JP7321780B2 - Power consumption estimation system - Google Patents

Power consumption estimation system Download PDF

Info

Publication number
JP7321780B2
JP7321780B2 JP2019104766A JP2019104766A JP7321780B2 JP 7321780 B2 JP7321780 B2 JP 7321780B2 JP 2019104766 A JP2019104766 A JP 2019104766A JP 2019104766 A JP2019104766 A JP 2019104766A JP 7321780 B2 JP7321780 B2 JP 7321780B2
Authority
JP
Japan
Prior art keywords
time
power
coefficient
series data
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019104766A
Other languages
Japanese (ja)
Other versions
JP2020198740A (en
Inventor
春海 朝原
元夢 朝原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019104766A priority Critical patent/JP7321780B2/en
Publication of JP2020198740A publication Critical patent/JP2020198740A/en
Application granted granted Critical
Publication of JP7321780B2 publication Critical patent/JP7321780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources

Description

本発明は、系統電源、複数の太陽光発電設備及び複数の風力発電設備から電力を受ける電力系統から電力が供給される各負荷の消費電力の総和を推定する消費電力推定システムに関する。 The present invention relates to a power consumption estimation system for estimating the total power consumption of loads supplied with power from a power system that receives power from a grid power source, a plurality of solar power generation facilities, and a plurality of wind power generation facilities.

電力系統には、電力会社の系統電源のほか、他の者の太陽光発電設備及び風力発電設備から電力が供給される。電力系統の運用上、電力の需給のバランスを取る必要があるので、電力系統に接続される各負荷の消費電力の総和を推定する必要がある。各負荷の消費電力の総和を推定するためには、系統電源の発電出力のほか、太陽光発電設備及び風力発電設備の発電出力も把握する必要がある。そこで、太陽光発電設備及び風力発電設備の発電出力を推定するための技術が開発されている(特許文献1~3参照)。また、太陽光発電設備及び風力発電設備に計測器を設置すれば、太陽光発電設備及び風力発電設備の発電出力を把握することができる。ところが、電力系統に接続される全ての太陽光発電設備及び風力発電設備に計測器を設置することは、コスト上の問題があるうえ、現実的ではない。 The power system is supplied with power from the power company's grid power supply, as well as from other parties' solar power generation facilities and wind power generation facilities. Since it is necessary to balance the supply and demand of electric power in the operation of the electric power system, it is necessary to estimate the total power consumption of each load connected to the electric power system. In order to estimate the total power consumption of each load, it is necessary to know the power output of the system power supply as well as the power output of the solar power generation equipment and the wind power generation equipment. Therefore, techniques have been developed for estimating the power output of solar power generation equipment and wind power generation equipment (see Patent Documents 1 to 3). Moreover, if measuring instruments are installed in the photovoltaic power generation equipment and the wind power generation equipment, the power output of the photovoltaic power generation equipment and the wind power generation equipment can be grasped. However, installing measuring instruments in all the photovoltaic power generation facilities and wind power generation facilities connected to the electric power system poses a cost problem and is not realistic.

国際公開第2016/121202号WO2016/121202 特開2016-192864号公報JP 2016-192864 A 国際公開第2015/079554号WO2015/079554

そこで、本発明は、上記事情に鑑みてなされたものであり、本発明の目的は、電力系統に接続される太陽光発電設備及び風力発電設備に計測器を設置せずとも、各負荷の消費電力の総和を把握できるようにすることである。 Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is to reduce the consumption of each load without installing measuring instruments in the solar power generation equipment and the wind power generation equipment connected to the power system. It is to be able to grasp the total power.

以上の課題を解決するために、系統電源、複数の太陽光発電設備及び複数の風力発電設備から電力が電力系統に供給され、前記電力系統から電力が供給される各負荷の消費電力の総和を推定する消費電力推定システムは、計測用太陽光発電設備と、前記計測用太陽光発電設備の発電出力を計測する第1計測器と、計測用風力発電設備と、前記計測用風力発電設備の発電出力を計測する第2計測器と、前記系統電源から前記電力系統に供給される電力を計測する第3計測器と、前記複数の太陽光発電設備の発電出力の総和を推定する際に用いる第1係数を推定し、前記複数の風力発電設備の発電出力の総和を推定する際に用いる第2係数を推定し、前記第1計測器の計測値と前記第1係数を乗じた積と、前記第2計測器の計測値と前記第2係数を乗じた積と、前記第3計測器の計測値とを総和して、その総和を前記各負荷の消費電力の総和として推定する推定手段を有するコンピューターと、を備える。 In order to solve the above problems, power is supplied to the power system from a power system power supply, a plurality of solar power generation facilities, and a plurality of wind power generation facilities, and the total power consumption of each load to which power is supplied from the power system is calculated. The power consumption estimation system to be estimated includes a measuring solar power generation facility, a first measuring instrument for measuring the power output of the measurement solar power generation facility, a measurement wind power generation facility, and the power generation of the measurement wind power generation facility. A second measuring instrument for measuring the output, a third measuring instrument for measuring the power supplied from the system power supply to the power system, and a third used for estimating the total power output of the plurality of photovoltaic power generation facilities. estimating a first coefficient, estimating a second coefficient used when estimating the total power output of the plurality of wind power generation facilities, multiplying the measured value of the first measuring instrument by the first coefficient; estimating means for summing a product obtained by multiplying the measured value of the second measuring device by the second coefficient and the measured value of the third measuring device, and estimating the sum as the sum of the power consumption of the loads; a computer;

以上によれば、第1計測器の計測値と第1係数を乗ずると、その積は各太陽光発電設備から電力系統に供給される電力の総和にほぼ等しい。第2計測器の計測値と第2係数を乗ずると、その積は各風力発電設備から電力系統に供給される電力の総和にほぼ等しい。従って、それらの積と第3計測値の計測値との総和が各負荷の消費電力の総和にほぼ等しい。よって、各太陽光発電設備及び各風力発電設備に計測器を設置せずとも、各負荷の消費電力の総和を推定することができる。 According to the above, when the measured value of the first measuring device is multiplied by the first coefficient, the product is approximately equal to the total power supplied to the power system from each photovoltaic power generation facility. Multiplying the measured value of the second measuring instrument by the second coefficient, the product is approximately equal to the sum of the power supplied to the power system from each wind power generation facility. Therefore, the sum of the product of them and the measured value of the third measured value is approximately equal to the sum of the power consumption of each load. Therefore, the total power consumption of each load can be estimated without installing a measuring instrument in each solar power generation facility and each wind power generation facility.

本発明の幾つかの実施形態によれば、各太陽光発電設備及び各風力発電設備に計測器を設置せずとも、各負荷の消費電力の総和を推定することができる。 According to some embodiments of the present invention, the total power consumption of each load can be estimated without installing measuring instruments in each solar power generation facility and each wind power generation facility.

第1実施形態の消費電力推定システム及び電力系統のブロック図である。1 is a block diagram of a power consumption estimation system and a power system according to a first embodiment; FIG. 第2実施形態の消費電力推定システム及び電力系統のブロック図である。It is a power consumption estimation system of 2nd Embodiment, and a block diagram of an electric power system. 第3実施形態の消費電力推定システム及び電力系統のブロック図である。FIG. 11 is a block diagram of a power consumption estimation system and a power system according to a third embodiment;

以下、図面を参照して、本発明の実施形態について説明する。以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、本発明の範囲を以下の実施形態及び図示例に限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Various technically preferable limitations are attached to the embodiments described below for carrying out the present invention, but the scope of the present invention is not limited to the following embodiments and illustrated examples.

