JP2009050064A - Distribution system status estimating device - Google Patents

Distribution system status estimating device Download PDF

Info

Publication number
JP2009050064A
JP2009050064A JP2007212529A JP2007212529A JP2009050064A JP 2009050064 A JP2009050064 A JP 2009050064A JP 2007212529 A JP2007212529 A JP 2007212529A JP 2007212529 A JP2007212529 A JP 2007212529A JP 2009050064 A JP2009050064 A JP 2009050064A
Authority
JP
Japan
Prior art keywords
power generation
amount
distribution system
generation amount
state estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007212529A
Other languages
Japanese (ja)
Inventor
Yasushi Tomita
泰志 冨田
Masahiro Watanabe
雅浩 渡辺
Toshiyuki Furukawa
俊行 古川
Kenji Ogawa
謙治 小川
Takao Matsuzaki
崇夫 松崎
Nobuhiro Gotoda
信広 後藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007212529A priority Critical patent/JP2009050064A/en
Publication of JP2009050064A publication Critical patent/JP2009050064A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for accurately estimating the actual amount of load in a section in which customers equipped with photovoltaic power generation devices by measuring the electricity generated by only some of the photovoltaic power generation devices, not by all the photovoltaic power generation devices. <P>SOLUTION: A distribution system status estimating device includes: a data collecting means for collecting the electric energy of each customer and the electricity generated by the photovoltaic power generation device thereof; electricity generated correlation model data that provides the relation of the electricity generated by each photovoltaic power generation device; and an amount of electricity photovoltaically generated estimating means for estimating the amounts of electricity generated by the other photovoltaic power generation devices using the above electricity generated correlation model data and the electricity generated by the photovoltaic power generation device. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は配電系統の状態推定装置に係り、特に、発電設備が設置された配電系統の各区間内の総負荷量と総発電量を推定する配電系統状態推定装置に関する。   The present invention relates to a power distribution system state estimation device, and more particularly to a power distribution system state estimation device that estimates a total load amount and a total power generation amount in each section of a power distribution system in which power generation facilities are installed.

配電系統は、基本的には、より電圧レベルの高い上位系統から、変圧器,高圧配電線,変圧器,低圧配電線を経て、各需要家に電力を供給する設備である。配電線上には、ところどころに開閉器が設置され、それらの入り切り状態を変更することで、電力の供給経路を制御している。   The power distribution system is basically a facility that supplies power to each consumer from a higher system having a higher voltage level via a transformer, a high voltage distribution line, a transformer, and a low voltage distribution line. On the distribution line, switches are installed in various places, and the power supply path is controlled by changing the on / off state of the switches.

電力供給経路を変更すると、配電系統の各設備の電気的状態(電流,電圧など)が変化する。従って、各設備の容量制約を満たせるかどうか、電力損失を極小化できるかどうか、停電箇所を最小限にできるかどうかなどを考慮して、電力供給経路の制御が行われている。   When the power supply path is changed, the electrical state (current, voltage, etc.) of each facility in the distribution system changes. Therefore, the power supply path is controlled in consideration of whether the capacity constraint of each facility can be satisfied, whether the power loss can be minimized, whether the power failure point can be minimized, and the like.

このとき、配電線のどこにどれだけの負荷設備が連系しているか、それらが今現在どのくらいの負荷量になっているかが、上記の電力系統の各設備の電気的状態に大きな影響を与える。しかし、従来、配電系統上には計測機器が十分に設置されていないので、分解能があらい。そこで、従来は、次のような方法で推定している。まず、配電線を2つの開閉器で挟まれる領域(以下、これを区間という)に分割し、各区間に連系する需要家の契約容量の合計を計算し、配電変電所の送り出し電流を計測し、そして、配電変電所送り出し電流値を、各区間の契約総容量の比で按分して、各区間の負荷電流などを求めるやり方である。   At this time, where and how many load facilities are connected to the distribution line, and how much load they are currently in, greatly affects the electrical state of each facility of the power system. Conventionally, however, the measurement equipment is not sufficiently installed on the power distribution system, so the resolution is poor. Therefore, conventionally, the estimation is performed by the following method. First, the distribution line is divided into areas sandwiched between two switches (hereinafter referred to as sections), the total contracted capacity of consumers linked to each section is calculated, and the distribution current of the distribution substation is measured Then, the distribution substation delivery current value is apportioned by the ratio of the contracted total capacity of each section to obtain the load current of each section.

この方法では、需要家の契約容量を用いており、実際の負荷量を反映していないので、その時々の需要家での負荷設備の使われ方で、推定結果と実態がずれる可能性がある。これに対して、配電系統の各区間毎の負荷を想定する技術として、特開2006−204039号公報に、計測需要家と非計測需要家が混在する配電系統で、非計測需要家の日負荷を計測需要家の日負荷計測データを用いて想定する手法が提案されている。特に、非計測需要家の月間消費電力量の年間変動(変動パターンと絶対値)と、計測需要家の月間消費電力量の年間変動(変動パターンと絶対値)とから、非計測需要家に類似する計測需要家を選び、その日負荷データを用いて、当該非計測需要家の日負荷を想定することが提案されている。   This method uses the contracted capacity of the consumer and does not reflect the actual load, so the actual results may differ from the estimation results depending on how the load equipment is used by the consumer at that time. . On the other hand, as a technique for assuming a load for each section of the distribution system, Japanese Patent Application Laid-Open No. 2006-204039 discloses a daily load of non-measurement consumers in a distribution system in which measurement consumers and non-measurement consumers are mixed. A method has been proposed that assumes the daily load measurement data of measurement consumers. In particular, it is similar to non-measurement consumers due to the annual fluctuation (variation pattern and absolute value) of monthly power consumption of non-measurement consumers and the annual fluctuation (variation pattern and absolute value) of monthly power consumption of measurement consumers. It has been proposed that a measurement consumer to be selected is selected and the daily load of the non-measurement consumer is assumed using the daily load data.

特開2006−204039号公報JP 2006-204039 A

近年では、配電系統の末端側に太陽光発電設備などの発電設備が設置されることも多い。このような発電設備が連系する区間については、高圧配電線上に設置された計測装置では、需要家の負荷量から発電量を相殺した電流や電圧を観測することになるので、区間内の実際の負荷量、つまり、発電量を相殺する前の負荷量がわからない。また、需要家契約容量に対する発電設備容量の比率は、需要家によって違い得ること、同じ需要家でも、発電量が時間によって変化することから、従来の按分方式のような需要家契約容量の按分比による方法では、区間内の負荷量を高精度に推定することが難しい。   In recent years, power generation equipment such as solar power generation equipment is often installed on the terminal side of the distribution system. For the section where such power generation facilities are connected, the measuring device installed on the high-voltage distribution line will observe the current and voltage that offset the power generation amount from the load amount of the consumer. The amount of load, that is, the amount of load before canceling the power generation amount is not known. In addition, the ratio of the power generation capacity to the customer contract capacity can vary from customer to customer, and even for the same customer, the amount of power generation varies with time. In the method according to, it is difficult to estimate the load amount in the section with high accuracy.

