JP2013091749A - 反射防止塗料組成物及び反射防止フィルム - Google Patents

反射防止塗料組成物及び反射防止フィルム Download PDF

Info

Publication number
JP2013091749A
JP2013091749A JP2011236056A JP2011236056A JP2013091749A JP 2013091749 A JP2013091749 A JP 2013091749A JP 2011236056 A JP2011236056 A JP 2011236056A JP 2011236056 A JP2011236056 A JP 2011236056A JP 2013091749 A JP2013091749 A JP 2013091749A
Authority
JP
Japan
Prior art keywords
group
meth
acrylate
fluorine
functional group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011236056A
Other languages
English (en)
Inventor
Hideya Suzuki
秀也 鈴木
Jun Noguchi
潤 野口
Shin Sasamoto
慎 笹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2011236056A priority Critical patent/JP2013091749A/ja
Publication of JP2013091749A publication Critical patent/JP2013091749A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】優れた防汚性及び耐擦傷性を有する塗膜が得られる反射防止塗料組成物及び該反射防止塗料組成物を用いた反射防止フィルムを提供する。
【解決手段】低屈折率剤(A)、活性エネルギー線硬化性化合物(B)、及び重合体の構造中にポリ(パーフルオロアルキレンエーテル)鎖、アダマンチル基及び重合性不飽和基を有する重合体である含フッ素重合性樹脂(C)を含有することを特徴とする反射防止塗料組成物を用いる。特に、含フッ素重合性樹脂(C)として、ポリ(パーフルオロアルキレンエーテル)鎖とその両末端に重合性不飽和基を有する化合物と、反応性官能基を持つアダマンチル基を有する重合性不飽和単量体とを必須の単量体成分として共重合させて得られる重合体に、前記反応性官能基に対して反応性を有する官能基及び重合性不飽和基を有する化合物を反応させたものを用いる。
【選択図】なし

Description

本発明は、優れた防汚性及び耐擦傷性を有する塗膜が得られる反射防止塗料組成物及び該反射防止塗料組成物を用いた反射防止フィルムに関する。
液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、有機ELディスプレイ等の画像表示装置の表示面は、その視認性を高めるために、蛍光灯などの外部光源から照射された光線の反射が少ない反射防止性が求められている。また、画像表示装置の表示面を手で触るなどすると指紋が付着し、その汚れのため視認性が低下する問題があり、画像表示装置の表示面には防汚性(耐指紋性)も求められている。ここで、耐指紋性とは、指紋が物品に付着しにくいこと、あるいは指紋が物品に付着しても容易に拭き取れることをいう。
ここで、反射防止性及び防汚性を有する反射防止フィルムとして、フィルム基材の表面にまずハードコート層を設け、その上に低屈折率層を設けて、さらにその上に防汚性を有する表面保護層を設けたものが知られている。このような反射防止フィルムとして、低屈折率層の上に含フッ素ポリマーと無機微粒子とを含有し、これらのものが共有結合を介して結合している材料からなる表面保護層を設けた反射防止フィルムが提案されている(例えば、特許文献1参照。)。しかしながら、この反射防止フィルムでは、低屈折率層と表面保護層との2層を2工程で設ける必要があり、工程が煩雑になるという問題があった。
また、低屈折率層に防汚性を付与することで、1層で反射防止性及び防汚性を有する反射防止フィルムを得るものとして、ヘキサフルオロプロピレン、パーフルオロ(プロピルビニルエーテル)を原料とした含フッ素重合体にエチレン不飽和基を導入したもの、シロキサン骨格及び(メタ)アクロイル基を有するシリコーン化合物、(メタ)アクリレート化合物及び中空シリカ粒子を含有する硬化性樹脂組成物の硬化塗膜を低屈折率層とした反射防止フィルムが提案されている(例えば、特許文献2参照。)。しかしながら、この反射防止フィルムでも防汚性は十分ではなかった。
また、反射防止フィルムは防汚性だけではなく、耐擦傷性も要求されており、防汚性と耐擦傷性を併せ持つ材料が求められていた。
特開2007−8088号公報 特開2008−19402号公報
本発明が解決しようとする課題は、優れた防汚性及び耐擦傷性を有する塗膜が得られる反射防止塗料組成物及び該反射防止塗料組成物を用いた反射防止フィルムを提供することである。
本発明者等は上記課題を解決すべく鋭意研究を重ねた結果、低屈折率剤、活性エネルギー線硬化性化合物、及び重合性不飽和単量体を重合させて得られた重合体であって、前記重合体の構造中にポリ(パーフルオロアルキレンエーテル)鎖、アダマンチル基及び重合性不飽和基を有する重合体である含フッ素重合性樹脂を含有する反射防止塗料組成物を用いることで、優れた防汚性及び耐擦傷性を有する反射防止フィルムが得られることを見出し、本発明を完成した。
すなわち、本発明は、低屈折率剤(A)、活性エネルギー線硬化性化合物(B)、及び重合性不飽和単量体を重合させて得られた重合体であって、前記重合体の構造中にポリ(パーフルオロアルキレンエーテル)鎖、アダマンチル基及び重合性不飽和基を有する重合体である含フッ素重合性樹脂(C)を含有することを特徴とする反射防止塗料組成物及び該塗料組成物の硬化塗膜を有する反射防止フィルムに関する。
本発明の反射防止塗料組成物の硬化塗膜は、優れた防汚性及び耐擦傷性を有するので、非常に防汚性及び耐擦傷性に優れた反射防止フィルムを得ることができる。したがって、本発明の反射防止塗料組成物を用いた反射防止フィルムは、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、有機ELディスプレイ等の画像表示装置の最表面のフィルムとして好適に用いることができる。
図1は、合成例2で得られた含フッ素重合性樹脂(1)のIRスペクトルのチャート図である。 図2は、合成例2で得られた含フッ素重合性樹脂(1)の13C−NMRのチャート図である。 図3は、合成例2で得られた含フッ素重合性樹脂(1)のGPCのチャート図である。
本発明で用いる低屈折率剤(A)としては、屈折率が1.44以下のものが好ましく、1.40以下のものがより好ましい。また、低屈折率剤は、無機系又は有機系のいずれのものであってもよい。
無機系の低屈折率剤(A)としては、空隙を有する微粒子、金属フッ化物微粒子等が挙げられる。前記空隙を有する微粒子としては、微粒子の内部に気体が充填されたもの、気体を内部に含む多孔質構造のもの等が挙げられる。具体的には、中空シリカ微粒子、ナノポーラス構造を有するシリカ微粒子等が挙げられる。また、前記金属フッ化物微粒子としては、フッ化マグネシウム、フッ化アルミニウム、フッ化カルシウム、フッ化リチウム等が挙げられる。
これらの無機系の低屈折率剤(A)の中でも中空シリカ微粒子が好ましい。さらに、これらの無機系の低屈折率剤(A)は、単独で用いることも2種以上併用することもできる。これらの無機系の低屈折率剤(A)は、結晶性のもの、ゾル状のもの、ゲル状のもののいずれのものも用いることができる。
前記シリカ微粒子の形状は、球状、鎖状、針状、板状、鱗片状、棒状、繊維状、不定形状のいずれであってもよいが、これらの中でも球状又は針状のものが好ましい。また、シリカ微粒子の平均粒子径は、形状が球状の場合、1〜300nmが好ましく、5〜100nmがより好ましく、10〜80nmがさらに好ましい。球状の微粒子の平均粒子径がこの範囲にあることにより、低屈折率層に優れた透明性を付与することができる。
一方、有機系の低屈折率剤(A)としては、空隙を有する微粒子、含フッ素共重合体等が挙げられる。前記空隙を有する微粒子としては、中空高分子微粒子が好ましい。中空高分子微粒子は、分散安定剤の水溶液中で、(1)少なくとも1種の架橋性モノマー、(2)重合開始剤、(3)少なくとも1種の架橋性モノマーから得られる重合体又は少なくとも1種の架橋性モノマーと少なくとも1種の単官能性モノマーとの共重合体、並びに、前記(1)〜(3)に対して相溶性の低い水難溶性の溶媒からなる混合物を分散させ、懸濁重合を行うことにより製造することができる。なおここで、架橋性モノマーとは重合性基を2つ以上有するものであり、単官能性モノマーとは重合性基を1つ有するものである。
有機系の低屈折率剤(A)として用いる含フッ素共重合体は、樹脂中にフッ素原子を多く含有していることで低屈折率となっている樹脂である。この含フッ素共重合体としては、フッ化ビニリデンとヘキサフルオロプロピレンとをモノマー原料とした共重合体が挙げられる。
前記含フッ素共重合体の原料である各モノマーの比率は、フッ化ビニリデンの比率が30〜90質量%が好ましく、40〜80質量%がより好ましく、40〜70質量%がさらに好ましく、ヘキサフルオロプロピレンの比率が5〜50質量%が好ましく、10〜50質量%がより好ましく、15〜45%がさらに好ましい。この他のモノマーとして、テトラフルオロエチレンを0〜40質量%の範囲で使用してもよい。
