JP2011172457A - Power generation output controller, integrated power controller, power generation output control method, and integrated power control method - Google Patents

Power generation output controller, integrated power controller, power generation output control method, and integrated power control method Download PDF

Info

Publication number
JP2011172457A
JP2011172457A JP2010036526A JP2010036526A JP2011172457A JP 2011172457 A JP2011172457 A JP 2011172457A JP 2010036526 A JP2010036526 A JP 2010036526A JP 2010036526 A JP2010036526 A JP 2010036526A JP 2011172457 A JP2011172457 A JP 2011172457A
Authority
JP
Japan
Prior art keywords
power
output
generated
control device
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010036526A
Other languages
Japanese (ja)
Other versions
JP5306258B2 (en
Inventor
Makoto Tanaka
田中  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2010036526A priority Critical patent/JP5306258B2/en
Publication of JP2011172457A publication Critical patent/JP2011172457A/en
Application granted granted Critical
Publication of JP5306258B2 publication Critical patent/JP5306258B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Abstract

<P>PROBLEM TO BE SOLVED: To interconnect wind-power generation and photovoltaic power generation in large quantities inexpensively. <P>SOLUTION: A pitch angle control unit 16 of a wind-power generation apparatus 1 performs control to change a pitch angle of a blade 11 in accordance to a peripheral velocity ratio according to characteristic data shown in the figure. When generated power increases and there is not enough power margin to reduce the output systematically in a power system, the pitch angle is controlled to one offset from the optimal pitch angle to suppress an increase in generated power, thereby making a gradient of increase in generated power smaller and suppressing a rate of rise in generated power. When generated power is stable and there is not enough power margin to increase the output systematically in the power system, the pitch angle is shifted before the optimal pitch angle in preparation of a drop of generated power, thereby making small a difference between the power when generated power is stable and the power after the drop of generated power and suppressing a rate of drop in generated power. When a drop of generated power is predicted and there is not enough power margin to increase the output, the pitch angle may be offset from the optimal pitch angle. Conversely, when the drop in generated power is not predicted or there is enough power margin to increase the output, the wind-power generation apparatus is operated at the optimal operating point. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、風力発電装置や太陽光発電装置を電力系統に連系する際に、電力系統に出力する電力を制御する装置及び方法に関する。   The present invention relates to an apparatus and a method for controlling power output to a power system when a wind power generator or a solar power generator is connected to the power system.

風力発電においては、風のエネルギーを効率よく取り出すために、風車の羽根(ブレード)のピッチ角の制御が行われている(特許文献1参照)。また、太陽光発電においては、パワーコンディショナにて、太陽電池の出力電力.が最大になる点(最適動作点)に追従する最大電力点追従制御(MPPT[Maximum Power Point Tracking]制御)が行われている(特許文献2参照)。   In wind power generation, in order to efficiently extract wind energy, the pitch angle of wind turbine blades (blades) is controlled (see Patent Document 1). In solar power generation, the power conditioner performs maximum power point tracking control (MPPT [Maximum Power Point Tracking] control) to follow the point where the output power of the solar cell is maximized (optimum operating point). (See Patent Document 2).

特開2002−48050号公報JP 2002-48050 A 特開平7−281775号公報JP-A-7-281775

ところで、風力発電や太陽光発電を電力系統に連系する際には、風や太陽光の強さにより発電電力が大きく変動しやすいことから、電力系統の調整能力に応じた、連系可能量の制限が存在する。そこで、連系可能量を増大させるために、蓄電池を設置することが提案されている。しかしながら、蓄電池は高価で、その設置には多額の費用がかかり、そのことにより、風力発電・太陽光発電の導入が妨げられるおそれもある。   By the way, when linking wind power generation or solar power generation to the power grid, the generated power tends to fluctuate greatly depending on the strength of the wind or sunlight. There are limitations. Therefore, it has been proposed to install a storage battery in order to increase the possible amount of interconnection. However, storage batteries are expensive and expensive to install, which may impede the introduction of wind and solar power generation.

本発明は、上記課題を鑑みてなされたものであり、その主たる目的は、風力発電や太陽光発電を安価かつ大量に系統連系することにある。   This invention is made | formed in view of the said subject, The main objective is to carry out grid connection of wind power generation and photovoltaic power generation cheaply and in large quantities.

上記課題を解決するために、本発明は、電力系統に連系した分散型電源の出力電力を制御する発電出力制御装置であって、前記分散型電源の発電電力の上昇速度が所定値より大きく、かつ、前記電力系統の下げ代余力が所定値より小さいときに、前記分散型電源の動作点を前記出力電力が最大となる動作点からずらすことを特徴とする。   In order to solve the above-described problem, the present invention provides a power generation output control device that controls output power of a distributed power source connected to a power system, wherein an increase rate of the generated power of the distributed power source is greater than a predetermined value. And when the margin for lowering the power system is smaller than a predetermined value, the operating point of the distributed power source is shifted from the operating point at which the output power becomes maximum.

この構成によれば、発電電力が上昇し、かつ、電力系統の下げ代余力が不十分なときに、電力系統への出力電力を最大からずらす。これにより、上昇前の出力電力と、上昇後の最大からずらした出力電力との差が小さくなるので、出力電力の上昇速度を抑制することができる。これによれば、分散型電源の連系可能量を増加でき、分散型電源を安価かつ大量に系統連系することができる。また、電力系統の下げ代余力が十分なときには、出力電力を最大のままとするので、最大の出力電力を維持することができる。   According to this configuration, when the generated power rises and the power saving margin is insufficient, the output power to the power system is shifted from the maximum. Thereby, since the difference between the output power before the increase and the output power shifted from the maximum after the increase is small, the increase speed of the output power can be suppressed. According to this, the possible amount of interconnection of the distributed power source can be increased, and the distributed power source can be interconnected in a large amount at a low cost. Further, when the power system has sufficient margin for lowering, the output power remains at the maximum, so that the maximum output power can be maintained.

また、本発明は、電力系統に連系した分散型電源の出力電力を制御する発電出力制御装置であって、前記分散型電源の発電電力が安定し、かつ、前記電力系統の上げ代余力が所定値より小さいときに、前記分散型電源の動作点を前記出力電力が最大となる動作点からずらすことを特徴とする。   Further, the present invention is a power generation output control device for controlling output power of a distributed power source connected to a power system, wherein the generated power of the distributed power source is stable and the power system has a margin for raising power. When it is smaller than a predetermined value, the operating point of the distributed power source is shifted from the operating point at which the output power becomes maximum.

この構成によれば、発電電力が安定し、かつ、電力系統の上げ代余力が不十分なときに、電力系統への出力電力を最大からずらす。これにより、発電電力が低下した場合に、安定時の最大からずらした出力電力と、低下後の出力電力との差が小さくなるので、出力電力の低下速度を抑制することができる。これによれば、分散型電源の連系可能量を増加でき、分散型電源を安価かつ大量に系統連系することができる。また、電力系統の上げ代余力が十分なときには、出力電力を最大のままとするので、安定的な動作中に最大の出力電力を維持することができる。   According to this configuration, when the generated power is stable and the surplus power of the power system is insufficient, the output power to the power system is shifted from the maximum. Thereby, when the generated power is reduced, the difference between the output power shifted from the maximum at the stable time and the output power after the reduction is reduced, so that the rate of reduction of the output power can be suppressed. According to this, the possible amount of interconnection of the distributed power source can be increased, and the distributed power source can be interconnected in a large amount at a low cost. In addition, when the power system has sufficient reserve capacity, the output power remains at the maximum, so that the maximum output power can be maintained during stable operation.

また、本発明は、電力系統に連系した分散型電源の出力電力を制御する発電出力制御装置であって、前記分散型電源の発電電力が安定し、前記電力系統の上げ代余力が所定値より小さいとき、かつ、前記発電電力が低下することを予測したときに、前記分散型電源の動作点を前記出力電力が最大となる動作点からずらすことを特徴とする。   Further, the present invention is a power generation output control device for controlling the output power of a distributed power source linked to a power system, wherein the generated power of the distributed power source is stable, and the power surplus margin of the power system is a predetermined value. When it is smaller and when it is predicted that the generated power will decrease, the operating point of the distributed power source is shifted from the operating point at which the output power becomes maximum.

この構成によれば、発電電力が安定し、かつ、電力系統の上げ代余力が不十分な時、かつ、発電電力の低下予測時に、電力系統への出力電力を最大からずらす。これにより、発電電力が低下した場合に、安定時の最大からずらした出力電力と、低下後の出力電力との差が小さくなるので、出力電力の低下速度を抑制することができる。これによれば、分散型電源の連系可能量を増加でき、分散型電源を安価かつ大量に系統連系することができる。また、発電電力の低下を予測しないとき、又は、電力系統の上げ代余力が十分なときには、出力電力を最大のままとするので、安定的な動作中に最大の出力電力を維持することができる。   According to this configuration, the output power to the power system is shifted from the maximum when the generated power is stable and the surplus power of the power system is insufficient, and when the decrease in the generated power is predicted. Thereby, when the generated power is reduced, the difference between the output power shifted from the maximum at the stable time and the output power after the reduction is reduced, so that the rate of reduction of the output power can be suppressed. According to this, the possible amount of interconnection of the distributed power source can be increased, and the distributed power source can be interconnected in a large amount at a low cost. In addition, when the decrease in generated power is not predicted, or when the power system has sufficient reserve capacity, the output power remains at the maximum, so that the maximum output power can be maintained during stable operation. .

