JP2013099228A - Estimation method and device for power generation output of photovoltaic power generation facility - Google Patents

Estimation method and device for power generation output of photovoltaic power generation facility Download PDF

Info

Publication number
JP2013099228A
JP2013099228A JP2011243232A JP2011243232A JP2013099228A JP 2013099228 A JP2013099228 A JP 2013099228A JP 2011243232 A JP2011243232 A JP 2011243232A JP 2011243232 A JP2011243232 A JP 2011243232A JP 2013099228 A JP2013099228 A JP 2013099228A
Authority
JP
Japan
Prior art keywords
power generation
photovoltaic power
output
generation output
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011243232A
Other languages
Japanese (ja)
Other versions
JP5819162B2 (en
Inventor
Wataru Wayama
亘 和山
Kenji Arimatsu
健司 有松
Takashi Ohinata
大日向  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP2011243232A priority Critical patent/JP5819162B2/en
Publication of JP2013099228A publication Critical patent/JP2013099228A/en
Application granted granted Critical
Publication of JP5819162B2 publication Critical patent/JP5819162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

PROBLEM TO BE SOLVED: To estimate power generation output of a plurality of photovoltaic power generation facilities connected to an electric power system for every varying period component.SOLUTION: Measurement data on power generation output of photovoltaic power generation facilities at a predetermined representative spot is decomposed into varying period components. Data of the decomposed varying period components at the representative point and an introduction amount of the photovoltaic power generation facilities of the electric power system are input to a model expression of each varying period component for computing the reduction ratio of output variation smoothed through the composition of previously derived photovoltaic power generation output at the representative point and photovoltaic power generation output at another spot of the electric power system to compute photovoltaic power generation output of each varying period component.

Description

本発明は、電力系統に複数設置された太陽光発電設備の発電出力の推定に係り、特に複数設置された太陽光発電設備の発電出力を出力変動の変動周期成分ごとに推定する。   The present invention relates to estimation of power generation output of a plurality of photovoltaic power generation facilities installed in a power system, and particularly estimates power generation output of a plurality of photovoltaic power generation facilities installed for each fluctuation period component of output fluctuation.

近年、環境問題などを契機として、太陽の光エネルギーを電気エネルギーに変換する太陽光発電設備の導入が増加している。太陽光発電は無尽蔵の太陽の光エネルギーを利用した発電方式であるため、発電時に二酸化炭素を排出しないクリーンなエネルギーとして、導入の拡大が期待されているが、従来の発電方式と比較して発電コストが高いことなどから、主として住宅の屋根への設置など、数kW程度の比較的小容量の太陽光発電システムが導入されている状況にある。今後、住宅団地への集中的な導入や地域全体への計画的な導入なども進められつつあり、今後は大幅な導入の拡大が予想されている。   In recent years, the introduction of solar power generation facilities that convert solar light energy into electric energy has increased due to environmental problems. Solar power generation is an inexhaustible solar power generation method, so it is expected to expand as a clean energy that does not emit carbon dioxide during power generation. Due to the high cost, solar power generation systems with a relatively small capacity of about several kW, such as installation on the roof of houses, are being introduced. In the future, intensive introduction to housing estates and planned introduction to the entire region are being promoted, and a substantial expansion is expected in the future.

また、太陽光発電設備は、太陽の光エネルギーのみで発電できることから、例えば、風況の良好な特定の地域に偏って設置される風力発電設備のような設置する場所の制約が少なく、今後、小規模な太陽光発電設備が広範囲に分散して設置されることが予想される。
しかし、太陽光発電設備の発電出力は、太陽の光エネルギーによるものであるため、気象状況により大きく変動する不安定な電源であり、電力系統と接続(連系)して使用される場合、電力系統側から見ると、太陽光発電設備の発電状況によって供給する負荷が大きく変動することになる。
In addition, since solar power generation facilities can generate power only with solar light energy, for example, there are few restrictions on installation locations such as wind power generation facilities that are biased to specific areas with favorable wind conditions. Small-scale photovoltaic power generation facilities are expected to be widely distributed.
However, because the power output of the solar power generation equipment is derived from the light energy of the sun, it is an unstable power source that fluctuates greatly depending on weather conditions. When viewed from the system side, the load to be supplied varies greatly depending on the power generation status of the photovoltaic power generation facility.

このような発電電力の変動に対し、電気事業者は、火力発電や水力発電など、機械的な慣性を有する発電機を調整する需給制御により瞬時的な電力需要の変動に対応している。
今後、太陽光発電設備が大量に導入された状況において、例えば天候の急変により太陽光発電設備の発電出力の変動が想定を超えて大になった場合、電気事業者の既存の設備では、需給制御の対応が困難になり、電力系統の電圧変動など電力の品質低下が生ずるなど、電力の安定供給に係わる様々な問題の発生が懸念されている。
In response to such fluctuations in generated power, electric utilities respond to instantaneous fluctuations in power demand through supply and demand control that adjusts a generator having mechanical inertia, such as thermal power generation and hydroelectric power generation.
In the future, in the situation where a large number of photovoltaic power generation facilities have been introduced, for example, if the fluctuation in the power generation output of the photovoltaic power generation facilities becomes larger than expected due to sudden changes in the weather, There are concerns about the occurrence of various problems related to the stable supply of power, such as difficulty in handling control and deterioration of power quality such as voltage fluctuations in the power system.

これらに対応するためには、あらかじめ、電力系統全体、或いは地域などにおいてどの程度の太陽光発電出力があるのか、また、どの程度の太陽光発電の出力変動が発生するのかを把握することが重要となる。
太陽光発電出力を把握するためには、設置された太陽光発電設備の全ての発電量を計測することにより、合計の太陽光発電出力やその変動を把握することが可能であるが、広域的に分散設置された太陽光発電設備の全てについて発電量を計測し、更に通信などによりデータを取り纏めることは現実的ではない。
このため、太陽光発電出力やその変動を推定し、これら推定した発電出力を基に、電力系統側における各種の必要な対策を立案し、これら対策により、太陽光発電設備による影響を低減させなければならない。
In order to respond to these, it is important to know in advance how much photovoltaic power output there is in the entire power system or in the region, and how much photovoltaic power output fluctuation occurs. It becomes.
In order to grasp the photovoltaic power generation output, it is possible to grasp the total photovoltaic power generation output and its fluctuations by measuring all the power generation amount of the installed photovoltaic power generation equipment. It is not realistic to measure the power generation amount of all of the photovoltaic power generation facilities distributed and installed and to collect data by communication or the like.
For this reason, solar power generation output and its fluctuations are estimated, and various necessary measures on the power system side are drawn up based on these estimated power generation outputs, and these measures must reduce the effects of solar power generation facilities. I must.

