WO2017221343A1 - Solar light output prediction device, electric power system control device, and solar light output prediction method - Google Patents

Solar light output prediction device, electric power system control device, and solar light output prediction method Download PDF

Info

Publication number
WO2017221343A1
WO2017221343A1 PCT/JP2016/068499 JP2016068499W WO2017221343A1 WO 2017221343 A1 WO2017221343 A1 WO 2017221343A1 JP 2016068499 W JP2016068499 W JP 2016068499W WO 2017221343 A1 WO2017221343 A1 WO 2017221343A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
output
solar radiation
amount
power system
Prior art date
Application number
PCT/JP2016/068499
Other languages
French (fr)
Japanese (ja)
Inventor
澄人 戸邊
稲毛 真一
徹 赤津
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2018523206A priority Critical patent/JP6641007B2/en
Priority to PCT/JP2016/068499 priority patent/WO2017221343A1/en
Publication of WO2017221343A1 publication Critical patent/WO2017221343A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar power predicting device, a power system control device, and a solar power predicting method for predicting the net output of a solar power generating facility in an area where a plurality of solar power generating facilities are installed.
  • the solar power generation facility output in the near future is obtained predictably, it will be possible to operate in advance, such as a transformer with a tap that can adjust the voltage of the power system, and a phase adjustment facility that can adjust reactive power. It can contribute to the stable operation of the grid.
  • Patent Document 1 proposes a specific method for this purpose.
  • a photovoltaic power generation status prediction device is a pre-segmented area identification information and a photovoltaic power generation facility in the area.
  • Power generation capacity DB that stores facility information in association with each other, receives solar radiation data in a pre-divided area every predetermined time, and receives weather data from a weather server that transmits meteorological data Based on the received solar radiation data and the received meteorological data, the solar radiation amount for a certain period of time is estimated for each pre-divided region, and the pre-segmented region based on the power generation capacity DB based on the estimated solar radiation amount The amount of photovoltaic power generation is calculated and the calculated amount of photovoltaic power generation is transmitted to a monitoring system that monitors the power system.
  • image information from a meteorological satellite is used to obtain solar radiation data in a pre-divided area, and the solar radiation data is obtained from the distribution state of clouds in the management area using the weather satellite. .
  • FIG. 2 An example of a series of processes for this purpose is shown in FIG.
  • 1 is a target area
  • 13 is a meteorological satellite
  • 14 is an analysis device
  • 15 is a cloud image from the sky
  • 16 is a reflection distribution of solar radiation calculated from the cloud image
  • 17 is a future solar radiation amount in the prior art.
  • the algorithm of change prediction technology is shown.
  • Reference numeral 18 denotes an overall distribution state of clouds detected by a meteorological satellite. In the target area 1, only a part of the entire cloud distribution status detected by the weather satellite 13 is approaching, and the cloud distribution status in the target area 1 changes with future weather fluctuations.
  • the meteorological satellite 13 observes the clouds from above the earth and transmits the data of the cloud image 15 sent to the analysis device 14.
  • the cloud image 15 data is image-processed to calculate the reflectance distribution 16 of the solar radiation amount of the cloud.
  • the moving speed of the cloud is calculated as the movement of the cloud during the transition time.
  • a prediction simulation is performed for the future cloud movement in consideration of the moving speed of the cloud.
  • the amount of solar radiation reaching the surface of the target area 1 is predicted and calculated in consideration of the absorption rate of the amount of solar radiation depending on the type of cloud.
  • Patent Document 1 in order to predict the amount of solar radiation with high accuracy, there is a calculation model for predicting the rate of absorption of the amount of solar radiation according to the type of cloud and the future movement of the cloud. It is essential.
  • the moving speed when the moving speed is distributed in the direction perpendicular to the cloud, the moving amount of the cloud may be greatly influenced by the position at which the speed is used.
  • meteorological satellites have a problem that data cannot be obtained twice a day in the morning and evening.
  • the available time range of the image is about once every 2 minutes, which is not always fast.
  • a solar power output prediction device for predicting the output of a solar power generation facility in a target area where a power system including a plurality of solar power generation facilities is installed, the target An input means for obtaining information on the amount of solar radiation at a plurality of locations in the area, and a plurality of second areas for obtaining information on the amount of solar radiation for the estimated amount of solar radiation in the first small area for a small area obtained by dividing the target area into a plurality of areas.
  • the solar radiation amount estimating means for estimating the estimated amount of solar radiation in all the first small areas, and the temporal transient change in the amount of solar radiation in the small area obtained by dividing the target area into a plurality of areas
  • a weather prediction means for predicting future cloud movement in the target area
  • an output prediction means for predicting the output of the photovoltaic power generation equipment installed in the target area from the future cloud movement by the prediction means.
  • a voltage compensation device that compensates the voltage of the power system is installed in the power system, the voltage compensation device is controlled using the output of the solar power output prediction device, and the output power fluctuation of the solar power generation facility It is characterized by controlling voltage fluctuations in the power system.
  • an output compensation device such as a storage battery is installed in the power system, and the output compensation device such as the storage battery is controlled using the output of the solar power prediction device, so that the power due to the output fluctuation of the photovoltaic power generation facility It controls the frequency fluctuation of the system voltage.
  • the present invention is provided with output compensation devices such as hydroelectric power generation and thermal power generation facilities linked to the electric power system, and the hydroelectric power generation and thermal power generation facilities linked to the electric power system using the output of the solar power output prediction device.
  • the output compensation device is controlled to control the frequency fluctuation of the power system voltage due to the output fluctuation of the photovoltaic power generation equipment.
  • the present invention also relates to a solar power output prediction method for predicting the output of a solar power generation facility in a target area where a power system having a plurality of solar power generation facilities is installed, and a plurality of locations in the target area.
  • the estimated amount of solar radiation in the first small area is estimated from the amount of solar radiation in the plurality of second small areas from which the information on the amount of solar radiation can be obtained.
  • the future cloud movement in the target area Predicting and predicting the output of the photovoltaic power generation equipment installed in the target area from the future cloud movement.
  • FIG. The figure which shows the example which controls an electric power grid
  • FIG. 1 shows a configuration example of a sunlight output prediction apparatus according to Embodiment 1 of the present invention.
  • reference numeral 1 denotes a target area managed by an electric power company.
  • a solar power generation facility a transmission / distribution line, a transformer, a generator, a tapped transformer
  • An electric power system consisting of equipment and phase adjusting equipment is installed.
  • solar radiation measuring means 2 is provided in various places in the power system, particularly in the vicinity of the solar power generation facility, and information on the detection point and time is provided via the data line 4 to the output prediction device 3 provided on the center side. Information on solar radiation measurement values including is sent.
  • the solar radiation amount measuring means 2 includes not only a device that directly measures the solar radiation amount but also a device that can indirectly obtain information on the solar radiation amount. For example, the thing of the form of utilizing the ratio of the electrical output of solar power generation equipment and a rated output as a solar radiation amount may be sufficient.
  • FIG. 3 shows a processing algorithm of the output prediction device 3 for processing the data of the solar radiation amount from a plurality of places.
  • the target area 1 of the solar radiation amount evaluation is shown.
  • the target area 1 is grasped as a divided area divided into a plurality of meshes.
  • the mesh may be on the grid or may be formed in a honeycomb shape, and each mesh region does not need to have an equal area for the subsequent processing.
  • the target area 1 is grasped as binary coordinates of x and y, and mesh division is performed at ⁇ x and ⁇ y pitches.
  • each cell is represented by binary coordinates of x and y
  • each cell position of (2, 2), (3, 5), (6, 3), (8, 6), (9, 1) is displayed.
  • the solar radiation amount measuring means 2 is installed, and information on the solar radiation amount is obtained.
