WO2018003947A1 - Power generation system, power generation control device, power generation control method, and method for increasing interconnected power generation of power generation system - Google Patents

Power generation system, power generation control device, power generation control method, and method for increasing interconnected power generation of power generation system Download PDF

Info

Publication number
WO2018003947A1
WO2018003947A1 PCT/JP2017/024036 JP2017024036W WO2018003947A1 WO 2018003947 A1 WO2018003947 A1 WO 2018003947A1 JP 2017024036 W JP2017024036 W JP 2017024036W WO 2018003947 A1 WO2018003947 A1 WO 2018003947A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
power
generation facility
generated
value
Prior art date
Application number
PCT/JP2017/024036
Other languages
French (fr)
Japanese (ja)
Inventor
和英 田中
高橋 雅也
祐吾 星平
昂 松尾
直樹 星野
Original Assignee
株式会社日立パワーソリューションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016131943A external-priority patent/JP6108510B1/en
Priority claimed from JP2016172384A external-priority patent/JP6105138B1/en
Priority claimed from JP2017053242A external-priority patent/JP6313498B1/en
Application filed by 株式会社日立パワーソリューションズ filed Critical 株式会社日立パワーソリューションズ
Publication of WO2018003947A1 publication Critical patent/WO2018003947A1/en
Priority to PH12019500218A priority Critical patent/PH12019500218A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the present invention relates to a power generation system including a plurality of types of power generation equipment, a power generation control device, a power generation control method, and a method for expanding interconnected generated power of the power generation system.
  • the electric power generated by a power generation device using renewable energy is linked to a commercial power system.
  • the maximum output power supplied by the power generation device in advance (hereinafter referred to as the grid connection capacity) Is defined).
  • the grid interconnection capacity is generally secured on the premise of maximum power transmission regardless of the type of power supply.
  • the maximum output and the rated output are used without distinction. In other words, in the above case, it can be said that the grid interconnection capacity is secured on the premise of rated power transmission.
  • So-called stable power sources such as thermal power generation facilities and biomass power generation facilities have a facility utilization rate of 60-80%.
  • the facility utilization rate is not high like a stable power source.
  • the power generation capacity of solar power generation facilities decreases when it is raining or at night, and the power generation capacity of wind power generation facilities decreases when the wind is weak. % (National average).
  • the secured grid interconnection capacity can be effectively utilized.
  • Patent Document 1 discloses an example of a power generation apparatus in which an element that generates power using sunlight is incorporated in the surface of a wing or a column of a wind power generator.
  • Patent Document 2 predicts wind power generation in the near future in a power generation system that is composed of a wind power generation device and a storage battery and is linked to a commercial power system, and charges and discharges the storage battery based on the predicted value. An example of controlling the amount is disclosed.
  • the second power generation facility is newly newly installed mainly in the already-connected first power generation facility, and the first power generation facility and the second power generation facility are newly installed at the same time. Assumed. In this specification, the description is mainly made on the assumption of the former, but the latter can be applied without any problem.
  • the present invention is not limited to the grid interconnection capacity, and any generated power set in advance may be used. It can be applied without any problems.
  • the power generation device disclosed in Patent Document 1 is a device capable of supplying power obtained by adding wind power generation power and solar power generation power, but controls power generation power of one or both power generation facilities.
  • the grid interconnection capacity will not be exceeded. That is, a specific example of how to control the generated power that fluctuates depending on weather conditions so as not to exceed the grid interconnection capacity is not described.
  • the object of the present invention is to newly introduce a second power generation facility to the already connected first power generation facility, and to transfer the combined generated power to the first power generation facility already connected.
  • An object of the present invention is to provide a power generation system, a power generation control device, a power generation control method, and a method for enlarging the power generated by a power generation system, with the grid interconnection capacity in the power generation facility as an upper limit. .
  • a power generation system, a power generation control device, a power generation control method, and a method for expanding the grid-generated power of the power generation system include: A first power generation facility that generates power from a first energy source, a second power generation facility that generates power from a second energy source, and a second power generation that controls the power generated by the second power generation facility A control device; and a power generation control device that supplies combined electric power generated by summing the power generated by the first power generation facility and the power generated by the second power generation facility to an electric power system.
  • the restriction command value is transmitted as an output control signal to the second power generation control device or the second power generation facility. Thereby, the generated power that does not exceed the grid interconnection capacity can be supplied to the power system. At this time, it is more effective if there is a monitoring device for monitoring the generated power in one or both of the first power generation facility and the second power generation facility.
  • a first power generation facility that generates power from a first energy source
  • a second power generation facility that generates power from a second energy source
  • a second power generation that controls the power generated by the second power generation facility
  • a power generation control device that supplies the combined generated power, which is a sum of the power generated by the first power generation facility and the power generated by the second power generation facility, to an electric power system.
  • the apparatus measures the generated power of the first power generation facility and the generated power of the second power generation facility, and the total generated power is the upper limit value set from the grid interconnection capacity or It is determined whether or not an arbitrarily given target value is exceeded, and when the upper limit value or the target value is exceeded, based on a power value obtained by subtracting the generated power of the first power generation facility from the upper limit value or the target value.
  • the second power generation facility Calculating a limit command value, and transmits the limit command value the calculated as the output control signal to the second power generation control device or the second power generation equipment. Thereby, the generated power that does not exceed the grid interconnection capacity can be supplied to the power system.
  • the power generation system comprises: a power storage facility that stores power in the power generation system; and a storage battery control device that controls charging / discharging of the power storage facility, wherein the power generation control device includes the power generated by the first power generation facility, It is determined whether or not the combined generated power generated by the total power generated by the two power generation facilities exceeds the upper limit value set arbitrarily from the grid interconnection capacity or the arbitrarily given target value, and the upper limit value or given arbitrarily If the target value is exceeded, the storage battery control device is instructed to store power in the power storage facility in excess of the upper limit value or the arbitrarily given target value.
  • the storage battery control device When the upper limit value or the arbitrarily given target value is not reached, the storage battery control device is allowed to discharge from the power storage facility an amount of power that does not reach the upper limit value or the arbitrarily given target value.
  • another power generation system, power generation control device, power generation control method, and interconnection power generation method according to the present invention have a function of selecting a power generation facility whose output is restricted in consideration of economy. Further, when the fluctuation of the generated power per unit time of the first power generation facility or the second power generation facility exceeds a specified value, the limit command value of one or both power generation facilities is set according to the weather condition. It has a function to make it variable by adding / subtracting / dividing with a coefficient. Furthermore, it has a function of weighting various data when the generated power of the first power generation facility is predicted.
  • the second power generation control device transmits a limit command value for the second power generation control device that controls the generated power of the second power generation facility as an output control signal at regular time intervals or at arbitrary time intervals. In the period until the next output control signal is received, the generated power of the second power generation facility is controlled in accordance with the limit command value received this time.
  • the rate of change in generated power per hour of the first power generation facility or the second power generation facility is set.
  • the first power generation facility or the second power generation facility is limited by applying an output limit to one or both of the first power generation facility or the second power generation facility.
  • the rate of change in generated power per hour of the power generation facility is controlled to a set value or less.
  • another operation method of the power generation system includes a first power generation facility that generates power using a first renewable energy source and a second power generation facility that generates power using a second renewable energy source.
  • a power generation system that supplies the combined power generated by adding the power generated by the first power generation facility and the power generated by the second power generation facility to a commercial power system via a substation.
  • the first power generation facility generates power according to a first renewable energy source that is an input thereof
  • the second power generation facility is limited according to a second renewable energy source that is an input thereof.
  • the limit command is based on the difference between the predicted value of the generated power of the first power generation facility and the upper limit value set from the grid interconnection capacity or the target value given arbitrarily.
  • the synthetic generation power not to exceed the upper limit value or target value is set from the system interconnection capacity. Since the prediction side and the restriction side are separated, the prediction can be performed correctly without mutual interference.
  • the present invention by optimizing the ratio of the amount of the second power generation facility that can be introduced to the first power generation facility, it is possible to reduce the loss related to the output limitation of the power generation facility.
  • the system its operation method, power generation control device, power generation control method, and interconnected power generation method, it is possible to supply combined power that does not exceed the grid connection capacity to the power system.
  • the power generation control device By realizing these, it is possible to make a power plant that does not impose economic pressure.
  • FIG. The figure which showed the example of the time transition of the generated electric power when the electric power generation system 10 which concerns on Example 1 is not provided with the function which adjusts the synthetic
  • FIG. The figure which showed the example of the control procedure which the electric power generation calculating part 17 and the wind power generation control apparatus 18 perform in the electric power generation system 10 which concerns on Example 1.
  • FIG. The figure which showed the example of the time transition of the wind power generation electric power generated according to the predicted value of solar power generation electric power, and synthetic
  • capacitance and an upper limit are set the same.
  • FIG. The figure which showed the example of the control procedure which the storage battery control apparatus 23 performs in the electric power generation system 10 which concerns on Example 3 of this invention.
  • FIG. 15 The figure which shows the example of a prediction method from the average value of the generated electric power of the solar power generation equipment 11.
  • Example 1 in order to prevent the combined generated power of the first power generation facility and the second power generation facility from exceeding the grid interconnection capacity, the wind power generation facility is based on the predicted value of the generated power of the solar power generation facility.
  • a power generation control device that limits the output of the power will be described.
  • a power generation control device that limits the generated power of the wind power generation facility based on the current value of the generated power of the solar power generation facility will be described.
  • a wind power generation control device that adjusts interconnection power as the entire power generation system using a power storage facility will be described.
  • Example 4 will specifically describe the prediction method.
  • Example 5 describes another example in practicing the present invention.
  • symbol is attached
  • the grid interconnection capacity of the power generation facility is set according to the maximum power that can be supplied to the interconnection point. For example, only the photovoltaic power generation equipment that is already in operation has a grid interconnection capacity of 10,000 kW in a 10,000 kW maximum (rated) power system.
  • the actual generated power with respect to the grid interconnection capacity is about 15% for solar power generation and about 25% for wind power generation facilities (both national average). That is, in the case of photovoltaic power generation or wind power generation, the secured grid interconnection capacity is not effectively utilized.
  • the equipment utilization rate can be increased from about 15% to 30-40% or more. This is because photovoltaic power generation is small during nighttime and rainy weather, while wind power generation can generate power even when a certain amount of wind is blowing even during nighttime or rainy weather.
  • the power generation system of the present invention there is a constraint that the combined generated power that is the sum of the generated power of the solar power generation facility and the generated power of the wind power generation facility cannot exceed the grid interconnection capacity. For this reason, it is necessary to provide some kind of control function for preventing the excess and to control by an appropriate method.
  • the generated power of the photovoltaic power generation facility is operated without restriction, and thus the generated power is limited by the wind power generation facility.
  • the cause of the excess was when the generated power of the solar power generation facility or the wind power generation facility changed suddenly. Specifically, there are a case where the sun appears through the clouds and a case where the sun changes from a low wind speed to a high wind speed.
  • the present invention is characterized in that even if such an event occurs, the combined generated power does not exceed the grid interconnection capacity. To achieve this, the ratio of wind power generation equipment to solar power generation equipment should be appropriate, and the combined generated power of the solar power generation equipment and wind power generation equipment should be set below the grid interconnection capacity by control, etc. It is necessary to take countermeasures.
  • the power generation power of the wind power generation equipment is actually set to the set value. It takes about 30 to 60 seconds to complete. For this reason, even if the ratio of the wind power generation equipment to the solar power generation equipment is made appropriate, the grid interconnection capacity may be instantaneously exceeded. Considering this point, it is important to set the ratio of the wind power generation equipment to the solar power generation equipment.
  • the upper limit value of the total generated power of the solar power generation facility and the wind power generation facility is 98% of the grid interconnection capacity.
  • the grid interconnection capacity is no longer exceeded.
  • the suitable ratio to the grid interconnection capacity varies. In other words, it varies depending on the scale of the power generation facility.
  • the upper limit value of the combined generated power is set to 98% of the grid interconnection capacity, but a suitable ratio (set value) to the grid interconnection capacity varies depending on the overall system configuration, wind turbine performance, and followability. Therefore, the numerical value is not limited.
  • the output of the solar power generation facility is always read, and the average value, maximum value, minimum value, intermediate value, instantaneous value, etc. at any time from the read value is used for wind power generation.
  • the power generation output command value of the facility is calculated, the value is transmitted to one or a plurality of wind turbines, and the output of the wind power generation facility is limited based on this command.
  • Wind turbine output limits are individually controlled by pitch control control (hereinafter referred to as pitch control) that adjusts the angle of the wind turbine blades (hereinafter referred to as blades), wind turbine excitation voltage control, and power conditioner control according to the output limit command value. Adjust the wind turbine output. It is also effective to perform feedback control with a period of about 10 seconds while monitoring the output of the windmill that sent the command, comparing the windmill command value with the actual windmill output, and determining each windmill command value. is there.
  • the maximum output of wind power generation facilities relative to the maximum output of solar power generation facilities depends on the utilization rate and operating rate of the grid interconnection capacity so far, as well as local solar data and wind conditions. Depends on equipment performance. For example, in a power generation system using renewable energy, the facility utilization rate varies depending on the time. By setting the maximum output of the wind power generation facility based on the period when the facility utilization rate of the solar power generation facility is high (May), it is possible to construct a facility with a low output limit of the wind power generation facility. On the other hand, if the maximum output of the wind power generation facility is determined based on the period when the facility utilization rate of the solar power generation facility is low (January), a power generation system with a high facility utilization rate can be provided. In addition, a system that supplies a large amount of power to the commercial power system at a time when the amount of power consumption is considered to be large, such as in August, is in the public interest.
  • the facility utilization rate varies depending on the region.
  • the solar power generation equipment to be applied has a maximum output of 1,000 kW or more, that is, a so-called mega solar scale. This is because the amount of power generation to reach the grid interconnection capacity is large, and it is easy to achieve the effect of expansion of the grid generated power.
  • the applied wind power generation equipment is preferably 40% to 80% of the maximum output of the solar power generation equipment. In this case, it is possible to minimize the output limit of the wind power generation facility while increasing the generated power.
  • This ratio can also be said to be a suitable ratio for the combined generated power of the solar power generation facility and the wind power generation facility not to exceed the grid interconnection capacity. However, since this ratio also varies depending on the region, the numerical value is not limited. Further, even when the power generation facility is overloaded, it can be operated without any problems by applying the present invention in consideration of the grid interconnection capacity.
  • the present invention is a power generation system in which the combined power generation output of the solar power generation facility and the wind power generation facility exceeds or is equivalent to the generated power (system interconnection capacity) that can be supplied to the interconnection point.
  • a power generation control device that limits the output of the wind power generation facility based on the current value or the predicted value of the generated power of the power generation facility is provided.
  • the power generation system includes a power storage facility that stores power, and a storage battery control device that controls charging and discharging of the power storage facility,
  • the power generation control device is configured such that the combined power generated by summing the power generated by the first power generation facility and the power generated by the second power generation facility is an upper limit value set from the grid interconnection capacity or a target value given arbitrarily.
  • the storage battery control device causes the power storage facility to store the electric power exceeding the upper limit value or the arbitrarily given target value. Reduce the power supplied to the power system with the upper limit value or the target value given arbitrarily as the maximum value.
  • the storage battery control device When the combined power generated by summing the power generated by the first power generation facility and the power generated by the second power generation facility does not reach the upper limit value or the arbitrarily given target value, Command to discharge power from the power storage facility for the amount not reaching the upper limit value or arbitrarily given target value, and increase the power supplied to the power system with the upper limit value or arbitrarily given target value as the maximum value, A charge / discharge command is transmitted to the storage battery control device as an output control signal.
  • the first power generation facility is either a solar power generation facility using sunlight as an energy source or a wind power generation facility using wind power as an energy source
  • the second power generation facility is a wind power generation facility or solar power. It is a photovoltaic power generation facility.
  • the limit command value of one or both power generation facilities is a coefficient corresponding to the weather condition It has a function to make it variable by adding / subtracting / dividing with.
  • the average value and the maximum value within at least the predetermined period with respect to the past measured value of the generated power of the first power generation facility determined within the predetermined period A plurality of values including at least one of a minimum value, an intermediate value, and an instantaneous value, and a value selected according to the meteorological condition at that time from the obtained values is predicted for the generated power of the first power generation facility Use as a value.
  • a limit command value for the second power generation control device that controls the generated power of the second power generation facility is transmitted as an output control signal at regular time intervals or at arbitrary time intervals, and the second power generation control device During the period until the output control signal is received, the generated power of the second power generation facility is controlled in accordance with the limit command value received this time.
  • output restriction is applied to one or both of the first power generation facility and the second power generation facility.
  • the rate of change in generated power per hour of the first power generation facility or the second power generation facility is controlled to be equal to or less than the set value.
  • the first power generation facility includes a first power generation facility that generates electric power from the first renewable energy source and a second power generation facility that generates electric power from the second renewable energy source. Supply the combined power generated by adding the power and the power generated by the second power generation facility to the commercial power system via the substation, The first power generation facility generates power according to the first renewable energy source that is the input, and the second power generation facility generates power within the limit command value range according to the second renewable energy source that is the input.
  • the limit command value is set according to the difference between the predicted value of the generated power of the first power generation facility and the upper limit value set from the grid interconnection capacity or the target value given arbitrarily. As a result, the combined generated power is prevented from exceeding the upper limit value or arbitrarily given target value set from the grid interconnection capacity.
  • Example 1 a power generation control device that limits the output of a wind power generation facility based on a predicted value of the generated power of the solar power generation facility will be described with reference to FIGS. 1 to 7.
  • FIG. 1 is a diagram illustrating an example of a configuration of a power generation system 10 according to Embodiment 1 of the present invention.
  • the power main circuit configuration of the power generation system 10 to which the present invention is applied includes a solar power generation facility 11 and a wind power generation facility 13, and the combined generated power is supplied to a commercial power system 21 via a connection point 19 and a substation 20. It is connected.
  • the power transmission line from the solar power generation facility 11 and the power transmission line from the wind power generation facility 13 are connected to the same interconnection point 19.
  • the solar power generation equipment 11 and the wind power generation equipment 13 are arranged at a distance in the vicinity (within a few km to about a few tens km) because of the characteristic of being connected to the same interconnection point 19.
  • the connection point 19 may be configured by a plurality of facilities (a plurality of wind power generators or the like).
  • one of the solar power generation equipment 11 and the wind power generation equipment 13 is an existing equipment, and the other is a new equipment.
  • the maximum output power (system interconnection capacity) supplied by the power generation system 10 determined in advance with the commercial power system 21 is not changed, and must be observed after the additional installation of the power generation facilities.
  • an overpower detector in the power generation system 10 it is preferable to install an overpower detector in the power generation system 10 so as not to exceed the grid interconnection capacity.
  • a thick solid line with an arrow represents a power line and a direction in which power flows
  • a thin solid line with an arrow represents a control or information transmission line and its transmission direction.
  • an inverter, a transformer, and the like that convert DC power into AC power are provided as appropriate, but illustration thereof is omitted here.
  • the solar power generation panel used in the solar power generation facility 11 is composed of a polycrystalline silicon type power generation element, a single crystal silicon type power generation element, a thin film type power generation element, and the like, but the types of elements are particularly limited. Not what you want.
  • the power generation control device 15 controls the total power generation amount by the solar power generation facility 11 and the wind power generation facility 13 to be less than the grid interconnection capacity. For this reason, the solar power generation power prediction unit 16 and the storage unit 23 are provided in the generated power calculation unit 17 portion in the power generation control device 15.
  • the photovoltaic power generation prediction unit 16 according to the first embodiment is based on external information acquired from the weather station 22 every predetermined time (for example, 30 minutes) or measurement information of the power system for a predetermined time from the present time. The amount of solar radiation in the meantime is predicted, and the generated power of the photovoltaic power generation facility 11 is predicted based on the prediction result.
  • the solar power generation power prediction unit 16 transmits an output value obtained by subtracting the predicted power generation power of the solar power generation facility 11 from the grid interconnection capacity to the wind power generation control device 18 as a wind power generation power control command.
  • the wind power generation control device 18 receives this wind power generation power control command, it instructs that the generated power of the wind power generation facility 13 does not exceed this wind power generation power control command until the next wind power generation power control command is received. To do.
  • the wind power generation facility 13 can suppress the generated power within the wind power generation control command by blade pitch control or the like even when the generated power exceeds the wind power control command. it can. Therefore, the power generation control device 15 can supply the commercial power system 21 with an output that does not exceed the grid interconnection capacity.
  • Various methods can be used as a method for predicting the photovoltaic power generation in the photovoltaic power generation prediction unit 16. These are, for example, external information about the weather acquired from the weather station 22 or measurement information of the power system.
  • external information about weather is illustrated, a cloud image by a weather satellite, for example, a solar radiation amount prediction using a cloud image by a weather satellite, a solar radiation amount prediction based on a weather forecast, and past power generation data by the solar power generation facility 11 are obtained. Any of solar radiation amount prediction used, prediction combining these, and pattern matching prediction may be used.
  • one or more data selected from atmospheric pressure, temperature, precipitation, relative humidity, wind speed, and the amount of change over time are selected. Use in combination is effective in improving prediction accuracy.
  • a specific prediction method from the measurement information of the power system will be described later in the fourth embodiment.
  • the meteorological station 22 here refers to an observation site that provides meteorological data observed at a meteorological satellite, a meteorological observatory, a weather station, and other meteorological observation points.
  • the weather station 22 may be provided independently in the vicinity of the solar power generation facility 11.
  • data such as the amount of solar radiation, atmospheric pressure, temperature, precipitation, relative humidity, and wind speed observed in the vicinity of the photovoltaic power generation facility 11 can be used.
  • the prediction accuracy of photovoltaic power can be improved. Needless to say, optimizing the installation location in advance when installing the unique weather station 22 is effective in improving the prediction accuracy of the photovoltaic power generation.
  • the unique weather station 22 referred to here may be equipped with a system for obtaining meteorological satellite data, a fish-eye camera for taking a sky photo, and the like in addition to the weather observation equipment. Or you may be comprised only with other apparatuses, without providing a weather observation apparatus. With weather satellite photographs and fish-eye camera images, it is possible to obtain an image that directly represents the position of the sun and clouds in the entire sky. Predict with high accuracy.
  • the power generation control device 15 uses various data obtained from the weather station 22, particularly data used for prediction in the photovoltaic power generation prediction unit 16, date and time, prediction result, actual generated power, etc.
  • a storage unit 23 is provided for storing in association with each other.
  • the photovoltaic power generation prediction unit 16 predicts the result of the prediction under the same weather condition at a similar date and time in the past at the time of prediction of the subsequent photovoltaic power generation.
  • the generated power can be used.
  • the photovoltaic power generation prediction unit 16 can correct the predicted value of the photovoltaic power generation predicted at that time in the light of the past actual value or its statistical value, thereby improving the prediction accuracy. Is planned.
  • any of the prediction methods described above it is necessary to take into account that the weather observation data and the prediction data of photovoltaic power generation always have errors. Then, when the error tendency or correlation of these data is known, it is possible to make corrections by predicting and taking into account errors, such as applying a bias correction method.
  • the correction of the predicted value in consideration of such an error not only improves the accuracy of the predicted value of the solar power generation power, but also makes it possible to set a more appropriate wind power generation control command.
  • the power generation control device 15 is provided with an information receiving unit and a storage unit that perform prediction of the generated power of the solar power generation facility 11 outside the system and acquire information.
  • the wind power generation control device 18 can also perform output control based on actual generated power measured by a wattmeter provided at a connection point or the like, in addition to the generated power prediction information of the solar power generation facility 11. In particular, it is assumed that there is an error in the weather observation data or that the actual photovoltaic power exceeds the prediction.
  • the wind power generation control device 18 It is preferable to provide a function for limiting the output of the wind power generation facility 13.
  • the solar power generation power prediction unit 16 can predict solar power generation with high accuracy, and the wind power generation control device 18 includes high-precision wind power generation power control. A command is sent. Accordingly, the wind power generation facility 13 does not generate an output larger than the wind power generation power control command. Therefore, since the output exceeding the grid connection capacity set in advance is not supplied to the commercial power system 21, expansion of the grid generated power of the power generation system 10 is realized.
  • FIG. 2 shows the relationship between the maximum output of the wind power generation facility with respect to the maximum output of the solar power generation facility 11 and the output limit amount of the windmill.
  • the simulation used this time was a solar power generation facility 11 of several tens of MW in B city in A prefecture and a wind power generation facility 13 installed in C city located in the vicinity of B city in A prefecture. This is a summary of how much wind turbine output limit is required when 13 is changed at various ratios.
  • the wind turbine output control is performed when the combined output of the existing solar power generation facility 11 and the new wind power generation facility 13 exceeds the maximum output secured as the solar power generation facility 11. It is. Data sampling was performed at 1 second intervals.
  • the maximum output of the wind power generation facility 13 is set to 60 or less. be able to.
  • the allowable value of the output limit amount of the wind turbine is set to 3% or less, the wind power generation facility 13 can be increased to 90.
  • a prefecture B city and C city considering the business feasibility, if the maximum output of the solar power generation equipment 11 is set to 100, there is no problem if the maximum output of the wind power generation equipment 13 is set to at least 50. It is revealed.
  • Table 1 is a table showing an example of the effect of the power generation system 10 according to the second embodiment.
  • Table 1 shows the facility utilization rate of only the solar power generation facility 11, the facility utilization rate of only the wind power generation facility 13, and the facility utilization rate of the power generation system 10 that combines solar power generation and wind power generation, by month for one year. An evaluated example is shown.
  • the photovoltaic power is calculated by converting the intensity measured with the pyranometer, and the wind speed measured with the wind gauge is corrected with the height of the wind turbine and corrected with the power curve, and the corrected wind speed is converted. And asked for wind power.
  • These solar radiation and wind speed measurement points are preliminarily determined in advance in domestic areas where the complementary relationship between solar power generation and wind power generation becomes large, in other words, the trend in the utilization factor of solar power generation and wind power generation has a negative correlation. Selected.
  • the facility utilization rate of power generation facilities using only solar power generation is only about 20-24% from May to September, and the facility utilization rate of power generation facilities using only wind power generation is It is about 30 to 35 from October to February.
  • the equipment utilization rate exceeds 39% throughout the year.
  • the equipment usage rate of this power generation system 10 is smaller than the total value of the equipment usage rate of the power generation equipment only for solar power generation and the equipment usage rate of the power generation equipment only for wind power generation. This is nothing but that which indicates that in the power generation system 10, the system combined generated power may exceed a preset grid interconnection capacity.
  • the combination of the solar power generation equipment 11 and the wind power generation equipment 13 is effective at a point where the equipment utilization factor of each equipment has a negative correlation, particularly in summer and winter as described above.
  • FIG. 3 is a diagram illustrating an example of a time transition of generated power for 3 days generated by the power generation system 10 according to the first embodiment of the present invention.
  • the horizontal axis of the graph represents time (hour), and the vertical axis represents generated power (MW).
  • subjected represents solar power generation electric power
  • region 32 to which the diagonal line was attached represents wind power generation electric power.
  • 20 MW which is the maximum output of the photovoltaic power generation equipment 11, is set as the grid interconnection capacity.
  • the power generation control device 15 adjusts the combined generated power of the solar power (region 31) and the wind power (region 32) so as not to exceed the grid connection capacity of 20 MW. Yes.
  • FIG. 4 shows the generated power time when the power generation system 10 according to the second embodiment of the present invention does not have a function of adjusting the combined generated power of the solar power and the wind power to the grid interconnection capacity or less. It is the figure which showed the example of transition.
  • the output restriction area 33 with a mesh appears after noon on the first day and the second day.
  • the power generation system 10 generates an output that exceeds the grid interconnection capacity of 20 MW. If an output exceeding the grid interconnection capacity is transmitted to the commercial power system 20, heat generated in the transmission line is affected, and there is a risk of deterioration of the substation equipment or the transmission line.
  • the region 33 does not appear because the generated power is controlled not to exceed the grid interconnection capacity of 20 MW by the pitch control of the windmill.
  • the electric power represented by this area 33 means a limited loss. Therefore, it is desirable to make the portion corresponding to the region 33 as small as possible.
  • FIG. 5 is a diagram illustrating an example of a control procedure executed by the generated power calculation unit 17 and the wind power generation control device 18 in the power generation system 10 according to the first embodiment of the present invention.
  • the generated power calculation unit 17 first measures the photovoltaic power generation value Ps generated by the photovoltaic power generation facility 11 via the wattmeter 12 (step S11).
  • the generated power calculation unit 17 calculates the predicted photovoltaic power generation value Pss via the photovoltaic power generation power prediction unit 16 (step S12), and further calculates the wind power generation power control command Pwr (step S13). .
  • the wind power generation power control command Pwr is a value obtained by subtracting the photovoltaic power generation predicted value Pss calculated in step S12 from the grid connection capacity Pc preset in the power generation system 10. Subsequently, the generated power calculation unit 17 transmits the wind power generation power control command Pwr calculated in step S13 to the wind power generation control device 18 (step S14).
  • the power generation control device 15 performs commercial power by combining the solar power generation power value Ps output from the solar power generation facility 11 and the wind power generation power value Pw output from the wind power generation facility 13 while executing the above control procedure. Supply to system 20. At this time, the output supplied to the commercial power system 20 is prevented from exceeding the grid interconnection capacity Pc because the following control is performed by the wind power generation control device 18.
  • the wind power generation control device 18 When the wind power generation control device 18 receives the wind power generation power control command Pwr transmitted from the generated power calculation unit 17 (step S21), the wind power generation control device Pwr is set to the output maximum value Pwx of the wind power generation facility 13. (Step S22). Subsequently, the wind power generation control device 18 measures the wind power generation value Pw output from the wind power generation facility 13 via the power meter 14 (step S23), and the wind power generation power value Pw is the maximum output of the wind power generation facility 13. It is determined whether or not the value is larger than the value Pwx (step S24).
  • step S24 when the wind power generation value Pw is larger than the maximum output value Pwx of the wind power generation facility 13 (Yes in step S24), the wind power generation control device 18 does not exceed the maximum output value Pwx. Thus, the pitch control of the blade is executed (step S25). Conversely, when the wind power generation value Pw is not larger than the maximum output value Pwx of the wind power generation facility 13 (No in step S24), the blade pitch control is stopped (step S26).
  • step S11 to step S14 by the generated power calculation unit 17 is executed at a predetermined time period for predicting the photovoltaic power generation (for example, every 10 minutes).
  • the procedure of step S21 and step S22 by the wind power generation control device 18 is executed every time a wind power generation power control command is received.
  • the procedure from step S23 to step S26 is always executed, but the execution cycle is actually limited by the response speed of the pitch control of the blade.
  • the wind power generation power value of the wind power generation facility 13 does not exceed the output maximum value Pwx set in step S22, that is, the wind power generation power control command Pwr. Become. Further, since the wind power generation power control command Pwr is calculated as a value obtained by subtracting the solar power generation power predicted value Pss from the grid interconnection capacity Pc in step S13, the solar power generation power predicted value Pss and the wind power generation power value Pw are calculated. Is a value not more than the grid interconnection capacity Pc. Therefore, if a margin of prediction error is expected in the photovoltaic power generation predicted value Pss, the power generation system 10 according to the present embodiment prevents an output exceeding the grid interconnection capacity Pc from being supplied to the commercial power system 20. can do.
  • FIG. 6 is a diagram showing an example of the time transition of wind power generation power and combined power generation generated according to the predicted value of solar power generation power.
  • the upper graph represents the time transition of the photovoltaic power generation
  • the middle graph represents the time transition of the wind power generation
  • the lower graph sums the photovoltaic power generation and the wind power generation. It represents the time transition of the combined generated power.
  • the grid interconnection capacity Pc set in the power generation system 10 in the example of FIG. 6 is assumed to be 20 MW, which is the maximum output of the solar power generation equipment 11, and the grid interconnection capacity Pc is represented by a solid line 52 in each graph. It has been.
  • a broken line 53 included in a region 51 that is circled in the future from now on represents the predicted photovoltaic power generation value Pss predicted by the photovoltaic power generation prediction unit 16.
  • a photovoltaic power generation predicted value Pss for example, a value up to one hour ahead is calculated by the photovoltaic power generation prediction unit 16 and is appropriately corrected, for example, every 10 minutes.
  • the wind power generation power control command Pwr is obtained in consideration of a margin of prediction error in the maximum value for 10 minutes of the predicted photovoltaic power generation value Pss corrected every 10 minutes. Accordingly, in FIG. 6, the wind power generation power control command Pwr is represented by a difference value 55 obtained by subtracting the value of the broken staircase line 54 from the value of the solid line 52. The wind power generation control command Pwr thus determined is transmitted to the wind power generation control device 18 every 10 minutes, for example.
  • Example 1 the wind power generation power value Pw cannot exceed this wind power generation power control command Pwr. If it exceeds, the output is limited by the pitch control of the blade. Therefore, the wind power generation power value Pw (actual value after the present) represented by the broken line 57 in the region 56 circled in the future from the present in the middle graph of FIG. 6 is small so as to correspond to the wind power generation power control command Pwr. It has become. As a result, in this embodiment, as indicated by the broken line 58 in the lower graph of FIG. 6, the combined generated power combining the solar power generation power value Ps and the wind power generation power value Pw exceeds the grid interconnection capacity Pc. Will disappear.
  • the prediction accuracy improves as the time interval at which the photovoltaic power prediction unit 16 predicts the photovoltaic power is shorter, and the output limit is controlled by blade pitch control. Becomes smaller. For example, in the case of predicting photovoltaic power generation 5 minutes ahead, the prediction error (difference between the prediction value and the actual measurement value) is smaller by 10% or more on average than the prediction 1 hour ahead, and the prediction accuracy is improved. It has been confirmed.
  • the wind power generation power control command Pwr (reference numeral 55 in FIG. 6) is obtained along the solar power generation power predicted value Pss predicted by the solar power generation power prediction unit 16, and the obtained wind power generation power control command Pwr is determined as the wind power.
  • the response time of wind turbine blade control has been shortened, and at present, the response time is expressed in seconds. Therefore, the time interval at which the wind power generation power control command Pwr is transmitted to the wind power generation control device 18 can be shortened up to this response time of wind turbine blade control.
  • Example 1 the total output of the solar power generation power value Ps and the wind power generation power value Pw, that is, the combined generated power supplied to the commercial power system 21 does not exceed the grid interconnection capacity Pc. Moreover, in Example 1, since the maximum output of the solar power generation equipment 11 is defined as the grid connection capacity Pc, the solar power generation equipment 11 can be used to the maximum extent. Therefore, the equipment utilization rate as the power generation system 10 is improved.
  • FIG. 7 is a diagram showing an example of steps when adding an existing solar power generation facility and a newly installed wind power generation facility according to the present invention.
  • a new wind power generation facility will be constructed in the vicinity of an existing solar power generation facility with a capacity exceeding 1,000 kW.
  • the power transmission line connected to the existing solar power generation facility and the power transmission line connected to the new wind power generation facility are connected to the same interconnection point. Electric power is supplied to the commercial power system 21 from the interconnection point via the substation 20.
  • the maximum output ratio of the wind power generation facility 13 to the maximum output of the solar power generation facility 11 using a power generation control device that limits the output of the wind power generation facility based on the predicted value of the generated power of the solar power generation facility. was changed from 30% to 100%, and the number of times the combined power generated by the solar power generation equipment 11 and the wind power generation equipment 13 exceeded the grid interconnection capacity was compared. The results are shown in Table 2. The measurement is performed in milliseconds, and it is counted when it is confirmed that it has been exceeded even for a moment.
  • Example 2 a power generation control device that limits the output of the wind power generation facility based on the current value of the generated power of the solar power generation facility will be described with reference to FIGS. 8, 9A, and 9B.
  • FIG. 8 shows a configuration example of the power generation system 10 according to the second embodiment that is connected to the commercial power system 21 and operated. Note that items that have been described in the first embodiment, such as the main circuit configuration, are duplicated descriptions and will not be described.
  • the power generation control device 15 controls the combined generated power of the solar power generation facility 11 and the wind power generation facility 13 so as not to exceed the grid interconnection capacity. For this reason, the power generation control device 15 in FIG. 8 uses the power meter 12 that detects the power generation amount of the solar power generation facility 11 and the power meter 14 that detects the power generation amount of the wind power generation facility 13 to generate the power generation amount of each power generation facility. Is detected and entered.
  • the power generation control device 15 includes a generated power calculation unit 17 and a wind power generation control device 18.
  • a photovoltaic power generation control device may be provided to control the output of the photovoltaic power generation facility 11 in accordance with the output of the generated power calculation unit 17.
  • the amount of power generated by the solar power generation facility 11 and the amount of power generated by the wind power generation facility 13 are detected, and the combined power generation is calculated, and final control is performed so that this does not exceed the grid interconnection capacity.
  • the solar power generation equipment 11 and / or the wind power generation equipment 13 which are the ends are controlled.
  • the power generation control device 15 does not exceed the grid interconnection capacity for the commercial power grid 21 set in advance for the power generated by the solar power generation facility 11 and the wind power generation facility 13.
  • the power generation control device 15 is provided with a generated power calculation unit 17 in order to appropriately perform this adjustment.
  • the wind power generation facility 13 has a function of adjusting the generated power by controlling (pitch control) the angle of the wind turbine blades (hereinafter referred to as blades) in accordance with instructions from the wind power generation control device 18.
  • This adjustment function of generated power is an output limiting function of wind power generation.
  • pitch control there is a method of adjusting the generated power by reducing the number of rotations of the windmill.
  • the ratio between the solar power generation facility 11 and the wind power generation facility 13 can be set as appropriate depending on the facility utilization rate in the case of only the solar power generation facility 11, the local wind conditions, and the like.
  • the maximum output of the solar power generation facility 11 is set to 100
  • the maximum output of the wind power generation facility 13 is preferably set to 40 to 80. I understood it.
  • the electric grid-generated power is increased, the generated power is increased by at least 20% compared to the case of only solar power generation, and the output limit amount of the wind turbine of the wind power generation facility 13 is increased by 5%. The following can be kept low.
  • the output limit of this windmill is a loss that limits the amount of power that can be generated and sold, the loss greatly affects the business performance.
  • the maximum output of the solar power generation equipment 11 is set to 100 as described above, it is not necessary to set the maximum output of the wind power generation equipment 13 to 40 to 80. There is no problem even if the maximum output of the power generation facility 13 is further increased.
  • increasing the maximum output of the photovoltaic power generation facility 11 due to the number (capacity) effect tends to reduce the unit price of various devices and the like. Therefore, the larger the maximum output of the original solar power generation facility 11 is, the larger the output is.
  • the threshold value of the maximum output of the wind power generation facility 13 may be large.
  • the maximum output of the solar power generation facility 13 is not increased to 40 to 80 but increased to a maximum output exceeding 80. There is no problem. However, if there are many operations that limit the generated power by limiting the output of wind power generation, the failure rate tends to increase accordingly.
  • Example 2 is suitable for an area where wind power generation tends to increase (negative correlation) when the amount of solar radiation (power generation by solar power generation) decreases.
  • the generated power calculation unit 17 adjusts the power generated by the solar power generation facility 11 and the wind power generation facility 13 so as not to exceed the grid connection capacity for the commercial power system 21 set in advance. , To supply to the commercial power system 21. Further, the wind power generation facility 13 has a function of controlling the angle of the blade (pitch control) in accordance with an instruction from the wind power generation control device 18 and adjusting the generated power.
  • the generated power may be adjusted in the same manner for all windmills, or the generated power may be adjusted only for one or a part of the windmills. Good.
  • the generated power of each windmill varies depending on the installation conditions and the like. Therefore, pitch control is performed only on windmills with a large amount of power generation to limit the generated power, and the power generation of the entire wind power generation facility 13 is performed. The power can be adjusted.
  • FIG. 9A shows that the grid connection capacity is 100% when the upper limit value of the combined generated power of the solar power generation equipment 11 and the wind power generation equipment 13 by the power generation system shown in FIG. It is a figure which shows the result of having calculated the excess with respect to a grid connection capacity
  • FIG. 9B shows that the combined generation power exceeds the grid interconnection capacity when the upper limit is set to 100% (same as the grid interconnection capacity) when the grid interconnection capacity is 100% as in the past. This is a comparison of minutes.
  • the maximum output of the solar power generation facility 11 is 100
  • the maximum output of the wind power generation facility 13 is set to 65.
  • FIG. 9A there were some time zones where the upper limit of 98% was exceeded, but the grid interconnection capacity was not exceeded, and it was found that the maximum was 99% of the grid interconnection capacity.
  • FIG. 9B it has been found that the grid interconnection capacity is exceeded when the output changes suddenly or when the wind turbine output is frequently limited. From the above results, it is desirable to set the upper limit value of the generated power calculation unit 17 in consideration of a margin of several percent instead of 100% when the grid interconnection capacity is 100%. .
  • Table 3 shows the combined generation of the solar power generation equipment 11 and the wind power generation equipment 13 when the maximum output ratio of the wind power generation equipment 13 to the maximum output of the solar power generation equipment 11 is changed from 30% to 100%. This is a comparison of how many times the power exceeded the grid interconnection capacity. The measurement period was one year. 9A and 9B is set to 100% with respect to the grid interconnection capacity. Furthermore, the measurement is performed in milliseconds, and when it is confirmed that it has been exceeded even for a moment, it is counted.
  • Example 2 when the photovoltaic power generation equipment 11 is set to 100%, if the introduction ratio of the wind power generation equipment 13 is 70% or less, the grid interconnection capacity is never exceeded. did. However, it was also found that when the introduction ratio is 30% or less, it is difficult to secure profits equivalent to the introduction cost of wind power generation equipment as revenue from selling wind power.
  • this introduction ratio varies depending on various conditions, and is not necessarily limited. What is important is that it does not exceed the grid interconnection capacity even if there is a sudden change in the output generated by the solar power generation equipment 11 or the wind power generation equipment 13 or the output limitation of the windmill, which causes the grid interconnection capacity to be exceeded. It is to combine the power generation equipment of the ratio, and to set the upper limit value set by the power generation control device 15 to be equal to or less than the grid interconnection capacity.
  • Example 3 a power generation control device that adjusts the generated power of the power generation system as a whole using a power storage facility will be described with reference to FIGS. 10 to 13.
  • FIG. 10 is a diagram illustrating a configuration example of the power generation system 10 according to the third embodiment of the present invention.
  • the power generation system 10 according to the third embodiment of the present invention is obtained by adding a power storage facility 24, a storage battery control device 26, a power meter 25, and the like to the configuration of the power generation system 10 according to the first embodiment. It has become.
  • the generated power calculation unit 17 includes a solar power / wind power generation power prediction unit 27 instead of the solar power generation power prediction unit 16 in the first embodiment.
  • a lead battery, a lithium ion battery, a sodium sulfur battery, a nickel hydride battery, a redox flow battery, a fuel cell, a capacitor battery, or the like can be used as the storage battery of the power storage facility 24.
  • the storage battery control device 26 controls charging / discharging of the power storage equipment 24 in accordance with an instruction from the power generation control device 15.
  • SOC State of Charge
  • the solar / wind power generation prediction unit 27 predicts not only the power generation of the solar power generation facility 11 but also the power generation of the wind power generation facility 13 based on various data obtained from the weather station 22. Therefore, the solar power / wind power generation prediction unit 27 here is newly added with the wind power generation power prediction unit for predicting the power generation of the wind power generation facility 13 to the solar power generation power prediction unit 16 in the first embodiment. It can be said that
  • various data obtained from the weather station 22, particularly the data used for the prediction in the solar / wind power generation power prediction unit 27, are associated with the date / time, the prediction result, the actual generated power, and the like. And stored in the storage unit 23.
  • the third embodiment when the sum of the photovoltaic power generated by the solar power generation facility 11 and the wind power generated by the wind power generation facility 13 exceeds a preset grid interconnection capacity, At least a part of the excess power can be stored in the power storage facility 24. Therefore, in the third embodiment, it can be said that the amount of output restriction is reduced by blade pitch control, so that power can be used more effectively. Further, when the power to be supplied is insufficient, the insufficient power can be supplemented with the discharge power from the power storage facility 24. That is, in Example 3, it can be expected that the temporal variation of the generated power can be suppressed. In the third embodiment, it is assumed that the grid connection capacity equal to or greater than the maximum output of the photovoltaic power generation facility 11 is set in the power generation system 10.
  • the upper limit value of the power to be supplied depends not only on the grid interconnection capacity but also on the planned value.
  • the planned value is a promised value of the amount of power supplied to the power company that owns the commercial power grid 21 when the power generation company supplies power to the commercial power grid 21.
  • the power generation company reports the planned value for one day after six hours to the electric power company, for example, six hours before.
  • the planned value for one day is constituted by the planned values for each time zone obtained by dividing one day every 30 minutes, for example. Accordingly, the power supply plan value reported by the power generation company is allowed to be set so as to change every 30 minutes.
  • the amount of power supplied within 30 minutes is required to be controlled within a predetermined fluctuation range (for example, within ⁇ 1%).
  • a predetermined fluctuation range for example, within ⁇ 1%.
  • the planned value that is reported and set as described above is, for example, the amount of power to be supplied for a predetermined 30 minutes, but in the following, for the sake of simplicity, the planned value realizes the amount of power for 30 minutes. It is assumed that this is the average power value at each time. In this way, the planned value cannot exceed the grid interconnection capacity. In other words, the planned value is a value less than the grid interconnection capacity.
  • the power generation system 10 it becomes easy to supply power that complies with the planned value to the commercial power system 21. That is, when the total value of photovoltaic power generation and wind power generation power exceeds the planned value, the excess power can be stored in the power storage facility 24, and the output can be limited by blade pitch control as necessary. You can also. Further, when the combined generated power of the photovoltaic power and the wind power does not reach the planned value, the insufficient power can be supplemented with the discharged power from the power storage facility 24.
  • FIG. 11 is a diagram illustrating an example of a control procedure executed by the power generation control device 15 in the power generation system 10 according to the third embodiment. In the following description, it is assumed that the grid connection capacity Pc and the planned value Pp at the time when the control procedure of FIG.
  • the power generation control device 15 measures the solar power generation power value Ps generated by the solar power generation facility 11 via the power meter 12 (see FIG. 10) (step S31).
  • the power generation control device 15 calculates a solar power generation power predicted value Pss via the solar power / wind power generation power prediction unit 27 (step S32), and further calculates a wind power generation power control command Pwr (step S33).
  • the wind power generation power control command Pwr is a value obtained by subtracting the photovoltaic power generation power predicted value Pss calculated in step S32 from the grid interconnection capacity Pc, as in the first embodiment.
  • the power generation control device 15 transmits the wind power generation power control command Pwr calculated in step S33 to the wind power generation control device 18 (step S34).
  • the power generation control device 15 performs commercial power by combining the solar power generation power value Ps output from the solar power generation facility 11 and the wind power generation power value Pw output from the wind power generation facility 13 while executing the above control procedure. Supply to system 21.
  • the control procedure so far is substantially the same as the control procedure in steps S11 to S14 shown in FIG.
  • the control procedure executed when the wind power generation control device 18 receives the wind power generation power control command Pwr is the same as the control procedure of steps S21 to S26 shown in FIG. .
  • the excess power is discarded by blade pitch control. Therefore, the power supplied from the power generation system 10 to the commercial power grid 21 is prevented from exceeding the grid interconnection capacity Pc.
  • the power generation control device 15 measures the solar power generation power value Ps and the wind power generation power Pw generated by the solar power generation facility 11 and the wind power generation facility 13 via the power meters 12 and 14, respectively (step S35). . Then, the power generation control device 15 determines whether or not the total value (Ps + Pw) of the measured photovoltaic power generation value Ps and wind power generation power Pw exceeds a preset plan value Pp (step S36). .
  • this charging command is a command for charging the power storage facility 24 with the power that exceeds the planned value Pp.
  • the power generation control device 15 transmits a discharge command to the storage battery control device 26 (step S38).
  • This discharge command is a command for causing the power storage facility 24 to discharge electric power that does not reach the planned value Pp.
  • the power supplied to the commercial power system 21 increases to the planned value Pp.
  • FIG. 12 is a diagram illustrating an example of a control procedure executed by the storage battery control device 26 in the power generation system 10 according to the third embodiment of the present invention. It is assumed that a predetermined target SOC range is set in advance in storage battery control device 26 when this control procedure is executed.
  • the target SOC range is a range of the charging rate (SOC) of the power storage facility 24 that is determined to be appropriate at that time.
  • the power storage facility 24 is assumed to be unable to charge when the charging rate exceeds the upper limit value of the target SOC range, and when the charging rate is lower than the lower limit value of the target SOC range, discharging is performed. It shall not be possible.
  • the target SOC range is not constant and may be changed as appropriate according to the situation. For example, when the total value of the predicted photovoltaic power generation value Pss and the predicted wind power generation power value Pww is expected to increase in the future, the target SOC range is changed to a lower value. Conversely, when the total value of the predicted photovoltaic power generation value Pss and the predicted wind power generation power value Pww is expected to decrease in the future, the target SOC range is changed to a higher value.
  • the description is abbreviate
  • step S41 when the storage battery control device 26 receives a charge command or a discharge command (step S41), it determines whether or not it is a charge command (step S42). If a charging command is received (Yes in step S42), it is determined whether or not the charging rate of the power storage facility 24 at that time is within a preset target SOC range (step S43).
  • step S43 If it is determined in step S43 that the charging rate of the power storage facility 24 is within the target SOC range (Yes in step S43), the storage battery control device 26 sets the power storage facility 24 in the charging mode (step S43). S44). In this case, since the electric power exceeding the planned value Pp is charged in the power storage facility 24, the electric power output from the power generation system 10 is substantially the same as the planned value Pp.
  • step S43 when the charge rate of the power storage equipment 24 at that time is not within the target SOC range in the determination in step S43 (No in step S43), the storage battery control device 26 puts the power storage equipment 24 into the non-charge / discharge mode. Set (step S45). Therefore, in this case, the power output from the power generation system 10 exceeds the planned value Pp.
  • step S42 when the charge command is not received as a result of the determination in step S42 (Yes in step S42), that is, when the discharge command is received, the charge rate of the power storage equipment 21 at that time is a preset target. It is determined whether it is within the SOC range (step S46).
  • step S46 If it is determined in step S46 that the charging rate of the power storage facility 24 is within the target SOC range (Yes in step S46), the storage battery control device 26 sets the power storage facility 24 to the discharge mode (step S46). S44). In this case, since the electric power that does not reach the planned value Pp is discharged from the power storage facility 24, the electric power output from the power generation system 10 is substantially the same as the planned value Pp.
  • step S46 when the charge rate of the power storage equipment 24 at that time is not within the target SOC range in the determination in step S46 (No in step S46), the storage battery control device 26 puts the power storage equipment 24 into the non-charge / discharge mode. Set (step S48). Therefore, in this case, the power output from the power generation system 10 does not reach the planned value Pp.
  • Step S45 and Step S48 the power generation system 10 cannot achieve the planned value Pp, but such cases can be reduced as much as possible by appropriately managing the target SOC range. . Further, as described above, since the planned value to be reported is, for example, an integrated power amount for 30 minutes, it is allowed that the planned value Pp cannot be achieved instantaneously.
  • FIG. 13 is a diagram showing an example of the time transition of the planned value Pp set in the power generation system 10 according to the third embodiment of the present invention and the electric power supplied to the commercial power system 21.
  • a stepped thick solid line 71 represents the planned value Pp
  • a broken line 72 represents the photovoltaic power value Ps
  • a broken line 73 represents the total value of the photovoltaic power value Ps and the wind power value Pw.
  • a thin broken line 74 having a value approximate to the stepped thick solid line 71 represents the generated power measured by the commercial power system 21.
  • the limitation on the output due to the pitch control of the blade is reduced, and the so-called simultaneous plan value is realized.
  • the facility utilization rate of the power generation system 10 is improved, and the total power of the solar power generation power value Ps and the wind power generation power value Pw, that is, the power supplied to the commercial power grid 21 is reduced to the grid interconnection capacity Pc. It will never be exceeded.
  • the grid interconnection capacity is assumed as the upper limit value, but the present invention is not limited to this, and there is no problem even if a set value arbitrarily determined is set as the target value. Even in such a case, it is possible to set in consideration of the grid interconnection capacity.
  • Example 4 the calculation of the predicted photovoltaic power generation value will be described.
  • the photovoltaic power generation prediction is a technique used in the photovoltaic power generation power prediction unit 16 in FIG. 1, the solar power / wind power generation power prediction unit 27 in FIG. 10, the processing step S12 in FIG. 5, the processing step S32 in FIG. is there.
  • the measurement information of the power system is used, or the information about the weather acquired from the weather station is used.
  • the generated power given by the solar power generation facility 11 reflects the amount of solar radiation.
  • Estimate and estimate solar radiation at. For example, the average value, the maximum value, the minimum value, the intermediate value, the instantaneous value, the prediction using the past power generation data by the solar power generation equipment 11 in the predetermined time zone, and further these A combination of these can be used. At this time, it is also effective to give higher weight to the latest value from the present time within a predetermined time. It is also effective to multiply these values by a coefficient or subtract a coefficient.
  • FIG. 14 is a diagram illustrating an example of a prediction method from the average value of the generated power of the solar power generation facility 11.
  • the horizontal axis represents time
  • the vertical axis represents solar power generation power PS and wind power generation power PW.
  • the photovoltaic power PS is, for example, a measurement value of 60 times / min.
  • a moving average is obtained for 60 continuous data, and this moving average is used as a predicted value of the photovoltaic power PS.
  • the solar power generation power prediction unit 16 in FIG. 1 determines the wind power generation power control command based on the difference between the predicted value of the grid interconnection capacity and the solar power generation power PS.
  • the setting value of the output restriction command is given every 30 seconds in accordance with the second), and the wind power generation control device 18 executes control targeting the setting output of the given restriction command value in the next control cycle.
  • FIG. 15 is a diagram illustrating an example of a prediction method from the maximum value (or minimum value) of the generated power of the solar power generation facility 11.
  • the horizontal axis represents time
  • the vertical axis represents solar power generation power PS and wind power generation power PW.
  • the photovoltaic power PS is, for example, a measured value of 60 times / minute, and a maximum value (or minimum value) in 10 minutes is obtained for 600 continuous data, and this maximum value (or minimum value) is obtained.
  • the solar power generation power prediction unit 16 in FIG. 1 determines the wind power generation power control command based on the difference between the predicted value of the grid interconnection capacity and the solar power generation power PS.
  • the setting value of the limit command is given every 30 seconds in accordance with the second), and the wind power generation control device 18 executes control targeting the set output of the given control command in the next control cycle.
  • the intermediate value is, for example, the 30th largest value from the higher measured value of the measured values at 60 times / minute, and the instantaneous value is, for example, the 60th measured value. The value is used for the calculation of the next period.
  • the wind power plant tested was D power plant in A prefecture.
  • power generation data on a certain day of the solar power plant was used.
  • Input solar power plant data is E power plant in A prefecture.
  • the wind turbine limit command value is transmitted every 30 to 60 seconds. Therefore, when sunlight fluctuates (increases) suddenly (instantaneously), the control every 30 seconds may not catch up and may exceed the grid interconnection capacity. Abrupt fluctuations in sunlight often occur in cloudy and sunny weather, but at that time, in addition to setting the maximum 98% or the like described in the specification, control that raises the limit command value in steps is necessary. Become.
  • the wind power limit command value is set to grid connection capacity 100, when it changes from 20 to 50, etc., the wind turbine output is not increased at once, but it is increased by 10 every 30 seconds in steps. It is an image. Specifically, when there is a possibility of large fluctuations such as cloudy and sunny, instead of 20 ⁇ 50 in 30 seconds, 20 ⁇ 50 over 90 seconds (20 ⁇ 30 in 30 seconds, 30 in the next 30 seconds) ⁇ 40, 40 ⁇ 50 in the next 30 seconds.
  • the wind turbine is controlled such that the wind turbine generates maximum power when the limit command value is larger than the wind turbine output.
  • the limit command value is exceeded by ⁇ t time due to the wind turbine control delay ⁇ t.
  • the command value increase threshold ⁇ P is preferably changed according to weather conditions (PV output fluctuation).
  • FIG. 16 shows the wind turbine generated power and the combined generated power when the maximum value of the photovoltaic power generation power shown in FIG.
  • the maximum value of the photovoltaic power generation the maximum value in the past 20 minutes from the present time was used. That is, the wind turbine output restriction command value is calculated based on the maximum value of the photovoltaic power generation in the past 20 minutes.
  • the combined generated power can be suppressed to 100 or less when the combined grid capacity is 100 without exceeding the combined grid capacity.
  • the method of performing prediction using the average value, maximum value, minimum value, intermediate value, and instantaneous value of the generated power of the photovoltaic power generation facility 11 in a predetermined time zone has been described. Select and use. For example, if the weather is fine, the average value should be used for prediction, and if it is sunny and cloudy, the maximum value for several minutes should be adopted. As a result of determining the wind power generation power control command from the maximum value, the wind power generation power control command value is a small value. However, there is no problem even if the forecasting method is changed as appropriate according to the climate characteristics of the site where the power plant is installed.
  • the following control is preferable.
  • the grid interconnection capacity for obtaining the difference from the generated power of the solar power generation facility 11 is not set to a value of 100%.
  • the margin itself is used. There is also a method of making it act so as to be variable.
  • the limit command value for the wind power generation control device 18 in calculating the limit command value for the wind power generation control device 18 using the upper limit value set from the combined generated power and the grid interconnection capacity, it is set from the combined generated power and the grid interconnection capacity. It includes obtaining a difference between the upper limit values and variably adjusting the magnitude of the difference according to the weather condition at that time. For example, the difference is obtained by multiplying by a coefficient according to the weather condition, or the size of one of the comparison targets (for example, the upper limit set from the grid interconnection capacity) is changed according to the weather condition.
  • the wind power generation control device 18 functions in a direction in which the degree of freedom of control is limited.
  • the photovoltaic power generation prediction unit 16 in FIG. 1 acquires from the weather station 22 every predetermined time (for example, 30 seconds to 30 minutes).
  • the generated power of the solar power generation facility 11 is predicted by predicting the amount of solar radiation for a predetermined time from the present time based on the weather information.
  • the meteorological station 22 refers to a meteorological satellite, a meteorological station, a weather station, a weather information providing center that provides meteorological data observed at other meteorological observation points, and the like.
  • the weather station 22 may be provided independently in the vicinity of the solar power generation facility 11.
  • data such as the amount of solar radiation, atmospheric pressure, temperature, precipitation, relative humidity, wind speed, and cloud movement observed in the vicinity of the photovoltaic power generation facility 11 can be used. 16 can improve the prediction accuracy of photovoltaic power generation. Needless to say, optimizing the installation location in advance when installing the unique weather station 22 is effective in improving the prediction accuracy of the photovoltaic power generation.
  • the unique weather station 22 here may be equipped with a communication system for obtaining meteorological satellite data, a fish-eye camera for taking a whole sky photograph, and the like in addition to the weather observation equipment. Or you may be comprised only with other apparatuses, without providing a weather observation apparatus.
  • cloud images of weather information can be obtained using weather satellites or ground cameras, etc., and the information acquisition cycle time is shorter, the prediction accuracy of photovoltaic power generation is improved, Actually, it may be limited by the response speed of the pitch control of the blade on the wind power generation equipment 11 side.
  • the solar radiation facility 11 installation point is predicted with reference to the solar radiation amount measured at a plurality of neighboring measurement points, the presence or absence of clouds, the wind direction, the air volume, etc., and the solar radiation amount is estimated.
  • Various methods have been proposed and known, and can be adopted as appropriate. In the case of the present invention, it is sufficient that the solar radiation amount prediction can realize a prediction of about several minutes ahead, and since it does not require a long-time prediction, it can be accurately estimated by a relatively simple method.
  • the solar radiation amount prediction using the cloud image by the weather satellite the solar radiation amount prediction based on the weather forecast, the solar radiation amount prediction using the past power generation data by the solar power generation facility 11, and a combination thereof are not particularly limited. Absent.
  • the prediction of solar power generation in addition to the amount of solar radiation, one or more data selected from atmospheric pressure, temperature, precipitation, relative humidity, wind speed, and the amount of change over time are selected. Use in combination is effective in improving prediction accuracy.
  • the use of prediction using IoT (Internet of Things) or AI (artificial intelligence) technology contributes to improvement of prediction accuracy.
  • the generated power may be adjusted in the same manner for all the windmills, or the generated power may be adjusted only for one or a part of the windmills. Also good.
  • the generated power of each windmill varies depending on the installation conditions and the like, so that the generated power is limited by controlling the pitch only for windmills with a large amount of power generation, thereby adjusting the total generated power. be able to.
  • the photovoltaic power generation power prediction unit 16 in FIG. 1 and the solar power / wind power generation power prediction unit 27 in FIG. 10 various data obtained from the meteorological observatory 22, in particular, the prediction in the photovoltaic power generation power prediction unit 16.
  • a storage unit 23 is provided for storing the used data in association with the date and time, the prediction result, the actual generated power, and the like.
  • the photovoltaic power generation prediction unit 16 predicts the result of the prediction under the same weather condition at a similar date and time in the past at the time of prediction of the subsequent photovoltaic power generation.
  • the generated power can be used.
  • the photovoltaic power generation prediction unit 16 can correct the predicted value of the photovoltaic power generation predicted at that time in the light of the past actual value or its statistical value, thereby improving the prediction accuracy. Is planned.
  • the weather observation data and the prediction data of the photovoltaic power generation always include an error. Then, when the error tendency or correlation of these data is known, it is possible to make corrections by predicting and taking into account errors, such as applying a bias correction method.
  • the correction of the predicted value in consideration of such an error not only improves the accuracy of the predicted value of the photovoltaic power generation power, but also allows a more appropriate wind power generation power limit command value to be set.
  • the solar power generation power prediction unit 16 can predict solar power generation with high accuracy, and the wind power generation control device 18 has a high accuracy wind power generation limit. Command value is transmitted. Accordingly, the wind power generation facility 18 does not generate power larger than the wind power generation power limit command value. Therefore, since the electric power exceeding the grid connection capacity set in advance is not supplied to the commercial power system 10, the power generation system 10 can be a sound system.
  • FIG. 17 shows that when the rate of change in generated power per unit time (dp / dt) of the solar power generation facility 11 exceeds a set value, the power generation capacity of the solar power generation facility is limited, thereby reducing the grid interconnection capacity. It is an example when it is made not to exceed. As a result, a power generation opportunity loss of the solar power generation facility occurs, and the result of calculating this loss is shown in FIG.
  • the data used for the calculation is data at intervals of 1 second. For example, when the control is performed so that the fluctuation is 90% / min or less with respect to the maximum output of the photovoltaic power generation facility, the loss rate is 0.72%. Similarly, the loss rate increases to 1.02% at 70% / min or less and 1.54% at 50% / min or less, but it has been confirmed that the number of times exceeding the grid interconnection capacity is greatly reduced. .
  • the power generation equipment is not limited, and if there are multiple power generation equipment, one of them, Alternatively, the same effect can be obtained by limiting output to a plurality of facilities.
  • Example 5 a solar power generation facility 11 and a wind power generation facility 13 are provided to improve the facility utilization rate and other examples will be described.
  • the grid connection capacity is secured based on the maximum output of the power plant.
  • power generation equipment mega solar
  • the facility utilization rate will be improved, and wind power generation facilities will be interrupted at appropriate ratios to interconnection lines such as solar power generation facilities. And improve equipment utilization.
  • the wind power generation facility 13 takes several years for environmental impact assessment and the like, and it often takes time to commercialize compared to the solar power generation facility 11. Therefore, the solar power generation equipment 11 is introduced and operated in advance, and the wind power generation equipment 13 is sequentially introduced in the form of addition to the connection point frame, and the number of connection points is not increased. It is possible to improve the facility utilization rate in
  • the maximum output of the power generation equipment to be added is determined in consideration of the maximum capacity and capacity factor of the power generation equipment currently in operation.
  • the power generation facility to be added is connected on a connection line between the connection point and the existing power generation facility. In that case, in order to achieve the generated power that does not exceed the grid interconnection capacity, control to limit the output is required. For the above-described reason, it is preferable to add a power generation facility with easy output control, such as a wind power generation facility, to a power generation system including a solar power generation facility.
  • a control command for the generated power of the wind power generation facility 13 is calculated and set in the wind power generation control device 18.
  • an output obtained by combining the generated power output from the solar power generation facility 11 and the generated power output from the wind power generation facility 13 is supplied to the substation via the connection point, but the output is less than the grid connection capacity. This is preferably monitored using a power meter. When an output exceeding the grid interconnection capacity is supplied, or when an output exceeding the predicted value is supplied, control for limiting the power generation amount is performed.
  • the energy used for power generation is a combination of sunlight and wind power, but the combination is not limited to sunlight and wind power.
  • the combination may be a combination of sunlight and river hydraulic power or a combination of sunlight and ocean wave power.
  • the combination may be preferably a combination of energy that is difficult to control the output of the generated power and energy that is easy to control the output of the generated power.
  • the output limit of the windmill is controlled by pitch control control (hereinafter referred to as pitch control) that adjusts the angle of the windmill blade (hereinafter referred to as blade), the excitation voltage control of the windmill, and power conditioner control according to the output limit specified value Adjust individual windmill power. It is also effective to perform feedback control with a period of about 10 seconds while monitoring the output of the windmill that sent the command, comparing the windmill command value with the actual windmill output, and determining each windmill command value. is there.
  • the maximum output of wind power generation facilities relative to the maximum output of solar power generation facilities depends on the utilization rate and operating rate of the grid interconnection capacity so far, as well as local solar data and wind conditions. Depends on equipment performance. For example, in a power generation system using renewable energy, the facility utilization rate varies depending on the time. By setting the maximum output of the wind power generation facility based on the period when the facility utilization rate of the solar power generation facility is high (May), it is possible to construct a facility with a low output limit of the wind power generation facility. On the other hand, if the maximum output of the wind power generation facility is determined based on the period when the facility utilization rate of the solar power generation facility is low (January), a power generation system with a high facility utilization rate can be provided. In addition, a system that supplies a large amount of power to the commercial power system at a time when the amount of power consumption is considered to be large, such as in August, is in the public interest.
  • the facility utilization rate varies depending on the region.
  • the so-called simultaneous same amount planned value is set as the total amount of electric power generation within a certain period (electric power amount / kWh), whereas the current electric power generation system
  • the output control for the grid interconnection capacity is performed by the power (kW unit) at a specific time.
  • the operation method of the power generation system with the prediction described above is basically that one of the power generation facilities performs free operation according to the input, and the other of the power generation facilities performs free operation within the limits determined from the prediction. One of the outputs is used. Since the prediction side and the restriction side are separated by this segregation, there is an effect in that prediction can be performed correctly without mutual interference. As long as the operation of the other power generation facility is within the limits, optimization control such as angle control may be performed.
  • the total output of the photovoltaic power generation equipment and the wind power generation equipment exceeds the generated power (system interconnection capacity) that can be supplied to the interconnection point.
  • the system includes a wind power generation facility control device that limits the output of the wind power generation facility based on a predicted value of the generated power of the solar power generation facility.
  • the present invention is not limited to the embodiments described above, and further includes various modifications. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment. Moreover, it is also possible to add, delete, and replace configurations included in other embodiments for a part of each embodiment.

