JP2013092492A - 物理量検出素子、物理量検出装置、および電子機器 - Google Patents

物理量検出素子、物理量検出装置、および電子機器 Download PDF

Info

Publication number
JP2013092492A
JP2013092492A JP2011235724A JP2011235724A JP2013092492A JP 2013092492 A JP2013092492 A JP 2013092492A JP 2011235724 A JP2011235724 A JP 2011235724A JP 2011235724 A JP2011235724 A JP 2011235724A JP 2013092492 A JP2013092492 A JP 2013092492A
Authority
JP
Japan
Prior art keywords
vibration
arm
drive
detection
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011235724A
Other languages
English (en)
Inventor
Fumio Ichikawa
史生 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011235724A priority Critical patent/JP2013092492A/ja
Publication of JP2013092492A publication Critical patent/JP2013092492A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

【課題】複数の振動腕を音響結合させて、1つの発振回路でそれぞれの振動腕の振動を励起でき、物理量検出の感度向上が図れる物理量検出素子を提供する。
【解決手段】ジャイロ素子(物理量検出素子)1は、基部2からX軸に沿って互いに反対方向へそれぞれ延出した連結部31と、連結部31の付け根6からY軸に沿った方向またはX軸に対して斜め方向へ延出し駆動信号電極7を有して駆動振動をする第1駆動振動腕41乃至第8駆動振動腕48と、基部2からX軸に対して斜め方向へ延出し検出信号電極8を有する第1検出振動腕51乃至第4検出振動腕54と、を有し、第1駆動振動腕乃至第4駆動振動腕におけるZ軸方向の第1面外振動の周波数と、第5駆動振動腕乃至第8駆動振動腕におけるZ軸方向の第2面外振動の周波数と、の差が、駆動振動の周波数と第2面外振動の周波数との差である第2離調周波数よりも大きい、ことを特徴とする。
【選択図】図1

