JP2013097277A - フィルム露光装置 - Google Patents

フィルム露光装置 Download PDF

Info

Publication number
JP2013097277A
JP2013097277A JP2011241687A JP2011241687A JP2013097277A JP 2013097277 A JP2013097277 A JP 2013097277A JP 2011241687 A JP2011241687 A JP 2011241687A JP 2011241687 A JP2011241687 A JP 2011241687A JP 2013097277 A JP2013097277 A JP 2013097277A
Authority
JP
Japan
Prior art keywords
film
light
exposure
inspection
polarizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011241687A
Other languages
English (en)
Inventor
Kazushige Hashimoto
和重 橋本
Toshinari Arai
敏成 新井
Takayuki Sato
敬行 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V Technology Co Ltd
Original Assignee
V Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V Technology Co Ltd filed Critical V Technology Co Ltd
Priority to JP2011241687A priority Critical patent/JP2013097277A/ja
Priority to PCT/JP2012/073318 priority patent/WO2013039100A1/ja
Priority to TW101133763A priority patent/TW201314384A/zh
Publication of JP2013097277A publication Critical patent/JP2013097277A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)

Abstract

【課題】フィルムが移動してフィルム露光工程が進行している時に、既に露光された部分の偏光部の幅及び位置と、偏光部の偏光方向とを検査することができ、薄いフィルムの上下振動による検査精度の低下が防止された検査部を有するフィルム露光装置を提供する。
【解決手段】露光後のフィルム11は、そのまま、検査部のロール20に送給され、このロール20に巻き架けられる。ロール20には、その周面に、ロール軸方向に延びる溝20aが形成されており、この溝20a内に、ロール軸方向に延びる棒状の検査用照明光源21と偏光板22が配置されている。このロール20のロール軸の直上域には、照明光を検知する検査用カメラ25と、λ/4板23と、偏光板24とが配置されている。ロール20の溝20aがロール上端に回動してきたときに、光源21とカメラ25とが鉛直の光軸上にて正対し、フィルム11の偏光部の検査が可能となる。
【選択図】図2