特許文献1、特許文献2に電力系統と連系された太陽光発電設備の出力を推定する技術が開示されている。
特許文献1には、配電系統に接続された1または複数の太陽光発電設備の最大発電出力の推定手法について、予めモデル地域で実測した太陽光発電設備の発電出力及び日射量のデータと、当該太陽光発電設備の設備容量とから係数を算出しておき、配電系統に接続された太陽光発電設備の設備容量と予測期間内における最大日射量から前記係数を用いて最大発電出力を算出・推定することが開示されている。
Patent Documents 1 and 2 disclose techniques for estimating the output of a photovoltaic power generation facility linked to a power system.
In Patent Document 1, the estimation method of the maximum power generation output of one or a plurality of solar power generation facilities connected to the power distribution system, the power generation output and solar radiation data of the solar power generation facilities measured in advance in the model area, Calculate the coefficient from the installed capacity of the photovoltaic power generation facility, and calculate and estimate the maximum generated power output using the coefficient from the installed capacity of the photovoltaic power generation facility connected to the distribution system and the maximum amount of solar radiation within the forecast period. Is disclosed.

特許文献2には、同じく、配電系統に接続された所定の太陽光発電設備と同じ系統に設置された他の太陽光発電設備の発電出力量(率)を実測して両者の発電量の実測値の相関を示す近似式を導出し、前記所定の太陽光発電設備の発電量の測定値を用い、前記導出した近似式に基づいて他の太陽光発電設備の発電量を推定することが開示されている。   Similarly, in Patent Document 2, the power generation output amount (rate) of another solar power generation facility installed in the same system as the predetermined solar power generation facility connected to the distribution system is measured, and the power generation amount of both is actually measured. It is disclosed that an approximate expression indicating a correlation between values is derived, and a power generation amount of the predetermined solar power generation facility is used to estimate a power generation amount of another solar power generation facility based on the derived approximate expression. Has been.

特開2010−193594号公報JP 2010-193594 A 特開2009−50064号公報JP 2009-50064 A

従来技術は、配電系統に接続された1または複数の太陽光発電設備の発電出力あるいは最大発電出力を推定するものである。しかし、前述のように電力系統の運用・制御のためには、系統に接続(連系)された太陽光発電設備の発電出力や最大発電出力を推定するだけでは不十分であり、発電出力の変動についても的確に推定しなければならない。   The conventional technology estimates the power generation output or the maximum power generation output of one or a plurality of photovoltaic power generation facilities connected to a power distribution system. However, as described above, it is not sufficient to estimate the power generation output or maximum power generation output of a photovoltaic power generation facility connected to the grid (connected) for power system operation and control. The fluctuations must be estimated accurately.

即ち、電力系統の時々刻々変動する需要と供給力との均衡を図るため、一般的に需給制御においては、微小変動分のような速い周期の変動は、ガバナフリー(GF:governor free operation)と呼ばれる発電機の調速機運転により吸収され、短周期変動分については、需要と供給力との差を周波数偏差として検出し、負荷周波数制御(LFC:load frequency control)により供給力を調整する。また、長周期変動分の負荷変動については、経済性を加味した経済負荷配分制御(ELD:economic load dispatching control)により供給力を調整している。
それ故、電力系統の需給制御においては、太陽光発電設備の出力変動に対しても、変動周期成分の大きさに応じて、調整可能な供給力を需給調整力として確保して対応しなければならない。
本発明は、今後の太陽光発電設備の設置の普及・拡大に対応し、多数の太陽光発電設備が広範囲に分散設置された状況で、天候次第で変動する太陽光発電設備の発電出力を電力系統の需給制御の態様に対応して、発電出力を変動周期成分ごとに推定・把握するものである。
In other words, in order to balance the demand and supply capacity that fluctuates from time to time in the power system, generally in the supply and demand control, fluctuations in a fast cycle such as minute fluctuations are governor-free (GF). Absorbed by the governor operation of the generator, the difference between the demand and the supply power is detected as a frequency deviation for the short period fluctuation, and the supply power is adjusted by load frequency control (LFC). Further, for load fluctuations corresponding to long-period fluctuations, the supply power is adjusted by economic load dispatching control (ELD) in consideration of economy.
Therefore, in the power supply and demand control of the power system, it is necessary to ensure that the supply power that can be adjusted is secured as the supply and demand adjustment power according to the magnitude of the fluctuation period component, even for the output fluctuation of the photovoltaic power generation equipment. Don't be.
The present invention responds to the spread and expansion of the installation of photovoltaic power generation equipment in the future, and in a situation where a large number of photovoltaic power generation equipment is widely distributed and installed, the power output of the photovoltaic power generation equipment that varies depending on the weather Corresponding to the aspect of supply and demand control of the system, the power generation output is estimated and grasped for each fluctuation period component.

本発明の第1の技術手段は、電力系統に導入された複数の太陽光発電地点の中の代表地点の太陽光発電出力の実測データおよび、前記電力系統における太陽光発電の導入量に基づいて、予め取得したモデル式を用いて電力系統における太陽光発電出力を推定する太陽光発電出力推定方法において、前記代表地点の太陽光発電出力データを所定の変動周期成分に分解し、予め取得した所定の平均距離で分散して立地された複数地点の太陽光発電出力の合成により平滑化する太陽光発電出力の変動の縮小比を演算する変動周期成分ごとのモデル式を用い、前記分解した各周期成分と前記電力系統における太陽光発電の導入量とに基づいて、当該電力系統における太陽光発電出力を変動周期成分ごとに算出する太陽光発電出力推定方法を特徴とする。   The first technical means of the present invention is based on the actual measurement data of the photovoltaic power generation output at the representative point among the plurality of photovoltaic power generation points introduced into the power system, and the introduction amount of the photovoltaic power generation in the power system. In the solar power generation output estimation method for estimating the solar power generation output in the electric power system using the model formula acquired in advance, the solar power generation output data at the representative point is decomposed into predetermined fluctuation period components, and the predetermined power acquired in advance Using the model formula for each fluctuation period component that calculates the reduction ratio of fluctuations in the photovoltaic power output that is smoothed by the synthesis of the photovoltaic power output at a plurality of locations that are distributed at an average distance of A photovoltaic power generation output estimation method that calculates a photovoltaic power generation output in the power system for each fluctuation period component based on a component and the amount of photovoltaic power generation introduced in the power system.