また、本発明は、電力系統に連系した分散型電源の出力電力を制御する複数の発電電力制御装置と通信する統括電力制御装置であって、各発電電力制御装置から出力電力を受信する手段と、受信した各出力電力を合計し、記憶する手段と、合計した前記出力電力の変動速度を計算し、計算した変動速度が所定値を越えた場合に、当該変動に係る前記発電電力制御装置に優先して電力変動抑制指令を送信する手段と、を備えることを特徴とする。   In addition, the present invention is a general power control device that communicates with a plurality of generated power control devices that control output power of a distributed power source linked to a power system, and means for receiving output power from each generated power control device And means for summing up and storing each received output power, and calculating the fluctuation speed of the total output power, and when the calculated fluctuation speed exceeds a predetermined value, the generated power control apparatus related to the fluctuation And a means for transmitting a power fluctuation suppression command in preference to.

この構成によれば、合計した出力電力の上昇速度が所定値を超えた場合には、出力電力の上昇に係る発電電力制御装置に優先して抑制指令を送信し、一方、合計した出力電力の低下速度が所定値を超えた場合には、出力電力の低下に係る発電電力制御装置に優先して抑制指令を送信する。これによれば、複数の発電電力制御装置に係る出力電力の合計を判定することにより、急な出力変動を極力抑えるとともに、所定値を超えた変動速度を検出したとしても、変動状況に応じて選択された発電電力制御装置に抑制指令を送信するので、効率的に出力変動を抑制することができる。   According to this configuration, when the total output power increase rate exceeds a predetermined value, the suppression command is transmitted in preference to the generated power control device related to the output power increase, while the total output power When the decrease rate exceeds a predetermined value, the suppression command is transmitted with priority over the generated power control device related to the decrease in output power. According to this, by determining the total of the output power related to the plurality of generated power control devices, it is possible to suppress sudden output fluctuation as much as possible, and even if a fluctuation speed exceeding a predetermined value is detected, depending on the fluctuation situation Since the suppression command is transmitted to the selected generated power control device, the output fluctuation can be efficiently suppressed.

なお、請求項における分散型電源は、実施の形態における風力発電装置1と、太陽光発電装置3及びパワーコンディショナ4に対応する。請求項における発電電力制御装置は、実施の形態におけるピッチ角制御部16と、パワーコンディショナ4に対応する。請求項における統括電力制御装置は、実施の形態における統括制御装置7に対応する。   The distributed power source in the claims corresponds to the wind power generator 1, the solar power generator 3, and the power conditioner 4 in the embodiment. The generated power control device in the claims corresponds to the pitch angle control unit 16 and the power conditioner 4 in the embodiment. The overall power control device in the claims corresponds to the overall control device 7 in the embodiment.

なお、本発明は、発電出力制御方法及び統括電力制御方法を含む。その他、本願が開示する課題及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。   The present invention includes a power generation output control method and a general power control method. In addition, the problems disclosed by the present application and the solutions thereof will be clarified by the description of the mode for carrying out the invention and the drawings.

本発明によれば、風力発電や太陽光発電を安価かつ大量に系統連系することができる。   According to the present invention, wind power generation and solar power generation can be grid-connected at low cost and in large quantities.

第1の実施の形態に係る発電装置の構成を示す図であり、(a)は風力発電装置及びその周辺の構成を示し、(b)は電力系統における電力調整能力の限界を示し、(c)は太陽光発電装置及びその周辺の構成を示す。It is a figure which shows the structure of the electric power generating apparatus which concerns on 1st Embodiment, (a) shows the structure of a wind power generator and its periphery, (b) shows the limit of the power adjustment capability in an electric power grid, (c ) Shows the configuration of the photovoltaic power generation apparatus and its surroundings. 発電電力の時間的な変動例を示す図である。It is a figure which shows the example of a fluctuation | variation with time of generated electric power. 電力変動に対応した発電出力制御方法の詳細を示す図であり、(a)は風力発電装置1の制御方法を示し、(b)は太陽光発電装置3につながるパワーコンディショナ4の制御方法を示す。It is a figure which shows the detail of the power generation output control method corresponding to electric power fluctuation | variation, (a) shows the control method of the wind power generator 1, (b) shows the control method of the power conditioner 4 connected to the solar power generation device 3. Show. 第2の実施の形態に係る発電出力制御システムの構成を示す図である。It is a figure which shows the structure of the electric power generation output control system which concerns on 2nd Embodiment.

以下、図面を参照しながら、本発明を実施するための形態を説明する。本発明の実施の形態に係る発電出力制御装置は、風力発電や太陽光発電等の発電装置による発電電力に基づいて、電力系統への出力電力を最大にする制御を行う際に、発電電力の変動と、出力電力に対する電力系統の余力とが所定の条件を満たすときに、最大点から動作点をずらす制御を行うものである。出力電力に対する電力系統の余力に関しては、需要家の負荷の変動に、風力・太陽光等の自然エネルギーによる発電電力の変動を加えた系統全体の負荷変動量が、電力系統の調整能力の範囲(LFC[Load Frequency Control]制御範囲。詳細は後記)に対してどの程度かを把握する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The power generation output control device according to the embodiment of the present invention, when performing control to maximize the output power to the power system based on the power generated by the power generation device such as wind power generation or solar power generation, When the fluctuation and the remaining capacity of the power system with respect to the output power satisfy a predetermined condition, control for shifting the operating point from the maximum point is performed. Regarding the remaining capacity of the power system relative to the output power, the load fluctuation amount of the entire system, which is the fluctuation of the load of the consumer and the fluctuation of the generated power by natural energy such as wind and solar power, is within the range of the adjustment capacity of the power system ( LFC [Load Frequency Control] control range (details will be described later).

これによれば、発電電力の変動後又は変動前に出力電力を抑制することにより、出力電力の変動速度を抑制することができるので、発電装置の電力系統への連系可能量を増加させることができる。換言すれば、分散型電源の発電電力が急に上がったり、下がったりすると、出力電力に対する電力系統側の調整能力が付いて行かないことがあるが、出力電力の変動速度を抑制することにより、電力系統側の調整範囲内に収めることができる。   According to this, since the fluctuation speed of the output power can be suppressed by suppressing the output power after the fluctuation of the generated power or before the fluctuation, it is possible to increase the possible amount of the power generation apparatus that can be connected to the power system. Can do. In other words, if the generated power of the distributed power source suddenly increases or decreases, the power system side adjustment capability for the output power may not be provided, but by suppressing the fluctuation speed of the output power, It can be within the adjustment range on the system side.

≪第1の実施の形態≫
本発明に係る第1の実施の形態では、個別に発電装置単体の出力制御を行う。図1は、第1の実施の形態に係る発電装置の構成を示す図である。図1(a)は、風力発電装置及びその周辺の構成を示す。風力発電装置1は、電力系統2に接続され、風力により発電した電力を電力系統2に出力するものであり、ブレード11、可変ピッチ12、ロータ13、増速機14、発電機15及びピッチ角制御部16を備える。ブレード11は、風車の羽根である。可変ピッチ12は、ブレード11と、ロータ13とを接続するとともに、ブレード11の向き、すなわち、ピッチ角を変更する駆動機構である。ロータ13は、可変ピッチ12を介してブレード11を支持し、ブレード11が受風することにより回転する。増速機14は、ロータ13と、発電機15との間にあって、ロータ13の回転速度を増加させて、発電機15に伝達する。発電機15は、増速機14から伝達された回転により発電を行う。
<< First Embodiment >>
In the first embodiment according to the present invention, output control of a single power generator is individually performed. FIG. 1 is a diagram illustrating the configuration of the power generation device according to the first embodiment. Fig.1 (a) shows the structure of a wind power generator and its periphery. The wind power generator 1 is connected to the power system 2 and outputs the power generated by the wind power to the power system 2. The blade 11, the variable pitch 12, the rotor 13, the speed increaser 14, the generator 15, and the pitch angle are output. A control unit 16 is provided. The blade 11 is a blade of a windmill. The variable pitch 12 is a drive mechanism that connects the blade 11 and the rotor 13 and changes the direction of the blade 11, that is, the pitch angle. The rotor 13 supports the blade 11 via the variable pitch 12 and rotates when the blade 11 receives wind. The step-up gear 14 is between the rotor 13 and the generator 15, increases the rotational speed of the rotor 13, and transmits it to the generator 15. The generator 15 generates power by the rotation transmitted from the speed increaser 14.