前記含フッ素共重合体には、その他の原料のモノマー成分として、フルオロエチレン、トリフルオロエチレン、クロロトリフルオロエチレン、1,2−ジクロロ−1,2−ジフルオロエチレン、2−ブロモ−3,3,3−トリフルオロエチレン、3−ブロモ−3,3−ジフルオロプロピレン、3,3,3−トリフルオロプロピレン、1,1,2−トリクロロ−3,3,3−トリフルオロプロピレン、α−トリフルオロメタクリル酸等のフッ素原子を有する重合性モノマーを用いることができる。これらのその他の原料のモノマー成分は、含フッ素共重合体の原料モノマー中に20質量%以下の範囲で用いるのが好ましい。
前記含フッ素共重合体中のフッ素含有率は、60〜70質量%であることが好ましく、62〜70質量%であることがより好ましく、64〜68質量%であることがさらに好ましい。含フッ素共重合体のフッ素含有率がこの範囲であると、溶剤に対する溶解性が良好となり、種々の基材に対して優れた密着性を発揮し、高い透明性、低い屈折率、優れた機械的強度を有する薄膜が形成できる。
前記含フッ素共重合体の分子量は、ポリスチレン換算数平均分子量で5,000〜200,000であることが好ましく、10,000〜100,000であることがより好ましい。含フッ素共重合体の分子量がこの範囲であると、得られる樹脂の粘度が優れた塗布性を有する範囲となる。また、含フッ素共重合体自体の屈折率が、1.45以下のものが好ましく、1.42以下のものがより好ましく、1.40以下であるものがさらに好ましい。
本発明に用いる活性エネルギー線硬化性化合物(B)としては、紫外線等の活性エネルギー線照射により重合又は架橋反応可能な光重合性官能基を有する化合物であれば特に限定されることなく用いることができる。
前記活性エネルギー線硬化性化合物(B)として、まず、活性エネルギー線硬化性単量体(B−1)が挙げられる。前記単量体(B−1)としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、数平均分子量が150〜1000の範囲にあるポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、数平均分子量が150〜1000の範囲にあるポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート、ペンタエリスルトールテトラ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ジペンタエリスルトールペンタ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、メチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート等の脂肪族アルキル(メタ)アクリレート、グリセロール(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、アリル(メタ)アクリレート、2−ブトキシエチル(メタ)アクリレート、2−(ジエチルアミノ)エチル(メタ)アクリレート、2−(ジメチルアミノ)エチル(メタ)アクリレート、γ−(メタ)アクリロキシプロピルトリメトキシシラン、2−メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジプロピレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、ポリブタジエン(メタ)アクリレート、ポリエチレングリコール−ポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール−ポリブチレングリコール(メタ)アクリレート、ポリスチリルエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メトキシ化シクロデカトリエン(メタ)アクリレート、フェニル(メタ)アクリレート、等が挙げられる。
これらのなかでも特に硬化塗膜の硬度に優れる点からトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート、ペンタエリスルトールテトラ(メタ)アクリレート等の3官能以上の多官能(メタ)アクリレートが好ましい。これらの活性エネルギー線硬化性単量体(B−1)は、これらは、単独で用いることも2種以上併用することもできる。
なお、本発明において、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリロイル基」とは、メタクリロイル基とアクリロイル基の一方又は両方をいい、「(メタ)アクリル酸」とは、メタクリル酸とアクリル酸の一方又は両方をいう。
また、前記活性エネルギー線硬化性化合物(B)として、活性エネルギー線硬化型樹脂(B−2)も用いることができる。この活性エネルギー線硬化型樹脂(B−2)としては、ウレタン(メタ)アクリレート樹脂、不飽和ポリエステル樹脂、エポキシ(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂、アクリル(メタ)アクリレート樹脂等が挙げられるが、本発明では、特に透明性や低収縮性等の点からウレタン(メタ)アクリレート樹脂が好ましい。
ここで用いるウレタン(メタ)アクリレート樹脂は、脂肪族ポリイソシアネート化合物又は芳香族ポリイソシアネート化合物と水酸基を有する(メタ)アクリレート化合物とを反応させて得られるウレタン結合と(メタ)アクリロイル基とを有する樹脂が挙げられる。
前記脂肪族ポリイソシアネート化合物としては、例えば、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート(以下、HDIと略する。)、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、2−メチル−1,5−ペンタンジイソシアネート、3−メチル−1,5−ペンタンジイソシアネート、ドデカメチレンジイソシアネート、2−メチルペンタメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシリレンジイソシアネート、水素添加テトラメチルキシリレンジイソシアネート、シクロヘキシルジイソシアネート等が挙げられ、また、芳香族ポリイソシアネート化合物としては、トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、1,5−ナフタレンジイソシアネート、トリジンジイソシアネート、p−フェニレンジイソシアネート等が挙げられる。
一方、水酸基を有するアクリレート化合物としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、1,5−ペンタンジオールモノ(メタ)アクリレート、1,6−ヘキサンジオールモノ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールモノ(メタ)アクリレート等の2価アルコールのモノ(メタ)アクリレート;トリメチロールプロパンジ(メタ)アクリレート、エトキシ化トリメチロールプロパン(メタ)アクリレート、プロポキシ化トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ビス(2−(メタ)アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート等の3価のアルコールのモノ又はジ(メタ)アクリレート、あるいは、これらのアルコール性水酸基の一部をε−カプロラクトンで変性した水酸基を有するモノ及びジ(メタ)アクリレート;ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の1官能の水酸基と3官能以上の(メタ)アクリロイル基を有する化合物、あるいは、該化合物をさらにε−カプロラクトンで変性した水酸基を有する多官能(メタ)アクリレート;ジプロピレングリコールモノ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等のオキシアルキレン鎖を有する(メタ)アクリレート化合物;ポリエチレングリコール−ポリプロピレングリコールモノ(メタ)アクリレート、ポリオキシブチレン−ポリオキシプロピレンモノ(メタ)アクリレート等のブロック構造のオキシアルキレン鎖を有する(メタ)アクリレート化合物;ポリ(エチレングリコール−テトラメチレングリコール)モノ(メタ)アクリレート、ポリ(プロピレングリコール−テトラメチレングリコール)モノ(メタ)アクリレート等のランダム構造のオキシアルキレン鎖を有する(メタ)アクリレート化合物等が挙げられる。
上記した脂肪族ポリイソシアネート化合物又は芳香族ポリイソシアネート化合物と水酸基を有するアクリレート化合物との反応は、ウレタン化触媒の存在下、常法により行うことができる。ここで使用し得るウレタン化触媒は、具体的には、ピリジン、ピロール、トリエチルアミン、ジエチルアミン、ジブチルアミンなどのアミン類、トリフェニルホスフィン、トリエチルホスフィンなどのホフィン類、ジブチル錫ジラウレート、オクチル錫トリラウレート、オクチル錫ジアセテート、ジブチル錫ジアセテート、オクチル酸錫などの有機錫化合物、オクチル酸亜鉛などの有機金属化合物が挙げられる。
これらのウレタンアクリレート樹脂の中でも特に脂肪族ポリイソシアネート化合物と水酸基を有する(メタ)アクリレート化合物とを反応させて得られるものが硬化塗膜の透明性に優れ、かつ、活性エネルギー線に対する感度が良好で硬化性に優れる点から好ましい。