Abstract

A second power generation facility is newly added to an already connected first power generation facility, and combined electric power generated by the facilities is controlled by controlling electric power to be generated by the second power generation facility in accordance with an upper limit value which is defined by a system interconnection capacity of the already connected first power generation facility, or in accordance with a target value which is arbitrarily defined with consideration of the system interconnection capacity. The power generation system is characterized by comprising: a first power generation facility for generating electric power using a first energy source; a second power generation facility for generating electric power using a second energy source; a second power generation control device for controlling the electric power to be generated by the second power generation facility; and a power generation control device for supplying combined electric power, that is, the total of the electric power generated by the first power generation facility and the electric power generated by the second power generation facility, to a power grid, said power generation control device having a generated-power prediction means for predicting electric power to be generated by the first power generation facility, whereby the system calculates a limit command value of the electric power to be generated by the second power generation facility on the basis of an electric power value which is obtained by subtracting a predictive value obtained by the generated-power prediction means regarding the predicted electric power to be generated by the first power generation facility from the upper limit value set based on the system interconnection capacity or from the target value arbitrarily defined with consideration of the system interconnection capacity, determines whether or not combined electric power, that is, the total of the predictive value of the electric power to be generated by the first power generation facility and the calculated limit command value of the electric power to be generated by the second power generation facility, exceeds the upper limit value or the target value, and transmits the calculated limit command value as an output control signal to the second power generation control device or to the second power generation facility when the upper limit value or the target value is exceeded.