〔第1の実施の形態〕
1.消費電力推定システム
図1は消費電力推定システム1を電力系統50とともに示したブロック図である。
電力系統50の送電線が遮断器等の保護機器を介して変電所内の母線52に接続され、電力会社の系統電源51から潮流電力が変電所内の母線52を介して電力系統50に供給される。電力系統50には、複数の負荷53が接続されている。これら負荷53は、電力系統50から供給される電力を消費する需要家の機器である。負荷53は電力系統50に接続されている機器であれば、どのようなものであってもよい。例えば負荷53は家庭用電気機器、事業用電気機器等である。
[First embodiment]
1. Power Consumption Estimation System FIG. 1 is a block diagram showing a power consumption estimation system 1 together with a power system 50 .
A transmission line of a power system 50 is connected to a bus 52 in a substation via a protective device such as a circuit breaker, and tidal power is supplied from a system power supply 51 of a power company to the power system 50 via the bus 52 in the substation. . A plurality of loads 53 are connected to the power system 50 . These loads 53 are consumer devices that consume power supplied from the power system 50 . The load 53 may be any device as long as it is connected to the power system 50 . For example, the load 53 is a household electric appliance, a business electric appliance, or the like.

電力系統50には、複数の太陽光発電設備54が連系されている。太陽光発電設備54は太陽光のエネルギーを電力に変換して、その電力を電力系統50に供給する。太陽光発電設備54は電力系統50に連系されていれば、どのようなものであってもよい。例えば太陽光発電設備54は家庭用太陽光発電設備、事業用太陽光発電設備等である。 A plurality of photovoltaic power generation facilities 54 are interconnected to the power system 50 . The photovoltaic power generation equipment 54 converts the energy of sunlight into power and supplies the power to the power grid 50 . The photovoltaic power generation equipment 54 may be of any type as long as it is connected to the power system 50 . For example, the photovoltaic power generation facility 54 is a household photovoltaic power generation facility, a business photovoltaic power generation facility, or the like.

電力系統50には、複数の風力発電設備55が連系されている。風力発電設備55は風力を電力に変換して、その電力を電力系統50に供給する。風力発電設備55は電力系統50に連系されていれば、どのようなものであってもよい。例えば風力発電設備55は家庭用風力発電設備、事業用風力発電設備等である。 A plurality of wind power generation facilities 55 are interconnected to the power system 50 . The wind power generation equipment 55 converts wind power into power and supplies the power to the power grid 50 . The wind power generation equipment 55 may be of any type as long as it is interconnected with the power system 50 . For example, the wind power generation facility 55 is a home wind power generation facility, a business wind power generation facility, or the like.

消費電力推定システム1は各負荷53の消費電力の総和を推定するものである。この消費電力推定システム1は推定装置10、計測用太陽光発電設備60、計測用風力発電設備70、第1計測器69、第2計測器79及び第3計測器59を備える。
計測用太陽光発電設備60は電力会社の変電所等に設置されている。計測用太陽光発電設備60は太陽光のエネルギーを電力に変換する。図1に示す例では、計測用太陽光発電設備60の発電電力が電力系統50に供給されていないが、母線52を介して電力系統50に供給されるものとしてもよい。
計測用風力発電設備70は風力を電力に変換する。図1に示す例では、計測用風力発電設備70の発電電力が電力系統50に供給されないが、母線52を介して電力系統50に供給されるものとしてもよい。
第1計測器69は、計測用太陽光発電設備60から電力系統50に供給される太陽光発電電力を計測して、その計測値を表す信号を推定装置10に出力する。なお、第1計測器69は計測用太陽光発電設備60の発電電力を間接的に計測するものでもよい。つまり、第1計測器69は、日射量を計測して、その日射量から計測用太陽光発電設備60の発電電力を演算し、その発電電力の値を表す信号を推定装置10に出力するものでもよい。
第2計測器79は、計測用風力発電設備70から電力系統50に供給される風力発電電力を計測して、その計測値を表す信号を推定装置10に出力する。なお、第2計測器79は計測用風力発電設備70の発電電力を間接的に計測するものでもよい。つまり、第2計測器79は、風力を計測して、その風力から計測用発電設備70の発電電力を演算し、その発電電力を表す信号を推定装置10に出力するものでもよい。
第3計測器59は、電力系統50の送電線(特に母線52の出力部に近い部分)に接続されている。第3計測器59は、系統電源51から電力系統50に供給される潮流電力を計測して、その計測値を表す信号を推定装置10に出力する。
The power consumption estimation system 1 estimates the total power consumption of each load 53 . This power consumption estimation system 1 includes an estimation device 10 , a measuring solar power generation facility 60 , a measuring wind power generation facility 70 , a first measuring device 69 , a second measuring device 79 and a third measuring device 59 .
The measuring photovoltaic power generation equipment 60 is installed at a power company's substation or the like. The measuring photovoltaic power generation equipment 60 converts the energy of sunlight into electric power. In the example shown in FIG. 1 , the power generated by the measuring photovoltaic power generation equipment 60 is not supplied to the power system 50 , but it may be supplied to the power system 50 via the bus 52 .
The instrumentation wind power generation equipment 70 converts wind power into electric power. In the example shown in FIG. 1 , the power generated by the instrumentation wind turbine generator 70 is not supplied to the power system 50 , but may be supplied to the power system 50 via the bus 52 .
The first measuring device 69 measures the photovoltaic power supplied from the measuring photovoltaic power generation facility 60 to the power system 50 and outputs a signal representing the measured value to the estimating device 10 . Note that the first measuring device 69 may indirectly measure the power generated by the photovoltaic power generation facility 60 for measurement. That is, the first measuring device 69 measures the amount of solar radiation, calculates the power generated by the measuring solar power generation equipment 60 from the amount of solar radiation, and outputs a signal representing the value of the generated power to the estimation device 10. It's okay.
The second measuring instrument 79 measures the wind-generated power supplied from the measurement wind power generation equipment 70 to the power system 50 and outputs a signal representing the measured value to the estimation device 10 . The second measuring instrument 79 may indirectly measure the power generated by the measuring wind power generator 70 . In other words, the second measuring device 79 may measure the wind force, calculate the power generated by the measurement power generation equipment 70 from the wind force, and output a signal representing the generated power to the estimating device 10 .
The third measuring device 59 is connected to the transmission line of the power system 50 (especially the portion near the output of the bus 52). The third measuring device 59 measures the tidal power supplied from the system power supply 51 to the power system 50 and outputs a signal representing the measured value to the estimation device 10 .

推定装置10はコンピューター11及び記憶部12を有する。なお、推定装置10は、コンピューター11に接続されたキーボード、ポインティングデバイス及びディスプレイ等を備えていてもよい。 The estimation device 10 has a computer 11 and a storage unit 12 . Note that the estimation device 10 may include a keyboard, pointing device, display, and the like connected to the computer 11 .

コンピューター11は、CPU、ROM、RAM、GPU、システムバス及びハードウェアインタフェース等を有する。記憶部12は、半導体メモリ又はハードディスクドライブ等からなる記憶装置である。記憶部12は、コンピューター11に内蔵されたものでもよいし、コンピューター11に外付けされたものでもよい。 The computer 11 has a CPU, ROM, RAM, GPU, system bus, hardware interface, and the like. The storage unit 12 is a storage device such as a semiconductor memory or a hard disk drive. The storage unit 12 may be built in the computer 11 or may be externally attached to the computer 11 .

記憶部12には、コンピューター11にとって実行可能な推定プログラム20が格納されている。コンピューター11は推定プログラム20に従って以下のような処理を実行する。 The storage unit 12 stores an estimation program 20 executable by the computer 11 . The computer 11 executes the following processes according to the estimation program 20. FIG.

2.コンピューターの処理
(1) 計測値取得処理
コンピューター11は、計測器59,69,79の計測値を取得する。
2. Computer Processing (1) Measured Value Acquisition Processing The computer 11 acquires the measured values of the measuring instruments 59 , 69 , and 79 .