次に、不飽和ポリエステル樹脂は、α,β−不飽和二塩基酸又はその酸無水物、芳香族飽和二塩基酸又はその酸無水物、及び、グリコール類の重縮合によって得られる硬化性樹脂であり、α,β−不飽和二塩基酸又はその酸無水物としては、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸、クロルマレイン酸、及びこれらのエステル等が挙げられる。芳香族飽和二塩基酸又はその酸無水物としては、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、ニトロフタル酸、テトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、ハロゲン化無水フタル酸及びこれらのエステル等が挙げられる。脂肪族あるいは脂環族飽和二塩基酸としては、シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、グルタル酸、ヘキサヒドロ無水フタル酸及びこれらのエステル等が挙げられる。グリコール類としては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、2−メチルプロパン−1,3−ジオール、ネオペンチルグリコール、トリエチレングリコール、テトラエチレングリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ビスフェノールA、水素化ビスフェノールA、エチレングリコールカーボネート、2,2−ジ−(4−ヒドロキシプロポキシジフェニル)プロパン等が挙げられ、その他にエチレンオキサイド、プロピレンオキサイド等の酸化物も同様に使用できる。
次に、エポキシビニルエステル樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のエポキシ樹脂のエポキシ基に(メタ)アクリル酸を反応させて得られるものが挙げられる。これらの活性エネルギー線硬化型樹脂(B−2)は、単独で用いることも2種以上併用することもできる。
前記低屈折率剤(A)と活性エネルギー線硬化性化合物(B)との質量比率は、(A):(B)=40:60〜90:10の範囲が好ましく、50:50〜80:20の範囲がより好ましく、55:45〜70:30の範囲がさらに好ましい。
本発明で用いる含フッ素重合性樹脂(C)は、重合性不飽和単量体を重合させて得られた重合体であって、前記重合体の構造中にポリ(パーフルオロアルキレンエーテル)鎖、アダマンチル基及び重合性不飽和基を有する重合体である。本発明で用いる含フッ素重合性樹脂(C)は、ポリ(パーフルオロアルキレンエーテル)鎖を有することで、その低い表面自由エネルギーにより含フッ素重合性樹脂(C)が塗膜表面に偏析させることができるとともに、ポリ(パーフルオロアルキレンエーテル)構造の撥水撥油性により高い防汚性を有し、さらに高い滑り性が発現して硬化塗膜の耐擦傷性を向上することができる。また、前記含フッ素重合性樹脂(C)は、アダマンチル基を有するため、高い表面硬度の硬化塗膜が得られ、より高い耐擦傷性が得られる。さらに、前記含フッ素重合性樹脂(C)は、重合性不飽和基を有するため、前記含フッ素重合性樹脂(C)同士、又は前記活性エネルギー線硬化性化合物(B)と重合して硬化塗膜を形成できるため、ポリ(パーフルオロアルキレンエーテル)鎖及びアダマンチル基(後述するアダマンタン構造)を硬化塗膜に共有結合によって固定化でき、硬化塗膜表面の防汚性を安定化できるともに、さらに硬化塗膜表面の架橋密度が高くなることから、耐擦傷性も向上することができる。
本発明の含フッ素重合性樹脂は、例えば、下記の2つの方法により製造することができる。
(製造方法1)
ポリ(パーフルオロアルキレンエーテル)鎖とその両末端に重合性不飽和基を有する化合物(c1)と、反応性官能基(r1)を持つアダマンチル基を有する重合性不飽和単量体(c2)とを必須の単量体成分として共重合させて得られる重合体(P1)に、前記官能基(r1)に対して反応性を有する官能基(r2)及び重合性不飽和基を有する化合物(c3)を反応させる方法。
(製造方法2)
ポリ(パーフルオロアルキレンエーテル)鎖とその両末端に重合性不飽和基を有する化合物(c1)と、反応性官能基(r1)を持つアダマンチル基を有する重合性不飽和単量体(c2)又は反応性官能基(r1)を持たないアダマンチル基を有する重合性不飽和単量体(c4)と、反応性官能基(r3)を有する重合性不飽和単量体(c5)とを必須の単量体成分として共重合させて得られる重合体(P2)に、前記官能基(r1)又は前記官能基(r3)に対して反応性を有する官能基(r2)及び重合性不飽和基を有する1種以上の化合物(c3)を反応させる方法。
次に、上記の本発明で用いる含フッ素重合性樹脂(C)の製造に用いる各原料について説明する。
上記製造方法1及び2において、本発明の含フッ素重合性樹脂の原料となるポリ(パーフルオロアルキレンエーテル)鎖とその両末端に重合性不飽和基を有する化合物(c1)について説明する。前記化合物(c1)が有するポリ(パーフルオロアルキレンエーテル)鎖としては、炭素原子数1〜3の2価フッ化炭素基と酸素原子が交互に連結した構造を有するものが挙げられる。炭素原子数1〜3の2価フッ化炭素基は、一種類であっても良いし複数種の混合であっても良く、具体的には、下記構造式(c1’)で表されるものが挙げられる。
Figure 2013091749
(上記構造式(c1’)中、Xは下記構造式(c1’−1)〜(c1’−5)であり、構造式(c1’)中の全てのXが同一構造のものであってもよいし、また、複数の構造がランダムに又はブロック状に存在していてもよい。また、nは繰り返し単位を表す1以上の整数である。)
Figure 2013091749
これらの中でも特に塗膜表面の汚れの拭き取り性が良好となって防汚性に優れた塗膜が得られる点から前記構造式(c1’−1)で表されるパーフルオロメチレン構造と、前記構造式(c1’−2)で表されるパーフルオロエチレン構造とが共存するものがとりわけ好ましい。ここで、前記構造式(c1’−1)で表されるパーフルオロメチレン構造と、前記構造式(c1’−2)で表されるパーフルオロエチレン構造との存在比率は、モル比率[構造(c1’−1)/構造(c1’−2)]が1/10〜10/1となる割合であることが防汚性の点から好ましい。また、前記構造式(c1’)中のnの値は、3〜100の範囲が好ましく、6〜70の範囲がより好ましく、12〜50の範囲がより好ましい。
また、前記ポリ(パーフルオロアルキレンエーテル)鎖は、防汚性と滑り性が優れる点と非フッ素系硬化性樹脂組成物への溶解性を向上させやすい点からポリ(パーフルオロアルキレンエーテル)鎖1本に含まれるフッ素原子の合計が18〜200個の範囲であることが好ましく、25〜150個の範囲であることがより好ましい。
前記化合物(A)の原料となる両末端に重合性不飽和基を導入する前の化合物としては、以下の一般式(c1”−1)〜(c1”−6)が挙げられる。なお、下記の各構造式中における「−PFPE−」は、上記のポリ(パーフルオロアルキレンエーテル)鎖を表す。
Figure 2013091749
前記化合物(c1)の鎖の両末端に有する重合性不飽和基は、例えば、下記構造式(U−1)〜(U−5)で示される重合性不飽和基を有するものが挙げられる。
Figure 2013091749
これらの重合性不飽和基の中でも特に化合物(c1)自体の入手や製造の容易さ、あるいは、後述する重合性不飽和単量体(c2)、(c4)等との重合性に優れる点から、構造式U−1で表されるアクリロイルオキシ基、構造式U−2で表されるメタクリロイルオキシ基が好ましい。また、耐薬品性が向上することから、構造式U−2で表されるメタクリロイルオキシ基、構造式U−5で表されるスチリルメトキシ基が好ましい。
前記化合物(c1)のなかで、前記したアクリロイルオキシ基等を有するものとしては、下記構造式(c1−1)〜(c1−13)で表されるものが挙げられる。なお、下記の各構造式中における「−PFPE−」は、ポリ(パーフルオロアルキレンエーテル)鎖を示す。
Figure 2013091749
これらの中でも特に化合物(c1)自体の工業的製造が容易であり、また、重合体(P)を製造する際の重合反応も容易である点から、前記構造式(c1−1)、(c1−2)、(c1−5)、(c1−6)で表されるものが好ましい。また、耐薬品性が向上することから、前記構造式(c1−2)、(c1−4)、(c1−12)、(c1−13)が好ましい。
上記化合物(c1)を製造するには、例えば、ポリ(パーフルオロアルキレンエーテル)鎖の両末端に水酸基を1つずつ有する化合物に対して、(メタ)アクリル酸クロライド又はクロロメチルスチレンを脱塩酸反応させて得る方法、(メタ)アクリル酸を脱水反応させて得る方法、2−(メタ)アクリロイルオキシエチルイソシアネートをウレタン化反応させて得る方法、無水イタコン酸をエステル化反応させて得る方法、ポリ(パーフルオロアルキレンエーテル)鎖の両末端にカルボキシル基を1つずつ有する化合物に対して、4−ヒドロキシブチルアクリレートグリシジルエーテルをエステル化反応させて得る方法、グリシジルメタクリレートをエステル化反応させて得る方法、ポリ(パーフルオロアルキレンエーテル)鎖の両末端にイソシアネート基を1つずつ有する化合物に対して、2−ヒドロキシエチルアクリルアミドを反応させる方法が挙げられる。これらのなかでも、ポリ(パーフルオロアルキレンエーテル)鎖の両末端に水酸基を1つずつ有する化合物に対して、(メタ)アクリル酸クロライド又はクロロメチルスチレンを脱塩酸反応させて得る方法と、2−(メタ)アクリロイルオキシエチルイソシアネートをウレタン化反応させて得る方法が合成上得られやすい点で特に好ましい。
上記製造方法1において、前記含フッ素重合性樹脂(C)の原料となる前記単量体(c2)について説明する。前記単量体(c2)が有するアダマンチル基は下記アダマンタン構造を有する有機基である。
Figure 2013091749
