JP7285053B2 - Power supply and demand control device, power supply and demand control system, and power supply and demand control method - Google Patents

Power supply and demand control device, power supply and demand control system, and power supply and demand control method Download PDF

Info

Publication number
JP7285053B2
JP7285053B2 JP2018165578A JP2018165578A JP7285053B2 JP 7285053 B2 JP7285053 B2 JP 7285053B2 JP 2018165578 A JP2018165578 A JP 2018165578A JP 2018165578 A JP2018165578 A JP 2018165578A JP 7285053 B2 JP7285053 B2 JP 7285053B2
Authority
JP
Japan
Prior art keywords
power
control
fluctuation
demand
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018165578A
Other languages
Japanese (ja)
Other versions
JP2020039222A (en
Inventor
潤 山崎
大一郎 河原
大祐 加藤
徹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018165578A priority Critical patent/JP7285053B2/en
Publication of JP2020039222A publication Critical patent/JP2020039222A/en
Application granted granted Critical
Publication of JP7285053B2 publication Critical patent/JP7285053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、電力の需給制御の技術に関わる。 The present invention relates to a technology for power supply and demand control.

電力系統運用者は、電力系統の安定運用を維持するため、電力需要量および発電機からの電力供給量を一致させる必要がある。電力の需給調整に関連する技術として、例えば特許文献1と特許文献2に記載の技術がある。 In order to maintain stable operation of the power system, power system operators need to match the amount of power demand and the amount of power supplied from generators. For example, Patent Literature 1 and Patent Literature 2 disclose techniques related to power supply and demand adjustment.

特許文献1には、「負荷周波数制御(LFC)発電機又は経済負荷配分制御(ELD)発電機として使用される複数の発電機と、電力系統において周波数変化量(ΔF)を検出するΔF検出部と、連系線潮流変化量(ΔPT)を検出するΔPT検出部と、自然エネルギ(N)を検出する自然エネルギ検出部と、を備え、かつ、前記周波数変化量(ΔF)と前記連系線潮流変化量(ΔPT)と自然エネルギ検出部(N)の出力を用いて地域要求電力(AR)を算出するAR計算部と、算出した地域要求電力(AR)を平滑化処理するAR平滑部と、平滑化した地域要求電力(AR)を発電機毎に配分するAR配分部と、当該配分された地域要求電力(AR)及び経済負荷配分制御(ELD)にて算出したELDスケジュールから目標指令値を算出する目標指令値算出部と、各発電機に前記目標指令値を発すると共に、発電機をLFC発電機又はELD発電機のどちらかに切替える指令を発する指令部と、を有する」と記載されている。 In Patent Document 1, "a plurality of generators used as load frequency control (LFC) generators or economic load distribution control (ELD) generators and a ΔF detection unit that detects frequency variation (ΔF) in an electric power system , a ΔPT detection unit that detects an amount of change in power flow (ΔPT) in an interconnection line, and a natural energy detection unit that detects natural energy (N), and the amount of frequency change (ΔF) and the interconnection line An AR calculator that calculates the regional demand power (AR) using the power flow variation (ΔPT) and the output of the natural energy detector (N), and an AR smoothing unit that smoothes the calculated regional power demand (AR) , the target command value from the ELD schedule calculated by the AR distribution unit that distributes the smoothed regional requested power (AR) to each generator, and the distributed regional requested power (AR) and the ELD schedule calculated by the economic load distribution control (ELD) and a command unit that issues the target command value to each generator and issues a command to switch the generator to either the LFC generator or the ELD generator. ing.

特許文献2には、「制御対象日に所定の周波数帯域の負荷電力の変動を蓄電池の出力で補償する電力管理システムであって、前記制御対象日の負荷電力が他の時間帯に比較して減少する時間帯に、SOCの値が目標値に収束するように前記蓄電池の出力を制御し、前記所定の周波数帯域の前記負荷電力の変動を補償する蓄電池制御部を備える」と記載されている。 In Patent Document 2, "A power management system that compensates for fluctuations in load power in a predetermined frequency band on a control target day with the output of a storage battery, wherein the load power on the control target day is compared to other time zones a storage battery control unit that controls the output of the storage battery so that the SOC value converges to the target value during the decreasing time period, and compensates for fluctuations in the load power in the predetermined frequency band." .

特開2014-204577号公報JP 2014-204577 A 特開2017-28861号公報JP 2017-28861 A

電力の需給調整にあたり、需給計画を立てる段階で正確な需要予測を実現することは困難であるため、電力系統運用者は調整力を供給可能な調整力電源を別途確保する。実需要と事前の需要予測値に誤差が生じた場合、電力系統運用者は事前調達した調整力電源に対し適切な制御指令を送信することで、需要と供給を一致させて系統周波数を閾値内に収め、系統の安定運用を実現することができる。 In adjusting the supply and demand of electricity, it is difficult to achieve an accurate demand forecast at the stage of making a supply and demand plan. If there is an error between the actual demand and the demand forecast value in advance, the power system operator can match the supply and demand by sending appropriate control commands to the regulating power supply procured in advance to keep the system frequency within the threshold. It is possible to achieve stable operation of the system.

近年、太陽光発電や風力発電に代表される再生可能エネルギーが系統に大量導入されつつある。それらの再生可能エネルギーは、急峻かつ事前想定困難な発電出力変動を伴い、この結果として、必要となる調整力調達量は増大していくものと見込まれる。 In recent years, a large amount of renewable energy such as solar power generation and wind power generation has been introduced into the grid. These renewable energies are accompanied by sudden power output fluctuations that are difficult to predict in advance, and as a result, it is expected that the amount of procurement of adjustment power that will be required will increase.

上記の課題に対し、特許文献1には、再生可能エネルギーの増大による出力変動増大に対し、周波数制御性能を向上する技術が記載されている。 In response to the above problem, Patent Document 1 describes a technique for improving frequency control performance against an increase in output fluctuation due to an increase in renewable energy.

また、調整力調達に関して、2020年を目途に柔軟な調整力の調達や取引を行うことができる市場(需給調整市場)を創設し、調整力の確保をより効率的に実施する動きが進んでいる。この中で、従来、調整力電源として活用されてきた火力発電、水力発電に加え、以下に記載する新たな調整力電源の活用が検討されている。その例として、蓄電池制御、揚水発電のポンプアップ、電気自動車の充放電制御、デマンドレスポンス(Demand Response、以下「DR」とする)、さらに上記の複数手段を包含するマイクログリッド制御、仮想発電所(Virtual Power Plant、以下VPPとする)制御、があげられる。火力発電、水力発電の休廃止により調達可能な調整力が減少するなか、これらの新たな調整力を活用することにより効率的な調整力調達の実現が期待される。 In addition, regarding the procurement of reserve capacity, there is a movement to create a market (supply and demand adjustment market) in which flexible reserve reserves and transactions can be conducted by 2020, and to secure reserve reserves more efficiently. there is In this context, in addition to thermal power generation and hydroelectric power generation, which have conventionally been used as regulating power sources, the following new regulating power sources are being considered. Examples include storage battery control, pump-up of pumped storage power generation, charge and discharge control of electric vehicles, demand response (hereinafter referred to as "DR"), microgrid control including the above multiple means, virtual power plant ( Virtual Power Plant (hereinafter referred to as VPP) control. As the reserve capacity that can be procured decreases due to the suspension and abolition of thermal power generation and hydroelectric power generation, it is expected that efficient procurement of reserve capacity will be realized by utilizing these new reserve capacity.

一方で、これらの新たな調整力電源は多様な制御性能および運用制約を持つ。特に、蓄電池や可変速揚水発電機を例とするエネルギー貯蔵電源を周波数調整制御に活用する場合、各調整力電源の制御出力範囲は運用状態に依存する。例えば、蓄電池が充電量100%の状態にある場合、当該蓄電池は現状以上に充電方向の制御を実施できないため、同じ蓄電池の充電量が50%の状態と比較して、提供可能な調整力が少ないとみなせる。前記背景に関連し、蓄電池の運用状態(SOC:State of Charge)を最適運用点に保つための補正制御手法が考案されている。 On the one hand, these new regulatable power sources have diverse control performance and operational constraints. In particular, when an energy storage power supply such as a storage battery or a variable speed pumped storage generator is used for frequency adjustment control, the control output range of each adjustment power supply depends on the operating state. For example, when the storage battery is in a state of 100% charge, the storage battery cannot control the charging direction more than the current state. can be considered small. In relation to the above background, a correction control technique has been devised for maintaining the operating state (SOC: State of Charge) of the storage battery at the optimum operating point.

例えば、特許文献2には、SOCの値が目標値に収束するように前記蓄電池の出力を制御するSOC補正制御について記載されている。 For example, Patent Literature 2 describes SOC correction control for controlling the output of the storage battery so that the SOC value converges to a target value.