また、全ての発電設備の発電量を計測して、そのデータをオンラインで収集することは、大きな費用がかかるので事実上困難である。   In addition, it is practically difficult to measure the power generation amount of all the power generation facilities and collect the data online because it is expensive.

本発明の目的は、太陽光発電設備が設置されている需要家が連系する区間の実際の負荷量を、全ての太陽光発電設備の発電量を計測することなく、一部の太陽光発電設備のみ発電量を計測して、高精度に推定する手段を提供することにある。   The object of the present invention is to measure the actual load amount in the section where the customers where the photovoltaic power generation facilities are connected, without measuring the power generation amount of all the solar power generation facilities. The object is to provide a means for measuring the power generation amount of only equipment and estimating it with high accuracy.

本発明の一つの特徴は、需要家の電力量と太陽光発電設備の発電量を収集するデータ収集手段と、太陽光発電設備の発電量の関係を与える発電量相関モデルデータと、前記発電量相関モデルデータと太陽光発電設備の発電量を用いて、他の太陽光発電設備の発電量を推定する太陽光発電量推定手段とを備えることを特徴とする。   One feature of the present invention is that data collection means for collecting the amount of power of a consumer and the amount of power generated by a solar power generation facility, power generation amount correlation model data that gives a relationship between the amount of power generation of the solar power generation facility, and the amount of power generation Solar power generation amount estimation means for estimating the power generation amount of another solar power generation facility using the correlation model data and the power generation amount of the solar power generation facility is provided.

なお、本発明のその他の特徴は、発明を実施するための最良の形態の欄で詳細に説明する。   The other features of the present invention will be described in detail in the section of the best mode for carrying out the invention.

本発明によれば、太陽光発電設備が設置されている需要家が連系する区間の実際の負荷量を、全ての太陽光発電設備の発電量を計測することなく、一部の太陽光発電設備のみ発電量を計測して、高精度に推定する手段を提供することができる。   According to the present invention, the actual load amount in the section where the customers where the photovoltaic power generation facilities are installed are linked, without measuring the power generation amount of all the photovoltaic power generation facilities, It is possible to provide means for measuring the power generation amount of only the equipment and estimating it with high accuracy.

以下、本発明の実施例について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明が適用された配電系統と、本発明の一実施形態の配電系統状態推定装置1の全体構成図である。   FIG. 1 is an overall configuration diagram of a power distribution system to which the present invention is applied and a power distribution system state estimation apparatus 1 according to an embodiment of the present invention.

この例では、配電系統は、変圧器314を境に、高圧配電系統と低圧配電系統に分かれている。   In this example, the distribution system is divided into a high-voltage distribution system and a low-voltage distribution system with the transformer 314 as a boundary.

高圧配電系統には、高圧配電線311,母線312,変圧器313,遮断器315,開閉器321〜325が設置されている。開閉器325は平常時は常に開放されており、開閉器321〜324は平常時は投入されている。高圧配電線311は、隣り合う2つの開閉器で区切られる幾つかのエリアに分けることができる。図1では、開閉器321と開閉器322で挟まれる区間331,開閉器322と開閉器323で挟まれる区間332,開閉器323と開閉器324で挟まれる区間333,開閉器324と開閉器325で挟まれる区間334の4つのエリアがそれである。   In the high voltage distribution system, a high voltage distribution line 311, a bus 312, a transformer 313, a circuit breaker 315, and switches 321 to 325 are installed. The switch 325 is always open during normal times, and the switches 321 to 324 are normally turned on. The high-voltage distribution line 311 can be divided into several areas separated by two adjacent switches. In FIG. 1, a section 331 sandwiched between the switch 321 and the switch 322, a section 332 sandwiched between the switch 322 and the switch 323, a section 333 sandwiched between the switch 323 and the switch 324, the switch 324 and the switch 325. These are the four areas of the section 334 sandwiched between the two.

区間332には、変圧器314を介して低圧配電線316などからなる低圧配電系統が接続している。低圧配電線316には、需要家340,需要家350,需要家360の3件の需要家が接続している。   A low voltage distribution system including a low voltage distribution line 316 and the like is connected to the section 332 through a transformer 314. Three customers, a customer 340, a customer 350, and a customer 360, are connected to the low-voltage distribution line 316.

各需要家には、電力を消費する負荷設備のほか、太陽光発電設備などが設置されている。   In addition to load facilities that consume electricity, each customer is installed with solar power generation facilities.

例えば、需要家340には、太陽光発電設備341,WHM342,端局343が設置されている。   For example, the consumer 340 is provided with a solar power generation facility 341, a WHM 342, and a terminal station 343.

太陽光発電設備341は、太陽光を受けて発電する設備である。   The solar power generation facility 341 is a facility that generates power by receiving sunlight.

WHM342は、低圧配電線316と需要家340の間に、一定の時間内に流れる電力量を計測する電力量計である。一定の時間としては、例えば、1時間,30分,5分,1分などいろいろと考えられる。また、1日を8時〜13時,13時〜17時,17時〜22時,22時〜8時のように、幾つかの時間帯に分けて、各時間帯毎の電力量を計測することも考えられる。以下では、説明を簡単にするため、30分を例にとって説明することにする。また、30分あたりの電力量を、端に電力量30分値ということにする。   The WHM 342 is a watt hour meter that measures the amount of power that flows between the low voltage distribution line 316 and the customer 340 within a certain period of time. As the fixed time, for example, 1 hour, 30 minutes, 5 minutes, 1 minute, and the like are considered. Also, the amount of power for each time zone is measured by dividing the day into several time zones, such as from 8am to 13:00, 13:00 to 17:00, 17:00 to 22:00, and 22:00 to 8:00. It is also possible to do. In the following, in order to simplify the description, the description will be made taking 30 minutes as an example. Also, the amount of power per 30 minutes is referred to as the value of 30 minutes for the amount of power.

このWHM342は、需要家340と低圧配電線316の境界部分に設置されており、需要家340の負荷設備で消費される電力量から、太陽光発電設備341で発電される発電量を差し引いた値が計測される。   The WHM 342 is installed at the boundary between the consumer 340 and the low-voltage distribution line 316, and is a value obtained by subtracting the amount of power generated by the photovoltaic power generation facility 341 from the amount of power consumed by the load facility of the consumer 340. Is measured.

端局343は、WHM342が計測した電力量30分値を、通信ネットワーク2を介して、配電系統状態推定装置1に送信する通信装置である。電力量30分値は、計測直後に送信するようにしても良いし、一定期間内の電力量30分値を自装置内に保存しておいて、一定時間後にある程度まとめて送信するようにしても良い。   The terminal station 343 is a communication device that transmits the 30-minute power amount measured by the WHM 342 to the distribution system state estimation device 1 via the communication network 2. The 30-minute power amount value may be transmitted immediately after the measurement, or the 30-minute power amount value within a certain period is stored in the own device and transmitted to some extent after a certain time. Also good.

需要家360についても全く同様である。   The same applies to the customer 360.