  • the solar radiation amount at the coordinates (6, 5) where the solar radiation amount measuring means 2 is not installed is converted into the solar radiation at a plurality of points (in the example of the figure, five points) where the solar radiation amount measuring means 2 is installed. Estimated from quantity information. Thereby, the point where the solar radiation amount measuring means 2 is installed here is a measurement point, and the estimated point is positioned as an evaluation point. Note that the processing here is executed based on the data at time t.
  • processing step S20 the amount of solar radiation at all the evaluation points is interpolated and estimated by using the coordinates where the solar radiation amount measuring means 2 is not installed as an evaluation point by the repeated processing of processing step S10.
  • C1, C2, and C3 indicate cloud shapes and positions. The processing here is also executed based on the data at time t.
  • the output prediction device 3 performs, for example, interpolation of the amount of solar radiation at the center of gravity as a representative point of each mesh.
  • the shepherd method shown in the following formula (1) can be applied.
  • I (i) is the amount of solar radiation at point i
  • rij is the distance between points i and j.
  • This method such as the shepherd method weights the influence of solar radiation by the square of the distance between points. This is measured at a measurement frequency of every measurement time t, preferably about once every 5 seconds, and all solar radiation amounts are interpolated at the center of gravity of the mesh every measurement time.
  • the transient change of the solar radiation amount in each time t can be visualized.
  • the solar radiation amount of the target area 1 when the time t 5 seconds
  • the solar radiation time of the target area 1 when the time t 15 seconds
  • the cloud C low solar radiation area
  • the speed and direction of the cloud can be evaluated.
  • processing step S30 in FIG. 3 is the result of predicting the position of cloud C at time t + 1, and it can be seen that C1 has moved to C1 ′.
  • FIG. 5 shows a prediction result of the net output obtained by the method shown in the embodiment of the present invention.
  • the measurement result indicated by dots and the prediction result indicated by the solid line can be predicted with an accuracy of about ⁇ 10%.
  • the output prediction device 3 outputs this predicted value.
  • the 6 shows a specific power system 11 and a voltage compensation device (for example, a transformer with a tap) 5 as a power system control device to be controlled.
  • the voltage compensation device 5 is operated by the output of the control device 6, and the control device 6 adjusts the tap position of the tap transformer 5 that is a voltage compensation device in accordance with the output of the output prediction device 3.
  • the output prediction device 3 predicts future solar light output based on the measurement data from the solar radiation amount measuring means 2. Based on the result, the voltage fluctuation control device 6 evaluates the voltage fluctuation of the power system 11 and appropriately controls the voltage compensator 5 installed in the power system 11. Thereby, it is possible to suppress the voltage fluctuation in the electric power system 11 within an allowable value.
  • the third embodiment also shows a power system control device and method linked to the control of the power system.
  • a voltage compensation device for example, a transformer with a tap
  • the phase adjusting device for example, the storage battery 7) is the control target.
  • 7 is a storage battery
  • 8 is a control device for the storage battery 7.
  • the output prediction device 3 predicts future solar light output based on the measurement data from the solar radiation amount measuring means 2.
  • the control device 8 of the storage battery 7 evaluates the charge / discharge rate that does not affect the life of the storage battery 7 and operates the storage battery 8 based on the command value and the required charge / discharge amount. Thereby, the output adjustment of the electric power grid
  • system 11 can be performed without time delay, maximizing the lifetime of a storage battery.
  • the power system control apparatus and method linked to the control of the power system are shown.
  • the control apparatus for the thermal power generation facility 9 is controlled as the power system control apparatus. It is targeted.
  • 9 is a thermal power generation facility
  • 10 is a control device for the thermal power generation facility.
  • the output prediction device 3 predicts future solar light output based on the measurement data from the solar radiation amount measuring means 2.
  • the thermal power generation equipment control device 10 activates the thermal power generation equipment 9 when a significant decrease in solar power output is predicted one hour ahead. After that, the fluctuation of the actual sunlight output is absorbed by adjusting the output of the thermal power. According to this, it becomes possible to eliminate the standby operation with no thermal power.
  • the present invention described above estimates the amount of solar radiation at an evaluation point that is not provided with a solar radiation amount measuring instrument based on the observation result of the solar radiation amount measuring point in a wide target area. For this reason, when it has the characteristic peculiar to the solar radiation amount measuring device of the solar radiation amount measurement point, it can become disturbance on the estimation of the solar radiation amount of an evaluation point. For example, when the entire area of Kyushu is the target area, when estimating the amount of solar radiation in a mountainous area based on the detection value of a solar radiation measuring instrument that is installed in urban areas and is strongly affected by reflections from buildings, The impact can be a disturbance. In addition to the reflected light, it can be a disturbance such as being installed behind a building, having a sensor-specific error, or a sudden change in cloud movement.
  • the region is divided into a plurality of regions, and further, a plurality of solar radiation amount measuring means are installed in the region, and the solar radiation amounts measured at the plurality of locations are measured by the measuring means.
  • a plurality of solar radiation amount measuring means are installed in the region, and the solar radiation amounts measured at the plurality of locations are measured by the measuring means.
  • the solar radiation amount measuring means is installed on the ground and directly measures the solar radiation amount after being affected by the cloud, so that it is not necessary to have a model of the effect that the type of cloud hits the solar radiation amount.
  • the speed and direction of the shadow of the cloud moving on the ground can be directly evaluated, and the consideration of the velocity distribution in the vertical direction of the cloud becomes unnecessary.
  • the solar radiation meter or the sunlight output measurement can be performed in units of seconds, and the output of the solar power generation can be predicted with the resolution. Furthermore, there are no time zones that are difficult to measure, as is the case with meteorological satellites.
  • the plurality of divided areas are divided into mesh shapes.
  • it is easy to define the center point and the center of gravity, and it becomes easy to interpolate the amount of solar radiation at the mesh center point from data from a plurality of measurement points.
  • the embodiment of the present invention includes a device for predicting the net output of solar power generation, and particularly in a voltage compensator installed in the power system in the region, the voltage of the power system is a voltage due to the output fluctuation of sunlight. It can be solved by controlling the fluctuation.
  • the output of solar power generation linked to the power system is a phenomenon that the output decreases by up to 70%, especially when the clouds block the sun transiently. To do. In that case, the subject that the voltage of an electric power system rises and falls according to an output arises. When there is no prediction of photovoltaic power generation, there is a possibility that a time delay may occur because voltage compensation is performed in real time.
  • voltage compensation devices preferably devices such as SVR
  • the embodiment of the present invention includes a device for predicting the net output of solar power generation, and particularly in an output compensation device such as a storage battery installed in the power system in the region, the voltage of the power system is the output of sunlight.
  • an output compensation device such as a storage battery installed in the power system in the region
  • the output of solar power generation linked to the power system is a phenomenon that the output decreases by up to 70%, especially when the clouds block the sun transiently. To do.
  • photovoltaic power generation is introduced on a large scale, there arises a problem that the frequency of the power system fluctuates according to the output fluctuation.
  • the embodiment of the present invention includes a device for predicting the net output of solar power generation, particularly in an output compensation device such as hydroelectric power generation and thermal power generation equipment linked to the power system in the region, in a wide-area power system.
  • an output compensation device such as hydroelectric power generation and thermal power generation equipment linked to the power system in the region
  • the embodiment of the present invention includes a device for predicting the net output of solar power generation, particularly in an output compensation device such as hydroelectric power generation and thermal power generation equipment linked to the power system in the region, in a wide-area power system.
  • This can be solved by controlling frequency fluctuations due to fluctuations in sunlight output.
  • the hydropower and thermal power generation facilities for output adjustment are forced to perform standby operation.
  • a thermal power generation facility may be forced to operate for a long time at an operating point with low efficiency in standby operation, which is not preferable for an electric power company from the viewpoint of economy.
  • the wide-area solar power output can be predicted with a prediction accuracy of about one hour, the operation from the start of operation of the