また、前記単量体(c2)が有するアダマンチル基が持つ反応性官能基(r1)としては、水酸基、イソシアネート基、エポキシ基、カルボキシル基、カルボン酸ハライド基、酸無水物基等が挙げられる。前記単量体(c2)が有する重合性不飽和基は、ラジカル重合性を有する炭素−炭素不飽和二重結合が好ましく、より具体的には、ビニル基、(メタ)アクリロイル基、マレイミド基等が挙げられ、重合が容易な点から(メタ)アクリロイル基がより好ましい。また、得られる重合体の硬化物の硬さが増す点でメタクリロイル基がより好ましい。これら前記単量体(c2)は、1種類のみで用いることも、反応性官能基(r1)や重合性不飽和基が異なる2種以上併用することもできる。
前記単量体(c2)としては、例えば、下記一般式(c2−1)で表される化合物が挙げられる。
Figure 2013091749
(式中、Lは前記反応性官能基(r1)を表し、X及びYは2価の有機基又は単結合を表し、Rは水素原子、メチル基又はCFを表す。)
上記一般式(c2−1)中の−X−Lで表される前記反応性官能基(r1)を有する有機基及びYの結合位置は、アダマンタン構造中のどの炭素原子に結合していてもよく、また、−X−Lについては2つ以上有していてもよい。さらに、アダマンタン構造を構成する炭素原子に結合している水素原子は、その一部又は全部がフッ素原子、アルキル基等に置換されていても構わない。また、上記一般式(c2−1)中のX及びYは2価の有機基又は単結合であるが、この2価の有機基としては、メチレン基、プロピル基、イソプロピリデン基等の炭素原子数1〜8のアルキレン基が挙げられる。
前記単量体(c2)のより具体的な例としては、下記式(c2−1−1)〜(c2−1−5)等で表される化合物が挙げられる。
Figure 2013091749
上記製造方法2において、本発明の含フッ素重合性樹脂の原料となる前記単量体(c4)について説明する。前記単量体(c4)はアダマンチル基を有する重合性不飽和単量体で、アダマンチル基については、前記単量体(c2)と同じである。また、前記単量体(c4)が有する重合性不飽和基は、ラジカル重合性を有する炭素−炭素不飽和二重結合が好ましく、より具体的には、ビニル基、(メタ)アクリロイル基、マレイミド基等が挙げられ、重合が容易な点から(メタ)アクリロイル基がより好ましい。また、得られる重合体の硬化物の硬さが増す点でメタクリロイル基がより好ましい。これらの単量体(c4)は、1種類のみで用いることも2種以上を併用することもできる。
前記単量体(c4)としては、例えば、下記一般式(c4−1)で表される化合物が挙げられる。
Figure 2013091749
(式中、Rは水素原子、メチル基又はCFを表す。)
(メタ)アクリロイル基は、アダマンタン構造中のどの炭素原子に結合していてもよい。また、上記一般式(c4−1)中のアダマンタン構造を構成する炭素原子に結合している水素原子は、その一部又は全部がフッ素原子、アルキル基等に置換されていても構わない。
前記単量体(c4)のより具体的な例としては、下記式(c4−1−1)〜(c4−1−6)等で表される化合物が挙げられる。
Figure 2013091749
上記製造方法2において、本発明の含フッ素重合性樹脂の原料となる前記単量体(c5)について説明する。前記単量体(c5)が有する反応性官能基(r3)としては、水酸基、イソシアネート基、エポキシ基、カルボキシル基、カルボン酸ハライド基、酸無水物基等が挙げられる。また、前記単量体(c5)が有する重合性不飽和基は、ラジカル重合性を有する炭素−炭素不飽和二重結合が好ましく、より具体的には、ビニル基、(メタ)アクリロイル基、マレイミド基等が挙げられ、重合が容易な点から(メタ)アクリロイル基がより好ましい。
前記単量体(c5)の具体例としては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、1,4−シクロヘキサンジメタノールモノ(メタ)アクリレート、N−(2−ヒドロキシエチル)(メタ)アクリルアミド、グリセリンモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−(メタ)アクリロイルオキシエチル−2−ヒドロキシエチルフタレート、末端に水酸基を有するラクトン変性(メタ)アクリレート等の水酸基を有する不飽和単量体;2−(メタ)アクリロイルオキシエチルイソシアネート、2−(2−(メタ)アクリロイルオキシエトキシ)エチルイソシアネート、1,1−ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート等のイソシアネート基を有する不飽和単量体;グリシジルメタクリレート、4−ヒドロキシブチルアクリレートグリシジルエーテル等のエポキシ基を有する不飽和単量体;(メタ)アクリル酸、2−(メタ)アクリロイルオキシエチルコハク酸、2−(メタ)アクリロイルオキシエチルフタル酸、マレイン酸、イタコン酸等のカルボキシル基を有する不飽和単量体;無水マレイン酸、無水イタコン酸等の不飽和二重結合を有する酸無水物などが挙げられる。これらの単量体(c5)は、1種類のみで用いることも2種以上併用することもできる。
また、上記製造方法1又は2において、本発明の含フッ素重合性樹脂の中間体である前記重合体(P1)又は(P2)を製造する際に、前記化合物(c1)、単量体(c2)、単量体(c4)及び単量体(c5)の他に、これらと共重合し得るその他の重合性不飽和単量体(c6)を用いても構わない。このようなその他の重合性不飽和単量体(c6)としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n−ペンチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、n−ヘプチル(メタ)アクリレート、n−オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ポリオキシアルキレン鎖を有する(メタ)アクリレート等の(メタ)アクリル酸エステル類;スチレン、α−メチルスチレン、p−メチルスチレン、p−メトキシスチレン等の芳香族ビニル類;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド類などが挙げられる。
上記製造方法1又は2において、前記含フッ素重合性樹脂(C)の原料となる前記化合物(c3)について説明する。前記化合物(c3)が有する官能基(r2)としては、例えば、水酸基、イソシアネート基、エポキシ基、カルボキシル基、カルボン酸ハライド基、酸無水物等が挙げられる。前記単量体(r1)又は(r3)が有する反応性官能基(r1)又は(r3)が水酸基である場合には、官能基(r2)としてイソシアネート基、カルボキシル基、カルボン酸ハライド基、エポキシ基が挙げられ、反応性官能基(r1)又は(r3)がイソシアネート基である場合には、官能基(r2)として水酸基が挙げられ、反応性官能基(r1)又は(r3)がエポキシ基である場合には、官能基(r2)としてカルボキシル基、水酸基が挙げられ、反応性官能基(r1)又は(r3)がカルボキシル基である場合には、官能基(r2)としてエポキシ基、水酸基が挙げられる。
ここで、上記製造方法2において、前記単量体(c2)と前記単量体(c4)を併用する場合において、これらが有する反応性官能基(r1)と反応性官能基(r3)とが、それぞれ異なる官能基の場合であり、かつ前記反応性官能基(r1)及び(r3)が共通の官能基と反応する場合は、前記反応性官能基(r1)及び(r3)と反応性を有する官能基(r2)を有する1種類の化合物(c3)を用いることができる。また、反応性官能基(r1)と反応性官能基(r3)とが共通の官能基と反応しない場合は、反応性官能基(r1)と反応性を有する官能基(r2)を有する化合物(c3)と、反応性官能基(r3)と反応性を有する官能基(r2)を有する化合物(c3)等の2種以上の化合物(c3)を用いることが好ましい。
前記化合物(c3)が有する重合性不飽和基は、ラジカル重合性を有する炭素−炭素不飽和二重結合が好ましく、より具体的には、ビニル基、(メタ)アクリロイル基、マレイミド基等が挙げられ、後述する活性エネルギー線硬化型樹脂組成物での硬化性が良好な点から(メタ)アクリロイル基がより好ましい。また、得られる重合体の硬化物の硬さが増す点でメタクリロイル基がより好ましい。
前記化合物(c3)の具体的としては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、1,4−シクロヘキサンジメタノールモノ(メタ)アクリレート、N−(2−ヒドロキシエチル)(メタ)アクリルアミド、グリセリンモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−(メタ)アクリロイルオキシエチル−2−ヒドロキシエチルフタレート、末端に水酸基を有するラクトン変性(メタ)アクリレート等の水酸基を有する不飽和単量体;2−(メタ)アクリロイルオキシエチルイソシアネート、2−(2−(メタ)アクリロイルオキシエトキシ)エチルイソシアネート、1,1−ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート等のイソシアネート基を有する不飽和単量体;グリシジルメタクリレート、4−ヒドロキシブチルアクリレートグリシジルエーテル等のエポキシ基を有する不飽和単量体;(メタ)アクリル酸、2−(メタ)アクリロイルオキシエチルコハク酸、2−(メタ)アクリロイルオキシエチルフタル酸、マレイン酸、イタコン酸等のカルボキシル基を有する不飽和単量体;無水マレイン酸、無水イタコン酸等の不飽和二重結合を有する酸無水物などが挙げられる。また、複数の重合性不飽和基を有するものとして、2−ヒドロキシ−3−アクリロイルオキシプロピルメタクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等を用いることもできる。これらの化合物(c3)は、1種類のみで用いることも2種以上併用することもできる。
