11a first cold air Duct, 11aa 1st cold air duct extension wall, 11ab 1st cold air duct widening wall, 11b 2nd cold air duct, 12 upper freezer cold air duct, 13 lower freezer cold air duct, 17 freezer return port, 18 vegetable room Return duct, 18a Vegetable room return port, 18b Vegetable room return port, 20 Refrigerator room twin damper, 20a baffle, 20b baffle, 21 Evaporator, 22 Defrost heater, 23 Hi, 24 Compressor, 25 Vacuum insulation, 27 Drain holes, 28, 29, 40 heat insulating partition walls, 30 panel covers, 30a, 30b, 30c, 30d, 30e, 30f discharge ports, 30t guide protrusions, 30w front recesses, 33a, 33b, 33c door pockets, 34a, 34b , 34c, 34d, 34e shelf, 35 decompression storage room, 36 ice making tank, 39 refrigerating room return port, 41 flow path forming member, 41h notch hole, 41h rectifying part, 41s inclined part, 41v branch part, 42 second temperature Sensor, 43 1st temperature sensor, 45 3rd temperature sensor, 46 motor drive, 47 back cover, 48 food detection sensor, 50 board cover, 51 control board, 52 outside temperature sensor, 53 door hinge cover, 55 handle , 56 Decompression storage room door, 60 Refrigerator room damper, 61 Machine room, 62 Seal member, 63 Ceiling surface 64 Water supply pipe 65 Decompression storage room temperature guarantee heater 66 Water supply pipe temperature guarantee heater

Claims (6)

所定の設定がONされた場合、冷蔵室下部の所定コーナに食品が投入されたことを検知すると、自動で冷蔵室の上部及び下部を急冷却するステップとともに、前記冷蔵室の上部よりも下部を冷却して前記冷蔵室下部を低温化してOFF設定時よりも冷蔵室上部との温度差を大きくするステップを実行することを特徴とする冷蔵庫。 When a predetermined setting is turned on, when it is detected that food has been put into a predetermined corner at the lower part of the refrigerating room, the upper part and the lower part of the refrigerating room are automatically rapidly cooled, and the lower part of the refrigerating room is lower than the upper part. A refrigerator characterized in that it cools and lowers the temperature of the lower part of the refrigerating chamber to increase the temperature difference from the upper part of the refrigerating chamber as compared with the case of setting OFF. 冷蔵室下部の所定コーナに食品が投入されたことを検知すると自動で急冷却する自動急冷却モードと、前記冷蔵室下部を低温化してOFF設定時よりも冷蔵室上部との温度差を大きくする下段冷却モードと、を備え、前記自動急冷却モードと前記下段冷却モードの設定のON/OFFは1度の動作で同時に切り替わり、ともにON又はともにOFFとなることを特徴とする冷蔵庫。 An automatic rapid cooling mode that automatically quenches when it detects that food has been put into a predetermined corner at the bottom of the refrigerator compartment, and a temperature difference between the lower part of the refrigerator compartment and the upper part of the refrigerator compartment is larger than when it is set to OFF. A refrigerator including a lower cooling mode, wherein the automatic rapid cooling mode and the setting of the lower cooling mode are switched ON / OFF at the same time by one operation, and both are turned ON or both are turned OFF. 前記冷蔵室の上部及び下部を急冷却するステップは、
前記所定コーナの温度を検知する温度センサの検知値の上昇に応じて自動で開始し、及び/又は
前記所定コーナの温度を検知する温度センサの検知値の低下若しくは時間経過に応じて終了し、
前記冷蔵室下部であって前記所定コーナ以外に配された別の温度センサを備え、
該別の温度センサの検知値の上昇に応じて、前記急冷却よりも弱い前記冷蔵室下部の冷却を開始する請求項1に記載の冷蔵庫。
The step of rapidly cooling the upper and lower parts of the refrigerator compartment is
It starts automatically according to the increase in the detection value of the temperature sensor that detects the temperature of the predetermined corner, and / or ends according to the decrease in the detection value of the temperature sensor that detects the temperature of the predetermined corner or the passage of time.
The lower part of the refrigerating chamber is provided with another temperature sensor arranged in a corner other than the predetermined corner.
The refrigerator according to claim 1, wherein cooling of the lower part of the refrigerating chamber, which is weaker than the rapid cooling, is started in response to an increase in the detection value of the other temperature sensor.
前記所定コーナは、前記別の温度センサよりも冷蔵室戻り口に近い請求項3に記載の冷蔵庫。 The refrigerator according to claim 3, wherein the predetermined corner is closer to the return port of the refrigerator compartment than the other temperature sensor. 前記所定の設定がONされた場合、
前記冷蔵室下部を2℃以下に低温化してOFF設定時よりも冷蔵室上部との温度差を大きくする請求項1,3又は4に記載の冷蔵庫。
When the predetermined setting is turned on,
The refrigerator according to claim 1, 3 or 4, wherein the lower part of the refrigerating chamber is cooled to 2 ° C. or lower so that the temperature difference from the upper part of the refrigerating chamber is larger than when the refrigerator is set to OFF.
冷蔵室下部の所定コーナに食品が投入されたこと又は該所定コーナに配された温度センサの温度上昇を検知すると、冷蔵室の上部及び下部を冷却するステップと、前記冷蔵室の上部よりも下部を低温化するステップを実行する冷蔵庫であって、
前記冷蔵室下部とは、該冷蔵室に区画形成された低温貯蔵室又は減圧貯蔵室を内部下方に備える場合、該低温貯蔵室又は該減圧貯蔵室を含まない領域である冷蔵庫
When it detects that food has been put into a predetermined corner at the bottom of the refrigerator or the temperature rise of the temperature sensor arranged at the corner, the step of cooling the upper and lower parts of the refrigerator and the lower part of the refrigerator are lower than the upper part of the refrigerator. the a refrigerator to perform the step of low temperature,
The lower part of the refrigerating chamber is a refrigerator which is a region not including the low-temperature storage chamber or the decompression storage chamber when the low-temperature storage chamber or the decompression storage chamber formed in the refrigerating chamber is provided in the lower part of the inside .
JP2017179738A 2017-04-21 2017-09-20 refrigerator Active JP6847010B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017179738A JP6847010B2 (en) 2017-09-20 2017-09-20 refrigerator
CN202010976726.4A CN112013605B (en) 2017-04-21 2018-03-06 Refrigerator with a door
CN202010975216.5A CN112066620A (en) 2017-04-21 2018-03-06 Refrigerator with a door
CN201810182874.1A CN108731347A (en) 2017-04-21 2018-03-06 Refrigerator
TW107107740A TWI678506B (en) 2017-04-21 2018-03-07 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017179738A JP6847010B2 (en) 2017-09-20 2017-09-20 refrigerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021024797A Division JP7064031B2 (en) 2021-02-19 2021-02-19 refrigerator