Description

発電システム、発電制御装置、発電制御方法、および発電システムの連系発電電力の拡大方法POWER GENERATION SYSTEM, GENERATION CONTROL DEVICE, GENERATION CONTROL METHOD, AND METHOD FOR ENLARGING INTERCONNECTED GENERATED POWER
 本発明は、複数種の発電設備を備える発電システム、発電制御装置、発電制御方法、および発電システムの連系発電電力の拡大方法に関する。 The present invention relates to a power generation system including a plurality of types of power generation equipment, a power generation control device, a power generation control method, and a method for expanding interconnected generated power of the power generation system.
 枯渇の可能性がある化石エネルギーを用いずに、自然界に存在する再生可能エネルギー(自然エネルギー)を電力エネルギーに変換する代表的な発電方法として太陽光発電と風力発電を挙げることができる。これら再生可能エネルギーを利用した発電は、地球温暖化の主因となる二酸化炭素をほとんど発生させないことから、地球規模の温暖化という環境問題を解決する手段として全世界で普及が進行しつつある。 As a typical power generation method for converting renewable energy (natural energy) existing in nature to electric power energy without using fossil energy that may be depleted, there are solar power generation and wind power generation. Since power generation using these renewable energy hardly generates carbon dioxide, which is a major cause of global warming, it is spreading worldwide as a means of solving the environmental problem of global warming.
 再生可能エネルギーを利用した発電装置で発電された電力は、多くの場合、商用の電力系統に連系されるが、そのためには事前に発電装置が供給する最大出力電力(以下、系統連系容量という)が定められる。また、非特許文献1のように、系統連系容量は、一般的に、電源の種類によらず、最大出力の送電を前提にして確保される。なお、本明細書では、最大出力と定格出力は特に区別せずに用いることとする。つまり、上記の場合、系統連系容量は定格出力の送電を前提にして確保されるとも言い換えることができる。 In many cases, the electric power generated by a power generation device using renewable energy is linked to a commercial power system. For this purpose, the maximum output power supplied by the power generation device in advance (hereinafter referred to as the grid connection capacity) Is defined). Further, as in Non-Patent Document 1, the grid interconnection capacity is generally secured on the premise of maximum power transmission regardless of the type of power supply. In this specification, the maximum output and the rated output are used without distinction. In other words, in the above case, it can be said that the grid interconnection capacity is secured on the premise of rated power transmission.
 火力発電設備、バイオマス発電設備などのいわゆる安定電源は、設備利用率が60-80%である。これに対し、自然エネルギーによって発電電力が左右される太陽光発電設備や風力発電設備においては、安定電源のように設備利用率が高くない。例えば、太陽光発電設備は雨天時や夜間、風力発電設備は風が弱いときには発電電力が減少することから、設備利用率が太陽光発電設備では13-15%程度、風力発電設備が24-26%程度(全国平均)である。このように、太陽光発電設備や風力発電設備においては、確保している系統連系容量を有効に活用できているとは言い難いのが実状である。 So-called stable power sources such as thermal power generation facilities and biomass power generation facilities have a facility utilization rate of 60-80%. On the other hand, in the photovoltaic power generation facility and the wind power generation facility in which the generated power is influenced by natural energy, the facility utilization rate is not high like a stable power source. For example, the power generation capacity of solar power generation facilities decreases when it is raining or at night, and the power generation capacity of wind power generation facilities decreases when the wind is weak. % (National average). As described above, in the photovoltaic power generation facility and the wind power generation facility, it is difficult to say that the secured grid interconnection capacity can be effectively utilized.
 なお、上記設備利用率は次の式で求められる。例えば、1年間の設備利用率を求める場合、1年間の設備利用率(%)=年間発電電力÷{発電設備容量×365(日)×24(時間)}×100となる。 In addition, the above equipment utilization rate can be obtained by the following formula. For example, when obtaining the facility utilization rate for one year, the facility utilization rate (%) for one year = annual generated power / {power generation facility capacity × 365 (days) × 24 (hours)} × 100.
 この問題を解決する方法の一つとして、太陽光発電と風力発電を一体化することで、お互いの発電効率を補完する発電装置が提案されている。例えば、特許文献1には、太陽光により発電する素子を風力発電機の羽や支柱の表面に組み込んだ発電装置の例が開示されている。また、特許文献2には、風力発電装置と蓄電池とからなり商用の電力系統に連系された発電システムにおいて、近い未来の風力発電電力を予測し、その予測値に基づいて蓄電池の充放電電力量を制御する例が開示されている。 As one method for solving this problem, a power generation device that complements each other's power generation efficiency by integrating solar power generation and wind power generation has been proposed. For example, Patent Document 1 discloses an example of a power generation apparatus in which an element that generates power using sunlight is incorporated in the surface of a wing or a column of a wind power generator. Further, Patent Document 2 predicts wind power generation in the near future in a power generation system that is composed of a wind power generation device and a storage battery and is linked to a commercial power system, and charges and discharges the storage battery based on the predicted value. An example of controlling the amount is disclosed.
特開2014-105701号公報JP 2014-105701 A 特開2013-219941号公報JP 2013-219941 A
 本発明においては、主に既接続の第1の発電設備に、第2の発電設備を新規に追加設置すること、ならびに第1の発電設備と第2の発電設備を新規で同時に設置することを想定している。なお、本明細書では、前者を想定して主に記述するが、後者の場合でも何ら問題なく適用できる。 In the present invention, the second power generation facility is newly newly installed mainly in the already-connected first power generation facility, and the first power generation facility and the second power generation facility are newly installed at the same time. Assumed. In this specification, the description is mainly made on the assumption of the former, but the latter can be applied without any problem.
 例えば、既設の太陽光発電設備に風力発電設備を新規追加する場合であり、あるいはその逆の場合である。前者で追加設置した場合、その発電サイトは連系点において商用電力系統と接続されるが、系統連系容量は第1の発電設備の最大出力で定まることから変更されないのが一般的である。つまり、系統連系容量を超える電力を商用の電力系統へ供給することはできないのが一般的である。なお、本明細書では、系統連系容量を超えないように電力を供給することを想定して記述しているが、系統連系容量に限らず、あらかじめ設定した任意の発電電力であっても何ら問題なく適用できる。 For example, it is a case where a wind power generation facility is newly added to an existing solar power generation facility, or vice versa. When the former is additionally installed, the power generation site is connected to the commercial power system at the connection point, but the grid connection capacity is generally not changed because it is determined by the maximum output of the first power generation facility. In other words, it is general that power exceeding the grid interconnection capacity cannot be supplied to a commercial power system. In this specification, it is described assuming that power is supplied so as not to exceed the grid interconnection capacity. However, the present invention is not limited to the grid interconnection capacity, and any generated power set in advance may be used. It can be applied without any problems.
 特許文献1に開示された発電装置は、風力発電電力と太陽光発電電力を足し合わせた電力を供給することが可能な装置であるものの、どちらか一方、あるいは両方の発電設備の発電電力を制御しながら、系統連系容量を超えないようにすることは想定されていない。つまり、気象条件により変動する発電電力を、系統連系容量を超えないように、いかにして制御するかの具体例は記載されていない。 The power generation device disclosed in Patent Document 1 is a device capable of supplying power obtained by adding wind power generation power and solar power generation power, but controls power generation power of one or both power generation facilities. However, it is not assumed that the grid interconnection capacity will not be exceeded. That is, a specific example of how to control the generated power that fluctuates depending on weather conditions so as not to exceed the grid interconnection capacity is not described.
 特許文献2に開示された蓄電池を備えた風力発電システムでは、系統連系容量を超えても、その超過した電力を蓄電池に蓄えることが可能になる。しかしながら、特許文献2に開示された発明では、風力発電設備と多種の発電設備とを組み合わせることについては、何ら考慮されておらず、本発明の特徴のひとつである連系発電電力の拡大という視点では考えられていない。 In the wind power generation system including the storage battery disclosed in Patent Document 2, even if the grid interconnection capacity is exceeded, the excess power can be stored in the storage battery. However, in the invention disclosed in Patent Document 2, no consideration is given to combining a wind power generation facility and various types of power generation facilities, and the viewpoint of expansion of interconnected generation power, which is one of the features of the present invention. It is not considered.
 以上の従来技術の問題点に鑑み、本発明の目的は、既接続の第1の発電設備に、第2の発電設備を新規に追加導入し、それらの合成発電電力を既接続の第1の発電設備おける系統連系容量を上限値として、第2の発電設備の発電電力を制御する発電システム、発電制御装置、発電制御方法および発電システムの連系発電電力の拡大方法を提供することにある。 In view of the above problems of the prior art, the object of the present invention is to newly introduce a second power generation facility to the already connected first power generation facility, and to transfer the combined generated power to the first power generation facility already connected. An object of the present invention is to provide a power generation system, a power generation control device, a power generation control method, and a method for enlarging the power generated by a power generation system, with the grid interconnection capacity in the power generation facility as an upper limit. .
 前記目的を達成するために、本発明に係る発電システム、発電制御装置、発電制御方法および発電システムの連系発電電力の拡大方法は、
第1のエネルギー源により電力を発電する第1の発電設備と、第2のエネルギー源により電力を発電する第2の発電設備と、前記第2の発電設備の発電電力を制御する第2の発電制御装置と、前記第1の発電設備が発電する電力と、前記第2の発電設備が発電する電力を合計した合成発電電力を、電力系統へ供給する発電制御装置とを備え、前記発電制御装置は、前記第1の発電設備の発電電力を予測する発電電力の予測手段を具備し、系統連系容量から設定された上限値あるいは任意に与えた目標値から、前記発電電力の予測手段により予測された前記第1の発電設備が発電する電力の予測値を差し引いた電力値に基づき、前記第2の発電設備における発電電力の制限指令値を算出し、前記第1の発電設備の発電電力の予測値と、前記第2の発電設備における発電電力の前記算出した制限指令値とを合計した合成発電電力が、前記上限値または目標値を超えるか否かを判定し、前記上限値または目標値を超える場合に、前記算出した制限指令値を前記第2の発電制御装置または前記第2の発電設備に出力制御信号として送信することを特徴とする。これにより、系統連系容量を超過しない発電電力を電力系統に供給できるようになる。このとき、前記第1の発電設備、前記第2の発電設備の片方あるいは両方に発電電力を監視するための監視装置があると一層効果的である。
In order to achieve the above object, a power generation system, a power generation control device, a power generation control method, and a method for expanding the grid-generated power of the power generation system according to the present invention include:
A first power generation facility that generates power from a first energy source, a second power generation facility that generates power from a second energy source, and a second power generation that controls the power generated by the second power generation facility A control device; and a power generation control device that supplies combined electric power generated by summing the power generated by the first power generation facility and the power generated by the second power generation facility to an electric power system. Comprises a power generation prediction means for predicting the power generation of the first power generation facility, and the power generation power prediction means predicts from an upper limit value set from the grid interconnection capacity or a target value given arbitrarily. Based on the power value obtained by subtracting the predicted value of the power generated by the first power generation facility, a limit command value for the generated power in the second power generation facility is calculated, and the generated power of the first power generation facility is calculated. The predicted value and the second It is determined whether or not the combined generated power summed with the calculated limit command value of the generated power in the power generation facility exceeds the upper limit value or the target value. The restriction command value is transmitted as an output control signal to the second power generation control device or the second power generation facility. Thereby, the generated power that does not exceed the grid interconnection capacity can be supplied to the power system. At this time, it is more effective if there is a monitoring device for monitoring the generated power in one or both of the first power generation facility and the second power generation facility.
 また、別の本発明に係る発電システム、発電制御装置、発電制御方法および発電システムの連系発電電力の拡大方法は、
第1のエネルギー源により電力を発電する第1の発電設備と、第2のエネルギー源により電力を発電する第2の発電設備と、前記第2の発電設備の発電電力を制御する第2の発電制御装置と、前記第1の発電設備が発電する電力と、前記第2の発電設備が発電する電力を合計した前記合成発電電力を、電力系統へ供給する発電制御装置とを備え、前記発電制御装置は、前記第1の発電設備の発電電力と、前記第2の発電設備の発電電力を計測し、それらの発電電力を合計した合成発電電力が、系統連系容量から設定された上限値あるいは任意に与えた目標値を超えるか否かを判定し、前記上限値または目標値を超える場合に、前記上限値または目標値より、前記第1の発電設備の発電電力を差し引いた電力値に基づき、前記第2の発電設備の制限指令値を算出し、前記算出した制限指令値を前記第2の発電制御装置または前記第2の発電設備に出力制御信号として送信することを特徴とする。これにより、系統連系容量を超過しない発電電力を電力系統に供給できるようになる。
Further, another power generation system, power generation control device, power generation control method, and method for expanding the grid-generated power of the power generation system according to the present invention,
A first power generation facility that generates power from a first energy source, a second power generation facility that generates power from a second energy source, and a second power generation that controls the power generated by the second power generation facility And a power generation control device that supplies the combined generated power, which is a sum of the power generated by the first power generation facility and the power generated by the second power generation facility, to an electric power system. The apparatus measures the generated power of the first power generation facility and the generated power of the second power generation facility, and the total generated power is the upper limit value set from the grid interconnection capacity or It is determined whether or not an arbitrarily given target value is exceeded, and when the upper limit value or the target value is exceeded, based on a power value obtained by subtracting the generated power of the first power generation facility from the upper limit value or the target value. , Of the second power generation facility Calculating a limit command value, and transmits the limit command value the calculated as the output control signal to the second power generation control device or the second power generation equipment. Thereby, the generated power that does not exceed the grid interconnection capacity can be supplied to the power system.
 また、別の本発明に係る発電システム、発電制御装置、発電制御方法および発電システムの連系発電電力の拡大方法は、
前記発電システムに電力を蓄電する蓄電設備と、前記蓄電設備の充放電を制御する蓄電池制御装置とを備えてなり、前記発電制御装置は、前記第1の発電設備が発電する電力と、前記第2の発電設備が発電する電力を合計した合成発電電力が、系統連系容量から設定された上限値あるいは任意に与えた目標値を超えるか否かを判定し、前記上限値あるいは前記任意に与えた目標値を超える場合には、前記蓄電池制御装置に対し、前記上限値あるいは前記任意に与えた目標値を超える分の電力を前記蓄電設備に蓄電させることを指令して、前記上限値あるいは任意に与えた目標値を最大値として電力系統へ供給する電力を減少させる手段と、前記第1の発電設備が発電する電力と、前記第2の発電設備が発電する電力を合計した合成発電電力が、前記上限値あるいは前記任意に与えた目標値に達しない場合には、前記蓄電池制御装置に対し、前記上限値あるいは任意に与えた目標値に達しない分の電力を前記蓄電設備から放電させることを指令して、前記上限値あるいは任意に与えた目標値を最大値として前記電力系統へ供給する電力を増加させる手段とを備え、充放電の指令を前記蓄電池制御装置に出力制御信号として送信することを特徴とする。これにより、系統連系容量を超過しない発電電力を電力系統に供給できるようになる。
Further, another power generation system, power generation control device, power generation control method, and method for expanding the grid-generated power of the power generation system according to the present invention,
The power generation system comprises: a power storage facility that stores power in the power generation system; and a storage battery control device that controls charging / discharging of the power storage facility, wherein the power generation control device includes the power generated by the first power generation facility, It is determined whether or not the combined generated power generated by the total power generated by the two power generation facilities exceeds the upper limit value set arbitrarily from the grid interconnection capacity or the arbitrarily given target value, and the upper limit value or given arbitrarily If the target value is exceeded, the storage battery control device is instructed to store power in the power storage facility in excess of the upper limit value or the arbitrarily given target value. The combined power generated by summing the power supplied to the power system with the target value given as the maximum value, the power generated by the first power generation facility, and the power generated by the second power generation facility. When the upper limit value or the arbitrarily given target value is not reached, the storage battery control device is allowed to discharge from the power storage facility an amount of power that does not reach the upper limit value or the arbitrarily given target value. And a means for increasing the power supplied to the power system with the upper limit value or an arbitrarily given target value as a maximum value, and transmitting a charge / discharge command to the storage battery control device as an output control signal. It is characterized by. Thereby, the generated power that does not exceed the grid interconnection capacity can be supplied to the power system.
 また、別の本発明に係る発電システム、発電制御装置、発電制御方法、連系発電電力の拡大方法は、経済性を考慮して、出力制限する発電設備を選択する機能を有する。さらに、前記第1の発電設備あるいは前記第2の発電設備の単位時間当たりの発電電力の変動が規定値を超えた場合には、片方あるいは両方の発電設備の制限指令値を気象状態に応じた係数で加減乗除して可変にする機能を有する。さらに、第1の発電設備の発電電力を予測する場合に、各種データに重み付けする機能を有する。さらに、第1の発電設備の発電電力を予測する場合に、少なくとも日射量、日射強度、風速、風向、気圧、気温、降水量、相対湿度、日照時間、気象衛星画像などの上空からの画像、地上からの画像から選ばれる少なくとも1つ、またはそれらを組合せた複数データを用いる。さらに、所定期間内に求めた前記第1の発電設備の発電電力の過去の計測値に対して、少なくとも所定期間内の平均値、最大値、最小値、中間値、瞬時値の少なくとも1つを含む複数の値を求め、求めた複数の値の中からその時の気象条件に応じて選択した値を前記第1の発電設備の発電電力の予測値として使用する。さらにまた、前記第2の発電設備の発電電力を制御する第2の発電制御装置に対する制限指令値を出力制御信号として一定時間あるいは任意時間間隔ごとに送信するとともに、前記第2の発電制御装置は、次に出力制御信号を受信するまでの期間は、今回受信した制限指令値に従って前記第2の発電設備の発電電力を制御する。 Further, another power generation system, power generation control device, power generation control method, and interconnection power generation method according to the present invention have a function of selecting a power generation facility whose output is restricted in consideration of economy. Further, when the fluctuation of the generated power per unit time of the first power generation facility or the second power generation facility exceeds a specified value, the limit command value of one or both power generation facilities is set according to the weather condition. It has a function to make it variable by adding / subtracting / dividing with a coefficient. Furthermore, it has a function of weighting various data when the generated power of the first power generation facility is predicted. Furthermore, when predicting the generated power of the first power generation facility, at least the amount of solar radiation, solar radiation intensity, wind speed, wind direction, atmospheric pressure, temperature, precipitation, relative humidity, sunshine hours, images from the sky such as weather satellite images, At least one selected from images from the ground, or a plurality of data obtained by combining them is used. Furthermore, at least one of an average value, a maximum value, a minimum value, an intermediate value, and an instantaneous value within a predetermined period with respect to a past measurement value of the generated power of the first power generation facility obtained within a predetermined period. A plurality of values are obtained, and a value selected from the obtained plurality of values according to the weather conditions at that time is used as a predicted value of the generated power of the first power generation facility. Furthermore, the second power generation control device transmits a limit command value for the second power generation control device that controls the generated power of the second power generation facility as an output control signal at regular time intervals or at arbitrary time intervals. In the period until the next output control signal is received, the generated power of the second power generation facility is controlled in accordance with the limit command value received this time.
 また、別の発明に係る発電システム、発電制御装置、発電制御方法、連系発電電力の拡大方法において、前記第1の発電設備あるいは前記第2の発電設備の時間当たりの発電電力変化率が設定値を超える場合、あるいは超えると予測される場合に、前記第1の発電設備あるいは前記第2の発電設備の片方あるいは両方に出力制限をかけることにより、前記第1の発電設備あるいは前記第2の発電設備の時間当たりの発電電力変化率を設定値以下に制御する。 In the power generation system, power generation control device, power generation control method, and interconnection power generation method according to another invention, the rate of change in generated power per hour of the first power generation facility or the second power generation facility is set. When the value exceeds or is predicted to exceed, the first power generation facility or the second power generation facility is limited by applying an output limit to one or both of the first power generation facility or the second power generation facility. The rate of change in generated power per hour of the power generation facility is controlled to a set value or less.
 また、別の本発明に係る発電システムの運転方法は、第1の再生可能エネルギー源により電力を発電する第1の発電設備と、第2の再生エネルギー源により電力を発電する第2の発電設備とを備え、前記第1の発電設備が発電する電力と、前記第2の発電設備が発電する電力を合計した前記合成発電電力を、変電所を介して商用の電力系統に供給する発電システムの運転方法であって、前記第1の発電設備は、その入力である第1の再生可能エネルギー源に従って発電し、前記第2の発電設備は、その入力である第2の再生可能エネルギー源に従って制限指令の範囲内で発電するとともに、前記制限指令は、前記第1の発電設備の発電電力の予測値と系統連系容量から設定された上限値あるいは任意に与えた目標値との差分に応じて設定されていることにより、前記合成発電電力が前記系統連系容量から設定された上限値または目標値を超過しないようにすることを特徴とする。予測側と制限側が分離されているので、相互干渉がなく予測を正しく行える。 Further, another operation method of the power generation system according to the present invention includes a first power generation facility that generates power using a first renewable energy source and a second power generation facility that generates power using a second renewable energy source. A power generation system that supplies the combined power generated by adding the power generated by the first power generation facility and the power generated by the second power generation facility to a commercial power system via a substation. In the method of operation, the first power generation facility generates power according to a first renewable energy source that is an input thereof, and the second power generation facility is limited according to a second renewable energy source that is an input thereof. In addition to generating power within the range of the command, the limit command is based on the difference between the predicted value of the generated power of the first power generation facility and the upper limit value set from the grid interconnection capacity or the target value given arbitrarily. Set By that, characterized in that the synthetic generation power not to exceed the upper limit value or target value is set from the system interconnection capacity. Since the prediction side and the restriction side are separated, the prediction can be performed correctly without mutual interference.
 本発明によれば、第1の発電設備に対する第2の発電設備の導入可能量の比率を最適化することで、発電設備の出力制限に関わる損失低減が可能となり、加えて、本発明の発電システムとその運転方法、発電制御装置、発電制御方法および連系発電電力の拡大方法を適用することで系統連系容量を超過しない合成発電電力を電力系統に供給することができる。また、これらを実現することで、経済性をも圧迫しない発電所にすることができる。さらに、現時点で空き容量がゼロ又はごく少量であった地域でも発電所の新規導入を可能にすることができる。 According to the present invention, by optimizing the ratio of the amount of the second power generation facility that can be introduced to the first power generation facility, it is possible to reduce the loss related to the output limitation of the power generation facility. By applying the system, its operation method, power generation control device, power generation control method, and interconnected power generation method, it is possible to supply combined power that does not exceed the grid connection capacity to the power system. In addition, by realizing these, it is possible to make a power plant that does not impose economic pressure. Furthermore, it is possible to introduce a new power plant even in an area where free space is zero or very small at present.
本発明の実施例1に係る発電システムの構成の例を示した図。The figure which showed the example of the structure of the electric power generation system which concerns on Example 1 of this invention. 太陽光発電設備の最大出力に対する風力発電設備の最大出力と、風車の出力制限量の関係を示す図。The figure which shows the relationship between the maximum output of a wind power generation facility with respect to the maximum output of a solar power generation facility, and the output limitation amount of a windmill. 実施例1に係る発電システム10によって発電される3日間の発電電力の時間推移の例を示した図。The figure which showed the example of the time transition of the generated electric power for 3 days generated by the electric power generation system 10 which concerns on Example 1. FIG. 実施例1に係る発電システム10が太陽光発電電力と風力発電電力の合成発電電力を系統連系容量以下に調整する機能を備えていないとした場合の発電電力の時間推移の例を示した図。The figure which showed the example of the time transition of the generated electric power when the electric power generation system 10 which concerns on Example 1 is not provided with the function which adjusts the synthetic | combination power generation power of solar power generation power and wind power generation power below to a grid connection capacity | capacitance . 実施例1に係る発電システム10において、発電電力演算部17および風力発電制御装置18が実行する制御手順の例を示した図。The figure which showed the example of the control procedure which the electric power generation calculating part 17 and the wind power generation control apparatus 18 perform in the electric power generation system 10 which concerns on Example 1. FIG. 太陽光発電電力の予測値に応じて発電される風力発電電力および合成発電電力の時間推移の例を示した図。The figure which showed the example of the time transition of the wind power generation electric power generated according to the predicted value of solar power generation electric power, and synthetic | combination generation electric power. 本発明における既存太陽光発電設備と、新規に設置する風力発電設備を追加する場合のステップの例を示した図。The figure which showed the example of the step in the case of adding the existing solar power generation equipment in this invention, and the newly installed wind power generation equipment. 本発明の実施例2に係る発電システムの構成の例を示した図。The figure which showed the example of the structure of the electric power generation system which concerns on Example 2 of this invention. 系統連系容量を100%とした場合に上限値を98%に設定した場合の、系統連系容量に対する超過分を算出した結果を示す図。The figure which shows the result of having calculated the excess with respect to a grid connection capacity | capacitance when an upper limit is set to 98% when a grid connection capacity | capacitance is set to 100%. 系統連系容量と上限値を同じに設定した場合の、系統連系容量に対する合成発電電力の超過分を比較して示した図。The figure which compared and showed the excess of the synthetic | combination generated electric power with respect to a grid connection capacity | capacitance when a grid connection capacity | capacitance and an upper limit are set the same. 本発明の実施例3に係る発電システムの構成の例を示した図。The figure which showed the example of the structure of the electric power generation system which concerns on Example 3 of this invention. 実施例3に係る発電システム10において発電制御装置16が実行する制御手順の例を示した図。The figure which showed the example of the control procedure which the electric power generation control apparatus 16 performs in the electric power generation system 10 which concerns on Example 3. FIG. 本発明の実施例3に係る発電システム10において蓄電池制御装置23が実行する制御手順の例を示した図。The figure which showed the example of the control procedure which the storage battery control apparatus 23 performs in the electric power generation system 10 which concerns on Example 3 of this invention. 本発明の実施例3に係る発電システム10に設定された計画値Ppおよび商用電力系統20へ供給される電力の時間推移の例を示した図。The figure which showed the example of the time transition of the plan value Pp set to the electric power generation system 10 which concerns on Example 3 of this invention, and the electric power supplied to the commercial power grid. 太陽光発電設備11の発電電力の平均値からの予測手法例を示す図。The figure which shows the example of a prediction method from the average value of the generated electric power of the solar power generation equipment 11. FIG. 太陽光発電設備11の発電電力の最大値(または最小値)からの予測手法例を示す図。The figure which shows the example of a prediction method from the maximum value (or minimum value) of the generated electric power of the solar power generation equipment 11. FIG. 図15の太陽光発電電力の最大値を予測値とした場合の、風車発電電力との合成発電電力を示す図。The figure which shows the synthetic | combination generated electric power with a windmill electric power generation at the time of setting the maximum value of the solar power generation electric power of FIG. 15 as a predicted value. 時間当たりの発電電力変化率(dp/dt)が設定値を超える場合に、太陽光発電設備11に出力制限をかけた例を示す図。The figure which shows the example which applied the output restriction | limiting to the solar power generation equipment 11, when the generated power change rate per time (dp / dt) exceeds a setting value. 時間当たりの発電電力変化率(dp/dt)の損失評価結果を示した図。The figure which showed the loss evaluation result of the generated power change rate per hour (dp / dt).
 以下、本発明の実施例について、図面を参照して詳細に説明するが、まず、本発明の前提となる考え方、および基本概念を明らかにしておく。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, the concept and basic concept which is the premise of the present invention will be clarified.
 また実施例の項では、本発明についての多様な形態の実施例について説明する。そのため、ここでは、実施例の全体構成について予め述べておく。まず、実施例1では第1の発電設備と第2の発電設備の合成発電電力が系統連系容量を超過しないようにするために、太陽光発電設備の発電電力の予測値に基づき風力発電設備の出力を制限する発電制御装置について説明する。実施例2では、太陽光発電設備の発電電力の現在値に基づき風力発電設備の発電電力を制限する発電制御装置について説明する。実施例3では、蓄電設備を用いて、発電システム全体としての連系電力を調整する風力発電制御装置について説明する。実施例4は、予測手法について具体的に説明する。実施例5は、本発明を実施する上でのその他の事例を説明している。なお、各図面において、共通する構成要素には同一の符号を付し、重複した説明を省略する。 In the section of the embodiments, various embodiments of the present invention will be described. Therefore, here, the overall configuration of the embodiment will be described in advance. First, in Example 1, in order to prevent the combined generated power of the first power generation facility and the second power generation facility from exceeding the grid interconnection capacity, the wind power generation facility is based on the predicted value of the generated power of the solar power generation facility. A power generation control device that limits the output of the power will be described. In the second embodiment, a power generation control device that limits the generated power of the wind power generation facility based on the current value of the generated power of the solar power generation facility will be described. In the third embodiment, a wind power generation control device that adjusts interconnection power as the entire power generation system using a power storage facility will be described. Example 4 will specifically describe the prediction method. Example 5 describes another example in practicing the present invention. In addition, in each drawing, the same code | symbol is attached | subjected to a common component and the overlapping description is abbreviate | omitted.
 本発明の前提となる考え方、および基本概念は、以下に記す通りである。 The concept and basic concept which are the premise of the present invention are as described below.
 現状、連系点に供給可能な最大電力に応じ、発電設備の系統連系容量は設定される。例えば、既に稼働している状態の太陽光発電設備のみ、10,000kWの最大(定格)電力システムにおいて、系統連系容量は10,000kWで確保されている。系統連系容量に対する実際の発電電力は、年間平均とすると太陽光発電では概ね15%、風力発電設備では概ね25%(ともに全国平均)とされている。つまり、太陽光発電や風力発電の場合は、確保した系統連系容量が有効に活用されていない。 現状 Currently, the grid interconnection capacity of the power generation facility is set according to the maximum power that can be supplied to the interconnection point. For example, only the photovoltaic power generation equipment that is already in operation has a grid interconnection capacity of 10,000 kW in a 10,000 kW maximum (rated) power system. The actual generated power with respect to the grid interconnection capacity is about 15% for solar power generation and about 25% for wind power generation facilities (both national average). That is, in the case of photovoltaic power generation or wind power generation, the secured grid interconnection capacity is not effectively utilized.
 このため、現状の系統連系ルールを遵守しながら、連系発電電力を拡大し、系統連系容量に対する実際の発電電力(設備利用率)を向上させることが望ましい。例えば、既接続の太陽光発電設備に風力発電設備を新規設置できれば、有効な解決手段になり得る。具体的には、最大出力が太陽光発電設備の50%(5,000kW分)の風力発電設備と、風力発電制御装置を追加することで、発電電力を増加させ、系統連系容量に対する発電電力の設備利用率を例えば、従来の15%程度から30~40%以上に増大することができる。これは、夜間や雨天時には太陽光発電は発電電力が小さい一方で、風力発電は夜間や雨天時でも一定量以上の風さえ吹いていれば発電できるためである。 Therefore, it is desirable to expand the grid power generation while observing the current grid grid rules, and to improve the actual power generation (equipment utilization rate) with respect to grid grid capacity. For example, if a new wind power generation facility can be installed in an already connected solar power generation facility, it can be an effective solution. Specifically, by adding a wind power generation facility with a maximum output of 50% (5,000 kW) of the solar power generation facility and a wind power generation control device, the generated power is increased and the generated power for the grid interconnection capacity For example, the equipment utilization rate can be increased from about 15% to 30-40% or more. This is because photovoltaic power generation is small during nighttime and rainy weather, while wind power generation can generate power even when a certain amount of wind is blowing even during nighttime or rainy weather.
 本発明における発電システムの場合、太陽光発電設備の発電電力と、風力発電設備の発電電力の合計である合成発電電力が、系統連系容量を超過することができないという制約条件がある。このため、超過を防止するための何らかの制御機能を設け、適切な方法で制御する必要がある。本発明の一例では、太陽光発電設備の発電電力は制限をかけずにフリーな運転を行うため、風力発電設備のほうで発電電力を制限する。実際に、太陽光発電設備に対して、風力発電設備の導入量を増加していくと、それらの合成発電電力が系統連系容量を超過する時間が存在し、かつ風力発電設備の導入量が増加するにしたがい、系統連系容量を超過する回数も増加することがわかった。 In the case of the power generation system of the present invention, there is a constraint that the combined generated power that is the sum of the generated power of the solar power generation facility and the generated power of the wind power generation facility cannot exceed the grid interconnection capacity. For this reason, it is necessary to provide some kind of control function for preventing the excess and to control by an appropriate method. In one example of the present invention, the generated power of the photovoltaic power generation facility is operated without restriction, and thus the generated power is limited by the wind power generation facility. In fact, if the amount of wind power generation equipment is increased with respect to solar power generation equipment, there will be a time when the combined power generation will exceed the grid interconnection capacity, and the amount of wind power generation equipment installed will It was found that the number of times exceeding the grid interconnection capacity increased as the number increased.
 分析した結果、超過の原因は太陽光発電設備や風力発電設備の発電電力が急激に変化する場合であることがわかった。具体的には、雲の切れ間から太陽が現れる場合や、低風速から高風速へ一気に転じる場合などである。本発明は、このような事象が生じても、合成発電電力が系統連系容量を超過しないことが特徴である。これを実現するには、太陽光発電設備に対する風力発電設備の比率を適切にすること、ならびに太陽光発電設備と風力発電設備の合成発電電力を制御によって系統連系容量以下に設定しておくなどで対策する必要がある。 As a result of the analysis, it was found that the cause of the excess was when the generated power of the solar power generation facility or the wind power generation facility changed suddenly. Specifically, there are a case where the sun appears through the clouds and a case where the sun changes from a low wind speed to a high wind speed. The present invention is characterized in that even if such an event occurs, the combined generated power does not exceed the grid interconnection capacity. To achieve this, the ratio of wind power generation equipment to solar power generation equipment should be appropriate, and the combined generated power of the solar power generation equipment and wind power generation equipment should be set below the grid interconnection capacity by control, etc. It is necessary to take countermeasures.
 また、系統連系容量を超えないように、太陽光発電の発電電力を監視しながら、風力発電設備の出力制限指令を送信する場合を想定すると、実際に風力発電設備の発電電力が設定値になるまでの時間が概ね30~60秒を要する。このため、太陽光発電設備に対する風力発電設備の比率を適切にしておいても瞬間的に系統連系容量を超過する場合がある。この点も考慮して、太陽光発電設備に対する風力発電設備の比率にしておくことが重要である。 In addition, assuming that the output limit command for wind power generation equipment is transmitted while monitoring the power generation of solar power generation so that the grid interconnection capacity is not exceeded, the power generation power of the wind power generation equipment is actually set to the set value. It takes about 30 to 60 seconds to complete. For this reason, even if the ratio of the wind power generation equipment to the solar power generation equipment is made appropriate, the grid interconnection capacity may be instantaneously exceeded. Considering this point, it is important to set the ratio of the wind power generation equipment to the solar power generation equipment.
 以上のことから、太陽光発電設備と風力発電設備の合計発電電力の上限値を系統連系容量と同じに設定しておくのではなく、例えば、上限値を系統連系容量の98%となる出力に設定しておくことで、系統連系容量を超過することがなくなった。このように系統連系容量やあらかじめ設置した発電電力に対して超過する可能性がある場合に、前記上限値に余裕を持たせた設定値にすることは有効である。 From the above, instead of setting the upper limit value of the total generated power of the solar power generation facility and the wind power generation facility to be the same as the grid interconnection capacity, for example, the upper limit value is 98% of the grid interconnection capacity. By setting the output, the grid interconnection capacity is no longer exceeded. Thus, when there is a possibility of exceeding the grid interconnection capacity or the generated power installed in advance, it is effective to set the upper limit value with a margin.
 また、太陽光発電設備と風力発電設備の合成発電電力の絶対値が少ない場合と多い場合でも、系統連系容量に対する好適な比率は変わってくる。つまり、発電設備の規模によって変化する。上記では、合成発電電力の上限値を系統連系容量の98%に設定したが、系統連系容量に対する好適な比率(設定値)は、全体システム構成、風車性能や追従性により変わる。したがって、その数値を限定するものではない。 In addition, even when the absolute value of the combined generated power of the solar power generation facility and the wind power generation facility is small or large, the suitable ratio to the grid interconnection capacity varies. In other words, it varies depending on the scale of the power generation facility. In the above, the upper limit value of the combined generated power is set to 98% of the grid interconnection capacity, but a suitable ratio (set value) to the grid interconnection capacity varies depending on the overall system configuration, wind turbine performance, and followability. Therefore, the numerical value is not limited.
 風力発電設備の発電電力を制御する方法としては、太陽光発電設備の出力を常時読み取り、その読み取った値から任意の時間における平均値、最大値、最小値、中間値、瞬時値などから風力発電設備の発電出力指令値を算出し、その値を1基あるいは複数基の風車に送信し、この指令に基づいて風力発電設備の出力制限を行うというものである。 As a method of controlling the power generated by the wind power generation facility, the output of the solar power generation facility is always read, and the average value, maximum value, minimum value, intermediate value, instantaneous value, etc. at any time from the read value is used for wind power generation. The power generation output command value of the facility is calculated, the value is transmitted to one or a plurality of wind turbines, and the output of the wind power generation facility is limited based on this command.
 風車の出力制限は、出力制限指令値に応じて、風車の羽根(以下、ブレードという)の角度を調整するピッチコントロール制御(以下、ピッチ制御)、風車の励磁電圧制御およびパワーコンディショナー制御により、個々の風車出力を調整する。また、指令を送った風車の出力を監視しながら、その風車指令値と実際の風車出力を比較し、個々の風車指令値を決定するフィードバック制御を10秒程度の周期で行うことも効果的である。 Wind turbine output limits are individually controlled by pitch control control (hereinafter referred to as pitch control) that adjusts the angle of the wind turbine blades (hereinafter referred to as blades), wind turbine excitation voltage control, and power conditioner control according to the output limit command value. Adjust the wind turbine output. It is also effective to perform feedback control with a period of about 10 seconds while monitoring the output of the windmill that sent the command, comparing the windmill command value with the actual windmill output, and determining each windmill command value. is there.
 太陽光発電設備の最大出力に対し、どの程度の最大出力の風力発電設備を追加するかは、これまでの系統連系容量に対する設備利用率や稼働率の他、地域の太陽光データ、風況、設備性能等により異なる。例えば、再生可能エネルギーを用いた発電システムは時期により設備利用率が変動する。太陽光発電設備の設備利用率の高い時期(5月)を基準として風力発電設備の最大出力を定めることで、風力発電設備の出力制限量の低い設備を構築することが可能である。一方、太陽光発電設備の設備利用率の低い時期(1月)を基準として風力発電設備の最大出力を定めると、設備利用率の高い発電システムを提供可能となる。また、8月等、電力使用量が多いとされている時期に商用電力系統に多く電力を供給するシステムは公共の利益にかなう。 The maximum output of wind power generation facilities relative to the maximum output of solar power generation facilities depends on the utilization rate and operating rate of the grid interconnection capacity so far, as well as local solar data and wind conditions. Depends on equipment performance. For example, in a power generation system using renewable energy, the facility utilization rate varies depending on the time. By setting the maximum output of the wind power generation facility based on the period when the facility utilization rate of the solar power generation facility is high (May), it is possible to construct a facility with a low output limit of the wind power generation facility. On the other hand, if the maximum output of the wind power generation facility is determined based on the period when the facility utilization rate of the solar power generation facility is low (January), a power generation system with a high facility utilization rate can be provided. In addition, a system that supplies a large amount of power to the commercial power system at a time when the amount of power consumption is considered to be large, such as in August, is in the public interest.
 設備利用率は地域によっても異なる。特に、太陽光発電設備の設備利用率と風力発電設備の設備利用率が時期により相反する地域で適用すると、発電設備を併用することで風車の出力制限量が少なく、発電電力が安定するため好ましい。 The facility utilization rate varies depending on the region. In particular, when applied in areas where the facility utilization rate of solar power generation facilities and the facility utilization rate of wind power generation facilities conflict with each other, it is preferable to use the power generation facilities together because the output limit amount of the windmill is small and the generated power is stable. .