需要家350では、需要家340での端局343の代わりに高機能端局353が設置されている点、および日射強度センサ356が設置されている点が異なる。高機能端局353は、WHM352で計測される電力量30分値のほかに、太陽光発電設備351の発電量を、太陽光発電設備351から取り込み、これを通信ネットワーク2を介して配電系統状態推定装置1に送信する。発電量についても電力量と同様、各種の時間内の発電量を考えることができるが、ここでは30分あたりの発電量(以下、発電量30分値)を例にとって説明する。太陽光発電設備351の発電量は、高機能端局353で次のようにして求めることも考えられる。つまり、高機能端局353に予め太陽光発電設備351の発電特性データ(太陽光発電設備351の日射強度と発電量を対応付けるためのデータ)を持たせておき、これを用いて、日射強度センサ356が示す日射強度の値に対応する発電量を求めることが考えられる。図2に発電特性データと、日射強度から発電量30分値を求める計算式の例を示す。この発電特性データでは、例えば、日射強度=15のときは発電量30分値=25が求まり、日射強度=25のときは発電量30分値=32.5が求まる。   The consumer 350 is different in that a high function terminal station 353 is installed instead of the terminal station 343 in the consumer 340 and a solar radiation intensity sensor 356 is installed. The high function terminal station 353 takes in the power generation amount of the solar power generation equipment 351 from the solar power generation equipment 351 in addition to the power amount of 30 minutes measured by the WHM 352 and distributes the power generation state via the communication network 2. It transmits to the estimation apparatus 1. As with the amount of power generation, the amount of power generation within various times can be considered, as well as the amount of power generation. Here, the amount of power generation per 30 minutes (hereinafter referred to as a power generation amount of 30 minutes) will be described as an example. It is conceivable that the amount of power generated by the solar power generation facility 351 can be obtained by the high function terminal station 353 as follows. That is, power generation characteristic data of the solar power generation equipment 351 (data for associating the solar power generation equipment 351 with the solar radiation intensity) is preliminarily provided in the high function terminal station 353, and using this, the solar power intensity sensor is used. It can be considered that the amount of power generation corresponding to the value of the solar radiation intensity indicated by 356 is obtained. FIG. 2 shows an example of a calculation formula for obtaining a power generation amount value from the power generation characteristic data and the solar radiation intensity for 30 minutes. In this power generation characteristic data, for example, when the solar radiation intensity = 15, the power generation amount 30 minutes value = 25 is obtained, and when the solar radiation intensity = 25, the power generation amount 30 minutes value = 32.5 is obtained.

次に、配電系統状態推定装置1の構成を説明する。   Next, the configuration of the distribution system state estimation device 1 will be described.

配電系統状態推定装置1は、データ収集装置13,記録装置12,入力装置14,出力装置15,推定処理装置11からなる。   The distribution system state estimation device 1 includes a data collection device 13, a recording device 12, an input device 14, an output device 15, and an estimation processing device 11.

データ収集装置13は、通信ネットワーク2を介して、端局343,端局363,高機能端局353から送信される電力量30分値データや発電量30分値データを受信し、記録装置12に格納する。電力量データ124,発電量データ125がそれである。   The data collection device 13 receives the 30-minute power amount data and the 30-minute power generation amount data transmitted from the terminal station 343, the terminal station 363, and the high-function terminal station 353 via the communication network 2, and the recording device 12 To store. These are the power amount data 124 and the power generation amount data 125.

記録装置12は、そのほかに、発電設備データ122として、各需要家の太陽光発電設備の最大発電量データや前述の発電特性データなどを格納し、また、区間情報データ121として、配電系統の各区間に接続する需要家の情報を格納し、さらに発電量相関モデルデータ123を格納する。需要家情報としては、契約容量などの需要家の契約情報,保有する発電設備の情報,高機能端局が設置状況などが格納される。   In addition, the recording device 12 stores, as the power generation facility data 122, the maximum power generation amount data of the solar power generation facility of each customer, the above-described power generation characteristic data, and the like, and as the section information data 121, each of the distribution systems. Information on customers connected to the section is stored, and further, power generation amount correlation model data 123 is stored. As customer information, customer contract information such as contract capacity, information on power generation facilities owned, installation status of high-function terminals, and the like are stored.

発電量相関モデルデータは、2つの太陽光発電設備の同じ30分間の発電量の関係を与えるためのデータである。推定処理装置11で推定処理を行う前に、事前に記録装置に格納しておく。図3に太陽光発電設備341と太陽光発電設備351の発電量の相関モデルデータの例を3つ示す。   The power generation amount correlation model data is data for giving a relationship between the power generation amounts for the same 30 minutes of two solar power generation facilities. Before the estimation processing is performed by the estimation processing device 11, it is stored in the recording device in advance. FIG. 3 shows three examples of correlation model data of the power generation amounts of the solar power generation facility 341 and the solar power generation facility 351.

(1)は、2つの太陽光発電設備の発電量30分値の過去実績をプロットして最小二乗法等で求めた近似式を相関モデルデータとして用いる例である。この例では近似式は1次式の場合を示しているが、2次式その他の近似式を用いてもよい。   (1) is an example in which an approximate expression obtained by plotting past results of the power generation amount of 30 minutes of two photovoltaic power generation facilities and obtained by the least square method or the like is used as correlation model data. In this example, the approximate expression is a linear expression, but a quadratic expression or other approximate expression may be used.

(2)は、(1)で発電量30分値の代わりに、発電率30分値同士の近似式を相関モデルデータとして用いる例である。発電率とはその太陽光発電設備の最大発電量に対する実際の発電量の割合をいい、発電率30分値とは、各30分間の発電率の平均値のことである。   (2) is an example in which an approximate expression of power generation rate 30-minute values is used as correlation model data instead of the power generation amount 30-minute value in (1). The power generation rate refers to the ratio of the actual power generation amount to the maximum power generation amount of the solar power generation facility, and the power generation rate 30 minutes value is the average value of the power generation rates for each 30 minutes.

(1)(2)の例では、事前に、一定期間の間、各太陽光発電設備の発電量30分値を計測してデータを収集し、これを過去実績値として用いることを想定している。   In the example of (1) and (2), it is assumed that data is collected by measuring the power generation amount of each photovoltaic power generation facility in advance for a certain period of time, and this is used as a past performance value. Yes.

(3)は、単純に、2つの太陽光発電設備の発電率30分値を同じとするものである。太陽光発電設備の実際の発電量や発電率を計測する必要がないので、何らかの事情で過去実績値の利用ができない場合に有効である。   (3) is simply to make the power generation rate 30 minute values of the two photovoltaic power generation facilities the same. Since it is not necessary to measure the actual power generation amount or power generation rate of the solar power generation facility, it is effective when past performance values cannot be used for some reason.

なお、計測する太陽光発電設備が2つ又は2つ以上あれば、その2つ又は2つ以上の計測データを用いて、他の計測していない太陽光発電設備の発電量を推定することも考えられる。   If there are two or more solar power generation facilities to be measured, the power generation amount of other unmeasured solar power generation facilities may be estimated using the two or two or more measurement data. Conceivable.