しかし、特許文献2のSOC補正制御により、周波数制御に貢献する需給制御方向とは逆方向の制御が生じる可能性がある。また、SOCの最適運用点からの乖離を防止するため、制御の総量が増大し、運用コストが増大する可能性がある。従って、周波数制御の最適化による制御量削減とSOC運用点補正制御を両立する制御計画の算出が必要となる。 However, the SOC correction control of Patent Document 2 may cause control in the direction opposite to the direction of supply and demand control that contributes to frequency control. In addition, in order to prevent the SOC from deviating from the optimum operating point, the total amount of control increases, and there is a possibility that the operating cost will increase. Therefore, it is necessary to calculate a control plan that achieves both reduction of the control amount by optimizing frequency control and SOC operating point correction control.

また、特許文献1に記載の技術では、このような制御量削減とSOC運用点補正制御の両立を実現することができない。 Further, with the technique described in Patent Document 1, it is not possible to realize both the reduction of the control amount and the SOC operating point correction control.

本発明の目的は、運用コストを低減しつつ運用制約を遵守する需給制御を実現することである。 An object of the present invention is to realize supply and demand control that observes operational constraints while reducing operational costs.

上記課題を解決するために、代表的な本発明の一つは、「電力系統の過去の計測値である実績系統情報と将来の予測値である予測系統情報とに基づき、変動周期ごとの必要調整力推定値を算出する必要調整力推定部と、必要調整力推定値とエネルギー貯蔵電源の運用状態を含む系統運用情報とに基づき、調整力配分計画を算出する調整力配分算出部と、調整力配分計画と系統運用基準情報とに基づき、前記調整力配分計画の評価値を算出する調整力配分評価部とを備える電力需給制御装置。」としたものである。 In order to solve the above-mentioned problems, one of the representative present inventions is "based on the actual system information, which is the past measured value of the power system, and the predicted system information, which is the future predicted value. A control power distribution calculation unit that calculates a control power allocation plan based on the required control power estimation unit that calculates the control power estimated value and system operation information including the operation state of the energy storage power source and the control power estimated value; An electric power supply and demand control device comprising: a control power distribution evaluation unit that calculates an evaluation value of the control power distribution plan based on the power distribution plan and system operation standard information."

本発明によれば、運用コストを低減しつつ運用制約を遵守する需給制御を実現することができる。 ADVANTAGE OF THE INVENTION According to this invention, the supply and demand control which observes operation|movement restrictions can be implement|achieved, reducing operation cost.

本発明に係る電力需給制御装置の機能構成を示すブロック図の例である。1 is an example of a block diagram showing a functional configuration of a power supply and demand control device according to the present invention; FIG. 本発明に係る電力需給制御システムの構成図の例である。1 is an example of a configuration diagram of a power supply and demand control system according to the present invention; FIG. 本発明に係る電力需給制御装置の必要調整力推定値算出フローチャートの例である。It is an example of the required control power estimated value calculation flowchart of the electric power supply and demand control apparatus which concerns on this invention. 本発明に係る電力需給制御装置の入力である必要調整力推定値のデータ構成の例である。It is an example of the data structure of the required control power estimated value which is an input of the power supply and demand control apparatus according to the present invention. 本発明に係る電力需給制御装置の入力であるオンライン系統運用情報のデータ構成の例である。It is an example of the data structure of the online system operation information which is the input of the power supply and demand control device according to the present invention. 本発明に係る電力需給制御装置の入力である電力市場入札情報のデータ構成の例である。It is an example of the data structure of the electric power market bidding information which is the input of the electric power supply and demand control device according to the present invention. 本発明に係る電力需給制御装置の出力である調整力調達情報のデータ構成の例である。It is an example of the data structure of the control power procurement information that is the output of the power supply and demand control device according to the present invention. 本発明に係る電力需給制御装置の出力である需給制御計画情報のデータ構成の例である。It is an example of the data structure of the demand-supply control plan information which is the output of the power demand-supply control apparatus according to the present invention. 本発明に係る電力需給制御装置に関わる調整力配分の概念図である。FIG. 2 is a conceptual diagram of control power distribution related to the power supply and demand control device according to the present invention; 本発明に係る電力需給制御装置の入力である運用基準情報のデータ構成の例である。It is an example of the data structure of the operation standard information which is the input of the power supply and demand control device according to the present invention. 本発明に係る電力需給制御装置の調整力配分評価のフローチャートの例である。It is an example of a flow chart of adjustment force distribution evaluation of the power supply and demand control device according to the present invention. 本発明に係る電力需給制御装置の出力である調整力配分評価情報のデータ構成の例である。It is an example of a data structure of control force distribution evaluation information that is an output of the power supply and demand control device according to the present invention. 本発明に係る電力需給制御装置の調整力配分状態の画面表示例である。It is an example of a screen display of the adjustment force distribution state of the power supply and demand control device according to the present invention.

以下、本発明の実施に好適な実施例について説明する。尚、下記はあくまでも実施の例に過ぎず、下記具体的内容に発明自体が限定されることを意図する趣旨ではない。 Preferred examples for carrying out the present invention will be described below. It should be noted that the following is merely an example of implementation, and is not intended to limit the invention itself to the following specific contents.

本発明の実施形態について、図面を参照しながら以下説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施形態が適用された電力需給制御装置の機能構成図の例を表す。本実施形態における電力需給制御装置は、電力需給制御部10と、情報記憶部21~24と、を備える。 FIG. 1 shows an example of a functional configuration diagram of a power supply and demand control device to which one embodiment of the present invention is applied. The power supply and demand control device in this embodiment includes a power supply and demand control unit 10 and information storage units 21 to 24 .

電力需給制御部10は、必要な調整力の推定値である必要調整力推定値を算出する必要調整力推定部11と、調整力配分計画を算出する調整力配分算出部12と、調整力配分計画の評価値を算出する調整力配分評価部13と、を備える。 The power supply and demand control unit 10 includes a required control power estimation unit 11 that calculates a required control power estimated value that is an estimated value of the required control power, a control power distribution calculation unit 12 that calculates a control power distribution plan, and a control power distribution. and a control force distribution evaluation unit 13 that calculates an evaluation value of the plan.

必要調整力推定部11について、図3と図4を用いて説明する。必要調整力推定部11は、需要変動、他系統連系潮流変動、再生可能エネルギー変動に由来する必要調整力推定値から、必要調整力を推定する。 The required adjustment force estimator 11 will be described with reference to FIGS. 3 and 4. FIG. The required controllability estimating unit 11 estimates the required controllability from the required controllability estimated values derived from demand fluctuations, power flow fluctuations in other grids, and renewable energy fluctuations.

図3に、必要調整力推定部11が必要調整力推定値を算出するフローの例を示す。 FIG. 3 shows an example of a flow in which the required control force estimator 11 calculates the required control force estimated value.

まず、必要調整力推定部11は、需給調整に関わる実績系統情報を情報記憶部22から取得する(S31)。 First, the required control power estimating unit 11 acquires actual system information related to supply and demand control from the information storage unit 22 (S31).

ここで、実績系統情報は、過去のある時点における周波数変動、潮流変動、発電量変動、のうち少なくともいずれか一つの計測値を含む。また、実績系統情報は、需給変動に関連する情報を含む。需給変動に関連する情報の例として、気象(天候、気温など)、事前指定された地点における系統潮流値、などを含む。 Here, the performance system information includes at least one measured value of frequency fluctuation, power flow fluctuation, and power generation fluctuation at a certain point in the past. In addition, the performance system information includes information related to supply and demand fluctuations. Examples of information related to supply and demand fluctuations include weather (weather, temperature, etc.), grid flow values at pre-designated points, and the like.

次に、必要調整力推定部11は、S31にて取得した実績系統情報を需給条件により分類する(S32)。ここで、需給条件は需給変動パターンに影響を与えると推定される情報を含む。需給条件の例として、日種(平日、休日、特別日など)、気象(天候、気温など)、時刻・時間帯(朝、昼、夕、夜など)が挙げられるがこれに限られない。 Next, the required control power estimating unit 11 classifies the performance system information acquired in S31 according to supply and demand conditions (S32). Here, the supply and demand condition includes information estimated to affect the supply and demand fluctuation pattern. Examples of supply and demand conditions include, but are not limited to, day types (weekdays, holidays, special days, etc.), weather (weather, temperature, etc.), and time/time zones (morning, noon, evening, night, etc.).

次に、S32で分類した需給条件ごとに、需給条件に該当する実績系統データを用いて需給変動予測モデルを作成する(S33)。需給変動予測モデルの作成には、需給変動に関連する情報を入力、周波数変動、連系潮流変動、発電量変動のうち少なくともいずれかを一つの需給変動量の予測値を出力として、重回帰分析、機械学習、多変量解析等のモデル化手法を適用する。前記予測モデルは、各需給変動のそれぞれについて個別に作成しても良い。また、各需給変動の実績値を(式1)に入力して算出される総需給変動量を出力とする予測モデルを構築して良い。 Next, for each demand-supply condition classified in S32, a supply-demand fluctuation prediction model is created using actual system data corresponding to the demand-supply condition (S33). To create a supply and demand fluctuation prediction model, input information related to supply and demand fluctuations, at least one of frequency fluctuations, interconnection power flow fluctuations, and power generation fluctuations. , machine learning, and multivariate analysis. The forecast model may be created separately for each supply and demand fluctuation. Also, a prediction model may be constructed that outputs the total supply and demand fluctuation amount calculated by inputting the actual value of each supply and demand fluctuation into (Equation 1).