Description

本発明は、FPR(Film Patterned Retarder(フィルム・パターンド・リターダー))方式、即ちフィルム偏光方式の3次元(3D)映像表示装置に使用される偏光フィルム又は光配向膜等の形成に使用されるフィルム露光装置に関し、特に、露光後の偏光部又は配向部の線幅及び特性等を、露光直後に検査する検査部を備えたフィルム露光装置に関する。
FPR方式の3D技術においては、液晶表示装置等の表示装置の画面に、走査線1ライン毎に光線の方向を変える偏光フィルムを張り、表示装置が、走査線1ライン毎に右目用と左目用の画像を表示すると共に、偏光メガネに張られた偏光フィルムが右目用のものが右目に入射させるべき光のみを通過させ、左目用のものが左目に入射させるべき光のみを通過させることにより、右目及び左目に入射した画像に視差を生じさせて、立体表示を可能とする。
図18は、FPR方式の偏光フィルム1を示す模式図である。この偏光フィルム1は、表示装置の水平の1走査線に対応する幅を持つ帯状の左目用の偏光部1aと、同じく表示装置の水平の1走査線に対応する幅を持つ帯状の右目用の偏光部1bとが、垂直方向に交互に配置されるようにして、透明の基材上に塗布されている。左目用の偏光部1aは−45°の直線偏光を有するか、又は時計方向に偏光するCW(clockwise)円方向偏光を有する。一方、右目用の偏光部1bは+45°の直線偏光を有するか、又は反時計方向に偏光するCCW(counter clockwise)円方向偏光を有するものである。そして、この偏光フィルム1を、その偏光部1a及び偏光部1bを夫々液晶表示装置の走査線に対応させ、左目用偏光部1aが液晶表示装置の左目用信号の走査線に一致し、右目用偏光部1bが液晶表示装置の右目用信号の走査線に一致するようにして、液晶表示装置の画面に貼り付ける。そうすると、液晶表示装置の画面の左目用走査線から出射した表示光は、偏光フィルム1の左目用偏光部1aを透過し、偏光メガネの左目用レンズに張られた左目用偏光フィルムを透過して左目に入射し、液晶表示装置の画面の右目用走査線から出射した表示光は、偏光フィルム1の右目用偏光部1bを透過し、偏光メガネの右目用レンズに張られた右目用偏光フィルムを透過して右目に入射する。これにより、右目と左目とは、視差をもつ画像を見ることができ、立体的な画像を視認することができる。
図19は、この従来の偏光フィルム1の露光装置を示す模式図である。透明のフィルム基材の表面に配向材料が塗布されたフィルム10が、ロール100から巻き解かれ、ロール102,103を介してその移動軌跡が規制されて露光光源104,105の配設位置の近傍を通過し、ロール101に巻き取られる。このロール102,103間において、フィルム10は水平に進行し、このフィルム10の水平移動域の上方に、この移動方向に沿ってスリットマスク106,107が配置され、これらのスリットマスク106,107の上方に露光光源104,105が配置されていて、露光光源104,105からの露光光がスリットマスク106,107を介してフィルム10の表面の配向材料膜に照射される。スリットマスク106,107の一端部の上方、即ち、露光光源104,105の側方には、アライメントマークを観察するためのカメラ108,109が設置されている。フィルム移動方向におけるスリットマスク106の上流側には、フィルム10の側部にアライメントマークを形成するためのレーザマーカ110が設置されている。
この従来の露光装置においては、図20に示すように、ロール102,103間を移動するフィルム10に対して、レーザマーカ110により、フィルム10の側部にアライメント用のマーク111を形成し、カメラ108がスリットマスク106の一端部に設けられた開口106bからマーク111を観察し、このマーク111に対するスリットマスク106のフィルム移動方向に垂直方向の位置を調整する。また、スリットマスク107においても、カメラ109がスリットマスク107の一端部に設けられた開口107bからマーク111を観察し、スリットマスク107のフィルム移動方向に垂直方向の位置を調整する。その上で、露光光源104からの露光光がスリットマスク106のスリット106aを透過してフィルム10の表面の配向材料膜に照射され、フィルム10は白抜き矢印にて示す方向に連続的に搬送されているので、配向膜に同一の方向に配向した帯状の偏光部1aが形成される。また、露光光源105からの露光光がスリットマスク107のスリット107aを透過してフィルム10の表面の配向材料膜に照射され、偏光部1a間に偏光部1bが形成される。この帯状の偏光部1a、1bは、走査線1ライン分に相当する間隔を有して相互に離隔しており、相互に異なる方向に配向した偏光部を形成している。これにより、図18に示すように、隣接する帯状の偏光部間で配向方向が90°異なる偏光フィルム1を製造することができる。
なお、液晶表示装置に使用される光学フィルム等の製造方法に関し、特許文献1及び2がある。
従来、上述のようにして、フィルムに露光して、偏光膜又は配向膜を形成するフィルム露光装置において、従来、フィルム製造時の露光品質の検査は、フィルム完成後に行われている。図20に示すように、2個のスリットマスク106,107を使用したフィルム露光においては、帯状の偏光部1a、1bの露光線幅と、偏光方向との確認は、フィルム10の全長に対する露光処理が終了して、一連のフィルム露光工程が終了した後、製品に対する検査として、露光線幅及び偏光方向を検査している。
また、図21に示すように、例えば、偏光部1aを形成するためのスリットマスク106が2個の小型のスリットマスク6−1,6−2をつなぎ合わせることにより構成されている場合、スリットマスク6−1,6−2間の継ぎ部の確認も必要であるが、これも、製品に対する検査として実施している。
特開2010−250172号公報 特開2007−114563号公報
しかしながら、上述の従来技術においては、偏光フィルム及び配向フィルムの完成後に、製品検査で、露光線幅、偏光方向の確認及びマスク継ぎ部の確認を行っているので、仮に、それらの品質に問題が発見された場合には、その製品ロット全体が不良品となり、製品ロット全体を廃棄せざるを得ず、歩留が悪いという問題点がある、
従来の図19に示すフィルム露光装置において、露光直後に露光線幅等の検査を実施しようとすると、図22に示すように、ロール102,103間に掛け渡され、矢印方向に移動する露光後のフィルム11に対し、例えば、その下方に配置された検査用照明光源123から照明光を出射し、この照明光を、例えば、水平方向の偏光板122を介してフィルム11に照射し、フィルム11を透過した照明光を、λ/4板122及び垂直方向の偏光板121を介して検査用カメラ120に入射させる。これにより、検査用カメラ120が偏光部1a、1bを撮像し、偏光部1a、1bの幅(線幅)及び位置(継ぎ位置)と、偏光方向とを確認することができる。
しかし、この場合は、露光後のフィルム11は、ロール102,103間に掛け渡されて移動している間に、偏光方向を持つ照明光により検査されるので、フィルム11には上下方向の振動があり、このため、偏光部1a、1bの幅及び位置(継ぎ位置)と、その偏光方向を高精度で検知することは困難である。
本発明はかかる問題点に鑑みてなされたものであって、フィルムが移動してフィルム露光工程が進行している時に、既に露光された部分の偏光部の幅及び位置と、偏光部の偏光方向とを検査することができ、薄いフィルムの上下振動による検査精度の低下が防止された検査部を有するフィルム露光装置を提供することを目的とする。
本発明に係るフィルム露光装置は、
フィルムを一方向に移動させている間に、前記フィルムに露光するフィルム露光装置において、前記フィルムに露光光を照射する露光部と、前記フィルムの移動方向における前記露光部の下流側に配置され前記フィルムにおける露光光の照射部を検査する検査部と、を有し、
前記検査部は、露光後の前記フィルムを巻きかけると共に前記フィルムと共に回転するロールと、前記ロールの周面又は前記ロールの内部に設置され検査用の照明光を出射する光源と、前記ロールに対向するように設置され前記フィルムを透過後の照明光を検出する受光部と、を有することを特徴とする。