Description

本発明は、振動片を利用して物理量を検出することが可能な素子に関する。
従来、物理量検出素子として、例えば特許文献1には、基部と、基部からX軸方向に沿って互いに反対方向にそれぞれ延出した支持部と、支持部の各先端において、Y軸方向に沿って互いに反対方向にそれぞれ延出した駆動アームと、基部からY軸方向に沿って互いに反対方向にそれぞれ延出したY軸用検出振動アームと、同じく、基部からY軸方向に沿って互いに反対方向にそれぞれ延出したZ軸用検出振動アームと、を備えた振動片(当該文献における振動子)が開示されている。この振動片によれば、Z軸まわりの角速度に起因するY軸用検出振動アームの寄生振動を抑制し、角速度(物理量)の測定値の誤差を減少させることが可能である。
また、例えば特許文献2に開示されているような振動片(当該文献における慣性センサー素子)もある。この振動片は、複数本の脚部を有する振動部を有し、振動部は、基部から第1の方向に沿って互いに反対方向にそれぞれ延出し、さらに、基部から第1の方向と直交する第2の方向に沿って互いに反対方向にそれぞれ延出している、簡易な構成である。第1の方向に沿う振動部は、一方に励振電極が設けられ、他方には、検出電極が設けられていて、第1の方向まわりの角速度(物理量)を検出することが可能である。同様に、第2の方向に沿う振動部は、第2の方向まわりの角速度を検出することが可能である。
特開2007−108053号公報 特開2006−267094号公報
しかし、特許文献1および特許文献2において、これら振動片は、駆動アームまたは励振電極を有する振動部が基部から別々に伸びている構成のため、各々の振動モードの音響結合が弱い等の課題があった。そのため、2つの発振回路によって、それぞれの振動モードを励起させなくてはならず、回路構成部の面積が大きくなってしまい、振動片の小型化が困難であった。また、物理量の検出感度をより向上させることが難しかった。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の適用例または形態として実現することが可能である。
[適用例1]本適用例に係る物理量検出素子は、基部と、前記基部の重心位置である原点を通るX軸と、前記原点を通り、前記X軸と直交するY軸と、前記原点を通り、前記X軸および前記Y軸と直交するZ軸と、を有する座標軸を定義し、X座標とY座標とがともに正の値をとる領域を第1象限、X座標が負でY座標が正の値をとる領域を第2象限、X座標とY座標とがともに負の値をとる領域を第3象限、X座標が正でY座標が負の値をとる領域を第4象限、と定義した場合、前記基部と連結し、前記X軸に沿って、前記基部の両側に設けられている第1連結部および第2連結部と、前記第1連結部から、前記Y軸に沿って互いに反対方向へそれぞれ延出し、前記X軸および前記Y軸で形成される平面に沿って駆動振動をする第1駆動振動腕および第2駆動振動腕と、前記第2連結部から、前記Y軸に沿って互いに反対方向へそれぞれ延出し、前記駆動振動をする第3駆動振動腕および第4駆動振動腕と、前記第1駆動振動腕の前記第1連結部側から、前記第1象限方向かつ前記X軸に対して斜めに延出し、前記駆動振動をする第5駆動振動腕と、前記第2駆動振動腕の前記第1連結部側から、前記第4象限方向かつ前記X軸に対して斜めに延出し、前記駆動振動をする第6駆動振動腕と、前記第3駆動振動腕の前記第2連結部側から、前記第2象限方向かつ前記X軸に対して斜めに延出し、前記駆動振動をする第7駆動振動腕と、前記第4駆動振動腕の前記第2連結部側から、前記第3象限方向かつ前記X軸に対して斜めに延出し、前記駆動振動をする第8駆動振動腕と、前記基部の前記第1象限側から、前記第1象限方向かつ前記X軸に対して斜めに延出している第1検出振動腕と、前記基部の前記第4象限側から、前記第4象限方向かつ前記X軸に対して斜めに延出している第2検出振動腕と、前記基部の前記第2象限側から、前記第2象限方向かつ前記X軸に対して斜めに延出している第3検出振動腕と、前記基部の前記第3象限側から、前記第3象限方向かつ前記X軸に対して斜めに延出している第4検出振動腕と、を備え、前記第1駆動振動腕乃至前記第4駆動振動腕におけるZ軸方向の第1面外振動の周波数と、前記第5駆動振動腕乃至前記第8駆動振動腕におけるZ軸方向の第2面外振動の周波数と、の差が、前記駆動振動の周波数と前記第2面外振動の周波数との差である第2離調周波数よりも大きい、ことを特徴とする。
本適用例の物理量検出素子によれば、第1駆動振動腕と第5駆動振動腕とは互いの励振に寄与しあうことで音響結合性が高められていて、同様に、第2駆動振動腕と第6駆動振動腕、第3駆動振動腕と第7駆動振動腕、第4駆動振動腕と第8駆動振動腕、のそれぞれにおいても音響結合性が高められている。そのため、これら駆動振動腕から連結部へ振動が伝わる振動漏れを抑制して、物理量検出素子としてのインピーダンスを下げQ値を高くすることが可能な構成となっている。このような物理量検出素子がX軸またはY軸まわりに回転した場合、駆動振動をしている駆動振動腕にはZ軸方向のコリオリ力が生じ、駆動振動腕は、このコリオリ力に応じて、いわゆる面外振動をする。この場合、X軸およびY軸で形成されるX−Y平面に沿う振動である駆動振動は、面内振動である。そして、駆動振動腕の面外振動が第1検出振動腕乃至第4検出振動腕に伝わり、これら検出振動腕が検出振動することにより、X軸またはY軸まわりの角速度等の物理量を検出することが可能である。このような構成の物理量検出素子は、駆動振動腕の音響結合性が上述したように高いため、駆動振動腕それぞれの固有共振周波数を合わせて音響結合を高めるというような調整が不要であり、1つの発振回路で2つの駆動モードを励起することが可能である。また、物理量検出素子では、Y軸まわりの物理量を検出するための第1面外振動と、X軸まわりの物理量を検出するための第2面外振動と、の周波数の差が、第2離調周波数より大きくなるように設定されている。なお、ここでは、駆動振動の周波数と第1面外振動の周波数との差を第1離調周波数とし、駆動振動の周波数と第2面外振動の周波数との差を第2離調周波数とする。これにより、第1駆動振動腕乃至第4駆動振動腕の第1面外振動と、第5駆動振動腕乃至第8駆動振動腕の第2面外振動と、の周波数に差異を設けることができ、この差異により、第1駆動振動腕、第2駆動振動腕、第5駆動振動腕および第6駆動振動腕の面外振動が結合してしまい、検出振動腕へX軸まわりの物理量を検出する検出振動が伝わらない事態を回避することが可能となる。第3駆動振動腕、第4駆動振動腕、第7駆動振動腕および第8駆動振動腕においても、同様に、結合の回避が可能である。即ち、物理量検出素子は、物理量の検出感度、特にX軸まわりの物理量の検出感度を大きくすることが可能である。この物理量検出素子は、X軸およびY軸まわりの角速度等の物理量を検出でき、単体で2軸まわりの物理量を検出することが可能である。
[適用例2]上記適用例に記載の物理量検出素子において、前記第1面外振動の周波数と前記第2面外振動の周波数との差は、前記第2離調周波数の2倍以上10倍以下である、ことが好ましい。
この構成によれば、第1面外振動と第2面外振動との周波数の差を、第2離調周波数の2倍以上10倍以下に設定することにより、物理量検出素子は、X軸まわりの検出感度を大きくして、物理量の検出感度を高めることが可能である。ここで、物理量の検出感度は、駆動振動と面外振動との周波数の差が大きいほど低下する傾向にある。そのため、第1面外振動と第2面外振動との周波数の差を、第2離調周波数より大きくし、その値を第2離調周波数の2倍以上10倍以下に設定する。このような周波数設定にすることで、第1面外振動も第2面外振動も、その周波数を駆動周波数から離れ過ぎない程度の最適値近傍に設定することになる。これにより、物理量検出素子における該検出感度の低下を確実に抑制することができ、物理量検出素子の高性能化が図れる。
[適用例3]上記適用例に記載の物理量検出素子において、前記駆動振動の周波数は、前記第1面外振動の周波数と前記第2面外振動の周波数との間の値である、ことが好ましい。
この構成によれば、例えば、第2面外振動の周波数が、駆動振動の周波数に対して高い値である場合、第1面外振動は、第2面外振動の周波数に対して低い周波数の設定となっていて、その周波数と第2面外振動の周波数との差は第2離調周波数(駆動振動および第2面外振動の両周波数の差)より大きい値である。つまり、第1面外振動および第2面外振動のそれぞれの周波数は、駆動振動腕の周波数より高い値側と低い値側とになるように設定されている。このような周波数の配置にすることにより、物理量検出素子は、Y軸まわりの物理量を検出するための第1面外振動およびX軸まわりの物理量を検出するための第2面外振動のそれぞれの周波数を、駆動振動における周波数のより近傍に設定でき、第1離周波数が不必要に大きな値となってしまうことを防ぐことができるため、検出感度の低下を確実に抑制することが可能である。
[適用例4]上記適用例に記載の物理量検出素子において、前記第5駆動振動腕乃至前記第8駆動振動腕は、前記駆動振動の方向に沿う腕幅がZ軸方向の厚さよりも大きい構成であり、それぞれの先端に幅広の錘部を有している、ことが好ましい。
この構成によれば、第5駆動振動腕乃至第8駆動振動腕は、それぞれの腕の先端に腕幅より幅広の錘部を有している。この構成では、錘部を有する駆動振動腕は、その駆動振動の周波数が錘部の無い場合に比べて下がる傾向である。ここで、駆動振動には、腕幅の大小による影響が大きく寄与することが知見されている。そのため、駆動振動腕の腕幅を厚さより大きくすることにより、駆動周波数を上げることができ、第5駆動振動腕乃至第8駆動振動腕における駆動振動の周波数を保つことが可能である。一方、当該駆動振動腕において、腕幅の影響が少ない第2面外振動の周波数は、下がった状態となっている。そのため、物理量検出素子は、駆動振動の周波数と第2面外振動の周波数との差である第2離調周波数を所定値となるように調整して設定することができ、同時に、第2面外振動の周波数を、第2面外振動の周波数と第1面外振動の周波数との差が第2離調周波数の値より大きくなるように、調整することが容易に行なえる。これにより、物理量検出素子は、物理量の検出感度を高められると共に、当該駆動振動腕の小型化が可能であるため、物理量検出素子の小型化にも貢献することが可能である。
[適用例5]上記適用例に記載の物理量検出素子において、前記第1駆動振動腕乃至前記第4駆動振動腕は、前記駆動振動の方向に沿う腕幅がZ軸方向の厚さよりも大きい構成であり、それぞれの先端に幅広の錘部を備えている、ことが好ましい。