 適用する太陽光発電設備は、最大出力が1,000kW以上のもの、いわゆるメガソーラーの規模が望ましい。系統連系容量に達するための発電量が多く、連系発電電力の拡大の効果を奏しやすいためである。また、適用する風力発電設備は、太陽光発電設備の最大出力の40%~80%であることが好ましい。この場合に、発電電力を増加させつつ、風力発電設備の出力制限を最小限に抑えることが可能である。また、この比率は太陽光発電設備と風力発電設備の合成発電電力が系統連系容量を超過しないための適した比率ということもできる。ただし、この比率も地域によっても異なるため、数値を限定するものではない。また、発電設備が過積載の場合でも、系統連系容量を考慮した本発明を適用することで何ら問題なく運用可能である。 It is desirable that the solar power generation equipment to be applied has a maximum output of 1,000 kW or more, that is, a so-called mega solar scale. This is because the amount of power generation to reach the grid interconnection capacity is large, and it is easy to achieve the effect of expansion of the grid generated power. The applied wind power generation equipment is preferably 40% to 80% of the maximum output of the solar power generation equipment. In this case, it is possible to minimize the output limit of the wind power generation facility while increasing the generated power. This ratio can also be said to be a suitable ratio for the combined generated power of the solar power generation facility and the wind power generation facility not to exceed the grid interconnection capacity. However, since this ratio also varies depending on the region, the numerical value is not limited. Further, even when the power generation facility is overloaded, it can be operated without any problems by applying the present invention in consideration of the grid interconnection capacity.
 以上のことから本発明は、太陽光発電設備と風力発電設備の合成発電出力が、連系点に供給可能な発電電力(系統連系容量)を超えるか同等の発電システムであって、太陽光発電設備の発電電力の現在値または予測値に基づき風力発電設備の出力を制限する発電制御装置を備えるものである。 From the above, the present invention is a power generation system in which the combined power generation output of the solar power generation facility and the wind power generation facility exceeds or is equivalent to the generated power (system interconnection capacity) that can be supplied to the interconnection point. A power generation control device that limits the output of the wind power generation facility based on the current value or the predicted value of the generated power of the power generation facility is provided.
 したがって、本発明に係る発電システム、発電制御装置、発電制御方法および発電システムの連系発電電力の拡大方法は、上記課題を解決するための手段の欄に記載されたものであって、さらに、下記の特徴のいずれか一つ、または複数を有するものである。
(1)発電システムが電力を蓄電する蓄電設備と、蓄電設備の充放電を制御する蓄電池制御装置とを備え、
発電制御装置は、第1の発電設備が発電する電力と、第2の発電設備が発電する電力を合計した合成発電電力が、系統連系容量から設定された上限値あるいは任意に与えた目標値を超えるか否かを判定し、上限値あるいは任意に与えた目標値を超える場合には、蓄電池制御装置に対し、上限値あるいは任意に与えた目標値を超える分の電力を蓄電設備に蓄電させることを指令して、上限値あるいは任意に与えた目標値を最大値として電力系統へ供給する電力を減少させ、
第1の発電設備が発電する電力と、第2の発電設備が発電する電力を合計した合成発電電力が、上限値あるいは任意に与えた目標値に達しない場合には、蓄電池制御装置に対し、上限値あるいは任意に与えた目標値に達しない分の電力を蓄電設備から放電させることを指令して、上限値あるいは任意に与えた目標値を最大値として電力系統へ供給する電力を増加させ、
充放電の指令を蓄電池制御装置に出力制御信号として送信する。
(2)第1の発電設備は太陽光をエネルギー源とする太陽光発電設備、あるいは風力をエネルギー源とする風力発電設備のいずれかであり、かつ第2の発電設備は風力発電設備、あるいは太陽光発電設備である。
(3)出力制御信号を与えて出力制限する第1の発電設備または第2の発電設備を、経済性等を考慮して選択する機能を有する。
(4)第1の発電設備あるいは第2の発電設備の単位時間当たりの発電電力の変動が規定値を超えた場合には、片方あるいは両方の発電設備の制限指令値に気象状態に応じた係数で加減乗除して可変にする機能を有する。
(5)第1の発電設備の発電電力を予測する場合に、各種データに重み付けする。
(6)第1の発電設備の発電電力を予測する場合に、少なくとも日射量、日射強度、風速、風向、気圧、気温、降水量、相対湿度、日照時間、気象衛星画像などの上空からの画像、地上からの画像から選ばれる少なくとも1つ、またはそれらを組合せた複数データを用いる。
(7)第1の発電設備の発電電力を予測する場合に、所定期間内に求めた第1の発電設備の発電電力の過去の計測値に対して、少なくとも所定期間内の平均値、最大値、最小値、中間値、瞬時値の少なくとも1つを含む複数の値を求め、求めた複数の値の中からその時の気象条件に応じて選択した値を第1の発電設備の発電電力の予測値として使用する。
(8)第2の発電設備の発電電力を制御する第2の発電制御装置に対する制限指令値を出力制御信号として一定時間あるいは任意時間間隔ごとに送信するとともに、第2の発電制御装置は、次に出力制御信号を受信するまでの期間は、今回受信した制限指令値に従って第2の発電設備の発電電力を制御する。
(9)第1の発電設備あるいは第2の発電設備の時間当たりの発電電力変化率が設定値を超える場合に、第1の発電設備あるいは第2の発電設備の片方あるいは両方に出力制限をかけることにより、第1の発電設備あるいは第2の発電設備の時間当たりの発電電力変化率を設定値以下に制御する。
(10)第1の再生可能エネルギー源により電力を発電する第1の発電設備と、第2の再生エネルギー源により電力を発電する第2の発電設備とを備え、第1の発電設備が発電する電力と、第2の発電設備が発電する電力を合計した合成発電電力を、変電所を介して商用の電力系統に供給し、
第1の発電設備は、その入力である第1の再生可能エネルギー源に従って発電し、第2の発電設備は、その入力である第2の再生可能エネルギー源に従って制限指令値の範囲内で発電するとともに、制限指令値は、第1の発電設備の発電電力の予測値と系統連系容量から設定された上限値あるいは任意に与えた目標値との差分に応じて設定する。その結果、合成発電電力が系統連系容量から設定された上限値または任意に与えられた目標値を超過しないようにする。
Therefore, the power generation system, the power generation control device, the power generation control method, and the method for expanding the grid-generated power of the power generation system according to the present invention are described in the column of means for solving the above problems, and It has one or more of the following characteristics.
(1) The power generation system includes a power storage facility that stores power, and a storage battery control device that controls charging and discharging of the power storage facility,
The power generation control device is configured such that the combined power generated by summing the power generated by the first power generation facility and the power generated by the second power generation facility is an upper limit value set from the grid interconnection capacity or a target value given arbitrarily. If the upper limit value or the arbitrarily given target value is exceeded, the storage battery control device causes the power storage facility to store the electric power exceeding the upper limit value or the arbitrarily given target value. Reduce the power supplied to the power system with the upper limit value or the target value given arbitrarily as the maximum value,
When the combined power generated by summing the power generated by the first power generation facility and the power generated by the second power generation facility does not reach the upper limit value or the arbitrarily given target value, Command to discharge power from the power storage facility for the amount not reaching the upper limit value or arbitrarily given target value, and increase the power supplied to the power system with the upper limit value or arbitrarily given target value as the maximum value,
A charge / discharge command is transmitted to the storage battery control device as an output control signal.
(2) The first power generation facility is either a solar power generation facility using sunlight as an energy source or a wind power generation facility using wind power as an energy source, and the second power generation facility is a wind power generation facility or solar power. It is a photovoltaic power generation facility.
(3) It has a function of selecting the first power generation facility or the second power generation facility to which the output is limited by giving an output control signal in consideration of economics and the like.
(4) When the fluctuation of the generated power per unit time of the first power generation facility or the second power generation facility exceeds the specified value, the limit command value of one or both power generation facilities is a coefficient corresponding to the weather condition It has a function to make it variable by adding / subtracting / dividing with.
(5) When predicting the generated power of the first power generation facility, various data are weighted.
(6) When predicting the power generated by the first power generation facility, at least the amount of solar radiation, solar radiation intensity, wind speed, wind direction, atmospheric pressure, temperature, precipitation, relative humidity, sunshine duration, weather satellite image, etc. , At least one selected from images from the ground, or a plurality of data obtained by combining them.
(7) When predicting the generated power of the first power generation facility, the average value and the maximum value within at least the predetermined period with respect to the past measured value of the generated power of the first power generation facility determined within the predetermined period A plurality of values including at least one of a minimum value, an intermediate value, and an instantaneous value, and a value selected according to the meteorological condition at that time from the obtained values is predicted for the generated power of the first power generation facility Use as a value.
(8) A limit command value for the second power generation control device that controls the generated power of the second power generation facility is transmitted as an output control signal at regular time intervals or at arbitrary time intervals, and the second power generation control device During the period until the output control signal is received, the generated power of the second power generation facility is controlled in accordance with the limit command value received this time.
(9) When the rate of change in generated power per hour of the first power generation facility or the second power generation facility exceeds the set value, output restriction is applied to one or both of the first power generation facility and the second power generation facility. Thus, the rate of change in generated power per hour of the first power generation facility or the second power generation facility is controlled to be equal to or less than the set value.
(10) The first power generation facility includes a first power generation facility that generates electric power from the first renewable energy source and a second power generation facility that generates electric power from the second renewable energy source. Supply the combined power generated by adding the power and the power generated by the second power generation facility to the commercial power system via the substation,
The first power generation facility generates power according to the first renewable energy source that is the input, and the second power generation facility generates power within the limit command value range according to the second renewable energy source that is the input. At the same time, the limit command value is set according to the difference between the predicted value of the generated power of the first power generation facility and the upper limit value set from the grid interconnection capacity or the target value given arbitrarily. As a result, the combined generated power is prevented from exceeding the upper limit value or arbitrarily given target value set from the grid interconnection capacity.
 実施例1では、図1から図7を用いて、太陽光発電設備の発電電力の予測値に基づき風力発電設備の出力を制限する発電制御装置について説明する。 In Example 1, a power generation control device that limits the output of a wind power generation facility based on a predicted value of the generated power of the solar power generation facility will be described with reference to FIGS. 1 to 7.
 図1は、本発明の実施例1に係る発電システム10の構成の例を示した図である。本発明が適用される発電システム10の電力主回路構成は、太陽光発電設備11と風力発電設備13を備え、その合成発電電力が連系点19、変電所20を介して商用電力系統21に接続されている。なお以下の説明では、太陽光発電設備11からの送電線と、風力発電設備13からの送電線は、同一の連系点19に接続されている。この場合、同一の連系点19につながる特徴上、太陽光発電設備11と風力発電設備13は、近隣(数km~10数km程度以内)の距離に配しておくことが望ましい。但し連系点19に接続することを前提に記載しているが、同一の連系点に接続していない場合にも同様の制御が可能である。また太陽光発電設備11と風力発電設備13は、その各々が複数の設備(複数の風力発電機など)により構成されたものであってもよい。 FIG. 1 is a diagram illustrating an example of a configuration of a power generation system 10 according to Embodiment 1 of the present invention. The power main circuit configuration of the power generation system 10 to which the present invention is applied includes a solar power generation facility 11 and a wind power generation facility 13, and the combined generated power is supplied to a commercial power system 21 via a connection point 19 and a substation 20. It is connected. In the following description, the power transmission line from the solar power generation facility 11 and the power transmission line from the wind power generation facility 13 are connected to the same interconnection point 19. In this case, it is desirable that the solar power generation equipment 11 and the wind power generation equipment 13 are arranged at a distance in the vicinity (within a few km to about a few tens km) because of the characteristic of being connected to the same interconnection point 19. However, although it is described on the assumption that the connection point 19 is connected, the same control is possible even when the connection point 19 is not connected. Each of the solar power generation facility 11 and the wind power generation facility 13 may be configured by a plurality of facilities (a plurality of wind power generators or the like).
 太陽光発電設備11と風力発電設備13は、多くの場合にその一方が既設設備、他方が新設設備であり、太陽光発電設備11と風力発電設備13を組み合わせた発電システムとすることで、お互いの発電効率を補完し、全体として設備利用率が高い発電設備とすることができる。係る発電設備においては、商用電力系統21との間で事前に定められた、発電システム10が供給する最大出力電力(系統連系容量)を変更することなく、発電設備追加設置後も遵守する必要がある。なお系統連系容量の遵守のため、発電システム10には系統連系容量を超過しないように、過出力検出器を設置することが好ましい。 In many cases, one of the solar power generation equipment 11 and the wind power generation equipment 13 is an existing equipment, and the other is a new equipment. As a whole, it is possible to provide a power generation facility with a high facility utilization rate. In such power generation facilities, the maximum output power (system interconnection capacity) supplied by the power generation system 10 determined in advance with the commercial power system 21 is not changed, and must be observed after the additional installation of the power generation facilities. There is. In order to comply with the grid interconnection capacity, it is preferable to install an overpower detector in the power generation system 10 so as not to exceed the grid interconnection capacity.
 なお、図1において、矢印付きの太実線は、電力線および電力が流れる方向を表し、矢印付きの細実線は、制御または情報の伝送線およびその伝送方向を表している。また、この電力線(矢印付きの太実線)の途中には、直流電力を交流電力に変換するインバータや変圧器などが適宜設けられているが、ここでは、その図示を省略している。また、太陽光発電設備11に用いられる太陽光発電パネルは、多結晶シリコン型発電素子、単結晶シリコン型発電素子、薄膜型発電素子などで構成されるものとするが、素子の種類をとくに限定するものではない。 In FIG. 1, a thick solid line with an arrow represents a power line and a direction in which power flows, and a thin solid line with an arrow represents a control or information transmission line and its transmission direction. Further, in the middle of the power line (thick solid line with an arrow), an inverter, a transformer, and the like that convert DC power into AC power are provided as appropriate, but illustration thereof is omitted here. The solar power generation panel used in the solar power generation facility 11 is composed of a polycrystalline silicon type power generation element, a single crystal silicon type power generation element, a thin film type power generation element, and the like, but the types of elements are particularly limited. Not what you want.
 図1においては、発電制御装置15により、太陽光発電設備11と風力発電設備13による合計の発電量が系統連系容量以下となるべく制御されている。このため、発電制御装置15内の発電電力演算部17部分に、太陽光発電電力予測部16と記憶部23が設けられている。実施例1に係る太陽光発電電力予測部16は、所定の時間(例えば30分)ごとに気象観測所22から取得される外部情報、または電力系統の計測情報に基づき、現時点から所定の時間の間の日射量などを予測し、その予測結果に基づき太陽光発電設備11の発電電力を予測する。 In FIG. 1, the power generation control device 15 controls the total power generation amount by the solar power generation facility 11 and the wind power generation facility 13 to be less than the grid interconnection capacity. For this reason, the solar power generation power prediction unit 16 and the storage unit 23 are provided in the generated power calculation unit 17 portion in the power generation control device 15. The photovoltaic power generation prediction unit 16 according to the first embodiment is based on external information acquired from the weather station 22 every predetermined time (for example, 30 minutes) or measurement information of the power system for a predetermined time from the present time. The amount of solar radiation in the meantime is predicted, and the generated power of the photovoltaic power generation facility 11 is predicted based on the prediction result.
 次に、太陽光発電電力予測部16は、系統連系容量から前記予測した太陽光発電設備11の発電電力を差し引いた出力値を、風力発電電力制御指令として風力発電制御装置18へ送信する。風力発電制御装置18は、この風力発電電力制御指令を受信すると、次の風力発電電力制御指令を受信までの間、風力発電設備13の発電電力がこの風力発電電力制御指令を超えないように指示する。 Next, the solar power generation power prediction unit 16 transmits an output value obtained by subtracting the predicted power generation power of the solar power generation facility 11 from the grid interconnection capacity to the wind power generation control device 18 as a wind power generation power control command. When the wind power generation control device 18 receives this wind power generation power control command, it instructs that the generated power of the wind power generation facility 13 does not exceed this wind power generation power control command until the next wind power generation power control command is received. To do.
 その結果、風力発電設備13は、その発電電力がこの風力発電電力制御指令を超えるような場合があっても、ブレードのピッチ制御などにより、発電電力を前記風力発電電力制御指令以内に抑えることができる。したがって、発電制御装置15は、系統連系容量を超えない出力を商用電力系統21へ供給することができる。 As a result, the wind power generation facility 13 can suppress the generated power within the wind power generation control command by blade pitch control or the like even when the generated power exceeds the wind power control command. it can. Therefore, the power generation control device 15 can supply the commercial power system 21 with an output that does not exceed the grid interconnection capacity.
 太陽光発電電力予測部16における太陽光発電電力を予測する方法としては、様々な方法を用いることができる。これらは例えば気象観測所22から取得される気象についての外部情報、または電力系統の計測情報などである。ここでは気象についての外部情報を例示すると、気象衛星による雲画像例えば、気象衛星による雲画像を利用した日射量予測、気象予報に基づく日射量予測、当該太陽光発電設備11による過去の発電データを利用した日射量予測、さらには、これらを組み合わせた予測、パターンマッチングの予測など、そのいずれを用いてもよい。また、これらの太陽光発電電力の予測において、日射量の他に、気圧、気温、降水量、相対湿度、風速、および、これらの時間的な変化量から選ばれた1つまたは複数のデータを組み合わせて用いることは、予測の精度向上を図る上で有効である。なお、特に電力系統の計測情報からの具体的な予測手法について、実施例4の中で後述する。 Various methods can be used as a method for predicting the photovoltaic power generation in the photovoltaic power generation prediction unit 16. These are, for example, external information about the weather acquired from the weather station 22 or measurement information of the power system. Here, when external information about weather is illustrated, a cloud image by a weather satellite, for example, a solar radiation amount prediction using a cloud image by a weather satellite, a solar radiation amount prediction based on a weather forecast, and past power generation data by the solar power generation facility 11 are obtained. Any of solar radiation amount prediction used, prediction combining these, and pattern matching prediction may be used. In addition, in the prediction of solar power generation, in addition to the amount of solar radiation, one or more data selected from atmospheric pressure, temperature, precipitation, relative humidity, wind speed, and the amount of change over time are selected. Use in combination is effective in improving prediction accuracy. In particular, a specific prediction method from the measurement information of the power system will be described later in the fourth embodiment.
 実施例1では、以上のような太陽光発電電力の予測をする基礎となる日射量などのデータは、気象観測所22から得られるものとしている。したがって、ここでいう気象観測所22とは、気象衛星、気象台、測候所、その他の気象観測ポイントで観測された気象データを提供する観測地のことを指す。 In the first embodiment, it is assumed that data such as the amount of solar radiation that is the basis for the prediction of the photovoltaic power generation as described above is obtained from the weather station 22. Accordingly, the meteorological station 22 here refers to an observation site that provides meteorological data observed at a meteorological satellite, a meteorological observatory, a weather station, and other meteorological observation points.
 さらに、気象観測所22は、太陽光発電設備11の近傍に独自に設けられたものであってもよい。この場合には、太陽光発電設備11の近傍で観測された日射量、気圧、気温、降水量、相対湿度、風速などのデータを用いることができるため、太陽光発電電力予測部16は、太陽光発電電力の予測精度を向上させることができる。また、独自の気象観測所22の設置時に、その設置場所を予め最適化しておくことは、太陽光発電電力の予測精度向上を図る上で効果があることは言うまでもない。 Further, the weather station 22 may be provided independently in the vicinity of the solar power generation facility 11. In this case, data such as the amount of solar radiation, atmospheric pressure, temperature, precipitation, relative humidity, and wind speed observed in the vicinity of the photovoltaic power generation facility 11 can be used. The prediction accuracy of photovoltaic power can be improved. Needless to say, optimizing the installation location in advance when installing the unique weather station 22 is effective in improving the prediction accuracy of the photovoltaic power generation.
 また、ここでいう独自の気象観測所22は、気象観測機器に加えて、気象衛星データを入手するシステムや、全天空写真を撮影するための魚眼カメラなどを備えていてもよい。あるいは、気象観測機器を備えず、その他の機器だけで構成されていてもよい。気象衛星写真や魚眼カメラでの写真では、全天空における太陽の位置と雲の位置関係を直接に表した画像を得ることができることから、その画像の解析により数秒あるいは数分先の日射量を高精度に予測することができる。 Further, the unique weather station 22 referred to here may be equipped with a system for obtaining meteorological satellite data, a fish-eye camera for taking a sky photo, and the like in addition to the weather observation equipment. Or you may be comprised only with other apparatuses, without providing a weather observation apparatus. With weather satellite photographs and fish-eye camera images, it is possible to obtain an image that directly represents the position of the sun and clouds in the entire sky. Predict with high accuracy.
 実施例1に係る発電制御装置15は、気象観測所22から得られた様々なデータ、特に太陽光発電電力予測部16での予測に利用されたデータを、日時、予測結果、実績発電電力などに関連付けて蓄積するための記憶部23を備えている。このようなデータが記憶部23に蓄積されると、太陽光発電電力予測部16は、その後の太陽光発電電力の予測時に、過去の類似した日時における同様の気象条件下での予測結果および実績発電電力を利用することができる。その結果、太陽光発電電力予測部16は、そのとき予測した太陽光発電電力の予測値を過去の実績値やその統計値に照らして補正したりすることが可能になるので、予測精度の向上が図られる。 The power generation control device 15 according to the first embodiment uses various data obtained from the weather station 22, particularly data used for prediction in the photovoltaic power generation prediction unit 16, date and time, prediction result, actual generated power, etc. A storage unit 23 is provided for storing in association with each other. When such data is accumulated in the storage unit 23, the photovoltaic power generation prediction unit 16 predicts the result of the prediction under the same weather condition at a similar date and time in the past at the time of prediction of the subsequent photovoltaic power generation. The generated power can be used. As a result, the photovoltaic power generation prediction unit 16 can correct the predicted value of the photovoltaic power generation predicted at that time in the light of the past actual value or its statistical value, thereby improving the prediction accuracy. Is planned.
 なお、以上に説明したいずれの予測方法においても、気象観測データや太陽光発電電力の予測データには必ず誤差が伴うことを考慮しておく必要がある。そして、それらのデータの誤差の傾向や相関関係がわかっている場合には、バイアス補正などの手法を適用するなど、誤差を予測し加味した補正をすることが可能となる。このような誤差を考慮した予測値の補正は、太陽光発電電力の予測値の精度が向上するだけでなく、より適切な風力発電電力制御指令を設定することが可能になる。 In any of the prediction methods described above, it is necessary to take into account that the weather observation data and the prediction data of photovoltaic power generation always have errors. Then, when the error tendency or correlation of these data is known, it is possible to make corrections by predicting and taking into account errors, such as applying a bias correction method. The correction of the predicted value in consideration of such an error not only improves the accuracy of the predicted value of the solar power generation power, but also makes it possible to set a more appropriate wind power generation control command.
 また、上記のような発電電力予測手段のほか、同様の情報を外部より取得してもよい。太陽光発電設備11の発電電力の予測をシステム外で行い、発電制御装置15には、情報を取得する情報受信手段及び記憶部を備える。 In addition to the above-described power generation prediction means, similar information may be acquired from the outside. The power generation control device 15 is provided with an information receiving unit and a storage unit that perform prediction of the generated power of the solar power generation facility 11 outside the system and acquire information.
 風力発電制御装置18は、太陽光発電設備11の発電電力予測情報のほか、連系点等に設けられる電力計で測定される実際の発電電力に基づき出力制御を行うことも可能である。特に、気象観測データに誤差がある場合や、実際の太陽光発電電力が予測を超える状況が想定される。 The wind power generation control device 18 can also perform output control based on actual generated power measured by a wattmeter provided at a connection point or the like, in addition to the generated power prediction information of the solar power generation facility 11. In particular, it is assumed that there is an error in the weather observation data or that the actual photovoltaic power exceeds the prediction.
 太陽光発電電力や連系点19で供給される出力で、予測を超えた、もしくは系統連系容量に近接して設定される閾値を超える発電電力を検知した場合には、風力発電制御装置18で風力発電設備13の出力を制限する機能を備えることが好ましい。 When the generated power exceeding the prediction or exceeding the threshold set close to the grid interconnection capacity is detected by the photovoltaic power generation or the output supplied at the interconnection point 19, the wind power generation control device 18 It is preferable to provide a function for limiting the output of the wind power generation facility 13.
 以上、実施例1に係る発電制御装置15においては、太陽光発電電力予測部16により精度の高い太陽光発電電力の予測が可能となり、風力発電制御装置18には、精度の高い風力発電電力制御指令が送信される。したがって、風力発電設備13からは、風力発電電力制御指令より大きな出力は発電されなくなる。よって、商用電力系統21へは、予め設定された系統連系容量を超える出力が供給されないので、発電システム10の連系発電電力の拡大を実現する。 As described above, in the power generation control device 15 according to the first embodiment, the solar power generation power prediction unit 16 can predict solar power generation with high accuracy, and the wind power generation control device 18 includes high-precision wind power generation power control. A command is sent. Accordingly, the wind power generation facility 13 does not generate an output larger than the wind power generation power control command. Therefore, since the output exceeding the grid connection capacity set in advance is not supplied to the commercial power system 21, expansion of the grid generated power of the power generation system 10 is realized.
 図2は、太陽光発電設備11の最大出力に対する風力発電設備の最大出力と、風車の出力制限量の関係を示したものである。今回シミュレーションに用いたのは、A県B市にある数10MW級の太陽光発電設備11と、A県B市に近隣に位置するC市に設置される風力発電設備13であり、風力発電設備13を様々な比率で変化させたときにどのくらいの風車の出力制限量を行う必要があるかをまとめたものである。これまでに述べてきた通り、風車出力制御は、太陽光発電設備11として確保されている最大出力を、既存太陽光発電設備11と新規風力発電設備13の合成発電電力が超える場合に実施するものである。なお、データサンプリングは1秒間隔とした。 FIG. 2 shows the relationship between the maximum output of the wind power generation facility with respect to the maximum output of the solar power generation facility 11 and the output limit amount of the windmill. The simulation used this time was a solar power generation facility 11 of several tens of MW in B city in A prefecture and a wind power generation facility 13 installed in C city located in the vicinity of B city in A prefecture. This is a summary of how much wind turbine output limit is required when 13 is changed at various ratios. As described above, the wind turbine output control is performed when the combined output of the existing solar power generation facility 11 and the new wind power generation facility 13 exceeds the maximum output secured as the solar power generation facility 11. It is. Data sampling was performed at 1 second intervals.
 結果、風車の出力制限量の許容値を仮に1.5%以下にする場合には、太陽光発電設備11の最大出力を100とした場合に、風力発電設備13の最大出力を60以下とすることができる。同様に、風車の出力制限量の許容値を仮に3%以下にする場合には、風力発電設備13を90まで増大させることができる。上述のA県B市およびC市の場合、事業性まで考えると、太陽光発電設備11の最大出力を100とした場合に、風力発電設備13の最大出力を少なくとも50にすれば、問題ないことを明らかにしている。なお、図から明らかなように、太陽光発電設備11の最大出力を、風力発電設備13の最大出力を超えると、風車の出力制限量が急激に増加する。また、この傾向は、太陽光発電設備11の最大出力が1,000kW以上である場合には概ね成り立つ。なお、太陽光発電設備11の最大出力に対する風力発電設備の導入比率と風車の出力制限量は、発電設備の地点によっても変化するので、必ずしも上記の比率に限定されるものではない。 As a result, when the allowable value of the output limit amount of the wind turbine is set to 1.5% or less, when the maximum output of the solar power generation facility 11 is set to 100, the maximum output of the wind power generation facility 13 is set to 60 or less. be able to. Similarly, if the allowable value of the output limit amount of the wind turbine is set to 3% or less, the wind power generation facility 13 can be increased to 90. In the case of the above mentioned A prefecture B city and C city, considering the business feasibility, if the maximum output of the solar power generation equipment 11 is set to 100, there is no problem if the maximum output of the wind power generation equipment 13 is set to at least 50. It is revealed. As is apparent from the figure, when the maximum output of the solar power generation facility 11 exceeds the maximum output of the wind power generation facility 13, the output limit amount of the windmill increases rapidly. Moreover, this tendency is generally established when the maximum output of the photovoltaic power generation facility 11 is 1,000 kW or more. In addition, since the introduction ratio of the wind power generation equipment and the output limit amount of the wind turbine with respect to the maximum output of the solar power generation equipment 11 change depending on the location of the power generation equipment, they are not necessarily limited to the above ratio.
 表1は、実施例2に係る発電システム10の効果の例を示した表である。表1には、太陽光発電設備11のみの設備利用率、風力発電設備13のみの設備利用率および太陽光発電と風力発電とを組み合わせた発電システム10の設備利用率を、1年間にわたって月別に評価した例が示されている。 Table 1 is a table showing an example of the effect of the power generation system 10 according to the second embodiment. Table 1 shows the facility utilization rate of only the solar power generation facility 11, the facility utilization rate of only the wind power generation facility 13, and the facility utilization rate of the power generation system 10 that combines solar power generation and wind power generation, by month for one year. An evaluated example is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この評価では、日射計で測定した強度を換算して太陽光発電電力を求め、また、風況測定器で測定した風速を風車の高さ補正しパワーカーブで補正し、その補正した風速を換算して風力発電電力を求めた。これら日射および風速の測定地点は、事前検討において、太陽光発電と風力発電の補完関係が大きくなる、言い換えるなら太陽光発電と風力発電の設備利用率の傾向が負の相関となる国内地域をあらかじめ選択した。 In this evaluation, the photovoltaic power is calculated by converting the intensity measured with the pyranometer, and the wind speed measured with the wind gauge is corrected with the height of the wind turbine and corrected with the power curve, and the corrected wind speed is converted. And asked for wind power. These solar radiation and wind speed measurement points are preliminarily determined in advance in domestic areas where the complementary relationship between solar power generation and wind power generation becomes large, in other words, the trend in the utilization factor of solar power generation and wind power generation has a negative correlation. Selected.
 表1に示すように、太陽光発電のみの発電設備の設備利用率は、5月~9月頃にやっと20~24%に達する程度であり、また、風力発電のみの発電設備の設備利用率は、10月~2月頃に30~35に達する程度である。これに対し、太陽光発電と風力発電とを組み合わせた発電システム10では、その設備利用率は、年間を通して39%を超えることがわかった。 As shown in Table 1, the facility utilization rate of power generation facilities using only solar power generation is only about 20-24% from May to September, and the facility utilization rate of power generation facilities using only wind power generation is It is about 30 to 35 from October to February. On the other hand, in the power generation system 10 combining solar power generation and wind power generation, it has been found that the equipment utilization rate exceeds 39% throughout the year.
 なお、この発電システム10の設備利用率は、太陽光発電のみの発電設備の設備利用率と風力発電のみの発電設備の設備利用率とを合わせた合計値よりも小さい。これは、発電システム10では、前記系統合成発電電力が予め設定された系統連系容量を超えることがあることを示すものに他ならない。 In addition, the equipment usage rate of this power generation system 10 is smaller than the total value of the equipment usage rate of the power generation equipment only for solar power generation and the equipment usage rate of the power generation equipment only for wind power generation. This is nothing but that which indicates that in the power generation system 10, the system combined generated power may exceed a preset grid interconnection capacity.
 本発明のように、太陽光発電設備11と風力発電設備13の組合せは、上述のように特に夏季や冬季に、それぞれの設備の設備利用率が負の相関となる地点が有効である。 As described above, the combination of the solar power generation equipment 11 and the wind power generation equipment 13 is effective at a point where the equipment utilization factor of each equipment has a negative correlation, particularly in summer and winter as described above.
 図3は、本発明の実施例1に係る発電システム10によって発電される3日間の発電電力の時間推移の例を示した図である。図3において、グラフの横軸は時間(時)を表し、縦軸は発電電力(MW)を表す。また、小さいドットが付された領域31は、太陽光発電電力を表し、斜線が付された領域32は、風力発電電力を表す。さらに、この発電システム10では、系統連系容量として太陽光発電設備11の最大出力である20MWが設定されているものとしている。 FIG. 3 is a diagram illustrating an example of a time transition of generated power for 3 days generated by the power generation system 10 according to the first embodiment of the present invention. In FIG. 3, the horizontal axis of the graph represents time (hour), and the vertical axis represents generated power (MW). Moreover, the area | region 31 to which the small dot was attached | subjected represents solar power generation electric power, and the area | region 32 to which the diagonal line was attached represents wind power generation electric power. Furthermore, in this power generation system 10, 20 MW, which is the maximum output of the photovoltaic power generation equipment 11, is set as the grid interconnection capacity.
 また、図3では、1日目と2日目は晴天だったが、3日目は厚い雲に覆われていたため、太陽光発電電力(領域31)が非常に小さくなっている。そして、この発電システム10では、発電制御装置15によって太陽光発電電力(領域31)と風力発電電力(領域32)の合成発電電力が20MWの系統連系容量を超えないように調整されるものとしている。 Further, in FIG. 3, the first day and the second day were sunny, but the third day was covered with thick clouds, so the photovoltaic power (area 31) was very small. In the power generation system 10, the power generation control device 15 adjusts the combined generated power of the solar power (region 31) and the wind power (region 32) so as not to exceed the grid connection capacity of 20 MW. Yes.
 図4は、本発明の実施例2に係る発電システム10が太陽光発電電力と風力発電電力の合成発電電力を系統連系容量以下に調整する機能を備えていないとした場合の発電電力の時間推移の例を示した図である。この場合には、例えば、1日目と2日目の正午前後に網目が付された出力制限領域33が現れている。この領域33は、発電システム10が20MWの系統連系容量を超えた出力を発電したものである。仮に、系統連系容量を超える出力が商用電力系統20に送電されてしまうと、送電線の発熱などに影響が生じ、変電設備や送電線の劣化の恐れがある。 FIG. 4 shows the generated power time when the power generation system 10 according to the second embodiment of the present invention does not have a function of adjusting the combined generated power of the solar power and the wind power to the grid interconnection capacity or less. It is the figure which showed the example of transition. In this case, for example, the output restriction area 33 with a mesh appears after noon on the first day and the second day. In this region 33, the power generation system 10 generates an output that exceeds the grid interconnection capacity of 20 MW. If an output exceeding the grid interconnection capacity is transmitted to the commercial power system 20, heat generated in the transmission line is affected, and there is a risk of deterioration of the substation equipment or the transmission line.
 図3に示したように、実施例1に係る発電システム10では、風車のピッチ制御により発電電力が20MWの系統連系容量を超えないように制御されるので領域33は現れない。ただし、この領域33が表す電力は制限される損失分を意味する。したがって、領域33に相当する部分を極力小さくすることが望ましい。 As shown in FIG. 3, in the power generation system 10 according to the first embodiment, the region 33 does not appear because the generated power is controlled not to exceed the grid interconnection capacity of 20 MW by the pitch control of the windmill. However, the electric power represented by this area 33 means a limited loss. Therefore, it is desirable to make the portion corresponding to the region 33 as small as possible.
 図5は、本発明の実施例1に係る発電システム10において、発電電力演算部17および風力発電制御装置18が実行する制御手順の例を示した図である。図1に示すように、発電電力演算部17は、まず、電力計12を介して太陽光発電設備11により発電される太陽光発電電力値Psを計測する(ステップS11)。次に、発電電力演算部17は、太陽光発電電力予測部16を介して太陽光発電電力予測値Pssを算出し(ステップS12)、さらに、風力発電電力制御指令Pwrを算出する(ステップS13)。ここで、風力発電電力制御指令Pwrは、当該発電システム10に予め設定されている系統連系容量Pcから、ステップS12で算出した太陽光発電電力予測値Pssを差し引いた値をいう。続いて、発電電力演算部17は、ステップS13で算出した風力発電電力制御指令Pwrを風力発電制御装置18に送信する(ステップS14)。 FIG. 5 is a diagram illustrating an example of a control procedure executed by the generated power calculation unit 17 and the wind power generation control device 18 in the power generation system 10 according to the first embodiment of the present invention. As shown in FIG. 1, the generated power calculation unit 17 first measures the photovoltaic power generation value Ps generated by the photovoltaic power generation facility 11 via the wattmeter 12 (step S11). Next, the generated power calculation unit 17 calculates the predicted photovoltaic power generation value Pss via the photovoltaic power generation power prediction unit 16 (step S12), and further calculates the wind power generation power control command Pwr (step S13). . Here, the wind power generation power control command Pwr is a value obtained by subtracting the photovoltaic power generation predicted value Pss calculated in step S12 from the grid connection capacity Pc preset in the power generation system 10. Subsequently, the generated power calculation unit 17 transmits the wind power generation power control command Pwr calculated in step S13 to the wind power generation control device 18 (step S14).
 発電制御装置15は、以上の制御手順を実行しつつ、太陽光発電設備11が出力する太陽光発電電力値Psと風力発電設備13が出力する風力発電電力値Pwとを合わせた電力を商用電力系統20に供給する。このとき、商用電力系統20に供給される出力が系統連系容量Pcを超えることが防止されるのは、風力発電制御装置18により、次のような制御が行われるからである。 The power generation control device 15 performs commercial power by combining the solar power generation power value Ps output from the solar power generation facility 11 and the wind power generation power value Pw output from the wind power generation facility 13 while executing the above control procedure. Supply to system 20. At this time, the output supplied to the commercial power system 20 is prevented from exceeding the grid interconnection capacity Pc because the following control is performed by the wind power generation control device 18.
 風力発電制御装置18は、発電電力演算部17から送信された風力発電電力制御指令Pwrを受信すると(ステップS21)、その風力発電電力制御指令Pwrを風力発電設備13の出力最大値Pwxに設定する(ステップS22)。続いて、風力発電制御装置18は、電力計14を介して風力発電設備13が出力する風力発電電力値Pwを計測し(ステップS23)、その風力発電電力値Pwが風力発電設備13の出力最大値Pwxより大きいか否かを判定する(ステップS24)。 When the wind power generation control device 18 receives the wind power generation power control command Pwr transmitted from the generated power calculation unit 17 (step S21), the wind power generation control device Pwr is set to the output maximum value Pwx of the wind power generation facility 13. (Step S22). Subsequently, the wind power generation control device 18 measures the wind power generation value Pw output from the wind power generation facility 13 via the power meter 14 (step S23), and the wind power generation power value Pw is the maximum output of the wind power generation facility 13. It is determined whether or not the value is larger than the value Pwx (step S24).
 その判定の結果、風力発電電力値Pwが風力発電設備13の出力最大値Pwxより大きい場合(ステップS24でYes)、風力発電制御装置18は、風力発電電力値Pwが出力最大値Pwxを超えないよう、ブレードのピッチ制御を実行する(ステップS25)。逆に、風力発電電力値Pwが風力発電設備13の出力最大値Pwxより大きくない場合には(ステップS24でNo)、ブレードのピッチ制御を停止する(ステップS26)。 As a result of the determination, when the wind power generation value Pw is larger than the maximum output value Pwx of the wind power generation facility 13 (Yes in step S24), the wind power generation control device 18 does not exceed the maximum output value Pwx. Thus, the pitch control of the blade is executed (step S25). Conversely, when the wind power generation value Pw is not larger than the maximum output value Pwx of the wind power generation facility 13 (No in step S24), the blade pitch control is stopped (step S26).
 なお、以上の制御手順において、発電電力演算部17によるステップS11~ステップS14の手順は、太陽光発電電力を予測する所定の時間周期で(例えば、10分ごとに)実行される。一方、風力発電制御装置18によるステップS21およびステップS22の手順は、風力発電電力制御指令が受信されるたびに実行される。また、ステップS23~ステップS26の手順は、常に実行されることになるが、その実行の周期は、実際にはブレードのピッチ制御の応答速度などによって制限される。 In the above control procedure, the procedure from step S11 to step S14 by the generated power calculation unit 17 is executed at a predetermined time period for predicting the photovoltaic power generation (for example, every 10 minutes). On the other hand, the procedure of step S21 and step S22 by the wind power generation control device 18 is executed every time a wind power generation power control command is received. In addition, the procedure from step S23 to step S26 is always executed, but the execution cycle is actually limited by the response speed of the pitch control of the blade.
 以上のように、実施例1では、ブレードのピッチ制御により、風力発電設備13の風力発電電力値をステップS22で設定された出力最大値Pwx、つまり、風力発電電力制御指令Pwrを超えないこととなる。また、風力発電電力制御指令Pwrは、ステップS13において系統連系容量Pcから太陽光発電電力予測値Pssを差し引いた値として算出されているので、太陽光発電電力予測値Pssと風力発電電力値Pwの合計は、系統連系容量Pc以下の値となる。したがって、太陽光発電電力予測値Pssに予測誤差のマージンを見込んでおけば、本実施形態に係る発電システム10では、系統連系容量Pcを超える出力が商用電力系統20へ供給されるのを防止することができる。 As described above, in the first embodiment, by the blade pitch control, the wind power generation power value of the wind power generation facility 13 does not exceed the output maximum value Pwx set in step S22, that is, the wind power generation power control command Pwr. Become. Further, since the wind power generation power control command Pwr is calculated as a value obtained by subtracting the solar power generation power predicted value Pss from the grid interconnection capacity Pc in step S13, the solar power generation power predicted value Pss and the wind power generation power value Pw are calculated. Is a value not more than the grid interconnection capacity Pc. Therefore, if a margin of prediction error is expected in the photovoltaic power generation predicted value Pss, the power generation system 10 according to the present embodiment prevents an output exceeding the grid interconnection capacity Pc from being supplied to the commercial power system 20. can do.
 図6は、太陽光発電電力の予測値に応じて発電される風力発電電力および合成発電電力の時間推移の例を示した図である。図6において、上段のグラフは、太陽光発電電力の時間推移を表し、中段のグラフは、風力発電電力の時間推移を表し、下段のグラフは、太陽光発電電力と風力発電電力とを合計した合成発電電力の時間推移を表している。 FIG. 6 is a diagram showing an example of the time transition of wind power generation power and combined power generation generated according to the predicted value of solar power generation power. In FIG. 6, the upper graph represents the time transition of the photovoltaic power generation, the middle graph represents the time transition of the wind power generation, and the lower graph sums the photovoltaic power generation and the wind power generation. It represents the time transition of the combined generated power.
 図6の例における発電システム10に設定された系統連系容量Pcは、太陽光発電設備11の最大出力の20MWであるとし、各段のグラフにおいて、系統連系容量Pcは、実