Abstract

Provided are a solar light output prediction device, an electric power system control device, and a solar light output prediction method that enable predictions on future cloud movements and transient changes in the amount of solar radiation by observation of clouds from the ground, not from the sky as in the case with a meteorological satellite. This solar light output prediction device is for predicting output of a solar power generation facility in a target area in which an electric power system equipped with a plurality of solar power generation facilities is installed, said solar light output prediction device is characterized by being provided with: an input means which obtains information on solar amounts at a plurality of locations in the target area; a solar amount estimation means which, of sub-regions obtained by dividing the target area into a plurality of regions, estimates an estimated solar amount in a first sub-region on the basis of solar amounts in a plurality of second sub-regions where information on the solar amount can be obtained, and estimates estimated solar amounts in all the first sub-regions; a weather prediction means which predicts future cloud movements in the target area on the basis of temporal transient changes in the solar amounts in the sub-regions obtained by dividing the target area into a plurality of regions; and an output prediction means which predicts outputs of solar power generation facilities installed in said target region from the future cloud movements predicted by the prediction means.

Description

太陽光出力予測装置、電力系統制御装置及び太陽光出力予測方法Solar power output prediction device, power system control device, and solar power output prediction method
 本発明は、太陽光発電設備が複数設置された地域における太陽光発電設備のネット出力を予測する太陽光出力予測装置、電力系統制御装置及び太陽光出力予測方法に関する。 The present invention relates to a solar power predicting device, a power system control device, and a solar power predicting method for predicting the net output of a solar power generating facility in an area where a plurality of solar power generating facilities are installed.
 昨今の大規模太陽光発電設備導入により、天候の変化などによる太陽光発電設備出力の急激な変化が懸念されている。特に、電力系統の周波数維持の観点からは、水力、火力発電設備などによる出力調整が不可欠である。一方で、変動調整用の待機火力の運用時間を最小化するために、1時間先程度の大規模太陽光発電設備広域出力、特に、個々ではなく、広域地域全体の出力予測が電力会社を中心に切望されている。予測的に近未来の太陽光発電設備出力が求まれば、電力系統の電圧を調整可能なタップ付変圧器などの事前操作、無効電力を調整可能な調相設備などの操作が可能となり、電力系統の安定運用に貢献可能である。 ”With the recent introduction of large-scale solar power generation facilities, there is a concern that the output of solar power generation facilities will change suddenly due to changes in the weather. In particular, from the viewpoint of maintaining the frequency of the electric power system, it is indispensable to adjust the output by hydropower and thermal power generation facilities. On the other hand, in order to minimize the operating time of standby thermal power for fluctuation adjustment, large-scale photovoltaic power generation facility wide-area output of about one hour ahead, especially output prediction of the entire wide-area area, not individual, is mainly for electric power companies It is longing for. If the solar power generation facility output in the near future is obtained predictably, it will be possible to operate in advance, such as a transformer with a tap that can adjust the voltage of the power system, and a phase adjustment facility that can adjust reactive power. It can contribute to the stable operation of the grid.
 太陽光発電設備のネット出力を求める場合に、管理地域が広大であること、及び太陽光発電設備のネット出力は気象の影響を受けることなどを考慮した予測手法が不可欠となる。これを可能とする有力な手法は、気象衛星を用いた管理地域内の雲の分布監視に基づくものである。 When calculating the net output of solar power generation facilities, a prediction method that takes into account the fact that the management area is vast and that the net output of solar power generation facilities is affected by the weather is indispensable. A promising technique that makes this possible is based on monitoring the distribution of clouds in the management area using meteorological satellites.
 特許文献1は、このための具体的な手法を提案しており、具体的には、「太陽光発電状況予測装置は、予め区分けされた地域の識別情報と、当該地域の太陽光発電の設備に関する設備情報とを対応付けて記憶する発電能力DBを備え、所定時間ごとに、予め区分けされた地域における日射量データを受信し、気象観測した気象データを送信する気象サーバから気象データを受信し、受信した日射量データと、受信した気象データとにより、予め区分けされた地域ごとの一定時間の日射量を推定し、推定した日射量によって、発電能力DBに基づいて、予め区分けされた地域ごとの太陽光発電の発電量を算定し、算定した太陽光発電の発電量を、電力系統を監視する監視システムに送信する。」というものである。ここでは、予め区分けされた地域における日射量データを求めるために気象衛星からの画像情報が利用されており、気象衛星を用いた管理地域内の雲の分布状態から日射量データを求めるものである。 Patent Document 1 proposes a specific method for this purpose. Specifically, “a photovoltaic power generation status prediction device is a pre-segmented area identification information and a photovoltaic power generation facility in the area. Power generation capacity DB that stores facility information in association with each other, receives solar radiation data in a pre-divided area every predetermined time, and receives weather data from a weather server that transmits meteorological data Based on the received solar radiation data and the received meteorological data, the solar radiation amount for a certain period of time is estimated for each pre-divided region, and the pre-segmented region based on the power generation capacity DB based on the estimated solar radiation amount The amount of photovoltaic power generation is calculated and the calculated amount of photovoltaic power generation is transmitted to a monitoring system that monitors the power system. " Here, image information from a meteorological satellite is used to obtain solar radiation data in a pre-divided area, and the solar radiation data is obtained from the distribution state of clouds in the management area using the weather satellite. .
 このための一連の処理の一例を図2に示している。図2において、1は対象地域、13は気象衛星、14は解析装置、15は上空からの雲画像、16は雲画像15から算出した日射の反射量分布、17は従来技術における将来の日射量変化予測技術のアルゴリズムを示している。なお18は、気象衛星が検知した雲の全体分布状況を示している。対象地域1内には、気象衛星13が検知した雲の全体分布状況のうち、一部のみが差し掛かっており、今後の気象変動に伴い対象地域1内における雲の分布状況が変化してくる。 An example of a series of processes for this purpose is shown in FIG. In FIG. 2, 1 is a target area, 13 is a meteorological satellite, 14 is an analysis device, 15 is a cloud image from the sky, 16 is a reflection distribution of solar radiation calculated from the cloud image 15, and 17 is a future solar radiation amount in the prior art. The algorithm of change prediction technology is shown. Reference numeral 18 denotes an overall distribution state of clouds detected by a meteorological satellite. In the target area 1, only a part of the entire cloud distribution status detected by the weather satellite 13 is approaching, and the cloud distribution status in the target area 1 changes with future weather fluctuations.
 図2に示す従来の日射量変化予測技術のアルゴリズム17の最初の処理ステップS1では、気象衛星13が地球上空から雲を観察して解析装置14に送付してきた雲画像15のデータの取り込み処理を行う。処理ステップS2では、雲画像15のデータを画像処理することで、雲の日射量の反射率分布16を計算する。さらに処理ステップS2では、過渡時間での雲の動きとして雲の移動速度を算出する。処理ステップS3では、雲の移動速度を考慮の上、将来の雲の動きについて予測シミュレーションを行う。処理ステップS4では、雲の種類などによる日射量の吸収率などを考慮して、対象地域1の地表に届く日射量を予測計算する。この方法により、当該地域1における地域全体の日射量分布、さらには地域に設置された複数の太陽光発電設備の出力を予測できる。 In the first processing step S1 of the conventional solar radiation amount change prediction technique algorithm 17 shown in FIG. 2, the meteorological satellite 13 observes the clouds from above the earth and transmits the data of the cloud image 15 sent to the analysis device 14. Do. In processing step S2, the cloud image 15 data is image-processed to calculate the reflectance distribution 16 of the solar radiation amount of the cloud. Further, in processing step S2, the moving speed of the cloud is calculated as the movement of the cloud during the transition time. In the processing step S3, a prediction simulation is performed for the future cloud movement in consideration of the moving speed of the cloud. In the processing step S4, the amount of solar radiation reaching the surface of the target area 1 is predicted and calculated in consideration of the absorption rate of the amount of solar radiation depending on the type of cloud. By this method, it is possible to predict the solar radiation distribution of the entire region in the region 1 and the outputs of a plurality of photovoltaic power generation facilities installed in the region.
特開2010-249608号公報JP 2010-249608 A
 気象衛星を利用した特許文献1に記載の従来技術によれば、高精度な日射量の予測には、雲の種類による日射量の吸収率、雲の将来の動きを予測するための計算モデルが不可欠である。一方で、雲に垂直方向に移動速度に分布がある場合、雲の移動量がどの位置で速度を使うかで大きく影響を受ける事があった。また、気象衛星はその特性として、朝夕の二回、特定時間の間はデータを入手できない課題があった。また、現在の最先端の気象衛星であるひまわりを用いても、画像の入手可能時間幅は一回/2分程度であり、決して早いとは言えないという課題があった。 According to the prior art described in Patent Document 1 using a meteorological satellite, in order to predict the amount of solar radiation with high accuracy, there is a calculation model for predicting the rate of absorption of the amount of solar radiation according to the type of cloud and the future movement of the cloud. It is essential. On the other hand, when the moving speed is distributed in the direction perpendicular to the cloud, the moving amount of the cloud may be greatly influenced by the position at which the speed is used. In addition, meteorological satellites have a problem that data cannot be obtained twice a day in the morning and evening. In addition, even when using the current state-of-the-art weather satellite, sunflower, the available time range of the image is about once every 2 minutes, which is not always fast.
 以上のことから本発明においては、気象衛星のように上空からの雲の観察ではなく、地上からの雲の観察により、将来の雲の動き、日射量の過渡変化を予測することができる太陽光出力予測装置、電力系統制御装置及び太陽光出力予測方法を提供するものである。 From the above, in the present invention, sunlight that can predict future cloud movements and transient changes in solar radiation by observing clouds from the ground instead of observing clouds from the sky like a meteorological satellite. An output prediction device, a power system control device, and a sunlight output prediction method are provided.