上記の化合物(c3)の具体的の中でも特に紫外線照射での重合硬化性が好ましい点から、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、3−ヒドロキシプロピルアクリレート、2−ヒドロキシブチルアクリレート、4−ヒドロキシブチルアクリレート、1,4−シクロヘキサンジメタノールモノアクリレート、N−(2−ヒドロキシエチル)アクリルアミド、2−アクリロイルオキシエチルイソシアネート、1,1−ビス(アクリロイルオキシメチル)エチルイソシアネート4−ヒドロキシブチルアクリレートグリシジルエーテル、アクリル酸が好ましい。
次に、上記で挙げた原料を用いて本発明の含フッ素重合性樹脂のより具体的な製造方法について説明する。
上記製造方法1又は2において、本発明の含フッ素重合性樹脂の中間体である前記重合体(P1)又は(P2)を製造する方法は、製造方法1の場合は、前記化合物(c1)及び前記単量体(c2)、さらに必要に応じてその他の重合性不飽和単量体(c6)を、製造方法2の場合は、前記化合物(c1)、前記単量体(c2)、前記単量体(c4)、及び前記単量体(c5)、さらに必要に応じてその他の重合性不飽和単量体(c6)を、有機溶剤中、重合開始剤を使用して重合させる方法が挙げられる。ここで用いる有機溶媒としては、ケトン類、エステル類、アミド類、スルホキシド類、エーテル類、炭化水素類が好ましく、具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、ジメチルスルホキシド、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、トルエン、キシレン等が挙げられる。これらは、沸点、相溶性、重合性を考慮して適宜選択される。重合開始剤としては、例えば過酸化ベンゾイル等の過酸化物、アゾビスイソブチロニトリル等のアゾ化合物等が例示できる。さらに必要に応じてラウリルメルカプタン、2−メルカプトエタノ−ル、チオグリセロール、エチルチオグリコ−ル酸、オクチルチオグリコ−ル酸等の連鎖移動剤を使用することができる。
製造方法1又は2においては、上記のようにして得られる重合体(P1)又は(P2)に、前記官能基(r1)又は(r3)に対して反応性を有する官能基(r2)及び重合性不飽和基を有する化合物(c3)を反応させることにより、本発明の含フッ素重合性樹脂が得られる。
前記重合体(P1)又は(P2)に、前記化合物(c3)を反応させる方法は、化合物(c3)等が有する重合性不飽和基が重合しない条件で行えば良く、例えば、温度条件を30〜120℃の範囲に調節して反応させることが好ましい。この反応は触媒や重合禁止剤の存在下、必要により有機溶剤の存在下に行うことが好ましい。
例えば、前記官能基(r1)又は(r3)が水酸基であって、前記官能基(r2)がイソシアネート基である場合は、重合禁止剤としてp−メトキシフェノール、ヒドロキノン、2,6−ジ−t−ブチル−4−メチルフェノール等を使用し、ウレタン化反応触媒としてジブチル錫ジラウレート、ジブチル錫ジアセテート、オクチル酸錫、オクチル酸亜鉛等を使用し、反応温度40〜120℃、特に60〜90℃で反応させる方法が好ましい。また、前記官能基(r1)又は(r3)がエポキシ基であって、前記官能基(r2)がカルボキシル基である場合、又は、前記官能基(r1)又は(r3)がカルボキシル基であって、前記官能基(r2)がエポキシ基である場合は、重合禁止剤としてp−メトキシフェノール、ヒドロキノン、2,6−ジ−t−ブチル−4−メチルフェノール等を使用し、エステル化反応触媒としてトリエチルアミン等の第3級アミン類、塩化テトラメチルアンモニウム等の第4級アンモニウム類、トリフェニルホスフィン等の第3級ホスフィン類、塩化テトラブチルホスホニウム等の第4級ホスホニウム類等を使用し、反応温度80〜130℃、特に100〜120℃で反応させることが好ましい。
上記反応で用いられる有機溶媒はケトン類、エステル類、アミド類、スルホキシド類、エーテル類、炭化水素類が好ましく、具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、ジメチルスルホキシド、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、トルエン、キシレン等が挙げられる。これらは、沸点、相溶性を考慮して適宜選択すればよい。
上記のようにして得られる本発明の含フッ素重合性樹脂は、防汚性が優れることから、その数平均分子量(Mn)が1,000〜5,000の範囲であることが好ましく、1,400〜4,000の範囲であることがより好ましい。また、重量平均分子量(Mw)が2,000〜50,000の範囲であることが好ましく、3,000〜20,000の範囲であることがより好ましい。これらの数平均分子量(Mn)及び重量平均分子量(Mw)は、上記のGPCの測定により求めることができる。
ここで、数平均分子量(Mn)及び重量平均分子量(Mw)はゲル浸透クロマトグラフィー(以下、「GPC」と略記する。)測定に基づきポリスチレン換算した値である。なお、GPCの測定条件は以下の通りである。
[GPC測定条件]
測定装置:東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HHR−H」(6.0mmI.D.×4cm)
+東ソー株式会社製「TSK−GEL GMHHR−N」(7.8mmI.D.×30cm)
+東ソー株式会社製「TSK−GEL GMHHR−N」(7.8mmI.D.×30cm)
+東ソー株式会社製「TSK−GEL GMHHR−N」(7.8mmI.D.×30cm)
+東ソー株式会社製「TSK−GEL GMHHR−N」(7.8mmI.D.×30cm)
検出器:ELSD(オルテック製「ELSD2000」)
データ処理:東ソー株式会社製「GPC−8020モデルIIデータ解析バージョン4.30」
測定条件:カラム温度 40℃
展開溶媒 テトラヒドロフラン(THF)
流速 1.0ml/分
試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(5μl)。
標準試料:前記「GPC−8020モデルIIデータ解析バージョン4.30」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(単分散ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
東ソー株式会社製「F−288」
東ソー株式会社製「F−550」
また、本発明の含フッ素重合性樹脂中のフッ素含有率は、防汚性と他の成分との相溶性との両立を図ることができることから、1〜50質量%の範囲が好ましく、5〜35質量%の範囲がより好ましく、10〜25質量%の範囲がさらに好ましい。なお、本発明の含フッ素重合性樹脂中のフッ素含有率は、用いた原料の合計量に対するフッ素原子の質量比率から算出したものである。
さらに、本発明の含フッ素重合性樹脂中の重合性不飽和基当量は、硬化塗膜の耐擦傷性に優れることから、200〜3,500g/eq.の範囲が好ましく、250〜2,000g/eq.の範囲がより好ましく、300〜1,500g/eq.の範囲がさらに好ましく、400〜1,000g/eq.の範囲が特に好ましい。
前記含フッ素重合性樹脂(C)の配合量は、前記低屈折率剤(A)及び活性エネルギー線硬化性化合物(B)の合計100質量部に対して、0.1〜20質量部の範囲が好ましく、0.5〜15質量部の範囲がより好ましく、1〜12質量部の範囲がさらに好ましい。前記含フッ素重合性樹脂(C)の配合量がこの範囲であれば、防汚性及び耐擦傷性も良好なものとなる。
紫外線等の活性エネルギー線を照射して、本発明の反射防止塗料組成物を硬化させる場合には、本発明の反射防止塗料組成物に重合開始剤(D)を配合する。この重合開始剤(D)としては、例えば、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンジルメチルケタール、アゾビスイソブチロニトリル、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニル−1−オン、1−(4’−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、1−(4’−ドデシルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン、4,4’’−ジエチルイソフタロフェン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、ベンゾインイソプロピルエーテル、チオキサンソン、2−クロロチオキサンソン、2−メチルチオキサンソン、2−イソプロピルチオキサンソン、2−メチル−1[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルホスフィンオキサイド、ビス(2,4,6,−トリメチルベンゾイル)−フェニルホスフィンオキサイド、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド等が挙げられ、単独でも2種以上を併用してもよい。
また、必要に応じてアミン化合物又はリン化合物等の光増感剤を添加し、光重合を促進することもできる。
重合開始剤(E)の配合量は、前記低屈折率剤(A)、活性エネルギー線硬化性化合物(B)及び含フッ素重合性樹脂(C)の合計100質量部に対して、0.01〜15質量部の範囲であることが好ましく、0.3〜7質量部の範囲であることがより好ましい。
さらに、本発明の反射防止塗料組成物は、用途、特性等の目的に応じ、本発明の効果を損なわない範囲で、有機溶剤、重合禁止剤、帯電防止剤、消泡剤、粘度調整剤、耐光安定剤安定剤、耐熱安定剤、酸化防止剤等の添加剤を配合することができる。