線52で表わされている。また、図4の上段のグラフにおいて、現在以降未来の丸く囲まれた領域51に含まれる折れ線53は、太陽光発電電力予測部16によって予測された太陽光発電電力予測値Pssを表している。このような太陽光発電電力予測値Pssは、太陽光発電電力予測部16により、例えば1時間先までの値が算出され、適宜、例えば10分ごとに修正されるものとしている。
The grid interconnection capacity Pc set in the power generation system 10 in the example of FIG. 6 is assumed to be 20 MW, which is the maximum output of the solar power generation equipment 11, and the grid interconnection capacity Pc is represented by a solid line 52 in each graph. It has been. In the upper graph of FIG. 4, a broken line 53 included in a region 51 that is circled in the future from now on represents the predicted photovoltaic power generation value Pss predicted by the photovoltaic power generation prediction unit 16. For such a photovoltaic power generation predicted value Pss, for example, a value up to one hour ahead is calculated by the photovoltaic power generation prediction unit 16 and is appropriately corrected, for example, every 10 minutes.
 風力発電電力制御指令Pwrは、10分ごとに修正された太陽光発電電力予測値Pssの10分間の最大値に予測誤差のマージンを見込んで求められる。したがって、図6では、風力発電電力制御指令Pwrは、実線52の値から破線の階段状の折れ線54の値を差し引いた差分値55で表される。こうして求められた風力発電電力制御指令Pwrは、例えば、10分ごとに風力発電制御装置18に送信される。 The wind power generation power control command Pwr is obtained in consideration of a margin of prediction error in the maximum value for 10 minutes of the predicted photovoltaic power generation value Pss corrected every 10 minutes. Accordingly, in FIG. 6, the wind power generation power control command Pwr is represented by a difference value 55 obtained by subtracting the value of the broken staircase line 54 from the value of the solid line 52. The wind power generation control command Pwr thus determined is transmitted to the wind power generation control device 18 every 10 minutes, for example.
 実施例1では、風力発電電力値Pwは、この風力発電電力制御指令Pwrを超えることはできない。もし、超える場合には、その超過分は、ブレードのピッチ制御により出力が制限される。したがって、図6の中段のグラフの現在以降未来の丸く囲まれた領域56において折れ線57で表わされる風力発電電力値Pw(現在以降の実績値)は、風力発電電力制御指令Pwrに応ずるように小さくなっている。その結果、本実施形態では、図6の下段のグラフの折れ線58に示すように、太陽光発電電力値Psと風力発電電力値Pwとを合わせた合成発電電力が系統連系容量Pcを超えることはなくなる。 In Example 1, the wind power generation power value Pw cannot exceed this wind power generation power control command Pwr. If it exceeds, the output is limited by the pitch control of the blade. Therefore, the wind power generation power value Pw (actual value after the present) represented by the broken line 57 in the region 56 circled in the future from the present in the middle graph of FIG. 6 is small so as to correspond to the wind power generation power control command Pwr. It has become. As a result, in this embodiment, as indicated by the broken line 58 in the lower graph of FIG. 6, the combined generated power combining the solar power generation power value Ps and the wind power generation power value Pw exceeds the grid interconnection capacity Pc. Will disappear.
 以上の図6の説明からも明らかなように、太陽光発電電力予測部16が太陽光発電電力の予測をする時間間隔は短いほどその予測精度は向上し、ブレードのピッチ制御により出力の制限量も小さくなる。例えば、5分先の太陽光発電電力を予測するとした場合、1時間先の予測に比べて予測誤差(予測値と実測値の差)が平均で10%以上も小さくなり、予測精度が向上することが確認されている。 As is clear from the description of FIG. 6 above, the prediction accuracy improves as the time interval at which the photovoltaic power prediction unit 16 predicts the photovoltaic power is shorter, and the output limit is controlled by blade pitch control. Becomes smaller. For example, in the case of predicting photovoltaic power generation 5 minutes ahead, the prediction error (difference between the prediction value and the actual measurement value) is smaller by 10% or more on average than the prediction 1 hour ahead, and the prediction accuracy is improved. It has been confirmed.
 さらに、太陽光発電電力予測部16で予測された太陽光発電電力予測値Pssに沿って風力発電電力制御指令Pwr(図6では符号55)を求め、その求めた風力発電電力制御指令Pwrを風力発電制御装置18に送信する時間間隔も短いほどよい。すなわち、この時間間隔が短いほど、図6に示された階段状の破線54は、太陽光発電電力予測値Pssを表す折れ線53により近似したものとなる。その結果、ブレードのピッチ制御により出力の制限量は小さくなる。 Further, the wind power generation power control command Pwr (reference numeral 55 in FIG. 6) is obtained along the solar power generation power predicted value Pss predicted by the solar power generation power prediction unit 16, and the obtained wind power generation power control command Pwr is determined as the wind power. The shorter the time interval transmitted to the power generation control device 18, the better. That is, as the time interval is shorter, the step-like broken line 54 shown in FIG. 6 is approximated by a broken line 53 representing the predicted photovoltaic power generation value Pss. As a result, the output limit is reduced by blade pitch control.
 なお、近年、風車のブレード制御の応答時間の短縮化が進み、現状では、その応答時間は、秒単位で表されるものとなっている。したがって、風力発電電力制御指令Pwrを風力発電制御装置18に送信する時間間隔は、風車のブレード制御のこの応答時間までは短縮化することができる。 In recent years, the response time of wind turbine blade control has been shortened, and at present, the response time is expressed in seconds. Therefore, the time interval at which the wind power generation power control command Pwr is transmitted to the wind power generation control device 18 can be shortened up to this response time of wind turbine blade control.
 以上の通り、実施例1では、太陽光発電電力値Psと風力発電電力値Pwとの合計出力、すなわち商用電力系統21へ供給する合成発電電力が系統連系容量Pcを超えることはなくなる。また、実施例1では、系統連系容量Pcとして太陽光発電設備11の最大出力が定められているため、太陽光発電設備11を最大限に利用することができる。したがって、発電システム10としての設備利用率が向上する。 As described above, in Example 1, the total output of the solar power generation power value Ps and the wind power generation power value Pw, that is, the combined generated power supplied to the commercial power system 21 does not exceed the grid interconnection capacity Pc. Moreover, in Example 1, since the maximum output of the solar power generation equipment 11 is defined as the grid connection capacity Pc, the solar power generation equipment 11 can be used to the maximum extent. Therefore, the equipment utilization rate as the power generation system 10 is improved.
 図7は本発明における既存太陽光発電設備と、新規に設置する風力発電設備を追加する場合のステップの例を示した図である。1,000kWを超える容量を持つ既存太陽光発電設備の近隣に、新規に風力発電設備を建設する。次に、既存太陽光発電設備につながれている送電線と、新規風力発電設備につながれている送電線を、同一の連系点に接続する。その連系点から変電所20を介して、商用電力系統21に電力を供給する。 FIG. 7 is a diagram showing an example of steps when adding an existing solar power generation facility and a newly installed wind power generation facility according to the present invention. A new wind power generation facility will be constructed in the vicinity of an existing solar power generation facility with a capacity exceeding 1,000 kW. Next, the power transmission line connected to the existing solar power generation facility and the power transmission line connected to the new wind power generation facility are connected to the same interconnection point. Electric power is supplied to the commercial power system 21 from the interconnection point via the substation 20.
 なお、本実施例では太陽光発電設備の発電電力の予測値に基づき風力発電設備の出力を制限する発電制御装置を用いて、太陽光発電設備11の最大出力に対する風力発電設備13の最大出力比率を30%~100%で変化させ、太陽光発電設備11と風力発電設備13の合成発電電力が系統連系容量を何回超過したかを比較した。その結果を表2に示す。計測はミリ秒単位で行っており、一瞬でも超過したことを確認した場合にはカウントしている。 In the present embodiment, the maximum output ratio of the wind power generation facility 13 to the maximum output of the solar power generation facility 11 using a power generation control device that limits the output of the wind power generation facility based on the predicted value of the generated power of the solar power generation facility. Was changed from 30% to 100%, and the number of times the combined power generated by the solar power generation equipment 11 and the wind power generation equipment 13 exceeded the grid interconnection capacity was compared. The results are shown in Table 2. The measurement is performed in milliseconds, and it is counted when it is confirmed that it has been exceeded even for a moment.
 結果、太陽光発電設備11を100%としたときに、風力発電設備13の導入比率が30%~80%の場合では系統連系容量を一度も超えることがなかった。 As a result, when the photovoltaic power generation equipment 11 is 100%, the grid interconnection capacity never exceeds the wind power generation equipment 13 introduction ratio of 30% to 80%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例2では、図8、図9A及び図9Bを用いて、太陽光発電設備の発電電力の現在値に基づき風力発電設備の出力を制限する発電制御装置について説明する。 In Example 2, a power generation control device that limits the output of the wind power generation facility based on the current value of the generated power of the solar power generation facility will be described with reference to FIGS. 8, 9A, and 9B.
 図8は、商用電力系統21に接続されて運用される実施例2に係る発電システム10の構成例を示している。なお主回路構成など、実施例1で説明済みの事項については重複説明となるので割愛する。 FIG. 8 shows a configuration example of the power generation system 10 according to the second embodiment that is connected to the commercial power system 21 and operated. Note that items that have been described in the first embodiment, such as the main circuit configuration, are duplicated descriptions and will not be described.
 発電制御装置15は、太陽光発電設備11と風力発電設備13の合成発電電力が系統連系容量を超過しないように、制御している。このため、図8の発電制御装置15は、太陽光発電設備11の発電電力量を検知する電力計12と風力発電設備13の発電電力量を検知する電力計14から各発電設備の発電電力量を検知、入力している。 The power generation control device 15 controls the combined generated power of the solar power generation facility 11 and the wind power generation facility 13 so as not to exceed the grid interconnection capacity. For this reason, the power generation control device 15 in FIG. 8 uses the power meter 12 that detects the power generation amount of the solar power generation facility 11 and the power meter 14 that detects the power generation amount of the wind power generation facility 13 to generate the power generation amount of each power generation facility. Is detected and entered.
 発電制御装置15は、発電電力演算部17、風力発電制御装置18を備えている。なお図示していないが太陽光発電制御装置を備えて、発電電力演算部17の出力に応じて太陽光発電設備11の出力を制御するものであってもよい。本発明では、太陽光発電設備11の発電電力量と風力発電設備13の発電電力量を検知して、その合成発電電力を演算し、これが系統連系容量を超過しないように、最終的な制御端である太陽光発電設備11または風力発電設備13、あるいはその双方を制御する。なお、太陽光発電設備11と風力発電設備13の双方を制御する場合は、kWh単価が太陽光と風力で異なるため、最も経済的に優れる出力制限をすべく、条件によって適正化するのがよい。なお、図8においては、発電電力演算部17の出力に応じて風力発電装置13を制御する場合について説明している。 The power generation control device 15 includes a generated power calculation unit 17 and a wind power generation control device 18. Although not shown, a photovoltaic power generation control device may be provided to control the output of the photovoltaic power generation facility 11 in accordance with the output of the generated power calculation unit 17. In the present invention, the amount of power generated by the solar power generation facility 11 and the amount of power generated by the wind power generation facility 13 are detected, and the combined power generation is calculated, and final control is performed so that this does not exceed the grid interconnection capacity. The solar power generation equipment 11 and / or the wind power generation equipment 13 which are the ends are controlled. In addition, when controlling both the solar power generation equipment 11 and the wind power generation equipment 13, since the kWh unit price is different between solar power and wind power, it is preferable to optimize according to conditions in order to limit the output most economically. . In addition, in FIG. 8, the case where the wind power generator 13 is controlled according to the output of the generated electric power calculating part 17 is demonstrated.
 以上述べたように、図8に係る発電制御装置15は、太陽光発電設備11および風力発電設備13で発電された電力を、予め設定された商用電力系統21に対する系統連系容量を超えないように調整して、商用電力系統21へ供給する役割を果たす。発電制御装置15には、この調整を適切に行うために、発電電力演算部17が設けられている。また、風力発電設備13には、風力発電制御装置18の指示に従って風車の羽根(以下、ブレードという)の角度を制御(ピッチ制御)し、発電電力を調整する機能が備えられている。この発電電力の調整機能は、風力発電の出力制限機能である。これには、ピッチ制御以外にも、風車の回転数を減少させて発電電力を調整する方法もある。 As described above, the power generation control device 15 according to FIG. 8 does not exceed the grid interconnection capacity for the commercial power grid 21 set in advance for the power generated by the solar power generation facility 11 and the wind power generation facility 13. To supply to the commercial power system 21. The power generation control device 15 is provided with a generated power calculation unit 17 in order to appropriately perform this adjustment. Further, the wind power generation facility 13 has a function of adjusting the generated power by controlling (pitch control) the angle of the wind turbine blades (hereinafter referred to as blades) in accordance with instructions from the wind power generation control device 18. This adjustment function of generated power is an output limiting function of wind power generation. In addition to pitch control, there is a method of adjusting the generated power by reducing the number of rotations of the windmill.
 図8に示す発電システムにおいて、太陽光発電設備11と風力発電設備13との割合は、太陽光発電設備11のみの場合の設備利用率、地域の風況等により適宜設定できる。詳細なシミュレーション結果は後報するが、発明者らがシミュレーションした一例では、太陽光発電設備11の最大出力を100とした場合に、風力発電設備13の最大出力を40~80とすることが好ましいことがわかった。この範囲であれば、電気的な連系発電電力を拡大させ、太陽光発電のみの場合と比べて、発電電力を少なくとも20%増加させるとともに、風力発電設備13の風車の出力制限量を5%以下と低く抑えることができる。 In the power generation system shown in FIG. 8, the ratio between the solar power generation facility 11 and the wind power generation facility 13 can be set as appropriate depending on the facility utilization rate in the case of only the solar power generation facility 11, the local wind conditions, and the like. Although detailed simulation results will be described later, in the example simulated by the inventors, when the maximum output of the solar power generation facility 11 is set to 100, the maximum output of the wind power generation facility 13 is preferably set to 40 to 80. I understood it. Within this range, the electric grid-generated power is increased, the generated power is increased by at least 20% compared to the case of only solar power generation, and the output limit amount of the wind turbine of the wind power generation facility 13 is increased by 5%. The following can be kept low.
 この風車の出力制限量は、発電して売電できる分を制限する損失分であるため、その損失は事業性に大きく影響する。逆に言えば、事業性に問題がなければ、上記のように太陽光発電設備11の最大出力を100とした場合に、風力発電設備13の最大出力を40~80とする必要はなく、風力発電設備13の最大出力をさらに大きくしても問題はない。実際に、台数(容量)効果で、太陽光発電設備11の最大出力を増加させるほうが、諸々の機器単価等が安価となる傾向があるため、元々の太陽光発電設備11の最大出力が大きいほど、風力発電設備13の最大出力の閾値は大きくなることもあり得る。すなわち、太陽光発電設備11の容量によっては、太陽光発電設備11の最大出力を100とした場合に、風力発電設備13の最大出力を40~80ではなく、80を超える最大出力に増加してもなんら問題はない。ただし、風力発電の出力制限により発電電力を制限する動作が多いと、それに応じて故障率も増加する傾向がある。 Since the output limit of this windmill is a loss that limits the amount of power that can be generated and sold, the loss greatly affects the business performance. In other words, if there is no problem in business performance, when the maximum output of the solar power generation equipment 11 is set to 100 as described above, it is not necessary to set the maximum output of the wind power generation equipment 13 to 40 to 80. There is no problem even if the maximum output of the power generation facility 13 is further increased. Actually, increasing the maximum output of the photovoltaic power generation facility 11 due to the number (capacity) effect tends to reduce the unit price of various devices and the like. Therefore, the larger the maximum output of the original solar power generation facility 11 is, the larger the output is. The threshold value of the maximum output of the wind power generation facility 13 may be large. That is, depending on the capacity of the solar power generation facility 11, when the maximum output of the solar power generation facility 11 is set to 100, the maximum output of the wind power generation facility 13 is not increased to 40 to 80 but increased to a maximum output exceeding 80. There is no problem. However, if there are many operations that limit the generated power by limiting the output of wind power generation, the failure rate tends to increase accordingly.
 再生可能エネルギーによる発電電力は時期、地域により変動する。従って、風力発電設備13の出力制御の閾値を、リスクを元に変更することが好ましい。特に、実施例2は、日射量(太陽光発電による発電電力)が低下した時に風力発電電力が増加する傾向(負の相関)のある地域に好適である。 ∙ Power generated by renewable energy varies depending on the season and region. Therefore, it is preferable to change the output control threshold value of the wind power generation facility 13 based on the risk. In particular, Example 2 is suitable for an area where wind power generation tends to increase (negative correlation) when the amount of solar radiation (power generation by solar power generation) decreases.
 実施例2に係る発電電力演算部17は、太陽光発電設備11および風力発電設備13で発電された電力を、予め設定された商用電力系統21に対する系統連系容量を超えないように調整して、商用電力系統21へ供給する役割を果たす。また、風力発電設備13には、風力発電制御装置18の指示に従ってブレードの角度を制御(ピッチ制御)し、発電電力を調整する機能が備えられている。 The generated power calculation unit 17 according to the second embodiment adjusts the power generated by the solar power generation facility 11 and the wind power generation facility 13 so as not to exceed the grid connection capacity for the commercial power system 21 set in advance. , To supply to the commercial power system 21. Further, the wind power generation facility 13 has a function of controlling the angle of the blade (pitch control) in accordance with an instruction from the wind power generation control device 18 and adjusting the generated power.
 複数の風車を備える風力発電設備13では、発電電力の調整は全ての風車に対して同様に実施してもよいし、いずれかの、もしくは一部の風車にのみ発電電力の調整を行ってもよい。例えば複数の風車を備える風力発電設備13では、各風車の発電電力は設置条件等により異なるため、発電量の多い風車にのみピッチ制御を行って発電電力を制限し、風力発電設備13全体の発電電力を調整することができる。 In the wind power generation facility 13 including a plurality of windmills, the generated power may be adjusted in the same manner for all windmills, or the generated power may be adjusted only for one or a part of the windmills. Good. For example, in the wind power generation facility 13 including a plurality of windmills, the generated power of each windmill varies depending on the installation conditions and the like. Therefore, pitch control is performed only on windmills with a large amount of power generation to limit the generated power, and the power generation of the entire wind power generation facility 13 is performed. The power can be adjusted.
 図9Aは、図8に示す発電システムによる太陽光発電設備11と風力発電設備13の合成発電電力の上限値を、発電電力演算部17にて設定する際、系統連系容量を100%とした場合に上限値を98%に設定した場合の、系統連系容量に対する超過分を算出した結果を示す図である。また、図9Bは、従来の通り、系統連系容量を100%とした場合に上限値を100%(系統連系容量と同じ)と設定した場合の、系統連系容量に対する合成発電電力の超過分を比較したものである。 FIG. 9A shows that the grid connection capacity is 100% when the upper limit value of the combined generated power of the solar power generation equipment 11 and the wind power generation equipment 13 by the power generation system shown in FIG. It is a figure which shows the result of having calculated the excess with respect to a grid connection capacity | capacitance at the time of setting an upper limit to 98% in this case. Moreover, FIG. 9B shows that the combined generation power exceeds the grid interconnection capacity when the upper limit is set to 100% (same as the grid interconnection capacity) when the grid interconnection capacity is 100% as in the past. This is a comparison of minutes.
 ここでは、太陽光発電設備11の最大出力を100とした場合に、風力発電設備13の最大出力を65に設定した。図9Aにおいては、一部で上限値98%を超える時間帯があったが、系統連系容量を超過することはなく、最大でも系統連系容量の99%までで収まることがわかった。一方、図9Bにおいては、急激に出力が変化する場合や、風車の出力制限を頻繁に行う時間帯で系統連系容量を超過することがわかった。以上の結果から、発電電力演算部17の上限値を、系統連系容量を100%とした場合に、100%と設定するのではなく、数%程度のマージンを考慮して設定することが望ましい。 Here, when the maximum output of the solar power generation facility 11 is 100, the maximum output of the wind power generation facility 13 is set to 65. In FIG. 9A, there were some time zones where the upper limit of 98% was exceeded, but the grid interconnection capacity was not exceeded, and it was found that the maximum was 99% of the grid interconnection capacity. On the other hand, in FIG. 9B, it has been found that the grid interconnection capacity is exceeded when the output changes suddenly or when the wind turbine output is frequently limited. From the above results, it is desirable to set the upper limit value of the generated power calculation unit 17 in consideration of a margin of several percent instead of 100% when the grid interconnection capacity is 100%. .
 表3は、太陽光発電設備11の最大出力に対する風力発電設備13の最大出力比率を30%~100%で変化させた場合に、太陽光発電設備11と風力発電設備13の合計である合成発電電力が系統連系容量を何回超過したかを比較したものである。測定期間は1年間とした。また、図9A,図9Bにおける上限値の設定は系統連系容量に対して100%としている。さらに、計測はミリ秒単位で行っており、一瞬でも超過したことを確認した場合にはカウントしている。 Table 3 shows the combined generation of the solar power generation equipment 11 and the wind power generation equipment 13 when the maximum output ratio of the wind power generation equipment 13 to the maximum output of the solar power generation equipment 11 is changed from 30% to 100%. This is a comparison of how many times the power exceeded the grid interconnection capacity. The measurement period was one year. 9A and 9B is set to 100% with respect to the grid interconnection capacity. Furthermore, the measurement is performed in milliseconds, and when it is confirmed that it has been exceeded even for a moment, it is counted.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 結果、太陽光発電設備11を100%としたときに、風力発電設備13の導入比率が30%~70%の場合では系統連系容量を一度も超えることがなかった。従って、実施例2おいては、太陽光発電設備11を100%としたときに、風力発電設備13の導入比率が70%以下であれば、系統連系容量を一度も超過しないことを明らかにした。ただし、導入比率が30%以下の場合、風力発電の売電収入として、風力発電設備の導入費用分の収益確保が困難となることもわかった。 As a result, assuming that the photovoltaic power generation equipment 11 is 100%, the grid interconnection capacity never exceeded when the introduction ratio of the wind power generation equipment 13 was 30% to 70%. Therefore, in Example 2, when the photovoltaic power generation equipment 11 is set to 100%, if the introduction ratio of the wind power generation equipment 13 is 70% or less, the grid interconnection capacity is never exceeded. did. However, it was also found that when the introduction ratio is 30% or less, it is difficult to secure profits equivalent to the introduction cost of wind power generation equipment as revenue from selling wind power.
 ただし、上記のように、この導入比率は種々の条件で前後することから、必ずしも限定されるものではない。重要なのは、系統連系容量を超過する原因となる、太陽光発電設備11や風力発電設備13で生じる出力の急変や、風車の出力制限が生じても系統連系容量を超過させないため、最適な比率の発電設備を組み合わせること、ならびに発電制御装置15で設定する上限値を系統連系容量以下にしておくことである。 However, as described above, this introduction ratio varies depending on various conditions, and is not necessarily limited. What is important is that it does not exceed the grid interconnection capacity even if there is a sudden change in the output generated by the solar power generation equipment 11 or the wind power generation equipment 13 or the output limitation of the windmill, which causes the grid interconnection capacity to be exceeded. It is to combine the power generation equipment of the ratio, and to set the upper limit value set by the power generation control device 15 to be equal to or less than the grid interconnection capacity.
 実施例3では、蓄電設備を用いて、発電システム全体としての発電電力を調整する発電制御装置について、図10から図13を用いて説明する。 In Example 3, a power generation control device that adjusts the generated power of the power generation system as a whole using a power storage facility will be described with reference to FIGS. 10 to 13.
 図10は、本発明の実施例3に係る発電システム10の構成例を示した図である。図10に示すように、本発明の実施例3に係る発電システム10は、実施例1の発電システム10の構成に、さらに蓄電設備24、蓄電池制御装置26、電力計25などが追加されたものとなっている。またさらに、発電電力演算部17は、実施例1での太陽光発電電力予測部16に代えて、太陽光・風力発電電力予測部27を備える構成となっている。 FIG. 10 is a diagram illustrating a configuration example of the power generation system 10 according to the third embodiment of the present invention. As shown in FIG. 10, the power generation system 10 according to the third embodiment of the present invention is obtained by adding a power storage facility 24, a storage battery control device 26, a power meter 25, and the like to the configuration of the power generation system 10 according to the first embodiment. It has become. Furthermore, the generated power calculation unit 17 includes a solar power / wind power generation power prediction unit 27 instead of the solar power generation power prediction unit 16 in the first embodiment.
 ここで、蓄電設備24の蓄電池としては、鉛電池、リチウムイオン電池、ナトリウム硫黄電池、ニッケル水素電池、レドックスフロー電池、燃料電池、キャパシタ電池などを使用することができる。また、蓄電池制御装置26は、発電制御装置15からの指示に従い、蓄電設備24の充放電を制御する。なお、蓄電池の場合、その劣化などを考慮する必要があり、蓄電池サイクル数や充電率(SOC:State of Charge)の管理など特有の制御が必要となるが、ここではその制御については説明を省略する。 Here, a lead battery, a lithium ion battery, a sodium sulfur battery, a nickel hydride battery, a redox flow battery, a fuel cell, a capacitor battery, or the like can be used as the storage battery of the power storage facility 24. Further, the storage battery control device 26 controls charging / discharging of the power storage equipment 24 in accordance with an instruction from the power generation control device 15. In addition, in the case of a storage battery, it is necessary to take into account its deterioration, etc., and specific control such as management of the number of storage battery cycles and charge rate (SOC: State of Charge) is required. To do.
 太陽光・風力発電電力予測部27は、気象観測所22から得られる様々なデータに基づき、太陽光発電設備11の発電電力だけでなく、風力発電設備13の発電電力を予測する。したがって、ここでいう太陽光・風力発電電力予測部27は、実施例1でいう太陽光発電電力予測部16に、風力発電設備13の発電電力を予測する風力発電電力予測部が新たに追加されたものということができる。 The solar / wind power generation prediction unit 27 predicts not only the power generation of the solar power generation facility 11 but also the power generation of the wind power generation facility 13 based on various data obtained from the weather station 22. Therefore, the solar power / wind power generation prediction unit 27 here is newly added with the wind power generation power prediction unit for predicting the power generation of the wind power generation facility 13 to the solar power generation power prediction unit 16 in the first embodiment. It can be said that
 また、実施例3でも、気象観測所22から得られた様々なデータ、特に太陽光・風力発電電力予測部27での予測に利用されたデータは、日時、予測結果、実績発電電力などに関連付けて記憶部23に蓄積される。その結果、その後の太陽光発電電力および風力発電電力の予測時に、過去の類似した日時における同様の気象条件下での予測結果および実績発電電力を利用することができることとなり、予測精度の向上を期待することができる。 Also in the third embodiment, various data obtained from the weather station 22, particularly the data used for the prediction in the solar / wind power generation power prediction unit 27, are associated with the date / time, the prediction result, the actual generated power, and the like. And stored in the storage unit 23. As a result, when forecasting photovoltaic power generation and wind power generation, it is possible to use prediction results and actual generation power under similar weather conditions at similar dates and times in the past, and expect to improve prediction accuracy. can do.
 以上のような構成により、太陽光発電設備11で発電される太陽光発電電力と風力発電設備13で発電される風力発電電力との合計が予め設定された系統連系容量を超える場合には、その超えた電力の少なくとも一部を蓄電設備24に蓄えることができる。そのため、実施例3では、ブレードのピッチ制御により出力の制限量が少なくなるので、電力をより有効に活用できるようになるといえる。また、供給すべき電力が不足する場合には、その不足する電力を蓄電設備24からの放電電力で補うことができる。すなわち、実施例3では、発電電力の時間的な変動を抑制することが可能になるという効果を期待することができる。なお、実施例3では、当該発電システム10には、太陽光発電設備11の最大出力以上の系統連系容量が設定されているものとする。 With the above configuration, when the sum of the photovoltaic power generated by the solar power generation facility 11 and the wind power generated by the wind power generation facility 13 exceeds a preset grid interconnection capacity, At least a part of the excess power can be stored in the power storage facility 24. Therefore, in the third embodiment, it can be said that the amount of output restriction is reduced by blade pitch control, so that power can be used more effectively. Further, when the power to be supplied is insufficient, the insufficient power can be supplemented with the discharge power from the power storage facility 24. That is, in Example 3, it can be expected that the temporal variation of the generated power can be suppressed. In the third embodiment, it is assumed that the grid connection capacity equal to or greater than the maximum output of the photovoltaic power generation facility 11 is set in the power generation system 10.
 ところで、発電事業者が発電システム10を用いて商用電力系統21に電力を供給する場合、供給する電力の上限値は、系統連系容量だけでなく計画値に依存する。計画値とは、発電事業者が商用電力系統21に電力を供給するとき、商用電力系統21を所有する電力会社に対し申告する供給電力量の約束値をいう。発電事業者は、例えば6時間前までに6時間以降例えば1日分の計画値を電力会社に申告する。この1日分の計画値は、1日を例えば30分ごとに区分した各時間帯の計画値によって構成される。したがって、発電事業者が申告する電力供給の計画値は、30分ごとに変動するように設定することが許容される。ただし、電力の安定供給のため、その30分内で供給する電力量は、所定の変動幅(例えば±1%以内)に抑制することが求められる。なお、このような発電事業者と電力会社との間の取り決めは、計画値同時同量などと呼ばれる。 By the way, when the power generation company supplies power to the commercial power grid 21 using the power generation system 10, the upper limit value of the power to be supplied depends not only on the grid interconnection capacity but also on the planned value. The planned value is a promised value of the amount of power supplied to the power company that owns the commercial power grid 21 when the power generation company supplies power to the commercial power grid 21. The power generation company, for example, reports the planned value for one day after six hours to the electric power company, for example, six hours before. The planned value for one day is constituted by the planned values for each time zone obtained by dividing one day every 30 minutes, for example. Accordingly, the power supply plan value reported by the power generation company is allowed to be set so as to change every 30 minutes. However, in order to stably supply power, the amount of power supplied within 30 minutes is required to be controlled within a predetermined fluctuation range (for example, within ± 1%). Such an agreement between the power generation company and the electric power company is referred to as the same amount of planned values.
 以上のように申告され設定される計画値は、例えば所定の30分間に供給すべき電力量であるが、以下では、簡単のために、計画値とは、この30分間の電力量を実現するための各時刻の平均の電力値であるとする。このように定めた場合、計画値は、系統連系容量を超えることはできない。すなわち、計画値は、系統連系容量以下の値となる。 The planned value that is reported and set as described above is, for example, the amount of power to be supplied for a predetermined 30 minutes, but in the following, for the sake of simplicity, the planned value realizes the amount of power for 30 minutes. It is assumed that this is the average power value at each time. In this way, the planned value cannot exceed the grid interconnection capacity. In other words, the planned value is a value less than the grid interconnection capacity.
 実施例3に係る発電システム10では、計画値を遵守した電力を商用電力系統21へ供給することが容易になる。すなわち、太陽光発電電力と風力発電電力の合計値が計画値を超える場合には、超過した電力を蓄電設備24に蓄えることができ、さらに必要に応じてブレードのピッチ制御により出力を制限することもできる。また、太陽光発電電力と風力発電電力の合成発電電力が計画値に達しない場合には、不足する電力を蓄電設備24からの放電電力で補充することができる。 In the power generation system 10 according to the third embodiment, it becomes easy to supply power that complies with the planned value to the commercial power system 21. That is, when the total value of photovoltaic power generation and wind power generation power exceeds the planned value, the excess power can be stored in the power storage facility 24, and the output can be limited by blade pitch control as necessary. You can also. Further, when the combined generated power of the photovoltaic power and the wind power does not reach the planned value, the insufficient power can be supplemented with the discharged power from the power storage facility 24.
 図11は、実施例3に係る発電システム10において発電制御装置15が実行する制御手順の例を示した図である。なお、以下の説明では、当該発電システム10には、系統連系容量Pcおよび図11の制御手順が実行される時点での計画値Ppが予め設定されているものとする。 FIG. 11 is a diagram illustrating an example of a control procedure executed by the power generation control device 15 in the power generation system 10 according to the third embodiment. In the following description, it is assumed that the grid connection capacity Pc and the planned value Pp at the time when the control procedure of FIG.
 発電制御装置15は、まず、電力計12(図10参照)を介して太陽光発電設備11により発電される太陽光発電電力値Psを計測する(ステップS31)。次に、発電制御装置15は、太陽光・風力発電電力予測部27を介して太陽光発電電力予測値Pssを算出し(ステップS32)、さらに、風力発電電力制御指令Pwrを算出する(ステップS33)。ここで、風力発電電力制御指令Pwrは、実施例1と同様に、系統連系容量PcからステップS32で算出した太陽光発電電力予測値Pssを差し引いた値をいう。次に、発電制御装置15は、ステップS33で算出した風力発電電力制御指令Pwrを風力発電制御装置18に送信する(ステップS34)。発電制御装置15は、以上の制御手順を実行しつつ、太陽光発電設備11が出力する太陽光発電電力値Psと風力発電設備13が出力する風力発電電力値Pwとを合わせた電力を商用電力系統21に供給する。 First, the power generation control device 15 measures the solar power generation power value Ps generated by the solar power generation facility 11 via the power meter 12 (see FIG. 10) (step S31). Next, the power generation control device 15 calculates a solar power generation power predicted value Pss via the solar power / wind power generation power prediction unit 27 (step S32), and further calculates a wind power generation power control command Pwr (step S33). ). Here, the wind power generation power control command Pwr is a value obtained by subtracting the photovoltaic power generation power predicted value Pss calculated in step S32 from the grid interconnection capacity Pc, as in the first embodiment. Next, the power generation control device 15 transmits the wind power generation power control command Pwr calculated in step S33 to the wind power generation control device 18 (step S34). The power generation control device 15 performs commercial power by combining the solar power generation power value Ps output from the solar power generation facility 11 and the wind power generation power value Pw output from the wind power generation facility 13 while executing the above control procedure. Supply to system 21.
 以上、ここまでの制御手順は、図11に示したステップS11~ステップS14の制御手順と実質的に同じである。また、風力発電制御装置18が風力発電電力制御指令Pwrを受信したとき実行する制御手順は、図11に示したステップS21~ステップS26の制御手順と同じになるので、その図示および説明を省略する。そして、ここまでの制御手順が実行されることにより、風力発電電力Pwが風力発電電力制御指令Pwrを超えた場合には、超えた分の電力は、ブレードのピッチ制御により捨てられることになる。そのため、発電システム10から商用電力系統21に供給される電力が系統連系容量Pcを超えることが防止される。 The control procedure so far is substantially the same as the control procedure in steps S11 to S14 shown in FIG. The control procedure executed when the wind power generation control device 18 receives the wind power generation power control command Pwr is the same as the control procedure of steps S21 to S26 shown in FIG. . When the wind power generation power Pw exceeds the wind power generation power control command Pwr by executing the control procedure so far, the excess power is discarded by blade pitch control. Therefore, the power supplied from the power generation system 10 to the commercial power grid 21 is prevented from exceeding the grid interconnection capacity Pc.
 次に、発電制御装置15は、電力計12,14を介して太陽光発電設備11および風力発電設備13によりそれぞれ発電される太陽光発電電力値Psおよび風力発電電力Pwを計測する(ステップS35)。そして、発電制御装置15は、その計測した太陽光発電電力値Psおよび風力発電電力Pwの合計値(Ps+Pw)が予め設定された計画値Ppを超過しているか否かを判定する(ステップS36)。 Next, the power generation control device 15 measures the solar power generation power value Ps and the wind power generation power Pw generated by the solar power generation facility 11 and the wind power generation facility 13 via the power meters 12 and 14, respectively (step S35). . Then, the power generation control device 15 determines whether or not the total value (Ps + Pw) of the measured photovoltaic power generation value Ps and wind power generation power Pw exceeds a preset plan value Pp (step S36). .
 その判定の結果、合計値(Ps+Pw)が計画値Ppを超過している場合には(ステップS36でYes)、発電制御装置15は、蓄電池制御装置26へ充電指令を送信する(ステップS37)。この充電指令は、次に図12を用いて説明するように、計画値Ppを超過した分の電力を蓄電設備24に充電させるための指令である。この指令により計画値Ppを超過した分の電力が蓄電設備24に充電されると、商用電力系統21に供給される電力は、計画値Ppまで減少する。 As a result of the determination, if the total value (Ps + Pw) exceeds the planned value Pp (Yes in step S36), the power generation control device 15 transmits a charge command to the storage battery control device 26 (step S37). As will be described next with reference to FIG. 12, this charging command is a command for charging the power storage facility 24 with the power that exceeds the planned value Pp. When the electric power exceeding the planned value Pp is charged to the power storage facility 24 by this command, the electric power supplied to the commercial power system 21 is reduced to the planned value Pp.
 また、合計値(Ps+Pw)が計画値Ppを超過していない場合には(ステップS36でNo)、発電制御装置15は、蓄電池制御装置26へ放電指令を送信する(ステップS38)。この放電指令は、計画値Ppに達しない分の電力を蓄電設備24に放電させるための指令である。この指令により計画値Ppに達しない分の電力が蓄電設備24から放電されると、商用電力系統21に供給される電力は、計画値Ppまで増加する。 If the total value (Ps + Pw) does not exceed the planned value Pp (No in step S36), the power generation control device 15 transmits a discharge command to the storage battery control device 26 (step S38). This discharge command is a command for causing the power storage facility 24 to discharge electric power that does not reach the planned value Pp. When power that does not reach the planned value Pp is discharged from the power storage facility 24 by this command, the power supplied to the commercial power system 21 increases to the planned value Pp.
 図12は、本発明の実施例3に係る発電システム10において蓄電池制御装置26が実行する制御手順の例を示した図である。なお、この制御手順が実行されるとき、蓄電池制御装置26には予め所定の目標SOC範囲が設定されているものとする。目標SOC範囲とは、その時点で適正と判断される蓄電設備24の充電率(SOC)の範囲をいう。そして、ここでは、蓄電設備24は、充電率が目標SOC範囲の上限値を上回った場合には、充電ができないものとし、充電率が目標SOC範囲の下限値を下回った場合には、放電ができないものとする。 FIG. 12 is a diagram illustrating an example of a control procedure executed by the storage battery control device 26 in the power generation system 10 according to the third embodiment of the present invention. It is assumed that a predetermined target SOC range is set in advance in storage battery control device 26 when this control procedure is executed. The target SOC range is a range of the charging rate (SOC) of the power storage facility 24 that is determined to be appropriate at that time. Here, the power storage facility 24 is assumed to be unable to charge when the charging rate exceeds the upper limit value of the target SOC range, and when the charging rate is lower than the lower limit value of the target SOC range, discharging is performed. It shall not be possible.
 また、目標SOC範囲は、一定でなく、状況に応じて適宜変更されるものであってもよい。例えば、太陽光発電電力予測値Pssと風力発電電力予測値Pwwとの合計値が今後増大することが見込まれる場合には、目標SOC範囲は低めに変更される。逆に、太陽光発電電力予測値Pssと風力発電電力予測値Pwwとの合計値が今後減少することが見込まれる場合には、目標SOC範囲は高めに変更される。なお、このような目標SOC範囲の設定、変更の方法については、ここではその説明を省略する。 In addition, the target SOC range is not constant and may be changed as appropriate according to the situation. For example, when the total value of the predicted photovoltaic power generation value Pss and the predicted wind power generation power value Pww is expected to increase in the future, the target SOC range is changed to a lower value. Conversely, when the total value of the predicted photovoltaic power generation value Pss and the predicted wind power generation power value Pww is expected to decrease in the future, the target SOC range is changed to a higher value. In addition, about the method of setting and changing such a target SOC range, the description is abbreviate | omitted here.
 図12に示すように、蓄電池制御装置26は、充電指令または放電指令を受信すると(ステップS41)、それが充電指令であるか否かを判定する(ステップS42)。そして、充電指令を受信した場合には(ステップS42でYes)、そのときの蓄電設備24の充電率が予め設定された目標SOC範囲内であるか否かを判定する(ステップS43)。 As shown in FIG. 12, when the storage battery control device 26 receives a charge command or a discharge command (step S41), it determines whether or not it is a charge command (step S42). If a charging command is received (Yes in step S42), it is determined whether or not the charging rate of the power storage facility 24 at that time is within a preset target SOC range (step S43).
 ステップS43の判定で、そのときの蓄電設備24の充電率が目標SOC範囲内であった場合には(ステップS43でYes)、蓄電池制御装置26は、蓄電設備24を充電モードに設定する(ステップS44)。この場合には、計画値Ppを超過した分の電力は、蓄電設備24に充電されるので、発電システム10から出力される電力は、計画値Ppとほぼ同じになる。 If it is determined in step S43 that the charging rate of the power storage facility 24 is within the target SOC range (Yes in step S43), the storage battery control device 26 sets the power storage facility 24 in the charging mode (step S43). S44). In this case, since the electric power exceeding the planned value Pp is charged in the power storage facility 24, the electric power output from the power generation system 10 is substantially the same as the planned value Pp.
 また、ステップS43の判定で、そのときの蓄電設備24の充電率が目標SOC範囲内でなかった場合には(ステップS43でNo)、蓄電池制御装置26は、蓄電設備24を非充放電モードに設定する(ステップS45)。したがって、この場合には、発電システム10から出力される電力は、計画値Ppを超過することになる。 Moreover, when the charge rate of the power storage equipment 24 at that time is not within the target SOC range in the determination in step S43 (No in step S43), the storage battery control device 26 puts the power storage equipment 24 into the non-charge / discharge mode. Set (step S45). Therefore, in this case, the power output from the power generation system 10 exceeds the planned value Pp.
 さらに、ステップS42の判定の結果、充電指令を受信していなかった場合(ステップS42でYes)、つまり放電指令を受信した場合には、そのときの蓄電設備21の充電率が予め設定された目標SOC範囲内であるか否かを判定する(ステップS46)。 Furthermore, when the charge command is not received as a result of the determination in step S42 (Yes in step S42), that is, when the discharge command is received, the charge rate of the power storage equipment 21 at that time is a preset target. It is determined whether it is within the SOC range (step S46).
 ステップS46の判定で、そのときの蓄電設備24の充電率が目標SOC範囲内であった場合には(ステップS46でYes)、蓄電池制御装置26は、蓄電設備24を放電モードに設定する(ステップS44)。この場合には、計画値Ppに達しない分の電力は、蓄電設備24から放電されるので、発電システム10から出力される電力は、計画値Ppとほぼ同じになる。 If it is determined in step S46 that the charging rate of the power storage facility 24 is within the target SOC range (Yes in step S46), the storage battery control device 26 sets the power storage facility 24 to the discharge mode (step S46). S44). In this case, since the electric power that does not reach the planned value Pp is discharged from the power storage facility 24, the electric power output from the power generation system 10 is substantially the same as the planned value Pp.
 また、ステップS46の判定で、そのときの蓄電設備24の充電率が目標SOC範囲内でなかった場合には(ステップS46でNo)、蓄電池制御装置26は、蓄電設備24を非充放電モードに設定する(ステップS48)。したがって、この場合には、発電システム10から出力される電力は、計画値Ppに達しないことになる。 Moreover, when the charge rate of the power storage equipment 24 at that time is not within the target SOC range in the determination in step S46 (No in step S46), the storage battery control device 26 puts the power storage equipment 24 into the non-charge / discharge mode. Set (step S48). Therefore, in this case, the power output from the power generation system 10 does not reach the planned value Pp.