ΔG=ΔL+ΔLw-KΔF (式1)
ここで、ΔG: 総需給変動、ΔL: 連系潮流変動、ΔLw:発電量変動、K:系統定数、ΔF:周波数変動を表す。
ΔG = ΔL + ΔLw – KΔF (Formula 1)
Here, ΔG: total supply and demand fluctuation, ΔL: interconnection power flow fluctuation, ΔLw: power generation fluctuation, K: system constant, ΔF: frequency fluctuation.

次に、S33で作成した需給変動予測モデルに、予測対象となる時点の予測値あるいは実績値を、情報記憶部21に記憶された予測系統情報または情報記憶部22に記憶された実績系統情報に基づいて入力し、当該時点における需給変動量の予測値を算出する(S34)。 Next, in the supply and demand fluctuation prediction model created in S33, the predicted value or the actual value at the time of the prediction target is added to the predicted system information stored in the information storage unit 21 or the actual system information stored in the information storage unit 22. Based on the input, the predicted value of the fluctuation amount of supply and demand at that time is calculated (S34).

ここで、予測系統情報は、風力発電や太陽光発電などの再生可能エネルギーの発電量予測値、気象予報値、調整力電源稼働計画情報のいずれか1つ以上を含む。 Here, the predicted system information includes at least one of a predicted power generation amount of renewable energy such as wind power generation and solar power generation, a weather forecast value, and control power supply operating plan information.

図4に需給変動量予測値の情報構成例を示す。図4の例では、需給変動量の予測値として周波数変動、連系潮流変動、発電量変動、総需給変動、の各予測値を、それぞれの変動周期ごとに示している。 FIG. 4 shows an example of the information configuration of the supply and demand fluctuation amount prediction value. In the example of FIG. 4, each predicted value of frequency fluctuation, interconnection power flow fluctuation, power generation amount fluctuation, and total supply and demand fluctuation is shown for each fluctuation period as the predicted value of the supply and demand fluctuation amount.

また、図4の需給変動量予測値の情報構成例では、総需給変動量に関する予測誤差を総需給変動誤差として含む。総需給変動誤差は、実績系統情報と必要調整力推定値の差分を統計解析することにより、例えば誤差分布を正規分布として仮定した場合の3σ値(σは標準偏差を表す)として算出することができる。 Further, in the information configuration example of the supply and demand fluctuation amount forecast value in FIG. 4, the prediction error related to the total supply and demand fluctuation amount is included as the total supply and demand fluctuation error. The total supply and demand fluctuation error can be calculated as a 3σ value (σ represents the standard deviation) when the error distribution is assumed to be a normal distribution, for example, by statistically analyzing the difference between the actual system information and the required control power estimated value. can.

必要調整力推定値は、変動周期ごとの総需給変動量、あるいは変動周期ごとの総需給変動量に総需給変動誤差を加算した値として算出される(S35)。変動周期ごとの必要調整力推定値を算出する際、一定の時間長を持つ必要調整力推定値の時系列データに対して、フーリエ変換、ウェーブレット変換等の周波数分解手法を適用して算出する。 The required controllability estimated value is calculated as the total supply and demand fluctuation amount for each fluctuation period, or as a value obtained by adding the total supply and demand fluctuation error to the total supply and demand fluctuation amount for each fluctuation period (S35). When calculating the required control force estimated value for each fluctuation period, the time-series data of the required control force estimated value having a certain length of time is calculated by applying a frequency decomposition method such as Fourier transform or wavelet transform.

必要調整力推定部11は、後述する調整力配分評価部13の算出結果を用いて必要調整力推定値を補正しても良い。このとき、調整力配分評価部13は調整力配分評価情報からコスト指標および運用基準指標に基づいて後述する調整力配分計画を評価し、必要調整力推定部11は、評価した結果に基づき必要調整力を再計算し、その算出結果を必要調整力推定値とする。この必要調整力推定値に基づいて調整力調達量を決定することにより、周波数変動を抑制しつつ確保する必要のない調整力調達量を削減することができる。 The necessary control force estimation unit 11 may correct the necessary control force estimated value using the calculation result of the control force distribution evaluation unit 13, which will be described later. At this time, the control power distribution evaluation unit 13 evaluates a control power distribution plan described later based on the cost index and the operation standard index from the control power distribution evaluation information, and the necessary control power estimation unit 11 evaluates the necessary adjustment based on the evaluation result. The force is recalculated, and the calculated result is used as the required adjustment force estimate. By determining the reserve control power amount based on this estimated value of necessary control power, it is possible to reduce the procurement amount of control power that does not need to be secured while suppressing frequency fluctuations.

図5乃至図9を用いて調整力配分算出装置12について説明する。調整力配分算出部12は、必要調整力推定部11が算出した必要調整力推定値と、情報記憶部23に記憶された系統運用情報を用いて調整力配分計画を算出する。 The control force distribution calculation device 12 will be described with reference to FIGS. 5 to 9. FIG. The control force distribution calculation unit 12 calculates a control force distribution plan using the necessary control force estimated value calculated by the necessary control force estimation unit 11 and the system operation information stored in the information storage unit 23 .

系統運用情報は、オンライン系統運用情報、電力市場入札情報、電力市場入札情報に基づいて約定された結果として算出される調整力調達情報、のうち少なくともいずれか一つを含む。 The system operation information includes at least one of on-line system operation information, power market bidding information, and balancing power procurement information calculated as a result of a contract based on the power market bidding information.

オンライン系統運用情報は、各電源における現時点での発電出力情報として、例えば、周波数計測値、連系潮流計測値、再生可能エネルギー発電量計測値、気象計測値、調整力電源稼働状況情報のうち少なくともいずれか一つを含む。また、電力入札市場情報に蓄電池、可変速揚水発電、あるいはその他のエネルギー貯蔵電源が入札対象として含まれる場合、蓄電池を含む電源に関するSOC情報、可変速揚水発電に関する貯水量情報などの運用状態を表す情報をオンライン系統運用情報として含んで良い。 The online grid operation information includes at least current power output information of each power source, for example, frequency measurement values, interconnected power flow measurement values, renewable energy power generation measurement values, meteorological measurement values, and control power supply operating status information. Contains any one. In addition, if the electric power auction market information includes storage batteries, variable speed pumped storage power generation, or other energy storage power sources as bidding targets, it represents the operation status such as SOC information related to power sources including storage batteries, water storage amount information related to variable speed pumped storage power generation, etc. The information can be included as online system operation information.

エネルギー貯蔵電源を含む調整力電源のオンライン系統運用情報の一例を図5に示す。過去の制御履歴情報に含まれる発電機ごとの制御量の累積和として算出した初期状態からの偏差を、SOC情報として含むようにしても良い。 An example of online system operation information for a regulating power supply including energy storage power is shown in FIG. The SOC information may include the deviation from the initial state calculated as the cumulative sum of the controlled variables for each generator included in the past control history information.

電力市場入札情報の例を図6に示す。電力市場入札情報は、電力市場を通じて調達可能な調整力電源の制御性能および運用コストとして調整力単価の情報を含む。図6の例では、調整力電源の制御性能を表す指標として、最大制御量、最大出力変化速度、持続時間、起動可能時刻の情報を含んでいる。 An example of power market bidding information is shown in FIG. The electric power market bidding information includes control performance of the controllability power supply procurable through the electric power market and information on controllability unit prices as operating costs. In the example of FIG. 6, information on maximum control amount, maximum output change speed, duration, and start-up possible time is included as an index representing the control performance of the control power supply.

調整力調達情報の一例を図7に示す。図7の例では、調整力調達情報は、各周波数変動周期に対して調整力電源A、B、C・・・が調整力を担保する調達量と、変動周期ごと、調整力電源ごとの総調達量とを含む。必要調整力推定部11にて算出された必要調整力推定値に基づき、各変動周期に対して総調達量が必要調整力を超過するように調達量が決定される。 FIG. 7 shows an example of the coordination power procurement information. In the example of FIG. 7, the control power procurement information includes the amount of procurement for which the control power sources A, B, C, . . . Procurement volume and Based on the required controllability estimated value calculated by the required controllability estimation unit 11, the procurement amount is determined so that the total procurement amount exceeds the required controllability for each fluctuation cycle.