 以上のことから本発明においては、複数の太陽光発電設備を備えた電力系統が設置されている対象地域内における太陽光発電設備の出力を予測するための太陽光出力予測装置であって、対象地域における複数個所の日射量の情報を得る入力手段と、対象地域を複数領域に分割した小領域について、第1の小領域における推定日射量を前記日射量の情報が得られる複数の第2の小領域の日射量から推定し、全ての第1の小領域における推定日射量を推定する日射量推定手段と、対象地域を複数領域に分割した小領域における日射量の時間的な過渡変化をもとに、対象地域内の将来の雲の動きを予測する天候予測手段と、予測手段による将来の雲の動きから当該対象地域に設置された太陽光発電設備の出力を予測する出力予測手段を備えることを特徴とする。 From the above, in the present invention, a solar power output prediction device for predicting the output of a solar power generation facility in a target area where a power system including a plurality of solar power generation facilities is installed, the target An input means for obtaining information on the amount of solar radiation at a plurality of locations in the area, and a plurality of second areas for obtaining information on the amount of solar radiation for the estimated amount of solar radiation in the first small area for a small area obtained by dividing the target area into a plurality of areas. Estimating from the amount of solar radiation in the small area, the solar radiation amount estimating means for estimating the estimated amount of solar radiation in all the first small areas, and the temporal transient change in the amount of solar radiation in the small area obtained by dividing the target area into a plurality of areas And a weather prediction means for predicting future cloud movement in the target area, and an output prediction means for predicting the output of the photovoltaic power generation equipment installed in the target area from the future cloud movement by the prediction means. thing And features.
 また本発明は、電力系統には電力系統の電圧を補償する電圧補償装置が設置されており、太陽光出力予測装置の出力を用いて電圧補償装置が制御され、太陽光発電設備の出力変動による電力系統の電圧変動を制御することを特徴とする。 Further, according to the present invention, a voltage compensation device that compensates the voltage of the power system is installed in the power system, the voltage compensation device is controlled using the output of the solar power output prediction device, and the output power fluctuation of the solar power generation facility It is characterized by controlling voltage fluctuations in the power system.
 また本発明は、電力系統には蓄電池などの出力補償装置が設置されており、太陽光出力予測装置の出力を用いて蓄電池などの出力補償装置が制御され、太陽光発電設備の出力変動による電力系統電圧の周波数変動を制御することを特徴とする。 Further, according to the present invention, an output compensation device such as a storage battery is installed in the power system, and the output compensation device such as the storage battery is controlled using the output of the solar power prediction device, so that the power due to the output fluctuation of the photovoltaic power generation facility It controls the frequency fluctuation of the system voltage.
 また本発明は、電力系統に連系した水力発電、火力発電設備などの出力補償装置が設置されており、太陽光出力予測装置の出力を用いて電力系統に連系した水力発電、火力発電設備などの出力補償装置が制御され、太陽光発電設備の出力変動による電力系統電圧の周波数変動を制御することを特徴とする。 Further, the present invention is provided with output compensation devices such as hydroelectric power generation and thermal power generation facilities linked to the electric power system, and the hydroelectric power generation and thermal power generation facilities linked to the electric power system using the output of the solar power output prediction device. The output compensation device is controlled to control the frequency fluctuation of the power system voltage due to the output fluctuation of the photovoltaic power generation equipment.
 また本発明は、複数の太陽光発電設備を備えた電力系統が設置されている対象地域内における太陽光発電設備の出力を予測するための太陽光出力予測方法であって、対象地域における複数個所の日射量の情報を得、対象地域を複数領域に分割した小領域について、第1の小領域における推定日射量を日射量の情報が得られる複数の第2の小領域の日射量から推定し、全ての第1の小領域における推定日射量を推定し、対象地域を複数領域に分割した小領域における日射量の時間的な過渡変化をもとに、対象地域内の将来の雲の動きを予測し、将来の雲の動きから当該対象地域に設置された太陽光発電設備の出力を予測することを特徴とする。 The present invention also relates to a solar power output prediction method for predicting the output of a solar power generation facility in a target area where a power system having a plurality of solar power generation facilities is installed, and a plurality of locations in the target area. For the small area obtained by dividing the target area into a plurality of areas, the estimated amount of solar radiation in the first small area is estimated from the amount of solar radiation in the plurality of second small areas from which the information on the amount of solar radiation can be obtained. Estimate the estimated amount of solar radiation in all the first small areas, and based on the temporal transient change in the amount of solar radiation in the small area divided into multiple areas, the future cloud movement in the target area Predicting and predicting the output of the photovoltaic power generation equipment installed in the target area from the future cloud movement.
 本発明によれば、地上からの雲の観察により、将来の雲の動き、日射量の過渡変化を予測することができる。 According to the present invention, it is possible to predict future cloud movements and transient changes in solar radiation by observing clouds from the ground.
本発明の実施例1に係る太陽光出力予測装置の構成例を示す図。The figure which shows the structural example of the sunlight output prediction apparatus which concerns on Example 1 of this invention. 気象衛星を用いた太陽光発電設備の出力推定の従来手法を説明するための図。The figure for demonstrating the conventional method of the output estimation of the solar power generation facility using a meteorological satellite. 複数個所からの日射量のデータを処理する出力予測装置3の処理アルゴリズムを示す図。The figure which shows the processing algorithm of the output prediction apparatus 3 which processes the data of the solar radiation amount from several places. 各時刻における日射量の過渡変化の可視化事例を示す図。The figure which shows the visualization example of the transient change of the solar radiation amount in each time. 実施例1に示す手法で求めたネット出力の予測結果の事例を示す図。The figure which shows the example of the prediction result of the net output calculated | required by the method shown in Example 1. FIG. 電圧補償装置により電力系統を制御する事例を示す図。The figure which shows the example which controls an electric power grid | system by a voltage compensation apparatus. 蓄電池により電力系統を制御する事例を示す図。The figure which shows the example which controls an electric power grid | system by a storage battery. 火力発電設備により電力系統を制御する事例を示す図。The figure which shows the example which controls an electric power grid | system by thermal power generation equipment.
 以下、本発明の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施例1に係る太陽光出力予測装置の構成例を示している。図1において、1は電力事業者が管理している対象地域であり、この内部地域には図示していないが、太陽光発電設備をはじめ、送配電線、変圧器、発電機、タップ付変圧器、調相設備などで構成された電力系統が設置されている。また電力系統の特に太陽光発電設備の近傍には、日射量計測手段2が各所に配備されており、中央側に設けられた出力予測装置3にデータ回線4を介して検出地点と時刻の情報を含む日射量計測値の情報を送信している。なお、日射量計測手段2は直接日射量を計測するものばかりではなく、間接的に日射量の情報を得ることができるものを含む。例えば、太陽光発電設備の電気出力と定格出力の比を、日射量として利用する形態のものであってもよい。 FIG. 1 shows a configuration example of a sunlight output prediction apparatus according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes a target area managed by an electric power company. Although not shown in this internal area, a solar power generation facility, a transmission / distribution line, a transformer, a generator, a tapped transformer An electric power system consisting of equipment and phase adjusting equipment is installed. In addition, solar radiation measuring means 2 is provided in various places in the power system, particularly in the vicinity of the solar power generation facility, and information on the detection point and time is provided via the data line 4 to the output prediction device 3 provided on the center side. Information on solar radiation measurement values including is sent. Note that the solar radiation amount measuring means 2 includes not only a device that directly measures the solar radiation amount but also a device that can indirectly obtain information on the solar radiation amount. For example, the thing of the form of utilizing the ratio of the electrical output of solar power generation equipment and a rated output as a solar radiation amount may be sufficient.
 図3は、複数個所からの日射量のデータを処理する出力予測装置3の処理アルゴリズムを示している。図3の上段には、日射量評価の対象地域1が示されている。この日射量評価の対象地域1に対して、最初の処理ステップS10では、対象地域1を複数のメッシュに分割した分割領域として、把握している。この場合におけるメッシュは、マス目上であっても、またハニカム状に形成されたものであってもよいし、以後の処理を行う上では各メッシュ領域は等面積である必要はない。 FIG. 3 shows a processing algorithm of the output prediction device 3 for processing the data of the solar radiation amount from a plurality of places. In the upper part of FIG. 3, the target area 1 of the solar radiation amount evaluation is shown. With respect to the target area 1 of this solar radiation amount evaluation, in the first processing step S10, the target area 1 is grasped as a divided area divided into a plurality of meshes. In this case, the mesh may be on the grid or may be formed in a honeycomb shape, and each mesh region does not need to have an equal area for the subsequent processing.
 処理ステップS10の例では、対象地域1をx、yの二元座標として把握しており、Δx、Δyピッチでのメッシュ分割をしている。各マス目をx、yの二元座標で表すと、(2、2)、(3、5)、(6、3)、(8、6)、(9、1)の各マス目位置に日射量計測手段2が設置されており、日射量の情報が得られている。処理ステップS10の処理では、日射量計測手段2が設置されていない座標(6、5)における日射量を、日射量計測手段2が設置されている複数地点(図の例では5地点)の日射量の情報から推定する。これにより、ここでは日射量計測手段2が設置されている地点が計測点であり、推定される地点が評価点として位置づけられる。なおここでの処理は、時刻tにおけるデータに基づいて実行されている。 In the example of the processing step S10, the target area 1 is grasped as binary coordinates of x and y, and mesh division is performed at Δx and Δy pitches. When each cell is represented by binary coordinates of x and y, each cell position of (2, 2), (3, 5), (6, 3), (8, 6), (9, 1) is displayed. The solar radiation amount measuring means 2 is installed, and information on the solar radiation amount is obtained. In the process of processing step S10, the solar radiation amount at the coordinates (6, 5) where the solar radiation amount measuring means 2 is not installed is converted into the solar radiation at a plurality of points (in the example of the figure, five points) where the solar radiation amount measuring means 2 is installed. Estimated from quantity information. Thereby, the point where the solar radiation amount measuring means 2 is installed here is a measurement point, and the estimated point is positioned as an evaluation point. Note that the processing here is executed based on the data at time t.