(2) 電力推定処理
コンピューター11は、次式(1)のように、第1計測器69の計測値から各太陽光発電設備54の発電出力の総和を推定する。コンピューター11は、次式(2)のように、第2計測器79の計測値から各風力発電設備55の発電出力の総和を推定する。コンピューター11は、次式(3)のように、計測器59,69,79の計測値から各負荷53の消費電力の総和を推定する。
(2) Power Estimation Processing The computer 11 estimates the total power output of each photovoltaic power generation facility 54 from the measured value of the first measuring device 69 as in the following equation (1). The computer 11 estimates the total power output of each wind turbine generator 55 from the measured value of the second measuring instrument 79 as in the following equation (2). The computer 11 estimates the total power consumption of each load 53 from the measured values of the measuring instruments 59, 69, 79 as in the following equation (3).

Figure 0007321780000001
Figure 0007321780000001

ここで、Pは各太陽光発電設備54の発電出力の総和の推定値であり、PGSは第1計測器69によって計測された電力の値であり、Kは係数であり、Pは各風力発電設備55の発電出力の総和の推定値であり、PGWは第2計測器79によって計測された電力の値であり、Kは係数であり、Lは各負荷53の消費電力の総和の推定値であり、Pは第3計測器59によって計測された潮流電力の値である。 Here, P S is the estimated value of the total power output of each photovoltaic power generation facility 54, P GS is the power value measured by the first measuring instrument 69, K S is a coefficient, P W is the estimated value of the total power output of each wind power generation facility 55, P GW is the power value measured by the second measuring instrument 79, K W is the coefficient, and L is the power consumption of each load 53 and P is the value of the current power measured by the third measuring instrument 59 .

は、次式(4)のように、計測用太陽光発電設備60の定格出力に対する各太陽光発電設備54の定格出力(公称最大出力)の総和の比であり、Kは、次式(5)のように、計測用風力発電設備70の定格出力に対する各風力発電設備55の定格出力の総和の比である。 KS is the ratio of the total rated output (nominal maximum output) of each photovoltaic power generation facility 54 to the rated output of the measurement photovoltaic power generation facility 60, as in the following equation (4), and KW is the following: As shown in equation (5), it is the ratio of the total rated output of each wind power generator 55 to the rated output of the wind power generator 70 for measurement.

Figure 0007321780000002
Figure 0007321780000002

上記式(4)及び(5)において、PS maxは各太陽光発電設備54の定格出力(公称最大出力)の総和であり、PGS maxは計測用太陽光発電設備60の定格出力であり、PW max各風力発電設備55の定格出力の総和であり、PGW maxは計測測用風力発電設備70の定格出力である。 In the above formulas (4) and (5), P S max is the sum of the rated output (nominal maximum output) of each photovoltaic power generation facility 54, and P GS max is the rated output of the measurement photovoltaic power generation facility 60. , P W max is the total rated output of each wind power generation facility 55, and P GW max is the rated output of the wind power generation facility 70 for measurement.

ここで、K及びPS maxは、各太陽光発電設備54の調査及び集計によって予め求められたものであって、定数である。また、K及びPW maxは、各風力発電設備55の調査及び集計によって予め求められたものであって、定数である。K及びKは予め推定プログラム20に組み込まれている。 Here, K S and P S max are constants obtained in advance by investigation and aggregation of each photovoltaic power generation facility 54 . Further, K W and P W max are obtained in advance by investigation and tabulation of each wind power generation facility 55, and are constants. K S and K W are pre-installed in the estimation program 20 .

(3) 記録処理
コンピューター11は、各太陽光発電設備54の発電出力の総和の推定値P、各風力発電設備55の発電出力の総和の推定値P、各負荷53の消費電力の総和の推定値Lを記憶部12に記録する。なお、コンピューター11は、それらの推定値P,P,Lをディスプレイに表示させてもよい。
(3) Recording process The computer 11 stores an estimated value P S of the total power output of each solar power generation facility 54, an estimated value P W of the total power output of each wind power generation facility 55, and a total power consumption of each load 53. is recorded in the storage unit 12 . The computer 11 may display the estimated values P S , P W and L on the display.

3.有利な効果
第1計測器69の計測値とKを乗ずると、その積は各太陽光発電設備54から電力系統50に供給される電力の総和にほぼ等しい。第2計測器79の計測値とKを乗ずると、その積は各風力発電設備55から電力系統50に供給される電力にほぼ等しい。そうすると、それらの積と第3計測器59の計測値との総和が各負荷53の消費電力の総和にほぼ等しい。よって、各太陽光発電設備54及び各風力発電設備55に計測器を設置せずとも、各負荷53の消費電力の総和を推定することができる。
3. Advantageous Effect When the measured value of the first measuring device 69 is multiplied by K S , the product is approximately equal to the total power supplied to the power grid 50 from each photovoltaic power generation facility 54 . Multiplying the measured value of the second measuring device 79 by KW , the product is approximately equal to the power supplied to the power system 50 from each wind power generation facility 55 . Then, the sum of the product of them and the measured value of the third measuring device 59 is approximately equal to the sum of the power consumption of each load 53 . Therefore, the total power consumption of each load 53 can be estimated without installing a measuring instrument in each solar power generation facility 54 and each wind power generation facility 55 .

〔第2の実施の形態〕
1.消費電力推定システム
図2を参照して、第2実施形態の消費電力推定システム101について説明する。
第2実施形態の電力系統50、系統電源51、母線52、負荷53、太陽光発電設備54、風力発電設備55、計測用太陽光発電設備60、計測用風力発電設備70及び計測器59,69,79は第1実施形態のそれらと同一であるので、これらの説明は省略する。
[Second embodiment]
1. Power Consumption Estimation System A power consumption estimation system 101 according to the second embodiment will be described with reference to FIG.
Power system 50, system power supply 51, bus 52, load 53, photovoltaic power generation equipment 54, wind power generation equipment 55, photovoltaic power generation equipment 60 for measurement, wind power generation equipment 70 for measurement, and measuring instruments 59, 69 of the second embodiment , 79 are the same as those in the first embodiment, so description thereof will be omitted.

2.コンピューターの処理
第2実施形態における記憶部12に記憶された推定プログラム120がコンピューター11に実行させる処理と、第1実施形態における記憶部12に記憶された推定プログラム20がコンピューター11に実行させる処理が相違する。相違点の概要について説明すると、第1実施形態では、K及びKが予め求められた定数であるのに対して、第2実施形態では、コンピューター11が計測器59,69,79の計測値の時系列の時間平均から最小二乗法の誤差関数を用いてK及びKを推定する。以下、コンピューター11が推定プログラム120に従って実行する処理について説明する。
2. Computer Processing The processing that the estimation program 120 stored in the storage unit 12 in the second embodiment causes the computer 11 to execute and the processing that the estimation program 20 stored in the storage unit 12 in the first embodiment causes the computer 11 to execute. differ. In the first embodiment, K S and K W are constants obtained in advance, whereas in the second embodiment, the computer 11 measures the measuring instruments 59, 69, 79 Estimate K S and K W using the least-squares error function from the time average of the time series of values. Processing executed by the computer 11 according to the estimation program 120 will be described below.

(1) 計測値の取得・蓄積処理
コンピューター11は、計測器59,69,79の計測値を取得するとともに、それらの計測値を計測時刻に対応付けてそれら計測値と計測時刻を記憶部12に記録する。コンピューター11はこのような処理を短周期で繰り返し実行することによって、計測器59,69,79の計測値の時系列データ121,122,123を記録部12に蓄積する。計測時刻は、例えば計測器59,69,79によって電力が計測された時刻でもよいし、コンピューター11が計測器59,69,79から計測値を取得した時刻でもよい。
(1) Measured Value Acquisition/Accumulation Processing The computer 11 acquires the measured values of the measuring instruments 59, 69, and 79, associates the measured values with the measured times, and stores the measured values and the measured times in the storage unit 12. to record. The computer 11 accumulates time-series data 121 , 122 , 123 of the measured values of the measuring instruments 59 , 69 , 79 in the recording unit 12 by repeatedly executing such processing at short intervals. The measurement time may be, for example, the time when the power is measured by the measuring instruments 59 , 69 , 79 or the time when the computer 11 acquires the measured values from the measuring instruments 59 , 69 , 79 .