第2の技術手段は、第1の技術手段の太陽光発電出力推定方法において、前記モデル式は、前記代表地点の太陽光発電出力と合成する他の太陽光発電出力の地点数と前記縮小比との関係を示す第1の関係式を導出し、さらに、前記合成する地点間の距離が前記縮小比に与える影響を示す第2の関係式を導出し、該第2の関係式により前記合成する地点間の平均距離における前記影響を算出し、前記第1の式の前記地点数を太陽光発電設備の導入量に変換した式を、前記平均距離により算出した影響によって補正して導出することを特徴とする。   The second technical means is the photovoltaic power output estimation method according to the first technical means, wherein the model formula is the number of other solar power output points to be combined with the solar power output of the representative point and the reduction ratio. A first relational expression indicating the relationship between the two and the combination ratio, and a second relational expression indicating the influence of the distance between the combining points on the reduction ratio. Calculating the influence on the average distance between points to be calculated, and deriving the formula obtained by converting the number of points in the first formula into the amount of installed photovoltaic power generation equipment by correcting the influence calculated by the average distance. It is characterized by.

第3の技術手段は、第2の技術手段の太陽光発電出力推定方法において、前記モデル式は、前記代表地点における太陽光発電出力の実測データおよび、当該データと他の複数の導入地点における太陽光発電出力の実測データとを平均した合成データをそれぞれ前記変動周期成分に分解し、分解した周期成分ごとに前記代表地点のデータと前記合成データのそれぞれの分解した周期成分を比較して周期成分ごとに、前記縮小比と合成地点数との関係を示す前記第1の関係式を導出し、さらに前記代表地点における太陽光発電出力の実測データおよび、当該データと合成する地点ごとの太陽光発電出力の実測データとを平均した合成データをそれぞれ変動周期成分に分解し、分解した周期成分ごとに前記代表地点のデータと前記2地点の合成データのそれぞれの分解した周期成分とを比較し、周期成分ごと、合成した地点ごとに合成地点間の距離が変動縮小比に与える影響を示す第2の関係式を導出し、該第2の関係式により前記合成地点間の平均距離における影響を算出することを特徴とする。   According to a third technical means, in the photovoltaic power generation output estimating method of the second technical means, the model formula includes measured data of the photovoltaic power generation output at the representative point, and the data and the sun at a plurality of other introduction points. The combined data obtained by averaging the measured data of the photovoltaic power generation is decomposed into the variable periodic components, and the periodic components are compared for each decomposed periodic component by comparing the decomposed periodic components of the representative point data and the combined data. For each, the first relational expression indicating the relationship between the reduction ratio and the number of combined points is derived, and the measured data of the photovoltaic power generation output at the representative point and the photovoltaic power generation for each point to be combined with the data The combined data obtained by averaging the actual measured output data is decomposed into variable periodic components, and the representative point data and the combined data of the two points are separated for each decomposed periodic component. Are compared with each of the decomposed periodic components, and a second relational expression indicating the influence of the distance between the combined points on the fluctuation reduction ratio is derived for each periodic component and for each combined point. To calculate the influence on the average distance between the combined points.

第4の技術手段は、第1〜第3のいずれかの技術手段の太陽光発電出力推定方法において、前記推定する発電出力の変動周期成分は、少なくとも電力系統の需給制御におけるガバナフリー(GF)の制御領域に相当する周期成分、負荷周波数制御(LFC)領域に相当する周期成分、経済負荷配分制御(ELD)領域に相当する周期成分を含むことを特徴とする。   According to a fourth technical means, in the photovoltaic power generation output estimation method of any one of the first to third technical means, the fluctuation period component of the estimated power generation output is at least a governor-free (GF) in power supply and demand control. A periodic component corresponding to the control region, a periodic component corresponding to the load frequency control (LFC) region, and a periodic component corresponding to the economic load distribution control (ELD) region.

第5の技術手段は、実測された代表地点の太陽光発電出力データを所定の変動周期成分に分解する周期成分分解部と、電力系統における太陽光発電の導入量設定部と、分解された周期成分と前記設定部に設定された同入量に基づき、太陽光発電出力の合成により平滑化する出力変動の縮小を周期成分ごとに算出する平滑化演算部とを備え、電力系統の太陽光発電出力を変動周期成分ごとに推定する太陽光発電出力推定装置を特徴とする。   The fifth technical means includes a periodic component decomposition unit that decomposes the photovoltaic power generation output data of the measured representative point into a predetermined fluctuation periodic component, a photovoltaic power generation introduction amount setting unit in the power system, and a decomposed cycle And a smoothing calculation unit that calculates, for each periodic component, a reduction in output fluctuation that is smoothed by synthesis of the photovoltaic power generation output based on the components and the amount of input set in the setting unit. It is characterized by a photovoltaic power generation output estimation device that estimates output for each fluctuation period component.

第6の技術手段は、第5の技術手段の太陽光発電出力推定装置において、前記変動周期成分ごとに推定された太陽光発電出力を合成する周期成分合成部を備え、電力系統における太陽光発電出力を推定することを特徴とする。   A sixth technical means is the solar power generation output estimation device according to the fifth technical means, further comprising a periodic component synthesis unit that synthesizes the solar power output estimated for each of the fluctuation periodic components, and the solar power generation in the power system. The output is estimated.

第7の技術手段は、コンピュータに請求項1〜4のいずれかに記載の方法を実行させるためのプログラム。   A seventh technical means is a program for causing a computer to execute the method according to claim 1.

本発明によれば、所定の代表地点における太陽光発電設備の実測データにより電力系統に複数導入された太陽光発電設備の発電出力を電力系統における需給制御の態様に対応した変動周期成分ごとに推定することができる。また、電力系統における太陽光発電設備の連系可能な導入量を推定することもできる。   According to the present invention, the power generation output of a plurality of photovoltaic power generation facilities introduced into the power system is estimated for each variation period component corresponding to the supply and demand control mode in the power system based on the actual measurement data of the photovoltaic power generation facilities at a predetermined representative point. can do. It is also possible to estimate the amount of introduction of solar power generation facilities that can be connected to the power system.

太陽光発電設備の代表観測地点の説明図。Explanatory drawing of the representative observation point of a solar power generation facility. 本発明の発電出力推定手法の説明図。Explanatory drawing of the electric power generation output estimation method of this invention. 本発明の発電出力推定モデル式の導出における観測地点の説明図。Explanatory drawing of the observation point in derivation | leading-out of the electric power generation output estimation model type | formula of this invention. 本発明における発電出力推定モデル式の導出手法の説明図。Explanatory drawing of the derivation | leading-out method of the electric power generation output estimation model formula in this invention. 太陽光発電設備導入量に基づくモデル式の説明図。Explanatory drawing of the model formula based on the amount of installed solar power generation facilities. モデル式導出のための指標のばらつきを示す図。The figure which shows the dispersion | variation in the parameter | index for model model derivation | leading-out. モデル式の距離を考慮した補正の説明図。Explanatory drawing of the correction | amendment which considered the distance of the model type | formula. 本発明における発電出力の推定手順の説明図。Explanatory drawing of the estimation procedure of the electric power generation output in this invention. 供給区域全域の発電出力推定の説明図。Explanatory drawing of the power generation output estimation of the whole supply area.