この発電量相関モデルデータを用いることにより、発電量をモニタリングする太陽光発電設備を限定し、他の太陽光発電設備は、このモニタリングしたデータと、発電量相関モデルデータを用いて精度良く推定することができる。これは、近い場所に設置されている2つの太陽光発電設備への日射の強度は同じように変化するため、それらの発電量は変化の仕方としては似たような動きになることが期待できるからである。最大発電量の違いや太陽光発電設備の設置状況(設置角度など)の違いの影響も、それらの影響が反映された後の実績データを用いてモデル化を行うので、発電量相関モデルデータの中に既に吸収されているといえる。   By using this power generation amount correlation model data, the solar power generation facilities for monitoring the power generation amount are limited, and other solar power generation facilities can estimate accurately using the monitored data and the power generation amount correlation model data. be able to. This is because the intensity of solar radiation to two solar power generation facilities installed in the same place changes in the same way, so it can be expected that the amount of power generation will move in a similar way Because. The effects of differences in maximum power generation and differences in the installation status (installation angle, etc.) of solar power generation equipment are modeled using actual data after reflecting those effects. It can be said that it has already been absorbed.

入力装置14は、推定処理装置11に推定処理の条件や実行命令を入力する装置である。   The input device 14 is a device that inputs estimation processing conditions and execution instructions to the estimation processing device 11.

出力装置15は、推定処理の結果を表示する装置である。   The output device 15 is a device that displays the result of the estimation process.

配電システム4は、配電系統を監視,制御,計画するもので、例えば、開閉器の入り切り状態値や、配電線に設置されたセンサの計測値(電流値,電圧値,電力量など)といった状態値を収集したり、それら収集したデータに基づいて配電系統の計測されていない各点の状態値を推定したり、開閉器の入り切り状態を変更するなどの制御を行うものである。   The power distribution system 4 monitors, controls, and plans the power distribution system. For example, the state such as the on / off state value of the switch and the measured value (current value, voltage value, electric energy, etc.) of the sensor installed on the distribution line Control is performed such as collecting values, estimating state values of each point of the distribution system that are not measured based on the collected data, and changing the on / off state of the switch.

推定処理装置11は、入力装置から推定処理の実行命令が与えられたとき、あるいは、配電システム4などの外部システムから推定処理の実行命令が与えられたときに、与えられた条件に従って、記録装置に格納されている各種データを用いて、実行命令で指定された配電系統上のある区間のトータルの負荷量や発電量を推定する処理を行い、その結果を出力装置に表示し、あるいは、配電システム4に返す処理を行う。   When the estimation processing execution instruction is given from the input device or when the estimation processing execution instruction is given from an external system such as the power distribution system 4, the estimation processing device 11 is a recording device according to the given condition. Is used to estimate the total load and power generation amount of a section on the distribution system specified by the execution command, and display the results on the output device. Processing to return to the system 4 is performed.

推定処理装置11は、推定制御部111,太陽光発電量推定部112,需要家負荷量推定部113,区間状態推定部114からなる。   The estimation processing device 11 includes an estimation control unit 111, a photovoltaic power generation amount estimation unit 112, a consumer load amount estimation unit 113, and a section state estimation unit 114.

推定制御部111への実行命令は、状態推定する対象区間,対象時間を指定して行われる。ここでは、区間332の直近30分値の状態推定の実行命令が、推定制御部111に与えられた場合を例にとって説明する。   An execution command to the estimation control unit 111 is performed by specifying a target section and a target time for state estimation. Here, a case will be described as an example in which an execution command for state estimation of the latest 30 minutes value of the section 332 is given to the estimation control unit 111.

推定制御部111の処理の詳細を図4を用いて説明する。   Details of processing of the estimation control unit 111 will be described with reference to FIG.

(1)START
・入力装置14、あるいは配電システム4から、推定処理の実行命令に従って、処理 を開始する。
(1) START
The process is started from the input device 14 or the power distribution system 4 according to the execution instruction for the estimation process.

(2)太陽光発電量推定処理の起動
・太陽光発電量推定部112に、区間332に接続する各太陽光発電設備の、直近の 発電量30分値を推定する処理の起動要求を送る。
(2) Start of solar power generation amount estimation process-Sends a start request for the process of estimating the latest power generation amount 30-minute value of each solar power generation facility connected to section 332 to solar power generation amount estimation unit 112.

(3)需要家負荷量推定処理の起動
・太陽光発電量推定部112の処理が完了したら、需要家負荷推定処理を起動する。
・需要家負荷量推定部113に、区間332に接続する各需要家の、正味の負荷量3 0分値(需要家に設置された負荷設備の電力消費量)を推定する処理の起動要求を 送る。
(3) Activation of consumer load estimation process-When the process of the photovoltaic power generation estimation unit 112 is completed, the consumer load estimation process is activated.
A request for starting a process for estimating the net load value 30 minutes (the power consumption of the load equipment installed in the consumer) of each consumer connected to the section 332 is sent to the consumer load quantity estimation unit 113. send.

(4)区間状態推定処理の起動
・需要家負荷量推定部113の処理が完了したら、区間状態推定処理を起動する。
・区間状態推定部114に、区間332内の総負荷量の30分値と総発電量の30分 値を推定する処理の起動要求を送る。
(4) Start of section state estimation process-When the process of the consumer load amount estimation unit 113 is completed, the section state estimation process is started.
A request for starting a process for estimating the 30-minute value of the total load amount and the 30-minute value of the total power generation amount in the section 332 is sent to the section state estimation unit 114.

(5)推定処理結果の格納と出力
・推定処理結果の総負荷量30分値と総発電量30分値を、記録装置12に格納し、 実行命令の送信元である出力装置15、あるいは配電システム4に出力する。
(5) Storage and output of estimation process result-Total load amount 30-minute value and total power generation amount 30-minute value of the estimation process result are stored in the recording device 12, and the output device 15 that is the source of the execution command or the power distribution Output to system 4.

(6)END
太陽光発電量推定部112の処理の詳細を図5を用いて説明する。
(6) END
Details of processing of the photovoltaic power generation amount estimation unit 112 will be described with reference to FIG.

(1)START
・推定制御部111からの起動要求を受け取ったら、以下の処理を開始する。
(1) START
When the activation request from the estimation control unit 111 is received, the following processing is started.

(2)監視対象の太陽光発電設備の抽出
・区間332に接続する太陽光発電設備のうち、高機能端局を通じて発電量30分値 が収集されている太陽光発電設備を、記録装置から抽出し、その発電量30分値も 記録装置から取り出す。
・区間332の例では、太陽光発電設備351が抽出され、その発電量30分値であ
るGが取り出されたとする。
(2) Extraction of monitoring target photovoltaic power generation equipment • From the solar power generation equipment connected to the section 332, the solar power generation equipment for which the power generation amount of 30 minutes is collected through the high-function terminal is extracted from the recording device. And the value of 30 minutes of power generation is taken out from the recording device.
In the example of the section 332, it is assumed that the photovoltaic power generation facility 351 is extracted and G, which is a power generation amount of 30 minutes, is extracted.