ピッチ角制御部16は、風力発電装置1に内蔵又は外付け接続されるCPU(Central Processing Unit)、DSP(Digital Signal Processor)等のマイクロプロセッサで構成され、発電機15の出力電力を取得しながらブレード11のピッチ角が適切になるように可変ピッチ12を制御する。通常時は、動作点が最高効率点になる最適ピッチ角にする制御を行うが、発電機15の出力電力の変動速度(単位は、例えば、[%/分])や電力系統2の余力に応じて、ピッチ角を最適ピッチ角から少しずらして、変動速度を抑制する。ピッチ角をずらす量としては、例えば、風力発電装置1の定格出力の数%程度の出力低下分に相当する角度だけずらす。   The pitch angle control unit 16 includes a microprocessor such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor) that is built in or externally connected to the wind turbine generator 1, and acquires output power of the generator 15. The variable pitch 12 is controlled so that the pitch angle of the blade 11 becomes appropriate. In normal times, control is performed so that the operating point becomes the optimum pitch angle at which the maximum efficiency point is obtained. However, the output power fluctuation speed (unit: [% / min], for example) and the remaining capacity of the power system 2 are controlled. In response, the pitch angle is slightly shifted from the optimum pitch angle to suppress the fluctuation speed. As an amount of shifting the pitch angle, for example, the angle corresponding to an output decrease of about several percent of the rated output of the wind turbine generator 1 is shifted.

電力系統2は、発電所、変電所、制御所、配電線等を備える。変電所、制御所のコンピュータは、発電所の出力電力、風力発電装置1の出力電力、配電線につながる需要家の負荷の消費電力等を取得し、それらに基づいて電力系統の上げ代余力及び下げ代余力(詳細は後記)を計算し、その上げ代余力及び下げ代余力の情報を風力発電装置1のピッチ角制御部16に送信する。   The electric power system 2 includes a power plant, a substation, a control station, a distribution line, and the like. The computer of the substation and the control station obtains the output power of the power plant, the output power of the wind power generator 1, the power consumption of the customer's load connected to the distribution line, etc. The lowering margin surplus power (details will be described later) is calculated, and information on the raising margin surplus power and the lowering margin surplus power is transmitted to the pitch angle control unit 16 of the wind turbine generator 1.

図1(b)は、太陽光発電装置及びその周辺の構成を示す。太陽光発電装置3は、パワーコンディショナ4を通じて電力系統5につながり、パワーコンディショナ4と、電力系統5との間に電力モニタ6が設けられる。太陽光発電装置3は、太陽光を受けて発電し、発電した電力をパワーコンディショナ4に出力するものであり、例えば、太陽電池により実現される。パワーコンディショナ4は、CPU、DSP等のマイクロプロセッサ及びHDD(Hard Disk Drive)、SSD(Solid State Drive)等の記憶装置を備え、電力系統5に出力する電力を調整する装置であり、太陽光発電装置3からの発電電力を受け、その発電電力の変動や電力系統5の余力に応じて、最適動作点からわずかにずれた点で動作するように制御し、その動作点に対応する出力電圧を100Vに変換して、電力系統5に出力する。動作点は、太陽光発電装置3の電圧・電流特性に沿って調整される。電力モニタ6は、パワーコンディショナ4から電力系統5に出力される電力を監視する。   FIG.1 (b) shows the structure of a solar power generation device and its periphery. The solar power generation device 3 is connected to the power system 5 through the power conditioner 4, and a power monitor 6 is provided between the power conditioner 4 and the power system 5. The solar power generation device 3 receives sunlight and generates power, and outputs the generated power to the power conditioner 4, and is realized by, for example, a solar battery. The power conditioner 4 includes a microprocessor such as a CPU and a DSP, and a storage device such as an HDD (Hard Disk Drive) and an SSD (Solid State Drive), and adjusts the power output to the power system 5. It receives the power generated from the power generation device 3 and controls it to operate at a point slightly deviated from the optimum operating point according to the fluctuation of the generated power and the remaining power of the power system 5, and the output voltage corresponding to the operating point Is converted to 100V and output to the power system 5. The operating point is adjusted according to the voltage / current characteristics of the photovoltaic power generator 3. The power monitor 6 monitors the power output from the power conditioner 4 to the power system 5.

電力系統5は、発電所、変電所、制御所、配電線等を備える。変電所、制御所のコンピュータは、発電所の出力電力、太陽光発電装置3の出力電力、配電線につながる需要家の負荷の消費電力等を取得し、それらに基づいて電力系統の上げ代余力及び下げ代余力(詳細は後記)を計算し、その上げ代余力及び下げ代余力の情報をパワーコンディショナ4に送信する。   The power system 5 includes a power plant, a substation, a control station, a distribution line, and the like. The computer at the substation and the control station acquires the output power of the power plant, the output power of the photovoltaic power generation device 3, the power consumption of the customer's load connected to the distribution line, etc., and based on these, the surplus power of the power system is increased And the lowering margin surplus power (details will be described later) is calculated, and information on the raising margin and lowering margin surplus power is transmitted to the power conditioner 4.

なお、変電所のコンピュータが風力発電装置1やパワーコンディショナ4に系統余力の情報を送信する際には、例えば、転送遮断の親局(転送遮断信号伝送装置)から子局(転送遮断装置)へ転送遮断信号を伝送する経路(IP[Internet Protocol]網等)を用いる。   In addition, when the computer of the substation transmits information on the remaining power of the system to the wind power generator 1 or the power conditioner 4, for example, the master station (transfer cutoff signal transmission device) that interrupts transfer to the slave station (transfer cutoff device) A route (IP [Internet Protocol] network or the like) for transmitting a transfer cut-off signal is used.

図2及び図3は、発電出力制御方法の詳細を示す図である。図2(a)は、発電電力の時間的な変動例を示し、横軸を時間として、縦軸を発電電力とするグラフである。風力発電装置1や太陽光発電装置3による発電電力は、例えば、上昇→安定→降下のように変動する。そして、風力発電装置1の電力変動に対しては、風力発電装置1に備えられたピッチ角制御部16がブレード11のピッチ角を制御することにより、風力発電装置1から電力系統2への出力電力を調整する。つまり、風力発電装置1の発電電力そのものを調整する。一方、太陽光発電装置3の電力変動に対しては、太陽光発電装置3に接続されたパワーコンディショナ4が、太陽光発電装置3から受けた発電電力に応じて、電力系統5へ出力する電力を調整する。従って、太陽光発電装置3の発電電力そのものを調整することはしない。それらの詳細は後記する。   2 and 3 are diagrams showing details of the power generation output control method. FIG. 2A is a graph showing an example of temporal variation in generated power, where the horizontal axis represents time and the vertical axis represents generated power. The power generated by the wind power generator 1 or the solar power generator 3 fluctuates, for example, as rising → stable → falling. And with respect to the electric power fluctuation of the wind power generator 1, the pitch angle control part 16 with which the wind power generator 1 was equipped controls the pitch angle of the braid | blade 11, and the output from the wind power generator 1 to the electric power grid | system 2 is carried out. Adjust the power. That is, the generated power itself of the wind power generator 1 is adjusted. On the other hand, the power conditioner 4 connected to the solar power generation device 3 outputs the power fluctuation of the solar power generation device 3 to the power system 5 according to the generated power received from the solar power generation device 3. Adjust the power. Therefore, the generated power itself of the solar power generation device 3 is not adjusted. Details will be described later.

図2(b)は、電力系統における電力調整能力の限界を示し、横軸を時間とし、縦軸を発電機出力とするグラフである。LFCは、需要予測困難な電力変動(数分から十数分程度の周期)や需給ミスマッチに対応する制御であり、LFC制御範囲は、そのLFCにより許容可能な電力変動範囲を示し、実際には発電機出力の±5%程度の範囲になる。ガバナフリーは、LFCでは追従できないような電力変動(数秒から数分程度の周期)に対応する制御であり、例えば、タービン等の機械的な慣性力による吸収等による。EDC(Economic Load Dispatching Control)は、比較的長時間の電力変動(十数分から数時間程度の周期)に対応する制御であり、需給予測に合わせて先行的に制御する。   FIG. 2B is a graph showing the limit of the power adjustment capability in the power system, with the horizontal axis representing time and the vertical axis representing generator output. LFC is a control that responds to power fluctuations (periods of several minutes to tens of minutes) and demand / supply mismatches that are difficult to predict demand. The LFC control range indicates the power fluctuation range that can be tolerated by the LFC. The range is about ± 5% of the machine output. Governor-free is control corresponding to power fluctuations (periods of several seconds to several minutes) that cannot be followed by LFC, for example, by absorption due to mechanical inertial force of a turbine or the like. EDC (Economic Load Dispatching Control) is control corresponding to a relatively long-time power fluctuation (a period of about ten minutes to several hours), and is controlled in advance in accordance with supply and demand prediction.