太陽光発電設備の発電出力の変動の原因は天候の変化であるが、所定の域内に分散設置された各太陽光発電設備の設置地点の相互の天候変化は互いに相関はあるものの一様ではない。各太陽光発電設備の発電出力の変動も一様ではないので、分散設置された各太陽光発電設備の発電出力を合成すると出力変動は個々の太陽光発電設備の発電出力の変動よりも平滑化される平滑化効果が得られる。   The cause of fluctuations in the power generation output of the photovoltaic power generation equipment is a change in weather, but the mutual weather changes at the installation points of the respective photovoltaic power generation equipment distributed in a given area are correlated but not uniform. . Since the fluctuations in the power generation output of each photovoltaic power generation facility are not uniform, the output fluctuation is smoother than the fluctuation in the power generation output of each individual photovoltaic power generation facility when the power generation output of each of the photovoltaic power generation facilities installed in a distributed manner is combined Smoothing effect is obtained.

しかし、分散設置された各太陽光発電設備の設置地点相互における天候変化の傾向は、各太陽光発電設備の設置地点の場所、設置地点相互間の距離により異なるので、前記の平滑化効果も各太陽光発電の立地点の分散状況により異なるものとなる。
さらに、天候の変化が発電出力の変動に与える影響も一様ではないので、出力変動周期ごとの平滑化効果も同様に異なってくる。
本発明では、上記のように太陽光発電の立地点、立地点相互の距離による影響等を補正して発電出力を変動周期成分ごとに推定するものである。
However, the tendency of weather changes between the installation points of each of the photovoltaic power generation facilities installed in a distributed manner varies depending on the location of the installation points of the respective solar power generation facilities and the distance between the installation points. It differs depending on the distribution situation of solar power generation site.
Furthermore, since the influence of the change in the weather on the fluctuation of the power generation output is not uniform, the smoothing effect for each output fluctuation period is also different.
In the present invention, as described above, the location of solar power generation, the influence of the distance between location points, etc. are corrected, and the power generation output is estimated for each fluctuation period component.

図1は、東北地方を例に広範囲に分散立地される太陽光発電出力を推定する例を説明する図である。図1では、東北地方全体を「全域」、各県を「広域」、市町村を「地域」として区分し、各地域内に分散して立地される太陽光発電設備の中の1つを地域の代表地点の太陽光発電設備とすることを示している。   FIG. 1 is a diagram for explaining an example of estimating solar power generation output distributed over a wide area in the Tohoku region as an example. In Fig. 1, the entire Tohoku region is divided into “all areas”, each prefecture is classified as “wide area”, municipalities are classified as “regions”, and one of the photovoltaic power generation facilities distributed in each area is represented by the area. It shows that it is set as the photovoltaic power generation equipment at the point.

図2は本発明の基本的手法を示す図で、上記代表地点の太陽光発電出力の実測値データ1を取得し、太陽光発電出力推定装置10に入力する。入力された変動する代表地点の太陽光発電出力データは、周期成分分解部11によって所定の変動周期成分に分解され、周期成分ごとに平滑化演算部12に入力される。導入量設定部14には電力系統における太陽光発電の導入地点数に対応する太陽光発電導入量2が設定される。
平滑化演算部12は導入量設定部14に設定された太陽光発電導入量および周期成分分解部11で分解された代表地点の周期成分に分解された実測データに基づいて系統に接続され合成されて平滑化する太陽光発電出力の変動の縮小比を変動周期成分ごとに算出し、変動周期成分ごとの発電推定出力3を算出し出力する。
平滑化演算部12における演算は、予め取得した前記合成により平滑化にされる太陽光発電出力の変動周期成分ごとの変動の縮小比を算出するモデル式13により行なわれる。
周期成分合成部15は、前記変動周期成分ごとの発電推定出力3を合成して電力系統における太陽光発電推定出力4を算出し出力する。
FIG. 2 is a diagram showing a basic method of the present invention. The measured value data 1 of the photovoltaic power generation output at the representative point is acquired and inputted to the photovoltaic power generation output estimating apparatus 10. The input photovoltaic power generation output data of the representative point that fluctuates is decomposed into a predetermined fluctuation period component by the period component decomposition unit 11 and input to the smoothing calculation unit 12 for each period component. The introduction amount setting unit 14 is set with a photovoltaic power generation introduction amount 2 corresponding to the number of solar power generation introduction points in the power system.
The smoothing calculation unit 12 is connected to the system and synthesized based on the photovoltaic power generation introduction amount set in the introduction amount setting unit 14 and the measured data decomposed into the periodic components of the representative points decomposed in the periodic component decomposition unit 11. The fluctuation reduction ratio of the photovoltaic power generation output to be smoothed is calculated for each fluctuation period component, and the power generation estimation output 3 for each fluctuation period component is calculated and output.
The calculation in the smoothing calculation unit 12 is performed by a model formula 13 that calculates a reduction ratio of fluctuation for each fluctuation period component of the photovoltaic power generation output that is smoothed by the synthesis obtained in advance.
The periodic component synthesizing unit 15 synthesizes the power generation estimation output 3 for each fluctuation period component to calculate and output the solar power generation estimation output 4 in the power system.

図3〜図7は、前記モデル式を説明する図であり、図3は、図1のある地域に分散立地された太陽光発電の分布を模式的に示している。
モデル式の導出にあたり、先ず地域における代表地点(ポイント)を定める。代表地点は気象予報区分や日射気候区分などをもとに選定すると良い。
選定した代表地点の太陽光発電出力を実測し、図4に示すように、実測した発電出力データを所定の変動周期成分に分解してデータA〜Eを算出する。
3-7 is a figure explaining the said model type | formula, FIG. 3 has shown typically distribution of the photovoltaic power generation distributed in the certain area of FIG.
In deriving the model formula, first, representative points (points) in the region are determined. Representative points should be selected based on weather forecast classification and solar climate classification.
The photovoltaic power generation output at the selected representative point is measured, and as shown in FIG. 4, the measured power generation output data is decomposed into predetermined fluctuation period components to calculate data A to E.