 なお、ステップS45およびステップS48のケースでは、発電システム10は、計画値Ppを達成できないことになるが、目標SOC範囲を適切に管理することにより、このようなケースを可能な限り減らすことができる。また、前記のように、申告する計画値は、例えば30分間の積算電力量であるから、瞬時的に計画値Ppを達成できないことは許容される。 In the cases of Step S45 and Step S48, the power generation system 10 cannot achieve the planned value Pp, but such cases can be reduced as much as possible by appropriately managing the target SOC range. . Further, as described above, since the planned value to be reported is, for example, an integrated power amount for 30 minutes, it is allowed that the planned value Pp cannot be achieved instantaneously.
 図13は、本発明の実施例3に係る発電システム10に設定された計画値Ppおよび商用電力系統21へ供給される電力の時間推移の例を示した図である。図13において、階段状の太実線71は、計画値Ppを表し、折れ線72は、太陽光発電電力値Psを表し、折れ線73は、太陽光発電電力値Psと風力発電電力値Pwの合計値を表している。また、階段状の太実線71に近似する値の細実線の折れ線74は、商用電力系統21で計測された発電電力を表している。 FIG. 13 is a diagram showing an example of the time transition of the planned value Pp set in the power generation system 10 according to the third embodiment of the present invention and the electric power supplied to the commercial power system 21. In FIG. 13, a stepped thick solid line 71 represents the planned value Pp, a broken line 72 represents the photovoltaic power value Ps, and a broken line 73 represents the total value of the photovoltaic power value Ps and the wind power value Pw. Represents. Further, a thin broken line 74 having a value approximate to the stepped thick solid line 71 represents the generated power measured by the commercial power system 21.
 以上、本発明の実施例3によれば、ブレードのピッチ制御による出力の制限は少なくなるとともに、いわゆる計画値同時同量が実現される。その結果、発電システム10設備利用利率が向上し、また、太陽光発電電力値Psと風力発電電力値Pwとの合計電力、すなわち、商用電力系統21へ供給される電力が系統連系容量Pcを超えることはなくなる。 As described above, according to the third embodiment of the present invention, the limitation on the output due to the pitch control of the blade is reduced, and the so-called simultaneous plan value is realized. As a result, the facility utilization rate of the power generation system 10 is improved, and the total power of the solar power generation power value Ps and the wind power generation power value Pw, that is, the power supplied to the commercial power grid 21 is reduced to the grid interconnection capacity Pc. It will never be exceeded.
 以上述べた実施例では、上限値として系統連系容量を想定したが、それに限定されず、任意に決定した設定値を目標値とするなどでも何ら問題ない。その場合にも、系統連系容量を考慮して設定することが可能である。 In the embodiment described above, the grid interconnection capacity is assumed as the upper limit value, but the present invention is not limited to this, and there is no problem even if a set value arbitrarily determined is set as the target value. Even in such a case, it is possible to set in consideration of the grid interconnection capacity.
 実施例4では、太陽光発電電力予測値を求めることについて、説明する。太陽光発電電力予測は、図1の太陽光発電電力予測部16、図10の太陽光・風力発電電力予測部27、図5の処理ステップS12,図11の処理ステップS32などで用いられる手法である。 In Example 4, the calculation of the predicted photovoltaic power generation value will be described. The photovoltaic power generation prediction is a technique used in the photovoltaic power generation power prediction unit 16 in FIG. 1, the solar power / wind power generation power prediction unit 27 in FIG. 10, the processing step S12 in FIG. 5, the processing step S32 in FIG. is there.
 太陽光発電電力予測値を求めるには、大別すると、例えば、電力系統の計測情報を用いるもの、または気象観測所から取得される気象についての情報を用いるものである。 In order to obtain the predicted value of photovoltaic power generation, roughly, for example, the measurement information of the power system is used, or the information about the weather acquired from the weather station is used.
 このうち、電力系統の計測情報から日射量を推定する手法では、例えば太陽光発電設備11が与える発電電力は日射量を反映したものであることから、その時系列的な変動を反映して近い将来における日射量を推定予測する。例えば、所定の時間帯における太陽光発電設備11の発電電力の平均値、最大値、最小値、中間値、瞬時値、当該太陽光発電設備11による過去の発電データを利用した予測、さらにはこれらの組み合わせなどを用いることができる。このとき、所定の時間内において、現在から見て、最新値ほど高い重み付けにすることも有効である。また、それらの値に係数を乗じたり、係数を減じたりすることも有効である。 Among these, in the method of estimating the amount of solar radiation from the measurement information of the power system, for example, the generated power given by the solar power generation facility 11 reflects the amount of solar radiation. Estimate and estimate solar radiation at. For example, the average value, the maximum value, the minimum value, the intermediate value, the instantaneous value, the prediction using the past power generation data by the solar power generation equipment 11 in the predetermined time zone, and further these A combination of these can be used. At this time, it is also effective to give higher weight to the latest value from the present time within a predetermined time. It is also effective to multiply these values by a coefficient or subtract a coefficient.
 図14は、太陽光発電設備11の発電電力の平均値からの予測手法例を示す図である。図14では、横軸に時間、縦軸に太陽光発電電力PS,風力発電電力PWを記載している。ここでは太陽光発電電力PSは、例えば60回/分の計測値であり、連続する60個のデータについて移動平均を求め、この移動平均値を太陽光発電電力PSの予測値として使用する。図1の太陽光発電電力予測部16は、系統連系容量と太陽光発電電力PSの予測値の差から風力発電電力制御指令を定めているが、風力発電制御装置18の制御周期(例えば30秒)に合わせて30秒ごとに出力制限指令の設定値を与え、風力発電制御装置18は次の制御周期では、与えられた制限指令値の設定出力を目標とする制御を実行する。 FIG. 14 is a diagram illustrating an example of a prediction method from the average value of the generated power of the solar power generation facility 11. In FIG. 14, the horizontal axis represents time, and the vertical axis represents solar power generation power PS and wind power generation power PW. Here, the photovoltaic power PS is, for example, a measurement value of 60 times / min. A moving average is obtained for 60 continuous data, and this moving average is used as a predicted value of the photovoltaic power PS. The solar power generation power prediction unit 16 in FIG. 1 determines the wind power generation power control command based on the difference between the predicted value of the grid interconnection capacity and the solar power generation power PS. The setting value of the output restriction command is given every 30 seconds in accordance with the second), and the wind power generation control device 18 executes control targeting the setting output of the given restriction command value in the next control cycle.
 図15は、太陽光発電設備11の発電電力の最大値(または最小値)からの予測手法例を示す図である。図15では、横軸に時間、縦軸に太陽光発電電力PS,風力発電電力PWを記載している。ここでは太陽光発電電力PSは、例えば60回/分の計測値であり、連続する600個のデータについて10分間での最大値(または最小値)を求め、この最大値(または最小値)を太陽光発電電力PSの予測値として使用する。図1の太陽光発電電力予測部16は、系統連系容量と太陽光発電電力PSの予測値の差から風力発電電力制御指令を定めているが、風力発電制御装置18の制御周期(例えば30秒)に合わせて30秒ごとに制限指令の設定値を与え、風力発電制御装置18は次の制御周期では、与えられた制御指令の設定出力を目標とする制御を実行する。 FIG. 15 is a diagram illustrating an example of a prediction method from the maximum value (or minimum value) of the generated power of the solar power generation facility 11. In FIG. 15, the horizontal axis represents time, and the vertical axis represents solar power generation power PS and wind power generation power PW. Here, the photovoltaic power PS is, for example, a measured value of 60 times / minute, and a maximum value (or minimum value) in 10 minutes is obtained for 600 continuous data, and this maximum value (or minimum value) is obtained. Used as a predicted value of the photovoltaic power PS. The solar power generation power prediction unit 16 in FIG. 1 determines the wind power generation power control command based on the difference between the predicted value of the grid interconnection capacity and the solar power generation power PS. The setting value of the limit command is given every 30 seconds in accordance with the second), and the wind power generation control device 18 executes control targeting the set output of the given control command in the next control cycle.
 なお、中間値とは、例えば60回/分の計測値のうち、計測値が高い側から30番目に大きい値を中間値としたものであり、瞬時値とは例えば60回目の計測値を瞬時値として、次の周期の演算に用いるものである。 The intermediate value is, for example, the 30th largest value from the higher measured value of the measured values at 60 times / minute, and the instantaneous value is, for example, the 60th measured value. The value is used for the calculation of the next period.
 次に実際の風力発電所で実証試験を行ったので、その条件と結果について説明する。試験を行った風力発電所はA県のD発電所である。D発電所への入力データとしては、太陽光発電所のある日の発電データを用いた。入力した太陽光発電所のデータはA県のE発電所である。実証試験で用いた発電設備においては、風車の制限指令値は30秒-60秒ごとに送信される。したがって、太陽光が急激(瞬時的)に変動(上昇)する場合には、30秒ごとの制御では追い付かず、系統連系容量を超過する可能性がある。太陽光の急激な変動は、くもりのち晴れの天気の場合が多いが、そのときには明細書記載の最大98%などに設定すること以外に、制限指令値を段階的に上げるような制御が必要になる。例えば、風力の制限指令値が系統連系容量を100とした場合に、20⇒50などに変わった際
に一気に風車出力を上げるのはなく、ステップ状に30秒ごとに10ずつ上げていくというイメージである。具体的には、くもりのち晴れなど変動大の可能性がある場合には、30秒で20⇒50ではなく、90秒かけて20⇒50(30秒で20⇒30、次の30秒で30⇒40、次の30秒で40⇒50)にするということである。
Next, a demonstration test was conducted at an actual wind power plant, and the conditions and results will be described. The wind power plant tested was D power plant in A prefecture. As input data to the D power plant, power generation data on a certain day of the solar power plant was used. Input solar power plant data is E power plant in A prefecture. In the power generation equipment used in the demonstration test, the wind turbine limit command value is transmitted every 30 to 60 seconds. Therefore, when sunlight fluctuates (increases) suddenly (instantaneously), the control every 30 seconds may not catch up and may exceed the grid interconnection capacity. Abrupt fluctuations in sunlight often occur in cloudy and sunny weather, but at that time, in addition to setting the maximum 98% or the like described in the specification, control that raises the limit command value in steps is necessary. Become. For example, if the wind power limit command value is set to grid connection capacity 100, when it changes from 20 to 50, etc., the wind turbine output is not increased at once, but it is increased by 10 every 30 seconds in steps. It is an image. Specifically, when there is a possibility of large fluctuations such as cloudy and sunny, instead of 20⇒50 in 30 seconds, 20⇒50 over 90 seconds (20⇒30 in 30 seconds, 30 in the next 30 seconds) ⇒ 40, 40⇒50 in the next 30 seconds.
 上記の実証試験に当たり制御上配慮した事項は要するに以下のようである。まず、風車の制御は、制限指令値が風車出力より大きい場合には風車は最大限発電するように制御される。この状態から現風車出力以下に出力制限する場合には、風車の制御遅れΔtにより、Δt時間分制限指令値を超過してしまう。制限指令値を上げる際は、この時間をなるべく少なくするために、指令値上げ閾値ΔPをもって段階的に指令値を上げるのが有効である。なお指令値上げ閾値ΔPは気象条件(PV出力変動)に応じて変えるのがよい。 The following are the items that were taken into consideration for control in the above demonstration test. First, the wind turbine is controlled such that the wind turbine generates maximum power when the limit command value is larger than the wind turbine output. When the output is limited below the current wind turbine output from this state, the limit command value is exceeded by Δt time due to the wind turbine control delay Δt. When increasing the limit command value, it is effective to increase the command value stepwise with the command value increase threshold ΔP in order to reduce this time as much as possible. The command value increase threshold ΔP is preferably changed according to weather conditions (PV output fluctuation).
 図16は、上記事項を加味して、図15に示した太陽光発電電力の最大値を予測値とした場合の、風車発電電力と合成発電電力である。太陽光発電電力の最大値は現在から過去20分間での最大値を用いた。つまり、過去20分間での太陽光発電電力の最大値をもとに、風車の出力制限指令値を算出している。結果、合成発電電力は系統連系容量を超過することなく、系統連系容量を100とした場合に、合成発電電力は100以内に抑えることができることを確認した。 FIG. 16 shows the wind turbine generated power and the combined generated power when the maximum value of the photovoltaic power generation power shown in FIG. As the maximum value of the photovoltaic power generation, the maximum value in the past 20 minutes from the present time was used. That is, the wind turbine output restriction command value is calculated based on the maximum value of the photovoltaic power generation in the past 20 minutes. As a result, it was confirmed that the combined generated power can be suppressed to 100 or less when the combined grid capacity is 100 without exceeding the combined grid capacity.
 以上、所定の時間帯における太陽光発電設備11の発電電力の平均値、最大値、最小値、中間値、瞬時値を用いて予測を行う手法について述べたが、気象条件などを考慮して適宜選択して使用するのがよい。例えば、晴天であれば平均値を使用して予測するのがよく、晴れ時々曇りでは数分間の間の最大値を採用するのがよい。最大値から風力発電電力制御指令を定める結果として、風力発電電力制御指令値は小さい値となる。ただし、発電所が設置されている地点の気候の特徴に応じて、予測する手法は適宜変えても何ら問題はない。 As described above, the method of performing prediction using the average value, maximum value, minimum value, intermediate value, and instantaneous value of the generated power of the photovoltaic power generation facility 11 in a predetermined time zone has been described. Select and use. For example, if the weather is fine, the average value should be used for prediction, and if it is sunny and cloudy, the maximum value for several minutes should be adopted. As a result of determining the wind power generation power control command from the maximum value, the wind power generation power control command value is a small value. However, there is no problem even if the forecasting method is changed as appropriate according to the climate characteristics of the site where the power plant is installed.
 また、風力発電制御装置18の運用にあたり、以下のような制御とするのがよい。例えば、1分間の計測期間内でも、頻繁に大きな電力変動の傾向を示す場合には、風力発電制御装置18の出力変動を固定してしまうような保護的処理を採用するのがよい。あるいは、太陽光発電設備11の発電電力との差を求める系統連系容量について、100%の値とするのではなく、例えばマージンを持たせて98%で運用しているときに、マージンそのものを可変にするように作用させる手法もある。あるいは天候に応じて制御量を変化させることや、最新のデータほど高い重み付けをして運用することや、過去の時系列的なパターンを参照して類似系統の過去パターンを反映させた制御に反映させることや、太陽光発電電力の時間変化分が大きいことをもって、風力発電設備の停止を図ることなどが有用である。また風力発電装置15が複数台設置されている場合に、すべての風力発電装置15を一律に同程度制御するのではなく、選択した風力発電装置15の風力発電制御装置18に対してのみ制限動作を実行するというのも有用である。なお、制御指令をさらに制限する場合として、天候の急変以外に、機器応答の遅い風力発電装置15の風力発電制御装置18を対象として実施するのがよい。 Also, in the operation of the wind power generation control device 18, the following control is preferable. For example, when a tendency of large power fluctuations is frequently shown even within a measurement period of one minute, it is preferable to adopt a protective process that fixes the output fluctuation of the wind power generation control device 18. Alternatively, the grid interconnection capacity for obtaining the difference from the generated power of the solar power generation facility 11 is not set to a value of 100%. For example, when operating with 98% with a margin, the margin itself is used. There is also a method of making it act so as to be variable. Or change the control amount according to the weather, use the higher weight for the latest data, and reflect the past pattern of similar systems by referring to the past time series pattern It is useful to stop the wind power generation facility due to the large amount of time change of the photovoltaic power generation. Further, when a plurality of wind power generators 15 are installed, not all of the wind power generators 15 are uniformly controlled to the same extent, but only limited to the wind power generator control device 18 of the selected wind power generator 15. It is also useful to execute In addition, as a case where control commands are further restricted, it is preferable to implement the wind power generation control device 18 of the wind power generation device 15 with a slow device response in addition to a sudden change in weather.
 これらの考え方には、合成発電電力と系統連系容量から設定された上限値を用いて、風力発電制御装置18に対する制限指令値を算出するに当たり、合成発電電力と系統連系容量から設定された上限値の差分を求めるとともに、それらの差分の大きさがその時の気象状態に応じて可変に調整されることを含む。例えば、差分が気象状態に応じた係数を乗じられて求められ、あるいは比較対象の一方(例えば系統連系容量から設定された上限値)の大きさが気象状態に応じて変更して用いられることで、風力発電制御装置18における制御の自由度が制限される方向に機能することを意味している。 In these ideas, in calculating the limit command value for the wind power generation control device 18 using the upper limit value set from the combined generated power and the grid interconnection capacity, it is set from the combined generated power and the grid interconnection capacity. It includes obtaining a difference between the upper limit values and variably adjusting the magnitude of the difference according to the weather condition at that time. For example, the difference is obtained by multiplying by a coefficient according to the weather condition, or the size of one of the comparison targets (for example, the upper limit set from the grid interconnection capacity) is changed according to the weather condition. Thus, the wind power generation control device 18 functions in a direction in which the degree of freedom of control is limited.
 一方、気象観測所から取得される気象情報を用いる場合は、例えば、図1の太陽光発電電力予測部16は、所定の時間(例えば30秒~30分)ごとに、気象観測所22から取得される気象の情報に基づき、現時点から所定の時間の間の日射量などを予測することで、太陽光発電設備11の発電電力を予測する。 On the other hand, when using weather information acquired from a weather station, for example, the photovoltaic power generation prediction unit 16 in FIG. 1 acquires from the weather station 22 every predetermined time (for example, 30 seconds to 30 minutes). The generated power of the solar power generation facility 11 is predicted by predicting the amount of solar radiation for a predetermined time from the present time based on the weather information.
 ここでいう気象観測所22とは、気象衛星、気象台、測候所、その他の気象観測ポイントで観測された気象データを提供する気象情報提供センタなどのことを指す。さらに、気象観測所22は、太陽光発電設備11の近傍に独自に設けられたものであってもよい。この場合には、太陽光発電設備11の近傍で観測された日射量、気圧、気温、降水量、相対湿度、風速、雲の動きなどのデータを用いることができるため、太陽光発電電力予測部16は、太陽光発電電力の予測精度を向上させることができる。また、独自の気象観測所22の設置時に、その設置場所を予め最適化しておくことは、太陽光発電電力の予測精度向上に効果があることは言うまでもない。 As used herein, the meteorological station 22 refers to a meteorological satellite, a meteorological station, a weather station, a weather information providing center that provides meteorological data observed at other meteorological observation points, and the like. Furthermore, the weather station 22 may be provided independently in the vicinity of the solar power generation facility 11. In this case, data such as the amount of solar radiation, atmospheric pressure, temperature, precipitation, relative humidity, wind speed, and cloud movement observed in the vicinity of the photovoltaic power generation facility 11 can be used. 16 can improve the prediction accuracy of photovoltaic power generation. Needless to say, optimizing the installation location in advance when installing the unique weather station 22 is effective in improving the prediction accuracy of the photovoltaic power generation.
 また、ここでいう独自の気象観測所22は、気象観測機器に加えて、気象衛星データを入手する通信システムや、全天空写真を撮影するための魚眼カメラなどを備えていてもよい。あるいは、気象観測機器を備えず、その他の機器だけで構成されていてもよい。なお、気象の情報のうち雲画像は、気象衛星や地上カメラなどを用いて入手することができ、この情報取得周期時間は、短時間であるほど太陽光発電電力の予測精度は向上するが、実際には風力発電設備11側のブレードのピッチ制御の応答速度などによって制限されることがある。 Also, the unique weather station 22 here may be equipped with a communication system for obtaining meteorological satellite data, a fish-eye camera for taking a whole sky photograph, and the like in addition to the weather observation equipment. Or you may be comprised only with other apparatuses, without providing a weather observation apparatus. In addition, cloud images of weather information can be obtained using weather satellites or ground cameras, etc., and the information acquisition cycle time is shorter, the prediction accuracy of photovoltaic power generation is improved, Actually, it may be limited by the response speed of the pitch control of the blade on the wind power generation equipment 11 side.
 これらの日射量予測では、近隣の複数計測地点で計測した日射量、雲の有無や、風向、風量などを参照して、太陽光発電設備11設置点における気象を予測し、日射量を推定する手法が種々提案され、知られているので、適宜採用が可能である。なお本発明の場合に、日射量予測は数分先程度の予測が実現できればよく、長時間予測を必要としないので比較的に簡便な手法でも精度よく推定することが可能である。 In these solar radiation amount predictions, the solar radiation facility 11 installation point is predicted with reference to the solar radiation amount measured at a plurality of neighboring measurement points, the presence or absence of clouds, the wind direction, the air volume, etc., and the solar radiation amount is estimated. Various methods have been proposed and known, and can be adopted as appropriate. In the case of the present invention, it is sufficient that the solar radiation amount prediction can realize a prediction of about several minutes ahead, and since it does not require a long-time prediction, it can be accurately estimated by a relatively simple method.
 以上、電力系統の計測情報を用いる予測する場合、または気象観測所から取得される気象情報から予測する場合の考え方について説明したが、これらは組み合わせて予測に用いても構わない。気象衛星による雲画像を利用した日射量予測、気象予報に基づく日射量予測、当該太陽光発電設備11による過去の発電データを利用した日射量予測、さらにはこれらの組み合わせなど、特に限定するものではない。また、これらの太陽光発電電力の予測において、日射量の他に、気圧、気温、降水量、相対湿度、風速、および、これらの時間的な変化量から選ばれた1つまたは複数のデータを組み合わせて用いることは、予測の精度向上を図るうえで有効である。さらにまた、IoT(Internet of Things)やAI(artificial intelligence)技術を用いた予測を用いることは予測精度の向上に寄与する。 As described above, the concept of predicting using power system measurement information or predicting from meteorological information acquired from a weather station has been described, but these may be combined and used for prediction. The solar radiation amount prediction using the cloud image by the weather satellite, the solar radiation amount prediction based on the weather forecast, the solar radiation amount prediction using the past power generation data by the solar power generation facility 11, and a combination thereof are not particularly limited. Absent. In addition, in the prediction of solar power generation, in addition to the amount of solar radiation, one or more data selected from atmospheric pressure, temperature, precipitation, relative humidity, wind speed, and the amount of change over time are selected. Use in combination is effective in improving prediction accuracy. Furthermore, the use of prediction using IoT (Internet of Things) or AI (artificial intelligence) technology contributes to improvement of prediction accuracy.
 なお複数の風車を備える風力発電設備13では、発電電力の調整は全ての風車に対して同様に実施してもよいし、いずれかの、もしくは一部の風車にのみ発電電力の調整を行ってもよい。例えば複数の風車を備える風力発電設備13では、各風車の発電電力は設置条件等により異なるため、発電量の多い風車にのみピッチ制御を行って発電電力を制限し、全体の発電電力を調整することができる。 In the wind power generation facility 13 including a plurality of windmills, the generated power may be adjusted in the same manner for all the windmills, or the generated power may be adjusted only for one or a part of the windmills. Also good. For example, in the wind power generation facility 13 including a plurality of windmills, the generated power of each windmill varies depending on the installation conditions and the like, so that the generated power is limited by controlling the pitch only for windmills with a large amount of power generation, thereby adjusting the total generated power. be able to.
 図1の太陽光発電電力予測部16、図10の太陽光・風力発電電力予測部27においては、気象観測所22から得られた様々なデータ、特に太陽光発電電力予測部16での予測に利用されたデータを、日時、予測結果、実績発電電力などに関連付けて蓄積するための記憶部23を備えている。このようなデータが記憶部23に蓄積されると、太陽光発電電力予測部16は、その後の太陽光発電電力の予測時に、過去の類似した日時における同様の気象条件下での予測結果および実績発電電力を利用することができる。その結果、太陽光発電電力予測部16は、そのとき予測した太陽光発電電力の予測値を過去の実績値やその統計値に照らして補正したりすることが可能になるので、予測精度の向上が図られる。 In the photovoltaic power generation power prediction unit 16 in FIG. 1 and the solar power / wind power generation power prediction unit 27 in FIG. 10, various data obtained from the meteorological observatory 22, in particular, the prediction in the photovoltaic power generation power prediction unit 16. A storage unit 23 is provided for storing the used data in association with the date and time, the prediction result, the actual generated power, and the like. When such data is accumulated in the storage unit 23, the photovoltaic power generation prediction unit 16 predicts the result of the prediction under the same weather condition at a similar date and time in the past at the time of prediction of the subsequent photovoltaic power generation. The generated power can be used. As a result, the photovoltaic power generation prediction unit 16 can correct the predicted value of the photovoltaic power generation predicted at that time in the light of the past actual value or its statistical value, thereby improving the prediction accuracy. Is planned.
 なお、以上述べたいずれの予測方法においても、気象観測データや太陽光発電電力の予測データには必ず誤差が伴うことを考慮しておく必要がある。そして、それらのデータの誤差の傾向や相関関係がわかっている場合には、バイアス補正などの手法を適用するなど、誤差を予測し加味した補正をすることが可能となる。このような誤差を考慮した予測値
の補正は、太陽光発電電力の予測値の精度が向上するだけでなく、より適切な風力発電電力制限指令値を設定することが可能になる。
In any of the prediction methods described above, it is necessary to take into account that the weather observation data and the prediction data of the photovoltaic power generation always include an error. Then, when the error tendency or correlation of these data is known, it is possible to make corrections by predicting and taking into account errors, such as applying a bias correction method. The correction of the predicted value in consideration of such an error not only improves the accuracy of the predicted value of the photovoltaic power generation power, but also allows a more appropriate wind power generation power limit command value to be set.
 以上、本実施形態に係る発電制御装置15においては、太陽光発電電力予測部16により精度の高い太陽光発電電力の予測が可能となり、風力発電制御装置18には、精度の高い風力発電電力制限指令値が送信される。したがって、風力発電設備18からは、風力発電電力制限指令値より大きな電力は発電されなくなる。よって、商用電力系統10へは、予め設定された系統連系容量を超える電力が供給されないので、発電システム10は健全なシステムになり得る。 As described above, in the power generation control device 15 according to the present embodiment, the solar power generation power prediction unit 16 can predict solar power generation with high accuracy, and the wind power generation control device 18 has a high accuracy wind power generation limit. Command value is transmitted. Accordingly, the wind power generation facility 18 does not generate power larger than the wind power generation power limit command value. Therefore, since the electric power exceeding the grid connection capacity set in advance is not supplied to the commercial power system 10, the power generation system 10 can be a sound system.
 図17は、太陽光発電設備11の時間当たりの発電電力変化率(dp/dt)が設定値を超える場合に、前記太陽光発電設備の発電電力に制限をかけることにより、系統連系容量を超過しないようにした場合の一例である。これにより、前記太陽光発電設備の発電機会損失は発生するが、この損失を算出した結果が図18である。計算に使用したデータは1秒間隔のデータであり、例えば太陽光発電設備の最大出力に対して90%/分以下の変動となるように制御すると、損失率は0.72%であった。同様に、70%/分以下では1.02%、50%/分以下では1.54%と損失率は増加するが、系統連系容量を超過する回数は大きく減少することを確認している。 FIG. 17 shows that when the rate of change in generated power per unit time (dp / dt) of the solar power generation facility 11 exceeds a set value, the power generation capacity of the solar power generation facility is limited, thereby reducing the grid interconnection capacity. It is an example when it is made not to exceed. As a result, a power generation opportunity loss of the solar power generation facility occurs, and the result of calculating this loss is shown in FIG. The data used for the calculation is data at intervals of 1 second. For example, when the control is performed so that the fluctuation is 90% / min or less with respect to the maximum output of the photovoltaic power generation facility, the loss rate is 0.72%. Similarly, the loss rate increases to 1.02% at 70% / min or less and 1.54% at 50% / min or less, but it has been confirmed that the number of times exceeding the grid interconnection capacity is greatly reduced. .
 なお、ここでは太陽光発電設備の時間当たりの発電電力変化率(dp/dt)をもとにしたが、発電設備は限定するものではなく、複数の発電設備がある場合にはそれかひとつ、あるいは複数の設備に出力制限をかけることでも同様の効果が得られる。 Here, based on the rate of change in generated power per hour (dp / dt) of the photovoltaic power generation equipment, the power generation equipment is not limited, and if there are multiple power generation equipment, one of them, Alternatively, the same effect can be obtained by limiting output to a plurality of facilities.
 実施例5では、太陽光発電設備11と風力発電設備13を併設することで、設備利用率を向上させること及び他の例について説明する。 In Example 5, a solar power generation facility 11 and a wind power generation facility 13 are provided to improve the facility utilization rate and other examples will be described.
 通常、商用電力系統に連系される再生可能エネルギーを利用した発電設備では、系統連系容量は発電所の最大出力を元に確保されている。特に、太陽光発電では、1,000kW以上の発電設備(メガソーラー)が大量導入されており、系統全体としての大きな占有率を確保している一方で、設備利用率が低い。この既接続の枠内で第1の発電設備に第2の発電設備を新規設置することで設備利用率を向上させ、太陽光発電設備などの連系線に適切な比率で風力発電設備を割り込ませ、設備利用率を向上させる。 Normally, in power generation facilities that use renewable energy that is linked to the commercial power system, the grid connection capacity is secured based on the maximum output of the power plant. In particular, in solar power generation, power generation equipment (mega solar) of 1,000 kW or more has been introduced in large quantities, and a large occupation ratio as a whole system is ensured, while the equipment utilization rate is low. By installing a second power generation facility in the first power generation facility within this already connected framework, the facility utilization rate will be improved, and wind power generation facilities will be interrupted at appropriate ratios to interconnection lines such as solar power generation facilities. And improve equipment utilization.
 また、風力発電設備13は環境影響評価等に数年かかり、太陽光発電設備11に比して事業化に時間がかかることが多い。従って、太陽光発電設備11を先行して導入・運用し、連系点の枠内に追加する形で順次風力発電設備13を導入し、連系点を増やさず、現状の最大容量の枠内での設備利用率を向上させることが可能となる。 Also, the wind power generation facility 13 takes several years for environmental impact assessment and the like, and it often takes time to commercialize compared to the solar power generation facility 11. Therefore, the solar power generation equipment 11 is introduced and operated in advance, and the wind power generation equipment 13 is sequentially introduced in the form of addition to the connection point frame, and the number of connection points is not increased. It is possible to improve the facility utilization rate in
 その際、現在稼働している発電設備の最大容量・設備利用率等を勘案し、追加する発電設備の最大出力を決定する。追加する発電設備は、連系点と既存の発電設備との間の連系線上に接続する。その場合、系統連系容量を超えない発電電力を達成するため、出力を制限する制御が必要となる。上述の理由により、太陽光発電設備を備える発電システムに、風力発電設備のように出力の制御の容易な発電設備を追加することが好ましい。 At that time, the maximum output of the power generation equipment to be added is determined in consideration of the maximum capacity and capacity factor of the power generation equipment currently in operation. The power generation facility to be added is connected on a connection line between the connection point and the existing power generation facility. In that case, in order to achieve the generated power that does not exceed the grid interconnection capacity, control to limit the output is required. For the above-described reason, it is preferable to add a power generation facility with easy output control, such as a wind power generation facility, to a power generation system including a solar power generation facility.
 太陽光発電設備11を備える発電システムに、風力発電設備13を接続して合成発電電力を増大する場合、所定の時間間隔で入手または算出される太陽光発電設備の発電電力の予測値に基づき、風力発電設備13の発電電力の制御指令を算出し、風力発電制御装置18に設定する。 When the wind power generation facility 13 is connected to the power generation system including the solar power generation facility 11 to increase the combined power generation, based on the predicted value of the power generation of the solar power generation facility obtained or calculated at predetermined time intervals, A control command for the generated power of the wind power generation facility 13 is calculated and set in the wind power generation control device 18.
 また、太陽光発電設備11が出力する発電電力と風力発電設備13が出力する発電電力とを合わせた出力が連系点を介し変電所に供給されるが、系統連系容量以下の出力であることを、電力計を用いて監視することが好ましい。系統連系容量を超える出力が供給された場合、もしくは予測値を超える出力が供給された場合には、発電量を制限する制御を実施する。 In addition, an output obtained by combining the generated power output from the solar power generation facility 11 and the generated power output from the wind power generation facility 13 is supplied to the substation via the connection point, but the output is less than the grid connection capacity. This is preferably monitored using a power meter. When an output exceeding the grid interconnection capacity is supplied, or when an output exceeding the predicted value is supplied, control for limiting the power generation amount is performed.
 その結果、設備利用率を向上させ、系統連系容量の枠内で連系発電電力を拡大し、再生可能エネルギーの利用を促進することが可能となる。 As a result, it is possible to improve the facility utilization rate, expand the grid power generation within the grid capacity, and promote the use of renewable energy.
 また、その他の実施例として、以上に説明した実施例おける発電システム10では、発電に用いられるエネルギーは、太陽光と風力の組み合わせであったが、その組み合わせは、太陽光および風力に限定されない。例えば、太陽光と河川の水力の組み合わせや太陽光と海洋の波力の組み合わせなどであってもよい。その組み合わせは、発電電力の出力制御がしにくいエネルギーと発電電力の出力制御がしやすいエネルギーの組み合わせが好ましい場合もある。 As another embodiment, in the power generation system 10 in the embodiment described above, the energy used for power generation is a combination of sunlight and wind power, but the combination is not limited to sunlight and wind power. For example, it may be a combination of sunlight and river hydraulic power or a combination of sunlight and ocean wave power. The combination may be preferably a combination of energy that is difficult to control the output of the generated power and energy that is easy to control the output of the generated power.
 また、風力発電設備13の出力制限指令値を出してから、実際に風力発電設備13の出力が設定値になるまでの時間が30~60秒を要する。このため、太陽光発電設備11に対する風力発電設備13の比率を適切にしておいても瞬間的に系統連系容量を超過する場合がある。このため発電システムを構築するにあたり、この点も考慮して、太陽光発電設備11に対する風力発電設備13の比率にしておくことが重要である。 In addition, it takes 30 to 60 seconds from when the output limit command value of the wind power generation facility 13 is issued until the output of the wind power generation facility 13 actually reaches the set value. For this reason, even if the ratio of the wind power generation facility 13 to the solar power generation facility 11 is made appropriate, the grid interconnection capacity may be instantaneously exceeded. For this reason, it is important to set the ratio of the wind power generation equipment 13 to the solar power generation equipment 11 in consideration of this point when constructing the power generation system.
 また風車の出力制限は、出力制限指定値に応じて、風車の羽根(以下、ブレードという)の角度を調整するピッチコントロール制御(以下、ピッチ制御)、風車の励磁電圧制御およびパワーコンディショナー制御により、個々の風車出力を調整する。また、指令を送った風車の出力を監視しながら、その風車指令値と実際の風車出力を比較し、個々の風車指令値を決定するフィードバック制御を10秒程度の周期で行うことも効果的である。 In addition, the output limit of the windmill is controlled by pitch control control (hereinafter referred to as pitch control) that adjusts the angle of the windmill blade (hereinafter referred to as blade), the excitation voltage control of the windmill, and power conditioner control according to the output limit specified value Adjust individual windmill power. It is also effective to perform feedback control with a period of about 10 seconds while monitoring the output of the windmill that sent the command, comparing the windmill command value with the actual windmill output, and determining each windmill command value. is there.
 太陽光発電設備の最大出力に対し、どの程度の最大出力の風力発電設備を追加するかは、これまでの系統連系容量に対する設備利用率や稼働率の他、地域の太陽光データ、風況、設備性能等により異なる。例えば、再生可能エネルギーを用いた発電システムは時期により設備利用率が変動する。太陽光発電設備の設備利用率の高い時期(5月)を基準として風力発電設備の最大出力を定めることで、風力発電設備の出力制限量の低い設備を構築することが可能である。一方、太陽光発電設備の設備利用率の低い時期(1月)を基準として風力発電設備の最大出力を定めると、設備利用率の高い発電システムを提供可能となる。また、8月等、電力使用量が多いとされている時期に商用電力系統に多く電力を供給するシステムは公共の利益にかなう。 The maximum output of wind power generation facilities relative to the maximum output of solar power generation facilities depends on the utilization rate and operating rate of the grid interconnection capacity so far, as well as local solar data and wind conditions. Depends on equipment performance. For example, in a power generation system using renewable energy, the facility utilization rate varies depending on the time. By setting the maximum output of the wind power generation facility based on the period when the facility utilization rate of the solar power generation facility is high (May), it is possible to construct a facility with a low output limit of the wind power generation facility. On the other hand, if the maximum output of the wind power generation facility is determined based on the period when the facility utilization rate of the solar power generation facility is low (January), a power generation system with a high facility utilization rate can be provided. In addition, a system that supplies a large amount of power to the commercial power system at a time when the amount of power consumption is considered to be large, such as in August, is in the public interest.
 設備利用率は地域によっても異なる。特に、太陽光発電設備の設備利用率と風力発電設備の設備利用率が時期により相反する地域で適用すると、発電設備を併用することで風車の出力制限量が少なく、発電電力が安定するため好ましい。シミュレーション等により、設備利用率、制限量、発電電力等を考慮することが可能である。 The facility utilization rate varies depending on the region. In particular, when applied in areas where the facility utilization rate of solar power generation facilities and the facility utilization rate of wind power generation facilities conflict with each other, it is preferable to use the power generation facilities together because the output limit amount of the windmill is small and the generated power is stable. . It is possible to consider the equipment utilization rate, the limit amount, the generated power, etc. by simulation or the like.
 なお、本発明において電力を制御する際に使用する単位について、いわゆる同時同量の計画値は、一定期間内の発電量合計(電力量/kWh)で設定されるのに対し、今回の発電システムの系統連系容量に対する出力制御は特定の時点での電力(kW単位)で行われる。 In addition, about the unit used when controlling electric power in the present invention, the so-called simultaneous same amount planned value is set as the total amount of electric power generation within a certain period (electric power amount / kWh), whereas the current electric power generation system The output control for the grid interconnection capacity is performed by the power (kW unit) at a specific time.
 また系統連系容量についての出力制限値超過に関し、実際には系統連系容量の100%を超えたら、風車出力をゼロにすることも有効である。このとき風車出力は最大出力の100%から0%まで減少させるのに数秒~30秒程度かかるため、それを考慮した制御が必要となる。万一、系統連系容量を超過した場合には、過出力検出器で合成発電電力を減少させるという機能付きのシステムにするのが望ましい。 Also, with regard to exceeding the output limit value for grid interconnection capacity, it is also effective to reduce the wind turbine output to zero when it actually exceeds 100% of grid interconnection capacity. At this time, since it takes several seconds to 30 seconds to reduce the wind turbine output from 100% to 0% of the maximum output, control in consideration thereof is necessary. In the unlikely event that the grid interconnection capacity is exceeded, it is desirable to have a system with the function of reducing the combined generated power with an overpower detector.
 以上説明した予測を伴う発電システムの運転方法は、要するに発電設備の一方は入力に従いフリー運転を行い、発電設備の他方は予測から定めた制限の範囲内でのフリー運転を行い、予測は発電設備の一方の出力を用いるというものである。この棲み分けにより、予測側と制限側が分離されているので、相互干渉がなく予測を正しく行える点に効果がある。なお発電設備の他方における運転は制限の範囲内である限りにおいて、角度制御などの最適化制御を行うものであってもよい。 The operation method of the power generation system with the prediction described above is basically that one of the power generation facilities performs free operation according to the input, and the other of the power generation facilities performs free operation within the limits determined from the prediction. One of the outputs is used. Since the prediction side and the restriction side are separated by this segregation, there is an effect in that prediction can be performed correctly without mutual interference. As long as the operation of the other power generation facility is within the limits, optimization control such as angle control may be performed.
 以上に述べた本発明は、太陽光発電設備と風力発電設備の最大出力を合算した出力(発電システムの設備容量)が、連系点に供給可能な発電電力(系統連系容量)を超える発電システムであって、太陽光発電設備の発電電力の予測値に基づき風力発電設備の出力を制限する風力発電設備制御装置を備えるものである。 In the present invention described above, the total output of the photovoltaic power generation equipment and the wind power generation equipment (equipment capacity of the power generation system) exceeds the generated power (system interconnection capacity) that can be supplied to the interconnection point. The system includes a wind power generation facility control device that limits the output of the wind power generation facility based on a predicted value of the generated power of the solar power generation facility.
 なお、本発明は、以上に説明した実施例に限定されるものではなく、さらに、様々な変形例が含まれる。また、ある実施例の構成の一部を、他の実施例の構成に置き換えることが可能である。また、各実施例の一部について、他の実施例に含まれる構成を追加・削除・置換することも可能である。 It should be noted that the present invention is not limited to the embodiments described above, and further includes various modifications. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment. Moreover, it is also possible to add, delete, and replace configurations included in other embodiments for a part of each embodiment.
10:発電システム,11:太陽光発電設備,12,14,25:電力計,13:風力発電設備,15:発電制御装置,16:太陽光発電電力予測部,17:発電電力演算部,18:風力発電制御装置,19:連系点,20:変電所,21:商用電力系統,22:気象観測所,23:記憶部,24:蓄電設備,26:蓄電池制御装置,27:太陽光・風力発電電力予測部,31:太陽光発電電力,32:風力発電連力,33:出力制限領域,52:系統連系容量(Pc),53:太陽光発電電力予測値(Pss),55:風力発電電力制御指令Pwr,57:風力発電電力値(Pw),61:計画値(Pp),62:太陽光発電電力値(Ps),63:太陽光発電電力値(Ps)と風力発電電力値(Pw)の合計値,64:商用電力系統で計測される発電電力値,Ps:太陽光発電電力値,Pw:風力発電電力値,Pp:計画値,Pss:太陽光発電電力予測値,Pwr:風力発電電力制御指令,Pwx:出力最大値,Pww:風力発電電力予測値 10: power generation system, 11: solar power generation equipment, 12, 14, 25: wattmeter, 13: wind power generation equipment, 15: power generation control device, 16: solar power generation power prediction section, 17: power generation power calculation section, 18 : Wind power generation control device, 19: Interconnection point, 20: Substation, 21: Commercial power system, 22: Meteorological observation station, 23: Storage unit, 24: Power storage equipment, 26: Storage battery control device, 27: Solar power Wind power generation prediction unit, 31: solar power generation power, 32: wind power generation cooperation, 33: output restriction region, 52: grid interconnection capacity (Pc), 53: solar power generation power prediction value (Pss), 55: Wind power generation control command Pwr, 57: Wind power generation power value (Pw), 61: Planned value (Pp), 62: Solar power generation power value (Ps), 63: Solar power generation power value (Ps) and wind power generation power Total value (Pw), 64: measured in the commercial power system Generated power value, Ps: solar power generation power value, Pw: wind power generation power value, Pp: plan value, Pss: solar power generation power predicted value, Pwr: wind power generation power control command, Pwx: output maximum value, Pww : Wind power generation predicted value