そして、分散型電源から受ける電力変動に対する電力系統の余力として、上げ代余力及び下げ代余力がある。上げ代余力は、出力電力の降下に対する余力であり、詳細には、電力系統においてLFC制御を行っている発電所の発電出力上限と、現在の発電電力との差である。下げ代余力は、出力電力の上昇に対する余力であり、詳細には、電力系統においてLFC制御を行っている発電所の発電電力下限と、現在の発電電力との差である。また、ガバナフリーとは、電力系統に接続される発電所の、ボイラの蒸気、タービンの慣性等による瞬間的な電力調整能力をいう。従って、出力電力の変動が上げ代余力及び下げ代余力の範囲内に収まれば、そのままの出力制御を行い、当該余力の範囲内に収まらなければ、出力電力の変動を抑制する必要がある。   And as the remaining capacity of the power system with respect to the power fluctuation received from the distributed power source, there is a surplus surplus capacity and a down surplus capacity. The surplus surplus power is the surplus power with respect to the drop in output power, and more specifically, the difference between the power generation output upper limit of a power plant that performs LFC control in the power system and the current power generation. The lowering margin surplus power is the surplus power with respect to the increase in output power, and more specifically, the difference between the lower limit of the generated power of the power plant that performs LFC control in the power system and the current generated power. Governor-free means the instantaneous power adjustment capability of the power plant connected to the power system due to boiler steam, turbine inertia, and the like. Therefore, if the fluctuation of the output power falls within the range of the surplus surplus power and the reduction surplus power, the output control is performed as it is, and if it does not fall within the range of the surplus power, it is necessary to suppress the fluctuation of the output power.

逆に言えば、上げ代余力及び下げ代余力が十分であれば、そのままの出力制御を行い、当該余力が十分でなければ、出力電力の変動を抑制する必要がある。すなわち、下げ代余力が不十分な場合、出力電力の降下方向には電力系統の調整力が十分にあるので、出力電力の上昇方向に対する制御に重点を置き、降下速度を抑制するために出力電力を下げる制御は行わない。一方、上げ代余力が不十分な場合、出力電力の上昇方向には電力系統の調整力が十分あるので、出力電力の降下方向に対する制御に重点を置き、上昇速度を抑制するための制御は行わない。   In other words, it is necessary to perform output control as it is if the surplus surplus power and the lower surplus power are sufficient, and if the surplus power is not sufficient, it is necessary to suppress fluctuations in the output power. In other words, when the margin for reduction is insufficient, there is sufficient power system adjustment in the direction of output power drop, so the emphasis is placed on the control in the direction of output power increase, and the output power is controlled in order to suppress the drop speed. There is no control for lowering. On the other hand, when the surplus power is insufficient, there is sufficient power system adjustment in the direction of increasing output power. Therefore, control for suppressing the rate of increase is performed with emphasis on control in the direction of decreasing output power. Absent.

そこで、電力系統2は、上げ代余力及び下げ代余力の情報を風力発電装置1のピッチ角制御部16に対して逐次送信する。また、電力系統5は、上げ代余力及び下げ代余力の情報を、太陽光発電装置3につながるパワーコンディショナ4に対して逐次送信する。系統余力の情報は、発電所の運転状態や配電線の送電状態を常に監視することで取得され、例えば、全体の出力電力がLFC制御範囲の上限値に対して80%で動いていれば、20%の上げ代余力があるということになる。また、全体の出力電力がLFC制御範囲の下限値に対して110%で動いていれば、10%の下げ代余力があるということになる。それに対して、ピッチ角制御部16及びパワーコンディショナ4は、受信した上げ代余力及び下げ代余力の情報と、発電電力の変動とに基づいて、電力系統への出力電力を制御する。その詳細を、次に説明する。   Therefore, the electric power system 2 sequentially transmits information on the surplus surplus power and the surplus surplus power to the pitch angle control unit 16 of the wind turbine generator 1. In addition, the electric power system 5 sequentially transmits information on the surplus power and the surplus power to the power conditioner 4 connected to the solar power generation device 3. Information on the system reserve is acquired by constantly monitoring the operating state of the power plant and the power transmission state of the distribution line. For example, if the overall output power is moving at 80% of the upper limit value of the LFC control range, This means that there is a surplus margin of 20%. Further, if the entire output power is moving at 110% with respect to the lower limit value of the LFC control range, it means that there is a margin for reduction of 10%. On the other hand, the pitch angle control unit 16 and the power conditioner 4 control the output power to the power system based on the received information on the surplus power and the surplus power and the fluctuation of the generated power. The details will be described next.

図3(a)は、図2(a)の電力変動に対応した、風力発電装置1の制御方法を示し、周速比を横軸とし、ブレード11のピッチ角を縦軸とするグラフである。グラフに描かれた曲線は、ブレード11の周速比と、最大出力を得るための最適ピッチ角との関係を示す。周速比とは、羽根に当たる風速[m/秒]に対する羽根の外周部の回転速度[m/秒]の比であり、風車翼端速度を風速で除算することにより算出される。ピッチ角制御部16は、この曲線の示す特性データを記憶し、通常は、記憶した特性データに従い、周速比に応じてブレード11のピッチ角を最適値に調整する制御を行うが、電力変動及び系統余力に対しては、以下のような制御を行う。   FIG. 3A shows a control method of the wind turbine generator 1 corresponding to the power fluctuation of FIG. 2A, and is a graph with the peripheral speed ratio as the horizontal axis and the pitch angle of the blade 11 as the vertical axis. . The curve drawn in the graph shows the relationship between the peripheral speed ratio of the blade 11 and the optimum pitch angle for obtaining the maximum output. The peripheral speed ratio is a ratio of the rotational speed [m / sec] of the outer peripheral portion of the blade to the wind speed [m / sec] hitting the blade, and is calculated by dividing the wind turbine blade tip speed by the wind speed. The pitch angle control unit 16 stores the characteristic data indicated by this curve, and normally performs control to adjust the pitch angle of the blade 11 to the optimum value according to the peripheral speed ratio according to the stored characteristic data. In addition, the following control is performed for the remaining power of the system.

(1)発電電力が上昇し、かつ、下げ代余力が不十分である場合(電力の上昇を検知又は予測し、かつ、下げ代余力が不十分な場合)
発電電力の上昇速度が所定値(例えば、5[%/分])を超え、かつ、電力系統2の下げ代余力が所定値(例えば、20[%])より小さい場合、最適ピッチ角からずれたピッチ角にすることにより、発電電力の上昇を極力抑える。これにより、上昇の傾きが小さくなり、発電電力の上昇速度を抑制することができる。「最適ピッチ角からずれたピッチ角」とは、その時点の周速比に対応する最適ピッチ角に対して、所定値を引いたピッチ角又は所定の比率(<1)を乗じたピッチ角をいう。なお、下げ代余力が十分でなくても、天候がよくなって発電電力が上昇することを予測しなければ、ピッチ角をずらすことなく、そのまま最適ピッチ角による動作を続ける。
電力の上昇を検知するには、電力を逐次計測し、上がり始めたときの勾配を検知する。そして、その勾配を上昇速度に換算し、その換算した上昇速度を所定値と比較する。
(1) When the generated power rises and the margin for reduction is insufficient (when the increase in power is detected or predicted and the margin for reduction is insufficient)
When the rising speed of the generated power exceeds a predetermined value (for example, 5 [% / min]) and the reduction margin of the electric power system 2 is smaller than the predetermined value (for example, 20 [%]), it deviates from the optimum pitch angle. By increasing the pitch angle, the increase in generated power is suppressed as much as possible. Thereby, the inclination of the increase is reduced, and the increase rate of the generated power can be suppressed. “Pitch angle deviated from the optimum pitch angle” means a pitch angle obtained by multiplying a pitch angle obtained by subtracting a predetermined value or a predetermined ratio (<1) with respect to the optimum pitch angle corresponding to the peripheral speed ratio at that time. Say. Even if the lowering allowance is not sufficient, if the weather is not expected to increase and the generated power is not expected to increase, the operation at the optimum pitch angle is continued without shifting the pitch angle.
In order to detect an increase in electric power, the electric power is sequentially measured, and a gradient when the electric power starts increasing is detected. Then, the gradient is converted into an ascending speed, and the converted ascending speed is compared with a predetermined value.

(2)発電電力が安定し、かつ、上げ代余力が不十分である場合
発電電力が安定し、かつ、上げ代余力が所定値(例えば、10[%])より小さい場合には、発電電力の降下に備えて、ピッチ角をあえて最適ピッチ角の手前にずらす。これにより、安定時の電力と、降下後の電力との差が小さくなり、降下時の傾斜が小さくなる。なお、発電電力が降下することを予測し、かつ、上げ代余力が所定値より小さいときに、ピッチ角を最適ピッチ角からずらすようにしてもよい。逆に言えば、発電電力の降下を予測しないとき、又は、上げ代余力が所定値以上であるときには、そのまま最適動作点で動作させる。これによれば、安定時の電力損失を減らし、最大出力を維持することができる。
電力の安定を検知するには、電力を逐次計測し、上がり、下がりがないことを検知する。
(2) When the generated power is stable and the surplus power is insufficient The generated power is stable when the generated power is stable and the surplus power is smaller than a predetermined value (for example, 10 [%]). In preparation for the descent, move the pitch angle just before the optimum pitch angle. Thereby, the difference between the power at the time of stabilization and the power after the drop is reduced, and the slope at the time of the drop is reduced. Note that the pitch angle may be shifted from the optimum pitch angle when it is predicted that the generated power will drop and the reserve margin is smaller than a predetermined value. In other words, when a drop in generated power is not predicted or when the surplus power is greater than or equal to a predetermined value, the operation is performed as it is at the optimum operating point. According to this, the power loss at the time of stability can be reduced and the maximum output can be maintained.
In order to detect the stability of the power, the power is sequentially measured and it is detected that there is no increase or decrease.