 処理ステップS20では、処理ステップS10の繰り返し処理により、日射量計測手段2が設置されていない座標を評価点として、全ての評価点における日射量を補間推定する。なお処理ステップS20でC1、C2、C3は雲の形状と位置を示している。ここでの処理も、時刻tにおけるデータに基づいて実行されている。 In processing step S20, the amount of solar radiation at all the evaluation points is interpolated and estimated by using the coordinates where the solar radiation amount measuring means 2 is not installed as an evaluation point by the repeated processing of processing step S10. In the processing step S20, C1, C2, and C3 indicate cloud shapes and positions. The processing here is also executed based on the data at time t.
 複数箇所からの計測データを元にした補間推定処理に際し、出力予測装置3は各メッシュの代表点として例えば、重心点における日射量の補間を行う。補間式の事例としては、以下の(1)式に示すシェパード法などを適用することができる。なお(1)式において、I(i)は点iにおける日射量、rijは点i、j間の距離である。 In the interpolation estimation process based on measurement data from a plurality of locations, the output prediction device 3 performs, for example, interpolation of the amount of solar radiation at the center of gravity as a representative point of each mesh. As an example of the interpolation formula, the shepherd method shown in the following formula (1) can be applied. In equation (1), I (i) is the amount of solar radiation at point i, and rij is the distance between points i and j.
Figure JPOXMLDOC01-appb-M000001
 このシェパード法などの手法は、地点間の距離の二乗で、日射量の影響に重み付けを行うものである。これを、計測時間t毎、好ましくは5秒に一度程度の計測頻度で計測を行い、計測時間毎にメッシュの重心点において、全ての日射量を補間する。
Figure JPOXMLDOC01-appb-M000001
This method such as the shepherd method weights the influence of solar radiation by the square of the distance between points. This is measured at a measurement frequency of every measurement time t, preferably about once every 5 seconds, and all solar radiation amounts are interpolated at the center of gravity of the mesh every measurement time.
 すると、図4に示すように、各時刻tにおける日射量の過渡変化を可視化することができる。図4では左から順に、時刻t=5秒のときの対象地域1の日射量、時刻t=15秒のときの対象地域1の日射量時刻、t=25秒のときの対象地域1の日射量、時刻t=35秒のときの対象地域1の日射量を表している。この事例では、対象地域1の左から右へ雲C(低日射量域)が移動している様子がわかる。この各時刻の雲の移動量から、雲の速さ、方向を評価できる。 Then, as shown in FIG. 4, the transient change of the solar radiation amount in each time t can be visualized. In FIG. 4, in order from the left, the solar radiation amount of the target area 1 when the time t = 5 seconds, the solar radiation time of the target area 1 when the time t = 15 seconds, and the solar radiation of the target area 1 when t = 25 seconds This represents the amount of solar radiation in the target area 1 when the amount is t = 35 seconds. In this example, it can be seen that the cloud C (low solar radiation area) is moving from the left to the right of the target area 1. From the amount of cloud movement at each time, the speed and direction of the cloud can be evaluated.
 図3に戻り、次の処理ステップS30では、求められた雲の速さ、方向をもとに、将来の雲の動きをシミュレーションする。その方法の一例として、以下の(2)式のような日射量の移流方程式を解くことで、将来の雲(日射量)の予測が可能となる。なお(2)式において、Iは日射量、tは時間、x、y:対象地域の二次元座標、u、vは、x、y方向の速さである。 Referring back to FIG. 3, in the next processing step S30, future cloud movements are simulated based on the obtained cloud speed and direction. As an example of the method, it is possible to predict the future cloud (irradiation amount) by solving the advection equation of the insolation amount as the following equation (2). In equation (2), I is the amount of solar radiation, t is time, x, y: two-dimensional coordinates of the target area, and u and v are speeds in the x and y directions.
Figure JPOXMLDOC01-appb-M000002
 ここで、前述のように、過去の日射量の計測データを使って、雲の速度(u、v)を求めることができるので、上の移流方程式を、対象地域を分割したメッシュ上で数値的に解くことができる。これにより、各メッシュ点での日射量分布が予測でき、ひいてはその対象地域全体のネットの日射量を評価できる。図3の処理ステップS30は、時刻t+1における雲Cの位置を予測した結果であり、C1がC1’に移動していることがわかる。
Figure JPOXMLDOC01-appb-M000002
Here, as described above, since the cloud velocity (u, v) can be obtained by using the past solar radiation measurement data, the above advection equation is numerically expressed on the mesh obtained by dividing the target area. Can be solved. Thereby, the solar radiation amount distribution at each mesh point can be predicted, and as a result, the solar radiation amount of the entire target area can be evaluated. Processing step S30 in FIG. 3 is the result of predicting the position of cloud C at time t + 1, and it can be seen that C1 has moved to C1 ′.
 図5には、本発明の実施例に示す手法で求めたネット出力の予測結果を示している。ドットで示した計測結果と実線で示した予測結果とでは、±10%程度の精度で予測ができている。この予測値を出力予測装置3は出力する。 FIG. 5 shows a prediction result of the net output obtained by the method shown in the embodiment of the present invention. The measurement result indicated by dots and the prediction result indicated by the solid line can be predicted with an accuracy of about ± 10%. The output prediction device 3 outputs this predicted value.
 実施例1では、太陽光出力を予測する装置及び方法について説明したが、実施例2では電力系統の制御に結び付ける電力系統制御装置及び方法について説明する。図6において、図1と同じ記号を付しているものは同一物または等効物を意味しているので説明を省略する。 In the first embodiment, the apparatus and method for predicting the sunlight output have been described, but in the second embodiment, the power system control apparatus and method linked to the control of the power system will be described. In FIG. 6, the same reference numerals as those in FIG. 1 denote the same or equivalent products, and thus description thereof is omitted.
 図6の対象地域1には、具体的な電力系統11と制御対象である電力系統制御装置として、電圧補償装置(例えばタップ付変圧器)5が示されている。電圧補償装置5は、制御装置6の出力により操作され、制御装置6は出力予測装置3の出力に応じて、電圧補償装置であるタップ付変圧器5のタップ位置を調整する。 6 shows a specific power system 11 and a voltage compensation device (for example, a transformer with a tap) 5 as a power system control device to be controlled. The voltage compensation device 5 is operated by the output of the control device 6, and the control device 6 adjusts the tap position of the tap transformer 5 that is a voltage compensation device in accordance with the output of the output prediction device 3.
 実施例2の構成によれば、出力予測装置3は、日射量計測手段2からの計測データを元に、将来の太陽光出力の予測を行う。その結果を元に、電圧変動の制御装置6は電力系統11の電圧変動を評価し、電力系統11内に設置された電圧補償装置5を適切に制御する。それによって、電力系統11内の電圧変動を許容値以内に抑制することが可能となる。 According to the configuration of the second embodiment, the output prediction device 3 predicts future solar light output based on the measurement data from the solar radiation amount measuring means 2. Based on the result, the voltage fluctuation control device 6 evaluates the voltage fluctuation of the power system 11 and appropriately controls the voltage compensator 5 installed in the power system 11. Thereby, it is possible to suppress the voltage fluctuation in the electric power system 11 within an allowable value.
 実施例3も、実施例2と同様に、電力系統の制御に結び付ける電力系統制御装置及び方法を示しているが、実施例2では電力系統制御装置として電圧補償装置(例えばタップ付変圧器)5を制御対象としたのに対し、実施例3では調相装置(例えば蓄電池7)を制御対象としている。 As in the second embodiment, the third embodiment also shows a power system control device and method linked to the control of the power system. In the second embodiment, a voltage compensation device (for example, a transformer with a tap) 5 is used as the power system control device. In the third embodiment, the phase adjusting device (for example, the storage battery 7) is the control target.
 図7において、7は蓄電池、8は蓄電池7の制御装置である。図7の構成によれば、出力予測装置3は、日射量計測手段2からの計測データを元に、将来の太陽光出力の予測を行う。その結果を元に、蓄電池7の制御装置8は、蓄電池7の寿命に影響を与えない充電放電レートを評価し、その指令値と必要な充放電量をもとに、蓄電池8を運用する。これにより、蓄電池の寿命を最大化しながら、電力系統11の出力調整を時間的な遅れなく、行うことができる。 7, 7 is a storage battery, and 8 is a control device for the storage battery 7. According to the configuration of FIG. 7, the output prediction device 3 predicts future solar light output based on the measurement data from the solar radiation amount measuring means 2. Based on the result, the control device 8 of the storage battery 7 evaluates the charge / discharge rate that does not affect the life of the storage battery 7 and operates the storage battery 8 based on the command value and the required charge / discharge amount. Thereby, the output adjustment of the electric power grid | system 11 can be performed without time delay, maximizing the lifetime of a storage battery.
 実施例4も、実施例2、3と同様に、電力系統の制御に結び付ける電力系統制御装置及び方法を示しているが、実施例4では電力系統制御装置として火力発電設備9の制御装置を制御対象としている。 In the fourth embodiment, as in the second and third embodiments, the power system control apparatus and method linked to the control of the power system are shown. In the fourth embodiment, the control apparatus for the thermal power generation facility 9 is controlled as the power system control apparatus. It is targeted.
 図8において、9は火力発電設備、10は火力発電設備の制御装置である。図8の構成によれば、出力予測装置3は、日射量計測手段2からの計測データを元に、将来の太陽光出力の予測を行う。その結果を元に、火力発電設備の制御装置10は、1時間先に大幅な太陽光出力の低下が予見される場合には、火力発電設備9の起動を行う。その後は、実際の太陽光出力の変動を火力の出力調整で吸収する。これによれば、火力の無負荷での待機運転をなくすことが可能となる。 In FIG. 8, 9 is a thermal power generation facility, and 10 is a control device for the thermal power generation facility. According to the configuration of FIG. 8, the output prediction device 3 predicts future solar light output based on the measurement data from the solar radiation amount measuring means 2. Based on the result, the thermal power generation equipment control device 10 activates the thermal power generation equipment 9 when a significant decrease in solar power output is predicted one hour ahead. After that, the fluctuation of the actual sunlight output is absorbed by adjusting the output of the thermal power. According to this, it becomes possible to eliminate the standby operation with no thermal power.