この構成によれば、第1駆動振動腕乃至第4駆動振動腕は、それぞれの腕の先端に腕幅より幅広の錘部を有している。この構成では、錘部を有する駆動振動腕は、その駆動振動の周波数が錘部の無い場合に比べて下がる傾向である。ここで、駆動振動には、腕幅の大小による影響が大きく寄与するため、駆動振動腕の腕幅を厚さより大きくすることにより、駆動周波数を上げることができ、第1駆動振動腕乃至第4駆動振動腕における駆動振動の周波数を保つことが可能である。一方、当該駆動振動腕において、腕幅の影響が少ない第1面外振動の周波数は、下がった状態となっている。そのため、物理量検出素子は、第1面外振動の周波数を、第1面外振動の周波数と第2面外振動の周波数との差が第2離調周波数の値より大きくなるように、調整することが可能である。これにより、物理量検出素子は、物理量の検出感度を高められる設定とすることが容易に行なえる。
[適用例6]上記適用例に記載の物理量検出素子において、前記第1駆動振動腕乃至前記第8駆動振動腕は、駆動信号電極を備え、前記第1検出振動腕乃至前記第4検出振動腕は、検出信号電極を備えている、ことが好ましい。
この構成によれば、駆動振動腕(第1駆動振動腕乃至第8駆動振動腕)と検出振動腕(第1検出振動腕乃至第4検出振動腕)とを個別に設定している。つまり、駆動振動腕には駆動用の電極のみを配線すればよく、検出振動腕には検出用の電極のみを配線すればよい構成である。これにより、駆動振動腕および検出振動腕は、電極のスペースを大きくとることができ、物理量の検出感度を向上させることが可能である。また、駆動振動腕と検出振動腕とが基部からそれぞれ個別に延出していることにより、駆動振動腕の駆動信号が検出振動腕の検出信号に静電的にのってしまう、いわゆる静電漏れを抑制することが可能である。
[適用例7]上記適用例に記載の物理量検出素子において、前記第5駆動振動腕および前記第6駆動振動腕は、前記第1連結部の延長線上を避けた位置から延出し、前記第7駆動振動腕および前記第8駆動振動腕は、前記第2連結部の延長線上を避けた位置から延出している、ことが好ましい。
この構成によれば、第5駆動振動腕および第6駆動振動腕は、基部から延出している第1連結部をそのまま延長した延長線上には形成されておらず、第1駆動振動腕または第2駆動振動腕から分岐して延出し、この分岐点が該延長線上を避けた位置となっている。これにより、第5駆動振動腕および第6駆動振動腕は、第1駆動振動腕または第2駆動振動腕との音響結合性を第1連結部から離れた位置で高めることが可能である。また、第7駆動振動腕および第8駆動振動腕も、同様に、第3駆動振動腕または第4駆動振動腕における該延長線上を避けた位置から延出していて、第3駆動振動腕または第4駆動振動腕との音響結合性を第2連結部から離れた位置で高めることが可能である。これにより、物理量検出素子は、第1駆動振動腕乃至第8駆動振動腕から基部方向への振動漏れを、より確実に抑制すると共に、振動の振幅を増大することが可能である。
[適用例8]上記適用例に記載の物理量検出素子において、前記第5駆動振動腕は、前記第1駆動振動腕と同位相で振動し、前記第6駆動振動腕は、前記第1駆動振動腕とは逆位相で振動する前記第2駆動振動腕と同位相で振動し、前記第7駆動振動腕は、前記第1駆動振動腕とは逆位相で振動する前記第3駆動振動腕と同位相で振動し、前記第8駆動振動腕は、前記第3駆動振動腕とは逆位相で振動する前記第4駆動振動腕と同位相で振動する、ことが好ましい。
この構成によれば、物理量検出素子は、第1駆動振動腕および第5駆動振動腕と、第2駆動振動腕および第6駆動振動腕と、がX軸に対して互いに逆位相で振動し、第1駆動振動腕とは逆位相で振動する第3駆動振動腕および第7駆動振動腕と、第4駆動振動腕および第8駆動振動腕と、がX軸に対して互いに逆位相で振動する。これにより、物理量検出素子は、バランスの良好な駆動振動を励振することができ、不要な振動ノイズ等が発生し難い構成となっている。
[適用例9]上記適用例に記載の物理量検出素子において、六方晶の結晶構造を有する圧電性材を用いている、ことが好ましい。
この構成によれば、六方晶の圧電性材は、例えば、水晶のように、機械軸、電気軸および光軸を有し、印加された駆動信号により正確に振動し、且つ、加えられた力に応じて屈曲して検出信号を発生する。物理量検出素子の形成に、このような圧電性材を用いれば、角速度等の物理量の検出を精度良く行なうことが可能である。また、物理量検出素子における好ましい一例として、第1駆動振動腕と第6駆動振動腕、第2駆動振動腕と第5駆動振動腕、第3駆動振動腕と第8駆動振動腕、および第4駆動振動腕と第7駆動振動腕、のそれぞれが120度の角度をなす構成が考えられる。この場合、六方晶の圧電性材は内角がそれぞれ120度である3本の電気軸(X軸)を有していることにより、該一例である物理量検出素子のような腕構成であっても、容易に形成することが可能である。さらに、該一例である構成例を含む物理量検出素子は、付け根における音響結合性が高いため、駆動振動腕の振動が励起されると、対応する駆動振動腕の励振に、より寄与しやすくなる。このような音響結合性の高い構成である物理量検出素子は、例えば、2方向の振動モードを得るのに1つの駆動回路でシステムを構成することが可能であり、小型化・低コスト化の面で、より有利である。
[適用例10]本適用例の物理量検出装置は、上記適用例の物理量検出素子と、前記第1駆動振動腕乃至前記第8駆動振動腕へ駆動信号を供給する駆動回路と、前記第1検出振動腕乃至前記第4検出振動腕からの物理量検出信号を検出する検出回路と、を備える、ことを特徴とする。
この物理量検出装置によれば、第1面外振動と第2面外振動との周波数に差を設ける等により物理量の検出感度を高めることが可能な、物理量検出素子を有し、さらに、駆動回路および検出回路によって物理量検出素子を制御することにより、角速度等をはじめとした物理量の検出精度を大きく向上させることが可能である。この場合、本適用例のような構成の物理量検出装置であれば、複数の腕を有していても、1つの駆動回路で振動を励起することが可能であり、装置の小型化も図れる。
[適用例11]上記適用例に記載の物理量検出装置において、前記検出回路は、前記第1検出振動腕に生じる前記検出信号と前記第2検出振動腕に生じる前記検出信号との和と、前記第3検出振動腕に生じる前記検出信号と前記第4検出振動腕に生じる前記検出信号との和と、を差動させて前記物理量検出信号を検出する、ことが好ましい。
この構成によれば、第1検出振動腕および第2検出振動腕による検出信号と、第3検出振動腕および第4検出振動腕による検出信号と、のそれぞれの和の差動をとる、いわゆる差動検出方式を用いることにより、この場合、Y軸まわりの角速度等の物理量を検出することが可能である。
[適用例12]上記適用例に記載の物理量検出装置において、前記検出回路は、前記第1検出振動腕に生じる前記検出信号と前記第3検出振動腕に生じる前記検出信号との和と、前記第2検出振動腕に生じる前記検出信号と前記第4検出振動腕に生じる前記検出信号との和と、を差動させて前記物理量検出信号を検出する、ことが好ましい。
この構成によれば、第1検出振動腕および第3検出振動腕による検出信号と、第2検出振動腕および第4検出振動腕による検出信号と、のそれぞれの和の差動をとる、いわゆる差動検出方式を用いることにより、この場合、X軸まわりの角速度等の物理量を検出することが可能である。
[適用例13]本適用例の電子機器は、上記適用例の物理量検出素子を備えている、ことを特徴とする。
この電子機器によれば、第1面外振動と第2面外振動との周波数に差を設ける等により物理量の検出感度を高めることが可能な、物理量検出素子を備えていることにより、高精度なセンサー機能を発揮することができ、電子機器としての性能向上を図ることが可能である。
実施形態1におけるジャイロ素子の構成を示す平面図。 実施形態2におけるジャイロ素子の構成を示す平面図。 実施形態3におけるジャイロ素子の構成を示す平面図。 (a)駆動振動腕における振動数の関係を示す線図、(b)駆動振動腕の振動方向を示す斜視図。 (a)ジャイロ素子におけるY軸まわりの角速度の検出を示す平面図、(b)ジャイロ素子におけるX軸まわりの角速度の検出を示す平面図。 (a)ジャイロ素子を備えたジャイロ装置を示す平面図、(b)ジャイロ素子を備えたジャイロ装置を示す断面図。 (a)ジャイロ素子を備えたデジタルビデオカメラを示す斜視図、(b)ジャイロ素子を備えた携帯電話を示す斜視図。
以下、本発明の物理量検出素子にについて、添付図面を参照して説明する。ここでは、好適な一例として、振動特性の良好な圧電性材である水晶を素材として形成された、ジャイロ素子(物理量検出素子)について述べる。
最初に、ジャイロ素子の素材である水晶について説明する。物理量検出素子としてのジャイロ素子は、六角柱をなす水晶柱から切り出され、この水晶柱は、柱の長手方向に光軸であるz軸と、z軸に垂直な電気軸であるx軸および機械軸であるy軸とを有していて、いわゆる六方晶の性質を有している。ここでx軸は、z軸に垂直な六角形面であるx−y面において、それぞれ内角が120度の等角度で3本あって、これらのx軸で形成される各面内では、エッチング方向によるエッチング速さ等が同じである、という性質を有している。このような水晶柱において、ジャイロ素子は、x−y平面を、x軸とy軸との交点(座標原点)からみてx軸まわりに角度5度傾けた平面に沿う、水晶z板から切り出されたものである。即ち、水晶柱から切り出されたジャイロ素子の座標軸は、x(請求項におけるX軸),y’(請求項におけるY軸),z’(請求項におけるZ軸)となる。以下では、まず、ジャイロ素子の形状に係る実施形態について説明する。
(実施形態1)
図1は、実施形態1におけるジャイロ素子の構成を示す平面図である。図1に示すように、ジャイロ素子(物理量検出素子)1は、基部2の重心(この場合基部2の中央位置)を原点とするX,Y,Z座標において、X−Y平面に沿って腕等が延出する形態をなしている。なお、このX,Y,Z座標は、原点を通るX軸と、原点を通りX軸と直交するY軸と、原点を通りX軸およびY軸と直交するZ軸と、を有する座標軸である。また、この座標軸において、X座標とY座標とがともに正の値をとる領域を第1象限、X座標が負でY座標が正の値をとる領域を第2象限、X座標とY座標とがともに負の値をとる領域を第3象限、X座標が正でY座標が負の値をとる領域を第4象限、と定義する。そして、ここでいうX軸,Y軸,Z軸は、請求項におけるX軸,Y軸,Z軸に該当する。