(3)発電電力が降下している場合
安定時にピッチ角を最適ピッチ角の手前にした後、発電電力の降下が始まって、降下速度が所定値(例えば、−5[%/分])を下回る場合、ピッチ角を最適ピッチ角に戻す。これにより、降下後の電力を上げることができ、安定時の電力と、降下後の電力との差を小さくすることができ、その結果、発電電力の降下速度を抑制することができる。
電力の降下を検知するには、電力を逐次計測し、下がり始めたときの勾配を検知する。そして、その勾配を降下速度に換算し、その換算した降下速度を所定値と比較する。
(3) When the generated power is falling After the pitch angle is set to be close to the optimum pitch angle at the stable time, the generated power starts to drop, and the descending speed reaches a predetermined value (for example, -5 [% / min]). If lower, the pitch angle is returned to the optimum pitch angle. Thereby, the electric power after the descent can be increased, and the difference between the stable electric power and the electric power after the descent can be reduced, and as a result, the descent speed of the generated power can be suppressed.
To detect a drop in power, the power is measured sequentially and the slope when it starts to drop is detected. Then, the gradient is converted into a descending speed, and the converted descending speed is compared with a predetermined value.

なお、風力発電装置1の発電電力を予測するには、気象情報のデータから風速及び風向を予測したり、過去の実績データを用いたりする方法があり、その一例として、オンラインで風力発電によって給電される電力量を把握する風力発電予測ツールAWPT(Advanced Wind Power Prediction Tool)がある。   In addition, in order to predict the generated power of the wind power generator 1, there are methods of predicting the wind speed and direction from the data of weather information, or using past performance data, for example, power supply by wind power generation online. There is a wind power generation prediction tool AWPT (Advanced Wind Power Prediction Tool) that grasps the amount of electric power generated.

図3(b)は、図2(a)の電力変動に対応した、太陽光発電装置3につながるパワーコンディショナ4の制御方法を示し、横軸を電圧Vとし、縦軸を電流Iとするグラフである。グラフに描かれた曲線は、一定の光源下における太陽電池のV−I出力特性を示す。それぞれの破線で囲まれた矩形の面積が出力電力になる。   FIG. 3B shows a control method of the power conditioner 4 connected to the photovoltaic power generation apparatus 3 corresponding to the power fluctuation of FIG. 2A, where the horizontal axis is the voltage V and the vertical axis is the current I. It is a graph. The curve drawn in the graph shows the VI output characteristics of the solar cell under a certain light source. A rectangular area surrounded by each broken line is output power.

最適動作点Pでは、電圧Vと、電流Iとのバランスがよく、出力電力が最大になる。電圧Vの動作点では、電流は大きいが、電圧が低いので、出力電力が小さい。電圧Vの動作点では、電圧は高いが、電流が小さいので、出力電力が小さい。なお、開放電圧はVで示し、短絡電流はIで示す。 In the optimum operating point P A, and the voltage V P, the balance of the current I P well, the output power is maximized. The operating point of the voltage V 1, while the current is large, because the voltage is low, a small output power. The operating point of the voltage V 2, the voltage is high, because the current is small, a small output power. Incidentally, the open-circuit voltage is shown in V O, the short-circuit current indicated by I S.

パワーコンディショナ4は、この曲線の示す特性データを記憶し、通常は、記憶した特性データに従い、太陽光に応じて最適に動作するように制御を行うが、電力変動に対しては、以下のような制御を行う。なお、動作点は、一定の光源下における特性データの曲線上を移動するものとする。   The power conditioner 4 stores the characteristic data indicated by this curve, and normally performs control so as to operate optimally according to sunlight in accordance with the stored characteristic data. Perform such control. It is assumed that the operating point moves on a characteristic data curve under a certain light source.

(1)発電電力が上昇し、かつ、下げ代余力が不十分である場合(電力の上昇を検知又は予測し、かつ、下げ代余力が不十分な場合)
発電電力の上昇速度が所定値(例えば、5[%/分])を超え、かつ、下げ代余力が所定値(例えば、20[%])より小さい場合、最適動作点からずれた動作点で動作させることにより、出力電力の上昇を極力抑える。これにより、上昇後の出力電力が小さくなり、上昇の傾きが小さくなるので、出力電力の上昇速度を抑制することができる。「最適動作点からずれた動作点で動作させる」とは、最適動作点における電力に対して、所定値を引いた電力又は所定の比率(<1)を乗じた電力を出力すること、又は、最適動作点における電圧若しくは電流を所定値分増加又は減少させたときの動作点に対応する電力を出力することをいう。なお、下げ代余力が十分でなくても、天候がよくなって発電電力が上昇することを予測しなければ、動作点をずらすことなく、そのまま最適点による動作を続ける。
発電電力の上昇を検知するには、発電電力を逐次計測し、上がり始めたときの勾配を検知する。そして、その勾配を上昇速度に換算し、その換算した上昇速度を所定値と比較する。
(1) When the generated power rises and the margin for reduction is insufficient (when the increase in power is detected or predicted and the margin for reduction is insufficient)
When the rising speed of the generated power exceeds a predetermined value (for example, 5 [% / min]) and the reduction margin is smaller than the predetermined value (for example, 20 [%]), the operating point deviates from the optimal operating point. By operating, the increase of output power is suppressed as much as possible. As a result, the output power after the increase is reduced and the inclination of the increase is reduced, so that the increase rate of the output power can be suppressed. “Operating at an operating point deviating from the optimal operating point” means outputting power obtained by multiplying power at the optimal operating point by a predetermined value or a predetermined ratio (<1), or The output of power corresponding to the operating point when the voltage or current at the optimal operating point is increased or decreased by a predetermined value. Even if the lowering allowance is not sufficient, if the weather is not expected and the generated power is not expected to rise, the operation at the optimum point is continued without shifting the operating point.
In order to detect an increase in generated power, the generated power is sequentially measured, and the gradient when it starts to increase is detected. Then, the gradient is converted into an ascending speed, and the converted ascending speed is compared with a predetermined value.

(2)発電電力が安定し、かつ、上げ代余力が不十分である場合
発電電力が安定し、かつ、上げ代余力が所定値(例えば、10[%])より小さい場合には、発電電力の降下に備えて、動作点をあえて最適動作点の手前にずらして動作させる。これにより、安定時の出力電力と、降下後の出力電力との差が小さくなり、降下時の傾斜が小さくなる。なお、発電電力が降下することを予測し、かつ、上げ代余力が所定値より小さいときに、動作点を最適動作点からずらすようにしてもよい。逆に言えば、発電電力の降下を予測しないとき、又は、上げ代余力が所定値以上であるときには、そのまま最適動作点で動作させる。これによれば、安定時の電力損失を減らし、最大出力を維持することができる。
発電電力の安定を検知するには、発電電力を逐次計測し、上がり、下がりがないことを検知する。
(2) When the generated power is stable and the surplus power is insufficient The generated power is stable when the generated power is stable and the surplus power is smaller than a predetermined value (for example, 10 [%]). In preparation for the descent, the operating point is deviated before the optimum operating point. Thereby, the difference between the output power at the time of stabilization and the output power after the drop is reduced, and the slope at the time of the drop is reduced. Note that the operating point may be shifted from the optimum operating point when it is predicted that the generated power will drop and the surplus margin is smaller than a predetermined value. In other words, when a drop in generated power is not predicted or when the surplus power is greater than or equal to a predetermined value, the operation is performed as it is at the optimum operating point. According to this, the power loss at the time of stability can be reduced and the maximum output can be maintained.
In order to detect the stability of the generated power, the generated power is measured sequentially and it is detected that there is no increase or decrease.