 以上に述べた本発明は、広域な対象地域における日射量計測点の観測結果に基づいて、日射量計測器を供えない評価点の日射量を推測するものである。このため、日射量計測点の日射量計測器に固有の特徴を有する場合には、評価点の日射量推測上は外乱となりえる。例えば、九州全域を対象地域とする時、都市部に設置されビルによる反射などの影響を強く受ける日射量計測器の検出値を元にして山間部での日射量を推測するときには、反射などの影響は外乱となりえる。反射光のほかには、ビルの陰に設置されているとか、センサー固有のエラーを備えるとか、雲の動きの急変などが外乱となりうる。 The present invention described above estimates the amount of solar radiation at an evaluation point that is not provided with a solar radiation amount measuring instrument based on the observation result of the solar radiation amount measuring point in a wide target area. For this reason, when it has the characteristic peculiar to the solar radiation amount measuring device of the solar radiation amount measurement point, it can become disturbance on the estimation of the solar radiation amount of an evaluation point. For example, when the entire area of Kyushu is the target area, when estimating the amount of solar radiation in a mountainous area based on the detection value of a solar radiation measuring instrument that is installed in urban areas and is strongly affected by reflections from buildings, The impact can be a disturbance. In addition to the reflected light, it can be a disturbance such as being installed behind a building, having a sensor-specific error, or a sudden change in cloud movement.
 このため、外乱要因が判明している状況下での評価点の日射量推測では、(2)式に示した日射量の移流方程式に外乱の要素を加味して実施するのがよい。 For this reason, in estimating the solar radiation amount at the evaluation point in a situation where the disturbance factors are known, it is preferable to add the disturbance factor to the solar radiation advection equation shown in equation (2).
 以上本発明の実施例について説明した。この実施例によれば、太陽光発電が複数設置されている地域において、地域を複数領域に分割し、さらに地域に日射量の計測手段を複数設置、計測手段で計測した複数箇所の日射量を元に、複数領域の代表点での日射量を補間する手段、さらに複数の時間断面で複数領域における日射量の過渡変化をもとに、地域内の雲の動きを予測する手段で、当該地域に設置された太陽光発電のネット出力を予測することが可能となる。特に、日射量の計測手段は地上に設置されており、雲の影響を受けた後の日射量を直接計測するため、雲の種類が日射量に当たる影響のモデルが不要である。また、地上を移動する雲の陰の速さ、方向を直接評価でき、雲の垂直方向の速度分布などの考慮が不要となる。さらに、日射計、或いは太陽光の出力計測は秒単位での計測が可能であり、その分解能で太陽光発電の出力予測が可能となる。さらに、気象衛星のごとく、計測が困難な時間帯も存在しない。 The embodiments of the present invention have been described above. According to this embodiment, in a region where a plurality of photovoltaic power generations are installed, the region is divided into a plurality of regions, and further, a plurality of solar radiation amount measuring means are installed in the region, and the solar radiation amounts measured at the plurality of locations are measured by the measuring means. Originally, means for interpolating the amount of solar radiation at representative points in multiple areas, and means for predicting the movement of clouds in the area based on transient changes in the amount of solar radiation in multiple areas at multiple time sections. It is possible to predict the net output of photovoltaic power generation installed in the plant. In particular, the solar radiation amount measuring means is installed on the ground and directly measures the solar radiation amount after being affected by the cloud, so that it is not necessary to have a model of the effect that the type of cloud hits the solar radiation amount. In addition, the speed and direction of the shadow of the cloud moving on the ground can be directly evaluated, and the consideration of the velocity distribution in the vertical direction of the cloud becomes unnecessary. Furthermore, the solar radiation meter or the sunlight output measurement can be performed in units of seconds, and the output of the solar power generation can be predicted with the resolution. Furthermore, there are no time zones that are difficult to measure, as is the case with meteorological satellites.
 また本発明の実施例では、太陽光発電のネット出力を予測する装置において、複数分割地域をメッシュ状に分割するものである。メッシュ状に分割することで、その中心点、重心点を定義することが容易であり、複数計測点からのデータから前記メッシュ中心点での日射量の補間が容易となる。 Further, in the embodiment of the present invention, in the apparatus for predicting the net output of photovoltaic power generation, the plurality of divided areas are divided into mesh shapes. By dividing into meshes, it is easy to define the center point and the center of gravity, and it becomes easy to interpolate the amount of solar radiation at the mesh center point from data from a plurality of measurement points.
 また本発明の実施例では、太陽光発電のネット出力を予測する装置を含み、特に上記地域内の電力系統に設置された電圧補償装置にて、電力系統の電圧が太陽光の出力変動による電圧変動を制御することで解決できる。電力系統に連系される太陽光発電の出力は、特に雲が太陽を過渡的に遮る場合、最大で70%の出力低下、逆に雲がきれた場合に、一気に出力が増加する事象が派生する。その場合に、出力に応じて電力系統の電圧が上下する課題が生じる。太陽光発電の予測がない場合には、リアルタイムでの電圧補償となるために、時間的な遅れが生じる可能性もある。それに対して、太陽光出力予測技術を適用して太陽光出力変動に伴う電圧変動も予測し、それに基づき、電圧補償装置(好ましくはSVRなどの機器)を制御することで、遅れなく、電圧補償が可能となる。 In addition, the embodiment of the present invention includes a device for predicting the net output of solar power generation, and particularly in a voltage compensator installed in the power system in the region, the voltage of the power system is a voltage due to the output fluctuation of sunlight. It can be solved by controlling the fluctuation. The output of solar power generation linked to the power system is a phenomenon that the output decreases by up to 70%, especially when the clouds block the sun transiently. To do. In that case, the subject that the voltage of an electric power system rises and falls according to an output arises. When there is no prediction of photovoltaic power generation, there is a possibility that a time delay may occur because voltage compensation is performed in real time. On the other hand, by applying solar output prediction technology, voltage fluctuations associated with solar output fluctuations are also predicted, and voltage compensation devices (preferably devices such as SVR) are controlled on the basis thereof to compensate voltage without delay. Is possible.
 また本発明の実施例では、太陽光発電のネット出力を予測する装置を含み、特に上記地域内の電力系統に設置された蓄電池などの出力補償装置にて、電力系統の電圧が太陽光の出力変動による周波数変動を制御することで解決できる。電力系統に連系される太陽光発電の出力は、特に雲が太陽を過渡的に遮る場合、最大で70%の出力低下、逆に雲がきれた場合に、一気に出力が増加する事象が派生する。特に大規模に太陽光発電が導入されている場合には、出力変動に応じて電力系統の周波数が変動する課題が生じる。太陽光発電の予測がない場合には、リアルタイムでの出力調整となるために、時間的な遅れが生じる可能性と、急激な蓄電池の充放電による電池寿命の低下の課題もある。それに対して、太陽光予測技術を適用し、太陽光出力変動の電圧変動も予測し、それに基づき、蓄電池を制御することで遅れなく出力調整が可能となる。さらに、蓄電池の充放電レートを低く抑えることができ、蓄電池の寿命が延びる事も期待できる。 In addition, the embodiment of the present invention includes a device for predicting the net output of solar power generation, and particularly in an output compensation device such as a storage battery installed in the power system in the region, the voltage of the power system is the output of sunlight. This can be solved by controlling frequency fluctuations due to fluctuations. The output of solar power generation linked to the power system is a phenomenon that the output decreases by up to 70%, especially when the clouds block the sun transiently. To do. In particular, when photovoltaic power generation is introduced on a large scale, there arises a problem that the frequency of the power system fluctuates according to the output fluctuation. When there is no prediction of photovoltaic power generation, since output adjustment is performed in real time, there is a possibility that a time delay may occur, and there is a problem of a decrease in battery life due to rapid charge / discharge of the storage battery. On the other hand, it is possible to adjust the output without delay by applying the sunlight prediction technique, predicting the voltage fluctuation of the sunlight output fluctuation, and controlling the storage battery based on the fluctuation. Furthermore, the charge / discharge rate of the storage battery can be kept low, and it can be expected that the life of the storage battery is extended.
 また本発明の実施例では、太陽光発電のネット出力を予測する装置を含み、特に上記地域内の電力系統に連系した水力発電、火力発電設備などの出力補償装置にて、広域電力系統における太陽光の出力変動による周波数変動を制御することで解決できる。広域の太陽光出力予測ができない場合、出力調整用の水力、火力発電設備は待機運転を余儀なくされる。特に、火力発電設備では待機運転では効率が低い運転点で、長時間の運転を強いられる場合もあり、電力会社にとっては経済性の観点から好ましくない。それに対し、一時間程度の予測精度で広域太陽光出力の予測ができれば、火力の運転開始~定格出力までの運用が一時間以内でできるため、不要な待機運転を防止することができる。 Moreover, the embodiment of the present invention includes a device for predicting the net output of solar power generation, particularly in an output compensation device such as hydroelectric power generation and thermal power generation equipment linked to the power system in the region, in a wide-area power system. This can be solved by controlling frequency fluctuations due to fluctuations in sunlight output. When the solar power output cannot be predicted over a wide area, the hydropower and thermal power generation facilities for output adjustment are forced to perform standby operation. In particular, a thermal power generation facility may be forced to operate for a long time at an operating point with low efficiency in standby operation, which is not preferable for an electric power company from the viewpoint of economy. On the other hand, if the wide-area solar power output can be predicted with a prediction accuracy of about one hour, the operation from the start of operation of the thermal power to the rated output can be performed within one hour, so unnecessary standby operation can be prevented.
1:対象地域,2:日射量計測手段,3:出力予測装置,4:データ回線,5:電圧補償装置,6:電圧補償装置の制御装置,7:蓄電池,8:蓄電池の制御装置,9:火力発電設備,10:火力発電設備の制御装置,11:電力系統,13:気象衛星,14:解析装置,15:雲画像,16:雲による日射量の反射量,17:従来例のアルゴリズム 1: target area, 2: solar radiation amount measuring means, 3: output prediction device, 4: data line, 5: voltage compensation device, 6: control device of voltage compensation device, 7: storage battery, 8: control device of storage battery, 9 : Thermal power generation facility, 10: Control device for thermal power generation facility, 11: Electric power system, 13: Meteorological satellite, 14: Analysis device, 15: Cloud image, 16: Reflection amount of solar radiation by cloud, 17: Conventional algorithm