ここで、時系列データ121は、第3計測器59の計測値(つまり、系統電源51の出力電力)と計測時刻とを対応付けてこれらを時系列で配列したデータ列である。従って、時系列データ121は、第3計測器59の計測値及び計測時刻を変数として、第3計測器59の計測値を計測時刻で表した関数といえる。以下、時系列データ121に相当する関数をP(t)と表す。tは計測時刻であり、P(t)は第3計測器59の計測値である。 Here, the time-series data 121 is a data string in which the measurement value of the third measuring device 59 (that is, the output power of the system power supply 51) is associated with the measurement time and arranged in time series. Therefore, the time-series data 121 can be said to be a function that expresses the measured value of the third measuring device 59 by the measuring time, using the measured value and the measuring time of the third measuring device 59 as variables. Hereinafter, the function corresponding to the time-series data 121 is represented as P(t). t is the measurement time, and P(t) is the measurement value of the third measuring device 59 .

時系列データ122は、第1計測器69の計測値(つまり、計測用太陽光発電設備60の出力電力)と計測時刻とを対応付けてこれらを時系列で配列したデータ列である。以下、時系列データ122に相当する関数をPGS(t)と表す。tは計測時刻であり、PGS(t)は第1計測器69の計測値である。 The time-series data 122 is a data string in which the measured value of the first measuring device 69 (that is, the output power of the photovoltaic power generation facility 60 for measurement) is associated with the measurement time and arranged in time series. Hereinafter, the function corresponding to the time-series data 122 is expressed as P GS (t). t is the measurement time, and P GS (t) is the measurement value of the first measuring device 69 .

時系列データ123は、第2計測器79の計測値(つまり、計測用風力発電設備71の出力電力)と計測時刻とを対応付けてこれらを時系列で配列したデータ列である。以下、時系列データ122に相当する関数をPGW(t)と表す。tは計測時刻であり、PGW(t)は第1計測器69の計測値である。 The time-series data 123 is a data string in which the measurement value of the second measuring device 79 (that is, the output power of the measuring wind power generation equipment 71) is associated with the measurement time and arranged in time series. Hereinafter, the function corresponding to the time-series data 122 is represented as P GW (t). t is the measurement time, and P GW (t) is the measurement value of the first measuring device 69 .

(2) 係数推定処理
コンピューター11は、PGS(t)、PGW(t)及びP(t)の時間平均を用いた最小二乗法によって求まる式(6)のように、所定時刻Tの係数K、係数K及び定数Lを推定する。所定時刻Tは、ゼロから時系列データ121,122,123における最終時刻までの間の任意の時刻である。最終時刻とは、コンピューター11が計測器59,69,79から最後に計測値を取得した時刻、つまり現在時刻をいう。コンピューター11がリアルタイムに、つまり、計測器59,69,79から計測値を取得して即時に係数K、係数K及び定数Lを推定するのであれば、所定時刻Tは最終時刻である。
(2) Coefficient Estimation Processing The computer 11 calculates the coefficient at a predetermined time T, as in Equation (6), which is obtained by the least-squares method using the time average of P GS (t), P GW (t), and P(t). Estimate K S , coefficient K W and constant L 0 . The predetermined time T is any time from zero to the final time in the time-series data 121 , 122 , 123 . The final time is the time when the computer 11 last obtained the measured values from the measuring instruments 59, 69, 79, that is, the current time. If the computer 11 acquires the measured values from the measuring instruments 59, 69, 79 in real time and immediately estimates the coefficient K S , the coefficient K W and the constant L 0 , the predetermined time T is the final time. .

Figure 0007321780000003
Figure 0007321780000003

ここで、式(6)においてオーバーラインは、時系列データ121,122,123におけるゼロから所定時刻Tまでの計測値の時間平均を表す。つまり、以下の通りである。 Here, the overline in Expression (6) represents the time average of the measured values from zero to the predetermined time T in the time-series data 121 , 122 , 123 . That is, it is as follows.

Figure 0007321780000004
Figure 0007321780000004

上記の式(6)について詳細に説明する。
時刻tにおける各負荷53の消費電力の総和L(t)を計測器59,69,79の計測値P(t),PGS(t),PGW(t)によって表すと次式(7)の通りとなる。
The above formula (6) will be explained in detail.
If the sum L(t) of the power consumption of each load 53 at time t is represented by the measured values P(t), P GS (t), and P GW (t) of the measuring instruments 59, 69, and 79, the following equation (7) becomes as follows.

Figure 0007321780000005
Figure 0007321780000005

最小二乗法を用いてP(t),PGS(t),PGW(t)から係数K,Kを算出するために使用する誤差関数Eは次式(8)のように表せる。 An error function E used to calculate the coefficients K S and K W from P(t), P GS (t) and P GW (t) using the method of least squares can be expressed as in the following equation (8).

Figure 0007321780000006
Figure 0007321780000006

ここで、PGS(t),PGW(t)がL(t)と独立して変動するものとし、L(t)の変動はPGS(t),PGW(t)の変動に対して相関性が十分に低いものとする。そうすると、L(t)は0以上の数であるため、L(t)を時刻に関わらず一定の定数Lと置き換えることができる。そうすると、式(8)は次式(8A)のように表せる。 Here, it is assumed that P GS (t) and P GW ( t) fluctuate independently of L(t), and the fluctuation of L (t) is and the correlation is sufficiently low. Then, since L(t) is a number equal to or greater than 0, L(t) can be replaced with a constant L0 regardless of time. If it does so, Formula (8) can be expressed like following Formula (8A).

Figure 0007321780000007
Figure 0007321780000007

、K及びLが一定の値であるので、EのK、K又はLに関する偏微分は次式のように表せる。 Since K S , K W and L 0 are constant values, the partial derivative of E with respect to K S , K W or L 0 can be expressed as follows.

Figure 0007321780000008
Figure 0007321780000008

以上の式(9)~(11)から行列方程式(6)が求まる。 A matrix equation (6) is obtained from the above equations (9) to (11).

(3) 電力推定処理
コンピューター11は、式(12)のように、所定時刻Tにおける第1計測器69の計測値からその時刻Tにおける各太陽光発電設備54の発電出力の総和を推定する。コンピューター11は、式(13)のように、所定時刻Tにおける第2計測器79の計測値からその時刻Tにおける各風力発電設備55の発電出力の総和を推定する。コンピューター11は、式(14)のように、所定時刻Tにおける計測器59,69,79の計測値からその時刻Tにおける負荷53の消費電力の総和を推定する。
(3) Power Estimation Processing The computer 11 estimates the total power output of each photovoltaic power generation facility 54 at the time T from the measurement value of the first measuring device 69 at the predetermined time T, as shown in Equation (12). The computer 11 estimates the total power output of each wind turbine generator 55 at a predetermined time T from the measured value of the second measuring device 79 at the predetermined time T, as shown in Equation (13). The computer 11 estimates the total power consumption of the load 53 at the time T from the measured values of the measuring instruments 59, 69, 79 at the predetermined time T, as shown in Equation (14).