(3)発電電力が降下している場合
安定時に動作点を最適動作点の手前にして動作させた後、発電電力の降下が始まって、降下速度が所定値(例えば、−5%/分)を下回る場合、動作点を最適動作点に戻す。これにより、降下後の出力電力を上げることができ、安定時の出力電力と、降下後の出力電力との差を小さくすることができる。これによれば、出力電力の降下速度を抑制することができる。
発電電力の降下を検知するには、発電電力を逐次計測し、下がり始めたときの勾配を検知する。そして、その勾配を降下速度に換算し、その換算した降下速度を所定値と比較する。
(3) When the generated power is decreasing After operating at the operating point before the optimum operating point at the stable time, the generated power starts to decrease and the decreasing speed is a predetermined value (for example, -5% / min) If the value is below, the operating point is returned to the optimum operating point. As a result, the output power after the drop can be increased, and the difference between the output power at the stable time and the output power after the drop can be reduced. According to this, the rate of decrease in output power can be suppressed.
In order to detect the drop in generated power, the generated power is sequentially measured, and the gradient when it starts to drop is detected. Then, the gradient is converted into a descending speed, and the converted descending speed is compared with a predetermined value.

なお、太陽光発電装置3の発電電力を予測するには、例えば、気象情報のデータから日射量を予測し、その日射量から発電量を予測する方法がある。   In order to predict the generated power of the solar power generation device 3, for example, there is a method of predicting the amount of solar radiation from the data of weather information and predicting the amount of power generation from the amount of solar radiation.

≪第2の実施の形態≫
本発明に係る第2の実施の形態では、あるエリア内に位置する複数の発電装置につながる制御装置を統括制御する。図4は、発電出力制御システムの構成を示す図である。発電出力制御システム10は、限られたエリアに位置する複数の発電装置の出力を合わせることにより、急な出力変動を抑えることを可能とするものであり、複数の風力発電装置1(ピッチ角制御部16)及び複数のパワーコンディショナ4と、統括制御装置7とがネットワーク8を介して通信可能に接続される。統括制御装置7は、通信部(NIC[Network Interface Card]等)、処理部(CPU)及び記憶部(HDD、SSD等)を備えたPC(Personal Computer)やサーバによって実現され、風力発電装置1やパワーコンディショナ4のそれぞれから出力電力を受信し、その出力電力に応じて、個々の風力発電装置1やパワーコンディショナ4に電力変動抑制指令を送る。
<< Second Embodiment >>
In the second embodiment according to the present invention, a control device connected to a plurality of power generation devices located in a certain area is comprehensively controlled. FIG. 4 is a diagram illustrating a configuration of the power generation output control system. The power generation output control system 10 makes it possible to suppress sudden output fluctuations by combining outputs of a plurality of power generation devices located in a limited area, and a plurality of wind power generation devices 1 (pitch angle control). Unit 16) and the plurality of power conditioners 4 and the overall control device 7 are communicably connected via the network 8. The overall control device 7 is realized by a PC (Personal Computer) or server including a communication unit (NIC [Network Interface Card], etc.), a processing unit (CPU), and a storage unit (HDD, SSD, etc.). The output power is received from each of the power conditioner 4 and a power fluctuation suppression command is sent to each wind power generator 1 and the power conditioner 4 according to the output power.

詳細には、エリア内の風力発電装置1と、太陽光発電装置3につながるパワーコンディショナ4との出力電力の総和を計算し、その総和に基づく電力変動速度が規定値を超えていた場合には、風力発電装置1及びパワーコンディショナ4に電力変動抑制指令を送信する。その際に、各々の風力発電装置1及びパワーコンディショナ4に対して優先順位を付けて抑制指令を送る。優先順位の付け方には、以下の2通りが考えられる。   Specifically, when the sum of output power of the wind power generator 1 in the area and the power conditioner 4 connected to the solar power generator 3 is calculated, and the power fluctuation speed based on the sum exceeds the specified value Transmits a power fluctuation suppression command to the wind turbine generator 1 and the power conditioner 4. In that case, a priority order is given with respect to each wind power generator 1 and the power conditioner 4, and the suppression command is sent. There are the following two ways of assigning priorities.

(1)各装置が電力上昇中、安定運転中及び電力降下中のうち、どの状態にあるかを見て、必要な状態のものの電力抑制を行う。電力抑制が必要な状態のものとは、例えば、電力の合計値が上昇していれば、出力電力が上昇中の装置を抑制の対象とするわけであり、すなわち、変動の原因になっているものを抑制する。これは、抑制効果の大きい方法である。
(電力上昇抑制が必要なら、電力上昇中の装置だけを選択して、抑制指令を送る)
具体的には、電力上昇中の装置に対しては、動作点を最適点からずらす指令を出す。電力降下中の装置に対しては、動作点を最適点に戻す指令を出す。
(2)出力電力の小さいものから優先的に電力抑制(カット)する。これは、コストを優先する(発電した電力を有効に使う)方法であり、出力電力の小さいものは、十分な風・光が当たっておらず、最高効率点で動作していないという考え方に基づく。
(1) By checking which state each device is in during the power increase, stable operation, and power decrease, the power in the necessary state is suppressed. For example, if the total value of power is increasing, the device in a state where power suppression is necessary means that the device whose output power is increasing is the target of suppression, that is, the cause of fluctuation. Suppress things. This is a method with a great suppression effect.
(If power increase suppression is required, select only the device whose power is increasing and send a suppression command.)
Specifically, a command to shift the operating point from the optimum point is issued to the device whose power is increasing. A command for returning the operating point to the optimum point is issued to the device whose power is dropping.
(2) The power is suppressed (cut) preferentially from the one with a small output power. This is a method that prioritizes costs (effectively uses the generated power), and those with low output power are based on the idea that they are not operating at the highest efficiency point because they are not exposed to sufficient wind and light. .

なお、風力発電装置1(ピッチ角制御部16)やパワーコンディショナ4による個々の発電装置の制御と、統括制御装置10によるエリア全体の制御とを両方組合せてもよいし、エリア全体の制御だけを行ってもよい。また、統括制御装置10は、他のエリアに位置する発電装置を監視制御する統括制御装置10や、発電装置が連系する電力系統2、5と情報をやりとりすることにより、より細やかな制御を行うようにしてもよい。例えば、統括制御装置10が、複数のエリアにおける発電出力の総和を計算して、その総和出力の変動速度が所定値を超えた場合に、特定の風力発電装置1やパワーコンディショナ4に電力変動抑制指令を送ったり、電力系統2、5の電力調整能力が不足した場合に、風力発電装置1やパワーコンディショナ4に電力変動抑制指令を送ったりすることが考えられる。   In addition, you may combine both control of each power generator by the wind power generator 1 (pitch angle control part 16) and the power conditioner 4, and control of the whole area by the integrated control apparatus 10, or only control of the whole area. May be performed. In addition, the overall control device 10 performs finer control by exchanging information with the overall control device 10 that monitors and controls the power generation devices located in other areas and the power systems 2 and 5 that are connected to the power generation devices. You may make it perform. For example, when the overall control device 10 calculates the sum of the power generation outputs in a plurality of areas and the fluctuation speed of the sum output exceeds a predetermined value, power fluctuations are caused in a specific wind power generator 1 or power conditioner 4. It is conceivable to send a suppression command or send a power fluctuation suppression command to the wind power generator 1 or the power conditioner 4 when the power adjustment capabilities of the power systems 2 and 5 are insufficient.

なお、上記実施の形態では、図1(a)に示す風力発電装置1のピッチ角制御部16や、図1(c)に示すパワーコンディショナ4を機能させるために、CPUやDSPで実行されるプログラムをコンピュータにより読み取り可能な記録媒体に記録し、その記録したプログラムをコンピュータに読み込ませ、実行させることにより、本発明の実施の形態に係るピッチ角制御部16やパワーコンディショナ4が実現されるものとする。この場合、プログラムをインターネット等のネットワーク経由でコンピュータに提供してもよいし、プログラムが書き込まれた半導体チップ等をコンピュータに組み込んでもよい。   In the above-described embodiment, the CPU and the DSP execute the function of the pitch angle control unit 16 of the wind turbine generator 1 shown in FIG. 1A and the power conditioner 4 shown in FIG. The pitch angle control unit 16 and the power conditioner 4 according to the embodiment of the present invention are realized by recording the program to be recorded on a computer-readable recording medium, causing the computer to read and execute the recorded program. Shall be. In this case, the program may be provided to the computer via a network such as the Internet, or a semiconductor chip or the like in which the program is written may be incorporated in the computer.

以上説明した本発明の実施の形態によれば、風力発電装置1や太陽光発電装置3について、発電電力が上昇し、かつ、電力系統の下げ代余力が不十分な場合に、電力系統への出力電力を最大からずらすことにより、上昇前の出力電力と、上昇後の最大からずらした出力電力との差が小さくなる。次に、発電電力が安定し、かつ、電力系統の上げ代余力が不十分な時に、電力系統への出力電力を最大からずらすことにより、発電電力が低下した場合に、安定時の最大からずらした出力電力と、低下後の出力電力との差が小さくなる。そして、実際に発電電力が低下した場合に、電力系統への出力電力を最大に戻すことにより、安定時の最大からずらした出力電力と、低下後の最大に戻った出力電力との差が小さくなる。   According to the embodiment of the present invention described above, when the generated power rises with respect to the wind power generation device 1 or the solar power generation device 3 and the power generation margin is insufficient, By shifting the output power from the maximum, the difference between the output power before the increase and the output power shifted from the maximum after the increase is reduced. Next, when the generated power is stable and the output power to the power system is shifted from the maximum when the power generation margin is insufficient, if the generated power is reduced, the generated power is shifted from the stable maximum. The difference between the output power and the output power after the decrease is reduced. And when the generated power is actually reduced, by returning the output power to the power system to the maximum, the difference between the output power shifted from the stable maximum and the output power returned to the maximum after the decrease is small. Become.