調整力配分算出部12は、必要調整力推定部11が算出した変動周期ごとに必要となる調整力に対し、調整力調達情報に基づいて必要となる調整力の調達を達成するよう調整力電源を選定した調整力配分計画を作成する。例えば、電力市場入札情報に含まれる最大出力変化速度に基づき、各変動周期に割り当てる調整力電源の候補を選定し、調整力単価に基づくメリットオーダーに従い制御する調整力電源を決定する。このとき、必要調整力推定値の総和が需要増加の傾向を示す場合、調整力単価の低い調整力電源から順に出力を増加させる制御を実施する。一方、必要調整力推定値の総和が需要減少の傾向を示す場合、調整力単価の高い調整力電源から順に出力を減少させる制御を実施する。選定した調整力電源の出力が制御上下限に達した場合、メリットオーダーで次の順位の制御候補となる調整力電源を選定する。以上の工程を繰り返し、必要となる調整力を満たすまで調整力電源を追加し、最終的な調整力配分計画を決定する。 The controllable power distribution calculation unit 12 adjusts the controllability power source so as to procure the necessary controllability based on the controllability procurement information for the controllability required for each fluctuation cycle calculated by the controllability estimation unit 11 . Create a control power distribution plan that selects For example, based on the maximum output change rate included in the electric power market bidding information, candidates for control power sources to be assigned to each fluctuation period are selected, and control power sources to be controlled are determined according to the merit order based on control power unit prices. At this time, when the total sum of the required control power estimated values shows a tendency of increasing demand, control is performed to increase the output in order from the control power power supply with the lowest control power unit price. On the other hand, when the sum total of the required control power estimated values shows a tendency of decreasing demand, control is performed to decrease the output in descending order of the control power unit price of the control power supply. When the output of the selected controllability power supply reaches the control upper and lower limits, the controllability power supply that is the next control candidate in the order of merit is selected. The above steps are repeated to add control power sources until the required control power is satisfied, and the final control power distribution plan is determined.

なお、調整力配分算出部12は、予測系統情報とオンライン系統運用情報の差分が事前に設定した閾値を超過した場合にのみ調整力配分計画を算出するようにしても良い。 Note that the control power distribution calculation unit 12 may calculate the control power distribution plan only when the difference between the predicted system information and the online system operation information exceeds a preset threshold value.

図8に、調整力配分計画に基づいた各電源の制御に関連する需給制御計画情報の例を示す。図8の例では、選択された調整力電源(図8中の調整力電源A、B、C)に対し、制御目的および担保する周波数変動周期の情報を含む制御種別、制御量、出力変化速度、制御開始時刻、制御終了時刻を需給制御計画として規定している。 FIG. 8 shows an example of supply and demand control plan information related to control of each power source based on the control power distribution plan. In the example of FIG. 8, for the selected adjustable power supplies (adjustable power supplies A, B, and C in FIG. 8), the control type including information on the control purpose and the secured frequency fluctuation period, the control amount, the output change rate , control start time, and control end time are defined as the supply and demand control plan.

図9に調整力配分計画の概念図を示す。図9の例では、実線が各変動周期における必要調整力を表し、変動周期C1の必要調整力に対して、調整力電源G1およびにG2よる周波数制御が調整力量P1を担保していることを示す。 FIG. 9 shows a conceptual diagram of the control force distribution plan. In the example of FIG. 9, the solid line represents the required adjustability in each fluctuation cycle, and shows that the frequency control by the adjustability power sources G1 and G2 secures the adjustability amount P1 with respect to the required adjustability in the fluctuation cycle C1. show.

調整力配分評価部13について、図10乃至図13を用いて説明する。調整力配分評価部13は、調整力配分算出部12にて算出された調整力配分計画情報および情報記憶部24に記憶された系統運用基準情報に基づき、調整力配分計画の評価値を算出する。 The adjustment force distribution evaluation unit 13 will be described with reference to FIGS. 10 to 13. FIG. The control power distribution evaluation unit 13 calculates an evaluation value of the control power distribution plan based on the control power distribution plan information calculated by the control power distribution calculation unit 12 and the system operation standard information stored in the information storage unit 24. .

系統運用基準情報は、周波数変動、需給偏差、SOC運用基準のうち少なくともいずれかの項目に関する運用基準を含む。系統運用基準情報の一例を図10に示す。各運用基準は、各項目に該当するオンライン系統運用情報の数値に関して、満たすべき許容範囲、および逸脱した場合の対策方法の情報を含んで規定される。基準周波数、SOC運用基準点、各項目の許容範囲、逸脱した場合の対策方法は事前に設定される。 The system operation standard information includes operation standards related to at least one of frequency fluctuation, supply and demand deviation, and SOC operation standards. An example of system operation standard information is shown in FIG. Each operation standard is defined with respect to the numerical value of the online system operation information that corresponds to each item, including information on the allowable range to be satisfied and countermeasures to be taken in the event of deviation. The reference frequency, the SOC operation reference point, the allowable range of each item, and the measures to be taken in case of deviation are set in advance.

調整力配分計画の評価値の算出フローの例を図11に示す。 FIG. 11 shows an example of the calculation flow of the evaluation value of the control force distribution plan.

まず、調整力配分算出部12で算出した調整力配分計画情報を取得する(S101)。 First, control force distribution plan information calculated by the control force distribution calculator 12 is obtained (S101).

次に、取得した調整力配分計画情報に対する評価値を算出し、調整力配分評価情報とする(S102)。 Next, an evaluation value for the acquired control power distribution plan information is calculated and used as control power distribution evaluation information (S102).

調整力配分評価情報の一例を図12に示す。図12の例では、調整力配分評価情報は、制御量、制御配分、制御コスト(運用コスト)のうち少なくともいずれか1つのコスト指標、および周波数偏差実績、周波数基準逸脱率、SOC実績、SOC基準逸脱率のうち少なくともいずれか1つの運用基準指標を含む。 An example of control force distribution evaluation information is shown in FIG. In the example of FIG. 12, the adjustability distribution evaluation information includes at least one cost index of control amount, control distribution, control cost (operation cost), frequency deviation performance, frequency standard deviation rate, SOC performance, SOC standard including at least one operating criteria indicator of the deviation rate;

制御コストCcontは(式2)を用いて算出することができる。ここで、Price(τ、g)は電源gによる変動周期τの周波数制御を実施する場合の周波数制御調整力単価、Energy(τ、g)は電源gによる変動周期τの周波数制御を実施する場合の制御量を表す。 The control cost Ccont can be calculated using (Equation 2). Here, Price (τ, g) is the frequency control adjustment power unit price when performing frequency control with a fluctuation period τ by the power supply g, Energy (τ, g) is when performing frequency control with a fluctuation period τ by the power supply g represents the control amount of

Ccont = Σ(Price(τ、g) * Energy (τ、g)) ・・・(式2) Ccont = Σ (Price (τ, g) * Energy (τ, g)) ・・・(Formula 2)

また、周波数基準逸脱率freq_rateは(式3)を用いて算出することができる。ここで、Tfは評価時間幅内の計測時点数、Tfoutは評価時間幅内で周波数計測値が運用基準を超過した計測時点数を表す。 Also, the frequency reference deviation rate freq_rate can be calculated using (Formula 3). Here, Tf represents the number of measurement points within the evaluation time span, and Tfout represents the number of measurement points at which the frequency measurement value exceeds the operating standard within the evaluation time span.

freq_rate = Tfout / Tf ・・・(式3) freq_rate = Tfout / Tf (Formula 3)

同様にSOC基準逸脱率SOC_rateは、評価時間幅内の計測時点数Tsocおよび評価時間幅内でSOC計測値が運用基準を超過した計測時点数Tsocoutを用いて(式4)より算出することができる。 Similarly, the SOC standard deviation rate SOC_rate can be calculated from (Equation 4) using the number of measurement points Tsoc within the evaluation time span and the number of measurement points Tsocout at which the SOC measurement value exceeds the operating standard within the evaluation time span. .

SOC_rate = Tsocout / Tsoc ・・・(式4) SOC_rate = Tsocout / Tsoc (Formula 4)

上記(式3)(式4)を用いて算出される評価値以外に、評価時間幅内における周波数計測値あるいはSOC計測値の最大値、最小値、平均値、95パーセンタイル値等の統計解析値を算出し、調整力配分評価情報としても良い。 In addition to the evaluation values calculated using the above (Formula 3) and (Formula 4), statistical analysis values such as the maximum value, minimum value, average value, and 95th percentile value of the frequency measurement value or SOC measurement value within the evaluation time width may be calculated and used as control force distribution evaluation information.

ここで、周波数基準逸脱率およびSOC基準逸脱率の算出に用いる周波数計測値およびSOC計測値は、実績系統情報に含まれる計測情報を用いて良い。また、前記周波数計測値およびSOC計測値は、所定の系統モデルおよび発電機出力等の運用情報を入力とする周波数解析シミュレーションにより算出しても良い。 Here, the frequency measurement value and the SOC measurement value used for calculating the frequency standard deviation rate and the SOC standard deviation rate may use the measurement information included in the actual system information. Further, the frequency measurement value and the SOC measurement value may be calculated by a frequency analysis simulation using a predetermined system model and operation information such as generator output as inputs.

図11に戻り、S102で算出した調整力配分評価情報に基づき、S101で取得した調整力配分計画が系統運用基準を満たす否かを判定する(S103)。 Returning to FIG. 11, based on the control power distribution evaluation information calculated at S102, it is determined whether or not the control power distribution plan acquired at S101 satisfies the system operation standard (S103).