Figure 0007321780000009
Figure 0007321780000009

ここで、P(T)は所定時刻Tにおける各太陽光発電設備54の発電出力の総和の推定値であり、PGS(T)は第1計測器69によって所定時刻Tに計測された電力の値であり、P(T)は所定時刻Tにおける各風力発電設備55の発電出力の総和の推定値であり、PGW(T)は第2計測器79によって所定時刻Tに計測された電力の値であり、L(T)は所定時刻Tにおける各負荷53の消費電力の総和の推定値であり、P(T)は第3計測器59によって所定時刻Tに計測された潮流電力の値である。 Here, P S (T) is an estimated value of the total power output of each photovoltaic power generation facility 54 at a predetermined time T, and P GS (T) is the power measured at a predetermined time T by the first measuring device 69. , P W (T) is an estimated value of the total power output of each wind turbine generator 55 at a predetermined time T, and P GW (T) is measured at a predetermined time T by the second measuring device 79 is the value of electric power, L(T) is an estimated value of the total power consumption of each load 53 at a predetermined time T, and P(T) is the power flow power measured at a predetermined time T by the third measuring device 59. value.

(4) 記録処理
コンピューター11は、各太陽光発電設備54の発電出力の総和の推定値P(T)、各風力発電設備55の発電出力の総和の推定値P(T)、負荷53の消費電力の総和の推定値L(T)を記憶部12に記録する。なお、コンピューター11は、それらの推定値をディスプレイに表示させてもよい。
(4) Record processing The computer 11 stores the estimated value P S (T) of the total power output of each solar power generation facility 54, the estimated value P W (T) of the total power output of each wind power generation facility 55, and the load 53 The estimated value L(T) of the total power consumption of is recorded in the storage unit 12 . The computer 11 may display these estimated values on the display.

3.有利な効果
、Kは計測器59,69,79の計測値の時系列の時間平均から最小二乗法を用いて推定されたものである。そのため、各太陽光発電設備54及び各風力発電設備55の調査及び集計を行わずとも済む。よって、各太陽光発電設備54及び各風力発電設備55に計測器を設置せずとも、各負荷53の消費電力の総和を低コストで推定することができる。
3. Advantageous effects K S and K W are estimated from time-series time averages of the measurements of the instruments 59 , 69 , 79 using the least squares method. Therefore, it is not necessary to investigate and tabulate each photovoltaic power generation facility 54 and each wind power generation facility 55 . Therefore, the total power consumption of each load 53 can be estimated at low cost without installing a measuring instrument in each solar power generation facility 54 and each wind power generation facility 55 .

〔第3の実施の形態〕
1.消費電力推定システム
図3を参照して、第3実施形態の消費電力推定システム201について説明する。
第3実施形態の電力系統50、系統電源51、母線52、負荷53、太陽光発電設備54、風力発電設備55、計測用太陽光発電設備60、計測用風力発電設備70及び計測器59,69,79は第1実施形態のそれらと同一であるので、これらの説明は省略する。
[Third Embodiment]
1. Power Consumption Estimation System A power consumption estimation system 201 according to the third embodiment will be described with reference to FIG.
Electric power system 50, system power supply 51, bus 52, load 53, photovoltaic power generation equipment 54, wind power generation equipment 55, photovoltaic power generation equipment 60 for measurement, wind power generation equipment 70 for measurement, and measuring instruments 59, 69 of the third embodiment , 79 are the same as those in the first embodiment, so description thereof will be omitted.

2.コンピューターの処理
第3実施形態における記憶部12に記憶された推定プログラム220がコンピューター11に実行させる処理と、第1実施形態における記憶部12に記憶された推定プログラム20がコンピューター11に実行させる処理が相違する。相違点の概要について説明すると、第1実施形態では、K及びKが予め求められた定数であるのに対して、第3実施形態では、コンピューター11が計測器59,69,79の計測値の時系列をバンドストップフィルタで濾波処理した上で最小二乗法の誤差関数を用いてK及びKを推定する。以下、コンピューター11が推定プログラム120に従って実行する処理について説明する。
2. Computer Processing The processing that the estimation program 220 stored in the storage unit 12 in the third embodiment causes the computer 11 to execute and the processing that the estimation program 20 stored in the storage unit 12 in the first embodiment causes the computer 11 to execute. differ. In the first embodiment, K S and K W are predetermined constants, whereas in the third embodiment, the computer 11 measures the After filtering the time series of values with a bandstop filter, the least-squares error function is used to estimate K S and K W . Processing executed by the computer 11 according to the estimation program 120 will be described below.

(1) 計測値の取得・蓄積処理
コンピューター11は、計測器59,69,79の計測値の時系列データ121,122,123を記録部12に蓄積する。この処理は第2の実施の形態における蓄積処理と同様であるので、詳細な説明を省略する。
(1) Measured value acquisition/accumulation process The computer 11 accumulates the time-series data 121 , 122 , 123 of the measured values of the measuring instruments 59 , 69 , 79 in the recording unit 12 . Since this process is the same as the accumulation process in the second embodiment, detailed description will be omitted.

(2) 係数推定処理
コンピューター11は、PGS(t)、PGW(t)及びP(t)をバンドストップフィルタによって濾過することによって得られる関数F[P(t)]、F[PGW(t)]及びF[PGS(t)]を用いた最小二乗法によって求まる式(15)のように、係数K及び係数Kを推定する。
(2) Coefficient estimation process The computer 11 filters P GS (t), P GW (t) and P(t) with a bandstop filter to obtain functions F[P(t)], F[P GW (t)] and F[P GS (t)], the coefficient K S and the coefficient K W are estimated as shown in Equation (15) obtained by the least squares method.

Figure 0007321780000010
Figure 0007321780000010

ここで、式(15)において、F[ ]は遮断周波数帯域をfCL~fCH[Hz]としたバンドストップフィルタを表す関数であり、F[P(t)]は時系列データ121つまりP(t)をバンドストップフィルタによって濾波することにより得られる関数であり、F[PGS(t)]は時系列データ122つまりPGS(t)をバンドストップフィルタによって濾波することにより得られる関数であり、F[PGW(t)]は時系列データ123つまりPGW(t)をバンドストップフィルタによって濾波することにより得られる関数である。P(t)、PGS(t)又はPGS(t)をX(t)と表し、F[X(t)]のカットオフ周波数fcLに対応する時定数をTとし、カットオフ周波数fcHに対応する時定数をTとすると、F[X(t)]をラプラス変換することによって得られる伝達関数f(s)は次式のように表せる。 Here, in equation (15), F [ ] is a function representing a band-stop filter with a cutoff frequency band of f CL to f CH [Hz], and F [P (t)] is the time-series data 121, that is, P is a function obtained by filtering (t) with a band-stop filter, and F[P GS (t)] is a function obtained by filtering the time series data 122, that is, P GS (t) with a band-stop filter. and F[P GW (t)] is a function obtained by filtering the time series data 123, ie P GW (t), with a bandstop filter. Denote P(t), P GS (t) or P GS (t) as X(t), let T L be the time constant corresponding to the cutoff frequency f cL of F[X(t)], and let the cutoff frequency Assuming that the time constant corresponding to f cH is T H , the transfer function f(s) obtained by Laplace transforming F[X(t)] can be expressed as follows.

Figure 0007321780000011
Figure 0007321780000011

Figure 0007321780000012
Figure 0007321780000012

上記の式(15)について詳細に説明する。
時刻tにおける各負荷53の消費電力の総和L(t)を計測器59,69,79の計測値P(t),PGS(t),PGW(t)によって表すと式(7)の通りとなる。
The above formula (15) will be explained in detail.
If the sum L(t) of the power consumption of each load 53 at time t is represented by the measured values P(t), P GS (t), and P GW (t) of the measuring devices 59, 69, and 79, the following equation (7) can be obtained. becomes the street.