ジャイロ素子1は、座標軸の原点を中心とする四角形状の基部2と、基部2の両側に設けられている連結部3の一方であり、基部2からプラスX軸方向へ延出している第1連結部31と、第1連結部31の先端から、X軸に対して直角をなしてプラスY軸方向へ延出している、駆動振動腕4の1つである第1駆動振動腕41と、第1連結部31の先端から、X軸に対して直角をなしてマイナスY軸方向へ延出している第2駆動振動腕42と、を有している。さらに、ジャイロ素子1は、基部2から、第1連結部31と反対方向であるマイナスX軸方向へ、延出している第2連結部32と、第2連結部32の先端から、X軸に対して直角をなしてプラスY軸方向へ延出している第3駆動振動腕43と、第2連結部32の先端から、X軸に対して直角をなしてマイナスY軸方向へ延出している第4駆動振動腕44と、を有している。
また、ジャイロ素子1は、駆動振動腕4として、第1駆動振動腕41乃至第4駆動振動腕44に加え、第1連結部31と第1駆動振動腕41との交点部である付け根6aから、X軸に対して30度の角度で、第1象限の方向へ斜めに延出している第5駆動振動腕45と、第1連結部31と第2駆動振動腕42との交点部でもある付け根6aから、X軸に対して30度の角度で、第4象限の方向へ斜めに延出している第6駆動振動腕46と、第2連結部32と第3駆動振動腕43との交点部である付け根6bから、X軸に対して30度の角度で、第2象限の方向へ斜めに延出している第7駆動振動腕47と、第2連結部32と第4駆動振動腕44との交点部でもある付け根6bから、X軸に対して30度の角度で、第3象限の方向へ斜めに延出している第8駆動振動腕48と、を有している。
そして、ジャイロ素子1は、四角形状をなす基部2の第1象限側の角部から、X軸に対して30度の角度で、第1象限の方向へ斜めに延出している、検出振動腕5の1つである第1検出振動腕51と、基部2の第4象限側の角部から、X軸に対して30度の角度で、第4象限の方向へ斜めに延出している第2検出振動腕52と、基部2の第2象限側の角部から、X軸に対して30度の角度で、第2象限の方向へ斜めに延出している第3検出振動腕53と、基部2の第3象限側の角部から、X軸に対して30度の角度で、第3象限の方向へ斜めに延出している第4検出振動腕54と、を有している。これらすべての各腕は、それぞれの断面が矩形状をなしている。
ここで、駆動振動腕4(第1駆動振動腕41乃至第8駆動振動腕48)は、各腕の駆動振動を励起するための駆動信号電極7をそれぞれ有し、検出振動腕5(第1検出振動腕51乃至第4検出振動腕54)は、ジャイロ素子1に加えられた回転等による角速度等(物理量)を検出するための検出信号電極8をそれぞれ有している。
このような構成のジャイロ素子1において、駆動信号電極7に電圧が印加されると、駆動振動腕4は、屈曲して駆動振動をする。この駆動振動は、X軸およびY軸で形成されるX−Y平面に沿って振動する、いわゆる面内振動である。そして、第1駆動振動腕41および第5駆動振動腕45は、互いに同位相で振動し、第2駆動振動腕42および第6駆動振動腕46は、互いに同位相で振動するが、第1駆動振動腕41および第5駆動振動腕45とは異なる位相、即ち逆位相、で振動する構成になっている。つまり、第1駆動振動腕41がプラスX軸側へ屈曲し、第5駆動振動腕45がX軸側へ屈曲すると、第2駆動振動腕42がプラスX軸側へ屈曲し、第6駆動振動腕46がX軸側へ屈曲する。また、第1駆動振動腕41がマイナスX軸側へ屈曲し、第5駆動振動腕45がX軸から離反する側へ屈曲すると、第2駆動振動腕42がマイナスX軸側へ屈曲し、第6駆動振動腕46がX軸側から離反する側へ屈曲する。同様に、互いに同位相で振動する第3駆動振動腕43および第7駆動振動腕47は、互いに同位相で振動する第4駆動振動腕44および第8駆動振動腕48とは逆位相で振動する構成になっている。
また、ジャイロ素子1にX軸またはY軸まわりに回転等が加えられると、駆動振動をしている駆動振動腕4にはZ軸方向のコリオリ力が生じ、駆動振動腕4は、このコリオリ力に応じて、Z軸方向へ振動する。駆動振動腕4におけるZ軸方向の振動は、いわゆる面外振動と呼ばれる検出振動であって、第1駆動振動腕41乃至第4駆動振動腕44に生じる面外振動が第1面外振動であり、第5駆動振動腕45乃至第8駆動振動腕48に生じる面外振動が第2面外振動である。そして、駆動振動腕4における第1面外振動または第2面外振動が第1検出振動腕乃至第4検出振動腕に伝わり、これら検出振動腕5がそれぞれ検出振動をする。この時、検出振動腕5の検出信号電極8は、第1検出振動腕51乃至第4検出振動腕54の各腕が検出振動することによって生じた電圧を、電気信号として取り出すための電極として機能し、取り出した電気信号を検出信号として出力する。これにより、ジャイロ素子1は、X軸まわり、およびY軸まわりの角速度等の物理量の検出が可能となる。
ここで、ジャイロ素子1が角速度等の物理量を検出する動作原理について、図4を参照して詳細に説明する。図4(a)は、駆動振動腕における振動数の関係を示す線図であり、図4(b)は、駆動振動腕の振動方向を示す斜視図である。図4(b)は、第1象限における、第1駆動振動腕41の駆動振動および第5駆動振動腕45の駆動振動と、第1駆動振動腕41の第1面外振動および第5駆動振動腕45の第2面外振動と、を示している。なお、第1駆動振動腕41は、他の象限における第2駆動振動腕42乃至第4駆動振動腕44(図1)に相当し、第5駆動振動腕45は、他の象限における第6駆動振動腕46乃至第8駆動振動腕48(図1)に相当する。なお、以下で言う周波数は、振動腕の有する固有周波数を指す。
ジャイロ素子1では、駆動振動の周波数と検出振動の周波数とを同じ周波数にした場合、最も高感度に物理量を検出できるが、駆動振動と検出振動との周波数に相違が生じた場合、検出感度のバラツキが大きくなってしまう、という課題があった。その対策としては、予め駆動振動と検出振動との周波数に差をつけることで、周波数の差にバラツキが生じても、検出感度のバラツキを抑制することが知見されている。但し、駆動振動と検出振動とが音響結合していなければならないので、両振動が音響結合する範囲内で周波数の差を設ける必要があり、例えば、駆動振動の周波数と検出振動の周波数とが10kHz〜300kHzの場合には、第1離調周波数および第2離調周波数を0.5kHz〜3kHzにすることが望ましい。この場合、第1離調周波数は、駆動振動の周波数と、コリオリ力による検出振動でありY軸まわりの物理量を検出するための第1面外振動の周波数と、の差であり、第2離調周波数は、駆動振動の周波数と、コリオリ力による検出振動でありX軸まわりの物理量を検出するための第2面外振動の周波数と、の差である。
さらに、ジャイロ素子1のような腕構成では、X軸に対して直角に延出する第1駆動振動腕41乃至第4駆動振動腕44と、X軸に対して斜めに延出する第5駆動振動腕45乃至第8駆動振動腕48とは、音響結合しやすいように、それぞれの面内振動、即ち駆動振動の差を2kHz以下にすることが好ましい。加えて、それぞれの面外振動の周波数の差、即ち第1面外振動の周波数と第2面外振動の周波数の差は、3kHz以上にすることが好ましい。両面外振動の差を3kHz以上にしなければ、X軸まわりの物理量の検出において、例えば、第1駆動振動腕41、第2駆動振動腕42、第5駆動振動腕45、第6駆動振動腕46の4本のアームだけで、コリオリ力に起因する検出振動が結合して完結してしまい、第1検出振動腕51および第2検出振動腕52へ検出振動が伝わり難くなり、検出感度が著しく低下することになる。従って、第1駆動振動腕41乃至第4駆動振動腕44と、第5駆動振動腕45乃至第8駆動振動腕48と、の面内振動の周波数の差を2kHz以内に保ちつつ、面外振動の周波数の差を3kHz以上にする構成とすることにより、ジャイロ素子1は、X軸まわりの物理量の検出感度を大きくすることができ、Y軸まわりを含め、単体で2軸まわりの物理量を感度良く検出することができる。
また、ジャイロ素子1において、物理量の検出感度は、駆動振動と検出振動との周波数の差が大きいほど低下する傾向にある。そのため、この検出感度を向上させるためには、第1駆動振動腕41乃至第4駆動振動腕44の第1面外振動の周波数と、第5駆動振動腕45乃至第8駆動振動腕48の第2面外振動周波数と、の差を第2離調周波数よりも大きく、望ましくは2倍以上10倍以下、さらに望ましくは3倍以上5倍以下にすることが好ましい、という知見も得られている。
ジャイロ素子1では、図4(a)に縦線で示す周波数軸に記されているように、面内振動である駆動振動の周波数を25kHzとし、Y軸まわりの角速度等の物理量を検出するための第1面外振動の周波数を23kHzとし、X軸まわりの角速度等の物理量を検出するための第2面外振動の周波数を26kHzとしている。即ち、駆動振動の周波数と第2面外振動の周波数との差である第2離調周波数は、1kHzであり、第1面外振動の周波数と第2面外振動の周波数との差が、離調周波数より大きく、この場合3倍になっている。また、駆動振動の周波数は、第1面外振動の周波数と第2面外振動の周波数との間の値に設定されている。このように、駆動振動、第1面外振動および第2面外振動の周波数を、上記の値に設定することで、X軸まわりの角速度等の物理量を検出するための第2面外振動の周波数も、Y軸まわりの角速度等の物理量を検出するための第1面外振動の周波数も、駆動振動の周波数近くの好ましい値に設定されており、ジャイロ素子1は、検出感度の低下を抑制して、高い検出精度を有することができる。なお、上記の周波数の値は、最適なものの一例として挙げてある。
そして、実施形態1におけるジャイロ素子1の主な効果を述べる。図1に示すジャイロ素子1は、駆動振動腕4における音響結合性が高いため、振動エネルギーが基部2の方向へ漏れることを抑制してインピーダンスを下げることができ、Q値の高い素子となっている。このように、音響結合性の高い構成であるジャイロ素子1は、2方向の振動モードを得るのに1つの駆動回路でシステムを構成でき、小型化・低コスト化等の面で有利な構成である。
また、ジャイロ素子1は、駆動振動腕4と検出振動腕5とが、基部2からそれぞれ個別に延出している構成であり、駆動振動腕4における駆動信号が静電的に検出振動腕5における検出信号にのってしまう静電漏れ等を抑制することができる。
さらに、ジャイロ素子1は、駆動振動腕4と検出振動腕5とを個別に設定している。これにより、駆動振動腕4には駆動信号電極7のみを配線し、検出振動腕5には検出信号電極8のみを配線して、各電極のスペースを大きくとることができ、物理量検出の感度を向上させることができる。
(実施形態2)
次に、ジャイロ素子の他の形態について説明する。図2は、実施形態2におけるジャイロ素子の構成を示す平面図である。実施形態2におけるジャイロ素子1Aは、駆動振動腕4A(第1駆動振動腕41a乃至第8駆動振動腕48a)の構成が、実施形態1におけるジャイロ素子1の駆動振動腕4とは異なっている。一方、ジャイロ素子1Aの機能は、ジャイロ素子1とほぼ同様であって、X軸およびY軸まわりの角速度等を検出するのに好適な素子である。