また、本発明の反射防止塗料組成物に塗布適性を付与するため、有機溶剤を添加して粘度調整を行っても構わない。ここで使用し得る有機溶媒としては、例えば、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等の酢酸エステル系溶剤;エトキシプロピオネート等のプロピオネート系溶剤;トルエン、キシレン、メトキシベンゼン等の芳香族系溶剤;ブチルセロソルブ、プロピレングリコールモノメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル系溶剤;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;ヘキサン等の脂肪族炭化水素系溶剤;N,N−ジメチルホルムアミド、γ−ブチロラクタム、N−メチル−2−ピロリドン等の窒素化合物系溶剤;γ−ブチロラクトン等のラクトン系溶剤;カルバミン酸エステル等が挙げられる。これらの溶剤は、単独で用いることも、2種以上を併用することもできる。
ここで有機溶媒の使用量は、用途や目的とする膜厚や粘度によって異なるが、前記低屈折率剤(A)、活性エネルギー線硬化性化合物(B)及び含フッ素重合性樹脂(C)の合計に対して、質量基準で、0.5〜50倍量の範囲であることが好ましい。
本発明の反射防止塗料組成物を硬化させる活性エネルギー線としては、光、電子線、放射線等の活性エネルギー線が挙げられる。具体的なエネルギー源又は硬化装置としては、例えば殺菌灯、紫外線用蛍光灯、カーボンアーク、キセノンランプ、複写用高圧水銀灯、中圧又は高圧水銀灯、超高圧水銀灯、無電極ランプ、メタルハライドランプ、自然光等を光源とする紫外線、又は走査型、カーテン型電子線加速器による電子線等が挙げられる。なお、電子線で硬化させる場合には、本発明の反射防止塗料組成物への前記重合開始剤(D)の配合は不要である。
これらの活性エネルギー線の中でも特に紫外線であることが好ましい。また、窒素ガス等の不活性ガス雰囲気下で照射すると塗膜の表面硬化性が向上するため好ましい。また、必要に応じて熱をエネルギー源として併用し、活性エネルギー線にて硬化した後、熱処理を行ってもよい。
本発明の反射防止塗料組成物の塗布方法としては、例えば、グラビアコーター、ロールコーター、コンマコーター、ナイフコーター、カーテンコーター、シャワーコーター、スピンコーター、スリットコーター、ディッピング、スクリーン印刷、スプレー、アプリケーター、バーコーター等を用いた塗布方法が挙げられる。
本発明の反射防止フィルムは、本発明の反射防止塗料組成物の硬化塗膜を有するものだが、具体的には、下記のような方法で作製することができる。
(1)まず基材にハードコート材を塗布・硬化してハードコート層の塗膜を形成する。
(2)上記のハードコート層に本発明の反射防止塗料組成物を塗布・硬化して低屈折率層の塗膜を形成する。この低屈折率層が反射防止フィルムの最表面となる。
なお、上記ハードコート層と低屈折率層との間に、中屈折率層及び/又は高屈折率層を設けても構わない。
前記ハードコート材は、比較的表面硬度が高い硬化塗膜が得られるものであれば、特に制限なく用いることができるが、前記活性エネルギー線硬化性化合物(B)として例示した活性エネルギー線硬化性単量体(B−1)と活性エネルギー線硬化型樹脂(B−2)とを組み合わせたものが好ましい。
上記のハードコート層の厚さは、0.1〜100μmの範囲にあることが好ましく、1〜30μmの範囲にあることがより好ましく、3〜15μmの範囲にあることがさらに好ましい。ハードコート層の厚さがこの範囲にあれば、基材との密着性、反射防止フィルムの表面硬度が高くなる。また、ハードコート層の屈折率は、特に制限はないが、屈折率が高いと、上記の中屈折率層や高屈折率層を設けなくても、良好な反射防止が可能となる。
本発明の反射防止塗料組成物を塗布・硬化して形成する低屈折率層の厚さは、50〜300nmの範囲にあることが好ましく、50〜150nmの範囲にあることがより好ましく、80〜120nmの範囲にあることがさらに好ましい。低屈折率層の厚さがこの範囲であれば、反射防止効果を向上することができる。また、低屈折率層の屈折率は、1.20〜1.45の範囲にあることが好ましく、1.23〜1.42の範囲にあることがより好ましい。低屈折率層の屈折率がこの範囲であれば、反射防止効果を向上することができる。
上記の中屈折率層又は高屈折率層の厚さは、10〜300nmの範囲にあることが好ましく、30〜200nmの範囲にあることがより好ましい。また、中屈折率層又は高屈折率層屈折率は、その上下に存在する低屈折率層及びハードコート層の屈折率によって選択されるが、1.40〜2.00の範囲内で任意に設定することができる。
上記の中屈折率層又は高屈折率層を形成するための材料としては、エポキシ系樹脂、フェノ−ル系樹脂、メラミン系樹脂、アルキド系樹脂、シアネート系樹脂、アクリル系樹脂、ポリエステル系樹脂、ウレタン系樹脂、シロキサン樹脂等の熱硬化、紫外線硬化、電子線硬化できる樹脂が挙げられる。これらの樹脂は、単独で用いることも2種以上併用することもできる。また、これらの樹脂に、高屈折率の無機微粒子を配合することがより好ましい。
前記高屈折率の無機微粒子としては、屈折率が1.65〜2.00であるものが好ましく、例えば、1.90である酸化亜鉛、屈折率が2.3〜2.7であるチタニア、屈折率が1.95であるセリア、屈折率が1.95〜2.00である錫ドープ酸化インジウム、屈折率が1.75〜1.85であるアンチモンドープ酸化錫、屈折率が1.87であるイットリア、屈折率が2.10であるジルコニア等が挙げられる。これらの高屈折率の無機微粒子は、単独で用いることも2種以上併用することもできる。
また、中屈折率層又は高屈折率層を形成する方法としては、本発明の反射防止塗料組成物と同一とすることで、生産性を向上することができるため、本発明の反射防止塗料組成物を紫外線で硬化する場合は、紫外線硬化性組成物が用いて中屈折率層又は高屈折率層を形成することが好ましい。
本発明の反射防止フィルムに用いる基材としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム;ポリプロピレン、ポリエチレン、ポリメチルペンテンー1等のポリオレフィンフィルム;トリアセチルセルロース(TAC)等のセルロース系フィルム;ポリスチレンフィルム、ポリアミドフィルム、ポリカーボネートフィルム、ノルボルネン系樹脂フィルム(例えば、日本ゼオン株式会社製「ゼオノア」)、変性ノルボルネン系樹脂フィルム(例えば、(JSR株式会社製「アートン」)、環状オレフィン共重合体フィルム(例えば、三井化学株式会社製「アペル」)等が挙げられる。これらのフィルムは2種以上貼り合わせて用いても良い。また、これらのフィルムは、シート状であっても良い。フィルム基材の厚さは、20〜500μmが好ましい。
本発明の反射防止フィルムの反射率は、2.0%以下であることが好ましく、1.5%以下であることがより好ましく、1.0%以下であることがさらに好ましい。
以下に本発明を具体的な実施例を挙げてより詳細に説明する。
[IRスペクトル測定条件]
装置:株式会社島津製作所製「IRPrestige−21」
実施例で得られた樹脂をKBr法にて測定した。
13C−NMRスペクトル測定条件]
装置:日本電子株式会社製「AL−400」
溶媒:アセトン−d
[GPC測定条件]
測定装置:東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HHR−H」(6.0mmI.D.×4cm)
+東ソー株式会社製「TSK−GEL GMHHR−N」(7.8mmI.D.×30cm)
+東ソー株式会社製「TSK−GEL GMHHR−N」(7.8mmI.D.×30cm)
+東ソー株式会社製「TSK−GEL GMHHR−N」(7.8mmI.D.×30cm)
+東ソー株式会社製「TSK−GEL GMHHR−N」(7.8mmI.D.×30cm)
検出器:ELSD(オルテック製「ELSD2000」)
データ処理:東ソー株式会社製「GPC−8020モデルIIデータ解析バージョン4.30」
測定条件:カラム温度 40℃
展開溶媒 テトラヒドロフラン(THF)
流速 1.0ml/分
試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(5μl)。
標準試料:前記「GPC−8020モデルIIデータ解析バージョン4.30」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(単分散ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
東ソー株式会社製「F−288」
東ソー株式会社製「F−550」
(合成例1)
撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、下記式(a2−1−1)で表される両末端に水酸基を有するパーフルオロポリエーテル化合物20質量部、溶媒としてジイソプロピルエーテル10質量部、重合禁止剤としてp−メトキシフェノール0.006質量部及び中和剤としてトリエチルアミン3.3質量部を仕込み、空気気流下にて攪拌を開始し、フラスコ内を10℃に保ちながらメタクリル酸クロライド3.1質量部を2時間かけて滴下した。滴下終了後、10℃で1時間攪拌し、昇温して30℃で1時間攪拌した後、50℃に昇温して10時間攪拌することにより反応を行い、ガスクロマトグラフィー測定にてメタクリル酸クロライドの消失が確認された。次いで、溶媒としてジイソプロピルエーテル70質量部を追加した後、イオン交換水80質量部を混合して攪拌してから静置し水層を分離させて取り除く方法による洗浄を3回繰り返した。次いで、重合禁止剤としてp−メトキシフェノール0.02質量部を添加し、脱水剤として硫酸マグネシウム8質量部を添加して1日間静置することで完全に脱水した後、脱水剤を濾別した。