この場合に、例えば、前記露光部は、前記フィルムの上の配向膜に露光することにより、帯状の第1の偏光部と、帯状の第2の偏光部とを、フィルムの幅方向に交互に形成して、偏光フィルムを形成するものであり、
前記検査部は、前記ロールに設置され、前記光源からの照明光に対して第1の方向に偏光を付与する第1の偏光板と、前記ロールに対向するように設置され、前記受光部に入射する光に対して前記第1の方向に直交する方向に偏光を付与する第2の偏光板と、前記照明光の光軸に設けられたλ/4板と、を有することを特徴とする。
そして、例えば、前記露光部は、CW円偏光の露光光を前記フィルムに照射する露光光源により前記第1の偏光部を形成し、CCW円偏光の露光光を前記フィルムに照射する露光光源により前記第2の偏光部を形成するものである。
又は、例えば、前記露光部は、前記フィルム上の配向膜に露光することにより、帯状の第1の配向部と、帯状の第2の配向部とを、フィルムの幅方向に交互に形成して、配向フィルムを形成するものであり、
前記検査部の前記受光部は、前記フィルムを透過した照明光の第1の配向部による第1の配向方向に設けられた第1の受光部と、前記フィルムを透過した照明光の第2の配向部による第2の配向方向に設けられた第2の受光部とから構成されていることを特徴とする。
そして、例えば、前記露光部は、フィルムに対してフィルム移動方向に40°傾斜するように露光光を入射する露光光源により前記第1の配向部を形成し、フィルムに対してフィルム移動方向に−40°傾斜するように露光光を入射する露光光源により前記第2の配向部を形成するものである。
本発明のフィルム露光装置において、例えば、前記ロールには、その周面に軸方向に延びる溝が形成されており、前記光源は、前記溝内に配置されているか、又は前記ロールは、透明材料により形成されており、前記光源は、前記ロール内に埋設されているように構成することができる。
本発明の露光装置において、例えば、
前記フィルムの幅方向に延び、前記フィルム上の前記第1の偏光部又は第2の偏光部の幅方向にスケールが形成された透明のスケール部材を、
前記受光部の光軸上に配置することができる。
これにより、前記第1の偏光部又は第2の偏光部の幅を前記スケール部材により測定することができる。
また、本発明において、前記検査部による検査前又は検査後の前記フィルムの搬送域に配置された第2の検査部を設けることができる。
この第2の検査部は、
検査光を出射する第2の光源と、前記第2の光源からの検査光に対して第1の方向の直線偏光を付与する第3の偏光板と、前記第2の偏光板を透過し更に前記フィルムを透過して第1の方向の円偏光を付与された検査光を第2の方向の直線偏光に変える第2のλ/4板と、前記第2の方向の直線偏光の検査光を透過する第4の偏光板と、前記第4の偏光板を透過した検査光を検出する第2の受光部と、
検査光を出射する第3の光源と、前記第3の光源からの検査光に対して第1又は第2の方向の直線偏光を付与する第5の偏光板と、前記第3の偏光板を透過し更に前記フィルムを透過して第2の方向の円偏光を付与された検査光を第2又は第1の方向の直線偏光に変える第3のλ/4板と、前記第2又は第1の方向の直線偏光の検査光を透過する第6の偏光板と、前記第6の偏光板を透過した検査光を検出する第3の受光部と、
を有する。
本発明によれば、フィルムが移動している間に、このフィルムに露光がされると共に、このフィルムの移動の間に露光後のフィルムがロールに巻きかけられ、ロールの内部に配置された光源から、検査用の照明光が出射され、露光後のフィルムはロールに巻きかけられた状態で照明光の照射を受ける。そして、フィルムを透過した照明光は、ロール外部に配置された受光部に受光され、フィルムが検査される。これにより、ロールの回転と共に、光源が受光部に回動してきたときに、フィルムを透過した照明光が受光部に検知されて、露光品質が検査され、露光後のフィルムは、移動している間に、ロールの周長と同一の間隔で、露光品質が検査される。その結果、露光品質上、問題があれば、問題検出後、直ちに、フィルム露光を中止し、マスク位置の調整等を行った後、フィルム露光を再開することができるので、無駄な露光を回避でき、フィルムの歩留まりを向上させることができる。しかも、本発明においては、ロールに巻きかけられたフィルムに対して、検査を行うので、中空状態のフィルムの振動に起因して検査精度が低下することがなく、高精度で検査することができる。
本発明の第1実施形態のフィルム露光装置の検査部を示す平面図である。 同じくその正面断面図である。 同じく本発明の第1実施形態のフィルム露光装置の露光部を示す模式図である。 同じく、そのバックロール及びスリットマスクの近傍でフィルムを展開して示す図である。 本発明の第2実施形態のフィルム露光装置の検査部を示す正面断面図である。 本発明の第3実施形態のフィルム露光装置の露光部を示す模式図である。 同じく、そのバックロール及びスリットマスクの近傍でフィルムを展開して示す図である。 本発明の第4実施形態のフィルム露光装置の露光部を示す模式図である。 同じく、そのバックロール及びスリットマスクの近傍でフィルムを展開して示す図である。 本発明の第5実施形態のフィルム露光装置の露光部を示す模式図である。 同じく、そのバックロール及びスリットマスクの近傍でフィルムを展開して示す図である。 本発明の第6実施形態のフィルム露光装置の検査部を示す平面図である。 同じく、その正面断面図である。 本発明の第7実施形態のフィルム露光装置の検査部を示す平面図である。 同じく、その正面断面図である。 同じく、その動作説明図である。 偏光方向を示す模式図である。 FPR方式の偏光フィルムを示す模式図である。 従来の偏光フィルムの露光方法を示す模式図である。 同じく、そのスリットマスクによる露光方法を示す平面図である。 同じく小型のスリットマスクを継ぎ合わせたフィルム露光方法を示す平面図である。 露光検査部を示す模式図である。
以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。図1は本発明の実施形態に係るフィルム露光装置の検査部を示す平面図、図2は同じくその正面断面図、図3は同じく本発明の実施形態に係るフィルム露光装置の露光部を示す模式図、図4はバックロール近傍のフィルム10を展開して示す図である。
先ず、図3及び図4を参照して、露光部について説明する。フィルム基材の表面上に、適宜の塗布装置において配向材料が塗布され、この配向材料膜が塗布されたフィルムは、そのまま、バックロール5の配設位置に送給され、又は、図19に示すように一旦ロール100として巻き取られた後、このロール100から巻き解かれて、バックロール5まで送給される。
バックロール5においては、その周面の略半分(下半分)だけフィルム10が巻き架けられ、フィルム10の裏面がバックロール5に接触すると共に、フィルム10の表面、即ち、配向材料膜が外方を向く。このバックロール5を間に挟んで対向するようにして、マスク7、17が配向材料膜に面してフィルム10から若干の距離(200μm程度)をおいて設置されており、更に、このスリットマスク7、17の背後には、露光光源6、16が設置されている。これにより、表面に配向膜が塗布されたフィルム10は、バックロール5の周面に接触し、フィルム10の搬送時の若干の張力によりシワが伸ばされた状態で、バックロール5により支持される。そして、フィルム10を白抜き矢印方向に連続的に搬送し、露光光源6、16から露光光を連続的に照射することにより、この露光光はマスク7、17の開口7a及びスリット17bを透過してフィルム10に照射される。これにより、偏光部が形成された偏光フィルムは、後述する検査部に送られる。
バックロール5は内部を水冷された水冷ロールであり、その中心軸の周りに回転可能になっている。そして、このバックロール5は、自由に回転することができ、フィルム10の移動とともに、その周速度がフィルム10の移動速度と同一になるように回転する。これにより、フィルム10はバックロール5の周面に相対的速度差が存在しない状態で支持される。従って、適宜の張力を印加されて搬送されるフィルム10は、バックロール5の周面上で、シワが発生することが防止される。