(3)非監視対象の太陽光発電設備の抽出
・発電量30分値の推定処理が終わっていない非監視対象の太陽光発電設備を、記録 装置から1つ抽出する。
・区間332の例では、太陽光発電設備341と361の2つがあるが、まず最初に 、太陽光発電設備341が抽出されたとする。
(3) Extraction of unsupervised solar power generation facilities • Extract one non-monitoring target solar power generation facility from the recording device that has not been estimated for the 30-minute power generation amount.
In the example of the section 332, there are two solar power generation facilities 341 and 361. First, it is assumed that the solar power generation facility 341 is extracted.

(4)発電量相関モデルデータの抽出
・(2)(3)で抽出した2つの太陽光発電設備の間の発電量相関モデルデータを、 記録装置から抽出する。
(4) Extraction of power generation correlation model data (2) The power generation correlation model data between the two photovoltaic power generation facilities extracted in (3) is extracted from the recording device.

・例では、太陽光発電設備351と341の間の発電量相関モデルデータとして、図 3の(1)の近似式が抽出されたとする。     In the example, it is assumed that the approximate expression (1) in FIG. 3 is extracted as the power generation amount correlation model data between the solar power generation facilities 351 and 341.

(5)非監視対象の太陽光発電設備の発電量の推定
・(4)で抽出した発電量相関モデルデータの近似式に、監視対象の太陽光発電設備 351の発電量30分値を代入して、非監視対象の太陽光発電設備341の発電量 を計算する。
(5) Estimation of power generation amount of unmonitored solar power generation facility ・ Substitute the power generation amount 30-minute value of the monitored solar power generation facility 351 into the approximate expression of the power generation amount correlation model data extracted in (4). Thus, the power generation amount of the unmonitored solar power generation facility 341 is calculated.

・例では、計算の結果として、A×G+Bが得られることになる。     In the example, A × G + B is obtained as a result of the calculation.

(6)(3)〜(5)処理の繰り返し
・非監視対象の太陽光発電設備全てについて、発電量30分値の推定処理が完了する まで、(3)〜(5)の処理を繰り返す。
・例では、次に、太陽光発電設備361について(3)〜(5)の処理が行われるこ とになる。
(6) Repeat the processes (3) to (5) ・ Repeat the processes (3) to (5) until the estimation of the 30-minute power generation value is completed for all non-monitored photovoltaic power generation facilities.
In the example, next, the processes (3) to (5) are performed on the photovoltaic power generation equipment 361.

(7)推定結果の格納
・推定結果の発電量30分値を記録装置12に格納する。
(7) Storing the estimation result-Store the power generation amount 30 minutes value of the estimation result in the recording device 12.

(8)END
・推定制御部111に処理完了を通知する。
(8) END
Notify the estimation control unit 111 of the completion of processing.

上記の処理(4)で、例で述べた図3(1)のモデル以外に、図3の(2)や(3)のように、発電率同士の関係式を用いる場合には、上記処理の(4)(5)ではそれぞれ、下記の(4′)(5′)の処理を行う。   In the above process (4), in addition to the model of FIG. 3 (1) described in the example, when the relational expression between the power generation rates is used as in (2) and (3) of FIG. In (4) and (5), the following processes (4 ′) and (5 ′) are performed.

(4′)発電量相関モデルデータの抽出
・(2)(3)で抽出した2つの太陽光発電設備の間の発電量相関モデルデータを、 記録装置12から抽出する。
・例えば、太陽光発電設備351と341の間の発電量相関モデルデータとして、図 3の(2)の近似式が抽出されたとする。
(4 ′) Extraction of power generation amount correlation model data (2) The power generation amount correlation model data between the two photovoltaic power generation facilities extracted in (3) is extracted from the recording device 12.
For example, assume that the approximate expression (2) in FIG. 3 is extracted as the power generation amount correlation model data between the solar power generation facilities 351 and 341.

(5′)非監視対象の太陽光発電設備の発電量の推定
・非監視対象の太陽光発電設備の最大発電量30分値GMAXを記録装置から取り 出す。
・(4′)で抽出した発電量相関モデルデータの近似式に、監視対象の太陽光発電設 備351の発電率30分値を代入して、非監視対象の太陽光発電設備341の発電 率30分値を計算し、これを太陽光発電設備341の最大発電量30分値に乗じて 、求めるべき発電量30分値を計算する。
・例では、計算の結果として、発電率30分値としてA×G+Bが得られ、発電量3 0分値として(A×G+B)×GMAXを得ることになる。
(5 ') Estimation of power generation amount of unmonitored solar power generation equipment-Take out the maximum power generation 30-minute value GMAX of unmonitored solar power generation equipment from the recording device.
・ Substitute the power generation rate of the monitored solar power generation equipment 351 for 30 minutes into the approximate expression of the power generation correlation model data extracted in (4 '), and then generate the power generation rate of the unmonitored solar power generation equipment 341. A 30-minute value is calculated, and this is multiplied by the maximum power generation amount 30 minutes value of the photovoltaic power generation facility 341 to calculate a power generation amount 30 minutes value to be obtained.
In the example, as a result of the calculation, A × G + B is obtained as the power generation rate 30 minutes value, and (A × G + B) × GMAX is obtained as the power generation amount 30 minutes value.

需要家負荷量推定部113の処理の詳細を図6を用いて説明する。   Details of processing of the customer load amount estimation unit 113 will be described with reference to FIG.

(1)START
・推定制御部111からの起動要求を受け取ったら、以下の処理を開始する。
(1) START
When the activation request from the estimation control unit 111 is received, the following processing is started.

(2)需要家データの抽出
・指定された区間332に接続する需要家を抽出し、その発電量30分値と、電力量 30分値も記録装置から取り出す。
(2) Extraction of customer data-A customer connected to the designated section 332 is extracted, and the power generation amount 30-minute value and the power amount 30-minute value are also taken out from the recording device.

・区間332の例では、需要家340と350と360が抽出される。それぞれにつ いて取り出された発電量30分値をG341,G351,G361、電力量30分 値をL341,L351,L361とする。     In the example of the section 332, customers 340, 350, and 360 are extracted. The extracted 30-minute power generation values are G341, G351, and G361, and the 30-hour power generation values are L341, L351, and L361.

(3)需要家の負荷量の推定
・(2)で抽出した各需要家について、抽出した電力量30分値から発電量30分値 を差し引いて、これを負荷量30分値と推定する。
(3) Estimating the load amount of the consumer • For each consumer extracted in (2), subtract the 30-minute power generation value from the extracted 30-minute power amount value, and estimate this as the 30-minute load amount value.

・需要家340の例では、L341−G34が負荷量30分値として得られる。同様 に、需要家350の例ではL351−G351、需要家360の例ではL361− G361が得られる。     In the example of the customer 340, L341-G34 is obtained as the load amount 30 minutes value. Similarly, L351-G351 is obtained in the example of the consumer 350, and L361-G361 is obtained in the example of the consumer 360.

(4)推定結果の格納
・推定結果の負荷量30分値を記録装置12に格納する。
(4) Storing the estimation result-Store the 30 minute load amount value of the estimation result in the recording device 12.

(5)END
・推定制御部111に処理完了を通知する。
(5) END
Notify the estimation control unit 111 of the completion of processing.