Claims (48)

  1. 変電所を介し商用の電力系統に電力を供給する発電システムであって、
    第1のエネルギー源により電力を発電する第1の発電設備と、
    第2のエネルギー源により電力を発電する第2の発電設備と、
    前記第2の発電設備の発電電力を制御する第2の発電制御装置と、
    前記第1の発電設備が発電する電力と、前記第2の発電設備が発電する電力を合計した合成発電電力を、電力系統へ供給する発電制御装置とを備え、
    前記発電制御装置は、前記第1の発電設備の発電電力を予測する発電電力の予測手段を具備し、
    系統連系容量から設定された上限値から、前記発電電力の予測手段により予測された前記第1の発電設備が発電する電力の予測値を差し引いた電力値に基づき、前記第2の発電設備における発電電力の制限指令値を算出し、
    前記第1の発電設備の発電電力の予測値と、前記第2の発電設備における発電電力の前記算出した制限指令値とを合計した合成発電電力が、前記上限値を超えるか否かを判定し、前記上限値を超える場合に、前記算出した制限指令値を前記第2の発電制御装置または前記第2の発電設備に出力制御信号として送信することを特徴とする発電システム。
    A power generation system that supplies power to a commercial power system via a substation,
    A first power generation facility for generating electric power from a first energy source;
    A second power generation facility for generating electric power from a second energy source;
    A second power generation control device for controlling the generated power of the second power generation facility;
    A power generation control device that supplies combined electric power generated by summing the electric power generated by the first electric power generation facility and the electric power generated by the second electric power generation facility to an electric power system;
    The power generation control device comprises a generated power prediction means for predicting the generated power of the first power generation facility,
    Based on the power value obtained by subtracting the predicted value of power generated by the first power generation facility predicted by the power generation power prediction means from the upper limit value set from the grid interconnection capacity, the second power generation facility Calculate the limit command value of generated power,
    It is determined whether or not the combined generated power that is the sum of the predicted value of the generated power of the first power generation facility and the calculated limit command value of the generated power in the second power generation facility exceeds the upper limit value. The power generation system is configured to transmit the calculated limit command value as an output control signal to the second power generation control device or the second power generation facility when the upper limit value is exceeded.
  2. 変電所を介し商用の電力系統に電力を供給する発電システムであって、
    第1のエネルギー源により電力を発電する第1の発電設備と、
    第2のエネルギー源により電力を発電する第2の発電設備と、
    前記第2の発電設備の発電電力を制御する第2の発電制御装置と、
    前記第1の発電設備が発電する電力と、前記第2の発電設備が発電する電力を合計した合成発電電力を、電力系統へ供給する発電制御装置とを備え、
    前記発電制御装置は、前記第1の発電設備の発電電力と、前記第2の発電設備の発電電力を計測し、それらの発電電力を合計した合成発電電力が、系統連系容量から設定された上限値を超えるか否かを判定し、前記上限値を超える場合に、前記上限値より、前記第1の発電設備の発電電力を差し引いた電力値に基づき、前記第2の発電設備の制限指令値を算出し、前記算出した制限指令値を前記第2の発電制御装置または前記第2の発電設備に出力制御信号として送信することを特徴とする発電システム。
    A power generation system that supplies power to a commercial power system via a substation,
    A first power generation facility for generating electric power from a first energy source;
    A second power generation facility for generating electric power from a second energy source;
    A second power generation control device for controlling the generated power of the second power generation facility;
    A power generation control device that supplies combined electric power generated by summing the electric power generated by the first electric power generation facility and the electric power generated by the second electric power generation facility to an electric power system;
    The power generation control device measures the generated power of the first power generation facility and the generated power of the second power generation facility, and the total generated power is set from the grid interconnection capacity. It is determined whether or not the upper limit value is exceeded, and when the upper limit value is exceeded, the limit command for the second power generation facility is based on the power value obtained by subtracting the generated power of the first power generation facility from the upper limit value. A power generation system which calculates a value and transmits the calculated limit command value to the second power generation control device or the second power generation facility as an output control signal.
  3. 前記発電システムに電力を蓄電する蓄電設備と、前記蓄電設備の充放電を制御する蓄電池制御装置とを備え、
    前記発電制御装置は、前記第1の発電設備が発電する電力と、前記第2の発電設備が発電する電力を合計した合成発電電力が、系統連系容量から設定された上限値あるいは任意に与えた目標値を超えるか否かを判定し、前記上限値あるいは前記任意に与えた目標値を超える場合には、前記蓄電池制御装置に対し、前記上限値あるいは前記任意に与えた目標値を超える分の電力を前記蓄電設備に蓄電させることを指令して、前記上限値あるいは任意に与えた目標値を最大値として電力系統へ供給する電力を減少させる手段と、
    前記第1の発電設備が発電する電力と、前記第2の発電設備が発電する電力を合計した合成発電電力が、前記上限値あるいは前記任意に与えた目標値に達しない場合には、前記蓄電池制御装置に対し、前記上限値あるいは任意に与えた目標値に達しない分の電力を前記蓄電設備から放電させることを指令して、前記上限値あるいは任意に与えた値を最大値として前記電力系統へ供給する電力を増加させる手段とを備え、
    充放電の指令を前記蓄電池制御装置に出力制御信号として送信することを特徴とする請求項1または請求項2に記載の発電システム。
    A power storage facility that stores power in the power generation system, and a storage battery control device that controls charging and discharging of the power storage facility,
    The power generation control device gives an upper limit value or an arbitrary value set from a grid interconnection capacity, which is a sum of the power generated by the first power generation facility and the power generated by the second power generation facility. If the upper limit value or the arbitrarily given target value is exceeded, the storage battery control device has an amount exceeding the upper limit value or the arbitrarily given target value. Instructing to store the power in the power storage facility, and reducing the power supplied to the power system with the upper limit value or the arbitrarily given target value as the maximum value;
    When the combined power generated by summing the power generated by the first power generation facility and the power generated by the second power generation facility does not reach the upper limit value or the arbitrarily given target value, the storage battery The control system is instructed to discharge from the power storage facility the power that does not reach the upper limit value or the arbitrarily given target value, and the upper limit value or the arbitrarily given value is set as the maximum value in the power system. Means for increasing the power supplied to the
    The power generation system according to claim 1, wherein a charge / discharge command is transmitted as an output control signal to the storage battery control device.
  4. 前記第1の発電設備は太陽光をエネルギー源とする太陽光発電設備、あるいは風力をエネルギー源とする風力発電設備のいずれかであり、かつ前記第2の発電設備は前記風力発電設備、あるいは太陽光発電設備であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の発電システム。 The first power generation facility is either a solar power generation facility using sunlight as an energy source or a wind power generation facility using wind power as an energy source, and the second power generation facility is the wind power generation facility or the solar power generation facility. The power generation system according to any one of claims 1 to 3, wherein the power generation system is a photovoltaic power generation facility.
  5. 前記出力制御信号を与えて出力制限する前記第1の発電設備または前記第2の発電設備を、経済性を考慮して選択する機能を有することを特徴とする請求項1ないし請求項4のいずれか1項に記載の発電システム。 5. The method according to claim 1, further comprising: a function of selecting the first power generation facility or the second power generation facility to which the output control signal is given to limit the output in consideration of economy. The power generation system according to claim 1.
  6. 前記第1の発電設備あるいは前記第2の発電設備の単位時間当たりの発電電力の変動が規定値を超えた場合には、片方あるいは両方の発電設備の制限指令値に気象状態に応じた係数で加減乗除して可変にする機能を有することを特徴とする請求項1ないし請求項5のいずれか1項に記載の発電システム。 When fluctuations in the generated power per unit time of the first power generation facility or the second power generation facility exceed a specified value, the limit command value of one or both power generation facilities is expressed by a coefficient corresponding to the weather condition. 6. The power generation system according to claim 1, wherein the power generation system has a function of making it variable by adding / subtracting / dividing.
  7. 前記第1の発電設備の発電電力を予測する場合に、各種データに重み付けすることを特徴とする請求項1、請求項3ないし請求項6のいずれか1項に記載の発電システム。 7. The power generation system according to claim 1, wherein various data are weighted when the generated power of the first power generation facility is predicted.
  8. 前記第1の発電設備の発電電力を予測する場合に、日射量、日射強度、風速、風向、気圧、気温、降水量、相対湿度、日照時間、気象衛星画像、上空からの画像、地上からの画像から選ばれる少なくとも1つ、またはそれらを組合せた複数データを用いることを特徴とする請求項1、請求項3ないし請求項7のいずれか1項に記載の発電システム。 When predicting the generated power of the first power generation facility, the amount of solar radiation, solar radiation intensity, wind speed, wind direction, atmospheric pressure, temperature, precipitation, relative humidity, sunshine duration, weather satellite image, image from the sky, image from the ground 8. The power generation system according to claim 1, wherein at least one selected from images or a plurality of data obtained by combining them is used.
  9. 前記第1の発電設備の発電電力を予測する場合に、所定期間内に求めた前記第1の発電設備の発電電力の過去の計測値に対して、所定期間内の平均値、最大値、最小値、中間値、瞬時値の少なくとも1つを含む複数の値を求め、求めた複数の値の中からその時の気象条件に応じて選択した値を前記第1の発電設備の発電電力の予測値として使用することを特徴とする請求項1、請求項3ないし請求項8のいずれか1項に記載の発電システム。 When predicting the generated power of the first power generation facility, the average value, the maximum value, and the minimum value within the predetermined period with respect to the past measurement values of the generated power of the first power generation facility determined within the predetermined period. A plurality of values including at least one of a value, an intermediate value, and an instantaneous value are obtained, and a value selected according to the weather condition at that time from the obtained plurality of values is predicted value of the generated power of the first power generation facility The power generation system according to claim 1, wherein the power generation system is used as a power generation system.
  10. 前記第2の発電設備の発電電力を制御する第2の発電制御装置に対する制限指令値を出力制御信号として一定時間あるいは任意時間間隔ごとに送信するとともに、前記第2の発電制御装置は、次に出力制御信号を受信するまでの期間は、今回受信した制限指令値に従って前記第2の発電設備の発電電力を制御することを特徴とする請求項1ないし請求項9のいずれか1項に記載の発電システム。 The second power generation control device transmits the limit command value for the second power generation control device that controls the power generated by the second power generation equipment as an output control signal at regular time intervals or at arbitrary time intervals. The period until the output control signal is received, the generated power of the second power generation facility is controlled according to the limit command value received this time. Power generation system.
  11. 前記第1の発電設備あるいは前記第2の発電設備の時間当たりの発電電力変化率が設定値を超える場合に、前記第1の発電設備あるいは前記第2の発電設備の片方あるいは両方に出力制限をかけることにより、前記第1の発電設備あるいは前記第2の発電設備の時間当たりの発電電力変化率を設定値以下に制御することを特徴とする請求項1ないし請求項10のいずれか1項に記載の発電システム。 When the rate of change in generated power per hour of the first power generation facility or the second power generation facility exceeds a set value, output restriction is applied to one or both of the first power generation facility and the second power generation facility. 11. The power generation change rate per hour of the first power generation facility or the second power generation facility is controlled to be equal to or less than a set value by applying, to any one of claims 1 to 10. The power generation system described.
  12. 第1の再生可能エネルギー源により電力を発電する第1の発電設備と、第2の再生エネルギー源により電力を発電する第2の発電設備とを備え、前記第1の発電設備が発電する電力と、前記第2の発電設備が発電する電力を合計した前記合成発電電力を、変電所を介して商用の電力系統に供給する発電システムであって、
    前記第1の発電設備は、その入力である第1の再生可能エネルギー源に従って発電し、前記第2の発電設備は、その入力である第2の再生可能エネルギー源に従って制限指令値の範囲内で発電するとともに、前記制限指令値は、前記第1の発電設備の発電電力の予測値と系統連系容量から設定された上限値の差分に応じて設定されていることにより、前記合成発電電力が前記系統連系容量から設定された上限値を超過しないようにすることを特徴とする請求項1ないし請求項11のいずれか1項に記載の発電システム。
    A first power generation facility that generates power from a first renewable energy source; and a second power generation facility that generates power from a second renewable energy source; and the power generated by the first power generation facility; A power generation system that supplies the combined power generated by summing the power generated by the second power generation facility to a commercial power system via a substation,
    The first power generation facility generates power according to a first renewable energy source that is an input thereof, and the second power generation facility is within a limit command value range according to a second renewable energy source that is an input thereof. While generating power, the limit command value is set according to the difference between the predicted value of the generated power of the first power generation facility and the upper limit value set from the grid interconnection capacity. The power generation system according to any one of claims 1 to 11, wherein an upper limit value set from the grid interconnection capacity is not exceeded.
  13. 第1のエネルギー源により電力を発電する第1の発電設備と、
    第2のエネルギー源により電力を発電する第2の発電設備と、
    前記第2の発電設備の発電電力を制御する第2の発電制御装置と、
    合成発電電力を、電力系統へ供給する制御を行う発電制御装置と、を備えてなる発電システムに含まれる前記発電制御装置であって、
    前記第1の発電設備が発電する電力を予測する発電電力予測手段と、
    系統連系容量から設定された上限値から前記発電電力予測手段により予測された前記第1の発電設備の発電電力の予測値を差し引いた電力値に基づき、前記第2の発電設備の発電電力の制限指令値を算出し、前記算出した制限指令値を出力制御信号として前記第2の発電制御装置に設定する制限指令値の設定手段と、
    を備えることを特徴とする発電制御装置。
    A first power generation facility for generating electric power from a first energy source;
    A second power generation facility for generating electric power from a second energy source;
    A second power generation control device for controlling the generated power of the second power generation facility;
    A power generation control device that performs control to supply combined power to a power system, and the power generation control device included in the power generation system,
    Generated power prediction means for predicting the power generated by the first power generation facility;
    Based on the power value obtained by subtracting the predicted value of the generated power of the first power generation facility predicted by the generated power prediction means from the upper limit value set from the grid interconnection capacity, the generated power of the second power generation facility A limit command value setting means for calculating a limit command value and setting the calculated limit command value as an output control signal in the second power generation control device;
    A power generation control device comprising:
  14. 第1のエネルギー源により電力を発電する第1の発電設備と、
    第2のエネルギー源により電力を発電する第2の発電設備と、
    前記第2の発電設備の発電電力を制御する第2の発電制御装置と、
    前記第1の発電設備と前記第2の発電設備の合成発電電力を、電力系統へ供給する制御を行う発電制御装置と、を備えてなる発電システムに含まれる前記発電制御装置であって、
    前記第1の発電設備が発電する電力と、前記第2の発電設備が発電する電力を合計した前記合成発電電力を系統連系容量から設定された上限値から発電電力計測手段により計測された前記第1の発電設備の発電電力の計測値を差し引いた電力値に基づき、前記第2の発電設備の発電電力の制限指令値を算出し、前記算出した制限指令値を出力制御信号として前記第2の発電制御装置に設定する制限指令値の設定手段
    を備えることを特徴とする発電制御装置。
    A first power generation facility for generating electric power from a first energy source;
    A second power generation facility for generating electric power from a second energy source;
    A second power generation control device for controlling the generated power of the second power generation facility;
    A power generation control device that includes a power generation control device that performs control for supplying the combined power generated by the first power generation facility and the second power generation facility to an electric power system;
    The combined power generated by summing the power generated by the first power generation facility and the power generated by the second power generation facility is measured by the generated power measurement means from the upper limit value set from the grid interconnection capacity. Based on the power value obtained by subtracting the measured value of the generated power of the first power generation facility, a limit command value for the generated power of the second power generation facility is calculated, and the calculated limit command value is used as an output control signal for the second A power generation control device comprising a setting means for setting a restriction command value to be set in the power generation control device.
  15. 電力を蓄電する蓄電設備と、前記蓄電設備の充放電を制御する蓄電池制御装置と、を備えてなる発電システムに含まれる前記発電制御装置であって、
    前記発電制御装置は、前記合成発電電力が、系統連系容量から設定された上限値あるいは任意に与えた目標値を超えるか否かを判定し、前記上限値を超える場合には、前記蓄電池制御装置に対し、前記上限値あるいは任意に与えた目標値を超える分の電力を前記蓄電設備に蓄電させることを指令して、前記上限値を最大値として電力系統へ供給する電力を減少させる手段と、
    前記第1の発電設備が発電する電力と、前記第2の発電設備が発電する電力を合計した合成発電電力が、前記上限値あるいは任意に与えた目標値に達しない場合には、前記蓄電池制御装置に対し、前記上限値あるいは任意に与えた目標値に達しない分の電力を前記蓄電設備から放電させることを指令して、前記上限値あるいは任意に与えた目標値を最大値として前記電力系統へ供給する電力を増加させる手段とを、
    備えることを特徴とする請求項13または請求項14に記載の発電制御装置。
    The power generation control device included in a power generation system comprising: a power storage facility that stores power; and a storage battery control device that controls charging and discharging of the power storage facility,
    The power generation control device determines whether or not the combined generated power exceeds an upper limit value set from a grid interconnection capacity or a target value given arbitrarily, and if it exceeds the upper limit value, the storage battery control Instructing the apparatus to store power in the power storage facility in excess of the upper limit value or arbitrarily given target value, and reducing the power supplied to the power system with the upper limit value as a maximum value; ,
    When the combined power generated by summing the power generated by the first power generation facility and the power generated by the second power generation facility does not reach the upper limit value or the arbitrarily given target value, the storage battery control The power system is instructed to discharge from the power storage facility an amount of power that does not reach the upper limit value or an arbitrarily given target value, and the electric power system with the upper limit value or the arbitrarily given target value as a maximum value. Means for increasing the power supplied to
    The power generation control device according to claim 13 or 14, further comprising:
  16. 前記第1の発電設備は太陽光をエネルギー源とする太陽光発電設備、あるいは風力をエネルギー源とする風力発電設備のいずれかであり、かつ前記第2の発電設備は前記風力発電設備、あるいは太陽光発電設備であることを特徴とする請求項13ないし請求項15のいずれか1項に記載の発電制御装置。 The first power generation facility is either a solar power generation facility using sunlight as an energy source or a wind power generation facility using wind power as an energy source, and the second power generation facility is the wind power generation facility or the solar power generation facility. The power generation control device according to any one of claims 13 to 15, wherein the power generation control device is a photovoltaic power generation facility.
  17. 前記出力制御信号を与えて出力制限する前記第1の発電設備または前記第2の発電設備を、経済性を考慮して選択する機能を有することを特徴とする請求項13ないし請求項16のいずれか1項に記載の発電制御装置。 17. The device according to claim 13, further comprising a function of selecting the first power generation facility or the second power generation facility to which output is limited by giving the output control signal in consideration of economy. The power generation control device according to claim 1.
  18. 前記第1の発電設備あるいは前記第2の発電設備の単位時間当たりの発電電力の変動が規定値を超えた場合には、片方あるいは両方の発電設備の制限指令値に気象状態に応じた係数で加減乗除して可変にする機能を有することを特徴とする請求項13ないし請求項17のいずれか1項に記載の発電制御装置。 When fluctuations in the generated power per unit time of the first power generation facility or the second power generation facility exceed a specified value, the limit command value of one or both power generation facilities is expressed by a coefficient corresponding to the weather condition. The power generation control device according to any one of claims 13 to 17, wherein the power generation control device has a function of making it variable by adding / subtracting / dividing / dividing.
  19. 前記第1の発電設備の発電電力を予測する場合に、各種データに重み付けすることを特徴とする請求項13、請求項15ないし請求項18のいずれか1項に記載の発電制御装置。 19. The power generation control device according to claim 13, wherein various types of data are weighted when the generated power of the first power generation facility is predicted.
  20. 前記第1の発電設備の発電電力を予測する場合に、日射量、日射強度、風速、風向、気圧、気温、降水量、相対湿度、日照時間、気象衛星画像、上空からの画像、地上からの画像から選ばれる少なくとも1つ、またはそれらを組合せた複数データを用いることを特徴とする請求項13、請求項15ないし請求項19のいずれか1項に記載の発電制御装置。 When predicting the generated power of the first power generation facility, the amount of solar radiation, solar radiation intensity, wind speed, wind direction, atmospheric pressure, temperature, precipitation, relative humidity, sunshine duration, weather satellite image, image from the sky, image from the ground The power generation control device according to any one of claims 13, 15 to 19, wherein at least one selected from images or a plurality of data obtained by combining them is used.
  21. 前記第1の発電設備の発電電力を予測する場合に、所定期間内に求めた前記第1の発電設備の発電電力の過去の計測値に対して、所定期間内の平均値、最大値、最小値、中間値、瞬時値の少なくとも1つを含む複数の値を求め、求めた複数の値の中からその時の気象条件に応じて選択した値を前記第1の発電設備の発電電力の予測値として使用することを特徴とする請求項13、請求項15ないし請求項20のいずれか1項に記載の発電制御装置。 When predicting the generated power of the first power generation facility, the average value, the maximum value, and the minimum value within the predetermined period with respect to the past measurement values of the generated power of the first power generation facility determined within the predetermined period. A plurality of values including at least one of a value, an intermediate value, and an instantaneous value are obtained, and a value selected according to the weather condition at that time from the obtained plurality of values is predicted value of the generated power of the first power generation facility The power generation control device according to claim 13, wherein the power generation control device is used as a power generation control device.
  22. 前記第2の発電設備の発電電力を制御する第2の発電制御装置に対する制限指令値を出力制御信号として一定時間あるいは任意時間間隔ごとに送信するとともに、前記第2の発電制御装置は、次に出力制御信号を受信するまでの期間は、今回受信した制限指令値に従って前記第2の発電設備の発電電力を制御することを特徴とする請求項13ないし請求項21のいずれか1項に記載の発電制御装置。 The second power generation control device transmits the limit command value for the second power generation control device that controls the power generated by the second power generation equipment as an output control signal at regular time intervals or at arbitrary time intervals. The period until the output control signal is received, the generated power of the second power generation facility is controlled according to the limit command value received this time. Power generation control device.
  23. 前記第1の発電設備あるいは前記第2の発電設備の時間当たりの発電電力変化率が設定値を超える場合に、前記第1の発電設備あるいは前記第2の発電設備の片方あるいは両方に出力制限をかけることにより、前記第1の発電設備あるいは前記第2の発電設備の時間当たりの発電電力変化率を設定値以下に制御することを特徴とする請求項13ないし請求項22のいずれか1項に記載の発電制御装置。 When the rate of change in generated power per hour of the first power generation facility or the second power generation facility exceeds a set value, output restriction is applied to one or both of the first power generation facility and the second power generation facility. 23. The method according to claim 13, wherein the rate of change in generated power per hour of the first power generation facility or the second power generation facility is controlled to be a set value or less by applying the power. The power generation control device described.
  24. 第1の再生可能エネルギー源により電力を発電する第1の発電設備と、第2の再生エネルギー源により電力を発電する第2の発電設備とが発電する電力を合計した合成発電電力を、変電所を介して商用の電力系統に供給する発電制御装置であって、
    前記第1の発電設備は、その入力である第1の再生可能エネルギー源に従って発電し、前記第2の発電設備は、その入力である第2の再生可能エネルギー源に従って制限指令値の範囲内で発電するとともに、前記制限指令値は、前記第1の発電設備の発電電力の予測値と系統連系容量から設定された上限値の差分に応じて設定されていることにより、前記合成発電電力が前記系統連系容量から設定された上限値を超過しないようにすることを特徴とする請求項13ないし請求項23のいずれか1項に記載の発電制御装置。
    A combined power generated by summing the power generated by the first power generation facility that generates power from the first renewable energy source and the second power generation facility that generates power from the second renewable energy source is converted into a substation. A power generation control device for supplying power to a commercial power system via
    The first power generation facility generates power according to a first renewable energy source that is an input thereof, and the second power generation facility is within a limit command value range according to a second renewable energy source that is an input thereof. While generating power, the limit command value is set according to the difference between the predicted value of the generated power of the first power generation facility and the upper limit value set from the grid interconnection capacity. The power generation control device according to any one of claims 13 to 23, wherein an upper limit value set from the grid interconnection capacity is not exceeded.
  25. 第1のエネルギー源により電力を発電する第1の発電設備と、
    第2のエネルギー源により電力を発電する第2の発電設備と、
    前記第2の発電設備の発電電力を制御する第2の発電制御装置と、
    前記第1の発電設備における発電電力の予測値と、前記第2の発電設備が発電する電力とを合計した合成発電電力を商用の電力系統へ供給する制御を行う発電制御装置と、
    を備えてなる発電システムにおいて行われる発電制御方法であって、
    前記発電制御方法は、
    前記第1の発電設備の発電電力を予測する発電電力予測ステップと、
    系統連系容量から設定された上限値から前記発電電力予測ステップにより予測された前記第1の発電設備における発電電力の予測値を差し引いた電力値に基づき、前記第2の発電設備の発電電力の制限指令値を出力制御信号として設定する制限指令値設定ステップと、
    を備えることを特徴とする発電制御方法。
    A first power generation facility for generating electric power from a first energy source;
    A second power generation facility for generating electric power from a second energy source;
    A second power generation control device for controlling the generated power of the second power generation facility;
    A power generation control device that performs control to supply combined power to a commercial power system that is a sum of the predicted value of the generated power in the first power generation facility and the power generated by the second power generation facility;
    A power generation control method performed in a power generation system comprising:
    The power generation control method includes:
    A generated power prediction step of predicting the generated power of the first power generation facility;
    Based on the power value obtained by subtracting the predicted value of the generated power in the first power generation facility predicted by the generated power prediction step from the upper limit value set from the grid interconnection capacity, the generated power of the second power generation facility A limit command value setting step for setting the limit command value as an output control signal;
    A power generation control method comprising:
  26. 第1のエネルギー源により電力を発電する第1の発電設備と、
    第2のエネルギー源により電力を発電する第2の発電設備と、
    前記第2の発電設備の発電電力を制御する第2の発電制御装置と、
    前記第1の発電設備における発電電力の計測値と、前記第2の発電設備が発電する電力とを合計した合成発電電力を商用の電力系統へ供給する制御を行う発電制御装置と、
    を備えてなる発電システムにおいて行われる発電制御方法であって、
    前記発電制御方法は、
    前記第1の発電設備の発電電力を計測する発電電力予測ステップと、
    系統連系容量から設定された上限値から前記発電電力予測ステップにより予測された前記第1の発電設備における発電電力の計測値を差し引いた電力値に基づき、前記第2の発電設備の発電電力の制限指令値を出力制御信号として設定する制限指令値設定ステップと、
    を備えることを特徴とする発電制御方法。
    A first power generation facility for generating electric power from a first energy source;
    A second power generation facility for generating electric power from a second energy source;
    A second power generation control device for controlling the generated power of the second power generation facility;
    A power generation control device that performs control to supply combined power to a commercial power system that is a sum of the measured value of the generated power in the first power generation facility and the power generated by the second power generation facility;
    A power generation control method performed in a power generation system comprising:
    The power generation control method includes:
    A generated power prediction step of measuring the generated power of the first power generation facility;
    Based on the power value obtained by subtracting the measured value of the generated power in the first power generation facility predicted by the generated power prediction step from the upper limit value set from the grid interconnection capacity, the generated power of the second power generation facility A limit command value setting step for setting the limit command value as an output control signal;
    A power generation control method comprising:
  27. 電力を蓄電する蓄電設備と、前記蓄電設備の充放電を制御する蓄電池制御装置と、を備えてなる発電システムにおいて行われる発電制御方法であって、
    前記発電制御方法は、
    前記第1の発電設備が発電する電力と、前記第2の発電設備が発電する電力とを合計した合成発電電力が、系統連系容量から設定された上限値あるいは任意に与えた目標値を超えるか否かを判定し、前記上限値あるいは任意に与えた目標値を超える場合には、前記蓄電池制御装置に対し、前記上限値を超える分の電力を前記蓄電設備に蓄電させることを指令して、前記上限値あるいは任意に与えた目標値を最大値として電力系統へ供給する電力を減少させるステップと、
    前記第1の発電設備が発電する電力と、前記第2の発電設備が発電する電力を合計した合成発電電力が、前記上限値あるいは任意に与えた目標値に達しない場合には、前記蓄電池制御装置に対し、前記上限値あるいは任意に与えた目標値に達しない分の電力を前記蓄電設備から放電させることを指令して、前記上限値あるいは任意に与えた目標値を最大値として前記電力系統へ供給する電力を増加させるステップと、
    を備えることを特徴とする請求項25または請求項26に記載の発電制御方法。
    A power generation control method performed in a power generation system comprising a power storage facility that stores power and a storage battery control device that controls charging and discharging of the power storage facility,
    The power generation control method includes:
    The combined generated power, which is the sum of the power generated by the first power generation facility and the power generated by the second power generation facility, exceeds the upper limit value set from the grid interconnection capacity or the arbitrarily given target value. If the upper limit value or an arbitrarily given target value is exceeded, the storage battery control device is instructed to store the electric power exceeding the upper limit value in the power storage facility. Reducing the power supplied to the power system with the upper limit value or the arbitrarily given target value as a maximum value;
    When the combined power generated by summing the power generated by the first power generation facility and the power generated by the second power generation facility does not reach the upper limit value or the arbitrarily given target value, the storage battery control The power system is instructed to discharge from the power storage facility an amount of power that does not reach the upper limit value or an arbitrarily given target value, and the electric power system with the upper limit value or the arbitrarily given target value as a maximum value. Increasing the power supplied to the
    27. The power generation control method according to claim 25 or claim 26, comprising:
  28. 前記第1の発電設備は太陽光をエネルギー源とする太陽光発電設備、あるいは風力をエネルギー源とする風力発電設備のいずれかであり、かつ前記第2の発電設備は前記風力発電設備、あるいは太陽光発電設備であることを特徴とする請求項25ないし請求項27のいずれか1項に記載の発電制御方法。 The first power generation facility is either a solar power generation facility using sunlight as an energy source or a wind power generation facility using wind power as an energy source, and the second power generation facility is the wind power generation facility or the solar power generation facility. The power generation control method according to any one of claims 25 to 27, wherein the power generation control method is a photovoltaic power generation facility.
  29. 前記出力制御信号を与えて出力制限する前記第1の発電設備または前記第2の発電設備を、経済性を考慮して選択することを特徴とする請求項25ないし請求項28のいずれか1項に記載の発電制御方法。 29. The method according to claim 25, wherein the first power generation facility or the second power generation facility whose output is limited by giving the output control signal is selected in consideration of economy. The power generation control method described in 1.
  30. 前記第1の発電設備あるいは前記第2の発電設備の単位時間当たりの発電電力の変動が規定値を超えた場合には、片方あるいは両方の発電設備の制限指令値に気象状態に応じた係数で加減乗除して可変にすることを特徴とする請求項25ないし請求項29のいずれか1項に記載の発電制御方法。 When fluctuations in the generated power per unit time of the first power generation facility or the second power generation facility exceed a specified value, the limit command value of one or both power generation facilities is expressed by a coefficient corresponding to the weather condition. 30. The power generation control method according to claim 25, wherein the power generation control method is variable by adding / subtracting / dividing / dividing.
  31. 前記第1の発電設備の発電電力を予測する場合に、各種データに重み付けすることを特徴とする請求項25、請求項27ないし請求項30のいずれか1項に記載の発電制御方法。 The power generation control method according to any one of claims 25 and 27 to 30, wherein various data are weighted when the generated power of the first power generation facility is predicted.
  32. 前記第1の発電設備の発電電力を予測する場合に、日射量、日射強度、風速、風向、気圧、気温、降水量、相対湿度、日照時間、気象衛星画像、上空からの画像、地上からの画像から選ばれる少なくとも1つ、またはそれらを組合せた複数データを用いることを特徴とする請求項25、請求項27ないし請求項31のいずれか1項に記載の発電制御方法。 When predicting the generated power of the first power generation facility, the amount of solar radiation, solar radiation intensity, wind speed, wind direction, atmospheric pressure, temperature, precipitation, relative humidity, sunshine duration, weather satellite image, image from the sky, image from the ground 32. The power generation control method according to any one of claims 25 and 27 to 31, wherein at least one selected from images or a plurality of data obtained by combining them is used.
  33. 前記第1の発電設備の発電電力を予測する場合に、所定期間内に求めた前記第1の発電設備の発電電力の過去の計測値に対して、所定期間内の平均値、最大値、最小値、中間値、瞬時値の少なくとも1つを含む複数の値を求め、求めた複数の値の中からその時の気象条件に応じて選択した値を前記第1の発電設備の発電電力の予測値として使用することを特徴とする請求項25、請求項27ないし請求項32のいずれか1項に記載の発電制御方法。 When predicting the generated power of the first power generation facility, the average value, the maximum value, and the minimum value within the predetermined period with respect to the past measurement values of the generated power of the first power generation facility determined within the predetermined period. A plurality of values including at least one of a value, an intermediate value, and an instantaneous value are obtained, and a value selected according to the weather condition at that time from the obtained plurality of values is predicted value of the generated power of the first power generation facility The power generation control method according to any one of claims 25 and 27 to 32, wherein the power generation control method is used as a power generation method.
  34. 前記第2の発電設備の発電電力を制御する第2の発電制御装置に対する制限指令値を出力制御信号として一定時間あるいは任意時間間隔ごとに送信するとともに、前記第2の発電制御装置は、次に出力制御信号を受信するまでの期間は、今回受信した制限指令値に従って前記第2の発電設備の発電電力を制御することを特徴とする請求項25ないし請求項33のいずれか1項に記載の発電制御方法。 The second power generation control device transmits the limit command value for the second power generation control device that controls the power generated by the second power generation equipment as an output control signal at regular time intervals or at arbitrary time intervals. The period until the output control signal is received, the generated power of the second power generation facility is controlled according to the limit command value received this time. Power generation control method.
  35. 前記第1の発電設備あるいは前記第2の発電設備の時間当たりの発電電力変化率が設定値を超える場合に、前記第1の発電設備あるいは前記第2の発電設備の片方あるいは両方に出力制限をかけることにより、前記第1の発電設備あるいは前記第2の発電設備の時間当たりの発電電力変化率を設定値以下に制御することを特徴とする請求項25ないし請求項34のいずれか1項に記載の発電制御方法。 When the rate of change in generated power per hour of the first power generation facility or the second power generation facility exceeds a set value, output restriction is applied to one or both of the first power generation facility and the second power generation facility. 35. The rate of change in generated power per hour of the first power generation facility or the second power generation facility is controlled to be equal to or less than a set value by applying, to any one of claims 25 to 34, The power generation control method described.
  36. 第1の再生可能エネルギー源により電力を発電する第1の発電設備と、第2の再生エネルギー源により電力を発電する第2の発電設備とが発電する電力を合計した合成発電電力を、変電所を介して商用の電力系統に供給する発電制御方法であって、
    前記第1の発電設備は、その入力である第1の再生可能エネルギー源に従って発電し、前記第2の発電設備は、その入力である第2の再生可能エネルギー源に従って制限指令値の範囲内で発電するとともに、前記制限指令値は、前記第1の発電設備の発電電力の予測値と系統連系容量から設定された上限値の差分に応じて設定されていることにより、前記合成発電電力が前記系統連系容量から設定された上限値を超過しないようにすることを特徴とする請求項25ないし請求項35のいずれか1項に記載の発電制御方法。
    A combined power generated by summing the power generated by the first power generation facility that generates power from the first renewable energy source and the second power generation facility that generates power from the second renewable energy source is converted into a substation. A power generation control method for supplying power to a commercial power system via
    The first power generation facility generates power according to a first renewable energy source that is an input thereof, and the second power generation facility is within a limit command value range according to a second renewable energy source that is an input thereof. While generating power, the limit command value is set according to the difference between the predicted value of the generated power of the first power generation facility and the upper limit value set from the grid interconnection capacity. 36. The power generation control method according to any one of claims 25 to 35, wherein an upper limit value set based on the grid interconnection capacity is not exceeded.
  37. 第1のエネルギー源により電力を発電する第1の発電設備と、
    第2のエネルギー源により電力を発電する第2の発電設備と、
    前記第2の発電設備の発電電力を制御する第2の発電制御装置と、を備える発電システムにより、前記第1の発電設備と前記第2の発電設備の合成発電電力を、電力系統へ供給する系統連系容量に対する連系発電電力の拡大方法であって、
    系統連系容量から設定された上限値から、発電電力の予測手段により予測された前記第1の発電設備が発電する電力の予測値を差し引いた電力値に基づき、前記第2の発電設備における発電電力の制限指令値を算出し、
    前記第1の発電設備の発電電力の予測値と、前記第2の発電設備における発電電力の前記算出した制限指令値とを合計した合成発電電力が、前記上限値を超えるか否かを判定し、前記上限値を超える場合に、前記算出した制限指令値を前記第2の発電制御装置または前記第2の発電設備に出力制御信号として送信することを特徴とする連系発電電力の拡大方法。
    A first power generation facility for generating electric power from a first energy source;
    A second power generation facility for generating electric power from a second energy source;
    And a second power generation control device that controls the power generated by the second power generation facility, and supplies the combined power generated by the first power generation facility and the second power generation facility to the power system. It is a method for expanding the grid power generation to the grid interconnection capacity,
    Based on the power value obtained by subtracting the predicted value of the power generated by the first power generation facility predicted by the generated power prediction means from the upper limit value set from the grid interconnection capacity, the power generation in the second power generation facility Calculate the power limit command value,
    It is determined whether or not the combined generated power that is the sum of the predicted value of the generated power of the first power generation facility and the calculated limit command value of the generated power in the second power generation facility exceeds the upper limit value. When the upper limit value is exceeded, the calculated limit command value is transmitted as an output control signal to the second power generation control device or the second power generation facility, and the method for expanding the interconnection power generation is characterized.
  38. 第1のエネルギー源により電力を発電する第1の発電設備と、
    第2のエネルギー源により電力を発電する第2の発電設備と、
    前記第2の発電設備の発電電力を制御する第2の発電制御装置と、を備える発電システムにより、前記第1の発電設備と前記第2の発電設備の合成発電電力を、電力系統へ供給する系統連系容量に対する連系発電電力の拡大方法であって、
    系統連系容量から設定された上限値から、発電電力の計測手段により計測された前記第1の発電設備が発電する電力の計測値を差し引いた電力値に基づき、前記第2の発電設備における発電電力の制限指令値を算出し、
    前記第1の発電設備の発電電力の計測値と、前記第2の発電設備における発電電力の前記算出した制限指令値とを合計した合成発電電力が、前記上限値を超えるか否かを判定し、前記上限値を超える場合に、前記算出した制限指令値を前記第2の発電制御装置または前記第2の発電設備に出力制御信号として送信することを特徴とする連系発電電力の拡大方法。
    A first power generation facility for generating electric power from a first energy source;
    A second power generation facility for generating electric power from a second energy source;
    And a second power generation control device that controls the power generated by the second power generation facility, and supplies the combined power generated by the first power generation facility and the second power generation facility to the power system. It is a method for expanding the grid power generation to the grid interconnection capacity,
    Power generation in the second power generation facility based on a power value obtained by subtracting a measured value of power generated by the first power generation facility measured by the generated power measurement means from an upper limit value set from the grid interconnection capacity Calculate the power limit command value,
    It is determined whether or not the combined generated power that is the sum of the measured value of the generated power of the first power generation facility and the calculated limit command value of the generated power in the second power generation facility exceeds the upper limit value. When the upper limit value is exceeded, the calculated limit command value is transmitted as an output control signal to the second power generation control device or the second power generation facility, and the method for expanding the interconnection power generation is characterized.
  39. 前記発電システムに電力を蓄電する蓄電設備と、前記蓄電設備の充放電を制御する蓄電池制御装置とを備えてなり、変電所を介し商用の電力系統に電力を供給する発電システムにより、合成発電電力を、電力系統へ供給する系統連系容量に対する連系発電電力の拡大方法であって、
    前記第2の発電制御装置は、前記第1の発電設備が発電する電力と、前記第2の発電設備が発電する電力を合計した合成発電電力が、系統連系容量から設定された上限値あるいは任意に与えた目標値を超えるか否かを判定し、前記上限値あるいは任意に与えた目標値を超える場合には、前記蓄電池制御装置に対し、前記上限値あるいは任意に与えた目標値を超える分の電力を前記蓄電設備に蓄電させることを指令して、前記上限値あるいは任意に与えた目標値を最大値として電力系統へ供給する電力を減少させ、
    前記第1の発電設備が発電する電力と、前記第2の発電設備が発電する電力を合計した合成発電電力が、前記上限値あるいは任意に与えた目標値に達しない場合には、前記蓄電池制御装置に対し、前記上限値あるいは任意に与えた目標値に達しない分の電力を前記蓄電設備から放電させることを指令して、前記上限値あるいは任意に与えた目標値を最大値として前記電力系統へ供給する電力を増加させ、
    充放電の指令を前記蓄電池制御装置に出力制御信号として送信することを特徴とする請求項37または請求項38に記載の連系発電電力の拡大方法。
    A power generation system that stores power in the power generation system and a storage battery control device that controls charging / discharging of the power storage system, and a combined power generation by a power generation system that supplies power to a commercial power system via a substation Is a method for expanding the grid-generated power with respect to the grid-connected capacity supplied to the power grid,
    The second power generation control device is configured such that a combined power generated by summing the power generated by the first power generation facility and the power generated by the second power generation facility is an upper limit value set from a grid interconnection capacity or It is determined whether or not an arbitrarily given target value is exceeded, and if the upper limit value or the arbitrarily given target value is exceeded, the upper limit value or the arbitrarily given target value is exceeded for the storage battery control device Command to store power in the power storage facility, and reduce the power supplied to the power system as the maximum value or the target value arbitrarily given,
    When the combined power generated by summing the power generated by the first power generation facility and the power generated by the second power generation facility does not reach the upper limit value or the arbitrarily given target value, the storage battery control The power system is instructed to discharge from the power storage facility an amount of power that does not reach the upper limit value or an arbitrarily given target value, and the electric power system with the upper limit value or the arbitrarily given target value as a maximum value. Increase the power supplied to
    The charging / discharging command is transmitted to the storage battery control device as an output control signal, and the method for expanding the grid-generated power according to claim 37 or 38.
  40. 前記第1の発電設備は太陽光をエネルギー源とする太陽光発電設備、あるいは風力をエネルギー源とする風力発電設備のいずれかであり、かつ前記第2の発電設備は前記風力発電設備、あるいは太陽光発電設備であることを特徴とする請求項37ないし請求項39のいずれか1項に記載の連系発電電力の拡大方法。 The first power generation facility is either a solar power generation facility using sunlight as an energy source or a wind power generation facility using wind power as an energy source, and the second power generation facility is the wind power generation facility or the solar power generation facility. 40. The method for expanding interconnected power generation according to any one of claims 37 to 39, which is a photovoltaic power generation facility.
  41. 前記出力制御信号を与えて出力制限する前記第1の発電設備または前記第2の発電設備を、経済性を考慮して選択することを特徴とする請求項37ないし請求項40のいずれか1項に記載の連系発電電力の拡大方法。 41. The first power generation facility or the second power generation facility whose output is limited by giving the output control signal is selected in consideration of economic efficiency. The expansion method of the interconnection power generation described in 2.
  42. 前記第1の発電設備あるいは前記第2の発電設備の単位時間当たりの発電電力の変動が規定値を超えた場合には、片方あるいは両方の発電設備の制限指令値に気象状態に応じた係数で加減乗除して可変にすることを特徴とする請求項37ないし請求項41のいずれか1項に記載の連系発電電力の拡大方法。 When fluctuations in the generated power per unit time of the first power generation facility or the second power generation facility exceed a specified value, the limit command value of one or both power generation facilities is expressed by a coefficient corresponding to the weather condition. 42. The method for expanding interconnected power generation according to any one of claims 37 to 41, wherein the variable is made variable by adding / subtracting / dividing.
  43. 前記第1の発電設備の発電電力を予測する場合に、各種データに重み付けすることを特徴とする請求項37、請求項39ないし請求項42のいずれか1項に記載の連系発電電力の拡大方法。 43. Expansion of interconnected power generation according to any one of claims 37 and 39 to 42, wherein various data are weighted when the power generation of the first power generation facility is predicted. Method.
  44. 前記第1の発電設備の発電電力を予測する場合に、日射量、日射強度、風速、風向、気圧、気温、降水量、相対湿度、日照時間、気象衛星画像、上空からの画像、地上からの画像から選ばれる少なくとも1つ、またはそれらを組合せた複数データを用いることを特徴とする請求項37、請求項39ないし請求項43のいずれか1項に記載の連系発電電力の拡大方法。 When predicting the generated power of the first power generation facility, the amount of solar radiation, solar radiation intensity, wind speed, wind direction, atmospheric pressure, temperature, precipitation, relative humidity, sunshine duration, weather satellite image, image from the sky, image from the ground 44. The method for enlarging interconnection power generation according to any one of claims 37 and 39 to 43, wherein at least one selected from images or a plurality of data obtained by combining them is used.
  45. 前記第1の発電設備の発電電力を予測する場合に、所定期間内に求めた前記第1の発電設備の発電電力の過去の計測値に対して、所定期間内の平均値、最大値、最小値、中間値、瞬時値の少なくとも1つを含む複数の値を求め、求めた複数の値の中からその時の気象条件に応じて選択した値を前記第1の発電設備の発電電力の予測値として使用することを特徴とする請求項37、請求項39ないし請求項44のいずれか1項に記載の連系発電電力の拡大方法。 When predicting the generated power of the first power generation facility, the average value, the maximum value, and the minimum value within the predetermined period with respect to the past measurement values of the generated power of the first power generation facility determined within the predetermined period. A plurality of values including at least one of a value, an intermediate value, and an instantaneous value are obtained, and a value selected according to the weather condition at that time from the obtained plurality of values is predicted value of the generated power of the first power generation facility 45. The method for expanding interconnected power generation according to any one of claims 37, 39 to 44, wherein
  46. 前記第2の発電設備の発電電力を制御する第2の発電制御装置に対する制限指令値を出力制御信号として一定時間あるいは任意時間間隔ごとに送信するとともに、前記第2の発電制御装置は、次に出力制御信号を受信するまでの期間は、今回受信した制限指令値に従って前記第2の発電設備の発電電力を制御することを特徴とする請求項37ないし請求項45のいずれか1項に記載の連系発電電力の拡大方法。 The second power generation control device transmits the limit command value for the second power generation control device that controls the power generated by the second power generation equipment as an output control signal at regular time intervals or at arbitrary time intervals. The period until the output control signal is received, the generated power of the second power generation facility is controlled according to the limit command value received this time. Expansion method of grid-generated power.
  47. 前記第1の発電設備あるいは前記第2の発電設備の時間当たりの発電電力変化率が設定値を超える場合に、前記第1の発電設備あるいは前記第2の発電設備の片方あるいは両方に出力制限をかけることにより、前記第1の発電設備あるいは前記第2の発電設備の時間当たりの発電電力変化率を設定値以下に制御することを特徴とする請求項37ないし請求項46のいずれか1項に記載の連系発電電力の拡大方法。 When the rate of change in generated power per hour of the first power generation facility or the second power generation facility exceeds a set value, output restriction is applied to one or both of the first power generation facility and the second power generation facility. 47. The change rate of the generated power per hour of the first power generation facility or the second power generation facility is controlled to be equal to or less than a set value by applying, to any one of claims 37 to 46, The method for expanding the grid-generated power described.
  48. 第1の再生可能エネルギー源により電力を発電する第1の発電設備と、第2の再生エネルギー源により電力を発電する第2の発電設備とが発電する電力を合計した合成発電電力を、変電所を介して商用の電力系統に供給する連系発電電力の拡大方法であって、
    前記第1の発電設備は、その入力である第1の再生可能エネルギー源に従って発電し、前記第2の発電設備は、その入力である第2の再生可能エネルギー源に従って制限指令値の範囲内で発電するとともに、前記制限指令値は、前記第1の発電設備の発電電力の予測値と系統連系容量から設定された上限値の差分に応じて設定されていることにより、前記合成発電電力が前記系統連系容量から設定された上限値を超過しないようにすることを特徴とする請求項37ないし請求項47のいずれか1項に記載の連系発電電力の拡大方法。
    A combined power generated by summing the power generated by the first power generation facility that generates power from the first renewable energy source and the second power generation facility that generates power from the second renewable energy source is converted into a substation. A method for expanding grid-generated power supplied to a commercial power system via
    The first power generation facility generates power according to a first renewable energy source that is an input thereof, and the second power generation facility is within a limit command value range according to a second renewable energy source that is an input thereof. While generating power, the limit command value is set according to the difference between the predicted value of the generated power of the first power generation facility and the upper limit value set from the grid interconnection capacity. 48. The method for enlarging interconnection generated power according to any one of claims 37 to 47, wherein an upper limit value set from the grid interconnection capacity is not exceeded.
PCT/JP2017/024036 2016-07-01 2017-06-29 Power generation system, power generation control device, power generation control method, and method for increasing interconnected power generation of power generation system WO2018003947A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12019500218A PH12019500218A1 (en) 2016-07-01 2019-01-30 Power generation system, power generation control device, power generation control method, and method for increasing interconnected power generation of power generation system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016131943A JP6108510B1 (en) 2016-07-01 2016-07-01 Hybrid power generation system, hybrid power generation control device, and hybrid power generation control method
JP2016-131943 2016-07-01
JP2016172384A JP6105138B1 (en) 2016-09-05 2016-09-05 Power generation system using renewable energy and method for controlling the same, and method for expanding interconnection power generation of power generation system using renewable energy
JP2016-172384 2016-09-05
JP2017053242A JP6313498B1 (en) 2017-03-17 2017-03-17 POWER GENERATION SYSTEM, GENERATION CONTROL DEVICE, GENERATION CONTROL METHOD, AND METHOD FOR ENLARGING INTERCONNECTED GENERATED POWER OF GENERATION SYSTEM
JP2017-053242 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018003947A1 true WO2018003947A1 (en) 2018-01-04