Figure 0007321780000013
Figure 0007321780000013

ところで、太陽光発電設備54が増設されると、各太陽光発電設備54の発電出力の総和が増大するため、太陽光発電設備54の増設は、その総和の時間的変化の長周期成分として表れる。風力発電設備55の増設は各風力発電設備55の発電出力の総和の時間的変化の長周期成分として表れる。一方、天候は刻々と変化するものであり、雲の動きは各太陽光発電設備54の発電出力の総和の時間的変化の短周期成分として表れる。また、風速の変化は各風力発電設備55の発電出力の総和の時間的変化の短周期成分として表れる。そのような長周期成分及び短周期成分を反映させるために、バンドストップフィルタを用いる。 By the way, when the photovoltaic power generation equipment 54 is added, the total power output of each photovoltaic power generation equipment 54 increases. . The expansion of the wind power generation equipment 55 appears as a long-period component of the temporal change in the total power output of each wind power generation equipment 55 . On the other hand, the weather changes from moment to moment, and the movement of clouds appears as a short-period component of temporal changes in the total power output of each photovoltaic power generation facility 54 . A change in wind speed appears as a short-period component of a temporal change in the total power output of each wind power generation facility 55 . A bandstop filter is used to reflect such long and short period components.

一方、一日の周期では、太陽が昇っている時間に需用者の社会生活が営まれるため、太陽が昇っている時間では電力需要が大きく、太陽が沈んでいる時間では電力需要が小さい。従って、一日の周期では、各負荷53の消費電力の総和が各太陽光発電設備54の発電出力の総和と同じように変化するため、各負荷53の消費電力の総和と各太陽光発電設備54の発電出力の総和は相関性がある。同様に、一日の周期では、各負荷53の消費電力の総和が各風力発電設備55の発電出力の総和と同じように変化する。このような一日の周期の成分を除去するため、バンドストップフィルタを用いる。 On the other hand, in the cycle of one day, consumers conduct social life when the sun is rising, so power demand is high when the sun is rising and low when the sun is setting. Therefore, in a cycle of one day, the total power consumption of each load 53 changes in the same manner as the total power output of each photovoltaic power generation facility 54. The sum of the 54 power generation outputs is correlated. Similarly, the total power consumption of each load 53 changes in the same manner as the total power output of each wind turbine generator 55 in a cycle of one day. A bandstop filter is used to remove such daily cycle components.

式(7)をバンドストップフィルタによって濾波すると、中周期成分、つまりL(t)が除去される。そのため、式(7)をバンドストップフィルタによって濾波した上で、最小二乗法を用いて係数K,Kを算出するために使用する誤差関数Eは次式(17)のように表せる。 Filtering equation (7) with a bandstop filter removes the mid-period component, ie, L(t). Therefore, the error function E used to calculate the coefficients K S and K W using the method of least squares after filtering the equation (7) with a bandstop filter can be expressed as the following equation (17).

Figure 0007321780000014
Figure 0007321780000014

誤差が最小となるKとKを求めると、次式のように表せる。 K S and K W that minimize the error can be expressed as follows.

Figure 0007321780000015
Figure 0007321780000015

以上の式(18),(19)から行列方程式(15)が求まる。 A matrix equation (15) is obtained from the above equations (18) and (19).

(3) 電力推定処理
コンピューター11は、式(12)のように、所定時刻Tにおける第1計測器69の計測値からその時刻Tにおける各太陽光発電設備54の発電出力の総和を推定する。コンピューター11は、式(13)のように、所定時刻Tにおける第2計測器79の計測値からその時刻Tにおける各風力発電設備55の発電出力の総和を推定する。コンピューター11は、式(14)のように、所定時刻Tにおける計測器59,69,79の計測値からその時刻Tにおける負荷53の消費電力の総和を推定する。
(3) Power Estimation Processing The computer 11 estimates the total power output of each photovoltaic power generation facility 54 at the time T from the measurement value of the first measuring device 69 at the predetermined time T, as shown in Equation (12). The computer 11 estimates the total power output of each wind turbine generator 55 at a predetermined time T from the measured value of the second measuring device 79 at the predetermined time T, as shown in Equation (13). The computer 11 estimates the total power consumption of the load 53 at the time T from the measured values of the measuring instruments 59, 69, 79 at the predetermined time T, as shown in Equation (14).

Figure 0007321780000016
Figure 0007321780000016

(4) 記録処理
コンピューター11は、各太陽光発電設備54の発電出力の総和の推定値P(T)、各風力発電設備55の発電出力の総和の推定値P(T)、負荷53の消費電力の総和の推定値L(T)を記憶部12に記録する。なお、コンピューター11は、それらの推定値をディスプレイに表示させてもよい。
(4) Record processing The computer 11 stores the estimated value P S (T) of the total power output of each solar power generation facility 54, the estimated value P W (T) of the total power output of each wind power generation facility 55, and the load 53 The estimated value L(T) of the total power consumption of is recorded in the storage unit 12 . The computer 11 may display these estimated values on the display.

3.有利な効果
及びKは計測器59,69,79の計測値の時系列から推定されたものである。そのため、各太陽光発電設備54及び各風力発電設備55の調査及び集計を行わずとも済む。よって、各太陽光発電設備54及び各風力発電設備55に計測器を設置せずとも、各負荷53の消費電力の総和を低コストで推定することができる。
3. Beneficial Effects K S and K W are estimated from the time series of the measurements of the instruments 59 , 69 , 79 . Therefore, it is not necessary to investigate and tabulate each photovoltaic power generation facility 54 and each wind power generation facility 55 . Therefore, the total power consumption of each load 53 can be estimated at low cost without installing a measuring instrument in each solar power generation facility 54 and each wind power generation facility 55 .

また、バンドストップフィルタを用いたので、各負荷53の消費電力の総和と各太陽光発電設備54の発電出力の総和は相関性があっても、K及びKを正確に推定することができる。また、刻々変化する天候や発電設備53,54の増減に対応して、K及びKを正確に推定することができる。 In addition, since the bandstop filter is used, even if there is a correlation between the total power consumption of each load 53 and the total power output of each photovoltaic power generation equipment 54, K S and K W can be accurately estimated. can. In addition, K S and K W can be accurately estimated in response to ever-changing weather and changes in the number of power generation facilities 53 and 54 .

〔変形例〕
上記各実施形態では、系統電源51から電力が供給される電力系統50の数が1であった。それに対して、系統電源51から電力が供給される電力系統50の数が複数であり、各電力系統50の送電線が保護機器を介して変電所内の母線52に接続されていてもよい。この場合、第3計測器59の数も複数であり、第3計測器59が各電力系統50の送電線(特に母線52の出力部に近傍部分)に接続されている。そして、上述の説明におけるPは各第3計測器59によって計測された潮流電力の値の総和であり、P(T)は各第3計測器59によって所定時刻Tに計測された潮流電力の値の総和である。
[Modification]
In each of the above embodiments, the number of electric power systems 50 to which electric power is supplied from the system power supply 51 is one. On the other hand, there may be a plurality of power systems 50 to which power is supplied from the system power supply 51, and the transmission line of each power system 50 may be connected to the bus 52 in the substation via a protective device. In this case, the number of the third measuring instruments 59 is also plural, and the third measuring instruments 59 are connected to the transmission line of each electric power system 50 (especially the portion near the output of the bus 52). In the above description, P is the sum of the tidal power values measured by each third measuring device 59, and P(T) is the tidal power value measured by each third measuring device 59 at a predetermined time T. is the sum of

1,101,201…消費電力推定システム
11…コンピューター
12…記憶部
50…電力系統
51…系統電源
53…負荷
54…太陽光発電設備
55…風力発電設備
59…第3計測器
60…計測用太陽光発電設備
69…第1計測器
70…計測用風力発電設備
79…第2計測器
121…時系列データ(第3時系列データ)
122…時系列データ(第1時系列データ)
123…時系列データ(第2時系列データ)
DESCRIPTION OF SYMBOLS 1, 101, 201... Power consumption estimation system 11... Computer 12... Storage part 50... Power system 51... System power supply 53... Load 54... Photovoltaic power generation equipment 55... Wind power generation equipment 59... Third measuring instrument 60... Solar for measurement Optical power generation equipment 69 First measuring instrument 70 Measurement wind power generation equipment 79 Second measuring instrument 121 Time-series data (third time-series data)
122... Time-series data (first time-series data)
123... Time-series data (second time-series data)