ジャイロ素子1Aは、図2に示すように、実施形態1におけるジャイロ素子1と同様な形態の、基部2、第1連結部31、第2連結部32、第1検出振動腕51、第2検出振動腕52、第3検出振動腕53、第4検出振動腕54を有している。
そして、ジャイロ素子1Aの駆動振動腕4Aは、第1連結部31の先端から、X軸に対して直角をなしてプラスY軸方向へ延出している第1駆動振動腕41aと、第1連結部31の先端から、X軸に対して直角をなしてマイナスY軸方向へ延出している第2駆動振動腕42aと、第2連結部32の先端から、X軸に対して直角をなしてプラスY軸方向へ延出している第3駆動振動腕43aと、第2連結部32の先端から、X軸に対して直角をなしてマイナスY軸方向へ延出している第4駆動振動腕44aと、を有している。これら第1駆動振動腕41a乃至第4駆動振動腕44aにおいて、それぞれの腕は、断面が矩形状をなしていて、X軸およびY軸で形成されるX−Y平面に沿って振動する駆動振動の方向に沿う腕幅がmであり、Z軸方向の厚さがtである。図示していないが、ジャイロ素子1Aでは、検出振動腕5も、同一の断面形状を有している。
さらに、ジャイロ素子1Aは、駆動振動腕4Aとして、第1駆動振動腕41a乃至第4駆動振動腕44aに加え、第1連結部31と第1駆動振動腕41aとの交点部である付け根6aから、X軸に対して30度の角度で、第1象限の方向へ斜めに延出している第5駆動振動腕45aと、第1連結部31と第2駆動振動腕42との交点部でもある付け根6aから、X軸に対して30度の角度で、第4象限の方向へ斜めに延出している第6駆動振動腕46aと、第2連結部32と第3駆動振動腕43との交点部である付け根6bから、X軸に対して30度の角度で、第2象限の方向へ斜めに延出している第7駆動振動腕47aと、第2連結部32と第4駆動振動腕44との交点部でもある付け根6bから、X軸に対して30度の角度で、第3象限の方向へ斜めに延出している第8駆動振動腕48aと、を有している。
これら第5駆動振動腕45a乃至第8駆動振動腕48aは、それぞれの腕の断面が矩形状をなしていて、その腕幅は、第1駆動振動腕41aの腕幅mより大きい値nであり、厚さは、第1駆動振動腕41aと同じtである。さらに、第5駆動振動腕45a乃至第8駆動振動腕48aは、それぞれの先端に、腕幅nより幅広の錘部49aを有し、付け根6aまたは付け根6bから延出する長さは、錘部49aを含めても、ジャイロ素子1の第5駆動振動腕45乃至第8駆動振動腕48より短くなっている。
このような錘部49aを有する第5駆動振動腕45a乃至第8駆動振動腕48aは、その駆動振動の周波数が錘部49aのない場合に比べて下がる。また、駆動振動のような面内振動は、腕幅が振動数に対して大きく寄与するため、第5駆動振動腕45a乃至第8駆動振動腕48aは、腕幅nを厚さtより大きくすること,即ち第1駆動振動腕41aの腕幅mより大きくすることにより、駆動周波数を上げることができる。その結果、第5駆動振動腕45a乃至第8駆動振動腕48aは、駆動振動の周波数を、第1駆動振動腕41a乃至第4駆動振動腕44aに対してほぼ同等、この場合2kHz以下の差、に保つことができる。一方、第5駆動振動腕45a乃至第8駆動振動腕48aにおける第2面外振動は、腕幅の影響が少ないため、その周波数が下がった状態となっている。これにより、ジャイロ素子1Aは、第2面外振動の周波数を、第1面外振動の周波数に対して、例えば3kHzだけ低い値に、容易に、調整することができる。つまり、ジャイロ素子1Aにおいて、図4に示す面内振動である駆動振動と、第1面外振動および第2面外振動と、を所定の振動数に容易に設定することができる。これにより、ジャイロ素子1Aは、駆動振動である面内振動と、検出振動である面外振動と、の周波数を所定値に設定して、角速度等の物理量の検出感度を高めることができる。加えて、第5駆動振動腕45a乃至第8駆動振動腕48aは、錘部49aおよび腕長さの調整により小型化を図ることも可能で、ジャイロ素子1Aの小型化にも貢献することができる。
(実施形態3)
次に、ジャイロ素子の他の形態について説明する。図3は、実施形態3におけるジャイロ素子の構成を示す平面図である。実施形態3におけるジャイロ素子1Bは、駆動振動腕4B(第1駆動振動腕41b乃至第8駆動振動腕48b)の構成が、実施形態1におけるジャイロ素子1の駆動振動腕4とは異なっている。一方、ジャイロ素子1Bの機能は、ジャイロ素子1とほぼ同様であって、X軸およびY軸まわりの角速度等を検出するのに好適な素子である。
ジャイロ素子1Bは、図3に示すように、実施形態1におけるジャイロ素子1と同様な形態の、基部2、第1連結部31、第2連結部32、第1検出振動腕51、第2検出振動腕52、第3検出振動腕53、第4検出振動腕54を有している。
そして、ジャイロ素子1Bの駆動振動腕4Bは、第1連結部31の先端から、X軸に対して直角をなしてプラスY軸方向へ延出している第1駆動振動腕41bと、第1連結部31の先端から、X軸に対して直角をなしてマイナスY軸方向へ延出している第2駆動振動腕42bと、第2連結部32の先端から、X軸に対して直角をなしてプラスY軸方向へ延出している第3駆動振動腕43bと、第2連結部32の先端から、X軸に対して直角をなしてマイナスY軸方向へ延出している第4駆動振動腕44bと、を有している。
これら第1駆動振動腕41b乃至第4駆動振動腕44bは、それぞれの腕の断面が矩形状をなしていて、その腕幅は、実施形態2における第5駆動振動腕45a乃至第8駆動振動腕48aと同じnであり、厚さは、tである。さらに、第1駆動振動腕41b乃至第4駆動振動腕44bは、それぞれの先端に、腕幅nより幅広の錘部49bを有し、付け根6aまたは付け根6bから延出する長さは、錘部49bを含めても、錘部49bを有していない第5駆動振動腕45bより短くなっている。
さらに、ジャイロ素子1Bは、駆動振動腕4Bとして、第1駆動振動腕41b乃至第4駆動振動腕44bに加え、第5駆動振動腕45bが、第1駆動振動腕41bから斜めに延出し、その延出位置は、付け根6aより距離sだけプラスY軸方向へ離れた位置である。また、第5駆動振動腕45bの延出方向は、実施形態1における第5駆動振動腕45と同じで、X軸に対して30度の角度をなし、第1象限の方向である。同様に、第6駆動振動腕46bは、付け根6aより距離sだけマイナスY軸方向へ離れた位置から斜めに延出し、その延出方向は、実施形態1における第6駆動振動腕46と同じように第4象限の方向であり、第7駆動振動腕47bは、付け根6bより距離sだけプラスY軸方向へ離れた位置から斜めに延出し、その延出方向は、実施形態1における第7駆動振動腕47と同じように第2象限の方向であり、第8駆動振動腕48bは、付け根6bより距離sだけマイナスY軸方向へ離れた位置から斜めに延出し、その延出方向は、実施形態1における第8駆動振動腕48と同じように第3象限の方向である。これら第5駆動振動腕45b乃至第8駆動振動腕48bにおいて、それぞれの腕は、断面が矩形状をなしていて、実施形態2における第1駆動振動腕41aと同じ腕幅mおよび厚さtである。図示していないが、ジャイロ素子1Bでは、検出振動腕5も、同一の断面形状を有している。
このような錘部49aを有する第1駆動振動腕41b乃至第4駆動振動腕44bは、その駆動振動の周波数が錘部49bのない場合に比べて下がる。駆動振動のような面内振動は、腕幅が振動数に対して大きく寄与するため、第1駆動振動腕41b乃至第4駆動振動腕44bは、腕幅を、ジャイロ素子1Aの第1駆動振動腕41aの腕幅mより大きいnにすることにより、駆動周波数を上げることができる。その結果、第1駆動振動腕41b乃至第4駆動振動腕44bは、駆動振動の周波数を、第5駆動振動腕45b乃至第8駆動振動腕48bに対してほぼ同等に、この場合2kHz以下の差に、保つことができる。一方、第1駆動振動腕41b乃至第4駆動振動腕44bにおける第1面外振動は、腕幅の影響が少ないため、その周波数が下がった状態となっている。これにより、ジャイロ素子1Bは、第1面外振動の周波数を、第2面外振動の周波数に対して、例えば3kHzだけ低い値に、容易に、調整することができる。つまり、ジャイロ素子1Bにおいて、図4に示す面内振動である駆動振動と、第1面外振動および第2面外振動と、を所定の振動数に容易に設定することができる。これにより、ジャイロ素子1Bは、駆動振動と面外振動との周波数の差を所定値に設定して、角速度等の物理量の検出感度を高めることができる。
また、ジャイロ素子1Bは、第5駆動振動腕45bおよび第6駆動振動腕46bが、基部2から延出した第1連結部31をプラスX軸方向へそのまま延長した場合の延長線上には形成されておらず、つまり、付け根6aの位置から延出していない。これにより、第5駆動振動腕45bおよび第6駆動振動腕46bは、第1駆動振動腕41bまたは第2駆動振動腕42bとの結合性を第1連結部31から離間した状態で高めることができる。同様に、第7駆動振動腕47bおよび第8駆動振動腕48bも、第3駆動振動腕43bまたは第4駆動振動腕44bとの結合性を第2連結部32から離間した状態で高めることができる。これにより、ジャイロ素子1Bは、第1駆動振動腕41b乃至第8駆動振動腕48bから、第1連結部31または第2連結部32を介して、基部2の方向へ振動が漏れる振動漏れを、ほぼ抑制することができ、角速度等の物理量の検出感度を高めることができる。
(ジャイロ素子の動作原理)
次に、実施形態1乃至実施形態3におけるジャイロ素子1,1A,1Bの動作原理について説明する。ここでの動作原理の説明は、ジャイロ素子1の場合を代表例にして述べる。図5(a)は、ジャイロ素子におけるY軸まわりの角速度の検出を示す平面図、図5(b)は、ジャイロ素子におけるX軸まわりの角速度の検出を示す平面図である。
まず、図5(a)を参照して、Y軸まわりの角速度の検出について説明する。ジャイロ素子1が駆動振動をしている状態で、ジャイロ素子1をY軸まわりに回転させると、第1駆動振動腕41および第2駆動振動腕42には、Z軸方向のコリオリ力が働き、Z軸方向の検出振動、即ち第1面外振動が発生する。同様に、第3駆動振動腕43および第4駆動振動腕44には、第1駆動振動腕41および第2駆動振動腕42と反対方向のZ軸方向にコリオリ力が働き、Z軸方向の第1面外振動が発生する。そして、第1検出振動腕51は、第1駆動振動腕41の第1面外振動に呼応して、第1駆動振動腕41と同じようにZ軸方向に検出振動をし、第2検出振動腕52は、第2駆動振動腕42の第1面外振動に呼応して、第2駆動振動腕42と同じようにZ軸方向に検出振動をする。また、第3検出振動腕53は、第3駆動振動腕43の第1面外振動に呼応して、第1検出振動腕51と反対方向のZ軸方向に検出振動をし、第4検出振動腕54は、第4駆動振動腕44の第1面外振動に呼応して、第2検出振動腕52と反対方向のZ軸方向に検出振動をする。