区間状態推定部114では、太陽光発電量推定部112や需要家負荷量推定部113によって既に計算されて記録装置に格納されている、指定された区間につながる需要家の負荷量30分値を、再び記録装置から取り出して合計することで、区間内の総負荷量30分値を推定する。発電量30分値についても同様である。   In the section state estimation unit 114, the 30 minute load value of the consumer connected to the specified section, which has already been calculated by the photovoltaic power generation amount estimation unit 112 and the customer load amount estimation unit 113 and stored in the recording device, is obtained. Then, the total load amount 30-minute value in the section is estimated by taking out from the recording device and summing up again. The same applies to the power generation amount of 30 minutes.

以上では、監視対象の太陽光発電設備と、非監視対象の太陽光発電設備が同じ区間につながっている場合について説明したが、これらが異なる区間につながっていてもよい。つまり、ある区間の総負荷量や総発電量を推定するにあたって、当該区間につながる、非監視対象の太陽光発電設備の発電量を、他の区間につながる監視対象の太陽光発電設備の情報を用いて推定することもできる。   Although the case where the monitoring photovoltaic power generation facility and the non-monitoring target photovoltaic power generation facility are connected to the same section has been described above, they may be connected to different sections. In other words, when estimating the total load or total power generation amount in a certain section, the power generation amount of the non-monitoring target solar power generation equipment connected to the relevant section is obtained, and the information on the monitoring target solar power generation equipment connected to the other section is obtained. It can also be estimated using.

本発明が適用された配電系統と、本発明の一実施形態の配電系統状態推定装置の全体構成図である。1 is an overall configuration diagram of a power distribution system to which the present invention is applied and a power distribution system state estimation apparatus according to an embodiment of the present invention. 発電特性データと、日射強度から発電量を求める計算式の例を示す図である。It is a figure which shows the example of the calculation formula which calculates | requires electric power generation amount from electric power generation characteristic data and solar radiation intensity. 2つの太陽光発電設備の発電量の相関を与えるためのデータである発電量相関モデルデータの説明図である。It is explanatory drawing of the electric power generation amount correlation model data which is data for giving the correlation of the electric power generation amount of two photovoltaic power generation facilities. 推定制御部の処理の説明図である。It is explanatory drawing of a process of an estimation control part. 太陽光発電量推定部の処理の説明図である。It is explanatory drawing of the process of a solar energy generation amount estimation part. 需要家負荷量推定部の処理の説明図である。It is explanatory drawing of a process of a consumer load amount estimation part.

符号の説明Explanation of symbols

1 配電系統状態推定装置
2 通信ネットワーク
4 配電システム
11 推定処理装置
12 記録装置
13 データ収集装置
14 入力装置
15 出力装置
111 推定制御部
112 太陽光発電量推定部
113 需要家負荷量推定部
114 区間状態推定部
121 区間情報データ
122 発電設備データ
123 発電量相関モデルデータ
124,344,354,364 電力量データ
125,355 発電量データ
311 高圧配電線
312 母線
313,314 変圧器
315 遮断器
316 低圧配電線
321,322,323,324,325 開閉器
331,332,333,334 区間
340,350,360 需要家
341,351,361 太陽光発電設備
342,352,362 WHM
343,363 端局
353 高機能端局
356 日射強度センサ
DESCRIPTION OF SYMBOLS 1 Distribution system state estimation apparatus 2 Communication network 4 Distribution system 11 Estimation processing apparatus 12 Recording apparatus 13 Data collection apparatus 14 Input apparatus 15 Output apparatus 111 Estimation control part 112 Photovoltaic power generation amount estimation part 113 Consumer load amount estimation part 114 Section state Estimator 121 Section information data 122 Power generation facility data 123 Power generation amount correlation model data 124, 344, 354, 364 Power amount data 125, 355 Power generation amount data 311 High voltage distribution line 312 Bus 313, 314 Transformer 315 Circuit breaker 316 Low voltage distribution line 321, 322, 323, 324, 325 Switch 331, 332, 333, 334 Section 340, 350, 360 Customer 341, 351, 361 Solar power generation facility 342, 352, 362 WHM
343,363 Terminal station 353 High function terminal station 356 Solar radiation intensity sensor

Claims (9)

配電系統の状態を推定する配電系統状態推定装置において、
需要家の電力量と太陽光発電設備の発電量を収集するデータ収集手段と、
太陽光発電設備の発電量の関係を与える発電量相関モデルデータと、前記発電量相関モデルデータと太陽光発電設備の発電量を用いて、他の収集していない太陽光発電設備の発電量を推定する太陽光発電量推定手段とを備えることを特徴とする配電系統状態推定装置。
In the distribution system state estimation device for estimating the state of the distribution system,
Data collection means for collecting the amount of electricity of the consumer and the amount of power generated by the solar power generation facility;
Using the power generation amount correlation model data that gives the relationship of the power generation amount of the solar power generation facility, and the power generation amount correlation model data and the power generation amount of the solar power generation facility, the power generation amount of other uncollected solar power generation facilities is calculated. A distribution system state estimation device comprising: a photovoltaic power generation amount estimation means for estimation.
請求項1において、
前記データ収集手段で収集した需要家の電力量から、前記太陽光発電量推定手段で推定した発電量を用いて、当該需要家の負荷量を推定する需要家負荷量推定手段を備えることを特徴とする配電系統状態推定装置。
In claim 1,
It comprises a consumer load amount estimating means for estimating the load amount of the consumer from the power amount of the consumer collected by the data collecting means, using the power generation amount estimated by the solar power generation amount estimating means. Distribution system state estimation device.
請求項2において、
配電系統の区間に連系する全需要家の負荷量と発電量を用いて、区間内の総負荷量と総発電量を推定する区間状態推定手段を備えることを特徴とする配電系統状態推定装置。
In claim 2,
A distribution system state estimation device comprising section state estimation means for estimating a total load amount and a total power generation amount in a section using a load amount and a power generation amount of all consumers connected to the section of the distribution system .
請求項1において、
発電量相関モデルデータが、2つの太陽光発電設備の発電量の過去実績値を用いて求める相関関係であることを特徴とする配電系統状態推定装置。
In claim 1,
The distribution system state estimation device, wherein the power generation amount correlation model data is a correlation obtained by using past performance values of the power generation amounts of the two photovoltaic power generation facilities.
請求項1において、
発電量相関モデルデータが、太陽光発電設備の最大発電量に対する発電量の割合で定義される発電率に関する相関関係であることを特徴とする配電系統状態推定装置。
In claim 1,
The distribution system state estimation device, wherein the power generation amount correlation model data is a correlation regarding a power generation rate defined by a ratio of the power generation amount to the maximum power generation amount of the photovoltaic power generation facility.
請求項5において、
発電率に関する相関関係を、過去の実績値を用いて求めることを特徴とする配電系統状態推定装置。
In claim 5,
A distribution system state estimation device characterized in that a correlation with respect to a power generation rate is obtained using a past actual value.
請求項5において、
発電率に関する相関関係を、2つの太陽光発電設備について同じ値同士を対応付けることを特徴とする配電系統状態推定装置。
In claim 5,
A distribution system state estimation device characterized by correlating the same value for two photovoltaic power generation facilities with respect to a correlation regarding a power generation rate.
請求項1において、データ収集手段が収集する太陽光発電設備の発電量を、当該太陽光発電設備から発電量データを取得するか、当該太陽光発電設備の発電量を計測するか、計測した日射強度と当該太陽光発電設備の仕様データから求めるかのいずれかであることを特徴とする配電系統状態推定装置。   In Claim 1, the amount of power generation of the solar power generation facility collected by the data collection means is acquired from the solar power generation facility, the power generation amount of the solar power generation facility is measured, or the measured solar radiation A distribution system state estimation device characterized in that it is obtained from the strength and the specification data of the photovoltaic power generation facility. 請求項1において、推定する負荷量,推定する発電量,収集する電力量,推定する発電量を、1分間,5分間,30分間,1時間などのように一定時間単位とするか、8時〜13時,13時〜17時,17時〜22時,22時〜8時などのように幾つかの異なる長さの時間帯の単位とすることを特徴とする配電系統状態推定装置。   In claim 1, the estimated load amount, the estimated power generation amount, the collected power amount, and the estimated power generation amount are set to a fixed time unit such as 1 minute, 5 minutes, 30 minutes, 1 hour, or 8:00 A power distribution system state estimation device characterized in that it is a unit of several different time zones such as -13 o'clock, 13 o'clock to 17 o'clock, 17 o'clock to 22 o'clock, 22 o'clock to 8 o'clock.
JP2007212529A 2007-08-17 2007-08-17 Distribution system status estimating device Pending JP2009050064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007212529A JP2009050064A (en) 2007-08-17 2007-08-17 Distribution system status estimating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007212529A JP2009050064A (en) 2007-08-17 2007-08-17 Distribution system status estimating device