S103において調整力配分計画が系統運用基準を満たさない場合(S103N)、調整力配分算出部12は、調整力配分計画を補正し(S104)、調整力配分評価部13は、補正後の計画について評価値を算出する。 In S103, if the control power allocation plan does not satisfy the system operation criteria (S103N), the control power allocation calculation unit 12 corrects the control power allocation plan (S104), and the control power allocation evaluation unit 13 evaluates the corrected plan. Calculate the evaluation value.

調整力配分計画を補正するための最適配分計画は、必要調整力推定値および系統運用情報を入力とする最適化問題を解くことにより、算出することができる。最適化問題は以下の(式5)~(式7)で表される制約条件を満たす範囲で、(式2)の制御コストCcontを最小化する調整力配分を算出する問題として設定する。ここで、SOC(t)は時刻tにおけるSOC計測値、SOCrefはSOC運用基準値、σsocはSOC運用基準値からSOC計測値の乖離が許容可能な距離を表す定数、freq(t)は時刻tにおける周波数計測値、freqrefは基準周波数、σfは周波数運用基準値から周波数計測値の乖離が許容可能な距離を表す定数、Reg (τ)は変動幅τに対する必要調整力推定値、をそれぞれ表す。 An optimum allocation plan for correcting the control power allocation plan can be calculated by solving an optimization problem with the necessary control power estimated value and system operation information as inputs. The optimization problem is set as a problem of calculating control force distribution that minimizes the control cost Ccont of (Equation 2) within the range of satisfying the constraints represented by (Equation 5) to (Equation 7) below. Here, SOC(t) is the SOC measured value at time t, SOCref is the SOC operating reference value, σsoc is a constant representing the allowable distance for deviation of the SOC measured value from the SOC operating reference value, and freq(t) is time t. , freqref is the reference frequency, σf is a constant representing the permissible distance for the deviation of the frequency measurement value from the frequency operation reference value, and Reg (τ) is the estimated adjustment force required for the variation width τ.

|SOC(t) - SOCref| = σsoc ・・・(式5)
|freq(t) - freqref| = σf ・・・(式6)
Reg (τ) = Σ Energy (τ、g)・・・(式7)
|SOC(t) - SOCref| = σsoc (Formula 5)
|freq(t) - freqref| = σf (Formula 6)
Reg (τ) = ΣEnergy (τ, g) (Formula 7)

一方、S103において調整力配分計画が系統運用基準を満たす場合は(S103Y)、調整力配分評価処理を終了する。 On the other hand, if the control power allocation plan satisfies the system operation standard in S103 (S103Y), the control power allocation evaluation process is terminated.

算出された調整力配分評価値および調整力配分計画情報の表示画面の一例を図13に示す。表示画面の画面上部には、時刻t1、t2における調整力電源G1、G2、G3の制御量および調整力電源G1のSOC状態の時系列グラフを示す。図13に示す表示画面の画面下部には、時刻t1、t2における調整力電源G1、G2の制御量、全調整力電源における総制御量と総制御コスト、およびある所定時間幅内における各調整力電源の総制御量および総制御コストを示す。 FIG. 13 shows an example of a display screen of the calculated control power allocation evaluation value and control power allocation plan information. The upper portion of the display screen shows a time-series graph of the control amounts of the control power sources G1, G2, and G3 and the SOC state of the control power source G1 at times t1 and t2. At the bottom of the display screen shown in FIG. 13, the control amount of the control power sources G1 and G2 at times t1 and t2, the total control amount and the total control cost in all control power sources, and each control power within a predetermined time span are displayed. The total control amount and total control cost of the power supply are shown.

図2は、本発明の一実施形態が適用された電力需給制御システムの構成図である。本実施形態における電力需給制御システムは、電力需給制御装置10と、発電機101と、変電所102と、調相機器103と、電力負荷104と、外部電力系統105と、計測装置121a、121b、・・・と、情報通信ネットワーク108と、電力需給制御装置200と、市場管理システム300を含んで構成される。 FIG. 2 is a configuration diagram of a power supply and demand control system to which one embodiment of the present invention is applied. The power supply and demand control system in this embodiment includes a power supply and demand control device 10, a generator 101, a substation 102, a phase modifying device 103, a power load 104, an external power system 105, measuring devices 121a and 121b, , an information communication network 108 , a power supply and demand control device 200 and a market management system 300 .

発電機101は、発電力を生じる発電機であり、例えば火力発電、水力発電、原子力発電、太陽光発電、風力発電、バイオマス発電、潮流発電を含むいずれかの発電手法により発電力を生じる発電機である。発電機101aは、電力系統の高電圧側に設置される火力発電、水力発電、原子力発電などを含む大規模発電機であり、計測装置21aおよび情報通信ネットワーク108を通じて発電量を含む系統状態量を電力需給制御装置200に送信する。また、発電機101aは、計測装置21aおよび情報通信ネットワーク108を通じて電力需給制御装置200より送信された制御指令情報を受信し、制御指令情報に応じて発電量を含む系統状態量を変化させる。 The generator 101 is a generator that generates electric power, for example, a generator that generates electric power by any power generation method including thermal power generation, hydroelectric power generation, nuclear power generation, solar power generation, wind power generation, biomass power generation, and tidal current power generation. is. The power generator 101a is a large-scale power generator installed on the high voltage side of the electric power system and includes thermal power generation, hydraulic power generation, nuclear power generation, and the like. It is transmitted to the power supply and demand control device 200 . The power generator 101a also receives control command information transmitted from the power supply and demand control device 200 through the measuring device 21a and the information communication network 108, and changes the system state quantity including the power generation amount according to the control command information.

発電機101bは、例えば電力系統の低電圧側に設置される太陽光発電、風力発電、コジェネレーションなどを含む中小規模発電機であり、計測装置21bおよび情報通信ネットワーク108を通じて発電量を含む系統状態量を電力需給制御装置200に送信する。 The generator 101b is, for example, a small and medium-sized generator installed on the low-voltage side of the power system, including photovoltaic power generation, wind power generation, and cogeneration. The quantity is transmitted to the power supply and demand control device 200 .

変電所102は、電力系統内の送電線間に設置され、大規模発電機である発電機101aが設置される高電圧側より送電される電力の電圧値を変更し、電力負荷104が設置されている低電圧側に送電する。変電所102には、電力コンデンサ、分路リアクトルなどの調相機器103が接続される。 The substation 102 is installed between transmission lines in the power system, changes the voltage value of the power transmitted from the high voltage side where the generator 101a, which is a large-scale generator, is installed, and the power load 104 is installed. power to the low voltage side of the The substation 102 is connected with phase modifying devices 103 such as power capacitors and shunt reactors.

調相機器103は、電力系統内における無効電力を変化させることにより、電力系統内の電圧分布を制御する機器であり、電力コンデンサ、分路リアクトル、STATCOM、SVCなどを含む。一部の調相機器103は、計測装置121cおよび情報通信ネットワーク108を通じて電力需給制御装置200より送信された制御指令情報を受信し、制御指令情報に応じて発電量を含む系統状態量を変化させる。 The phase modifying device 103 is a device that controls voltage distribution in the power system by changing reactive power in the power system, and includes power capacitors, shunt reactors, STATCOMs, SVCs, and the like. A part of the phase modifying device 103 receives the control command information transmitted from the power supply and demand control device 200 through the measuring device 121c and the information communication network 108, and changes the system state quantity including the power generation amount according to the control command information. .

電力負荷104は、電力を消費する電動機、照明器具などをその内部に含む家庭、工場、ビル、施設を表す。 The power load 104 represents a home, factory, building, facility that includes electric motors, lighting fixtures, etc. that consume power therein.

外部電力系統105は、電力需給制御装置200からの制御が不可能である外部の電力系統であり、連系線により自系統と接続している。 The external power system 105 is an external power system that cannot be controlled by the power supply and demand control device 200, and is connected to its own system via an interconnection line.

計測装置121a、121b、・・・は、発電機101aにおける発電量、調相機器103における調相量、送電線における潮流値、電圧値、などの系統状態量を計測するセンサを内部に含み、情報通信ネットワーク108を通じて計測した系統状態量を電力需給制御装置200に送信する。 The measuring devices 121a, 121b, . The measured system state quantity is transmitted to the power supply and demand control device 200 through the information communication network 108 .

情報通信ネットワーク108は、双方向にデータを伝送可能なネットワークである。情報通信ネットワーク108は、例えば、有線ネットワーク若しくは無線ネットワーク、又はそれらの組み合わせで構成される。情報通信ネットワーク108は、いわゆるインターネットであっても良いし、専用線のネットワークであっても良い。 The information communication network 108 is a network capable of transmitting data bi-directionally. The information communication network 108 is composed of, for example, a wired network, a wireless network, or a combination thereof. The information communication network 108 may be the so-called Internet, or may be a dedicated line network.