このように、第1検出振動腕51および第2検出振動腕52と、第3検出振動腕53および第4検出振動腕54とは、互いに異なる位相で検出振動をすることになる。ジャイロ素子1では、第1検出振動腕51および第2検出振動腕52のそれぞれの検出振動に基づく検出信号の和を算出し、さらに、第3検出振動腕53および第4検出振動腕54のそれぞれの検出振動に基づく検出信号の和を算出し、それらの和を差動させる、いわゆる差動検出方式によってコリオリ力の大きさを知得できる。つまり、ジャイロ素子1に加えられたY軸まわりの角速度(物理量)の大きさを認識することができる。
次に、図5(b)を参照して、X軸まわりの角速度の検出について説明する。ジャイロ素子1が駆動振動をしている状態で、ジャイロ素子1をX軸のまわりに回転させると、第5駆動振動腕45および第7駆動振動腕47には、Z軸方向のコリオリ力が働き、Z軸方向の検出振動、即ち第2面外振動が発生する。同様に、第6駆動振動腕46および第8駆動振動腕48には、第5駆動振動腕45および第7駆動振動腕47と反対方向のZ軸方向にコリオリ力が働き、Z軸方向の第2面外振動検出振動が発生する。そして、第1検出振動腕51は、第5駆動振動腕45の第2面外振動に呼応して、第5駆動振動腕45と同じようにZ軸方向に検出振動をし、第3検出振動腕53は、第7駆動振動腕47の第2面外振動に呼応して、第7駆動振動腕47と同じようにZ軸方向に検出振動をする。また、第2検出振動腕52は、第6駆動振動腕46の第2面外振動に呼応して、第1検出振動腕51と反対方向のZ軸方向に検出振動をし、第4検出振動腕54は、第8駆動振動腕48の第2面外振動に呼応して、第3検出振動腕53と反対方向のZ軸方向に検出振動をする。
このように、ジャイロ素子1において、第1検出振動腕51および第3検出振動腕53と、第2検出振動腕52および第4検出振動腕54とは、互いに異なる位相で検出振動をすることになる。ジャイロ素子1では、第1検出振動腕51および第3検出振動腕53のそれぞれの検出振動に基づく検出信号の和を算出し、さらに、第2検出振動腕52および第4検出振動腕54のそれぞれの検出振動に基づく検出信号の和を算出し、それらの和を差動させることにより、コリオリ力の大きさを知得できる。つまり、ジャイロ素子1に加えられたX軸まわりの角速度(物理量)の大きさを認識することができる。なお、ジャイロ素子1A,1BにおけるY軸およびX軸まわりの角速度の検出についても、同様な動作原理である。
(ジャイロ装置)
次に、ジャイロ素子1,1A,1Bのいずれかを用いて、角速度を検出するジャイロ装置(物理量検出装置)の構成について説明する。図6(a)は、ジャイロ素子を備えたジャイロ装置を示す平面図である。また、図6(b)は、ジャイロ素子を備えたジャイロ装置を示す断面図であり、図6(a)におけるE−E断面を示している。この場合、図6では、ジャイロ素子1を備えた場合のジャイロ装置100を示していて、図6(a)では、説明のために蓋体72を省略して示してある。
図6に示すように、ジャイロ装置100は、ジャイロ素子1と、ジャイロ素子1をリード80(80a,80b,80c,80d,80e,80f)を介して支持する支持基板78と、支持基板78を固定する固定基板である収容体71を有するセラミックパッケージ70と、IC(Integrated Circuit)チップ90と、収容体71内を気密に封止するための蓋体72とを備えている。セラミックパッケージ70に収容されているICチップ90は、セラミックパッケージ70のボンディングパッド77に金線などの金属ワイヤー91によって接続されている。このICチップ90には、駆動信号を供給してジャイロ素子1を励振させる駆動回路90aと、角速度等の物理量を検出する検出回路90bと、が含まれている。この場合、ジャイロ素子1を備えたジャイロ装置100であれば、一つの駆動回路90aで複数の駆動振動腕4を励起することが可能であり、装置の小型化が図れる。
また、セラミックパッケージ70における収容体71には棚部74が形成され、その面に接続端子75が形成されている。棚部74には、支持基板78が接着固定されていて、この接着固定には導電性接着剤79が用いられている。そして、セラミックパッケージ70の外周部には外部接続端子76が形成され、外部接続端子76と接続端子75およびボンディングパッド77の一部とが導通する構成となっている。また、支持基板78にはリード80が設けられ、各リード80a,80b,80c,80dの先端は、ジャイロ素子1の基部2に形成された、検出電極パッド81の対応するパッドにそれぞれ接合され、リード80e,80fの先端は、ジャイロ素子1の基部2に形成された駆動電極パッド82の対応するパッドにそれぞれ接合されている。これらリード80により、ジャイロ素子1は他部品と接触しないように空中に支持されている。なお、検出電極パッド81は、検出振動を検出するためのものであり、駆動電極パッド82は、駆動振動を励振させるためのものである。このような構成のセラミックパッケージ70は、収容体71にシームリング73が固着され、シームリング73に蓋体72をシーム溶接することで、セラミックパッケージ70内が減圧された状態で封止されている。なお、セラミックパッケージ70内は、減圧状態ではなく、窒素、ヘリウム、アルゴンなどの不活性ガスが封入された状態でも良い。
そして、支持基板78の中央部は、開口となっていて、この開口には導体パターンであるリード80が延出している。リード80において、検出電極パッド81または駆動電極パッド82と反対側の先端は、セラミックパッケージ70の接続端子75と接続されている。このジャイロ装置100は、例えば、以下に説明する電子機器等に搭載されて、X軸およびY軸まわりの角速度等を検出する、優れたジャイロ機能を発揮する。なお、ジャイロ装置としては、ジャイロ素子1を備えた構成の他、ジャイロ素子1Aまたはジャイロ素子1Bを備えたものも、優れたジャイロ機能を発揮する。
(電子機器)
次に、ジャイロ素子1,1A,1Bのいずれかを用いた構成の電子機器について説明する。図7(a)は、ジャイロ素子を備えたデジタルビデオカメラを示す斜視図、図7(b)は、ジャイロ素子を備えた携帯電話を示す斜視図である。これらの電子機器は、一例として、ジャイロ素子1を搭載している。まず、図7(a)に示すように、ビデオカメラ300は、受像部301と、操作部302と、音声入力部303と、表示ユニット304と、を備えている。このビデオカメラ300は、ジャイロ素子1と、ジャイロ素子1を制御する駆動回路90aおよび検出回路90bを有するICチップ90と、を備えており、X軸およびY軸まわりの角速度を検出して、手ぶれ補正機能を発揮することができ、鮮明な動画映像を記録することができる。この場合、ジャイロ素子1は、ジャイロ装置100の一部として組み込まれた形態であることが好ましい。同様に、ビデオカメラ300がジャイロ素子1Aまたはジャイロ素子1Bを備えている場合も、X軸およびY軸まわりの角速度を検出して、手ぶれ補正機能を発揮することができる。
また、図7(b)に示すように、携帯電話機400は、複数の操作ボタン401と、表示ユニット402と、カメラ機構403と、シャッターボタン404と、を備えている。この携帯電話機400は、ジャイロ素子1と、ジャイロ素子1を制御する駆動回路90aおよび検出回路90bを有するICチップ90と、を備えており、X軸、Y軸およびZ軸の3軸まわりの角速度を検出して、カメラ機構403が手ぶれ補正機能を発揮することができ、鮮明な画像を記録することができる。この場合、ジャイロ素子1は、ジャイロ装置100の一部として組み込まれた形態であることが好ましい。同様に、携帯電話機400がジャイロ素子1Aまたはジャイロ素子1Bを備えている場合も、X軸およびY軸まわりの角速度を検出して、手ぶれ補正機能を発揮することができる。
なお、電子機器としては、ビデオカメラ300や携帯電話機400に限定されず、ナビゲーション装置、車体姿勢検出装置、ゲームコントローラー、ヘッドマウンテンディスプレイ、ポインティングデバイス、掃除ロボット等が挙げられる。
以上説明したジャイロ素子1,1A,1Bは、各実施形態における形態に限定されるものではなく、次に挙げる変形例のような形態であっても、実施形態と同様な効果が得られる。
(変形例1)ジャイロ素子1において、第5駆動振動腕45乃至第8駆動振動腕48および第1検出振動腕51乃至第4検出振動腕54は、X軸に対して30度の角度をなして延出しているが、30度の角度に限定されることなく、他の角度であっても良い。この構成は、ジャイロ素子1A,1Bにおいても可能である。
(変形例2)ジャイロ素子1Aにおいて、第5駆動振動腕45a乃至第8駆動振動腕48aは、付け根6aまたは付け根6bから延出しているが、付け根6a,6bから離反した位置から延出する構成であっても良い。また、ジャイロ素子1Bにおいて、第5駆動振動腕45b乃至第8駆動振動腕48bは、付け根6aまたは付け根6bから距離sだけ離反した位置から延出しているが、付け根6a,6bの位置から延出する構成であっても良い。
(変形例3)ジャイロ素子1Aの第5駆動振動腕45a乃至第8駆動振動腕48a、およびジャイロ素子1Bの第1駆動振動腕41b乃至第4駆動振動腕44bは、錘部49aまたは錘部49bを有しているが、錘部49a,49bを設ける代わりに、腕の長さを短くするか、あるいは長くしても良い。腕を短くした場合は、駆動振動の周波数が上がるため、腕幅を小さくし、腕を長くした場合は、駆動振動の周波数が下がるため、腕幅を大きくして、同じ周波数を保つ構成とする。
(変形例4)ジャイロ素子1,1A,1Bは、圧電性材である水晶から形成されているが、水晶に限定されることなく、水晶以外のニオブ酸リチウム(LiNbO3)、チタン酸ジルコン鉛(PZT)等を用いても良い。更に、ジャイロ素子1,1A,1Bは、圧電性材に限定されるものではなく、シリコンやゲルマニウムなどの非圧電性材料であっても良く、この場合、駆動信号電極には圧電性材を組み合わせて振動可能な構成にしておく。これにより、ジャイロ素子1,1A,1Bにおいて、要求特性や用途等に応じて、適切な材料を選ぶことができ選択肢が拡大する。
1…物理量検出素子としてのジャイロ素子、2…基部、3…連結部、4…駆動振動腕、5…検出振動腕、7…駆動信号電極、8…検出信号電極、49…錘部、90…ICチップ、90a…駆動回路、90b…検出回路、100…物理量検出装置としてのジャイロ装置、300…電子機器としてのビデオカメラ、400…電子機器としての携帯電話。