バックロール5の周面におけるフィルム10が巻き架けられた部分の始端部の近傍には、このバックロール5に対向するようにして、マスク7が配置されており、このマスク7の背後には、マスク7を介してフィルム10を露光する露光光の光源6が配置されている。また、バックロール5の周面におけるフィルム10が巻き架けられた部分の後端部の近傍には、このバックロール5に対向するようにして、スリットマスク17が配置されており、このスリットマスク17の背後には、スリットマスク17を介してフィルム10を露光する露光光の光源16が配置されている。マスク7は、フィルム10の幅方向に延びてこのフィルム10の幅方向のほぼ全域で開口する開口7aを有し、スリットマスク17には、フィルム10の移動方向に若干長い矩形の複数個のスリット17aが、フィルム10の幅方向に配列されている。このスリット17aの配列ピッチは、FPR方式の3D液晶表示装置に対応して、走査線2ライン分に相当する。
そして、例えば、露光光源6からの露光光は、時計方向に偏光する円偏光(CW(clockwise)円偏光)の光であり、露光光源16からの露光光は、反時計方向に偏光する円偏光(CCW(counter clockwise)円偏光)の光である。白抜き矢印にて示すように、一方向に移動するフィルム10に対して、マスク7の開口7aから露光光源6の露光光をフィルム10に照射することにより、フィルム10にはその両側部の部分を除いて、一面に露光光が照射される。また、スリットマスク17のスリット17aから露光光源16の露光光をフィルム10に照射することにより、このスリット17aに対応するフィルム上の部分が、露光光源16からの露光光により、上書き露光される。
フィルム10の表面上に、露光光の照射により硬化量が変化する露光材料からなる配向材料膜が形成されており、先ず、マスク7の開口7aを介するCW円偏光の露光光により、フィルム10の表面の配向材料膜の全域が所定の第1の硬化量(例えば、50%)になるまで露光される。次いで、スリットマスク17のスリット17aからのCCW円偏光の露光光により、スリット17aに対応する帯状の領域を第1の硬化量より大きな第2の硬化量(例えば、100%)になるまで露光する。そうすると、スリット17aに対応する帯状の露光部分(CCW円偏光)は、配向方向が固定され、偏光部1bとなる。一方、スリット17a間の部分に対応する帯状の部分(CW円偏光)は、硬化量が50%で配向方向が固定されていないが、この部分はその後のポストベーク(乾燥温度より高い温度での熱硬化)により硬化量を100%にすれば、配向方向を固定することができる。
次に、検査部について、図1及び図2を参照して説明する。露光後のフィルム11は、そのまま、検査部のロール20に送給され、このロール20に巻き架けられた後、巻取ローラ101(図19参照)等に巻き取られる。検査部のロール20には、その周面に、ロール軸方向に延びる溝20aが形成されており、この溝20a内に、ロール軸方向に延びる棒状の検査用照明光源21が配置されている。更に、この溝20a内には、この光源21の上方に、ロール軸方向に延びる水平方向の偏光板22が配置されている。フィルム11は、ロール20に対し、少なくともその上部に接触して移動するように巻き架けられており、このロール20のロール軸の直上域には、照明光を検知する検査用カメラ25が配置されている。この検査用カメラ25は、ロール20の軸方向に延びる棒状のラインセンサであるか、又は同じくロール20の軸方向の横長の矩形の2次元領域にて光を検出するエリアセンサである。そして、この検査用カメラと、ロール軸との間には、下方のλ/4板23と上方の垂直方向の偏光板24とが配置されている。ロール20は、その軸の周りに自由に回転可能になっており、フィルム11がロール20に巻き架けられて移動することにより、フィルム11との間の摩擦力により、ロール20はその周速度がフィルム11の移動速度と同一の状態で回転する。そして、ロール20の溝20aがロール上端に回動してきたときに、光源21とカメラ25とが鉛直の光軸上にて正対する。
図17は、直線偏光板22,24と円偏光部1a、1bとλ/4板23とによる光の偏光状態を示す模式図である。図17の上図に示すように、光源60から出射された照明光は、水平方向の偏光板61により水平偏光の光に変換される。この水平偏光の光は、CW円偏光の第1偏光部1aに相当するフィルム部分62aを透過して、CW円偏光に変換される。このCW円偏光光はCW円偏光のλ/4板63を透過すると、垂直偏光の光に変換される。一方、図17の下図に示すように、光源60から出射された照明光が、水平方向の偏光板61により水平偏光の光に変換された後、CCW円偏光の第2偏光部1bに相当するフィルム部分62bを透過すると、CCW円偏光に変換される。このCCW円偏光光は、CW円偏光のλ/4板63を透過すると、水平偏光の光に変換される。
このようにして、フィルム11の第1偏光部1a(CW円偏光部)を透過した光は、垂直偏光光としてλ/4板を出射し、フィルム11の第2偏光部1b(CCW円偏光部)を透過した光は、水平偏光光としてλ/4板を出射する。このため、λ/4板とカメラとの間に、垂直偏光の偏光板を設置すると、フィルム11のCW円偏光部を透過した光がカメラに入射して白色として検出され、フィルム11のCCW円偏光部を透過した光がカメラに入射せず、黒色として検出される。一方、λ/4板とカメラとの間に、水平偏光の偏光板を設置すると、フィルム11のCCW円偏光部を透過した光がカメラに入射して白色として検出され、フィルム11のCW円偏光部を透過した光がカメラに入射せず、黒色として検出される。よって、直線偏光板とλ/4板とを組み合わせることにより、フィルム11上の帯状の偏光部を検出することができる。
次に、上述のごとく構成された本実施形態のフィルム露光装置の動作について説明する。フィルム10は、その表面に配向材料が塗布され、例えば、幅が1500mm、厚さが100μm、1個のロール100のフィルム長は例えば2kmであり、通常、2〜10m/分の速度で搬送される。また、例えば、このフィルム10の材質は、COP(シクロオレフィンポリマー)又はTAC(トリアセチルセルロース)フィルムである。このフィルム10は、バックロール5の配設位置まで送給され、バックロール5に巻き架けられて支持される。そして、フィルム10の配向材料膜は、露光光源6から、マスク7の開口7aを介して、CW円偏光の露光光をフィルム10のほぼ全域に照射され、その後、露光光源16から、スリットマスク17のスリット17aを介して、CCW円偏光の露光光を帯状に照射され、このスリット17aに対応するフィルム10の部分が、CW円偏光の露光部から、CCW円偏光の露光部に上書き露光される。このとき、フィルム10の配向材料膜は、可逆性の配向材料であり、CW円偏光の露光光のほぼフィルム全面の照射により、フィルム10のほぼ全面が例えば50%硬化し、更に、CCW円偏光の露光光の帯状の照射により、このフィルム10における帯状の部分が例えば100%に硬化する。これにより、フィルム10のスリット17aに対応する部分は、CCW円偏光として配向方向が固定され、偏光部1b(図18参照)が形成される。一方、この偏光部1b間の帯状の部分は配向方向が固定されていないが、後工程にて、ポストベークすることにより、100%硬化し、配向方向がCW円偏光として固定され、偏光部1aが形成される。このようにして、偏光部1a、1bが交互に形成され、偏光部1a、1bが走査線1ラインに対応して形成されたFPR方式の偏光フィルムを製造することができる。
この場合に、薄いフィルム10は、バックロール5に支持され、またシワが伸ばされた状態で、スリットマスク17のスリット17aを介して露光がなされるので、フィルムのシワ及び振動が防止されて、高精度で、偏光部1a、1bを形成することができる。また、マスク7を介しての露光は、フィルム幅方向の全域に対してなされるので、マスク7と、スリットマスク17との間の位置合わせが不要であり、位置合わせの不良が存在せず、この点でも、偏光部1a、1bを高精度で形成することができる。そして、本発明においては、1個のバックロール5に対して、2回の露光を行うので、各露光毎に高価なバックロールを使用する必要がなく、FPR偏光フィルムの製造コストを低減できる。