Publications (1)

Publication Number Publication Date
JP2009050064A true JP2009050064A (en) 2009-03-05

Family

ID=40501758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007212529A Pending JP2009050064A (en) 2007-08-17 2007-08-17 Distribution system status estimating device

Country Status (1)

Country Link
JP (1) JP2009050064A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010220379A (en) * 2009-03-17 2010-09-30 Hitachi Ltd Device and method for estimating distributed power supply output in power distribution system
JP2011015471A (en) * 2009-06-30 2011-01-20 Central Res Inst Of Electric Power Ind Method of dividing demand curve, division device, and division program
JP2011199955A (en) * 2010-03-17 2011-10-06 Chugoku Electric Power Co Inc:The Photovoltaic power-generation output estimation method and photovoltaic power-generation output estimation device
JP2011215672A (en) * 2010-03-31 2011-10-27 Tokyo Electric Power Co Inc:The Information processor, power generation output estimation method and program
JP2013099228A (en) * 2011-11-07 2013-05-20 Tohoku Electric Power Co Inc Estimation method and device for power generation output of photovoltaic power generation facility
JP2013232147A (en) * 2012-05-01 2013-11-14 Tokyo Electric Power Co Inc:The Generated power estimation device, generated power estimation method, and generated power estimation program
JP2014030315A (en) * 2012-07-31 2014-02-13 Tokyo Electric Power Co Inc:The Generated power estimation device, generated power estimation method, and generated power estimation program
JP5484621B1 (en) * 2013-09-06 2014-05-07 積水化学工業株式会社 Electric storage device discharge start time determination system
JP2014082868A (en) * 2012-10-16 2014-05-08 Central Research Institute Of Electric Power Industry Variation estimation method for total output of natural-energy distributed power source group, variation estimation apparatus and variation estimation program
JP2016039652A (en) * 2014-08-05 2016-03-22 三菱電機株式会社 Power distribution grid management apparatus, power distribution grid system, and power distribution grid management method
JP2016185059A (en) * 2014-07-11 2016-10-20 エンコアード テクノロジーズ インク Prediction method of power consumption in accordance with consumption characteristics, generation method of power consumption prediction model, and power consumption prediction device
WO2017033881A1 (en) * 2015-08-26 2017-03-02 東京電力ホールディングス株式会社 Power-distribution-system monitoring system and control method for power-distribution-system monitoring system
JP2018011494A (en) * 2016-07-15 2018-01-18 関西電力株式会社 Device and method for estimating photovoltaic power generation output
JP2020198740A (en) * 2019-06-04 2020-12-10 中国電力株式会社 Power consumption estimation system
JP2021086384A (en) * 2019-11-27 2021-06-03 京セラ株式会社 Power management apparatus, power management method, and power management program
JP2021157209A (en) * 2020-03-25 2021-10-07 三菱電機株式会社 Photovoltaic power generation output estimation device, photovoltaic power generation output estimation method, and photovoltaic power generation output estimation program
CN116231647A (en) * 2023-05-09 2023-06-06 国网浙江省电力有限公司永康市供电公司 Power distribution system state estimation method and system for high-permeability unmonitored photovoltaic power generation
JP7407815B2 (en) 2018-07-19 2024-01-04 サクラメント ミュニシパル ユーティリティ ディストリクト Techniques for estimating and predicting solar power generation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978080A (en) * 1982-10-25 1984-05-04 三菱電機株式会社 Device for estimating demand
JPS63245502A (en) * 1987-03-31 1988-10-12 Toshiba Corp State estimating device
JP2003079071A (en) * 2001-08-31 2003-03-14 Hitachi Ltd Method and device for estimating condition of power distribution system
JP2003242232A (en) * 2002-02-13 2003-08-29 Sharp Corp Peripheral environment information acquiring method and device and electric energy estimating method for photovoltaic power generating system
JP2004047875A (en) * 2002-07-15 2004-02-12 Sharp Corp Device for predicting amount of power generation, device for transmitting amount of power generation, device for measuring solar irradiation, and method for predicting amount of power generation
JP2006059986A (en) * 2004-08-19 2006-03-02 Mitsubishi Electric Corp Method for monitoring natural-energy use electric power generation
JP2006174609A (en) * 2004-12-16 2006-06-29 Ken Tsuzuki Power generation data managing method in solar power generation
JP2006204039A (en) * 2005-01-21 2006-08-03 Chugoku Electric Power Co Inc:The Method and device for assuming load of distribution system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978080A (en) * 1982-10-25 1984-05-04 三菱電機株式会社 Device for estimating demand
JPS63245502A (en) * 1987-03-31 1988-10-12 Toshiba Corp State estimating device
JP2003079071A (en) * 2001-08-31 2003-03-14 Hitachi Ltd Method and device for estimating condition of power distribution system
JP2003242232A (en) * 2002-02-13 2003-08-29 Sharp Corp Peripheral environment information acquiring method and device and electric energy estimating method for photovoltaic power generating system
JP2004047875A (en) * 2002-07-15 2004-02-12 Sharp Corp Device for predicting amount of power generation, device for transmitting amount of power generation, device for measuring solar irradiation, and method for predicting amount of power generation
JP2006059986A (en) * 2004-08-19 2006-03-02 Mitsubishi Electric Corp Method for monitoring natural-energy use electric power generation
JP2006174609A (en) * 2004-12-16 2006-06-29 Ken Tsuzuki Power generation data managing method in solar power generation
JP2006204039A (en) * 2005-01-21 2006-08-03 Chugoku Electric Power Co Inc:The Method and device for assuming load of distribution system