図4において、分解する周期成分は、電力系統における出力変動に対する制御態様に対応し、ガバナフリー(GF)の制御領域に相当する5分以下周期成分(図4におけるE)、負荷周波数制御(LFC)領域に相当する5〜20分周期成分(同D)、経済負荷配分制御(ELD)領域に相当する20分以上周期成分を、当日の需給運用の中で自動制御にて対応する領域に相当する20〜90分周期成分(同C)と、需要想定に基づく翌日の需給運用計画の対象領域に相当する90分以上の周期成分のうち、基本的な天候の特性を表す480分以上の周期成分(同A)と、それ以外の90〜480分周期成分(同B)の5つに分解している。
この5分類の分解区分は必須ではないが、少なくともガバナフリー(GF)の制御領域、負荷周波数制御(LFC)領域、経済負荷配分制御(ELD)領域の区分は必要である。
In FIG. 4, the periodic component to be decomposed corresponds to a control mode for output fluctuations in the power system, and is a periodic component of 5 minutes or less (E in FIG. 4) corresponding to the control region of governor-free (GF), load frequency control (LFC). ) 5 to 20 minute period component (same D) corresponding to the region, 20 minute or more period component corresponding to the economic load distribution control (ELD) region, corresponding to the region corresponding to the automatic control in the supply and demand operation of the day Among the 20 to 90 minute periodic components (C) and 90 minute or more periodic components corresponding to the target area of the next day's supply and demand operation plan based on the demand assumption, a period of 480 minutes or more representing basic weather characteristics It is broken down into five components, the component (same A) and the other 90-480 minute periodic components (same B).
These five classifications are not essential, but at least a governor-free (GF) control area, a load frequency control (LFC) area, and an economic load distribution control (ELD) area are necessary.

図における周期成分A〜Eを示す図の縦軸は、代表地点の太陽光発電出力の定格出力に対する比率を示しており、横軸は1日の時刻である。
発電出力の実測データは、例えば、0.2秒ごとに測定し1秒単位で平均して取得する。
周期成分に分解するに当たっては、例えば、時系列の発電出力データをフーリエ変換して周波数空間の出力データに変換し、帯域フィルタにより変動周期に相当する周波数成分を抽出し、それを逆フーリエ変換することにより当該周期の時系列データを算出することができる。
The vertical axis of the figure showing the periodic components A to E in the figure indicates the ratio of the photovoltaic power generation output at the representative point to the rated output, and the horizontal axis is the time of the day.
The actual measurement data of the power generation output is obtained, for example, by measuring every 0.2 seconds and averaging in units of 1 second.
In decomposing into periodic components, for example, time-series power generation output data is subjected to Fourier transform and converted into frequency space output data, and a frequency component corresponding to the fluctuation period is extracted by a bandpass filter, and then subjected to inverse Fourier transform. As a result, the time-series data of the period can be calculated.

分解した発電出力データから、各々の周期成分についての発電出力値や出力変動の大きさを表す指標r1A〜r1Eを算出する。この指標rとしては、当該周期の出力値の標準偏差や二乗平均平方根などの統計値や最大変動幅などを適宜選定して用いる。
次いで、代表地点を含めて任意の地点の太陽光発電出力を順次選定し、2〜Nポイント(地点)の太陽光発電出力の実測データを平均した平均発電出力データについて、同じく図4に示すように同様に各周期成分に分解し、分解した周期成分ごとに出力値や出力変動の大きさを表す指標rNA〜rNEを算出する。
From the decomposed power generation output data, power generation output values and output fluctuation indices r 1A to r 1E for each periodic component are calculated. As the index r 1 , a statistical value such as a standard deviation or a root mean square of the output value of the period and a maximum fluctuation range are appropriately selected and used.
Next, the average power generation output data obtained by sequentially selecting the solar power generation output at any point including the representative point and averaging the actual measurement data of the solar power generation output at 2 to N points (points) is as shown in FIG. In the same manner, each of the periodic components is decomposed, and an index r NA to r NE representing the output value and the magnitude of the output fluctuation is calculated for each decomposed periodic component.

Nポイントの太陽光発電出力を合成した発電出力の変動は前述のとおり平滑化され出力変動は縮小されるので、この変動縮小比R'と合成するポイント数Nとの対応を式1により分解した周期成分ごとに算出する。
R'=r/r ・・・ 式1
Since the fluctuation of the power generation output obtained by combining the N-point solar power generation output is smoothed and the output fluctuation is reduced as described above, the correspondence between the fluctuation reduction ratio R ′ and the number of points N to be synthesized is decomposed by Equation 1. Calculate for each periodic component.
R ′ N = r N / r 1 Formula 1

図示の実験例は、1日の発電出力を4時から20時まで1ケ月実測したデータを用いたものであるが、発電出力の推定の目的に応じて、着目したい時間帯に合わせて任意のデータ長に区切ってR'を算出すればよい。
実験では略同規模の太陽光発電設備が分散設置されるものとして、10地点を選定して観測して算出した。表1は算出したポイント数Nごと、算出された周期成分ごとの変動縮小比R'である。
The illustrated experimental example uses data obtained by measuring the power generation output for one day from 4 o'clock to 20 o'clock for one month. However, depending on the purpose of estimating the power generation output, any desired time zone can be selected. R ′ may be calculated by dividing the data length.
In the experiment, it was calculated by selecting and observing 10 sites on the assumption that solar power generation facilities of approximately the same scale are distributed. Table 1 shows the variation reduction ratio R ′ for each calculated point number N and each calculated periodic component.

Figure 2013099228
Figure 2013099228

表1に基づいて、最小二乗法などを用いて近似曲線を算出し、分解した周期成分ごとの変動縮小比(R')と設置地点(測定ポイント)数Nとの関係式を導出した結果を表2に示す。   Based on Table 1, an approximate curve is calculated using a least square method or the like, and a result of deriving a relational expression between the variation reduction ratio (R ′) for each decomposed periodic component and the number N of installation points (measurement points) is shown. It shows in Table 2.

Figure 2013099228
Figure 2013099228

住宅の屋根などに設置される太陽光発電設備は、様々な定格出力のものが存在するが、平均的には略同規模の設備と見ることができるので、図5に示すように、上述の関係式におけるNを太陽光発電設備の導入量(P=N×k)に換算し、式2を求める。
R'=f(P) ・・・ 式2
There are various rated output solar power generation facilities installed on the roof of a house, etc., but on average, it can be regarded as a facility of almost the same scale, so as shown in FIG. N in the relational expression is converted into the introduction amount of solar power generation equipment (P = N × k), and Expression 2 is obtained.
R ′ = f (P) (2)

実験では、一般住宅に設置される太陽光発電設備の一般的な定格出力として4kWを想定して、N=P/4として、太陽光発電設備の導入量P(kW)に対する変動縮小比R'の関係式が表3のように求められた。   In the experiment, assuming that 4 kW is a general rated output of the photovoltaic power generation equipment installed in a general house, N = P / 4, and the fluctuation reduction ratio R ′ with respect to the introduction amount P (kW) of the photovoltaic power generation equipment. The following relational expression was obtained as shown in Table 3.

Figure 2013099228
Figure 2013099228

図6は、実験結果の、N=10(P=40kW)における変動縮小比R'の1ケ月の算出データであるが、日によるばらつきが見られる。そのため、式2のR'の算出にあたっては、1ヶ月平均値や最大値などの統計値を用いる。 FIG. 6 shows calculation data for one month of the fluctuation reduction ratio R ′ when N = 10 (P = 40 kW) as an experimental result, and there are variations depending on the day. Therefore, in calculating R ′ in Equation 2, statistical values such as a monthly average value and a maximum value are used.