そして、露光後のフィルム11は、そのまま、検査部のロール20に搬送され、このロール20に巻き架けられた後、巻取ロール101(図19参照)等に巻き取られる。そして、この検査部において、露光後のフィルム11は、ロール20の回転と共に、ロール20の周速度と同一の移動速度で移動する。そして、ロール20の溝20a内の光源21が上方に回動してきたときに、光源21と、カメラ25とが正対し、光源21からの照明光が、カメラ25に入射する。このとき、光源21とカメラ25との光軸が一致し、この光軸上に、水平偏光板22,λ/4板23及び垂直偏光板24が位置する。そして、光源21からの照明光は、偏光板22により水平方向の偏光軸を付与され、この照明光が、フィルム11を透過してCW円方向偏光又はCCW円方向偏光の光となってλ/4板23に入射し、このλ/4板23により、フィルム透過光の円偏光が直線偏光に変換され、その後、偏光板24により垂直方向の偏光軸を持つ光のみが検査用カメラ25に入射する。この場合に、フィルム11上の偏光部1aがCW円方向偏光を有し、フィルム11上の偏光部1bがCCW円方向偏光を有する場合、λ/4板23により直線偏光に変換された透過光は、垂直方向の偏光軸を有する透過光のみがカメラ25に入射し、水平方向の偏光軸を有する透過光はカメラ25に入射しない。これにより、カメラ25においては、偏光部1a又は偏光部1bのいずれかを透過した光のみが明るく検出され、偏光部1a又は偏光部1bの幅(線幅)を検出することができる。そして、偏光部1a、1bの偏光方向が不正である場合は、カメラ25に検出される透過光のコントラストが小さいものとなり、偏光方向の不正を検出することができる。小型のマスクを使用した場合の継ぎの部分における偏光の異常が存在する場合は、偏光部の幅の異常又は偏光方向の不正として、検知することができる。
このようにして、本実施形態においては、ロール20が1回転する都度、偏光フィルムの線幅、偏光方向、継ぎの部分の状態等を検査することができる。つまり、フィルム11に対し、ロール20の周長毎に、偏光部の検査を実施することができる。よって、この偏光部の検査により異常が発見された場合には、露光を中止し、以後の無駄なフィルム露光を回避することができ、歩留が向上する。この場合に、露光後のフィルム11はロール20の周面に支持されているので、中空状態で薄いフィルム11が振動することはなく、高精度で、フィルム11の検査を実施することができる。なお、フィルム11はロール20の溝20aの縁部で、水平姿勢に屈曲するが、この溝20aの縁部をなめらかに加工しておけば、この縁部でフィルム11にキズがつくことはない。
次に、図5を参照して、本発明の第2実施形態について説明する。本実施形態においては、検査部のロール26が透明ガラス等の透明材料で形成されており、光源21及び水平偏光板22がこのロール26内に埋設されているものである。即ち、透明のロール26の周面に溝26aを形成し、光源21及び偏光板22をこの溝26a内に設置した後、溝26aの上部を透明の蓋26bで閉塞する。この蓋26bの上面は、ロール26の周面と同一曲率で湾曲しており、蓋26bが設置された状態で、ロール26はなめらかな円柱の周面を有するものとなる。よって、本実施形態においては、この溝26aの部分で、フィルム11が屈曲することはない。本実施形態においては、ロール26及び蓋26bが透明材料で形成されているので、照明光はロール外部に出射され、フィルム11を透過した後、最終的にカメラ25に入射する。
更に、溝の数は上記各実施形態のように、1個に限らず、複数個設けることもできる。これにより、フィルム11における検査箇所のピッチを短くし、頻繁に検査することができる。また、λ/4板23は、ロール上方に設置する場合に限らず、ロール20、26の溝20a、26aの内部に設置することもできる。更に、水平偏光板22と垂直偏光板24とは、上下逆に配置してもよい。
次に、図6及び図7を参照して、本発明の第3実施形態の露光部について説明する。本実施形態は、フィルム10が先ずスリット17aを有するスリットマスク17を介して、露光光源6からCW円偏光の露光光の照射を受け、次いで、開口7aを有するマスク7を介して、露光光源16からCCW円偏光の露光光の照射を受ける点が、第1実施形態と異なり、その他の構成は、第1実施形態と同様であるので、同一構成物には同一符号を付して、その詳細な説明は省略する。図4に示すように、露光光源6からのCW円偏光の露光光を、スリット17aを介してフィルム10上の配向材料膜に露光することにより、帯状の偏光部1aを形成する。このとき、フィルム10上の配向材料膜は、非可逆性の材料であり、このCW円偏光の露光光の照射により、照射を受けた帯状の部分が100%硬化し、この部分の配向材料膜の配向方向が固定される。次いで、露光光源16からのCCW円偏光の露光光を、開口7aを介してフィルム10上の配向材料膜に露光することにより、フィルム10のほぼ全面にCCW円偏光の露光光を照射する。このとき、偏光部1aはCW円偏光で偏光方向が固定されているので、CCW円偏光の露光光の照射を受けても、偏光方向は変化しない。そして、偏光部1a間の露光光源6の未露光部が、露光光源16からのCCW円偏光の露光光の照射を受けて、この部分がCCW円偏光に対応する偏光部1bとなる。これにより、図9に示すように、偏光部1aと偏光部1bとが走査線の1ラインに対応して交互に位置する偏光フィルム1を製造することができる。
このようにして、本実施形態は、CW円偏光により帯状の偏光部1aを形成した後、CCW円偏光の露光光の全面露光により、偏光部1a間に偏光部1bを形成するので、第1実施形態と同様に、マスク7とスリットマスク17との位置合わせは不要である。また、本実施形態も第1実施形態と同様に、フィルムの振動及びシワが防止され、高精度で偏光部1a、1bを形成することができる。これにより、走査線1ラインに高精度で整合した偏光部1a、1bを有するFPR偏光フィルム1を製造することができる。
次に、図8及び図9(a)、(b)を参照して本発明の第4実施形態について説明する。前述の第1及び第2実施形態は、FPR偏光フィルムの形成に関するものであるが、本実施形態は、光配向膜の形成に関するものである。本実施形態においては、第1実施形態と同様に、フィルム10がバックロール5に接触してバックロール5の従動回転とともに移動するフィルム10の移動域の始端部、即ち、バックロール5の周面におけるフィルム10が巻き架けられた部分の始端部の近傍に、開口7aを有するマスク7が配置され、前記移動域の後端部にスリット17aを有するマスク17が配置されている。本実施形態が第1実施形態と異なる点は、露光光源6からの露光光が、マスク7に対して、例えば、40°の傾斜角度で入射し、露光光源16からの露光光が、スリットマスク17に対して、例えば、−40°の傾斜角度で入射することである。
本実施形態においては、可逆性の配向材料膜が形成されたフィルム10に対して、フィルム10の搬送方向に40°傾斜する露光光をフィルム10のほぼ全域に照射し、その後、フィルム10の搬送方向に−40°傾斜する露光光をスリット17aに対応する帯状の領域(配向部1d)に照射して、この領域については、−40°傾斜露光光により上書き露光する。本実施形態においても、最初の露光においては、配向材料膜は例えば50%硬化し、次順の露光により、帯状の照射領域は配向材料膜が例えば100%硬化する。このため、2回の露光により、配向部1dにおいては、2回目の露光による−40°傾斜入射の露光光により配向方向が決まり、配向部1cにおいては、1回目の露光による40°傾斜入射の露光光により配向方向が揃えられた後、その後のポストベークによりその配向方向が固定されたものとなる。これにより、光配向方向が交互に異なる配向部1c、1dを有する光配向膜を得ることができ、液晶表示装置の光配向膜として、視野角を拡大するために使用することができる。また、本実施形態においても、フィルムの振動及びシワがなく、高精度で配向部1c、1dを形成することができる。しかも、マスク7とスリットマスク17との間の位置合わせが不要である。