Claims (13)

  1. 基部と、
    前記基部の重心位置である原点を通るX軸と、前記原点を通り、前記X軸と直交するY軸と、前記原点を通り、前記X軸および前記Y軸と直交するZ軸と、を有する座標軸を定義し、X座標とY座標とがともに正の値をとる領域を第1象限、X座標が負でY座標が正の値をとる領域を第2象限、X座標とY座標とがともに負の値をとる領域を第3象限、X座標が正でY座標が負の値をとる領域を第4象限、と定義した場合、
    前記基部と連結し、前記X軸に沿って、前記基部の両側に設けられている第1連結部および第2連結部と、
    前記第1連結部から、前記Y軸に沿って互いに反対方向へそれぞれ延出し、前記X軸および前記Y軸で形成される平面に沿って駆動振動をする第1駆動振動腕および第2駆動振動腕と、
    前記第2連結部から、前記Y軸に沿って互いに反対方向へそれぞれ延出し、前記駆動振動をする第3駆動振動腕および第4駆動振動腕と、
    前記第1駆動振動腕の前記第1連結部側から、前記第1象限方向かつ前記X軸に対して斜めに延出し、前記駆動振動をする第5駆動振動腕と、
    前記第2駆動振動腕の前記第1連結部側から、前記第4象限方向かつ前記X軸に対して斜めに延出し、前記駆動振動をする第6駆動振動腕と、
    前記第3駆動振動腕の前記第2連結部側から、前記第2象限方向かつ前記X軸に対して斜めに延出し、前記駆動振動をする第7駆動振動腕と、
    前記第4駆動振動腕の前記第2連結部側から、前記第3象限方向かつ前記X軸に対して斜めに延出し、前記駆動振動をする第8駆動振動腕と、
    前記基部の前記第1象限側から、前記第1象限方向かつ前記X軸に対して斜めに延出している第1検出振動腕と、
    前記基部の前記第4象限側から、前記第4象限方向かつ前記X軸に対して斜めに延出している第2検出振動腕と、
    前記基部の前記第2象限側から、前記第2象限方向かつ前記X軸に対して斜めに延出している第3検出振動腕と、
    前記基部の前記第3象限側から、前記第3象限方向かつ前記X軸に対して斜めに延出している第4検出振動腕と、を備え、
    前記第1駆動振動腕乃至前記第4駆動振動腕におけるZ軸方向の第1面外振動の周波数と、前記第5駆動振動腕乃至前記第8駆動振動腕におけるZ軸方向の第2面外振動の周波数と、の差が、前記駆動振動の周波数と前記第2面外振動の周波数との差である第2離調周波数よりも大きい、ことを特徴とする物理量検出素子。
  2. 請求項1に記載の物理量検出素子において、
    前記第1面外振動の周波数と前記第2面外振動の周波数との差は、前記第2離調周波数の2倍以上10倍以下である、ことを特徴とする物理量検出素子。
  3. 請求項1または2に記載の物理量検出素子において、
    前記駆動振動の周波数は、前記第1面外振動の周波数と前記第2面外振動の周波数との間の値である、ことを特徴とする物理量検出素子。
  4. 請求項1から3のいずれか一項に記載の物理量検出素子において、
    前記第5駆動振動腕乃至前記第8駆動振動腕は、前記駆動振動の方向に沿う腕幅がZ軸方向の厚さよりも大きい構成であり、それぞれの先端に幅広の錘部を有している、ことを特徴とする物理量検出素子。
  5. 請求項1から3のいずれか一項に記載の物理量検出素子において、
    前記第1駆動振動腕乃至前記第4駆動振動腕は、前記駆動振動の方向に沿う腕幅がZ軸方向の厚さよりも大きい構成であり、それぞれの先端に幅広の錘部を備えている、ことを特徴とする物理量検出素子。
  6. 請求項1から5のいずれか一項に記載の物理量検出素子において、
    前記第1駆動振動腕乃至前記第8駆動振動腕は、駆動信号電極を備え、
    前記第1検出振動腕乃至前記第4検出振動腕は、検出信号電極を備えている、ことを特徴とする物理量検出素子。
  7. 請求項1から6のいずれか一項に記載の物理量検出素子において、
    前記第5駆動振動腕および前記第6駆動振動腕は、前記第1連結部の延長線上を避けた位置から延出し、
    前記第7駆動振動腕および前記第8駆動振動腕は、前記第2連結部の延長線上を避けた位置から延出している、ことを特徴とする物理量検出素子。
  8. 請求項1から7のいずれか一項に記載の物理量検出素子において、
    前記第5駆動振動腕は、前記第1駆動振動腕と同位相で振動し、前記第6駆動振動腕は、前記第1駆動振動腕とは逆位相で振動する前記第2駆動振動腕と同位相で振動し、前記第7駆動振動腕は、前記第1駆動振動腕とは逆位相で振動する前記第3駆動振動腕と同位相で振動し、前記第8駆動振動腕は、前記第3駆動振動腕とは逆位相で振動する前記第4駆動振動腕と同位相で振動する、ことを特徴とする物理量検出素子。
  9. 請求項1から8のいずれか一項に記載の物理量検出素子において、
    六方晶の結晶構造を有する圧電性材を用いている、ことを特徴とする物理量検出素子。
  10. 請求項1から9のいずれか一項に記載の物理量検出素子と、
    前記第1駆動振動腕乃至前記第8駆動振動腕へ駆動信号を供給する駆動回路と、
    前記第1検出振動腕乃至前記第4検出振動腕からの物理量検出信号を検出する検出回路と、を備える、ことを特徴とする物理量検出装置。
  11. 請求項10に記載の物理量検出装置において、
    前記検出回路は、前記第1検出振動腕に生じる前記検出信号と前記第2検出振動腕に生じる前記検出信号との和と、前記第3検出振動腕に生じる前記検出信号と前記第4検出振動腕に生じる前記検出信号との和と、を差動させて前記物理量検出信号を検出する、ことを特徴とする物理量検出装置。
  12. 請求項10に記載の物理量検出装置において、
    前記検出回路は、前記第1検出振動腕に生じる前記検出信号と前記第3検出振動腕に生じる前記検出信号との和と、前記第2検出振動腕に生じる前記検出信号と前記第4検出振動腕に生じる前記検出信号との和と、を差動させて前記物理量検出信号を検出する、ことを特徴とする物理量検出装置。
  13. 請求項1から9のいずれか一項に記載の物理量検出素子を備えている、ことを特徴とする電子機器。
JP2011235724A 2011-10-27 2011-10-27 物理量検出素子、物理量検出装置、および電子機器 Pending JP2013092492A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011235724A JP2013092492A (ja) 2011-10-27 2011-10-27 物理量検出素子、物理量検出装置、および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011235724A JP2013092492A (ja) 2011-10-27 2011-10-27 物理量検出素子、物理量検出装置、および電子機器