電力需給制御装置10は、図1に示す電力需給制御機能を実現するための装置である。電力需給制御装置10は、計測装置21a、21b、・・・において計測された系統状態量を、情報通信ネットワーク108を通じて受信する。また、電力需給制御装置10は、送信された系統の系統状態量および内部に蓄積された情報を用いて算出した制御指令情報を情報通信ネットワーク108を通じて計測装置21に送信する。 The power supply and demand control device 10 is a device for realizing the power supply and demand control function shown in FIG. The power supply and demand control device 10 receives the system state quantities measured by the measuring devices 21a, 21b, . . . In addition, the power supply and demand control device 10 transmits control command information calculated using the transmitted system state quantity and internally accumulated information to the measuring device 21 through the information communication network 108 .

電力需給制御装置10の内部構成として、CPU(Central Processing Unit)201と、表示装置202と、通信手段203と、入力手段204と、メモリ205と、記憶装置206とが、バス線211に接続されている。 As an internal configuration of the power supply and demand control device 10 , a CPU (Central Processing Unit) 201 , a display device 202 , a communication means 203 , an input means 204 , a memory 205 and a storage device 206 are connected to a bus line 211 . ing.

CPU201は、計算プログラムを実行して、系統状態の算出や、制御信号の生成などを行う。 The CPU 201 executes a calculation program to calculate system states, generate control signals, and the like.

メモリ205は、表示用の画像データ、系統状態の算出結果データなどを一旦格納するメモリであり、例えば、RAM(Random Access Memory)などを用いて構成される。メモリ205は、CPU201により必要な画像データを生成して表示装置202に表示する。 The memory 205 temporarily stores image data for display, calculation result data of the system state, and the like, and is configured using a RAM (Random Access Memory) or the like, for example. The memory 205 generates necessary image data by the CPU 201 and displays it on the display device 202 .

通信手段203は、通信ネットワーク108を通じて計測装置21および計測装置21から潮流値、電圧値などの系統状態量を取得する。 The communication means 203 acquires system state quantities such as power flow values and voltage values from the measuring device 21 and the measuring device 21 through the communication network 108 .

ユーザは、入力手段204の所定のインタフェースを通じて各種閾値などのパラメータを設定・変更し、本電力需給制御装置200の動作を適切に設定できる。また、ユーザは、入力手段204の所定のインタフェースを通じて確認したいデータの種類を選択し、表示装置202に表示させることができる。 A user can set/change parameters such as various thresholds through a predetermined interface of the input means 204 to appropriately set the operation of the power supply and demand control device 200 . Also, the user can select the type of data to be confirmed through a predetermined interface of the input means 204 and display it on the display device 202 .

記憶装置206は、各種プログラムおよびデータを保持する。記憶装置206は、例えば、HDD(Hard Disk Drive)又はフラッシュメモリ等で構成される。記憶装置206は、例えば、後述する各種機能を実現し得るプログラムおよびデータ等を保持する。記憶装置206に記憶されているプログラムおよびデータは、必要に応じてCPU201に読み出されて実行される。なお、記憶装置206は各種のデータベースDBで構成されている。 A storage device 206 holds various programs and data. The storage device 206 is configured by, for example, an HDD (Hard Disk Drive), flash memory, or the like. The storage device 206 holds, for example, programs and data capable of realizing various functions to be described later. Programs and data stored in the storage device 206 are read and executed by the CPU 201 as necessary. Note that the storage device 206 is composed of various databases DB.

電力市場管理システム300は、発電事業者および送配電事業者が電力の売買を行う電力市場の取引管理を実行する。市場運用の方式は取引される商品の種別により多様な形態が存在しており、本実施例では需給制御の1日前までに入札・約定を完了するスポット市場、および需給制御を実施する当日に調整力を追加取引するリアルタイム市場の双方、あるいはどちらか一方を含む市場運用形態を前提とする。電力市場管理システム300は情報通信ネットワーク108を介して売電価格、売電量、売電対象電源の制御性能・制御要件等を含む電力取引情報、および調達対象、調達スケジュール等により規定される調整力調達計画を電力需給制御システム200と送受信する。 The power market management system 300 executes transaction management of the power market in which power generation companies and power transmission/distribution companies trade power. There are various forms of market operation methods depending on the type of product to be traded. In this embodiment, the spot market completes bidding and contracts one day before the supply and demand control, and adjustments are made on the day of the supply and demand control. It assumes a market operation form that includes both or either of the real-time markets that additionally trade power. The power market management system 300 uses the information communication network 108 to collect power trading information including the power selling price, power selling amount, control performance and control requirements of the power source to be sold, and adjustment power defined by the procurement target, procurement schedule, etc. It transmits and receives the procurement plan to and from the power supply and demand control system 200 .

本発明に係る電力需給制御装置およびこれを適用した電力需給制御システムは、電力系統の運用状況および将来の系統予測情報に応じて必要調整力を考慮し、各調整力電源に対する調整力制御量およびSOC補正制御量の配分を含む調整力配分計画を算出することにより、運用コストを低減しつつ運用制約を遵守する需給制御を実現することができる。 A power supply and demand control device according to the present invention and a power supply and demand control system to which the same is applied take into account the required controllability according to the operation status of the electric power system and future system forecast information, and adjustability control amount and By calculating the control force allocation plan including the allocation of the SOC correction control amount, it is possible to realize supply and demand control that observes operational constraints while reducing operational costs.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.

10 電力需給制御装置
11 必要調整力推定部
12 調整力配分算出部
13 調整力配分評価部
21~24 情報記憶部
101 発電機
102 変電所
103 調相機器
104 分散型発電装置
105 外部電力系統
108 情報通信ネットワーク
121 系統計測装置
300 電力市場管理システム
10 power supply and demand control device 11 required controllability estimation unit 12 controllability distribution calculation unit 13 controllability distribution evaluation unit 21-24 information storage unit 101 generator 102 substation 103 phase modifying device 104 distributed power generation device 105 external power system 108 information Communication network 121 System measuring device 300 Power market management system

Claims (3)

電力系統の過去のある時点における周波数変動(Hz)、潮流変動(MW)、発電量変動(MW)、のうち少なくともいずれか一つの計測値を含む実績系統情報と、再生可能エネルギーの発電量予測値、気象予報値、調整力電源稼働計画情報のいずれか1つ以上を含む予測系統情報とに基づき、需要変動、他系統連系潮流変動及び前記再生可能エネルギーの発電量の変動のうち少なくとも1つに由来する必要調整力推定値を変動周期ごとに算出する必要調整力推定部と、
前記必要調整力推定値とエネルギー貯蔵電源の運用状態を含む系統運用情報とに基づき、前記必要調整力推定部が算出した変動周期ごとに必要となる調整力に対し、調整力調達情報に基づいて必要となる調整力の調達を達成するよう調整力電源を選定した調整力配分計画を、各変動周期に割り当てる調整力電源を調整力単価に基づくメリットオーダーに従って順に選定することで算出する調整力配分算出部と、
前記調整力配分計画と、前記電力系統の運用基準を表す系統運用基準とに基づき、前記調整力配分計画の評価値を算出する調整力配分評価部と、
を備え、
前記需要変動とは、前記電力系統における電力の需要の変動(MW)を表し、
前記他系統とは、連系線により前記電力系統と接続している前記電力系統の外部の電力系統を表し、
前記再生可能エネルギーは、風力発電及び太陽光発電を表し、
前記調整力は、前記再生可能エネルギーの発電出力変動による、前記電力系統における電力の供給量の不足を補うために調達する需給調整用の電力(MW)を表し、
前記必要調整力推定値は、前記電力系統における変動周期ごとの総需給変動量(MW)、または前記電力系統における変動周期ごとの前記総需給変動量(MW)に当該総需給変動量の予測誤差を加算した値であり、
前記エネルギー貯蔵電源は、蓄電池及び可変速揚水発電機のうち少なくともいずれか1つであり、
前記エネルギー貯蔵電源の前記運用状態とは、前記蓄電池の運用状態(SOC:State of Charge)及び前記可変速揚水発電機に関する貯水量のうち少なくともいずれか1つを表し、
前記調整力配分計画の前記評価値は、周波数基準逸脱率(%)及びSOC基準逸脱率(%)のうち少なくともいずれか1つを含み、
前記周波数基準逸脱率(%)は、評価時間幅内で周波数計測値が前記運用基準を超過した計測時点数(Tfout)を前記評価時間幅内の計測時点数(Tf)で除算した値に基づいて算出され、
前記SOC基準逸脱率(%)は、評価時間幅内でSOC計測値が前記運用基準を超過した計測時点数(Tsocout)を前記評価時間幅内の計測時点数(Tsoc)で除算した値に基づいて算出される、
電力需給制御装置。
Actual system information including measured values of at least one of frequency fluctuation (Hz), power flow fluctuation (MW), and power generation fluctuation (MW) at a certain point in the past of the power system, and prediction of power generation amount of renewable energy at least one of demand fluctuations, other grid-interconnected power flow fluctuations, and fluctuations in the amount of renewable energy generated based on prediction system information including one or more of values, weather forecast values, and control power supply operation plan information A required control power estimation unit that calculates a required control power estimated value derived from one for each fluctuation period;
Based on the required controllability estimated value and system operation information including the operation state of the energy storage power supply, the controllability required for each fluctuation period calculated by the required controllability estimation unit is calculated based on the controllability procurement information. A control reserve allocation plan that selects control reserve power sources to achieve the procurement of necessary reserve reserves is calculated by sequentially selecting the reserve reserve power sources allocated to each fluctuation cycle according to the merit order based on the reserve reserve unit price. a calculation unit;
A control power allocation evaluation unit that calculates an evaluation value of the control power allocation plan based on the control power allocation plan and a system operation standard representing an operation standard of the electric power system;
with
The demand fluctuation represents the fluctuation (MW) of power demand in the power system,
The other system refers to a power system external to the power system connected to the power system by an interconnection line,
said renewable energy refers to wind power and solar power,
The adjustment capacity represents power (MW) for supply and demand adjustment procured to compensate for the shortage of power supply in the power system due to fluctuations in the power output of the renewable energy,
The required controllability estimated value is the total supply and demand fluctuation amount (MW) for each fluctuation period in the electric power system, or the total supply and demand fluctuation amount (MW) for each fluctuation period in the electric power system, and the prediction error of the total supply and demand fluctuation amount. is the value obtained by adding
the energy storage power source is at least one of a storage battery and a variable speed pumped hydro generator;
The operating state of the energy storage power supply represents at least one of the operating state (SOC: State of Charge) of the storage battery and the water storage amount of the variable speed pumped storage generator,
the evaluation value of the control force allocation plan includes at least one of a frequency standard deviation rate (%) and an SOC standard deviation rate (%);
The frequency standard deviation rate (%) is based on a value obtained by dividing the number of measurement points (Tfout) at which the frequency measurement value exceeds the operating standard within the evaluation time span by the number of measurement points (Tf) within the evaluation time span. calculated as
The SOC standard deviation rate (%) is based on a value obtained by dividing the number of measurement points (Tsocout) at which the SOC measured value exceeds the operation standard within the evaluation time span by the number of measurement points (Tsoc) within the evaluation time span. calculated as
Power supply and demand controller.
電力系統の状態を計測する計測装置と、
前記計測装置から出力された前記電力系統の過去のある時点における周波数変動(Hz)、潮流変動(MW)、発電量変動(MW)、のうち少なくともいずれか一つの計測値を含む実績系統情報と再生可能エネルギーの発電量予測値、気象予報値、調整力電源稼働計画情報のいずれか1つ以上を含む予測系統情報とに基づき、需要変動、他系統連系潮流変動及び前記再生可能エネルギーの発電量の変動のうち少なくとも1つに由来する必要調整力推定値を変動周期ごとに算出する必要調整力推定部と、
前記必要調整力推定値とエネルギー貯蔵電源の運用状態を含む系統運用情報とに基づき、前記必要調整力推定部が算出した変動周期ごとに必要となる調整力に対し、調整力調達情報に基づいて必要となる調整力の調達を達成するよう調整力電源を選定した調整力配分計画を、各変動周期に割り当てる調整力電源を調整力単価に基づくメリットオーダーに従って順に選定することで算出する調整力配分算出部と、
前記調整力配分計画と、前記電力系統の運用基準を表す系統運用基準とに基づき、前記調整力配分計画の評価値を算出する調整力配分評価部と、
を備え、
前記需要変動とは、前記電力系統における電力の需要の変動(MW)を表し、
前記他系統とは、連系線により前記電力系統と接続している前記電力系統の外部の電力系統を表し、
前記再生可能エネルギーは、風力発電及び太陽光発電を表し、
前記調整力は、前記再生可能エネルギーの発電出力変動による、前記電力系統における電力の供給量の不足を補うために調達する需給調整用の電力(MW)を表し、
前記必要調整力推定値は、前記電力系統における変動周期ごとの総需給変動量(MW)、または前記電力系統における変動周期ごとの前記総需給変動量(MW)に当該総需給変動量の予測誤差を加算した値であり、
前記エネルギー貯蔵電源は、蓄電池及び可変速揚水発電機のうち少なくともいずれか1つであり、
前記エネルギー貯蔵電源の前記運用状態とは、前記蓄電池の運用状態(SOC:State of Charge)及び前記可変速揚水発電機に関する貯水量のうち少なくともいずれか1つを表し、
前記調整力配分計画の前記評価値は、周波数基準逸脱率(%)及びSOC基準逸脱率(%)のうち少なくともいずれか1つを含み、
前記周波数基準逸脱率(%)は、評価時間幅内で周波数計測値が前記運用基準を超過した計測時点数(Tfout)を前記評価時間幅内の計測時点数(Tf)で除算した値に基づいて算出され、
前記SOC基準逸脱率(%)は、評価時間幅内でSOC計測値が前記運用基準を超過した計測時点数(Tsocout)を前記評価時間幅内の計測時点数(Tsoc)で除算した値に基づいて算出される、
電力需給制御システム。
a measuring device that measures the state of the power system;
performance system information including at least one measurement value of frequency fluctuation (Hz), power flow fluctuation (MW), and power generation fluctuation (MW) at a certain point in the past of the power system output from the measuring device; Demand fluctuations, other grid-connected power flow fluctuations, and power generation from renewable energy based on prediction system information including at least one of renewable energy power generation forecast values, weather forecast values, and control power supply operation plan information a required control power estimating unit that calculates a required control power estimated value derived from at least one of the fluctuations of the amount for each fluctuation period;
Based on the required controllability estimated value and system operation information including the operation state of the energy storage power supply, the controllability required for each fluctuation period calculated by the required controllability estimation unit is calculated based on the controllability procurement information. A control reserve allocation plan that selects control reserve power sources to achieve the procurement of necessary reserve reserves is calculated by sequentially selecting the reserve reserve power sources allocated to each fluctuation cycle according to the merit order based on the reserve reserve unit price. a calculation unit;
A control power allocation evaluation unit that calculates an evaluation value of the control power allocation plan based on the control power allocation plan and a system operation standard representing an operation standard of the electric power system;
with
The demand fluctuation represents the fluctuation (MW) of power demand in the power system,
The other system refers to a power system external to the power system connected to the power system by an interconnection line,
said renewable energy refers to wind power and solar power,
The adjustment capacity represents power (MW) for supply and demand adjustment procured to compensate for the shortage of power supply in the power system due to fluctuations in the power output of the renewable energy,
The required controllability estimated value is the total supply and demand fluctuation amount (MW) for each fluctuation period in the electric power system, or the total supply and demand fluctuation amount (MW) for each fluctuation period in the electric power system, and the prediction error of the total supply and demand fluctuation amount. is the value obtained by adding
the energy storage power source is at least one of a storage battery and a variable speed pumped hydro generator;
The operating state of the energy storage power supply represents at least one of the operating state (SOC: State of Charge) of the storage battery and the water storage amount of the variable speed pumped storage generator,
the evaluation value of the control force allocation plan includes at least one of a frequency standard deviation rate (%) and an SOC standard deviation rate (%);
The frequency standard deviation rate (%) is based on a value obtained by dividing the number of measurement points (Tfout) at which the frequency measurement value exceeds the operating standard within the evaluation time span by the number of measurement points (Tf) within the evaluation time span. calculated as
The SOC standard deviation rate (%) is based on a value obtained by dividing the number of measurement points (Tsocout) at which the SOC measured value exceeds the operation standard within the evaluation time span by the number of measurement points (Tsoc) within the evaluation time span. calculated as
Power supply and demand control system.
電力系統の過去のある時点における周波数変動(Hz)、潮流変動(MW)、発電量変動(MW)、のうち少なくともいずれか一つの計測値を含む実績系統情報と再生可能エネルギーの発電量予測値、気象予報値、調整力電源稼働計画情報のいずれか1つ以上を含む予測系統情報とに基づき、需要変動、他系統連系潮流変動及び前記再生可能エネルギーの発電量の変動のうち少なくとも1つに由来する必要調整力推定値を変動周期ごとに算出するステップと、
前記必要調整力推定値とエネルギー貯蔵電源の運用状態を含む系統運用情報とに基づき、前記必要調整力推定値を算出するステップにおいて変動周期ごとに必要となる調整力に対し、調整力調達情報に基づいて必要となる調整力の調達を達成するよう調整力電源を選定した調整力配分計画を、各変動周期に割り当てる調整力電源を調整力単価に基づくメリットオーダーに従って順に選定することで算出するステップと、
前記調整力配分計画と、前記電力系統の運用基準を表す系統運用基準とに基づき、前記調整力配分計画の評価値を算出するステップと、
を備え、
前記需要変動とは、前記電力系統における電力の需要の変動(MW)を表し、
前記他系統とは、連系線により前記電力系統と接続している前記電力系統の外部の電力系統を表し、
前記再生可能エネルギーは、風力発電及び太陽光発電を表し、
前記調整力は、前記再生可能エネルギーの発電出力変動による、前記電力系統における電力の供給量の不足を補うために調達する需給調整用の電力(MW)を表し、
前記必要調整力推定値は、前記電力系統における変動周期ごとの総需給変動量(MW)、または前記電力系統における変動周期ごとの前記総需給変動量(MW)に当該総需給変動量の予測誤差を加算した値であり、
前記エネルギー貯蔵電源は、蓄電池及び可変速揚水発電機のうち少なくともいずれか1つであり、
前記エネルギー貯蔵電源の前記運用状態とは、前記蓄電池の運用状態(SOC:State of Charge)及び前記可変速揚水発電機に関する貯水量のうち少なくともいずれか1つを表し、
前記調整力配分計画の前記評価値は、周波数基準逸脱率(%)及びSOC基準逸脱率(%)のうち少なくともいずれか1つを含み、
前記周波数基準逸脱率(%)は、評価時間幅内で周波数計測値が前記運用基準を超過した計測時点数(Tfout)を前記評価時間幅内の計測時点数(Tf)で除算した値に基づいて算出され、
前記SOC基準逸脱率(%)は、評価時間幅内でSOC計測値が前記運用基準を超過した計測時点数(Tsocout)を前記評価時間幅内の計測時点数(Tsoc)で除算した値に基づいて算出される、
電力需給制御方法。
Actual system information including measured values of at least one of frequency fluctuation (Hz), power flow fluctuation (MW), and power generation fluctuation (MW) at a certain point in the past of the power system, and predicted power generation amount of renewable energy , weather forecast values, control power supply operation plan information, and at least one of demand fluctuations, other grid-connected power flow fluctuations, and fluctuations in the amount of power generated by the renewable energy. A step of calculating the required adjustment force estimate derived from for each fluctuation period;
In the step of calculating the required controllable power estimated value based on the required controllable power estimated value and system operation information including the operating state of the energy storage power supply, the controllability required for each fluctuation cycle is calculated in the controllability procurement information. A step of calculating a control power allocation plan in which control power sources are selected so as to achieve procurement of control power required based on the calculation by sequentially selecting control power sources to be allocated to each fluctuation cycle according to the merit order based on the control power unit price. and,
a step of calculating an evaluation value of the control power allocation plan based on the control power allocation plan and a system operation standard representing an operation standard of the electric power system;
with
The demand fluctuation represents the fluctuation (MW) of power demand in the power system,
The other system refers to a power system external to the power system connected to the power system by an interconnection line,
said renewable energy refers to wind power and solar power,
The adjustment capacity represents power (MW) for supply and demand adjustment procured to compensate for the shortage of power supply in the power system due to fluctuations in the power output of the renewable energy,
The required controllability estimated value is the total supply and demand fluctuation amount (MW) for each fluctuation period in the electric power system, or the total supply and demand fluctuation amount (MW) for each fluctuation period in the electric power system, and the prediction error of the total supply and demand fluctuation amount. is the value obtained by adding
the energy storage power source is at least one of a storage battery and a variable speed pumped hydro generator;
The operating state of the energy storage power supply represents at least one of the operating state (SOC: State of Charge) of the storage battery and the water storage amount of the variable speed pumped storage generator,
the evaluation value of the control force allocation plan includes at least one of a frequency standard deviation rate (%) and an SOC standard deviation rate (%);
The frequency standard deviation rate (%) is based on a value obtained by dividing the number of measurement points (Tfout) at which the frequency measurement value exceeds the operating standard within the evaluation time span by the number of measurement points (Tf) within the evaluation time span. calculated as
The SOC standard deviation rate (%) is based on a value obtained by dividing the number of measurement points (Tsocout) at which the SOC measured value exceeds the operation standard within the evaluation time span by the number of measurement points (Tsoc) within the evaluation time span. calculated as
Power supply and demand control method.
JP2018165578A 2018-09-05 2018-09-05 Power supply and demand control device, power supply and demand control system, and power supply and demand control method Active JP7285053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018165578A JP7285053B2 (en) 2018-09-05 2018-09-05 Power supply and demand control device, power supply and demand control system, and power supply and demand control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018165578A JP7285053B2 (en) 2018-09-05 2018-09-05 Power supply and demand control device, power supply and demand control system, and power supply and demand control method

Publications (2)

Publication Number Publication Date
JP2020039222A JP2020039222A (en) 2020-03-12
JP7285053B2 true JP7285053B2 (en) 2023-06-01

Family

ID=69738358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018165578A Active JP7285053B2 (en) 2018-09-05 2018-09-05 Power supply and demand control device, power supply and demand control system, and power supply and demand control method

Country Status (1)

Country Link
JP (1) JP7285053B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6804072B1 (en) * 2020-02-28 2020-12-23 公立大学法人会津大学 Virtual power plant control system
JP2022011353A (en) * 2020-06-30 2022-01-17 株式会社日立製作所 Supply/demand monitoring device, supply/demand adjusting device and method
JP2023064334A (en) * 2021-10-26 2023-05-11 株式会社日立製作所 Power system control device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022101A (en) 2008-07-09 2010-01-28 Toshiba Corp Supply and demand controller of small-scale electric power system
JP2013099228A (en) 2011-11-07 2013-05-20 Tohoku Electric Power Co Inc Estimation method and device for power generation output of photovoltaic power generation facility
JP2014204577A (en) 2013-04-05 2014-10-27 株式会社東芝 Supply and demand control system for power system, and supply and demand control device
JP2016086461A (en) 2014-10-23 2016-05-19 株式会社日立製作所 Power system monitoring device and power system monitoring method
JP2017028861A (en) 2015-07-22 2017-02-02 清水建設株式会社 Power management system and power management method
US20180191161A1 (en) 2015-06-23 2018-07-05 Hyosung Corporation Large capacity battery system for power system frequency regulation and large capacity battery operation method
JP2019187099A (en) 2018-04-10 2019-10-24 株式会社東芝 Power supply and demand control system, power supply and demand control program and power supply and demand control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022101A (en) 2008-07-09 2010-01-28 Toshiba Corp Supply and demand controller of small-scale electric power system
JP2013099228A (en) 2011-11-07 2013-05-20 Tohoku Electric Power Co Inc Estimation method and device for power generation output of photovoltaic power generation facility
JP2014204577A (en) 2013-04-05 2014-10-27 株式会社東芝 Supply and demand control system for power system, and supply and demand control device
JP2016086461A (en) 2014-10-23 2016-05-19 株式会社日立製作所 Power system monitoring device and power system monitoring method
US20180191161A1 (en) 2015-06-23 2018-07-05 Hyosung Corporation Large capacity battery system for power system frequency regulation and large capacity battery operation method
JP2017028861A (en) 2015-07-22 2017-02-02 清水建設株式会社 Power management system and power management method
JP2019187099A (en) 2018-04-10 2019-10-24 株式会社東芝 Power supply and demand control system, power supply and demand control program and power supply and demand control method

Also Published As

Publication number Publication date
JP2020039222A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
Imani et al. Demand response modeling in microgrid operation: a review and application for incentive-based and time-based programs
Jiang et al. Energy management of microgrid in grid-connected and stand-alone modes
US11010846B2 (en) Building energy storage system with multiple demand charge cost optimization
Mazidi et al. Integrated scheduling of renewable generation and demand response programs in a microgrid
Dongol et al. A model predictive control based peak shaving application of battery for a household with photovoltaic system in a rural distribution grid
Motalleb et al. Providing frequency regulation reserve services using demand response scheduling
US10418822B2 (en) Energy production and frequency regulation Co-optimization for power generation systems
US9489701B2 (en) Adaptive energy management system
Kahrobaee et al. Optimum sizing of distributed generation and storage capacity in smart households
Wang et al. Control and optimization of grid-tied photovoltaic storage systems using model predictive control
US9634508B2 (en) Method for balancing frequency instability on an electric grid using networked distributed energy storage systems
US8493030B2 (en) Method for operating an energy storage system
WO2019092905A1 (en) Power generation system and energy generation system
JP7285053B2 (en) Power supply and demand control device, power supply and demand control system, and power supply and demand control method
Tian et al. Coordinated planning with predetermined renewable energy generation targets using extended two-stage robust optimization
WO2019093009A1 (en) Electricity plan device, electricity supply-demand control system, and electricity plan method
Majidi et al. Optimal sizing of energy storage system in a renewable-based microgrid under flexible demand side management considering reliability and uncertainties
Lu et al. Two-stage robust scheduling and real-time load control of community microgrid with multiple uncertainties
Li et al. Modeling and planning of multi-timescale flexible resources in power systems
Chandio et al. Gridpeaks: Employing distributed energy storage for grid peak reduction
Farjah Proposing an efficient wind forecasting agent using adaptive MFDFA
Tsao et al. Integrated voltage control and maintenance insurance planning for distribution networks considering uncertainties
US20220373989A1 (en) System for configuring demand response for energy grid assets
Zhu et al. Hierarchical cluster coordination control strategy for large-scale wind power based on model predictive control and improved multi-time-scale active power dispatching
di Vergagni et al. A quasi-optimal energy resources management technique for low voltage microgrids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7285053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150