次に、図10及び図11(a)、(b)を参照して、本発明の第5実施形態について説明する。本実施形態は、第4実施形態と同様に、光配向膜の形成に関するものであるが、第3実施形態と異なる点は、フィルム10上の配向材料膜は非可逆の配向材料であり、フィルム10に対する最初の露光は、スリット17aを有するスリットマスク17を使用して、露光光源6から40°傾斜の入射角度を有する露光光によりフィルム10を照射し、次順の露光は、開口7aを有するマスク7を使用して、露光光源16から−40°傾斜の入射角度を有する露光光によりフィルム10を照射することである。
本実施形態においては、先ず、スリット17aを介して、フィルム10の進行方向に対して40°で傾斜する露光光をフィルム10に入射させ、フィルム10に対して、帯状の配向部1cを形成する。この40°傾斜入射の露光光は、帯状の配向部1cを100%硬化させ、従って、この配向部1cは配向方向が40°傾斜に固定される。次に、開口7aを介して、フィルム10の進行方向に対して−40°で傾斜する露光光をフィルム10に入射させ、全面を−40°傾斜入射の露光光で照射する。このとき、配向部1cは配向方向が既に固定されているので、−40°傾斜露光光の照射を受けても、その配向方向は変化せず、露光光源6からの露光光の未露光部が、−40°傾斜露光光の照射を受けて、この方向に配向方向が揃う。これにより、40°傾斜の配向部1cと−40°傾斜の配向部1dとが交互に形成された光配向膜を得ることができる。本実施形態においても、フィルムの振動及びシワがなく、高精度で配向部1c、1dを形成することができる。しかも、マスク7とスリットマスク17との間の位置合わせが不要である。
なお、本発明は、上記各実施形態に限らず、種々の変形が可能である。例えば、上記各実施形態においては、スリット17aを有するスリットマスク17と、開口7aを有するマスク7とを使用して、マスク7とスリットマスク17との位置合わせを不要としたが、図20に示すように、レーザマーカ110を使用して、フィルム10にマーク111を形成し、マスク7とスリットマスク17との配設位置で、このマーク111をカメラ等により観察してその位置を検出し、このマーク111を指標として、マスク7とスリットマスク17とを位置合わせすれば、図20に示すように、双方とも、スリットを有するスリットマスクを使用することができる。即ち、偏光部1a、1b又は配向部1c、1dを夫々2個のスリットマスクにより形成することができる。この場合に、一方のスリットマスクのスリットは、他方のスリットマスクのスリットの配列ピッチと同一のピッチで形成され、一方のスリットマスクは、他方のスリットマスクに対して、スリットの配列ピッチの1/2のピッチだけ、フィルム10の幅方向に偏倚して配置される。また、上記第3実施形態及び第4実施形態において、露光光の入射傾斜角度が40°及び−40°であったが、この露光光の入射傾斜角度はこれに限らず、種々の角度を採用することができる。
次に、図12及び図13を参照して、本発明の第6実施形態について説明する。第6実施形態の露光部は、図1及び図2に示す第1実施形態の露光部に対し、λ/4板23とロール20との間のロール20の近傍に、露光後のフィルム11の幅方向に延びるスケール部材30が設けられている点が異なる。このスケール部材30は、その長手方向(フィルム11の幅方向)に目盛りとしてのスケールが設けられており、カメラ25は、フィルム11上の第1偏光部1a又は第2偏光部1bと共に、このスケール部材30のスケール(目盛り)を検出する。
本実施形態においては、第1の偏光板22、第2の偏光板24及びλ/4板23により、カメラ25に入射した第1偏光部1aの像と、第2偏光部1bの像とに重なって、スケール部材30のスケールの像もカメラ25に入射するので、第1実施形態と異なり、第1偏光部1a及び第2偏光部1bの線幅をスケールにより直接測定することができる。
次に、図14乃至図16を参照して、本発明の第7実施形態について説明する。本実施形態は、図12及び図13に示す第6実施形態に加えて、フィルム11の表面上の異物又は傷を検査するものである。本実施形態においては、ロール20に巻き架けられたフィルム11は、更に、ロール40に巻き架けられて巻き取りロール(図示せず)に巻き取られる。フィルム11はロール20とロール40との間を、例えば、水平に移動するが、このロール20,40間のフィルム11の移動域に、光源31a、第3の偏光板32a、第2のλ/4板33a、第4の偏光板34a、及びカメラ35aが、第3の偏光板32aと第2のλ/4板33aとの間にフィルム11を挟んで配置されており、更に、光源31b、第5の偏光板32b、第3のλ/4板33b、第6の偏光板34b、及びカメラ35bが、第5の偏光板32bと第3のλ/4板33bとの間にフィルム11を挟んで配置されている。
本実施形態においては、第6実施形態と同様に、スケール部材30により第1偏光部1a、第2偏光部1bの線幅を直接測定した後、フィルム11は、カメラ35aとカメラ35bの配設位置に到達する。そうすると、図16に示すように、光源31aからの検査光は、第3偏光板32aにより水平方向の直線偏光光となり、フィルム11のCW円偏光(第1の円偏光)の第1偏光部1aを透過して、CW円偏光光に変換された後、CW円偏光の第2のλ/4板33aにより、垂直偏光に変換され(図17上図参照)、水平偏光の第4偏光板34aを透過せず、カメラ35aに入射しない。よって、第1の偏光部1aの部分がカメラ35aに黒色として検出される。一方、CCW円偏光の第2偏光部1bを透過した光は、第2のλ/4板33aにより水平偏光に変換され(図17の下図参照)、第4偏光板34aを透過して、カメラ35aに入射するため、カメラ35aはこの部分を白色として検出する。この場合に、第1偏光部1a上に、疵(又は剥がれ)が存在する場合、この部分は白く抜けてくるため、黒色の帯の中に白い部分として検出される。また、第2偏光部1b上に、異物が存在する場合、この異物の部分は光を透過させないため、カメラ35aに白く検出されている第2偏光部1bの帯の部分に、黒い部分として検出される。
光源31b及びカメラ35bが配置された検査部においては、上述と逆に、CCW円偏光(第2の円偏光)の第2偏光部1bの部分を透過した検査光は、CCW円偏光の第3のλ/4板33bにより、垂直偏光に変換され、水平偏光の第6偏光板34bを透過せず、カメラ35bに入射しないため、この部分はカメラ35bに黒く検出される。CW円偏光(第1の円偏光)の第1偏光部1aの部分を透過した検査光は、CW円偏光に変換された後、CCW円偏光の第3のλ/4板33bにより、水平偏光に変換され、水平偏光の第6偏光板34bを透過して、カメラ35bに入射するため、カメラ35bはこの部分を白色として検出する。従って、カメラ35bには、第2偏光部1b上の疵(又は剥がれ)が黒色の帯の中に白く検出され、第1偏光部1a上の異物は白色の帯の中に黒く検出される。このようにして、フィルム11上の異物又は疵等の欠陥は、カメラ35a、35bのいずれかに検出される。即ち、第1偏光部1a上の疵はカメラ35aにより検出され、異物はカメラ35bにより検出される。第2偏光部1b上の疵はカメラ35bにより検出され、異物はカメラ35aにより検出される。
本発明は、FPR方式の偏光フィルム及び光配向膜等を高精度で製造することができ、3D方式又は2D方式の液晶表示装置の高精細化に寄与する。
1:偏光フィルム
1a、1b:偏光部
1c、1d:配向部
5:バックロール
6,16:露光光源
7:マスク
7a:開口
10:フィルム
11:(露光後の)フィルム
17:スリットマスク
17a:スリット
20,26:ロール
20a、26a:溝
21、31a、31b:検査用光源
22、24、32a、32b、24a、34b:偏光板
23、33a、33b:λ/4板
25、35a、35b:検査用カメラ
26b:蓋
30:スケール部材