Claims (6)

系統電源、複数の太陽光発電設備及び複数の風力発電設備から電力が電力系統に供給され、前記電力系統から電力が供給される各負荷の消費電力の総和を推定する消費電力推定システムであって、
計測用太陽光発電設備と、
前記計測用太陽光発電設備の発電出力を計測する第1計測器と、
計測用風力発電設備と、
前記計測用風力発電設備の発電出力を計測する第2計測器と、
前記系統電源から前記電力系統に供給される電力を計測する第3計測器と、
前記複数の太陽光発電設備の発電出力の総和を推定する際に用いる第1係数を推定し、前記複数の風力発電設備の発電出力の総和を推定する際に用いる第2係数を推定し、前記第1計測器の計測値と前記第1係数を乗じた積と、前記第2計測器の計測値と前記第2係数を乗じた積と、前記第3計測器の計測値とを総和して、その総和を前記各負荷の消費電力の総和として推定する推定手段を有するコンピューターと、
を備える消費電力推定システム。
A power consumption estimation system for estimating the total power consumption of each load supplied with power from a grid power supply, a plurality of photovoltaic power generation facilities, and a plurality of wind power generation facilities to a power grid, wherein the power is supplied from the power grid. ,
measurement photovoltaic power generation equipment;
a first measuring instrument for measuring the power output of the measuring photovoltaic power generation equipment;
instrumentation wind power generation equipment;
a second measuring instrument for measuring the power output of the measuring wind power generation equipment;
a third measuring instrument for measuring power supplied from the system power supply to the power system;
estimating a first coefficient used when estimating the sum of the power output of the plurality of solar power generation facilities, estimating a second coefficient used when estimating the sum of the power output of the plurality of wind power generation facilities, Summing the product obtained by multiplying the measured value of the first measuring device by the first coefficient, the product of multiplying the measured value of the second measuring device by the second coefficient, and the measured value of the third measuring device , a computer having estimation means for estimating the sum as the sum of the power consumption of each of the loads;
A power consumption estimation system comprising:
前記推定手段は、前記第1計測器、前記第2計測器及び前記第3計測器の計測値の時系列に対して所定の処理を行った上で、最小二乗法を用いて前記第1係数及び前記第2係数を推定する
請求項1に記載の消費電力推定システム。
The estimating means performs a predetermined process on the time series of the measured values of the first measuring device, the second measuring device, and the third measuring device, and then uses the least squares method to calculate the first coefficient and estimating the second coefficient
The power consumption estimation system according to claim 1.
前記コンピューターが、
前記第1計測器の計測値と計測時刻とを対応付けて記憶部に記録することを繰り返し実行することによって、それら計測値と計測時刻を時系列で配列した第1時系列データを前記記憶部に蓄積する第1蓄積手段と、
前記第2計測器の計測値と計測時刻とを対応付けて前記記憶部に記録することを繰り返し実行することによって、それら計測値と計測時刻を時系列で配列した第2時系列データを前記記憶部に蓄積する第2蓄積手段と、
前記第3計測器の計測値と計測時刻とを対応付けて前記記憶部に記録することを繰り返し実行することによって、それら計測値と計測時刻を時系列で配列した第3時系列データを前記記憶部に蓄積する第3蓄積手段と、
前記第1時系列データ、前記第2時系列データ及び前記第3時系列データの計測値の時間平均を算出し、それらの時間平均から前記第1係数及び前記第2係数を算出する係数算出手段と、を有する
請求項1に記載の消費電力推定システム。
The computer
By repeatedly executing the recording of the measured values of the first measuring device and the measurement times in association with each other in the storage unit, first time-series data in which the measured values and the measurement times are arranged in time series is stored in the storage unit. a first accumulation means for accumulating in
The second time-series data in which the measured values and the measured times are arranged in chronological order is stored in the memory by repeatedly executing the recording of the measured values and the measured times of the second measuring device in association with each other in the storage unit. a second accumulating means for accumulating in the unit;
By repeatedly executing the recording of the measured values of the third measuring device and the measured times in association with each other in the storage unit, the third time-series data in which the measured values and the measured times are arranged in time series is stored in the storage. a third accumulating means for accumulating in the unit;
Coefficient calculating means for calculating time averages of measured values of the first time-series data, the second time-series data, and the third time-series data, and calculating the first coefficient and the second coefficient from the time averages and , the power consumption estimation system according to claim 1 .
前記係数算出手段が、次式に従って前記第1係数及び前記第2係数を算出する請求項3に記載の消費電力推定システム。
但し、KSは前記第1係数であり、KWは前記第2係数であり、L0は定数であり、PGS(t)は前記第1時系列データの計測値を計測時刻tにより表した関数であり、PGW(t)は前記第2時系列データの計測値を計測時刻tにより表した関数であり、P(t)は前記第3時系列データの計測値を計測時刻tにより表した関数であり、オーバーラインは時間平均を表す。
4. The power consumption estimation system according to claim 3, wherein said coefficient calculation means calculates said first coefficient and said second coefficient according to the following equation.
However, KS is the first coefficient, KW is the second coefficient, L0 is a constant, and PGS (t) is a function that represents the measured value of the first time-series data by the measurement time t. , PGW(t) is a function that represents the measured value of the second time-series data by the measurement time t, and P(t) is a function that represents the measured value of the third time-series data by the measurement time t. , overlines represent time averages.
前記コンピューターが、
前記第1計測器の計測値と計測時刻とを対応付けて記憶部に記録することを繰り返し実
行することによって、それら計測値と計測時刻を時系列で配列した第1時系列データを前記記憶部に蓄積する第1蓄積手段と、
前記第2計測器の計測値と計測時刻とを対応付けて前記記憶部に記録することを繰り返し実行することによって、それら計測値と計測時刻を時系列で配列した第2時系列データを前記記憶部に蓄積する第2蓄積手段と、
前記第3計測器の計測値と計測時刻とを対応付けて前記記憶部に記録することを繰り返し実行することによって、それら計測値と計測時刻を時系列で配列した第3時系列データを前記記憶部に蓄積する第3蓄積手段と、
前記第1時系列データ、前記第2時系列データ及び前記第3時系列データをバンドストップフィルタにより濾波することによって前記第1係数及び前記第2係数を算出する係数算出手段と、を有する
請求項1に記載の消費電力推定システム。
The computer
By repeatedly executing the recording of the measured values of the first measuring device and the measurement times in association with each other in the storage unit, first time-series data in which the measured values and the measurement times are arranged in time series is stored in the storage unit. a first accumulation means for accumulating in
The second time-series data in which the measured values and the measured times are arranged in chronological order is stored in the memory by repeatedly executing the recording of the measured values and the measured times of the second measuring device in association with each other in the storage unit. a second accumulating means for accumulating in the unit;
By repeatedly executing the recording of the measured values of the third measuring device and the measured times in association with each other in the storage unit, the third time-series data in which the measured values and the measured times are arranged in time series is stored in the storage. a third accumulating means for accumulating in the unit;
and coefficient calculating means for calculating the first coefficient and the second coefficient by filtering the first time series data, the second time series data and the third time series data with a bandstop filter. 2. The power consumption estimation system according to 1.
前記係数算出手段が、次式に従って前記第1係数及び前記第2係数を算出する請求項5に記載の消費電力推定システム。
但し、KSは前記第1係数であり、KWは前記第2係数であり、PGS(t)は前記第1時系列データの計測値を計測時刻tにより表した関数であり、PGW(t)は前記第2時系列データの計測値を計測時刻tにより表した関数であり、P(t)は前記第3時系列データの計測値を計測時刻tにより表した関数であり、F[PGS(t)]はPGS(t)を前記バンドストップフィルタによって濾波することにより得られる関数であり、F[PGW(t)]はPGW(t)を前記バンドストップフィルタによって濾波することにより得られる関数であり、F[P(t)]はP(t)を前記バンドストップフィルタによって濾波することにより得られる関数であり、P(t)、PGS(t)又はPGS(t)をX(t)とし、前記バンドストップフィルタの遮断周波数帯域をfCL~fCH[Hz]とした場合、F[X(t)]をラプラス変換することによって得られる伝達関数f(s)は次式の通りである。
6. The power consumption estimation system according to claim 5, wherein said coefficient calculation means calculates said first coefficient and said second coefficient according to the following equation.
However, KS is the first coefficient, KW is the second coefficient, PGS (t) is a function representing the measured value of the first time-series data by the measurement time t, and PGW (t) is A function representing the measured value of the second time-series data by the measurement time t, P(t) is a function representing the measured value of the third time-series data by the measurement time t, F[PGS(t )] is the function obtained by filtering PGS(t) with said bandstop filter, and F[PGW(t)] is the function obtained by filtering PGW(t) with said bandstop filter. , F[P(t)] is the function obtained by filtering P(t) by said bandstop filter, let P(t), PGS(t) or PGS(t) be X(t), When the cutoff frequency band of the band-stop filter is fCL to fCH [Hz], the transfer function f(s) obtained by Laplace transforming F[X(t)] is as follows.
JP2019104766A 2019-06-04 2019-06-04 Power consumption estimation system Active JP7321780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019104766A JP7321780B2 (en) 2019-06-04 2019-06-04 Power consumption estimation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019104766A JP7321780B2 (en) 2019-06-04 2019-06-04 Power consumption estimation system