Figure 2013091749
(式中、Xはパーフルオロメチレン基及びパーフルオロエチレン基であり、1分子あたり、パーフルオロメチレン基が平均7個、パーフルオロエチレン基が平均8個存在するものであり、フッ素原子の数が平均46である。また、GPCによる数平均分子量は1,500である。)
次いで、減圧下で溶媒を留去することによって、下記式(A−2−1)で表されるポリ(パーフルオロアルキレンエーテル)鎖を有する化合物を得た。
Figure 2013091749
(式中、Xはパーフルオロメチレン基及びパーフルオロエチレン基であり、1分子あたり、パーフルオロメチレン基が平均7個、パーフルオロエチレン基が平均8個存在するものであり、フッ素原子の数が平均46である。)
(合成例2)
撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン100質量部を仕込み、窒素気流下にて攪拌しながら105℃に昇温した。次いで、合成例1で得られたポリ(パーフルオロアルキレンエーテル)鎖を有する化合物(A−2−1)20質量部と、3−ヒドロキシ−1−アダマンチルメタクリレート(上記式(B1−1−1)で表される化合物)50.1質量部をメチルイソブチルケトン120質量部に溶解したモノマー溶液と、重合開始剤としてt−ブチルペルオキシ−2−エチルヘキサノエート10.5質量部をメチルイソブチルケトン80質量部に溶解した重合開始剤溶液との3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながら同時に2時間かけて滴下した。滴下終了後、105℃で5時間攪拌した後、減圧下で溶媒262.1質量部を留去することによって、重合体(P1−1)溶液を得た。
次いで、上記で得られた重合体(P1−1)溶液に、重合禁止剤としてp−メトキシフェノール0.1質量部、ウレタン化触媒としてオクチル酸錫0.03質量部を仕込み、空気気流下で攪拌を開始し、60℃を保ちながら、2−アクリロイルオキシエチルイソシアネート29.9質量部を1時間で滴下した。滴下終了後、60℃で2時間攪拌した後、80℃に昇温して10時間攪拌することにより、IRスペクトル測定でイソシアネート基の消失を確認し、メチルイソブチルケトン53.7質量部を加えて含フッ素重合性樹脂(1)を50質量%含有するメチルイソブチルケトン溶液を得た。得られた含フッ素重合性樹脂(1)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量1,500、重量平均分子量3,900であった。また、含フッ素重合性樹脂(1)のフッ素含有率は11質量%であり、重合性不飽和基当量は476g/eq.であった。なお、含フッ素硬化性樹脂(1)のIRスペクトルのチャート図を図1に、13C−NMRスペクトルのチャート図を図2に、GPCのチャート図を図3に示す。
(合成例3)
撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン77.6質量部を仕込み、窒素気流下にて攪拌しながら105℃に昇温した。次いで、合成例1で得られたポリ(パーフルオロアルキレンエーテル)鎖を有する化合物(A−2−1)40質量部と、3−ヒドロキシ−1−アダマンチルメタクリレート37.6質量部をメチルイソブチルケトン139質量部に溶解したモノマー溶液と、重合開始剤としてt−ブチルペルオキシ−2−エチルヘキサノエート11.7質量部をメチルイソブチルケトン16.2質量部に溶解した重合開始剤溶液との3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながら同時に2時間かけて滴下した。滴下終了後、105℃で5時間攪拌した後、減圧下で溶媒190.8質量部を留去することによって、重合体(P1−2)溶液を得た。
次いで、上記で得られた重合体(P1−2)溶液に、重合禁止剤としてp−メトキシフェノール0.1質量部、ウレタン化触媒としてオクチル酸錫0.03質量部を仕込み、空気気流下で攪拌を開始し、60℃を保ちながら、2−アクリロイルオキシエチルイソシアネート22.3質量部を1時間で滴下した。滴下終了後、60℃で2時間攪拌した後、80℃に昇温して10時間攪拌することにより、IRスペクトル測定でイソシアネート基の消失を確認し、メチルイソブチルケトン48.7質量部を加えて含フッ素硬化性樹脂(2)を50質量%含有するメチルイソブチルケトン溶液を得た。得られた含フッ素硬化性樹脂(2)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量1,800、重量平均分子量5,400であった。また、含フッ素重合性樹脂(2)のフッ素含有率は22質量%であり、重合性不飽和基当量は640g/eq.であった。
(合成例4)
撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン66.3質量部を仕込み、窒素気流下にて攪拌しながら105℃に昇温した。次いで、合成例1で得られたポリ(パーフルオロアルキレンエーテル)鎖を有する化合物(A−2−1)10質量部と、3−ヒドロキシ−1−アダマンチルメタクリレート56.3質量部をメチルイソブチルケトン122.6質量部に溶解したモノマー溶液と、重合開始剤としてt−ブチルペルオキシ−2−エチルヘキサノエート9.9質量部をメチルイソブチルケトン10質量部に溶解した重合開始剤溶液との3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながら同時に2時間かけて滴下した。滴下終了後、105℃で5時間攪拌した後、減圧下で溶媒154.7質量部を留去することによって、重合体(P1−3)溶液を得た。
次いで、上記で得られた重合体(P1−3)溶液に、重合禁止剤としてp−メトキシフェノール0.1質量部、ウレタン化触媒としてオクチル酸錫0.03質量部を仕込み、空気気流下で攪拌を開始し、60℃を保ちながら、2−アクリロイルオキシエチルイソシアネート33.7質量部を1時間で滴下した。滴下終了後、60℃で2時間攪拌した後、80℃に昇温して10時間攪拌することにより、IRスペクトル測定でイソシアネート基の消失を確認し、メチルイソブチルケトン56.3質量部を加えて含フッ素硬化性樹脂(3)を50質量%含有するメチルイソブチルケトン溶液を得た。得られた含フッ素硬化性樹脂(3)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量1,700、重量平均分子量5,000であった。また、含フッ素重合性樹脂(3)のフッ素含有率は5.6質量%であり、重合性不飽和基当量は420g/eq.であった。
(合成例5)
撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン35質量部を仕込み、窒素気流下にて攪拌しながら105℃に昇温した。次いで、合成例1で得られたポリ(パーフルオロアルキレンエーテル)鎖を有する化合物(A−2−1)20質量部と、3−ヒドロキシ−1−アダマンチルメタクリレート50.1質量部をメチルイソブチルケトン84.6質量部に溶解したモノマー溶液と、重合開始剤としてt−ブチルペルオキシ−2−エチルヘキサノエート10.6質量部をメチルイソブチルケトン10.6質量部に溶解した重合開始剤溶液との3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながら同時に2時間かけて滴下した。滴下終了後、105℃で5時間攪拌した後、減圧下で溶媒83.5質量部を留去することによって、重合体(P1−4)溶液を得た。
次いで、上記で得られた重合体(P1−4)溶液に、重合禁止剤としてp−メトキシフェノール0.1質量部、ウレタン化触媒としてオクチル酸錫0.03質量部を仕込み、空気気流下で攪拌を開始し、60℃を保ちながら、2−アクリロイルオキシエチルイソシアネート29.9質量部を1時間で滴下した。滴下終了後、60℃で2時間攪拌した後、80℃に昇温して10時間攪拌することにより、IRスペクトル測定でイソシアネート基の消失を確認し、メチルイソブチルケトン53.3質量部を加えて含フッ素硬化性樹脂(4)を50質量%含有するメチルイソブチルケトン溶液を得た。得られた含フッ素硬化性樹脂(4)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量2,000、重量平均分子量12,000であった。また、含フッ素重合性樹脂(4)のフッ素含有率は11質量%であり、重合性不飽和基当量は470g/eq.であった。
(合成例6)
撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン100質量部を仕込み、窒素気流下にて攪拌しながら105℃に昇温した。次いで、合成例1で得られたポリ(パーフルオロアルキレンエーテル)鎖を有する化合物(A−2−1)20質量部と、3−ヒドロキシ−1−アダマンチルメタクリレート(上記式(B1−1−1)で表される化合物)48.3質量部をメチルイソブチルケトン166質量部に溶解したモノマー溶液と、重合開始剤としてt−ブチルペルオキシ−2−エチルヘキサノエート10.2質量部をメチルイソブチルケトン34質量部に溶解した重合開始剤溶液との3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながら同時に2時間かけて滴下した。滴下終了後、105℃で5時間攪拌した後、減圧下で溶媒270質量部を留去することによって、重合体(P1−5)溶液を得た。