Claims (7)

  1. フィルムを一方向に移動させている間に、前記フィルムに露光するフィルム露光装置において、前記フィルムに露光光を照射する露光部と、前記フィルムの移動方向における前記露光部の下流側に配置され前記フィルムにおける露光光の照射部を検査する検査部と、を有し、
    前記検査部は、露光後の前記フィルムを巻きかけると共に前記フィルムと共に回転するロールと、前記ロールの周面又は前記ロールの内部に設置され検査用の照明光を出射する光源と、前記ロールに対向するように設置され前記フィルムを透過後の照明光を検出する受光部と、を有することを特徴とするフィルム露光装置。
  2. 前記露光部は、前記フィルムの上の配向膜に露光することにより、帯状の第1の偏光部と、帯状の第2の偏光部とを、フィルムの幅方向に交互に形成して、偏光フィルムを形成するものであり、
    前記検査部は、前記ロールに設置され、前記光源からの照明光に対して第1の方向に偏光を付与する第1の偏光板と、前記ロールに対向するように設置され、前記受光部に入射する光に対して前記第1の方向に直交する方向に偏光を付与する第2の偏光板と、前記照明光の光軸に設けられたλ/4板と、を有することを特徴とする請求項1に記載のフィルム露光装置。
  3. 前記露光部は、CW円偏光の露光光を前記フィルムに照射する露光光源により前記第1の偏光部を形成し、CCW円偏光の露光光を前記フィルムに照射する露光光源により前記第2の偏光部を形成するものであることを特徴とする請求項2に記載のフィルム露光装置。
  4. 前記露光部は、前記フィルム上の配向膜に露光することにより、帯状の第1の配向部と、帯状の第2の配向部とを、フィルムの幅方向に交互に形成して、配向フィルムを形成するものであり、
    前記検査部の前記受光部は、前記フィルムを透過した照明光の第1の配向部による第1の配向方向に設けられた第1の受光部と、前記フィルムを透過した照明光の第2の配向部による第2の配向方向に設けられた第2の受光部とから構成されていることを特徴とする請求項1に記載のフィルム露光装置。
  5. 前記露光部は、フィルムに対してフィルム移動方向に40°傾斜するように露光光を入射する露光光源により前記第1の配向部を形成し、フィルムに対してフィルム移動方向に−40°傾斜するように露光光を入射する露光光源により前記第2の配向部を形成するものであることを特徴とする請求項4に記載のフィルム露光装置。
  6. 前記受光部の光軸上に配置され、前記フィルムの幅方向に延び、前記フィルム上の前記第1の偏光部又は第2の偏光部の幅方向にスケールが形成された透明のスケール部材を有することを特徴とする請求項2又は4に記載のフィルム露光装置。
  7. 前記検査部による検査前又は検査後の前記フィルムの搬送域に配置された第2の検査部を有し、
    前記第2の検査部は、
    検査光を出射する第2の光源と、前記第2の光源からの検査光に対して第1の方向の直線偏光を付与する第3の偏光板と、前記第3の偏光板を透過し更に前記フィルムを透過して第1の方向の円偏光を付与された検査光を第2の方向の直線偏光に変える第2のλ/4板と、前記第2の方向の直線偏光の検査光を透過する第4の偏光板と、前記第4の偏光板を透過した検査光を検出する第2の受光部と、
    検査光を出射する第3の光源と、前記第3の光源からの検査光に対して第1又は第2の方向の直線偏光を付与する第5の偏光板と、前記第3の偏光板を透過し更に前記フィルムを透過して第2の方向の円偏光を付与された検査光を第2又は第1の方向の直線偏光に変える第3のλ/4板と、前記第2又は第1の方向の直線偏光の検査光を透過する第6の偏光板と、前記第6の偏光板を透過した検査光を検出する第3の受光部と、
    を有することを特徴とする請求項1乃至6のいずれか1項に記載のフィルム露光装置。
JP2011241687A 2011-09-16 2011-11-02 フィルム露光装置 Pending JP2013097277A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011241687A JP2013097277A (ja) 2011-11-02 2011-11-02 フィルム露光装置
PCT/JP2012/073318 WO2013039100A1 (ja) 2011-09-16 2012-09-12 フィルム露光装置
TW101133763A TW201314384A (zh) 2011-09-16 2012-09-14 膜片曝光裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011241687A JP2013097277A (ja) 2011-11-02 2011-11-02 フィルム露光装置