Claims (8)

  1.  複数の太陽光発電設備を備えた電力系統が設置されている対象地域内における太陽光発電設備の出力を予測するための太陽光出力予測装置であって、
     前記対象地域における複数個所の日射量の情報を得る入力手段と、前記対象地域を複数領域に分割した小領域について、第1の小領域における推定日射量を前記日射量の情報が得られる複数の第2の小領域の日射量から推定し、全ての前記第1の小領域における推定日射量を推定する日射量推定手段と、前記対象地域を複数領域に分割した小領域における日射量の時間的な過渡変化をもとに、前記対象地域内の将来の雲の動きを予測する天候予測手段と、該予測手段による将来の雲の動きから当該対象地域に設置された太陽光発電設備の出力を予測する出力予測手段を備えることを特徴とする太陽光出力予測装置。
    A solar power output prediction device for predicting the output of a solar power generation facility in a target area where a power system including a plurality of solar power generation facilities is installed,
    Input means for obtaining information on the amount of solar radiation at a plurality of locations in the target area, and a plurality of areas for obtaining information on the amount of solar radiation for an estimated amount of solar radiation in a first small area for a small area obtained by dividing the target area into a plurality of areas. A solar radiation amount estimating means for estimating an estimated solar radiation amount in all the first small areas, and a temporal amount of the solar radiation quantity in the small area obtained by dividing the target area into a plurality of areas; Weather forecasting means for predicting future cloud movement in the target area based on the transient change, and output of the photovoltaic power generation equipment installed in the target area from the future cloud movement by the forecasting means. A solar power output prediction apparatus comprising output prediction means for predicting.
  2.  請求項1に記載の太陽光出力予測装置であって、
     前記入力手段が得る日射量の情報は、太陽光日射量計測手段で計測した日射量の情報であり、または太陽光発電設備の定格出力と実出力の比として求めた日射量の情報であることを特徴とする太陽光出力予測装置。
    The solar power output prediction device according to claim 1,
    The information on the amount of solar radiation obtained by the input means is information on the amount of solar radiation measured by the solar radiation amount measuring means, or information on the amount of solar radiation obtained as a ratio between the rated output and the actual output of the solar power generation facility. Solar power output prediction device characterized by
  3.  請求項1または請求項2に記載の太陽光出力予測装置であって、
     前記第1の小領域における推定日射量は、当該第1の小領域における代表点における推定日射量であることを特徴とする太陽光出力予測装置。
    It is a sunlight output prediction device according to claim 1 or 2,
    The estimated solar radiation amount in the first small region is an estimated solar radiation amount at a representative point in the first small region.
  4.  請求項1から請求項3のいずれか1項に記載の太陽光出力予測装置であって、
     前記天候予測手段は、雲の速さ、方向をもとに、将来の雲の動きを求めるために日射量の移流方程式を解くことを特徴とする太陽光出力予測装置。
    It is a sunlight output prediction device according to any one of claims 1 to 3,
    The weather forecasting means solves a solar radiation advection equation based on the speed and direction of the cloud to determine the future cloud movement.
  5.  請求項1から請求項4のいずれか1項に記載の太陽光出力予測装置を用いた電力系統制御装置であって、
     前記電力系統には電力系統の電圧を補償する電圧補償装置が設置されており、太陽光出力予測装置の出力を用いて前記電圧補償装置が制御され、前記太陽光発電設備の出力変動による電力系統の電圧変動を制御することを特徴とする電力系統制御装置。
    A power system control device using the solar power output prediction device according to any one of claims 1 to 4,
    The power system is provided with a voltage compensation device that compensates the voltage of the power system, the voltage compensation device is controlled using the output of the solar power prediction device, and the power system due to the output fluctuation of the solar power generation facility A power system control device that controls voltage fluctuations in the power system.
  6.  請求項1から請求項4のいずれか1項に記載の太陽光出力予測装置を用いた電力系統制御装置であって、
     前記電力系統には蓄電池などの出力補償装置が設置されており、太陽光出力予測装置の出力を用いて前記蓄電池などの出力補償装置が制御され、前記太陽光発電設備の出力変動による電力系統電圧の周波数変動を制御することを特徴とする電力系統制御装置。
    A power system control device using the solar power output prediction device according to any one of claims 1 to 4,
    An output compensation device such as a storage battery is installed in the power system, and the output compensation device such as the storage battery is controlled using the output of the solar power prediction device, and the power system voltage due to the output fluctuation of the solar power generation facility A power system control apparatus for controlling frequency fluctuations of the power system.
  7.  請求項1から請求項4のいずれか1項に記載の太陽光出力予測装置を用いた電力系統制御装置であって、
     前記電力系統に連系した水力発電、火力発電設備などの出力補償装置が設置されており、太陽光出力予測装置の出力を用いて前記電力系統に連系した水力発電、火力発電設備などの出力補償装置が制御され、前記太陽光発電設備の出力変動による電力系統電圧の周波数変動を制御することを特徴とする電力系統制御装置。
    A power system control device using the solar power output prediction device according to any one of claims 1 to 4,
    Output compensation devices such as hydroelectric power generation and thermal power generation facilities linked to the electric power system are installed, and outputs of hydroelectric power generation and thermal power generation facilities linked to the electric power system using the output of the solar power prediction device A power system control apparatus, wherein a compensation apparatus is controlled to control frequency fluctuation of the power system voltage due to output fluctuation of the photovoltaic power generation facility.
  8.  複数の太陽光発電設備を備えた電力系統が設置されている対象地域内における太陽光発電設備の出力を予測するための太陽光出力予測方法であって、
     前記対象地域における複数個所の日射量の情報を得、前記対象地域を複数領域に分割した小領域について、第1の小領域における推定日射量を前記日射量の情報が得られる複数の第2の小領域の日射量から推定し、全ての前記第1の小領域における推定日射量を推定し、前記対象地域を複数領域に分割した小領域における日射量の時間的な過渡変化をもとに、前記対象地域内の将来の雲の動きを予測し、将来の雲の動きから当該対象地域に設置された太陽光発電設備の出力を予測することを特徴とする太陽光出力予測方法。
    A solar power output prediction method for predicting the output of a solar power generation facility in a target area where a power system including a plurality of solar power generation facilities is installed,
    Information on the amount of solar radiation at a plurality of locations in the target area is obtained, and for a small area obtained by dividing the target area into a plurality of areas, the estimated amount of solar radiation in the first small area is obtained as a plurality of second information. Estimating from the amount of solar radiation in a small area, estimating the estimated amount of solar radiation in all the first small areas, based on the temporal transient change in the amount of solar radiation in the small area divided the target area into a plurality of areas, A solar output prediction method, wherein a future cloud movement in the target area is predicted, and an output of a photovoltaic power generation facility installed in the target area is predicted from the future cloud movement.
PCT/JP2016/068499 2016-06-22 2016-06-22 Solar light output prediction device, electric power system control device, and solar light output prediction method WO2017221343A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018523206A JP6641007B2 (en) 2016-06-22 2016-06-22 Solar output prediction device, power system control device, and solar output prediction method
PCT/JP2016/068499 WO2017221343A1 (en) 2016-06-22 2016-06-22 Solar light output prediction device, electric power system control device, and solar light output prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/068499 WO2017221343A1 (en) 2016-06-22 2016-06-22 Solar light output prediction device, electric power system control device, and solar light output prediction method