以上によれば、蓄電池を用いずに、風力発電装置1や太陽光発電装置3から電力系統に出力する電力が変化する傾斜、すなわち、変動速度を抑制することにより、連系可能量を増やすことができる。これによれば、連系可能量に制約のある風力発電装置1や太陽光発電装置3を、安価かつ大量に系統連系することができる。さらに、これにより、風力発電装置1や太陽光発電装置3の導入を促進する効果が期待できる。   According to the above, the possible amount of interconnection is increased by suppressing the slope at which the power output from the wind power generator 1 or the solar power generator 3 to the power system changes, that is, the fluctuation speed, without using a storage battery. Can do. According to this, the wind power generation device 1 and the solar power generation device 3 that are limited in the possible amount of interconnection can be grid-connected in a large amount at a low cost. Furthermore, the effect which accelerates | stimulates introduction of the wind power generator 1 and the solar power generation device 3 by this can be anticipated.

以上、本発明を実施するための形態について説明したが、上記実施の形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更、改良され得るとともに、本発明にはその等価物も含まれる。例えば、上記実施の形態では、風力発電装置1や太陽光発電装置3のように、単体の分散型電源の出力制御について説明したが、上記の発電出力制御方法をウインドファームやメガソーラ等の大規模な発電装置に適用することが考えられる。大規模な発電装置の場合、発電電力を精度よく予測できるので、さらに有効に系統連系することができる。   As mentioned above, although the form for implementing this invention was demonstrated, the said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and equivalents thereof are also included in the present invention. For example, in the above embodiment, the output control of a single distributed power source has been described as in the case of the wind power generator 1 or the solar power generator 3, but the above power generation output control method is applied to a large scale such as a wind farm or a mega solar. It is conceivable to apply it to a simple power generator. In the case of a large-scale power generator, the generated power can be predicted with high accuracy, so that the grid can be more effectively connected.

1 風力発電装置
2 電力系統
3 太陽光発電装置
4 パワーコンディショナ(発電出力制御装置)
5 電力系統
7 統括制御装置(統括電力制御装置)
16 ピッチ角制御部(発電出力制御装置)
DESCRIPTION OF SYMBOLS 1 Wind power generator 2 Electric power system 3 Solar power generator 4 Power conditioner (power generation output control apparatus)
5 Power system 7 Overall control device (Overall power control device)
16 Pitch angle control unit (Power generation output control device)

Claims (8)

電力系統に連系した分散型電源の出力電力を制御する発電出力制御装置であって、
前記分散型電源の発電電力の上昇速度が所定値より大きく、かつ、前記電力系統の下げ代余力が所定値より小さいときに、前記分散型電源の動作点を前記出力電力が最大となる動作点からずらす
ことを特徴とする発電出力制御装置。
A power generation output control device for controlling the output power of a distributed power source linked to a power system,
When the increasing speed of the generated power of the distributed power source is larger than a predetermined value and the lowering margin of the power system is smaller than a predetermined value, the operating point of the distributed power source is the operating point at which the output power is maximum. Power generation output control device characterized by being shifted from
電力系統に連系した分散型電源の出力電力を制御する発電出力制御装置であって、
前記分散型電源の発電電力が安定し、かつ、前記電力系統の上げ代余力が所定値より小さいときに、前記分散型電源の動作点を前記出力電力が最大となる動作点からずらす
ことを特徴とする発電出力制御装置。
A power generation output control device for controlling the output power of a distributed power source linked to a power system,
The operating point of the distributed power source is shifted from the operating point at which the output power is maximized when the generated power of the distributed power source is stable and the margin for raising the power system is smaller than a predetermined value. Power generation output control device.
電力系統に連系した分散型電源の出力電力を制御する発電出力制御装置であって、
前記分散型電源の発電電力が安定し、前記電力系統の上げ代余力が所定値より小さいとき、かつ、前記発電電力が低下することを予測したときに、前記分散型電源の動作点を前記出力電力が最大となる動作点からずらす
ことを特徴とする発電出力制御装置。
A power generation output control device for controlling the output power of a distributed power source linked to a power system,
When the generated power of the distributed power source is stable, the power reserve of the power system is smaller than a predetermined value, and when it is predicted that the generated power will decrease, the operating point of the distributed power source is output as the output power. A power generation output control device that is shifted from an operating point at which electric power becomes maximum.
電力系統に連系した分散型電源の出力電力を制御する複数の発電電力制御装置と通信する統括電力制御装置であって、
各発電電力制御装置から出力電力を受信する手段と、
受信した各出力電力を合計し、記憶する手段と、
合計した前記出力電力の変動速度を計算し、計算した変動速度が所定値を越えた場合に、当該変動に係る前記発電電力制御装置に優先して電力変動抑制指令を送信する手段と、
を備えることを特徴とする統括電力制御装置。
A general power control device that communicates with a plurality of generated power control devices that control output power of a distributed power source linked to a power system,
Means for receiving output power from each generated power control device;
Means for summing and storing each received output power;
Means for calculating the total fluctuation speed of the output power, and when the calculated fluctuation speed exceeds a predetermined value, transmitting a power fluctuation suppression command in preference to the generated power control apparatus related to the fluctuation;
A general power control apparatus comprising:
電力系統に連系した分散型電源の出力電力を制御する発電出力制御装置による発電出力制御方法であって、
前記発電出力制御装置は、
前記分散型電源の発電電力の上昇速度が所定値より大きく、かつ、前記電力系統の下げ代余力が所定値より小さいときに、前記分散型電源の動作点を前記出力電力が最大となる動作点からずらす
ことを特徴とする発電出力制御方法。
A power generation output control method by a power generation output control device for controlling the output power of a distributed power source linked to a power system,
The power generation output control device includes:
When the increasing speed of the generated power of the distributed power source is larger than a predetermined value and the lowering margin of the power system is smaller than a predetermined value, the operating point of the distributed power source is the operating point at which the output power is maximum. A power generation output control method characterized by deviating from the above.
電力系統に連系した分散型電源の出力電力を制御する発電出力制御装置による発電出力制御方法であって、
前記発電出力制御装置は、
前記分散型電源の発電電力が安定し、かつ、前記電力系統の上げ代余力が所定値より小さいときに、前記分散型電源の動作点を前記出力電力が最大となる動作点からずらす
ことを特徴とする発電出力制御方法。
A power generation output control method by a power generation output control device for controlling the output power of a distributed power source linked to a power system,
The power generation output control device includes:
The operating point of the distributed power source is shifted from the operating point at which the output power is maximized when the generated power of the distributed power source is stable and the margin for raising the power system is smaller than a predetermined value. Power generation output control method.
電力系統に連系した分散型電源の出力電力を制御する発電出力制御装置による発電出力制御方法であって、
前記発電出力制御装置は、
前記分散型電源の発電電力が安定し、前記電力系統の上げ代余力が所定値より小さいとき、かつ、前記発電電力が低下することを予測したときに、前記分散型電源の動作点を前記出力電力が最大となる動作点からずらす
ことを特徴とする発電出力制御方法。
A power generation output control method by a power generation output control device for controlling the output power of a distributed power source linked to a power system,
The power generation output control device includes:
When the generated power of the distributed power source is stable, the power reserve of the power system is smaller than a predetermined value, and when it is predicted that the generated power will decrease, the operating point of the distributed power source is output as the output power. A power generation output control method characterized by shifting from an operating point at which power is maximized.
電力系統に連系した分散型電源の出力電力を制御する複数の発電電力制御装置と通信する統括電力制御装置による統括電力制御方法であって、
前記統括電力制御装置は、
各発電電力制御装置から出力電力を受信するステップと、
受信した各出力電力を合計し、記憶するステップと、
合計した前記出力電力の変動速度を計算し、計算した変動速度が所定値を越えた場合に、当該変動に係る前記発電電力制御装置に優先して電力変動抑制指令を送信するステップと、
を実行することを特徴とする統括電力制御方法。
A general power control method by a general power control device that communicates with a plurality of generated power control devices that control output power of a distributed power source connected to a power system,
The overall power control device
Receiving output power from each generated power control device;
Summing and storing each received output power; and
Calculating the total fluctuation speed of the output power, and when the calculated fluctuation speed exceeds a predetermined value, transmitting a power fluctuation suppression command in preference to the generated power control apparatus related to the fluctuation;
The integrated power control method characterized by performing.
JP2010036526A 2010-02-22 2010-02-22 Power generation output control device and power generation output control method Expired - Fee Related JP5306258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010036526A JP5306258B2 (en) 2010-02-22 2010-02-22 Power generation output control device and power generation output control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010036526A JP5306258B2 (en) 2010-02-22 2010-02-22 Power generation output control device and power generation output control method