また、各太陽光発電出力の測定ポイント間の距離により日々の天候変化による発電出力の変動の相関は異なるものと考えられるので、各太陽光発電出力の測定地点間の距離を考慮して補正する。   In addition, the correlation between fluctuations in power generation output due to daily weather changes is considered to differ depending on the distance between measurement points for each solar power output. .

補正の手法は、図7に示すように、代表ポイントの太陽光発電出力を同様に変動周期成分に分解し、各周期成分の変動指標r1A〜r1Eを算出する。次いで、代表ポイントからxkmはなれた太陽光発電出力を合成するポイントについて、代表ポイントの実測データと合成する他の地点(ポイント)の実測データをポイントごとに平均した平均発電出力データを変動周期成分に分解し、各周期成分の変動指標r2Ax〜r2Exを算出し、ポイントごとに2地点間の距離と対応した変動縮小比R”を式3により求める。
R”=r/r2x ・・・ 式3
なお、図7における各周期成分を示す表示は、図4の例と同じである。
As shown in FIG. 7, the correction method similarly decomposes the photovoltaic power generation output at the representative point into fluctuation period components, and calculates fluctuation indices r 1A to r 1E of the respective period components. Next, for the point that combines the photovoltaic power generation output that is separated from the representative point by xkm, the average power generation output data obtained by averaging the actual measurement data of the representative point with the actual measurement data of other points (points) to be combined for each point is used as the fluctuation cycle component. decomposing, calculating a fluctuation index r 2AX ~r 2EX of each periodic component, the variation reduction ratio R "x corresponding to the distance between two points for each point is obtained by equation 3.
R "x = r 1 / r 2x ··· Formula 3
In addition, the display which shows each periodic component in FIG. 7 is the same as the example of FIG.

表4は、太陽光発電出力の合成地点間の距離に対応する変動縮小比を周期成分ごとに示す実験結果である。   Table 4 shows the experimental results showing the fluctuation reduction ratio corresponding to the distance between the combined points of the photovoltaic power generation output for each periodic component.

Figure 2013099228
Figure 2013099228

表4のデータから、2地点のポイント間の距離と、太陽光発電出力値や出力変動の平滑化度合いを示した変動縮小比の関係を、最小二乗法などを用いて近似直線または曲線を算出し、各々の周期成分における地点間距離x(km)と変動縮小比R”の関係式が表5のように導出される。   From the data in Table 4, calculate the approximate straight line or curve using the least squares method for the relationship between the distance between the two points and the fluctuation reduction ratio indicating the degree of smoothing of the photovoltaic power generation output value and output fluctuation. Then, a relational expression between the point-to-point distance x (km) and the fluctuation reduction ratio R ″ in each periodic component is derived as shown in Table 5.

Figure 2013099228
Figure 2013099228

この関係式を基に、市町村レベル範囲の想定地域における分散設置された各太陽光発電設備の平均的な地点間距離x0(km)における変動縮小比R”(x0)を用い、太陽光発電導入量Pに対する変動縮小比Rの関係を補正することで地点間の距離による太陽光発電設備の出力値や出力変動の平滑化度合いを考慮した次に示す式4を算出する。
R=R’/R”(x0)=f(P)/R”(x0) ・・・ 式4
Based on this relational expression, introduction of photovoltaic power generation using the fluctuation reduction ratio R ″ (x0) at the average point-to-point distance x0 (km) of each photovoltaic power generation facility installed in the assumed area of the municipal level range By correcting the relationship of the fluctuation reduction ratio R with respect to the amount P, the following expression 4 is calculated in consideration of the output value of the photovoltaic power generation facility according to the distance between points and the smoothing degree of the output fluctuation.
R = R ′ / R ″ (x0) = f (P) / R ″ (x0) Equation 4

実験結果では、想定地域における平均的な地点間距離x0(km)を10(km)と想定し、変動縮小比のモデルが以下のように求められる。   In the experimental results, an average point-to-point distance x0 (km) in the assumed area is assumed to be 10 (km), and a model of the fluctuation reduction ratio is obtained as follows.

Figure 2013099228
Figure 2013099228

図8は、本発明の推定手法を図示したものであり、代表地点の実測データ1は周期成分分解部11で図に示すように各周期成分に分解され、平滑化演算部12に入力され、また、導入量設定部14に設定された系統の太陽光発電導入量2が入力され、数式4に示す周期成分ごとのモデル式13により当該系統における変動周期成分ごとに発電出力3を推定し出力する。さらに、変動周期成分ごとの推定出力3は周期成分合成部15によって合成され、系統の太陽光発電出力が推定される。
図8における周期成分の表示も図4の例と同じであり、縦軸は太陽光発電設備の定格出力に対する比率を示している。
FIG. 8 illustrates the estimation method of the present invention. The representative point actual measurement data 1 is decomposed into periodic components as shown in the figure by the periodic component decomposition unit 11 and input to the smoothing calculation unit 12. Further, the amount of photovoltaic power generation introduction 2 of the system set in the introduction amount setting unit 14 is input, and the power generation output 3 is estimated and output for each variation period component in the system by the model expression 13 for each period component shown in Expression 4. To do. Further, the estimated output 3 for each fluctuation cycle component is synthesized by the cycle component synthesis unit 15 to estimate the photovoltaic power generation output of the system.
The display of the periodic component in FIG. 8 is also the same as in the example of FIG. 4, and the vertical axis indicates the ratio to the rated output of the photovoltaic power generation facility.

地域系統に設置された太陽光発電出力は上位系統を介してさらに広域、全域に連系されるので、図9に示すように地域ごとに推定した変動周期成分ごとの発電出力は連系する電力系統における損失等に係わる定数を考慮して加算し、広域における太陽光発電出力5、さらに全域で合計することにより供給区域全体における太陽光発電出力6を推定することができる。
また、以上では、地域に導入(設置)された太陽光発電設備の出力変動周期ごとの発電出力の推定について記述したが、この手法により、今後太陽光発電設備の設置が普及した場合、地域単位ごとに設置が予想される導入量に基づいて、変動周期ごとの太陽光発電出力が推定できるので、電力系統における必要な対策を事前に的確に講じることができる。
さらに、電力系統の需給調整能力に応じた連系可能な太陽光発電設備の導入量を推定することもできる。
Since the photovoltaic power generation output installed in the regional grid is linked to a wider area and the entire area via the higher-level grid, the power generation output for each fluctuation period component estimated for each area as shown in FIG. It is possible to estimate the photovoltaic power generation output 6 in the entire supply area by adding the solar power generation output 5 in a wide area and further adding the totals in consideration of constants related to losses in the system.
In the above, the estimation of the power generation output for each output fluctuation period of the photovoltaic power generation equipment introduced (installed) in the region has been described. Since the photovoltaic power generation output for each fluctuation period can be estimated based on the introduction amount expected to be installed every time, it is possible to accurately take necessary measures in advance in the power system.
Furthermore, it is also possible to estimate the amount of solar power generation equipment that can be connected according to the power supply and demand adjustment capability of the power system.

1…代表地点の太陽光発電設備の出力実測データ、2…太陽光発電の導入量、3…変動周期成分ごとの太陽光発電出力の推定値、4…太陽光発電出力の推定値、10…太陽光発電出力推定装置、11…周期成分分解部、12…平滑化演算部、13…モデル式、14…導入量設定部、15…周期成分合成部、4a〜n…地域における太陽光発電出力の推定値、5a〜m…広域における太陽光発電出力の推定値、6…全域域における太陽光発電出力の推定値。 DESCRIPTION OF SYMBOLS 1 ... Output measurement data of the photovoltaic power generation equipment of a representative point, 2 ... Introduction amount of photovoltaic power generation, 3 ... Estimated value of photovoltaic power generation output for every fluctuation period component, 4 ... Estimated value of photovoltaic power generation output, 10 ... Photovoltaic power generation output estimation device, 11 ... periodic component decomposition unit, 12 ... smoothing calculation unit, 13 ... model formula, 14 ... introduction amount setting unit, 15 ... periodic component synthesis unit, 4a-n ... solar power generation output in the area 5a to m ... Estimated value of photovoltaic power generation output in a wide area, 6 ... Estimated value of photovoltaic power generation output in the entire area.

Claims (7)

電力系統に導入された複数の太陽光発電地点の中の代表地点の太陽光発電出力の実測データおよび、前記電力系統における太陽光発電の導入量に基づいて、予め取得したモデル式を用いて電力系統における太陽光発電出力を推定する太陽光発電出力推定方法において、
前記代表地点の太陽光発電出力データを所定の変動周期成分に分解し、予め取得した所定の平均距離で分散して立地された複数地点の太陽光発電出力の合成により平滑化する太陽光発電出力の変動の縮小比を演算する変動周期成分ごとのモデル式を用い、前記分解した各周期成分と前記電力系統における太陽光発電の導入量とに基づいて、当該電力系統における太陽光発電出力を変動周期成分ごとに算出することを特徴とする太陽光発電出力推定方法。
Based on the measured data of the photovoltaic power generation output at the representative point among the plurality of photovoltaic power generation points introduced into the power system and the amount of photovoltaic power generation introduced in the power system, using the model formula obtained in advance In the solar power output estimation method for estimating the solar power output in the grid,
Photovoltaic power output that is obtained by decomposing the solar power output data of the representative point into predetermined fluctuation period components and smoothing it by synthesizing the solar power output at a plurality of points that are dispersed and located at a predetermined average distance. Using the model formula for each fluctuation period component that calculates the fluctuation reduction ratio of the fluctuation, the photovoltaic power generation output in the power system is fluctuated based on each decomposed periodic component and the amount of photovoltaic power generation introduced in the power system A photovoltaic power generation output estimation method characterized by calculating for each periodic component.
前記モデル式は、前記代表地点の太陽光発電出力と合成する他の太陽光発電出力の地点数と前記縮小比との関係を示す第1の関係式を導出し、さらに、前記合成する地点間の距離が前記縮小比に与える影響を示す第2の関係式を導出し、該第2の関係式により前記合成する地点間の平均距離における前記影響を算出し、前記第1の式の前記地点数を太陽光発電設備の導入量に変換した式を、前記平均距離により算出した影響によって補正して導出することを特徴とする請求項1に記載の太陽光発電出力推定方法。   The model formula derives a first relational expression indicating the relationship between the number of other solar power output points to be combined with the solar power output at the representative point and the reduction ratio, and further, between the points to be combined A second relational expression indicating the influence of the distance of the distance on the reduction ratio is derived, and the influence on the average distance between the combined points is calculated by the second relational expression, and the ground of the first expression is calculated. The photovoltaic power generation output estimation method according to claim 1, wherein a formula obtained by converting the number of points into the amount of installed solar power generation equipment is corrected and derived by the influence calculated by the average distance. 前記モデル式は、前記代表地点における太陽光発電出力の実測データおよび、当該データと他の複数の導入地点における太陽光発電出力の実測データとを平均した合成データをそれぞれ前記変動周期成分に分解し、分解した周期成分ごとに前記代表地点のデータと前記合成データのそれぞれの分解した周期成分を比較して周期成分ごとに、前記縮小比と合成地点数との関係を示す前記第1の関係式を導出し、さらに前記代表地点における太陽光発電出力の実測データおよび、当該データと合成する地点ごとの太陽光発電出力の実測データとを平均した合成データをそれぞれ前記変動周期成分に分解し、分解した周期成分ごとに前記代表地点のデータと前記2地点の合成データのそれぞれの分解した周期成分とを比較し、周期成分ごと、合成した地点ごとに合成地点間の距離が変動縮小比に与える影響を示す第2の関係式を導出し、該第2の関係式により前記合成地点間の平均距離における影響を算出することを特徴とする請求項2に記載の太陽光発電出力推定方法。   The model formula decomposes the measured data of the photovoltaic power generation output at the representative point, and the combined data obtained by averaging the data and the measured data of the photovoltaic power generation output at a plurality of other introduction points into the fluctuation period components, respectively. The first relational expression showing the relationship between the reduction ratio and the number of synthesized points for each periodic component by comparing the decomposed periodic components of the representative point and the synthesized data for each decomposed periodic component And further decomposing the synthesized data obtained by averaging the measured data of the photovoltaic power generation output at the representative point and the measured data of the photovoltaic power generation output for each point to be combined into the fluctuation period component, For each periodic component, the data of the representative point and the decomposed periodic component of the combined data of the two points are compared, and each periodic component is synthesized. A second relational expression indicating the influence of the distance between the combined points on the fluctuation reduction ratio is derived for each point, and the influence on the average distance between the combined points is calculated by the second relational expression. The solar power generation output estimation method according to claim 2. 前記推定する発電出力の変動周期成分は、少なくとも電力系統の需給制御におけるガバナフリー(GF)の制御領域に相当する周期成分、負荷周波数制御(LFC)領域に相当する周期成分、経済負荷配分制御(ELD)領域に相当する周期成分を含むことを特徴とする請求項1から3のいずれかに記載の太陽光発電出力推定方法。   The fluctuation period component of the power generation output to be estimated includes at least a periodic component corresponding to a governor-free (GF) control region in power supply and demand control, a periodic component corresponding to a load frequency control (LFC) region, and economic load distribution control ( The photovoltaic power generation output estimation method according to any one of claims 1 to 3, further comprising a periodic component corresponding to an ELD) region. 実測された代表地点の太陽光発電出力データを所定の変動周期成分に分解する周期成分分解部と、電力系統における太陽光発電の導入量設定部と、分解された周期成分と前記設定部に設定された同入量に基づき、太陽光発電出力の合成により平滑化する出力変動の縮小を周期成分ごとに算出する平滑化演算部とを備え、電力系統の太陽光発電出力を変動周期成分ごとに推定することを特徴とする太陽光発電出力推定装置。   A periodic component decomposition unit that decomposes the measured photovoltaic power generation output data of the representative point into predetermined fluctuation periodic components, an introduction amount setting unit for photovoltaic power generation in the power system, and a decomposed periodic component and setting in the setting unit A smoothing calculation unit that calculates, for each periodic component, a reduction in output fluctuation that is smoothed by synthesizing the photovoltaic power generation based on the added amount, and for each fluctuation periodic component A photovoltaic power generation output estimation device characterized by estimating. 前記変動周期成分ごとに推定された太陽光発電出力を合成する周期成分合成部を備え、電力系統における太陽光発電出力を推定することを特徴とする請求項5に記載の太陽光発電出力推定装置。   The photovoltaic power generation output estimation apparatus according to claim 5, further comprising a periodic component synthesis unit that synthesizes the photovoltaic power generation output estimated for each fluctuation periodic component, and estimates the photovoltaic power generation output in the power system. . コンピュータに請求項1〜4のいずれかに記載の方法を実行させるためのプログラム。   The program for making a computer perform the method in any one of Claims 1-4.
JP2011243232A 2011-11-07 2011-11-07 Method and apparatus for estimating power generation output of photovoltaic power generation facility Active JP5819162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011243232A JP5819162B2 (en) 2011-11-07 2011-11-07 Method and apparatus for estimating power generation output of photovoltaic power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011243232A JP5819162B2 (en) 2011-11-07 2011-11-07 Method and apparatus for estimating power generation output of photovoltaic power generation facility

Publications (2)

Publication Number Publication Date
JP2013099228A true JP2013099228A (en) 2013-05-20
JP5819162B2 JP5819162B2 (en) 2015-11-18

Family

ID=48620581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011243232A Active JP5819162B2 (en) 2011-11-07 2011-11-07 Method and apparatus for estimating power generation output of photovoltaic power generation facility

Country Status (1)

Country Link
JP (1) JP5819162B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020039222A (en) * 2018-09-05 2020-03-12 株式会社日立製作所 Power supply-demand control device, power supply-demand control system, and power supply-demand control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037226A (en) * 2005-07-25 2007-02-08 Mitsubishi Electric Corp Power supply system and its control method
JP2009050064A (en) * 2007-08-17 2009-03-05 Hitachi Ltd Distribution system status estimating device
JP2011185649A (en) * 2010-03-05 2011-09-22 Mitsubishi Electric Corp Apparatus and method for estimation of generated power
JP2011199955A (en) * 2010-03-17 2011-10-06 Chugoku Electric Power Co Inc:The Photovoltaic power-generation output estimation method and photovoltaic power-generation output estimation device
JP2011211774A (en) * 2010-03-29 2011-10-20 Tokyo Electric Power Co Inc:The Power variation estimation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037226A (en) * 2005-07-25 2007-02-08 Mitsubishi Electric Corp Power supply system and its control method
JP2009050064A (en) * 2007-08-17 2009-03-05 Hitachi Ltd Distribution system status estimating device
JP2011185649A (en) * 2010-03-05 2011-09-22 Mitsubishi Electric Corp Apparatus and method for estimation of generated power
JP2011199955A (en) * 2010-03-17 2011-10-06 Chugoku Electric Power Co Inc:The Photovoltaic power-generation output estimation method and photovoltaic power-generation output estimation device
JP2011211774A (en) * 2010-03-29 2011-10-20 Tokyo Electric Power Co Inc:The Power variation estimation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020039222A (en) * 2018-09-05 2020-03-12 株式会社日立製作所 Power supply-demand control device, power supply-demand control system, and power supply-demand control method
JP7285053B2 (en) 2018-09-05 2023-06-01 株式会社日立製作所 Power supply and demand control device, power supply and demand control system, and power supply and demand control method

Also Published As

Publication number Publication date
JP5819162B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP5452764B2 (en) Voltage control device
JP5886407B1 (en) Prediction device
JP5957372B2 (en) Solar radiation amount calculation method and supply power determination method
Verdejo et al. Modelling uncertainties in electrical power systems with stochastic differential equations
JP5989754B2 (en) Prediction device
JP6082811B2 (en) Renewable energy power generation facility control system, control method therefor, and renewable energy power generation system
Duignan et al. Capacity value of solar power
Mills et al. Implications of geographic diversity for short-term variability and predictability of solar power
Aboumahboub et al. On the CO2 emissions of the global electricity supply sector and the influence of renewable power-modeling and optimization
JP6530172B2 (en) POWER SYSTEM MONITORING DEVICE AND POWER SYSTEM MONITORING METHOD
Jawad A systematic approach to estimate the frequency support from large-scale PV plants in a renewable integrated grid
JP2010130762A (en) Electric power supply system containing natural energy generating apparatus and supply/demand adjusting method
Chavan et al. Effect of vertical wind shear on flicker in wind farm
Guo et al. WAMS-based model-free wide-area damping control by voltage source converters
JP5466596B2 (en) Method for estimating power generation output of photovoltaic power generation facilities
Goergens et al. Determination of the potential to provide reactive power from distribution grids to the transmission grid using optimal power flow
Han et al. A study of the reduction of the regional aggregated wind power forecast error by spatial smoothing effects in the Maritimes Canada
WO2017221343A1 (en) Solar light output prediction device, electric power system control device, and solar light output prediction method
JP2016019373A (en) Renewable energy power generation facility control system
JP5819162B2 (en) Method and apparatus for estimating power generation output of photovoltaic power generation facility
JP6449670B2 (en) Method and apparatus for estimating photovoltaic power generation output
JP6530698B2 (en) Apparatus and method for estimating power generation of distributed power source
JP5946742B2 (en) Fluctuation estimation method, fluctuation estimation apparatus and fluctuation estimation program for total output of natural energy type distributed power supply group
CN115879976A (en) Carbon neutralization simulation method and terminal
JP5989571B2 (en) Fluctuation estimation method, fluctuation estimation apparatus, and fluctuation estimation program for total power output of natural energy type distributed power supply group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150930

R150 Certificate of patent or registration of utility model

Ref document number: 5819162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250