Publications (2)

Publication Number Publication Date
JP2019056502A JP2019056502A (en) 2019-04-11
JP6847010B2 true JP6847010B2 (en) 2021-03-24

Family

ID=66107202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017179738A Active JP6847010B2 (en) 2017-04-21 2017-09-20 refrigerator

Country Status (1)

Country Link
JP (1) JP6847010B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205733A (en) * 1999-01-19 2000-07-28 Mitsubishi Electric Corp Refrigerator
JP4867758B2 (en) * 2007-03-30 2012-02-01 パナソニック株式会社 refrigerator
JP5909427B2 (en) * 2012-08-23 2016-04-26 日立アプライアンス株式会社 refrigerator

Also Published As

Publication number Publication date
JP2019056502A (en) 2019-04-11

Similar Documents

Publication Publication Date Title
JP5909427B2 (en) refrigerator
JP6131116B2 (en) refrigerator
US6629429B1 (en) Refrigerator
JP5178642B2 (en) refrigerator
KR101306536B1 (en) Refrigerator
JP6134610B2 (en) refrigerator
JP3904866B2 (en) refrigerator
WO2018064866A1 (en) Refrigerator
TWI716636B (en) refrigerator
JP7064031B2 (en) refrigerator
TWI678506B (en) refrigerator
JP6800083B2 (en) refrigerator
JP2018179466A (en) Refrigerator
JP5941838B2 (en) refrigerator
JP6847010B2 (en) refrigerator
JP6719428B2 (en) refrigerator
JP7004624B2 (en) refrigerator
JP7008180B2 (en) refrigerator
JP5404549B2 (en) Freezer refrigerator
JP2019056501A (en) refrigerator
JP2018179467A (en) Refrigerator
JP2018179468A (en) Refrigerator
JP2019132503A (en) refrigerator
JP6192427B2 (en) refrigerator
JP2015014435A (en) Refrigerator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210302

R150 Certificate of patent or registration of utility model

Ref document number: 6847010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150