Publications (2)

Publication Number Publication Date
JP2020198740A JP2020198740A (en) 2020-12-10
JP7321780B2 true JP7321780B2 (en) 2023-08-07

Family

ID=73649459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019104766A Active JP7321780B2 (en) 2019-06-04 2019-06-04 Power consumption estimation system

Country Status (1)

Country Link
JP (1) JP7321780B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059986A (en) 2004-08-19 2006-03-02 Mitsubishi Electric Corp Method for monitoring natural-energy use electric power generation
JP2006060885A (en) 2004-08-18 2006-03-02 Mitsubishi Electric Corp Power distribution system supervisory control system
JP2009050064A (en) 2007-08-17 2009-03-05 Hitachi Ltd Distribution system status estimating device
JP2011239488A (en) 2010-05-06 2011-11-24 Hitachi Ltd Distributed power supply output estimation system, total demand power estimation system, power alarm system, distributed power supply output estimation apparatus, total demand power estimation apparatus, power recording apparatus, and power alarm apparatus
JP2013165176A (en) 2012-02-10 2013-08-22 Hitachi Ltd System, device, and method for estimating photovoltaic power generation
JP2013232147A (en) 2012-05-01 2013-11-14 Tokyo Electric Power Co Inc:The Generated power estimation device, generated power estimation method, and generated power estimation program
JP2014082868A (en) 2012-10-16 2014-05-08 Central Research Institute Of Electric Power Industry Variation estimation method for total output of natural-energy distributed power source group, variation estimation apparatus and variation estimation program
WO2014129045A1 (en) 2013-02-19 2014-08-28 日本電気株式会社 Power flow control system and power flow control method
JP2015153368A (en) 2014-02-19 2015-08-24 シャープ株式会社 State detection device, state detection method, state detection program, data processing system and data output device
WO2017090152A1 (en) 2015-11-26 2017-06-01 三菱電機株式会社 Electricity distribution system management device, electricity distribution system management system, and electricity generation amount estimation method
WO2017203610A1 (en) 2016-05-24 2017-11-30 三菱電機株式会社 Electric power generation amount estimating device, electric power distribution system, and electric power generation amount estimating method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060885A (en) 2004-08-18 2006-03-02 Mitsubishi Electric Corp Power distribution system supervisory control system
JP2006059986A (en) 2004-08-19 2006-03-02 Mitsubishi Electric Corp Method for monitoring natural-energy use electric power generation
JP2009050064A (en) 2007-08-17 2009-03-05 Hitachi Ltd Distribution system status estimating device
JP2011239488A (en) 2010-05-06 2011-11-24 Hitachi Ltd Distributed power supply output estimation system, total demand power estimation system, power alarm system, distributed power supply output estimation apparatus, total demand power estimation apparatus, power recording apparatus, and power alarm apparatus
JP2013165176A (en) 2012-02-10 2013-08-22 Hitachi Ltd System, device, and method for estimating photovoltaic power generation
JP2013232147A (en) 2012-05-01 2013-11-14 Tokyo Electric Power Co Inc:The Generated power estimation device, generated power estimation method, and generated power estimation program
JP2014082868A (en) 2012-10-16 2014-05-08 Central Research Institute Of Electric Power Industry Variation estimation method for total output of natural-energy distributed power source group, variation estimation apparatus and variation estimation program
WO2014129045A1 (en) 2013-02-19 2014-08-28 日本電気株式会社 Power flow control system and power flow control method
JP2015153368A (en) 2014-02-19 2015-08-24 シャープ株式会社 State detection device, state detection method, state detection program, data processing system and data output device
WO2017090152A1 (en) 2015-11-26 2017-06-01 三菱電機株式会社 Electricity distribution system management device, electricity distribution system management system, and electricity generation amount estimation method
WO2017203610A1 (en) 2016-05-24 2017-11-30 三菱電機株式会社 Electric power generation amount estimating device, electric power distribution system, and electric power generation amount estimating method

Also Published As

Publication number Publication date
JP2020198740A (en) 2020-12-10

Similar Documents

Publication Publication Date Title
Wang et al. An alternative method for power system dynamic state estimation based on unscented transform
US10396710B2 (en) Monitoring and evaluating performance and aging of solar photovoltaic generation systems and power inverters
Cross et al. Nonlinear system identification for model-based condition monitoring of wind turbines
JPWO2015079554A1 (en) Power system state estimation device, state estimation method thereof, and power system control system
JP6287306B2 (en) Power estimation apparatus, power estimation method, and program
US20150168465A1 (en) Method and apparatus for electric power system distribution state estimations
JP6032486B2 (en) Power management system and power management method
JP2018011494A (en) Device and method for estimating photovoltaic power generation output
JP2010130762A (en) Electric power supply system containing natural energy generating apparatus and supply/demand adjusting method
JP2015094752A (en) Transformer connection phase determination device, method, and program
Deline et al. Use conditions and efficiency measurements of DC power optimizers for photovoltaic systems
CA2776255A1 (en) Phase angle drift detection method for loss of mains /grid protection
JP6489846B2 (en) Photovoltaic power output estimation device, solar power output estimation system, and solar power output estimation method
Zhang et al. Quantitative frequency security assessment method considering cumulative effect and its applications in frequency control
JP5565193B2 (en) Load prediction method for distribution section and distribution system control system
CN103984986A (en) Method for correcting wind power ultra-short-period prediction of self-learning ARMA model in real time
JP2009055713A (en) Power fluctuation prediction system
JP7321780B2 (en) Power consumption estimation system
CN109149566A (en) A kind of modeling method of the simulation model of the high-power minimum point prediction of missing lower frequency
Choi et al. Development of the ELDC and reliability evaluation of composite power system using Monte Carlo method
JP2021027775A (en) Power generation control system and power generation control method
JP5946742B2 (en) Fluctuation estimation method, fluctuation estimation apparatus and fluctuation estimation program for total output of natural energy type distributed power supply group
KR101932286B1 (en) Method and apparatus for assessing voltage sag considering wind power generation
JP6547374B2 (en) Power estimation apparatus and power estimation method
JP7300893B2 (en) Solar power generation output estimation device, solar power generation output estimation method, and solar power generation output estimation program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230726

R150 Certificate of patent or registration of utility model

Ref document number: 7321780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150