Family

ID=60787245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024036 WO2018003947A1 (en) 2016-07-01 2017-06-29 Power generation system, power generation control device, power generation control method, and method for increasing interconnected power generation of power generation system

Country Status (2)

Country Link
PH (1) PH12019500218A1 (en)
WO (1) WO2018003947A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088568A1 (en) * 2016-11-14 2018-05-17 シャープ株式会社 Electric power converting device, electric power converting system, and electric power converting method
JP6473841B1 (en) * 2018-06-19 2019-02-20 株式会社日立パワーソリューションズ Cooperative power generation facility and method of utilizing surplus power using the same
CN109494795A (en) * 2018-11-27 2019-03-19 国网山东省电力公司德州供电公司 The inverse dip control method of tandem type distributed energy resource system, apparatus and system
WO2019142534A1 (en) * 2018-01-22 2019-07-25 株式会社日立製作所 Renewable energy hybrid power generation system and method of controlling same
JP2019149870A (en) * 2018-02-26 2019-09-05 Neホールディングス株式会社 Hybrid system connection system and linked free frame matching system
WO2019193837A1 (en) * 2018-04-05 2019-10-10 株式会社日立製作所 Power generating system and its control method
EP4142089A3 (en) * 2021-08-24 2023-07-26 Toyota Jidosha Kabushiki Kaisha Power management system, power management server, and power management method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010505A (en) * 2009-06-29 2011-01-13 Tdk Corp System for controlling plurality of power supplies, and power conversion apparatus
JP2011038499A (en) * 2009-08-18 2011-02-24 Hitachi Ltd Natural energy power generation control system, control device, and control method
JP2011172457A (en) * 2010-02-22 2011-09-01 Chugoku Electric Power Co Inc:The Power generation output controller, integrated power controller, power generation output control method, and integrated power control method
JP2016019373A (en) * 2014-07-09 2016-02-01 株式会社日立製作所 Renewable energy power generation facility control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010505A (en) * 2009-06-29 2011-01-13 Tdk Corp System for controlling plurality of power supplies, and power conversion apparatus
JP2011038499A (en) * 2009-08-18 2011-02-24 Hitachi Ltd Natural energy power generation control system, control device, and control method
JP2011172457A (en) * 2010-02-22 2011-09-01 Chugoku Electric Power Co Inc:The Power generation output controller, integrated power controller, power generation output control method, and integrated power control method
JP2016019373A (en) * 2014-07-09 2016-02-01 株式会社日立製作所 Renewable energy power generation facility control system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088568A1 (en) * 2016-11-14 2018-05-17 シャープ株式会社 Electric power converting device, electric power converting system, and electric power converting method
WO2019142534A1 (en) * 2018-01-22 2019-07-25 株式会社日立製作所 Renewable energy hybrid power generation system and method of controlling same
JP2019129547A (en) * 2018-01-22 2019-08-01 株式会社日立製作所 Renewable energy hybrid power generation system and control method of the same
JP7181691B2 (en) 2018-01-22 2022-12-01 株式会社日立製作所 RENEWABLE ENERGY HYBRID GENERATION SYSTEM AND CONTROL METHOD THEREOF
JP2019149870A (en) * 2018-02-26 2019-09-05 Neホールディングス株式会社 Hybrid system connection system and linked free frame matching system
WO2019193837A1 (en) * 2018-04-05 2019-10-10 株式会社日立製作所 Power generating system and its control method
JP2019187022A (en) * 2018-04-05 2019-10-24 株式会社日立製作所 Power generation system and control method therefor
JP7180993B2 (en) 2018-04-05 2022-11-30 株式会社日立製作所 power generation system
JP6473841B1 (en) * 2018-06-19 2019-02-20 株式会社日立パワーソリューションズ Cooperative power generation facility and method of utilizing surplus power using the same
JP2019221057A (en) * 2018-06-19 2019-12-26 株式会社日立パワーソリューションズ Cooperative type power generation facility and method for utilizing surplus power using the same
CN109494795A (en) * 2018-11-27 2019-03-19 国网山东省电力公司德州供电公司 The inverse dip control method of tandem type distributed energy resource system, apparatus and system
EP4142089A3 (en) * 2021-08-24 2023-07-26 Toyota Jidosha Kabushiki Kaisha Power management system, power management server, and power management method

Also Published As

Publication number Publication date
PH12019500218A1 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
WO2018003947A1 (en) Power generation system, power generation control device, power generation control method, and method for increasing interconnected power generation of power generation system
Fang et al. Optimal sizing of utility-scale photovoltaic power generation complementarily operating with hydropower: A case study of the world’s largest hydro-photovoltaic plant
JP6105138B1 (en) Power generation system using renewable energy and method for controlling the same, and method for expanding interconnection power generation of power generation system using renewable energy
US20110276269A1 (en) Systems and methods for forecasting solar power
Kudo et al. Forecasting electric power generation in a photovoltaic power system for an energy network
JP6313498B1 (en) POWER GENERATION SYSTEM, GENERATION CONTROL DEVICE, GENERATION CONTROL METHOD, AND METHOD FOR ENLARGING INTERCONNECTED GENERATED POWER OF GENERATION SYSTEM
JP6108510B1 (en) Hybrid power generation system, hybrid power generation control device, and hybrid power generation control method
US9535135B2 (en) Method for calculating solar radiation amount and method for determining power to be supplied
JP2008182017A (en) Control method of photovoltaic power generation system and power generation predicting apparatus of photovoltaic power generation system
JP6417063B1 (en) Power generation system, control device, and control method
US10819248B2 (en) Technologies for provisioning power controllers for grid services
US20220407310A1 (en) Intelligent energy management system for distributed energy resources and energy storage systems using machine learning
Kichou et al. Energy performance enhancement of a research centre based on solar potential analysis and energy management
Ramahatana et al. Economic optimization of micro-grid operations by dynamic programming with real energy forecast
JP2019221057A (en) Cooperative type power generation facility and method for utilizing surplus power using the same
JP2018157749A (en) Electrical generating system, power generation controller, power generation control method, and magnification method of interconnection power generation of the electrical generating system
JP6543167B2 (en) Renewable energy power generation system, controller of renewable energy power generation system, and control method of renewable energy power generation system
JP2018148627A (en) Power system
JP7180993B2 (en) power generation system
Xia et al. Energy storage sizing and operation of an integrated utility-scale PV+ ESS power plant
Van Haaren Utility scale photovoltaic plant variability studies and energy storage optimization for ramp rate control
Kreikebaum et al. Evaluating the application of energy storage and day-ahead solar forecasting to firm the output of a photovoltaic plant
US11811236B1 (en) Counter-solar power plant
US11862980B1 (en) AC overbuild add-on
Wei et al. Distributed energy storage planning method considering the comprehensive value of energy storage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820301

Country of ref document: EP

Kind code of ref document: A1