Publications (2)

Publication Number Publication Date
JP2011172457A true JP2011172457A (en) 2011-09-01
JP5306258B2 JP5306258B2 (en) 2013-10-02

Family

ID=44685981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010036526A Expired - Fee Related JP5306258B2 (en) 2010-02-22 2010-02-22 Power generation output control device and power generation output control method

Country Status (1)

Country Link
JP (1) JP5306258B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769298A (en) * 2012-06-15 2012-11-07 上方能源技术(杭州)有限公司 Forecasting method and forecasting system for solar grid-connection generated power
WO2014057867A1 (en) * 2012-10-09 2014-04-17 株式会社日立製作所 Solar power generation device and power management system, and electric power load and measuring apparatus for same
JP2014128137A (en) * 2012-12-27 2014-07-07 Hitachi Ltd Power system monitoring control device
JP2017042024A (en) * 2015-08-19 2017-02-23 株式会社パワージャパンプリュス Electric power system
JP6105138B1 (en) * 2016-09-05 2017-03-29 株式会社日立パワーソリューションズ Power generation system using renewable energy and method for controlling the same, and method for expanding interconnection power generation of power generation system using renewable energy
JP6108510B1 (en) * 2016-07-01 2017-04-05 株式会社日立パワーソリューションズ Hybrid power generation system, hybrid power generation control device, and hybrid power generation control method
WO2018003947A1 (en) * 2016-07-01 2018-01-04 株式会社日立パワーソリューションズ Power generation system, power generation control device, power generation control method, and method for increasing interconnected power generation of power generation system
JP6313498B1 (en) * 2017-03-17 2018-04-18 株式会社日立パワーソリューションズ POWER GENERATION SYSTEM, GENERATION CONTROL DEVICE, GENERATION CONTROL METHOD, AND METHOD FOR ENLARGING INTERCONNECTED GENERATED POWER OF GENERATION SYSTEM
JP2018157749A (en) * 2018-03-22 2018-10-04 株式会社日立パワーソリューションズ Electrical generating system, power generation controller, power generation control method, and magnification method of interconnection power generation of the electrical generating system
JP2018160993A (en) * 2017-03-23 2018-10-11 株式会社日立製作所 Power control device, method, and power generating system
CN110311401A (en) * 2018-03-20 2019-10-08 北京金风科创风电设备有限公司 Wind power plant power scheduling method and device and storage medium
JP2019528667A (en) * 2016-08-19 2019-10-10 ヴォッベン プロパティーズ ゲーエムベーハー Wind turbine control method
JP2020170313A (en) * 2019-04-02 2020-10-15 三菱電機株式会社 Demand prediction confirmation device and demand prediction confirmation method
CN113486593A (en) * 2021-07-22 2021-10-08 南京工程学院 Wind-storage-hydrogen hybrid energy storage control method based on wind power climbing prediction

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108206539B (en) * 2018-01-10 2021-02-02 云南电网有限责任公司电力科学研究院 Planning method for renewable energy power generation and distribution network
CN108493999B (en) * 2018-04-17 2021-11-30 云南电网有限责任公司 Method and system for evaluating complementarity of wind and light resources in region

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06332553A (en) * 1993-05-24 1994-12-02 Sanyo Electric Co Ltd Method and device for controlling power in photovoltaic system generation system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06332553A (en) * 1993-05-24 1994-12-02 Sanyo Electric Co Ltd Method and device for controlling power in photovoltaic system generation system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769298A (en) * 2012-06-15 2012-11-07 上方能源技术(杭州)有限公司 Forecasting method and forecasting system for solar grid-connection generated power
WO2014057867A1 (en) * 2012-10-09 2014-04-17 株式会社日立製作所 Solar power generation device and power management system, and electric power load and measuring apparatus for same
JP2014078055A (en) * 2012-10-09 2014-05-01 Hitachi Ltd Solar power generation apparatus, power management system, and power loads and measurement device therefor
JP2014128137A (en) * 2012-12-27 2014-07-07 Hitachi Ltd Power system monitoring control device
JP2017042024A (en) * 2015-08-19 2017-02-23 株式会社パワージャパンプリュス Electric power system
JP6108510B1 (en) * 2016-07-01 2017-04-05 株式会社日立パワーソリューションズ Hybrid power generation system, hybrid power generation control device, and hybrid power generation control method
WO2018003947A1 (en) * 2016-07-01 2018-01-04 株式会社日立パワーソリューションズ Power generation system, power generation control device, power generation control method, and method for increasing interconnected power generation of power generation system
JP2018007423A (en) * 2016-07-01 2018-01-11 株式会社日立パワーソリューションズ System, control device and control method for hybrid power generation
JP2019528667A (en) * 2016-08-19 2019-10-10 ヴォッベン プロパティーズ ゲーエムベーハー Wind turbine control method
JP6105138B1 (en) * 2016-09-05 2017-03-29 株式会社日立パワーソリューションズ Power generation system using renewable energy and method for controlling the same, and method for expanding interconnection power generation of power generation system using renewable energy
JP2018042295A (en) * 2016-09-05 2018-03-15 株式会社日立パワーソリューションズ Power generation system using renewable energy and control method therefor, and interconnection generation power extension method for power generation system using renewable energy
JP6313498B1 (en) * 2017-03-17 2018-04-18 株式会社日立パワーソリューションズ POWER GENERATION SYSTEM, GENERATION CONTROL DEVICE, GENERATION CONTROL METHOD, AND METHOD FOR ENLARGING INTERCONNECTED GENERATED POWER OF GENERATION SYSTEM
JP2018157700A (en) * 2017-03-17 2018-10-04 株式会社日立パワーソリューションズ Electrical generating system, power generation controller, power generation control method, and magnification method of interconnection power generation of the electrical generating system
JP2018160993A (en) * 2017-03-23 2018-10-11 株式会社日立製作所 Power control device, method, and power generating system
CN110311401A (en) * 2018-03-20 2019-10-08 北京金风科创风电设备有限公司 Wind power plant power scheduling method and device and storage medium
CN110311401B (en) * 2018-03-20 2021-03-16 北京金风科创风电设备有限公司 Wind power plant power scheduling method and device and storage medium
JP2018157749A (en) * 2018-03-22 2018-10-04 株式会社日立パワーソリューションズ Electrical generating system, power generation controller, power generation control method, and magnification method of interconnection power generation of the electrical generating system
JP2020170313A (en) * 2019-04-02 2020-10-15 三菱電機株式会社 Demand prediction confirmation device and demand prediction confirmation method
JP7224225B2 (en) 2019-04-02 2023-02-17 三菱電機株式会社 Demand forecast confirmation device and demand forecast confirmation method
CN113486593A (en) * 2021-07-22 2021-10-08 南京工程学院 Wind-storage-hydrogen hybrid energy storage control method based on wind power climbing prediction
CN113486593B (en) * 2021-07-22 2023-09-22 南京工程学院 Wind-storage-hydrogen hybrid energy storage control method based on wind power climbing prediction

Also Published As

Publication number Publication date
JP5306258B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5306258B2 (en) Power generation output control device and power generation output control method
US11448187B2 (en) Power system and method for operating a wind power system with a dispatching algorithm
JP5117677B2 (en) Wind farm and its control method
EP2954605B1 (en) Power plant&amp;energy storage system for provision of grid ancillary services
EP3149325B1 (en) A wind power plant with reduced losses
US9222466B2 (en) Wind-power production with reduced power fluctuations
TWI543492B (en) Method for feeding electrical energy into an electrical supply grid by means of a wind power installation or wind farm, and wind power installation and wind farm for feeding electrical energy into an electrical supply grid
US20120049516A1 (en) Method, system, and computer program product to optimize power plant output and operation
US10060414B2 (en) Method for coordinating frequency control characteristics between conventional plants and wind power plants
EP2824791B1 (en) Method and system for limitation of power output variation in variable generation renewable facilities
US20130166084A1 (en) System, method and controller for managing and controlling a micro-grid
EP2659564B1 (en) Reactive power management for wind power plant internal grid
JP7011881B2 (en) Hybrid power generation system and power control device
WO2013000474A2 (en) Energy arbitage using energy price forecast and wind power forecast
JP2011229205A (en) Electric power management control system used in natural energy generating system incorporating storage battery
US20130144450A1 (en) Generator system
JP5342496B2 (en) Wind turbine generator group control device and control method thereof
AU2011319719A1 (en) Control device for wind power plant and control method for wind power plant
WO2013125044A1 (en) Wind turbine control device and method, and wind power generation system
JP7180993B2 (en) power generation system
WO2013125045A1 (en) Wind power generation system and method for controlling same
JP5461632B2 (en) General power control apparatus and general power control method
JP5089715B2 (en) Power generation output control device and power generation output control method
CN115769454A (en) Fast frequency response of hybrid power plant
Guimarães Giorni Wind turbine response for grid stability

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5306258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees