WO2019093009A1 - Electricity plan device, electricity supply-demand control system, and electricity plan method - Google Patents

Electricity plan device, electricity supply-demand control system, and electricity plan method Download PDF

Info

Publication number
WO2019093009A1
WO2019093009A1 PCT/JP2018/035970 JP2018035970W WO2019093009A1 WO 2019093009 A1 WO2019093009 A1 WO 2019093009A1 JP 2018035970 W JP2018035970 W JP 2018035970W WO 2019093009 A1 WO2019093009 A1 WO 2019093009A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
supply
power supply
procurement
control
Prior art date
Application number
PCT/JP2018/035970
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 潤
大一郎 河原
大祐 加藤
藤原 徹
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019093009A1 publication Critical patent/WO2019093009A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to a power planning device, a power supply and demand control system, and a power planning method.
  • Patent Document 1 describes a demand-supply control system that divides output fluctuation due to natural energy and demand fluctuation due to a general load to calculate area demand power (AR). With this supply and demand control system, it is possible to follow the output of the LFC generator even in the case of a sudden output fluctuation of natural energy, and it is possible to improve the supply and demand control performance.
  • the power system operator In order to operate the power system stably, the power system operator is required to draw up a supply and demand control plan in which the amount of power generated by the generator matches the amount of power demand. . Since the demand and supply of power included in the supply and demand control plan fluctuate with time, it is difficult to calculate an accurate forecast value in advance. Therefore, at the time of execution of the supply and demand control plan, the amount of supplied power may be insufficient relative to the amount of demand.
  • power sources that can be procured through an external power market are attracting attention as a new power supply source. It is expected to accelerate the securing of power supplies for procurement by setting up a power market (supply and demand adjustment market) that can procure and deal flexibly with power supplies for procurement by 2020. Therefore, the power company can eliminate the power shortage in the supply and demand control plan by securing the power supply for procurement from the power market when the supply amount of the power prepared in advance by the own power source suddenly runs short. That is, the power system operator can match demand and supply by transmitting an appropriate control command to the previously procured power supply for procurement, keep the system frequency within the threshold, and realize stable system operation. it can.
  • Examples of the power supply for procurement include storage battery control, pump-up of pumped storage power generation, charge and discharge control of an electric vehicle, and demand response (DR).
  • DR demand response
  • micro grids including multiple power sources for procurement, and virtual power plants (VPPs).
  • VPPs virtual power plants
  • the power supply for procurement procured from the power market has various control performance and operation constraints.
  • the DR changes the responsiveness of the customer depending on the type of control command and the amount of incentives, and therefore carries the risk that the power output assumed in advance can not be exhibited.
  • this invention makes it a main subject to support drawing up of the supply-and-demand control plan which included the risk when purchasing the power supply for procurement from an electric power market.
  • an electric power planner of the present invention has the following features.
  • the present invention provides a control achievement probability indicating the degree to which control at the time of performing control in the past was achieved according to a command, and a power output for each of the power supplies for procurement, for each procurement power source having a risk of procuring from the power market.
  • a power supply procurement risk calculation unit that calculates power supply procurement risk data that is a probability that the power supply for control included in the supply and demand control plan data can not output the required power supply output based on the
  • the power supply procurement risk data may further include a supply and demand control planning unit that adds the procurement power supply as a control target to the supply and demand control plan data until the power supply procurement risk data reaches a predetermined standard. Other means will be described later.
  • FIG. 5 is a block diagram illustrating power market bid data according to an embodiment of the present invention. It is a block diagram which shows supply-and-demand control plan data concerning one embodiment of the present invention. It is a block diagram which shows the control command response performance data regarding one Embodiment of this invention.
  • FIG. 5 is a block diagram illustrating power control uncertainty data according to an embodiment of the present invention. It is a block diagram which shows the power supply procurement risk data regarding one Embodiment of this invention.
  • FIG. 6 is a flow chart of calculating power control uncertainty data for each power source for procurement according to an embodiment of the present invention.
  • FIG. It is a flowchart which calculates the power supply procurement risk data regarding one Embodiment of this invention. It is a graph of probability distribution which shows the calculation process of the total power supply uncertainty data regarding one Embodiment of this invention. It is a flow chart which calculates risk consideration plan data concerning one embodiment of the present invention.
  • FIG. 6 is a graph when there is a power supply procurement risk according to an embodiment of the present invention.
  • FIG. 6 is a graph showing risk-aware planning data according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a power supply and demand control system.
  • the power supply and demand control system is configured such that the power supply and demand control device 1 respectively manages the equipment of its own power source owned by the power company and the power supply for procurement procured through the power market management system 300.
  • a central processing unit (CPU) 201 As an internal configuration of the power supply and demand control device 1, a central processing unit (CPU) 201, a display device 202, a communication unit 203, an input unit 204, a memory 205 and a storage device 206 are connected to a bus line 211. There is.
  • the CPU 201 executes a calculation program to calculate a system state, generate a control signal, and the like.
  • the memory 205 is a memory for temporarily storing image data for display, calculation result data of the system state, and the like, and is configured using, for example, a random access memory (RAM).
  • the memory 205 generates necessary image data by the CPU 201 and displays the image data on the display device 202.
  • a user such as a power system operator can set and change parameters such as various threshold values through a predetermined interface of the input unit 204, and can appropriately set the operation of the power supply and demand control device 1.
  • the user can select the type of data to be confirmed through a predetermined interface of the input unit 204 and cause the display device 202 to display the data.
  • the communication unit 203 acquires system state quantities such as the power flow value and the voltage value from the measuring device 21 and the measuring device 21 through the communication network 108.
  • the storage device 206 holds various programs and data.
  • the storage device 206 is configured of, for example, a hard disk drive (HDD) or a flash memory.
  • the storage device 206 holds, for example, programs and data that can realize various functions described later.
  • the programs and data stored in the storage device 206 are read and executed by the CPU 201 as necessary.
  • the storage device 206 is composed of various databases (DBs).
  • the power market management system 300 manages power market transactions in which a power producer and a power transmission and distribution provider buy and sell power. There are various forms of market management depending on the type of product to be traded. For example, a market operation form of the spot market may be used to complete bidding and contract within one day before supply and demand control, or a market operation form of the real-time market where additional procurement power supply is traded on the day of supply and demand control. It is also good.
  • the power market management system 300 transmits / receives power transaction data and power plan data defined by a procurement target, a procurement schedule, and the like to / from the power supply and demand control apparatus 1 via the information communication network 108.
  • the power transaction information includes a power sale price, a power sale amount, control performance / control requirements of the power supply target power supply, and the like.
  • the power market management system 300 includes at least one of a thermal power generation power source, a hydro power generation power source, a storage battery control power source, a pumped storage power generation power source, a charge and discharge control power source of an electric vehicle, a DR power source, a micro grid control power source, and a VPP control power source. Supply power from the power market as a power supply for procurement.
  • the generator 101 (101a, 101b), the substation 102, the phase adjusting device 103, the power load 104, the external power grid 105, and the measuring device 121 (121a) as the equipment of the own power source owned by the power company.
  • the respective units are connected to the power supply and demand control device 1 via the information communication network 108.
  • the information communication network 108 is a network capable of transmitting data bidirectionally.
  • the information communication network 108 is configured by, for example, a wired network or a wireless network, or a combination thereof.
  • the information communication network 108 may be a so-called Internet or a network of leased lines.
  • the generator 101 is a generator that generates power, and is a generator that generates power by any power generation method including thermal power generation, hydropower generation, nuclear power generation, solar power generation, wind power generation, biomass power generation, and tidal power generation. is there.
  • the generator 101a is a large-scale generator including thermal power generation, hydroelectric power generation, nuclear power generation and the like installed on the high voltage side of the electric power system.
  • the generator 101a transmits the system state amount including the power generation amount to the power supply and demand control device 1 via the measuring device 121a, and changes the system state amount including the power generation amount according to the control command information transmitted from the power supply and demand control device 1.
  • the generator 101 b is a small-to-medium-sized generator including solar power generation, wind power generation, cogeneration, etc. installed on the low voltage side of the electric power system, and FIG. 1 illustrates a solar panel performing solar power generation. .
  • the generator 101 b transmits the system state quantity including the amount of power generation to the power supply and demand control device 1 via the measuring device 121 d.
  • the substation 102 is installed between transmission lines in the power system, changes the voltage value of the power transmitted from the high voltage side where the generator 101a which is a large scale generator is installed, and the power load 104 is installed. Power to the low voltage side.
  • the substation 102 is connected with a phase adjusting device 103 such as a power capacitor and a shunt reactor.
  • the phase-adjusting device 103 is a device that controls voltage distribution in the power system by changing reactive power in the power system, and includes a power capacitor, a shunt reactor, STATCOM, SVC, and the like.
  • phase adjusting devices 103 receive the control command information transmitted from the power supply and demand control device 1 via the measuring device 121 b, and change the system state quantity including the amount of power generation according to the control command information.
  • the power load 104 is a home, a factory, a building, a facility including an electric motor, a lighting fixture, etc. that consumes power.
  • the external power system 105 is an external power system which can not be controlled by the power supply and demand control device 1, and is connected to the own system by an interconnection line.
  • Each measuring device 121 (121a to 121e) internally includes a sensor for measuring a system state quantity such as the power generation amount in each generator 101, the phase adjustment amount in the phase adjusting device 103, the power flow value in the transmission line, and the voltage value. .
  • Each measuring device 121 and the power supply and demand control device 1 communicate via the information communication network 108.
  • the data transmitted from each measuring device 121 to the power supply and demand control device 1 is, for example, a measured system state quantity.
  • the data that each measuring device 121 receives from the power supply and demand control device 1 is, for example, control command information calculated using the transmitted system state quantity of the system and the information accumulated therein.
  • FIG. 2 is a block diagram of the power supply and demand control device 1.
  • the processing unit 10 configured by the CPU 201 of the power supply and demand control device 1 includes a supply and demand fluctuation prediction unit 11, a supply and demand control plan creation unit 12, a power supply control uncertainty calculation unit 13, a power supply procurement risk calculation unit 14, and supply and demand control. It is comprised including the plan correction part 15.
  • the memory 205 of the power supply and demand control device 1 includes supply and demand fluctuation forecast data 31, supply and demand control plan data 32, power supply control uncertainty data 33, and power supply procurement risk data 34 as calculation progress data of the processing unit 10.
  • the risk consideration plan data 35 is stored.
  • the frequency fluctuation value 21, the interconnection power flow fluctuation value 22, the power generation fluctuation value 23, the weather fluctuation value 24, the power market bid data 25, and the control command response result Data 26 and power supply procurement risk upper limit data 27 are stored.
  • the various fluctuation values 21 to 24 are actual values measured by sensors as values that fluctuate with time. It may be a predicted value by a prediction model, or may be a mixture of actual values at one point in time and predicted values at another point in time.
  • the demand-supply fluctuation prediction unit 11 calculates the demand-supply fluctuation prediction data 31 of FIG. 3 using the various fluctuation values 21 to 24 as input (the details of the calculation processing are FIG. 10).
  • the supply and demand control plan creation unit 12 creates the supply and demand control plan data 32 of FIG. 5 with the supply and demand fluctuation forecast data 31 and the power market bid data 25 of FIG. 4 as input.
  • the power control uncertainty calculation unit 13 calculates the power control uncertainty data 33 of FIG. 7 using the control command response result data 26 of FIG. 6 as an input (the detail of the calculation processing is FIG. 11).
  • the power supply procurement risk calculation unit 14 calculates the power supply procurement risk data 34 of FIG.
  • the supply and demand control plan correction unit 15 corrects the supply and demand control plan data 32 into the risk consideration plan data 35 by using the power supply procurement risk data 34 and the power supply procurement risk upper limit data 27 of FIG. Figure 14).
  • FIG. 3 is a configuration diagram showing the supply and demand fluctuation prediction data 31.
  • the supply and demand fluctuation forecast data 31 includes the forecast value of the frequency fluctuation value 21, the forecast value of the interconnection flow fluctuation value 22, the forecast value of the power generation fluctuation value 23, and the weather fluctuation value 24 for each fluctuation cycle of the first row.
  • the predicted value of the total supply and demand fluctuation value 31a and the total supply and demand fluctuation value 31b which is a prediction error concerning the total supply and demand fluctuation value 31a are associated with each other.
  • the demand and supply fluctuation forecast unit 11 When calculating the supply and demand fluctuation forecast data 31 for each fluctuation cycle from the time series data having a fixed time length which is the various fluctuation values 21 to 24 inputted, the demand and supply fluctuation forecast unit 11 performs Fourier transform, wavelet transform, etc. The frequency decomposition method of may be applied.
  • FIG. 4 is a block diagram showing the power market bid data 25.
  • the power market bid data 25 is, as record data (row data) for each of the power sources for procurement used in the power market, an index representing control performance (maximum control amount, maximum output change rate, duration time, startable time) and , And the power supply procurement cost (information of unit price required for procurement) are associated with each other.
  • the power market bid data 25 is distributed from, for example, the power market management system 300 to the power supply and demand control device 1.
  • FIG. 5 is a block diagram showing the supply and demand control plan data 32.
  • the supply and demand control plan data 32 corresponds to the power supply for procurement A and B selected to be included in the plan from the power market bid data 25 with the control amount, the output change rate, the control start time, and the control end time as the plan content. It is attached.
  • the supply and demand control plan creation unit 12 calculates the supply amount of power required according to the fluctuation cycle based on the supply and demand fluctuation forecast data 31 and procures to achieve the required supply amount based on the power market bid data 25 Select a power supply. For example, based on the maximum output change rate included in the power market bid data 25, candidates for the procurement power source to be allocated to each fluctuation cycle are selected, and the procurement power source to be controlled according to the merit order based on the power supply cost is determined.
  • the supply and demand control plan creation unit 12 controls the supply power supply so as to increase the output in order from the supply power source having the lowest power supply cost. Create data 32.
  • the supply and demand control plan data 32 for controlling the supply for supply so that the output is decreased in order from the supply for supply with high cost.
  • FIG. 6 is a block diagram showing the control command response result data 26.
  • the control command response result data 26 is the result data in which the control command data 26a, the response result data 26b, and the supply / demand condition data 26c are associated for each power supply for procurement (that is, the result of the power control performed in the past) Data indicating that The control command data 26a is indicated by the control amount, the output change speed, and the start time.
  • the response record data 26b has the same data format as the control command data 26a, and indicates the response result to the control command data 26a.
  • the control command data 26a is instructed, but as a result, the response result data 26b indicating that the start is performed at 15:15 delayed by 15 minutes is recorded. It is done.
  • the fact that the power supply for procurement does not necessarily operate as instructed is the uncertainty of power control.
  • the supply and demand condition data 26c is condition data when control is executed in the response result data 26b.
  • the supply and demand condition data 26c is information that is estimated to affect the supply and demand fluctuation pattern, such as daily type (weekday, holiday, special day, etc.), weather (weather, temperature, etc.), time and time zone (morning, daytime, evening) , Night etc.), power supply type, current output just before control, information of rated output.
  • the power source type includes any of thermal power generation, hydraulic power generation, storage battery control, pumped storage power generation, charge and discharge control of an electric vehicle, DR, micro grid control, and VPP control as the types of power supplies for procurement in the leftmost row.
  • FIG. 7 is a configuration diagram showing the power control uncertainty data 33.
  • the power supply control uncertainty data 33 is data in which the control command data 33a, the supply and demand condition data 33b, and the control achievement probability 33c are associated with each other for the power supply for procurement.
  • the control command data 33a is defined by the control amount and the output change speed as in the control command data 26a.
  • the supply and demand condition data 33b is defined by day type, weather, time, current output, and rated output.
  • the control achievement probability 33c is an indicator of uncertainty regarding the control of the power supply for procurement, and for example, under the condition of the supply and demand condition data 33b, the power supply for procurement A correctly executes the control command data 33a with a probability of 95%.
  • the power supply control uncertainty calculation unit 13 applies the statistical analysis to the control command response result data 26 to calculate the control achievement probability 33 c.
  • the control achievement probability 33c may be calculated for each combination of the power supply for procurement and the demand-supply condition data 33b, or may be calculated for each power supply for procurement.
  • FIG. 8 is a block diagram showing the power supply procurement risk data 34.
  • the power supply procurement risk data 34 is data in which the total supply and demand fluctuation value 31a for each fluctuation cycle of the supply and demand fluctuation prediction data 31, the supply and demand control plan data 32 for each fluctuation cycle, and the power supply risk value 34a for each fluctuation cycle are associated. It is. For example, focusing on the fluctuation cycle of 10 [min], in order to correspond to the total supply and demand fluctuation value of 17 [MW], the power supply G2 for procurement of output 6 [MW] and the power supply G4 for procurement of output 3 [MW] Supply and demand control plan data 32 combining the above is formulated.
  • the power supply procurement risk value 34a of the power supply for procurement in the fluctuation period of 10 [min] is 0.8%, there is a risk that 0.8% of the supply amount of the power supply for procurement will not be supplied without complying with the control command. And the power supply procurement risk calculation unit 14.
  • FIG. 9 is a configuration diagram showing the power supply procurement risk upper limit data 27.
  • the power supply procurement risk upper limit value 27a defines a range (for example, an upper limit value) of the power supply procurement risk value 34a that is permitted for each fluctuation cycle of the power supply procurement risk data 34.
  • the power supply procurement risk upper limit data 27 is, for example, data manually input by the user in advance. The above has been described focusing on the data contents handled by the power supply and demand control device 1. Below, the processing content by the process part 10 of the power supply and demand control apparatus 1 is demonstrated centering on a flowchart.
  • FIG. 10 is a flowchart for calculating the supply-demand fluctuation prediction data 31 by the supply-demand fluctuation prediction unit 11.
  • the demand-supply fluctuation prediction unit 11 acquires each measurement data from the storage device 206.
  • the measurement data acquired here is, for example, not only various fluctuation values 21 to 24 at a certain point in the past, but also response performance data 26b and information related to fluctuation of supply and demand (total supply and demand fluctuation 31a, total supply and demand error 31b) May be included.
  • the demand-supply fluctuation prediction unit 11 classifies the measurement data acquired in S101 based on the demand-supply condition data 26c. Thereby, for example, measurement data when the weather is "fine” and measurement data when the weather is "rain” are grouped separately.
  • the demand-supply fluctuation prediction unit 11 creates a demand-supply fluctuation prediction model by using the measurement data of the demand-supply condition data 26c classified in S102 and the corresponding response result data 26b for the demand-supply condition data 26c. That is, the demand-supply fluctuation prediction unit 11 receives modeling of at least one of the various fluctuation values 21 to 24 of S101 and applies modeling methods such as multiple regression analysis, machine learning, multivariate analysis, etc. Create a demand / supply fluctuation forecasting model that outputs information related to demand / supply fluctuation.
  • the information related to supply and demand fluctuation is information derived from demand fluctuation, other grid interconnection power flow fluctuation, and renewable energy fluctuation.
  • the supply and demand fluctuation prediction unit 11 may create a supply and demand fluctuation prediction model individually for each of the various kinds of fluctuation values 21 to 24. Further, the demand-supply fluctuation prediction unit 11 inputs measured values or predicted values of the various fluctuation values 21 to 24 into the following (Equation 1) to calculate a total demand-supply fluctuation value 31a, and outputs the total demand-supply fluctuation value 31a as an output. Supply and demand fluctuation forecast model.
  • ⁇ G ⁇ L + ⁇ Lw ⁇ K ⁇ F (Equation 1)
  • ⁇ G indicates a total demand / supply fluctuation value 31 a
  • ⁇ L indicates an interconnection flow fluctuation value 22
  • ⁇ Lw indicates a power generation amount fluctuation value 23
  • K indicates a system constant
  • ⁇ F indicates a frequency fluctuation value 21.
  • the demand-supply fluctuation prediction unit 11 calculates the demand-supply fluctuation prediction data 31 at the time to be a prediction target, using the demand-supply fluctuation prediction model created in S103.
  • a measured value exists in the time used as prediction object, it may replace with a predicted value and may include measured value in the supply-and-demand fluctuation prediction data 31.
  • the demand-supply fluctuation forecast data 31 includes a gross demand-supply fluctuation value 31a indicating the representative value of the forecasted value and a gross demand-supply error indicating the range of fluctuation from the gross demand-supply fluctuation value 31a.
  • the value 31b is calculated as a combination.
  • the total demand and supply error value 31b is a prediction error regarding the total demand and supply fluctuation value 31a.
  • the supply and demand fluctuation prediction unit 11 statistically analyzes the difference between the measured value and the predicted value for the total supply and demand fluctuation value 31a to, for example, 3 ⁇ values ( ⁇ represents a standard deviation) when the error distribution is assumed to be a normal distribution.
  • the total supply and demand error value 31b may be calculated as
  • FIG. 11 is a flowchart for calculating the power control uncertainty data 33 for each power source for procurement.
  • the power supply control uncertainty calculation unit 13 acquires control command data 26a and response result data 26b from the control command response result data 26.
  • the power supply control uncertainty calculation unit 13 classifies the data (the control command data 26a and the response record data 26b) acquired in S201 based on the supply and demand condition data 26c.
  • the power supply control uncertainty calculation unit 13 uses the respective data (control command data 26a and response record data 26b) classified in S202 to supply and demand condition data 26c (supply and demand condition data 33b) for each power source for procurement. Power supply control uncertainty data 33 including the control achievement probability 33c for each) is calculated.
  • FIG. 12 is a flowchart for calculating the power supply procurement risk data 34.
  • the power supply procurement risk calculation unit 14 acquires the supply and demand fluctuation prediction data 31, the supply and demand control plan data 32, and the power supply control uncertainty data 33.
  • the power supply procurement risk calculation unit 14 calculates total power uncertainty data for each fluctuation cycle from each data acquired in S301.
  • the total power supply uncertainty data is uncertainty data with respect to the power supply output (power supply output sum) for all the power supplies for procurement included in the supply and demand control plan data 32 in each fluctuation cycle.
  • the power supply procurement risk calculation unit 14 calculates power supply procurement risk data 34 including the power supply procurement risk value 34a based on the supply and demand fluctuation prediction data 31 acquired in step S301 and the total power supply uncertainty data calculated in step S302.
  • FIG. 13 is a graph of probability distribution showing calculation processing of total power supply uncertainty data in S302.
  • the horizontal axis of the graph indicates the power supply output (control output) for all the procurement power sources included in the supply and demand control plan data 32, and the vertical axis of the graph indicates the occurrence probability of each control output.
  • the power supply procurement risk calculation unit 14 estimates the probability distribution for the control output of each power supply for procurement from the control achievement probability 33c of the power supply control uncertainty data 33 acquired in S301. Then, the power supply procurement risk calculation unit 14 estimates the probability distribution for the total output of the allocated procurement power source as shown in FIG. 13 as total power supply uncertainty data from the calculation result of the convolution sum of the estimated individual probability distributions. Do.
  • the power supply procurement risk calculation unit 14 can not ensure the supply amount of the same amount as the supply and demand fluctuation forecast data 31 with respect to the probability distribution of FIG. 13 (that is, the value of the probability that the power supply is insufficient).
  • the power supply procurement risk value 34a the power supply procurement risk calculation unit 14 adopts a normal distribution which is defined using the control output command value as the average value ⁇ and the variance set in advance using ⁇ 2 based on the probability distribution of FIG.
  • the probability r1 of achieving the control output within a certain output fluctuation range r1 (the shaded area in FIG. 13) is calculated to be equal to the control achievement probability 33c.
  • the power supply procurement risk calculation unit 14 may set the calculated r1 as the power supply procurement risk value 34a.
  • the power supply procurement risk calculation unit 14 may obtain the variance ⁇ 2 by a statistical analysis method using control command response result data as an input.
  • FIG. 14 is a flowchart for calculating the risk consideration plan data 35.
  • the supply and demand control plan correction unit 15 acquires the power supply procurement risk data 34 and the power supply procurement risk upper limit data 27.
  • the supply and demand control plan correction unit 15 extracts, from the power market bid data 25, the additional controllable procurement power source not yet included in the current plan data (supply and demand control plan data 32 or risk consideration plan data 35). Do.
  • the supply and demand control plan correction unit 15 selects the power supply for procurement to be newly added to the plan data from the power supplies for procurement extracted in S402.
  • the power supply procurement risk value 34a can be improved because the additional power supply for procurement can afford the power supply.
  • the supply and demand control plan correction unit 15 satisfies the control performance requirements such as the output change rate as the determination criteria of the power supply for procurement to be added, and targets the power supply for procurement with low power supply procurement cost based on merit order.
  • the supply and demand control plan correction unit 15 creates risk consideration plan data 35 in which the power supply for procurement selected in S403 is added to the current plan data (in other words, by adding a new power supply for procurement, Modify the plan data of Then, the power supply procurement risk calculation unit 14 calculates the power supply procurement risk value 34 a also for the corrected latest risk consideration plan data 35 as in the flowchart of FIG. 12.
  • the supply and demand control plan correction unit 15 determines whether or not the power supply procurement risk value 34a calculated at S404 is within the determination standard. If No in S405, the process returns to S403. If Yes in S405, the risk consideration plan data 35 in consideration of the power supply procurement risk value 34a is created, and the process is ended.
  • the horizontal axis of the graph shows the fluctuation period divided into three periods C1, C2 and C3, and the vertical axis of the graph shows the fluctuation range of the power supply and demand in each fluctuation period.
  • FIG. 15 is a graph based on the optimistic assumption that 100% control command data 26a response performance data 26b can be obtained in the power supply for procurement as well as the own power supply without considering the power supply procurement risk.
  • the solid line in the middle of the three shows total supply and demand fluctuation value 31a
  • the two broken lines sandwiching the solid line above and below add the total supply and demand fluctuation value 31b to total supply and demand fluctuation value 31a.
  • Six squares of this graph indicate the output of the power supply for procurement allocated to each fluctuation period as the supply and demand control plan data 32 (for example, a value “5” on the right of G1 in FIG. 8).
  • the sum of output of the power supply for procurement covers the case where the demand of the total demand fluctuation value 31a is the highest (the broken line at the top) in any of the fluctuation cycles of three periods. , Lack of control (lack of supply) does not occur.
  • the supply / demand fluctuation range (the height of the upper side of the square of G2a) of the total output of the two power supplies for procurement G1a and G2a is sufficiently high and higher than the top broken line. is there.
  • FIG. 16 is a graph in the case where a shortage of control occurs in the power supply for procurement because the power supply procurement risk actually exists, unlike FIG. First, the power sources for procurement G1a to G5a in FIG. 15 and the power sources for procurement G1b to G5b in FIG. 16 correspond to each other 1: 1.
  • the control amount (size of the square) of each power supply for procurement is the actual value of FIG. 16 rather than the theoretical value of FIG. It has fallen.
  • the power supply G4b for procurement is lower than the power supply G4a for procurement in the fluctuation cycle C3, and the power supply G5b for procurement is lower than the power supply G5a for procurement.
  • the power supply control uncertainty data 33 (control achievement probability 33c) is reflected in each procurement power source.
  • the graph line of the total supply and demand fluctuation value 31a (the upper broken line among the three lines) including the total supply and demand error value 31b is the sum of the supply and demand fluctuation range (sum of the power supplies G4b and G5b for procurement)
  • a "lack of control" that is larger than the total power supply uncertainty data (S302) occurs. That is, it is necessary for the supply and demand control plan correction unit 15 to correct the supply and demand control plan data 32 in which the “control shortage” exists due to the power supply procurement risk as shown in FIG.
  • FIG. 17 is a graph showing risk consideration plan data 35 in which the supply and demand control plan correction unit 15 corrects the supply and demand control plan data 32 with respect to the state of FIG. 16.
  • the supply and demand control plan data 32 of FIG. 16 includes six procurement power sources G1a to G5a, a seventh seventh procurement power source G6 is added to the risk consideration plan data 35 of FIG.
  • the “control shortage” as shown in FIG. 16 is eliminated, whereby the power supply procurement risk value 34 a can be lowered. That is, although the supply / demand control plan data 32 before the correction did not pass the determination process of S405 (No), the post-correction risk consideration plan data 35 can pass the determination process of S405 (Yes).
  • the power supply procurement risk calculation unit 14 uses the power supply procurement risk data 34 of the power supply for procurement included in the supply and demand control plan data 32 based on the past control achievement probability 33c of the individual power supplies for procurement. calculate. Then, the supply and demand control plan correction unit 15 additionally supplies the power supply for procurement to the extent that the power supply procurement risk upper limit data 27 satisfies the standard, and thereby the power supply procurement risk value 34a which is an evaluation value of the supply and demand control plan data 32 is obtained. Lower. Then, the power supply and demand control device 1 controls the power supply for procurement from the power market management system 300 using the risk consideration plan data 35 that satisfies the criteria, so that the power generation amount fluctuation value 23 is unexpectedly large due to abnormal weather or the like.
  • the power supply and demand control device 1 controls supply and demand by selecting the power supply for procurement with reference to the power supply procurement cost from the power market bid data 25 so as to reduce the total cost of the power supply for procurement included in the plan data as much as possible. It is possible to economically utilize a procurement power source that incorporates uncertainty in performance.
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the above-described embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the configurations, functions, processing units, processing means, etc. described above may be realized by hardware, for example, by designing part or all of them with an integrated circuit.
  • each configuration, function, and the like described above may be realized by software by a processor interpreting and executing a program that realizes each function.
  • control lines and information lines indicate what is considered to be necessary for the description, and not all control lines and information lines in the product are necessarily shown. In practice, almost all configurations may be considered to be mutually connected.
  • the communication means connecting the respective devices is not limited to the wireless LAN, and may be changed to a wired LAN or other communication means.
  • Power supply and demand control device DESCRIPTION OF SYMBOLS 10 Processing part 11 Supply-demand fluctuation prediction part 12 Supply-and-demand control plan preparation part 13 Power-supply control uncertainty calculation part 14 Power-supply procurement risk calculation part 15 Supply-and-demand control plan correction part (supply-and-demand control planning part) 21 Frequency fluctuation value 22 Interconnected power flow fluctuation value 23 Power generation value fluctuation value 24 Weather fluctuation value 25 Electricity market bid data 26 Control command response result data 26a Control command data 26b Response result data 26c Supply and demand condition data 27 Power supply procurement risk upper limit data 27a Power supply Procurement risk upper limit value 31 supply and demand fluctuation forecast data 31a total supply and demand fluctuation value 31b total supply and demand error value 32 supply and demand control plan data 33 power control uncertainty data 33a control command data 33b supply and demand condition data 33c control achievement probability 34 power supply risk data 34a power supply Procurement risk value 35 Risk consideration plan data

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Power Engineering (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Public Health (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

Provided is an electricity supply-demand control device (1) comprising: a power source procurement risk computation part (14) that uses power source output for each of power sources for procurement with the risk of procurement from an electricity market and a control achievement rate (33c) indicating the degree to which control was achieved as per a command when carried out previously, thereby computing power source procurement risk data (34) for each power source for procurement, said risk data representing the likelihood that the power sources for procurement will be unable to provide required power source output; and a supply-demand control plan revision part (15) that adds power sources for procurement to supply-demand control plan data (32) until the power source procurement risk data (34) reaches a prescribed reference.

Description

電力計画装置、電力需給制御システム、および、電力計画方法Power planning apparatus, power supply and demand control system, and power planning method
 本発明は、電力計画装置、電力需給制御システム、および、電力計画方法に関わる。 The present invention relates to a power planning device, a power supply and demand control system, and a power planning method.
 近年、太陽光発電や風力発電に代表される自然エネルギーが発電系統に大量導入されつつある。それらの自然エネルギーは急峻かつ事前想定困難な発電出力変動を伴う出力制御ができない電力供給源である。
 特許文献1には、自然エネルギーによる出力変動と一般負荷による需要変動を切り分けて地域要求電力(AR:Area Requirement)を算出する需給制御システムが記載されている。この需給制御システムにより、自然エネルギーの急激な出力変動に対してもLFC発電機の出力追従が可能となり、需給制御性能を向上させることが可能となる。
In recent years, a large amount of natural energy represented by solar power generation and wind power generation is being introduced into power generation systems. Their natural energy is a power supply source that can not be power controlled with abrupt and difficult power generation output fluctuations.
Patent Document 1 describes a demand-supply control system that divides output fluctuation due to natural energy and demand fluctuation due to a general load to calculate area demand power (AR). With this supply and demand control system, it is possible to follow the output of the LFC generator even in the case of a sudden output fluctuation of natural energy, and it is possible to improve the supply and demand control performance.
特開2014-204577号公報JP, 2014-204577, A
 電力系統を安定して運用するために、電力の需要量に対して、発電機で発電される電力の供給量が一致するような需給制御計画の立案が、電力系統運用者に求められている。需給制御計画に盛り込む電力の需要量や供給量は、時間とともに変動するため、正確な予測値を事前に計算することは困難である。そのため、需給制御計画の実行時点において、電力の供給量が需要量に対して不足することも起こりうる。 In order to operate the power system stably, the power system operator is required to draw up a supply and demand control plan in which the amount of power generated by the generator matches the amount of power demand. . Since the demand and supply of power included in the supply and demand control plan fluctuate with time, it is difficult to calculate an accurate forecast value in advance. Therefore, at the time of execution of the supply and demand control plan, the amount of supplied power may be insufficient relative to the amount of demand.
 ところで、従来、電力会社は、自前で保有している発電施設(以下、「自前電源」)を用いて、火力発電、水力発電、原子力発電などを行ってきた。これらの自前電源は、発電時期や発電量などをきめ細かく制御しやすいため、電源制御の不確実性が低く安定した電力供給源といえる。しかし、発電量が不足したときに新たな発電施設を追加するには、発電所の建設段階から長期間の準備がかかるため、急な電力調達には不向きである。 By the way, conventionally, a power company has performed thermal power generation, hydroelectric power generation, nuclear power generation and the like using a power generation facility (hereinafter, "own power source") owned by itself. These own power supplies can be said to be stable power supply sources with low uncertainty of power supply control because it is easy to finely control the power generation timing and the amount of power generation. However, it is not suitable for sudden power procurement because it takes a long period of preparation from the construction stage of the power plant to add a new power generation facility when the amount of power generation is insufficient.
 一方、新たな電力供給源として、外部の電力市場を通じて調達可能な電源(以下、「調達用電源」)が注目されている。調達用電源を柔軟に調達し、取引を行うことができる電力市場(需給調整市場)を2020年を目途に創設することで、調達用電源の確保を加速化させることが期待される。よって、電力会社は、自前電源であらかじめ用意した電力の供給量が急に不足したときには、電力市場から調達用電源を確保することで、需給制御計画における電力不足を解消することができる。つまり、電力系統運用者は、事前調達した調達用電源に対し適切な制御指令を送信することで需要と供給とを一致させ、系統周波数を閾値内に収め、系統の安定運用を実現することができる。 On the other hand, power sources that can be procured through an external power market (hereinafter, “power sources for procurement”) are attracting attention as a new power supply source. It is expected to accelerate the securing of power supplies for procurement by setting up a power market (supply and demand adjustment market) that can procure and deal flexibly with power supplies for procurement by 2020. Therefore, the power company can eliminate the power shortage in the supply and demand control plan by securing the power supply for procurement from the power market when the supply amount of the power prepared in advance by the own power source suddenly runs short. That is, the power system operator can match demand and supply by transmitting an appropriate control command to the previously procured power supply for procurement, keep the system frequency within the threshold, and realize stable system operation. it can.
 調達用電源の例として、蓄電池制御、揚水発電のポンプアップ、電気自動車の充放電制御、デマンドレスポンス(DR:Demand Response)があげられる。また、複数の調達用電源を包含するマイクログリッド、仮想発電所(VPP:Virtual Power Plant)も存在する。火力発電、水力発電の休廃止により自前電源の規模が減少するなか、外部の調達用電源を需給制御計画に盛り込む割合は、増加傾向にある。
 ここで、自前電源に比べて、電力市場から調達する調達用電源は、多様な制御性能および運用制約を持つ。例えば、DRは制御指令の形態やインセンティブの多寡により需要家の応答性が変化するため、事前に想定した電力出力を発揮できないなどのリスクを伴う。
Examples of the power supply for procurement include storage battery control, pump-up of pumped storage power generation, charge and discharge control of an electric vehicle, and demand response (DR). In addition, there are micro grids including multiple power sources for procurement, and virtual power plants (VPPs). While the scale of its own power supply is reduced due to the closure of thermal power generation and hydroelectric power generation, the ratio of incorporating an external procurement power supply into the supply and demand control plan is increasing.
Here, compared to the power supply of its own, the power supply for procurement procured from the power market has various control performance and operation constraints. For example, the DR changes the responsiveness of the customer depending on the type of control command and the amount of incentives, and therefore carries the risk that the power output assumed in advance can not be exhibited.
 しかし、従来の技術では、調達用電源を電力市場から調達するときのリスクを需給制御計画に盛り込む仕組みは提案されていない。例えば、特許文献1に記載の需給制御システムでは、自然エネルギーの発電出力変動のようなもともと人間には制御できない気候の変化についての考慮にとどまり、人間には制御できるものの、電力市場から調達するときのリスクを伴う調達用電源は、対象外である。 However, in the conventional technology, no mechanism has been proposed for incorporating the risk when procuring power from the power market into the supply and demand control plan. For example, in the supply and demand control system described in Patent Document 1, consideration is given to changes in climate that can not be controlled by humans originally, such as fluctuations in the power generation output of natural energy. Procurement power sources with the risk of are not covered.
 そこで、本発明は、調達用電源を電力市場から調達するときのリスクを盛り込んだ需給制御計画の立案を支援することを、主な課題とする。 Then, this invention makes it a main subject to support drawing up of the supply-and-demand control plan which included the risk when purchasing the power supply for procurement from an electric power market.
 前記課題を解決するために、本発明の電力計画装置は、以下の特徴を有する。
 本発明は、電力市場から調達するリスクを伴う調達用電源ごとに、過去に制御を行ったときの制御が指令通りに達成された度合いを示す制御達成確率と、前記調達用電源ごとの電源出力とをもとに、需給制御計画データに含まれる制御対象の前記調達用電源が、必要とされる電源出力を出力できなくなる確率である電源調達リスクデータを算出する電源調達リスク算出部と、
 前記電源調達リスクデータが所定基準に達するまで、前記需給制御計画データに対して前記調達用電源を制御対象として追加する需給制御計画部とを有することを特徴とする。
 その他の手段は、後記する。
In order to solve the above-mentioned subject, an electric power planner of the present invention has the following features.
The present invention provides a control achievement probability indicating the degree to which control at the time of performing control in the past was achieved according to a command, and a power output for each of the power supplies for procurement, for each procurement power source having a risk of procuring from the power market. And a power supply procurement risk calculation unit that calculates power supply procurement risk data that is a probability that the power supply for control included in the supply and demand control plan data can not output the required power supply output based on the
The power supply procurement risk data may further include a supply and demand control planning unit that adds the procurement power supply as a control target to the supply and demand control plan data until the power supply procurement risk data reaches a predetermined standard.
Other means will be described later.
 本発明によれば、調達用電源を電力市場から調達するときのリスクを盛り込んだ需給制御計画の立案を支援することができる。 According to the present invention, it is possible to support the formulation of a supply and demand control plan that incorporates the risk when procuring power sources from the power market.
本発明の一実施形態に関する電力需給制御システムの構成図である。It is a block diagram of the power supply and demand control system concerning one embodiment of the present invention. 本発明の一実施形態に関する電力需給制御装置の構成図である。It is a block diagram of the electric power supply and demand control apparatus regarding one Embodiment of this invention. 本発明の一実施形態に関する需給変動予測データを示す構成図である。It is a block diagram which shows supply-and-demand fluctuation prediction data concerning one embodiment of the present invention. 本発明の一実施形態に関する電力市場入札データを示す構成図である。FIG. 5 is a block diagram illustrating power market bid data according to an embodiment of the present invention. 本発明の一実施形態に関する需給制御計画データを示す構成図である。It is a block diagram which shows supply-and-demand control plan data concerning one embodiment of the present invention. 本発明の一実施形態に関する制御指令応答実績データを示す構成図である。It is a block diagram which shows the control command response performance data regarding one Embodiment of this invention. 本発明の一実施形態に関する電源制御不確実性データを示す構成図である。FIG. 5 is a block diagram illustrating power control uncertainty data according to an embodiment of the present invention. 本発明の一実施形態に関する電源調達リスクデータを示す構成図である。It is a block diagram which shows the power supply procurement risk data regarding one Embodiment of this invention. 本発明の一実施形態に関する電源調達リスク上限データを示す構成図である。It is a block diagram which shows the power supply procurement risk upper limit data regarding one Embodiment of this invention. 本発明の一実施形態に関する需給変動予測部による需給変動予測データを算出するフローチャートである。It is a flowchart which calculates the supply-and-demand fluctuation prediction data by the supply-and-demand fluctuation forecasting part concerning one embodiment of the present invention. 本発明の一実施形態に関する調達用電源ごとの電源制御不確実性データを算出するフローチャートである。FIG. 6 is a flow chart of calculating power control uncertainty data for each power source for procurement according to an embodiment of the present invention. FIG. 本発明の一実施形態に関する電源調達リスクデータを算出するフローチャートである。It is a flowchart which calculates the power supply procurement risk data regarding one Embodiment of this invention. 本発明の一実施形態に関する総電源不確実性データの算出処理を示す確率分布のグラフである。It is a graph of probability distribution which shows the calculation process of the total power supply uncertainty data regarding one Embodiment of this invention. 本発明の一実施形態に関するリスク考慮計画データを算出するフローチャートである。It is a flow chart which calculates risk consideration plan data concerning one embodiment of the present invention. 本発明の一実施形態に関する電源調達リスクを考慮しないときのグラフである。It is a graph when not considering the power supply procurement risk regarding one Embodiment of this invention. 本発明の一実施形態に関する電源調達リスクが存在するときのグラフである。FIG. 6 is a graph when there is a power supply procurement risk according to an embodiment of the present invention. 本発明の一実施形態に関するリスク考慮計画データを示すグラフである。FIG. 6 is a graph showing risk-aware planning data according to an embodiment of the present invention.
 以下、本発明の一実施形態を、図面を参照して詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 図1は、電力需給制御システムの構成図である。
 電力需給制御システムは、電力需給制御装置1が、電力会社が保有する自前電源の設備と、電力市場管理システム300を介して調達される調達用電源とをそれぞれ管理するように構成される。
FIG. 1 is a block diagram of a power supply and demand control system.
The power supply and demand control system is configured such that the power supply and demand control device 1 respectively manages the equipment of its own power source owned by the power company and the power supply for procurement procured through the power market management system 300.
 電力需給制御装置1の内部構成として、CPU(Central Processing Unit)201と、表示装置202と、通信手段203と、入力手段204と、メモリ205と、記憶装置206とがバス線211に接続されている。
 CPU201は、計算プログラムを実行して、系統状態の算出や、制御信号の生成などを行う。メモリ205は、表示用の画像データ、系統状態の算出結果データなどを一旦格納するメモリであり、例えば、RAM(Random Access Memory)などを用いて構成される。メモリ205は、CPU201により必要な画像データを生成して表示装置202に表示する。
 電力系統運用者などのユーザは、入力手段204の所定のインタフェースを通じて各種閾値などのパラメータを設定・変更し、電力需給制御装置1の動作を適切に設定できる。また、ユーザは、入力手段204の所定のインタフェースを通じて確認したいデータの種類を選択し、表示装置202に表示させることができる。
As an internal configuration of the power supply and demand control device 1, a central processing unit (CPU) 201, a display device 202, a communication unit 203, an input unit 204, a memory 205 and a storage device 206 are connected to a bus line 211. There is.
The CPU 201 executes a calculation program to calculate a system state, generate a control signal, and the like. The memory 205 is a memory for temporarily storing image data for display, calculation result data of the system state, and the like, and is configured using, for example, a random access memory (RAM). The memory 205 generates necessary image data by the CPU 201 and displays the image data on the display device 202.
A user such as a power system operator can set and change parameters such as various threshold values through a predetermined interface of the input unit 204, and can appropriately set the operation of the power supply and demand control device 1. In addition, the user can select the type of data to be confirmed through a predetermined interface of the input unit 204 and cause the display device 202 to display the data.
 通信手段203は、通信ネットワーク108を通じて計測装置21および計測装置21から潮流値、電圧値などの系統状態量を取得する。
 記憶装置206は、各種プログラムおよびデータを保持する。記憶装置206は、例えば、HDD(Hard Disk Drive)又はフラッシュメモリなどで構成される。記憶装置206は、例えば、後述する各種機能を実現し得るプログラムおよびデータなどを保持する。記憶装置206に記憶されているプログラムおよびデータは、必要に応じてCPU201に読み出されて実行される。なお、記憶装置206は各種のデータベース(DB)で構成されている。
The communication unit 203 acquires system state quantities such as the power flow value and the voltage value from the measuring device 21 and the measuring device 21 through the communication network 108.
The storage device 206 holds various programs and data. The storage device 206 is configured of, for example, a hard disk drive (HDD) or a flash memory. The storage device 206 holds, for example, programs and data that can realize various functions described later. The programs and data stored in the storage device 206 are read and executed by the CPU 201 as necessary. The storage device 206 is composed of various databases (DBs).
 電力市場管理システム300は、発電事業者および送配電事業者が電力の売買を行う電力市場の取引を管理する。市場運用の方式は取引される商品の種別により多様な形態が存在する。例えば、需給制御の1日前までに入札・約定を完了するスポット市場の市場運用形態を用いてもよいし、需給制御を行う当日に調達用電源を追加取引するリアルタイム市場の市場運用形態を用いてもよい。
 電力市場管理システム300は、電力取引情報、および調達対象、調達スケジュールなどにより規定される電力計画データを、情報通信ネットワーク108を介して電力需給制御装置1と送受信する。この電力取引情報には、売電価格、売電量、売電対象電源の制御性能・制御要件などが含まれている。
 電力市場管理システム300は、火力発電電源、水力発電電源、蓄電池制御電源、揚水発電電源、電気自動車の充放電制御電源、DR電源、マイクログリッド制御電源、および、VPP制御電源のうちの少なくとも1つの電源を、調達用電源として電力市場から提供する。
The power market management system 300 manages power market transactions in which a power producer and a power transmission and distribution provider buy and sell power. There are various forms of market management depending on the type of product to be traded. For example, a market operation form of the spot market may be used to complete bidding and contract within one day before supply and demand control, or a market operation form of the real-time market where additional procurement power supply is traded on the day of supply and demand control. It is also good.
The power market management system 300 transmits / receives power transaction data and power plan data defined by a procurement target, a procurement schedule, and the like to / from the power supply and demand control apparatus 1 via the information communication network 108. The power transaction information includes a power sale price, a power sale amount, control performance / control requirements of the power supply target power supply, and the like.
The power market management system 300 includes at least one of a thermal power generation power source, a hydro power generation power source, a storage battery control power source, a pumped storage power generation power source, a charge and discharge control power source of an electric vehicle, a DR power source, a micro grid control power source, and a VPP control power source. Supply power from the power market as a power supply for procurement.
 電力会社が保有する自前電源の設備として、例えば、発電機101(101a、101b)と、変電所102と、調相機器103と、電力負荷104と、外部電力系統105と、計測装置121(121a~121e)とが図示されており、これらの各設備は情報通信ネットワーク108を介して電力需給制御装置1と接続される。
 情報通信ネットワーク108は、双方向にデータを伝送可能なネットワークである。情報通信ネットワーク108は、例えば、有線ネットワーク若しくは無線ネットワーク、又はそれらの組み合わせで構成される。情報通信ネットワーク108は、いわゆるインターネットであってもよいし、専用線のネットワークであってもよい。
For example, the generator 101 (101a, 101b), the substation 102, the phase adjusting device 103, the power load 104, the external power grid 105, and the measuring device 121 (121a) as the equipment of the own power source owned by the power company. The respective units are connected to the power supply and demand control device 1 via the information communication network 108.
The information communication network 108 is a network capable of transmitting data bidirectionally. The information communication network 108 is configured by, for example, a wired network or a wireless network, or a combination thereof. The information communication network 108 may be a so-called Internet or a network of leased lines.
 発電機101は、発電力を生じる発電機であり、火力発電、水力発電、原子力発電、太陽光発電、風力発電、バイオマス発電、潮流発電を含むいずれかの発電手法により発電力を生じる発電機である。
 発電機101aは、電力系統の高電圧側に設置される火力発電、水力発電、原子力発電などを含む大規模発電機である。発電機101aは計測装置121a経由で発電量を含む系統状態量を電力需給制御装置1に送信し、電力需給制御装置1から送信された制御指令情報に応じて発電量を含む系統状態量を変化させる。
 発電機101bは、電力系統の低電圧側に設置される太陽光発電、風力発電、コジェネレーションなどを含む中小規模発電機であり、図1では、太陽光発電を行うソーラーパネルを図示している。発電機101bは、計測装置121d経由で発電量を含む系統状態量を電力需給制御装置1に送信する。
The generator 101 is a generator that generates power, and is a generator that generates power by any power generation method including thermal power generation, hydropower generation, nuclear power generation, solar power generation, wind power generation, biomass power generation, and tidal power generation. is there.
The generator 101a is a large-scale generator including thermal power generation, hydroelectric power generation, nuclear power generation and the like installed on the high voltage side of the electric power system. The generator 101a transmits the system state amount including the power generation amount to the power supply and demand control device 1 via the measuring device 121a, and changes the system state amount including the power generation amount according to the control command information transmitted from the power supply and demand control device 1. Let
The generator 101 b is a small-to-medium-sized generator including solar power generation, wind power generation, cogeneration, etc. installed on the low voltage side of the electric power system, and FIG. 1 illustrates a solar panel performing solar power generation. . The generator 101 b transmits the system state quantity including the amount of power generation to the power supply and demand control device 1 via the measuring device 121 d.
 変電所102は、電力系統内の送電線間に設置され、大規模発電機である発電機101aが設置される高電圧側から送電される電力の電圧値を変更し、電力負荷104が設置されている低電圧側に送電する。変電所102には、電力コンデンサ、分路リアクトルなどの調相機器103が接続される。
 調相機器103は、電力系統内における無効電力を変化させることにより、電力系統内の電圧分布を制御する機器であり、電力コンデンサ、分路リアクトル、STATCOM、SVCなどを含む。一部の調相機器103は、電力需給制御装置1から送信された制御指令情報を計測装置121b経由で受信し、制御指令情報に応じて発電量を含む系統状態量を変化させる。
 電力負荷104は、電力を消費する電動機、照明器具などをその内部に含む家庭、工場、ビル、施設である。外部電力系統105は、電力需給制御装置1からの制御が不可能である外部の電力系統であり、連系線により自系統と接続している。
The substation 102 is installed between transmission lines in the power system, changes the voltage value of the power transmitted from the high voltage side where the generator 101a which is a large scale generator is installed, and the power load 104 is installed. Power to the low voltage side. The substation 102 is connected with a phase adjusting device 103 such as a power capacitor and a shunt reactor.
The phase-adjusting device 103 is a device that controls voltage distribution in the power system by changing reactive power in the power system, and includes a power capacitor, a shunt reactor, STATCOM, SVC, and the like. Some of the phase adjusting devices 103 receive the control command information transmitted from the power supply and demand control device 1 via the measuring device 121 b, and change the system state quantity including the amount of power generation according to the control command information.
The power load 104 is a home, a factory, a building, a facility including an electric motor, a lighting fixture, etc. that consumes power. The external power system 105 is an external power system which can not be controlled by the power supply and demand control device 1, and is connected to the own system by an interconnection line.
 各計測装置121(121a~121e)は、各発電機101における発電量、調相機器103における調相量、送電線における潮流値、電圧値、などの系統状態量を計測するセンサを内部に含む。
 各計測装置121と電力需給制御装置1とは、情報通信ネットワーク108を通じて通信する。各計測装置121から電力需給制御装置1に送信するデータは、例えば、計測した系統状態量である。各計測装置121が電力需給制御装置1から受信するデータは、例えば、送信された系統の系統状態量および内部に蓄積された情報を用いて算出した制御指令情報である。
Each measuring device 121 (121a to 121e) internally includes a sensor for measuring a system state quantity such as the power generation amount in each generator 101, the phase adjustment amount in the phase adjusting device 103, the power flow value in the transmission line, and the voltage value. .
Each measuring device 121 and the power supply and demand control device 1 communicate via the information communication network 108. The data transmitted from each measuring device 121 to the power supply and demand control device 1 is, for example, a measured system state quantity. The data that each measuring device 121 receives from the power supply and demand control device 1 is, for example, control command information calculated using the transmitted system state quantity of the system and the information accumulated therein.
 図2は、電力需給制御装置1の構成図である。
 電力需給制御装置1のCPU201が構成する処理部10は、需給変動予測部11と、需給制御計画作成部12と、電源制御不確実性算出部13と、電源調達リスク算出部14と、需給制御計画修正部15とを含めて構成される。
 電力需給制御装置1のメモリ205には、処理部10の計算経過データとして、需給変動予測データ31と、需給制御計画データ32と、電源制御不確実性データ33と、電源調達リスクデータ34と、リスク考慮計画データ35とが格納される。
 電力需給制御装置1の記憶装置206には、周波数変動値21と、連系潮流変動値22と、発電量変動値23と、気象変動値24と、電力市場入札データ25と、制御指令応答実績データ26と、電源調達リスク上限データ27とが記憶される。なお、各種変動値21~24(周波数変動値21と、連系潮流変動値22と、発電量変動値23と、気象変動値24)は、時間とともに変動する値として、センサで計測した実績値でもよいし、予測モデルによる予測値でもよいし、ある時点では実績値で別の時点では予測値などのように混在していてもよい。
FIG. 2 is a block diagram of the power supply and demand control device 1.
The processing unit 10 configured by the CPU 201 of the power supply and demand control device 1 includes a supply and demand fluctuation prediction unit 11, a supply and demand control plan creation unit 12, a power supply control uncertainty calculation unit 13, a power supply procurement risk calculation unit 14, and supply and demand control. It is comprised including the plan correction part 15.
The memory 205 of the power supply and demand control device 1 includes supply and demand fluctuation forecast data 31, supply and demand control plan data 32, power supply control uncertainty data 33, and power supply procurement risk data 34 as calculation progress data of the processing unit 10. The risk consideration plan data 35 is stored.
In the storage unit 206 of the power supply and demand control device 1, the frequency fluctuation value 21, the interconnection power flow fluctuation value 22, the power generation fluctuation value 23, the weather fluctuation value 24, the power market bid data 25, and the control command response result Data 26 and power supply procurement risk upper limit data 27 are stored. The various fluctuation values 21 to 24 (frequency fluctuation value 21, interconnection flow fluctuation value 22, power generation fluctuation value 23, and weather fluctuation value 24) are actual values measured by sensors as values that fluctuate with time. It may be a predicted value by a prediction model, or may be a mixture of actual values at one point in time and predicted values at another point in time.
 以下が、処理部10の概要である。
 需給変動予測部11は、各種変動値21~24を入力として、図3の需給変動予測データ31を算出する(算出処理の詳細は図10)。
 需給制御計画作成部12は、需給変動予測データ31と、図4の電力市場入札データ25とを入力として、図5の需給制御計画データ32を作成する。
 電源制御不確実性算出部13は、図6の制御指令応答実績データ26を入力として、図7の電源制御不確実性データ33を算出する(算出処理の詳細は図11)。
 電源調達リスク算出部14は、需給変動予測データ31と、需給制御計画データ32と、電源制御不確実性データ33とを入力として、図8の電源調達リスクデータ34を算出する(算出処理の詳細は図12)。
 需給制御計画修正部15は、電源調達リスクデータ34と、図9の電源調達リスク上限データ27とを入力として、需給制御計画データ32をリスク考慮計画データ35へと修正する(修正処理の詳細は図14)。
The following is an outline of the processing unit 10.
The demand-supply fluctuation prediction unit 11 calculates the demand-supply fluctuation prediction data 31 of FIG. 3 using the various fluctuation values 21 to 24 as input (the details of the calculation processing are FIG. 10).
The supply and demand control plan creation unit 12 creates the supply and demand control plan data 32 of FIG. 5 with the supply and demand fluctuation forecast data 31 and the power market bid data 25 of FIG. 4 as input.
The power control uncertainty calculation unit 13 calculates the power control uncertainty data 33 of FIG. 7 using the control command response result data 26 of FIG. 6 as an input (the detail of the calculation processing is FIG. 11).
The power supply procurement risk calculation unit 14 calculates the power supply procurement risk data 34 of FIG. 8 using the supply and demand fluctuation forecast data 31, the supply and demand control plan data 32, and the power supply control uncertainty data 33 as input (details of calculation processing Figure 12).
The supply and demand control plan correction unit 15 corrects the supply and demand control plan data 32 into the risk consideration plan data 35 by using the power supply procurement risk data 34 and the power supply procurement risk upper limit data 27 of FIG. Figure 14).
 図3は、需給変動予測データ31を示す構成図である。需給変動予測データ31は、1行目の変動周期ごとに、周波数変動値21の予測値と、連系潮流変動値22の予測値と、発電量変動値23の予測値と、気象変動値24の予測値と、総需給変動値31aと、その総需給変動値31aに関する予測誤差である総需給誤差値31bとが対応付けられている。入力された各種変動値21~24である一定の時間長を持つ時系列データから変動周期ごとの需給変動予測データ31を算出する際には、需給変動予測部11は、フーリエ変換、ウェーブレット変換などの周波数分解手法を適用すればよい。 FIG. 3 is a configuration diagram showing the supply and demand fluctuation prediction data 31. As shown in FIG. The supply and demand fluctuation forecast data 31 includes the forecast value of the frequency fluctuation value 21, the forecast value of the interconnection flow fluctuation value 22, the forecast value of the power generation fluctuation value 23, and the weather fluctuation value 24 for each fluctuation cycle of the first row The predicted value of the total supply and demand fluctuation value 31a and the total supply and demand fluctuation value 31b which is a prediction error concerning the total supply and demand fluctuation value 31a are associated with each other. When calculating the supply and demand fluctuation forecast data 31 for each fluctuation cycle from the time series data having a fixed time length which is the various fluctuation values 21 to 24 inputted, the demand and supply fluctuation forecast unit 11 performs Fourier transform, wavelet transform, etc. The frequency decomposition method of may be applied.
 図4は、電力市場入札データ25を示す構成図である。電力市場入札データ25は、電力市場に出されている調達用電源ごとのレコードデータ(行データ)として、制御性能を表す指標(最大制御量、最大出力変化速度、持続時間、起動可能時間)と、電源調達コスト(調達に要する単価の情報)とが対応付けられている。電力市場入札データ25は、例えば、電力市場管理システム300から電力需給制御装置1に配布される。 FIG. 4 is a block diagram showing the power market bid data 25. As shown in FIG. The power market bid data 25 is, as record data (row data) for each of the power sources for procurement used in the power market, an index representing control performance (maximum control amount, maximum output change rate, duration time, startable time) and , And the power supply procurement cost (information of unit price required for procurement) are associated with each other. The power market bid data 25 is distributed from, for example, the power market management system 300 to the power supply and demand control device 1.
 図5は、需給制御計画データ32を示す構成図である。需給制御計画データ32は、電力市場入札データ25から計画に組み込むために選択された調達用電源A,Bに対し、制御量、出力変化速度、制御開始時刻、制御終了時刻が、計画内容として対応付けられている。
 需給制御計画作成部12は、需給変動予測データ31に基づき、変動周期に応じて必要となる電力の供給量を算出し、電力市場入札データ25に基づき、必要となる供給量を達成するよう調達用電源を選定する。例えば、電力市場入札データ25に含まれる最大出力変化速度に基づき、各変動周期に割り当てる調達用電源の候補を選定し、電源調達コストに基づくメリットオーダに従い制御する調達用電源を決定する。
FIG. 5 is a block diagram showing the supply and demand control plan data 32. As shown in FIG. The supply and demand control plan data 32 corresponds to the power supply for procurement A and B selected to be included in the plan from the power market bid data 25 with the control amount, the output change rate, the control start time, and the control end time as the plan content. It is attached.
The supply and demand control plan creation unit 12 calculates the supply amount of power required according to the fluctuation cycle based on the supply and demand fluctuation forecast data 31 and procures to achieve the required supply amount based on the power market bid data 25 Select a power supply. For example, based on the maximum output change rate included in the power market bid data 25, candidates for the procurement power source to be allocated to each fluctuation cycle are selected, and the procurement power source to be controlled according to the merit order based on the power supply cost is determined.
 このとき、総需給変動値31aが需要増加の傾向を示す場合、需給制御計画作成部12は、電源調達コストの低い調達用電源から順に出力を増加させるように調達用電源を制御する需給制御計画データ32を作成する。
 一方、総需給変動値31aが需要減少の傾向を示す場合、電源調達コストの高い調達用電源から順に出力を減少させるように調達用電源を制御する需給制御計画データ32を作成する。
 選定した調達用電源の出力が制御上下限に達した場合、メリットオーダで次の順位の制御候補となる調達用電源を選定する。以上の工程を繰り返し、需給制御計画作成部12は、必要となる供給量を満たすまで調達用電源を追加し、最終的な制御候補を決定する。
At this time, if the total supply and demand fluctuation value 31a indicates a trend of increased demand, the supply and demand control plan creation unit 12 controls the supply power supply so as to increase the output in order from the supply power source having the lowest power supply cost. Create data 32.
On the other hand, when the total supply and demand fluctuation value 31a indicates a trend of decreasing demand, the supply and demand control plan data 32 for controlling the supply for supply so that the output is decreased in order from the supply for supply with high cost.
When the output of the selected power supply for procurement reaches the upper and lower control limit, the power supply for procurement to be the control candidate of the next order in the merit order is selected. The above process is repeated, and the supply and demand control plan creation unit 12 adds the power supply for procurement until the required supply amount is satisfied, and determines the final control candidate.
 図6は、制御指令応答実績データ26を示す構成図である。
 制御指令応答実績データ26は、調達用電源ごとに、その制御指令データ26aと、応答実績データ26bと、需給条件データ26cとを対応付けた実績データ(つまり、過去に行われた電源制御の結果を示すデータ)である。
 制御指令データ26aは、制御量、出力変化速度、起動時刻で示される。応答実績データ26bは、制御指令データ26aと同じデータ形式であり、制御指令データ26aへの応答結果を示す。例えば、調達用電源Aは、15:00に起動する旨の制御指令データ26aが指示されたが、その結果として15分遅れの15:15に起動してしまった旨の応答実績データ26bが記録されている。このように、調達用電源が指示通りに動作するとは限らないことは、電源制御の不確実性となる。
FIG. 6 is a block diagram showing the control command response result data 26. As shown in FIG.
The control command response result data 26 is the result data in which the control command data 26a, the response result data 26b, and the supply / demand condition data 26c are associated for each power supply for procurement (that is, the result of the power control performed in the past) Data indicating that
The control command data 26a is indicated by the control amount, the output change speed, and the start time. The response record data 26b has the same data format as the control command data 26a, and indicates the response result to the control command data 26a. For example, although the power supply A for procurement is instructed to start at 15:00, the control command data 26a is instructed, but as a result, the response result data 26b indicating that the start is performed at 15:15 delayed by 15 minutes is recorded. It is done. Thus, the fact that the power supply for procurement does not necessarily operate as instructed is the uncertainty of power control.
 需給条件データ26cは、応答実績データ26bにおいて制御が実行された時点での条件データである。需給条件データ26cは、需給変動パターンに影響を与えると推定される情報として、日種(平日、休日、特別日など)、気象(天候、気温など)、時刻・時間帯(朝、昼、夕、夜など)、電源種別、制御直前の時点での現在出力、定格出力の情報を含む。
 電源種別は、最左列の調達用電源の種別として、火力発電、水力発電、蓄電池制御、揚水発電、電気自動車の充放電制御、DR、マイクログリッド制御、VPP制御のいずれかを含む。
The supply and demand condition data 26c is condition data when control is executed in the response result data 26b. The supply and demand condition data 26c is information that is estimated to affect the supply and demand fluctuation pattern, such as daily type (weekday, holiday, special day, etc.), weather (weather, temperature, etc.), time and time zone (morning, daytime, evening) , Night etc.), power supply type, current output just before control, information of rated output.
The power source type includes any of thermal power generation, hydraulic power generation, storage battery control, pumped storage power generation, charge and discharge control of an electric vehicle, DR, micro grid control, and VPP control as the types of power supplies for procurement in the leftmost row.
 図7は、電源制御不確実性データ33を示す構成図である。
 電源制御不確実性データ33は、調達用電源ごとに、その制御指令データ33aと、需給条件データ33bと、制御達成確率33cとを対応付けたデータである。制御指令データ33aは、制御指令データ26aと同様に、制御量、出力変化速度で規定される。需給条件データ33bは、需給条件データ26cと同様に、日種、気象、時刻、現在出力、定格出力で規定される。
 制御達成確率33cは、調達用電源の制御に関する不確実性の指標であり、例えば、調達用電源Aが需給条件データ33bの条件下では、制御指令データ33aを95%の確率で正しく実行する旨が登録される。電源制御不確実性算出部13は、制御指令応答実績データ26に対して統計解析を適用することにより、制御達成確率33cを算出する。この制御達成確率33cは、調達用電源および需給条件データ33bの組み合わせごとに算出してもよいし、調達用電源ごとに算出してもよい。
FIG. 7 is a configuration diagram showing the power control uncertainty data 33. As shown in FIG.
The power supply control uncertainty data 33 is data in which the control command data 33a, the supply and demand condition data 33b, and the control achievement probability 33c are associated with each other for the power supply for procurement. The control command data 33a is defined by the control amount and the output change speed as in the control command data 26a. Similar to the supply and demand condition data 26c, the supply and demand condition data 33b is defined by day type, weather, time, current output, and rated output.
The control achievement probability 33c is an indicator of uncertainty regarding the control of the power supply for procurement, and for example, under the condition of the supply and demand condition data 33b, the power supply for procurement A correctly executes the control command data 33a with a probability of 95%. Is registered. The power supply control uncertainty calculation unit 13 applies the statistical analysis to the control command response result data 26 to calculate the control achievement probability 33 c. The control achievement probability 33c may be calculated for each combination of the power supply for procurement and the demand-supply condition data 33b, or may be calculated for each power supply for procurement.
 図8は、電源調達リスクデータ34を示す構成図である。
 電源調達リスクデータ34は、需給変動予測データ31の変動周期ごとの総需給変動値31aと、変動周期ごとの需給制御計画データ32と、変動周期ごとの電源調達リスク値34aとを対応付けたデータである。
 例えば、変動周期10[min]に着目すると、17[MW]の総需給変動値に対応するために、出力6[MW]の調達用電源G2と、出力3[MW]の調達用電源G4とを組み合わせた需給制御計画データ32が立案されている。しかし、変動周期10[min]における調達用電源の電源調達リスク値34aは0.8%であるため、調達用電源の供給量のうちの0.8%分が制御指令に従わずに供給されないというリスクがあると、電源調達リスク算出部14により算出されている。
FIG. 8 is a block diagram showing the power supply procurement risk data 34. As shown in FIG.
The power supply procurement risk data 34 is data in which the total supply and demand fluctuation value 31a for each fluctuation cycle of the supply and demand fluctuation prediction data 31, the supply and demand control plan data 32 for each fluctuation cycle, and the power supply risk value 34a for each fluctuation cycle are associated. It is.
For example, focusing on the fluctuation cycle of 10 [min], in order to correspond to the total supply and demand fluctuation value of 17 [MW], the power supply G2 for procurement of output 6 [MW] and the power supply G4 for procurement of output 3 [MW] Supply and demand control plan data 32 combining the above is formulated. However, since the power supply procurement risk value 34a of the power supply for procurement in the fluctuation period of 10 [min] is 0.8%, there is a risk that 0.8% of the supply amount of the power supply for procurement will not be supplied without complying with the control command. And the power supply procurement risk calculation unit 14.
 図9は、電源調達リスク上限データ27を示す構成図である。電源調達リスク上限値27aは、電源調達リスクデータ34の変動周期ごとに許容される電源調達リスク値34aの範囲(例えば上限値)が規定される。この電源調達リスク上限データ27は、例えば、事前にユーザにより手入力されたデータである。
 以上、電力需給制御装置1が扱うデータ内容に着目して説明した。以下では、電力需給制御装置1の処理部10による処理内容について、フローチャートを中心に説明する。
FIG. 9 is a configuration diagram showing the power supply procurement risk upper limit data 27. As shown in FIG. The power supply procurement risk upper limit value 27a defines a range (for example, an upper limit value) of the power supply procurement risk value 34a that is permitted for each fluctuation cycle of the power supply procurement risk data 34. The power supply procurement risk upper limit data 27 is, for example, data manually input by the user in advance.
The above has been described focusing on the data contents handled by the power supply and demand control device 1. Below, the processing content by the process part 10 of the power supply and demand control apparatus 1 is demonstrated centering on a flowchart.
 図10は、需給変動予測部11による需給変動予測データ31を算出するフローチャートである。
 S101として、需給変動予測部11は、各計測データを記憶装置206から取得する。ここで取得する計測データは、例えば、過去のある時点における各種変動値21~24だけでなく、応答実績データ26bや、需給変動に関連する情報(総需給変動値31a、総需給誤差値31b)を含めてもよい。
 S102として、需給変動予測部11は、S101にて取得した計測データを需給条件データ26cにより分類する。これにより、例えば、気象が「晴」のときの計測データと、気象が「雨」のときの計測データとが別々にグループ化される。
FIG. 10 is a flowchart for calculating the supply-demand fluctuation prediction data 31 by the supply-demand fluctuation prediction unit 11.
As S101, the demand-supply fluctuation prediction unit 11 acquires each measurement data from the storage device 206. The measurement data acquired here is, for example, not only various fluctuation values 21 to 24 at a certain point in the past, but also response performance data 26b and information related to fluctuation of supply and demand (total supply and demand fluctuation 31a, total supply and demand error 31b) May be included.
As S102, the demand-supply fluctuation prediction unit 11 classifies the measurement data acquired in S101 based on the demand-supply condition data 26c. Thereby, for example, measurement data when the weather is "fine" and measurement data when the weather is "rain" are grouped separately.
 S103として、需給変動予測部11は、S102で分類した需給条件データ26cごとの計測データと、需給条件データ26cごとに該当する応答実績データ26bとを入力として、需給変動予測モデルを作成する。つまり、需給変動予測部11は、S101の各種変動値21~24のうちの少なくとも1つの変動値を入力として、重回帰分析、機械学習、多変量解析などのモデル化手法を適用することで、需給変動に関連する情報を出力とする需給変動予測モデルを作成する。なお、需給変動に関連する情報は、需要変動、他系統連系潮流変動、再生可能エネルギー変動に由来する情報である。 In S103, the demand-supply fluctuation prediction unit 11 creates a demand-supply fluctuation prediction model by using the measurement data of the demand-supply condition data 26c classified in S102 and the corresponding response result data 26b for the demand-supply condition data 26c. That is, the demand-supply fluctuation prediction unit 11 receives modeling of at least one of the various fluctuation values 21 to 24 of S101 and applies modeling methods such as multiple regression analysis, machine learning, multivariate analysis, etc. Create a demand / supply fluctuation forecasting model that outputs information related to demand / supply fluctuation. In addition, the information related to supply and demand fluctuation is information derived from demand fluctuation, other grid interconnection power flow fluctuation, and renewable energy fluctuation.
 なお、需給変動予測部11は、各種変動値21~24について個別に需給変動予測モデルを作成してもよい。また、需給変動予測部11は、各種変動値21~24の計測値または予測値を以下の(式1)に入力して総需給変動値31aを算出し、その総需給変動値31aを出力とする需給変動予測モデルを構築してもよい。
 ΔG=ΔL+ΔLw-KΔF …(式1)
 ここで、ΔGは総需給変動値31aを示し、ΔLは連系潮流変動値22を示し、ΔLwは発電量変動値23を示し、Kは系統定数を示し、ΔFは周波数変動値21を示す。
The supply and demand fluctuation prediction unit 11 may create a supply and demand fluctuation prediction model individually for each of the various kinds of fluctuation values 21 to 24. Further, the demand-supply fluctuation prediction unit 11 inputs measured values or predicted values of the various fluctuation values 21 to 24 into the following (Equation 1) to calculate a total demand-supply fluctuation value 31a, and outputs the total demand-supply fluctuation value 31a as an output. Supply and demand fluctuation forecast model.
ΔG = ΔL + ΔLw−KΔF (Equation 1)
Here, ΔG indicates a total demand / supply fluctuation value 31 a, ΔL indicates an interconnection flow fluctuation value 22, ΔLw indicates a power generation amount fluctuation value 23, K indicates a system constant, and ΔF indicates a frequency fluctuation value 21.
 S104として、需給変動予測部11は、S103で作成した需給変動予測モデルを用いて、予測対象となる時点における需給変動予測データ31を算出する。なお、予測対象となる時点において計測値が存在する場合には、予測値に代えて計測値を需給変動予測データ31に含めてもよい。
 ここで、予測値にはばらつきが存在するため、需給変動予測データ31は、予測値の代表値を示す総需給変動値31aと、その総需給変動値31aからのばらつきの幅を示す総需給誤差値31bとを組み合わせとして算出される。
 つまり、総需給誤差値31bは、総需給変動値31aに関する予測誤差である。需給変動予測部11は、総需給変動値31aについての計測値と予測値との差分を統計解析することにより、例えば誤差分布を正規分布として仮定した場合の3σ値(σは標準偏差を表す)として、総需給誤差値31bを算出してもよい。
As S104, the demand-supply fluctuation prediction unit 11 calculates the demand-supply fluctuation prediction data 31 at the time to be a prediction target, using the demand-supply fluctuation prediction model created in S103. In addition, when a measured value exists in the time used as prediction object, it may replace with a predicted value and may include measured value in the supply-and-demand fluctuation prediction data 31. FIG.
Here, since there are variations in the forecasted values, the demand-supply fluctuation forecast data 31 includes a gross demand-supply fluctuation value 31a indicating the representative value of the forecasted value and a gross demand-supply error indicating the range of fluctuation from the gross demand-supply fluctuation value 31a. The value 31b is calculated as a combination.
That is, the total demand and supply error value 31b is a prediction error regarding the total demand and supply fluctuation value 31a. The supply and demand fluctuation prediction unit 11 statistically analyzes the difference between the measured value and the predicted value for the total supply and demand fluctuation value 31a to, for example, 3σ values (σ represents a standard deviation) when the error distribution is assumed to be a normal distribution. The total supply and demand error value 31b may be calculated as
 図11は、調達用電源ごとの電源制御不確実性データ33を算出するフローチャートである。
 S201として、電源制御不確実性算出部13は、制御指令応答実績データ26から制御指令データ26aと応答実績データ26bとを取得する。
 S202として、電源制御不確実性算出部13は、S201で取得した各データ(制御指令データ26aと、応答実績データ26b)を、需給条件データ26cにより分類する。
 S203として、電源制御不確実性算出部13は、S202で分類した各データ(制御指令データ26aと、応答実績データ26b)を用いて、各調達用電源について、需給条件データ26c(需給条件データ33b)ごとの制御達成確率33cを含む電源制御不確実性データ33を算出する。
FIG. 11 is a flowchart for calculating the power control uncertainty data 33 for each power source for procurement.
As S201, the power supply control uncertainty calculation unit 13 acquires control command data 26a and response result data 26b from the control command response result data 26.
As S202, the power supply control uncertainty calculation unit 13 classifies the data (the control command data 26a and the response record data 26b) acquired in S201 based on the supply and demand condition data 26c.
As S203, the power supply control uncertainty calculation unit 13 uses the respective data (control command data 26a and response record data 26b) classified in S202 to supply and demand condition data 26c (supply and demand condition data 33b) for each power source for procurement. Power supply control uncertainty data 33 including the control achievement probability 33c for each) is calculated.
 図12は、電源調達リスクデータ34を算出するフローチャートである。
 S301として、電源調達リスク算出部14は、需給変動予測データ31と、需給制御計画データ32と、電源制御不確実性データ33とを取得する。
 S302として、電源調達リスク算出部14は、S301で取得した各データから、変動周期ごとの総電源不確実性データを算出する。総電源不確実性データは、変動周期ごとに需給制御計画データ32に含まれる全ての調達用電源についての電源出力(電源出力総和)に対する不確実性データである。
 S303として、電源調達リスク算出部14は、S301で取得した需給変動予測データ31およびS302で算出した総電源不確実性データに基づき電源調達リスク値34aを含む電源調達リスクデータ34を算出する。
FIG. 12 is a flowchart for calculating the power supply procurement risk data 34.
As S301, the power supply procurement risk calculation unit 14 acquires the supply and demand fluctuation prediction data 31, the supply and demand control plan data 32, and the power supply control uncertainty data 33.
As S302, the power supply procurement risk calculation unit 14 calculates total power uncertainty data for each fluctuation cycle from each data acquired in S301. The total power supply uncertainty data is uncertainty data with respect to the power supply output (power supply output sum) for all the power supplies for procurement included in the supply and demand control plan data 32 in each fluctuation cycle.
In step S303, the power supply procurement risk calculation unit 14 calculates power supply procurement risk data 34 including the power supply procurement risk value 34a based on the supply and demand fluctuation prediction data 31 acquired in step S301 and the total power supply uncertainty data calculated in step S302.
 図13は、S302の総電源不確実性データの算出処理を示す確率分布のグラフである。グラフの横軸が需給制御計画データ32に含まれる全ての調達用電源についての電源出力(制御出力)を示し、グラフの縦軸が各制御出力の発生確率を示す。
 電源調達リスク算出部14は、S301で取得した個々の電源制御不確実性データ33の制御達成確率33cから、個々の調達用電源についての制御出力に対する確率分布を推定する。そして、電源調達リスク算出部14は、推定した個々の確率分布の畳み込み和の算出結果から、図13のような割り当てられた調達用電源の総出力に対する確率分布を総電源不確実性データとして推定する。
FIG. 13 is a graph of probability distribution showing calculation processing of total power supply uncertainty data in S302. The horizontal axis of the graph indicates the power supply output (control output) for all the procurement power sources included in the supply and demand control plan data 32, and the vertical axis of the graph indicates the occurrence probability of each control output.
The power supply procurement risk calculation unit 14 estimates the probability distribution for the control output of each power supply for procurement from the control achievement probability 33c of the power supply control uncertainty data 33 acquired in S301. Then, the power supply procurement risk calculation unit 14 estimates the probability distribution for the total output of the allocated procurement power source as shown in FIG. 13 as total power supply uncertainty data from the calculation result of the convolution sum of the estimated individual probability distributions. Do.
 さらに、S303として、電源調達リスク算出部14は、図13の確率分布に対して需給変動予測データ31と同量の供給量を確保不可となる(つまり、電源供給が不足する)確率の値として電源調達リスク値34aを定義する。
 このとき、電源調達リスク算出部14は、図13の確率分布をもとに、制御出力指令値を平均値μ、事前に設定した分散をσ2を用いて規定される正規分布を採用し、ある出力変動範囲r1以内の制御出力を実現する確率(図13の斜線領域)が制御達成確率33cと等しくなるようなr1を算出する。
 そして、電源調達リスク算出部14は、算出したr1を電源調達リスク値34aとしてもよい。また、電源調達リスク算出部14は、制御指令応答実績データを入力とする統計解析手法により分散σ2を求めてもよい。
Furthermore, as S303, the power supply procurement risk calculation unit 14 can not ensure the supply amount of the same amount as the supply and demand fluctuation forecast data 31 with respect to the probability distribution of FIG. 13 (that is, the value of the probability that the power supply is insufficient). Define the power supply procurement risk value 34a.
At this time, the power supply procurement risk calculation unit 14 adopts a normal distribution which is defined using the control output command value as the average value μ and the variance set in advance using σ 2 based on the probability distribution of FIG. The probability r1 of achieving the control output within a certain output fluctuation range r1 (the shaded area in FIG. 13) is calculated to be equal to the control achievement probability 33c.
Then, the power supply procurement risk calculation unit 14 may set the calculated r1 as the power supply procurement risk value 34a. Further, the power supply procurement risk calculation unit 14 may obtain the variance σ 2 by a statistical analysis method using control command response result data as an input.
 図14は、リスク考慮計画データ35を算出するフローチャートである。
 S401として、需給制御計画修正部15は、電源調達リスクデータ34と、電源調達リスク上限データ27とを取得する。
 S402として、需給制御計画修正部15は、現在の計画データ(需給制御計画データ32またはリスク考慮計画データ35)にまだ含まれていない追加制御可能な調達用電源を、電力市場入札データ25から抽出する。
FIG. 14 is a flowchart for calculating the risk consideration plan data 35.
As S401, the supply and demand control plan correction unit 15 acquires the power supply procurement risk data 34 and the power supply procurement risk upper limit data 27.
As S402, the supply and demand control plan correction unit 15 extracts, from the power market bid data 25, the additional controllable procurement power source not yet included in the current plan data (supply and demand control plan data 32 or risk consideration plan data 35). Do.
 S403として、需給制御計画修正部15は、S402で抽出した調達用電源の中から、今回新たに計画データに追加する調達用電源を選択する。この追加する調達用電源により電力供給に余裕ができるので、電源調達リスク値34aを改善することができる。
 なお、需給制御計画修正部15は、追加する調達用電源の判定基準として、出力変化速度などの制御性能の要件を満たし、メリットオーダに基づき電源調達コストの低い調達用電源を出力増加対象として、あるいは電源調達コストの高い調達用電源を出力減少対象として選択することが望ましい。つまり、供給不足時にはなるべくコストの安い調達用電源を優先的に追加し、供給過剰時にはなるべくコストの高い調達用電源を優先的に解放することで、調達用電源のトータルコストを効率的に削減できる。
In S403, the supply and demand control plan correction unit 15 selects the power supply for procurement to be newly added to the plan data from the power supplies for procurement extracted in S402. The power supply procurement risk value 34a can be improved because the additional power supply for procurement can afford the power supply.
The supply and demand control plan correction unit 15 satisfies the control performance requirements such as the output change rate as the determination criteria of the power supply for procurement to be added, and targets the power supply for procurement with low power supply procurement cost based on merit order. Alternatively, it is desirable to select a power supply for procurement with high power supply cost as a target for output reduction. In other words, the total cost of the power supply for procurement can be efficiently reduced by preferentially adding the low cost procurement power supply as much as possible when the supply is insufficient, and preferentially releasing the high cost procurement power supply when possible. .
 S404として、需給制御計画修正部15は、S403で選択した調達用電源を現在の計画データに追加したリスク考慮計画データ35を作成する(換言すると、新たな調達用電源を追加することで、現在の計画データを修正する)。そして、電源調達リスク算出部14は、修正された最新のリスク考慮計画データ35についても、図12のフローチャートと同様に電源調達リスク値34aを算出する。
 S405として、需給制御計画修正部15は、S404で算出した電源調達リスク値34aが判定基準以内か否かを判定する。S405でNoならS403に戻る。S405でYesなら電源調達リスク値34aを考慮したリスク考慮計画データ35が作成されたので、処理を終了する。なお、電源調達リスク値34aは低いほどユーザにとって望ましいパラメータなので、S405の判定基準の判定処理は、例えば、S401で取得した電源調達リスク上限データ27の電源調達リスク上限値27aを電源調達リスク値34aが下回っている場合には、需給制御計画修正部15は判定基準以内であると判定する。
As S404, the supply and demand control plan correction unit 15 creates risk consideration plan data 35 in which the power supply for procurement selected in S403 is added to the current plan data (in other words, by adding a new power supply for procurement, Modify the plan data of Then, the power supply procurement risk calculation unit 14 calculates the power supply procurement risk value 34 a also for the corrected latest risk consideration plan data 35 as in the flowchart of FIG. 12.
At S405, the supply and demand control plan correction unit 15 determines whether or not the power supply procurement risk value 34a calculated at S404 is within the determination standard. If No in S405, the process returns to S403. If Yes in S405, the risk consideration plan data 35 in consideration of the power supply procurement risk value 34a is created, and the process is ended. The lower the power supply risk value 34a is, the lower the power supply risk value 34a is. Therefore, for example, the power supply risk upper limit value 27a of the power supply risk upper limit data 27 acquired in S401 is used as the power supply risk value 34a. In the case where the value of 需 給 is smaller than, the supply and demand control plan correction unit 15 determines that the judgment standard is satisfied.
 図15~図17は、図14の処理の補足説明をするためのグラフである。グラフの横軸はC1,C2,C3の3期間に区切った変動周期を示し、グラフの縦軸は各変動周期における電力需給の変動幅を示す。 15 to 17 are graphs for supplementarily explaining the process of FIG. The horizontal axis of the graph shows the fluctuation period divided into three periods C1, C2 and C3, and the vertical axis of the graph shows the fluctuation range of the power supply and demand in each fluctuation period.
 図15は、電源調達リスクを考慮せずに、調達用電源においても自前電源と同様に、100%制御指令データ26a通りの応答実績データ26bが得られるという楽観的な仮定でのグラフである。
 このグラフの右上がりの曲線は、3本の内の中央の実線が総需給変動値31aを示し、その実線を上下ではさむ2本の破線が総需給変動値31aに総需給誤差値31bを加味した値を示す。
 このグラフの6つの四角形は、需給制御計画データ32としてそれぞれ各変動周期に割り当てられた調達用電源の出力を示す(図8なら例えばG1の右の「5」という値)。
FIG. 15 is a graph based on the optimistic assumption that 100% control command data 26a response performance data 26b can be obtained in the power supply for procurement as well as the own power supply without considering the power supply procurement risk.
As for the upward sloping curve of this graph, the solid line in the middle of the three shows total supply and demand fluctuation value 31a, and the two broken lines sandwiching the solid line above and below add the total supply and demand fluctuation value 31b to total supply and demand fluctuation value 31a. Indicate the value.
Six squares of this graph indicate the output of the power supply for procurement allocated to each fluctuation period as the supply and demand control plan data 32 (for example, a value “5” on the right of G1 in FIG. 8).
 図15では、3期間の変動周期のうちのいずれの期間においても、総需給変動値31aの最も需要が高い場合(一番上の破線)を、調達用電源の出力総和がカバーしているので、制御不足(供給不足)は発生しない。例えば、変動周期C1では、2つの調達用電源G1a,G2aの出力総和の需給変動幅(G2aの四角形の上辺の高さ)が、一番上の破線よりも充分に余裕を持って高い位置にある。 In FIG. 15, the sum of output of the power supply for procurement covers the case where the demand of the total demand fluctuation value 31a is the highest (the broken line at the top) in any of the fluctuation cycles of three periods. , Lack of control (lack of supply) does not occur. For example, in the fluctuation period C1, the supply / demand fluctuation range (the height of the upper side of the square of G2a) of the total output of the two power supplies for procurement G1a and G2a is sufficiently high and higher than the top broken line. is there.
 図16は、図15とは異なり、実際には電源調達リスクが存在するために、調達用電源で制御不足が発生してしまう場合のグラフである。
 まず、図15の各調達用電源G1a~G5aと、図16の各調達用電源G1b~G5bとは、互いに1:1対応する。ここで、電源調達リスクにより調達用電源が調達できなくなったという事象を反映し、各調達用電源の制御量(四角形の大きさ)は、図15の理論値よりも図16の実測値のほうが低下してしまっている。例えば、変動周期C3における調達用電源G4aよりも調達用電源G4bのほうが低下し、調達用電源G5aよりも調達用電源G5bのほうが低下している。換言すると、各調達用電源には電源制御不確実性データ33(制御達成確率33c)が反映される。
FIG. 16 is a graph in the case where a shortage of control occurs in the power supply for procurement because the power supply procurement risk actually exists, unlike FIG.
First, the power sources for procurement G1a to G5a in FIG. 15 and the power sources for procurement G1b to G5b in FIG. 16 correspond to each other 1: 1. Here, reflecting the event that the power supply for procurement can not be procured due to the power supply procurement risk, the control amount (size of the square) of each power supply for procurement is the actual value of FIG. 16 rather than the theoretical value of FIG. It has fallen. For example, the power supply G4b for procurement is lower than the power supply G4a for procurement in the fluctuation cycle C3, and the power supply G5b for procurement is lower than the power supply G5a for procurement. In other words, the power supply control uncertainty data 33 (control achievement probability 33c) is reflected in each procurement power source.
 これにより、変動周期C3において、総需給誤差値31bを加味した総需給変動値31aのグラフ線(3本線のうちの上側の破線)が、調達用電源G4b、G5bの総和である需給変動幅(S302の総電源不確実性データ)よりも大きくなってしまう「制御不足分」が発生してしまう。つまり、図16のような電源調達リスクにより「制御不足分」が存在する需給制御計画データ32を、需給制御計画修正部15は修正する必要がある。 Thus, in the fluctuation period C3, the graph line of the total supply and demand fluctuation value 31a (the upper broken line among the three lines) including the total supply and demand error value 31b is the sum of the supply and demand fluctuation range (sum of the power supplies G4b and G5b for procurement) A "lack of control" that is larger than the total power supply uncertainty data (S302) occurs. That is, it is necessary for the supply and demand control plan correction unit 15 to correct the supply and demand control plan data 32 in which the “control shortage” exists due to the power supply procurement risk as shown in FIG.
 図17は、図16の状態に対して、需給制御計画修正部15が需給制御計画データ32を修正したリスク考慮計画データ35を示すグラフである。図16の需給制御計画データ32には6つの調達用電源G1a~G5aが含まれていたが、図17のリスク考慮計画データ35には新たな7つめの調達用電源G6が追加される。
 これにより、図16のような「制御不足分」が解消されることで、電源調達リスク値34aを下げることができる。つまり、修正前の需給制御計画データ32ではS405の判定処理を通過できなかったが(No)、修正後のリスク考慮計画データ35ではS405の判定処理を通過できる(Yes)。
FIG. 17 is a graph showing risk consideration plan data 35 in which the supply and demand control plan correction unit 15 corrects the supply and demand control plan data 32 with respect to the state of FIG. 16. Although the supply and demand control plan data 32 of FIG. 16 includes six procurement power sources G1a to G5a, a seventh seventh procurement power source G6 is added to the risk consideration plan data 35 of FIG.
As a result, the “control shortage” as shown in FIG. 16 is eliminated, whereby the power supply procurement risk value 34 a can be lowered. That is, although the supply / demand control plan data 32 before the correction did not pass the determination process of S405 (No), the post-correction risk consideration plan data 35 can pass the determination process of S405 (Yes).
 以上説明した本実施形態では、電源調達リスク算出部14が個々の調達用電源の過去の制御達成確率33cをもとに、需給制御計画データ32に含まれる調達用電源の電源調達リスクデータ34を算出する。そして、需給制御計画修正部15は、電源調達リスク上限データ27が示す基準を満たす程度に、調達用電源を追加投入することで、需給制御計画データ32の評価値である電源調達リスク値34aを下げる。
 そして、電力需給制御装置1は、基準を満たしたリスク考慮計画データ35を用いて電力市場管理システム300から調達用電源を制御することにより、異常気象などにより発電量変動値23が想定外に大きく変動することで供給量不足が発生した場合でも、安定な需給制御を実現することができる。
 さらに、電力需給制御装置1は、計画データに含まれる調達用電源のトータルコストをなるべく低くするように、電力市場入札データ25から電源調達コストを参照して調達用電源を選ぶことで、需給制御性能に不確実性を内包する調達用電源を経済的に活用できる。
In the present embodiment described above, the power supply procurement risk calculation unit 14 uses the power supply procurement risk data 34 of the power supply for procurement included in the supply and demand control plan data 32 based on the past control achievement probability 33c of the individual power supplies for procurement. calculate. Then, the supply and demand control plan correction unit 15 additionally supplies the power supply for procurement to the extent that the power supply procurement risk upper limit data 27 satisfies the standard, and thereby the power supply procurement risk value 34a which is an evaluation value of the supply and demand control plan data 32 is obtained. Lower.
Then, the power supply and demand control device 1 controls the power supply for procurement from the power market management system 300 using the risk consideration plan data 35 that satisfies the criteria, so that the power generation amount fluctuation value 23 is unexpectedly large due to abnormal weather or the like. Even when the supply amount shortage occurs due to fluctuations, stable supply and demand control can be realized.
Furthermore, the power supply and demand control device 1 controls supply and demand by selecting the power supply for procurement with reference to the power supply procurement cost from the power market bid data 25 so as to reduce the total cost of the power supply for procurement included in the plan data as much as possible. It is possible to economically utilize a procurement power source that incorporates uncertainty in performance.
 なお、本発明は前記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
 また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段などは、それらの一部または全部を、例えば集積回路で設計するなどによりハードウェアで実現してもよい。
 また、前記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。
The present invention is not limited to the embodiments described above, but includes various modifications. For example, the above-described embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations. Further, each of the configurations, functions, processing units, processing means, etc. described above may be realized by hardware, for example, by designing part or all of them with an integrated circuit.
Further, each configuration, function, and the like described above may be realized by software by a processor interpreting and executing a program that realizes each function.
 各機能を実現するプログラム、テーブル、ファイルなどの情報は、メモリや、ハードディスク、SSD(Solid State Drive)などの記録装置、または、IC(Integrated Circuit)カード、SDカード、DVD(Digital Versatile Disc)などの記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際にはほとんど全ての構成が相互に接続されていると考えてもよい。
 さらに、各装置を繋ぐ通信手段は、無線LANに限定せず、有線LANやその他の通信手段に変更してもよい。
Information such as programs, tables, and files that realize each function is a memory, a hard disk, a recording device such as a solid state drive (SSD), an integrated circuit (IC) card, an SD card, a digital versatile disc (DVD), etc. Can be placed on the
Further, control lines and information lines indicate what is considered to be necessary for the description, and not all control lines and information lines in the product are necessarily shown. In practice, almost all configurations may be considered to be mutually connected.
Furthermore, the communication means connecting the respective devices is not limited to the wireless LAN, and may be changed to a wired LAN or other communication means.
 1   電力需給制御装置(電力計画装置)
 10  処理部
 11  需給変動予測部
 12  需給制御計画作成部
 13  電源制御不確実性算出部
 14  電源調達リスク算出部
 15  需給制御計画修正部(需給制御計画部)
 21  周波数変動値
 22  連系潮流変動値
 23  発電量変動値
 24  気象変動値
 25  電力市場入札データ
 26  制御指令応答実績データ
 26a 制御指令データ
 26b 応答実績データ
 26c 需給条件データ
 27  電源調達リスク上限データ
 27a 電源調達リスク上限値
 31  需給変動予測データ
 31a 総需給変動値
 31b 総需給誤差値
 32  需給制御計画データ
 33  電源制御不確実性データ
 33a 制御指令データ
 33b 需給条件データ
 33c 制御達成確率
 34  電源調達リスクデータ
 34a 電源調達リスク値
 35  リスク考慮計画データ
1 Power supply and demand control device (power planning device)
DESCRIPTION OF SYMBOLS 10 Processing part 11 Supply-demand fluctuation prediction part 12 Supply-and-demand control plan preparation part 13 Power-supply control uncertainty calculation part 14 Power-supply procurement risk calculation part 15 Supply-and-demand control plan correction part (supply-and-demand control planning part)
21 Frequency fluctuation value 22 Interconnected power flow fluctuation value 23 Power generation value fluctuation value 24 Weather fluctuation value 25 Electricity market bid data 26 Control command response result data 26a Control command data 26b Response result data 26c Supply and demand condition data 27 Power supply procurement risk upper limit data 27a Power supply Procurement risk upper limit value 31 supply and demand fluctuation forecast data 31a total supply and demand fluctuation value 31b total supply and demand error value 32 supply and demand control plan data 33 power control uncertainty data 33a control command data 33b supply and demand condition data 33c control achievement probability 34 power supply risk data 34a power supply Procurement risk value 35 Risk consideration plan data

Claims (7)

  1.  電力市場から調達するリスクを伴う調達用電源ごとに、過去に制御を行ったときの制御が指令通りに達成された度合いを示す制御達成確率と、前記調達用電源ごとの電源出力とをもとに、需給制御計画データに含まれる制御対象の前記調達用電源が、必要とされる電源出力を出力できなくなる確率である電源調達リスクデータを算出する電源調達リスク算出部と、
     前記電源調達リスクデータが所定基準に達するまで、前記需給制御計画データに対して前記調達用電源を制御対象として追加する需給制御計画部とを有することを特徴とする
     電力計画装置。
    Based on the power supply output probability for each of the above mentioned power supplies, the control achievement probability indicating the degree to which the control at the time of the control was achieved according to the command was obtained for each of the power supplies for procurement with the risk of procuring from the power market. A power supply procurement risk calculation unit that calculates power supply procurement risk data, which is the probability that the power supply for procurement to be controlled included in the supply and demand control plan data can not output the required power supply output;
    A power supply planning apparatus, comprising: a supply and demand control planning unit that adds the supply power source as a control target to the supply and demand control plan data until the power supply procurement risk data reaches a predetermined standard.
  2.  前記調達用電源に対する過去の制御指令データと、その制御指令データに従って実際に行われた制御内容を示す応答実績データとをもとに、前記制御達成確率を計算して前記電源調達リスク算出部に入力する電源制御不確実性算出部を有することを特徴とする
     請求項1に記載の電力計画装置。
    Based on the control command data in the past for the power source for procurement and response result data indicating the control content actually performed according to the control command data, the control achievement probability is calculated and the power supply risk calculation unit The power planning apparatus according to claim 1, further comprising a power control control uncertainty calculation unit to be input.
  3.  前記電源調達リスク算出部は、前記需給制御計画データごとの前記電源調達リスクデータを算出するときに、前記必要とされる電源出力と、前記調達用電源が出力する電源出力とを需給変動の変動周期ごとに分けて算出することを特徴とする
     請求項1に記載の電力計画装置。
    When the power supply procurement risk calculation unit calculates the power supply procurement risk data for each of the supply and demand control plan data, fluctuation of the supply and demand fluctuation of the required power supply output and the power supply output of the procurement power supply The power planning apparatus according to claim 1, wherein the power planning apparatus is calculated by dividing each cycle.
  4.  周波数変動値、連系潮流変動値、発電量変動値、および、気象変動値のうちの少なくとも1つの変動値をもとに、前記必要とされる電源出力の予測値を計算する需給変動予測部を有することを特徴とする
     請求項1に記載の電力計画装置。
    A demand / supply fluctuation prediction unit that calculates the predicted value of the required power supply output based on at least one of the frequency fluctuation value, the interconnection flow fluctuation value, the power generation fluctuation value, and the meteorological fluctuation value. The power planning apparatus according to claim 1, comprising:
  5.  前記需給制御計画部は、すでに1つ以上の前記調達用電源が含まれている前記需給制御計画データの入力を受け付け、その入力された前記需給制御計画データに対して前記調達用電源を追加することを特徴とする
     請求項1に記載の電力計画装置。
    The supply and demand control planning unit receives an input of the supply and demand control plan data that already includes one or more of the power supplies for procurement, and adds the power supply for procurement to the input and demand control plan data that has been input. The power planning device according to claim 1.
  6.  請求項1に記載の電力計画装置と、前記需給制御計画データに含める前記調達用電源を提供するための電力市場管理システムとをネットワークで接続して構成され、
     前記電力市場管理システムは、火力発電電源、水力発電電源、蓄電池制御電源、揚水発電電源、電気自動車の充放電制御電源、DR電源、マイクログリッド制御電源、および、VPP制御電源のうちの少なくとも1つの電源を、前記調達用電源として提供することを特徴とする
     電力需給制御システム。
    A power planning apparatus according to claim 1 and a power market management system for providing the power supply for procurement included in the supply and demand control plan data are connected by a network.
    The power market management system includes at least one of a thermal power generation source, a hydroelectric power source, a storage battery control power source, a pumped storage power source, a charge and discharge control power source of an electric vehicle, a DR power source, a micro grid control power source, and a VPP control power source. A power supply and demand control system, comprising providing a power supply as the power supply for procurement.
  7.  電力計画装置は、電源調達リスク算出部と、需給制御計画部とを有しており、
     前記電源調達リスク算出部は、電力市場から調達するリスクを伴う調達用電源ごとに、過去に制御を行ったときの制御が指令通りに達成された度合いを示す制御達成確率と、前記調達用電源ごとの電源出力とをもとに、需給制御計画データに含まれる制御対象の前記調達用電源が、必要とされる電源出力を出力できなくなる確率である電源調達リスクデータを算出し、
     前記需給制御計画部は、前記電源調達リスクデータが所定基準に達するまで、前記需給制御計画データに対して前記調達用電源を制御対象として追加することを特徴とする
     電力計画方法。
    The power planning device has a power supply procurement risk calculation unit and a supply and demand control planning unit.
    The power supply procurement risk calculation unit, for each procurement power supply with risk to be procured from the power market, a control achievement probability indicating the degree to which control at the time of performing control in the past was achieved according to a command; Calculation of power supply risk data, which is the probability that the power supply for procurement to be controlled included in the supply and demand control plan data can not output the required power supply output, based on the power supply output of each
    The power supply planning method, wherein the supply and demand control planning unit adds the power supply for procurement as a control target to the supply and demand control plan data until the power supply procurement risk data reaches a predetermined standard.
PCT/JP2018/035970 2017-11-10 2018-09-27 Electricity plan device, electricity supply-demand control system, and electricity plan method WO2019093009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017217501A JP6936117B2 (en) 2017-11-10 2017-11-10 Power planning equipment, power supply and demand control system, and power planning method
JP2017-217501 2017-11-10

Publications (1)

Publication Number Publication Date
WO2019093009A1 true WO2019093009A1 (en) 2019-05-16

Family

ID=66438344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035970 WO2019093009A1 (en) 2017-11-10 2018-09-27 Electricity plan device, electricity supply-demand control system, and electricity plan method

Country Status (2)

Country Link
JP (1) JP6936117B2 (en)
WO (1) WO2019093009A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3872719A1 (en) * 2020-02-27 2021-09-01 Siemens Aktiengesellschaft Method for determining a failure risk
JP2022116975A (en) * 2021-01-29 2022-08-10 トヨタ自動車株式会社 Electric power system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7242466B2 (en) * 2019-07-31 2023-03-20 株式会社東芝 Power supply and demand control device, power supply and demand control program, and power supply and demand control method
JP7169963B2 (en) * 2019-11-27 2022-11-11 Kddi株式会社 Power trading control device, program and method for controlling adjustment power amount for power trading by consumer
EP4145376A4 (en) * 2020-04-28 2023-06-21 Mitsubishi Electric Corporation Electric power contract system and electric power contract method
JP7458893B2 (en) * 2020-05-15 2024-04-01 三菱電機株式会社 Trade contract calculation device and reactive power trading system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318970A (en) * 2000-05-12 2001-11-16 Nippon Steel Corp Method for controlling supply-demand of power, supply- demand controller of power, supply-demand control system of power and storage medium
JP2002345154A (en) * 2001-05-18 2002-11-29 Hitachi Ltd Power demand and supply method, and display device
JP2004274915A (en) * 2003-03-10 2004-09-30 Osaka Gas Co Ltd Power supply planning system
JP2015230544A (en) * 2014-06-04 2015-12-21 株式会社Nttファシリティーズ Power management device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318970A (en) * 2000-05-12 2001-11-16 Nippon Steel Corp Method for controlling supply-demand of power, supply- demand controller of power, supply-demand control system of power and storage medium
JP2002345154A (en) * 2001-05-18 2002-11-29 Hitachi Ltd Power demand and supply method, and display device
JP2004274915A (en) * 2003-03-10 2004-09-30 Osaka Gas Co Ltd Power supply planning system
JP2015230544A (en) * 2014-06-04 2015-12-21 株式会社Nttファシリティーズ Power management device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3872719A1 (en) * 2020-02-27 2021-09-01 Siemens Aktiengesellschaft Method for determining a failure risk
WO2021170262A1 (en) * 2020-02-27 2021-09-02 Siemens Aktiengesellschaft Method for determining an outage risk
JP2022116975A (en) * 2021-01-29 2022-08-10 トヨタ自動車株式会社 Electric power system
JP7456395B2 (en) 2021-01-29 2024-03-27 トヨタ自動車株式会社 power system
US12065056B2 (en) 2021-01-29 2024-08-20 Toyota Jidosha Kabushiki Kaisha Electric power system

Also Published As

Publication number Publication date
JP6936117B2 (en) 2021-09-15
JP2019091106A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
WO2019093009A1 (en) Electricity plan device, electricity supply-demand control system, and electricity plan method
Talari et al. Stochastic modelling of renewable energy sources from operators' point-of-view: A survey
US10418822B2 (en) Energy production and frequency regulation Co-optimization for power generation systems
AU2017368470B2 (en) System and method for dynamic energy storage system control
Liu et al. Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization
US8620634B2 (en) Energy resource allocation including renewable energy sources
Botterud et al. Wind power trading under uncertainty in LMP markets
Bitar et al. Bringing wind energy to market
Botterud et al. Wind power forecasting in US electricity markets
US20160273518A1 (en) Systems, methods and apparatus for improved energy management systems with security constrained dynamic dispatch for wind power management
CN107194514B (en) Demand response multi-time scale scheduling method for wind power prediction error
Koltsaklis et al. Optimal scheduling of interconnected power systems
CN117239740B (en) Optimal configuration and flexibility improvement method and system for virtual power plant system
US20240275179A1 (en) Electrical power system and a multi-timescale coordinated optimization scheduling method therefor
CN111311012A (en) Multi-agent-based micro-grid power market double-layer bidding optimization method
WO2022168357A1 (en) System for managing power generation amount and method for managing power generation amount
CN114037191A (en) Virtual power plant optimal scheduling method, device, equipment and medium based on big data
JP7285053B2 (en) Power supply and demand control device, power supply and demand control system, and power supply and demand control method
Hobbs et al. Using probabilistic solar power forecasts to inform flexible ramp product procurement for the California ISO
Andrianesis et al. The" hidden cost" of renewable energy sources in electricity pool markets
CN111082424A (en) Method and device for predicting reliability of comprehensive energy and micro-grid system
US20240280617A1 (en) Aggregator System
JP7303707B2 (en) Alternate Baseline Calculation Apparatus, Trained Model, Machine Learning Apparatus, Alternative Baseline Calculation Method and Program
JP2003235158A (en) System, method, and program for managing energy supply
CA2710905C (en) Energy resource allocation including renewable energy sources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876792

Country of ref document: EP

Kind code of ref document: A1