Publications (1)

Publication Number Publication Date
JP2013097277A true JP2013097277A (ja) 2013-05-20

Family

ID=48619240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011241687A Pending JP2013097277A (ja) 2011-09-16 2011-11-02 フィルム露光装置

Country Status (1)

Country Link
JP (1) JP2013097277A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085307A1 (ja) * 2018-10-26 2020-04-30 東洋紡株式会社 液晶化合物配向層転写用配向フィルム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085307A1 (ja) * 2018-10-26 2020-04-30 東洋紡株式会社 液晶化合物配向層転写用配向フィルム
WO2020085308A1 (ja) * 2018-10-26 2020-04-30 東洋紡株式会社 液晶化合物配向層転写用配向フィルム
CN112805136A (zh) * 2018-10-26 2021-05-14 东洋纺株式会社 液晶化合物取向层转印用取向薄膜
TWI824046B (zh) * 2018-10-26 2023-12-01 日商東洋紡股份有限公司 液晶化合物配向層轉印用配向薄膜、液晶化合物配向層轉印用積層體、液晶化合物配向層積層偏光板之製造方法、及液晶化合物配向層轉印用積層體之檢查方法

Similar Documents

Publication Publication Date Title
KR101586101B1 (ko) 광학 표시 장치 제조 시스템 및 광학 표시 장치 제조 방법
JP4960026B2 (ja) フイルムの欠陥検査装置及びフイルムの製造方法
TWI633345B (zh) 於光學膜標記之系統及方法
JP2008298566A (ja) フィルムの欠陥検査装置及び方法
JP2014010296A (ja) 露光装置及びfpr製造方法
TWI564592B (zh) 3次元液晶顯示裝置之製造裝置及製造方法
WO2013039100A1 (ja) フィルム露光装置
TW201314384A (zh) 膜片曝光裝置
TWI671520B (zh) 光學薄膜的缺陷檢查方法、光學薄膜的缺陷檢查裝置、光學薄膜的製造方法、及光學薄膜的製造裝置
JP2013257163A (ja) 光学フィルムパターン測定装置
JP5884120B2 (ja) フィルム露光装置
JP2014130138A (ja) インライン測定装置
JP2013097277A (ja) フィルム露光装置
CN103403586A (zh) 光学膜片的切割装置及光学膜片的切割方法
JP2012220608A (ja) 3d光学フィルターの製造装置
KR20140089200A (ko) 결함의 검출 방법 및 이를 이용한 반사 광학계 검사 장치
JP6232189B2 (ja) 光学フィルムの製造方法
TWI413566B (zh) 偏光片之製造方法
JP2014164002A (ja) 光学フィルムの製造方法
JP2013097204A (ja) スキャン露光用メタルマスク及びスキャン露光装置
JP2016148779A (ja) 光学フィルムの計測方法、光学フィルムの計測装置及び光学フィルムの製造方法
TWI589859B (zh) 表面檢查裝置及方法、溶液製膜方法及設備
KR102029695B1 (ko) 광학 필름 라미네이팅 시스템 및 이를 이용한 디스플레이 유닛 제조 방법
JP2014130140A (ja) 測定結果検証システム
JP2013148635A (ja) 3d光学フィルターの製造装置