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010220379A (en) * 2009-03-17 2010-09-30 Hitachi Ltd Device and method for estimating distributed power supply output in power distribution system
JP2011015471A (en) * 2009-06-30 2011-01-20 Central Res Inst Of Electric Power Ind Method of dividing demand curve, division device, and division program
JP2011199955A (en) * 2010-03-17 2011-10-06 Chugoku Electric Power Co Inc:The Photovoltaic power-generation output estimation method and photovoltaic power-generation output estimation device
JP2011215672A (en) * 2010-03-31 2011-10-27 Tokyo Electric Power Co Inc:The Information processor, power generation output estimation method and program
JP2013099228A (en) * 2011-11-07 2013-05-20 Tohoku Electric Power Co Inc Estimation method and device for power generation output of photovoltaic power generation facility
JP2013232147A (en) * 2012-05-01 2013-11-14 Tokyo Electric Power Co Inc:The Generated power estimation device, generated power estimation method, and generated power estimation program
JP2014030315A (en) * 2012-07-31 2014-02-13 Tokyo Electric Power Co Inc:The Generated power estimation device, generated power estimation method, and generated power estimation program
JP2014082868A (en) * 2012-10-16 2014-05-08 Central Research Institute Of Electric Power Industry Variation estimation method for total output of natural-energy distributed power source group, variation estimation apparatus and variation estimation program
JP5484621B1 (en) * 2013-09-06 2014-05-07 積水化学工業株式会社 Electric storage device discharge start time determination system
WO2015033819A1 (en) * 2013-09-06 2015-03-12 積水化学工業株式会社 Discharge start time determination system for electricity storage device and discharge start time determination method for electricity storage device
JP2015053846A (en) * 2013-09-06 2015-03-19 積水化学工業株式会社 Discharge start time determination system of power storage device and discharge start time determination method of power storage device
JP2015053810A (en) * 2013-09-06 2015-03-19 積水化学工業株式会社 Discharge start time determination system of power storage device
CN105474501B (en) * 2013-09-06 2018-01-30 积水化学工业株式会社 The electric discharge start time decision systems of electrical storage device and the determining method of the electric discharge start time of electrical storage device
CN105474501A (en) * 2013-09-06 2016-04-06 积水化学工业株式会社 Discharge start time determination system for electricity storage device and discharge start time determination method for electricity storage device
KR101784641B1 (en) * 2013-09-06 2017-10-11 세키스이가가쿠 고교가부시키가이샤 Discharge start time determination system for electricity storage device and discharge start time determination method for electricity storage device
JP2016185059A (en) * 2014-07-11 2016-10-20 エンコアード テクノロジーズ インク Prediction method of power consumption in accordance with consumption characteristics, generation method of power consumption prediction model, and power consumption prediction device
JP2016039652A (en) * 2014-08-05 2016-03-22 三菱電機株式会社 Power distribution grid management apparatus, power distribution grid system, and power distribution grid management method
WO2017033881A1 (en) * 2015-08-26 2017-03-02 東京電力ホールディングス株式会社 Power-distribution-system monitoring system and control method for power-distribution-system monitoring system
JPWO2017033881A1 (en) * 2015-08-26 2018-04-05 東京電力ホールディングス株式会社 Distribution system monitoring system and control method of distribution system monitoring system
JP2018011494A (en) * 2016-07-15 2018-01-18 関西電力株式会社 Device and method for estimating photovoltaic power generation output
JP7407815B2 (en) 2018-07-19 2024-01-04 サクラメント ミュニシパル ユーティリティ ディストリクト Techniques for estimating and predicting solar power generation
JP7321780B2 (en) 2019-06-04 2023-08-07 元夢 朝原 Power consumption estimation system
JP2020198740A (en) * 2019-06-04 2020-12-10 中国電力株式会社 Power consumption estimation system
JP2021086384A (en) * 2019-11-27 2021-06-03 京セラ株式会社 Power management apparatus, power management method, and power management program
JP7345371B2 (en) 2019-11-27 2023-09-15 京セラ株式会社 Power management device, power management method, and power management program
JP2021157209A (en) * 2020-03-25 2021-10-07 三菱電機株式会社 Photovoltaic power generation output estimation device, photovoltaic power generation output estimation method, and photovoltaic power generation output estimation program
JP7390951B2 (en) 2020-03-25 2023-12-04 三菱電機株式会社 Solar power generation output estimation device, solar power generation output estimation method, and solar power generation output estimation program
CN116231647A (en) * 2023-05-09 2023-06-06 国网浙江省电力有限公司永康市供电公司 Power distribution system state estimation method and system for high-permeability unmonitored photovoltaic power generation
CN116231647B (en) * 2023-05-09 2023-07-21 国网浙江省电力有限公司永康市供电公司 Power distribution system state estimation method and system for high-permeability unmonitored photovoltaic power generation

Similar Documents

Publication Publication Date Title
JP2009050064A (en) Distribution system status estimating device
KR101268712B1 (en) System and method for detecting power quality abnormal waveform of the electric power distribution system
CN109416379B (en) Method for determining mutual inductance voltage sensitivity coefficient among multiple measurement nodes of power network
JP4584056B2 (en) Electricity supply and demand forecast and control system
JP2012532583A (en) High-speed feedback for power load reduction using variable generators
EP2466714A2 (en) System and Method for Managing Cold Load Pickup Using Demand Response
US20090292486A1 (en) Load Model Generation for Estimating a Load Value from a Base Load Value in a System
AU2017302236A1 (en) Electrical energy storage system with battery state-of-charge estimation
EP3041105A1 (en) Energy management device, energy management method, and energy management system
WO2011035461A1 (en) State-matrix-independent dynamic process estimation method in real-time for weakly observable measurement nodes without pmu
US20170271915A1 (en) Energy Demand Monitoring System and Smart micro-Grid Controller
JP2010193594A (en) Maximum power generation amount estimating method for photovoltaic power generation system, method for controlling power distribution system, and distribution system control apparatus
CN103329384B (en) The method and apparatus of management power consumption and/or production
EP3082096A1 (en) Demand prediction device and program
KR101299444B1 (en) Remote power administration system using power totalizer of ac/dc
JP2017221040A (en) Power distribution system monitoring device
JP2015109737A (en) Power distribution system monitoring device
US9638545B2 (en) Power management apparatus, power management system and power management method
JP2017011804A (en) Power management device, device system, power management method, and program
JP2010213507A (en) Natural energy integrated power storage system and natural energy integrated power storage method
JP6385292B2 (en) Power generation output estimation method, estimation device, and estimation program
JP2014095941A (en) Photovoltaic power generation output estimation device
JP5243516B2 (en) Power generation amount and load amount measuring device in power generation system
EP2503504A1 (en) Systems and methods for generating a bill
JP5410118B2 (en) Energy monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213