Publications (1)

Publication Number Publication Date
WO2017221343A1 true WO2017221343A1 (en) 2017-12-28

Family

ID=60784256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068499 WO2017221343A1 (en) 2016-06-22 2016-06-22 Solar light output prediction device, electric power system control device, and solar light output prediction method

Country Status (2)

Country Link
JP (1) JP6641007B2 (en)
WO (1) WO2017221343A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009075A (en) * 2019-07-01 2021-01-28 一般財団法人電力中央研究所 Solar radiation prediction device, solar radiation prediction method and solar radiation prediction program
CN112507793A (en) * 2020-11-05 2021-03-16 上海电力大学 Ultra-short-term photovoltaic power prediction method
KR20230034559A (en) * 2021-09-03 2023-03-10 경북대학교 산학협력단 Prediction system for solor power generation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113420872B (en) * 2021-08-24 2021-12-14 江苏智臻能源科技有限公司 Fine-grained photovoltaic load prediction method based on time convolution network

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10227871A (en) * 1997-02-13 1998-08-25 Nippon Telegr & Teleph Corp <Ntt> Two-dimensional precipitation forecast equipment
JP2001228262A (en) * 2000-02-17 2001-08-24 Mitsubishi Electric Corp Meteorological forecast assisting device
JP2008182017A (en) * 2007-01-24 2008-08-07 Meidensha Corp Control method of photovoltaic power generation system and power generation predicting apparatus of photovoltaic power generation system
JP2010186840A (en) * 2009-02-11 2010-08-26 Mitsubishi Electric Corp Photovoltaic generation system
JP2013246746A (en) * 2012-05-29 2013-12-09 Hitachi Ltd Photovoltaic power generation amount estimation system, estimation method and photovoltaic power generation system control system
JP2015138864A (en) * 2014-01-22 2015-07-30 株式会社日立製作所 Output estimation method and apparatus of photovoltaic power generator and electric power system monitoring apparatus using the same
JP2015138912A (en) * 2014-01-23 2015-07-30 大阪瓦斯株式会社 Photovoltaic power generation amount prediction system and weather forecast system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5600570B2 (en) * 2010-12-06 2014-10-01 株式会社日立製作所 Photovoltaic power generation prediction device, solar power generation amount prediction method, system voltage control device, system voltage control method
DE102011017694A1 (en) * 2011-04-28 2012-10-31 Siemens Aktiengesellschaft Method and device for determining a power output from a photovoltaic system
KR101597993B1 (en) * 2014-11-13 2016-02-29 현대중공업 주식회사 Energy storage system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10227871A (en) * 1997-02-13 1998-08-25 Nippon Telegr & Teleph Corp <Ntt> Two-dimensional precipitation forecast equipment
JP2001228262A (en) * 2000-02-17 2001-08-24 Mitsubishi Electric Corp Meteorological forecast assisting device
JP2008182017A (en) * 2007-01-24 2008-08-07 Meidensha Corp Control method of photovoltaic power generation system and power generation predicting apparatus of photovoltaic power generation system
JP2010186840A (en) * 2009-02-11 2010-08-26 Mitsubishi Electric Corp Photovoltaic generation system
JP2013246746A (en) * 2012-05-29 2013-12-09 Hitachi Ltd Photovoltaic power generation amount estimation system, estimation method and photovoltaic power generation system control system
JP2015138864A (en) * 2014-01-22 2015-07-30 株式会社日立製作所 Output estimation method and apparatus of photovoltaic power generator and electric power system monitoring apparatus using the same
JP2015138912A (en) * 2014-01-23 2015-07-30 大阪瓦斯株式会社 Photovoltaic power generation amount prediction system and weather forecast system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATSUYUKI TAKITANI: "Smart Grid to Kisho Joho", SMART GRID, vol. 55, no. 10, 15 July 2014 (2014-07-15), pages 24 - 28 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009075A (en) * 2019-07-01 2021-01-28 一般財団法人電力中央研究所 Solar radiation prediction device, solar radiation prediction method and solar radiation prediction program
JP7305462B2 (en) 2019-07-01 2023-07-10 一般財団法人電力中央研究所 Solar radiation forecasting device, solar radiation forecasting method and solar radiation forecasting program
CN112507793A (en) * 2020-11-05 2021-03-16 上海电力大学 Ultra-short-term photovoltaic power prediction method
CN112507793B (en) * 2020-11-05 2023-08-08 上海电力大学 Ultra-short term photovoltaic power prediction method
KR20230034559A (en) * 2021-09-03 2023-03-10 경북대학교 산학협력단 Prediction system for solor power generation
KR102584854B1 (en) * 2021-09-03 2023-10-13 경북대학교 산학협력단 Prediction system for solor power generation

Also Published As

Publication number Publication date
JPWO2017221343A1 (en) 2019-01-10
JP6641007B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
Alessandrini et al. An analog ensemble for short-term probabilistic solar power forecast
US9188701B2 (en) Power generation predicting apparatus and method thereof
JP5886407B1 (en) Prediction device
WO2017221343A1 (en) Solar light output prediction device, electric power system control device, and solar light output prediction method
Verdejo et al. Modelling uncertainties in electrical power systems with stochastic differential equations
Rácz et al. Grid management technology for the integration of renewable energy sources into the transmission system
Kato Prediction of photovoltaic power generation output and network operation
JP2015167439A (en) Power generation amount prediction system of photovoltaic power generator, and power generation amount prediction method
JP5989754B2 (en) Prediction device
Park et al. Spatial prediction of renewable energy resources for reinforcing and expanding power grids
WO2018003947A1 (en) Power generation system, power generation control device, power generation control method, and method for increasing interconnected power generation of power generation system
Gagliano et al. GIS-based decision support for solar photovoltaic planning in urban environment
Babazadeh et al. An hour ahead wind speed prediction by Kalman filter
JP6313498B1 (en) POWER GENERATION SYSTEM, GENERATION CONTROL DEVICE, GENERATION CONTROL METHOD, AND METHOD FOR ENLARGING INTERCONNECTED GENERATED POWER OF GENERATION SYSTEM
Kim et al. A probabilistic approach to potential estimation of renewable energy resources based on augmented spatial interpolation
Hummon et al. Variability of photovoltaic power in the state of Gujarat using high resolution solar data
Al-Jaafreh et al. The solar energy forecasting using lstm deep learning technique
CN105701556A (en) Photovoltaic power station super-short-time power prediction correcting method
Balog et al. Hourly forecast of solar radiation up to 48h with two runs of weather research forecast model over Italy
Hayes et al. Modelling of wind generation at all scales for transmission system analysis
WO2016146788A1 (en) System and method for predicting solar power generation
de Jongh et al. Spatio-temporal short term photovoltaic generation forecasting with uncertainty estimates using machine learning methods
Alhassan et al. Techno-economic and environmental estimation assessment of floating solar PV power generation on Akosombo dam reservoir in Ghana
JP2021009075A (en) Solar radiation prediction device, solar radiation prediction method and solar radiation prediction program
Zheng et al. Adjoint free four-dimensional variational data assimilation for a storm surge model of the German North Sea

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018523206

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906260

Country of ref document: EP

Kind code of ref document: A1