Publications (1)

Publication Number Publication Date
JP2013092492A true JP2013092492A (ja) 2013-05-16

Family

ID=48615705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011235724A Pending JP2013092492A (ja) 2011-10-27 2011-10-27 物理量検出素子、物理量検出装置、および電子機器

Country Status (1)

Country Link
JP (1) JP2013092492A (ja)

Similar Documents

Publication Publication Date Title
KR101384597B1 (ko) 진동편, 센서 유닛, 전자 기기, 진동편의 제조 방법 및 센서 유닛의 제조 방법
US9222775B2 (en) Vibrator element, sensor unit, and electronic device
US8633637B2 (en) Resonator element, resonator, physical quantity sensor, and electronic equipment that have steps on a side surface of a vibrating arm
JP5970698B2 (ja) 振動片、センサーユニット、電子機器
JP2006201011A (ja) 振動ジャイロ素子、振動ジャイロ素子の支持構造およびジャイロセンサ
JP5870532B2 (ja) 物理量検出素子、物理量検出装置および電子機器
JP5970690B2 (ja) センサー素子、センサーユニット、電子機器及びセンサーユニットの製造方法
JP2013186029A (ja) 振動片、センサーユニットおよび電子機器
JP2006201118A (ja) 圧電振動ジャイロ素子およびジャイロセンサ
JP2007064662A (ja) 振動ジャイロ
JP2007232710A (ja) 振動ジャイロ用振動子
JP2008157856A (ja) 角速度センサ、角速度センサの製造方法及び電子機器
JP6210345B2 (ja) ジャイロセンサー素子、ジャイロセンサーユニット、電子機器及びジャイロセンサーユニットの製造方法
JP2007163248A (ja) 圧電振動ジャイロ
JP2013096882A (ja) 物理量検出素子、物理量検出装置、および電子機器
JP5970699B2 (ja) センサーユニット、電子機器
JP2013092492A (ja) 物理量検出素子、物理量検出装置、および電子機器
JP5682495B2 (ja) 物理量検出素子、物理量検出装置、および電子機器
JP2013088275A (ja) 物理量検出素子、物理量検出装置および電子機器
JP4183272B2 (ja) 角速度センサおよび角速度の測定方法
JP6361707B2 (ja) 振動片、センサーユニット、電子機器、および、振動片の製造方法
JP2009192403A (ja) 角速度および加速度検出装置
JP2008008638A (ja) 圧電デバイス
JP2016176896A (ja) 振動片およびジャイロセンサー
JP2015034829A (ja) 振動片、センサーユニット、電子機器、振動片の製造方法、および、センサーユニットの製造方法