次いで、上記で得られた重合体(P1−5)溶液に、重合禁止剤としてp−メトキシフェノール0.1質量部、ウレタン化触媒としてオクチル酸錫0.03質量部を仕込み、空気気流下で攪拌を開始し、60℃を保ちながら、2−メタクリロイルオキシエチルイソシアネート31.7質量部を1時間で滴下した。滴下終了後、60℃で2時間攪拌した後、80℃に昇温して10時間攪拌することにより、IRスペクトル測定でイソシアネート基の消失を確認し、メチルイソブチルケトン70質量部を加えて含フッ素重合性樹脂(5)を50質量%含有するメチルイソブチルケトン溶液を得た。得られた含フッ素重合性樹脂(5)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量1,500、重量平均分子量4,100であった。また、含フッ素重合性樹脂(5)のフッ素含有率は11質量%であり、重合性不飽和基当量は500g/eq.であった。
(合成例7)
撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン68.8質量部を仕込み、窒素気流下にて攪拌しながら105℃に昇温した。次いで、合成例1で得られたポリ(パーフルオロアルキレンエーテル)鎖を有する化合物(A−2−1)40質量部と、2−ヒドロキシエチルメタクリレート28.8質量部をメチルイソブチルケトン82.6質量部に溶解したモノマー溶液と、重合開始剤としてt−ブチルペルオキシ−2−エチルヘキサノエート10.3質量部をメチルイソブチルケトン55.1質量部に溶解した重合開始剤溶液との3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながら同時に2時間かけて滴下した。滴下終了後、105℃で5時間攪拌した後、減圧下で溶媒169.3質量部を留去することによって、重合体(P’)溶液を得た。
次いで、上記で得られた重合体(P’)溶液に、重合禁止剤としてp−メトキシフェノール0.1質量部、ウレタン化触媒としてオクチル酸錫0.03質量部を仕込み、空気気流下で攪拌を開始し、60℃を保ちながら、2−アクリロイルオキシエチルイソシアネート31.2質量部を1時間で滴下した。滴下終了後、60℃で2時間攪拌した後、80℃に昇温して10時間攪拌することにより、IRスペクトル測定でイソシアネート基の消失を確認し、メチルイソブチルケトン54.6質量部を加えて含フッ素重合性樹脂(6)を50質量%含有するメチルイソブチルケトン溶液を得た。得られた含フッ素重合性樹脂(6)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量2,200、重量平均分子量6,500であった。また、含フッ素重合性樹脂(6)のフッ素含有率は22質量%であり、ラジカル重合性不飽和基当量は456g/eq.であった。
上記の合成例2〜7で得られた含フッ素重合性樹脂(1)〜(6)、について、分子量等の特性値について表1にまとめた。
Figure 2013091749
(実施例1)
(反射防止塗料組成物のベース組成物の調製)
中空シリカ微粒子(平均粒子径50nm)を20質量%含有するメチルイソブチルケトン分散液15質量部、ペンタエリスリトールトリアクリレート1.6質量部、光重合開始剤として2−ヒドロキシ−1−{4−[4−(2−ヒドロキシ−2−メチル−プロピオニル)−ベンジル]−フェニル}−2−メチル−プロパン−1−オン(チバ・ジャパン株式会社製「イルガキュア127」)0.1質量部、溶剤としてメチルイソブチルケトン81.8質量部を混合し溶解させて、反射防止塗料組成物のベース組成物を得た。
(反射防止塗料組成物の調製)
上記で得られた反射防止塗料組成物のベース組成物98.5質量部に対し、合成例2で得られた含フッ素重合性樹脂(1)50質量%含有溶液を0.8質量部(樹脂分として0.4質量部)添加し、均一に混合して反射防止塗料組成物を調製した。
(ハードコート層用塗料組成物の調製)
5官能無黄変型ウレタンアクリレート50質量部、ジペンタエリスリトールヘキサアクリレート50質量部、酢酸ブチル25質量部、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン(チバスペシャリティーケミカルズ社製「イルガキュア184」)5質量部、溶剤としてトルエン54質量部、2−プロパノール28質量部、酢酸エチル28質量部、プロピレングリコールモノメチルエーテル28質量部を混合し溶解させて、ハードコート層用塗料組成物を得た。
(ハードコートフィルムの作製)
得られたハードコート層用塗料組成物をバーコーターNo.13を使用して、厚さ80μmのTACフィルムに塗布した後、60℃の乾燥機に5分間入れて溶剤を揮発させ、紫外線硬化装置(窒素雰囲気下、高圧水銀灯使用、紫外線照射量2kJ/m)にて硬化させ、膜厚10μmのハードコート層を片面に有するハードコートフィルムを作製した。
(反射防止フィルムの作製)
上記で得られた反射防止塗料組成物(1)を2g/mの塗布量となるように、上記で得られたハードコートフィルムのハードコート層上にバーコーターNo.2で塗布した後、60℃の乾燥機に5分間入れて溶剤を揮発させ、紫外線硬化装置(窒素雰囲気下、高圧水銀灯使用、紫外線照射量2kJ/m)にて硬化させ、膜厚10μmのハードコート層上に膜厚0.1μmの反射防止層を有する反射防止フィルムを作製した。
(実施例2〜5)
実施例1で用いた含フッ素重合性樹脂(1)に代えて、含フッ素重合性樹脂(2)〜(6)を用いた以外は実施例1と同様に行い、反射防止フィルムを作製した。
(比較例1)
実施例1で用いた含フッ素重合性樹脂(1)に代えて、含フッ素重合性樹脂(6)を用いた以外は実施例1と同様に行い、反射防止フィルムを作製した。
(比較例2)
反射防止塗料組成物のベース組成物に含フッ素重合性樹脂を配合せずにそのまま用いた以外は実施例1と同様に行い、反射防止フィルムを作製した。
上記で得られた反射防止フィルムの反射防止塗料組成物の硬化塗膜表面について、下記の外観、耐擦傷性、汚れ拭き取り性の評価を行った。また、反射防止フィルムの反射率を測定した。
[外観の評価]
黒色の板上に上記で得た反射防止フィルムを置き、反射防止塗料組成物の硬化塗膜の白化の有無を目視で観察し、下記の基準で外観を評価した。
○:白化が生じていないもの。
×:白化が生じているもの。
[耐擦傷性の評価]
トライボギア HEIDON 往復磨耗試験機 TYPE:30S(新東科学株式会社製)を用いて、直径27mmの円形の治具にボンスター No,0000(日本スチールウール株式会社製)を取り付けた磨耗試験機(500g/cm荷重)にて、30往復磨耗させて試験を行った。試験後の塗膜表面に付いた傷の本数を数えて、下記の基準によって耐擦傷性を評価した。
◎:傷の本数が5本未満である。
○:傷の本数が10本未満である。
△:傷の本数が10本以上50本未満である。
×:傷の本数が50本以上である。
[指紋汚れ拭き取り性の評価]
上記で得た反射防止フィルムの反射防止塗料組成物の硬化塗膜の表面に指で指紋を付着させ、ティッシュペーパーで10往復拭き取ったときの拭き取り具合を目視で観察し、下記の基準で指紋汚れ拭き取り性を評価した。また、指紋汚れ拭き取り性の安定性をみるため、硬化塗膜の表面を磨耗処理した後の指紋汚れ拭き取り性についても同様に評価した。なお、摩耗処理は、往復磨耗試験機(新東科学株式会社製「HEIDON トライボギア TYPE:30S」)を用いて、治具に不織布(旭化成せんい株式会社製「ベンコットS」)を取り付けて1.72N/cmの荷重にて、5000回の往復磨耗することにより行った。
◎:指紋が完全に拭き取れるもの。
○:指紋の付着跡、又は、拭き取り方向に沿って線状の跡が、付着時に比べわずかに残ったもの。
×:指紋の付着跡、又は、拭き取り方向に沿って線状の跡が、付着時の半分以上の濃さで残ったもの。
[反射率の測定]
5℃正反射測定装置を備えた分光光度計(株式会社島津製作所製「UV−3100PC」)を用いて反射率の測定を行った。なお、反射率は波長550nm付近で極小値(最低反射率)となったときの値とした。
上記の評価結果を表1に示す。
Figure 2013091749
表2に示した実施例1〜5の評価結果から、ポリ(パーフルオロアルキレンエーテル)鎖、アダマンチル基及び重合性不飽和基を有する含フッ素重合性樹脂(1)〜(5)を用いた本発明の反射防止塗料組成物は、良好な外観であり、耐擦傷性、指紋汚れ拭き取り性も良好であった。
一方、本発明の反射防止塗料組成物で用いるポリ(パーフルオロアルキレンエーテル)鎖、アダマンチル基及び重合性不飽和基を有する含フッ素重合性樹脂に代えて、アダマンチル基を有さずポリ(パーフルオロアルキレンエーテル)鎖及び重合性不飽和基を有する含フッ素重合性樹脂を用いた比較例1のものは、外観及び指紋汚れ拭き取り性は良好であったが、耐擦傷性は不十分であった。また、含フッ素重合性樹脂を添加しなかった比較例2は、外観は良好であったが、耐擦傷性及び指紋汚れ拭き取り性は不十分であった。

Claims (6)

  1. 低屈折率剤(A)、活性エネルギー線硬化性化合物(B)、及び重合性不飽和単量体を重合させて得られた重合体であって、前記重合体の構造中にポリ(パーフルオロアルキレンエーテル)鎖、アダマンチル基及び重合性不飽和基を有する重合体である含フッ素重合性樹脂(C)を含有することを特徴とする反射防止塗料組成物。
  2. 前記含フッ素重合性樹脂(C)が、ポリ(パーフルオロアルキレンエーテル)鎖とその両末端に重合性不飽和基を有する化合物(c1)と、反応性官能基(r1)を持つアダマンチル基を有する重合性不飽和単量体(c2)とを必須の単量体成分として共重合させて得られる重合体(P1)に、前記官能基(r1)に対して反応性を有する官能基(r2)及び重合性不飽和基を有する化合物(c3)を反応させて得られる含フッ素重合性樹脂である請求項1記載の反射防止塗料組成物。
  3. 前記含フッ素重合性樹脂(C)が、ポリ(パーフルオロアルキレンエーテル)鎖とその両末端に重合性不飽和基を有する化合物(c1)と、反応性官能基(r1)を持つアダマンチル基を有する重合性不飽和単量体(c2)又は反応性官能基(r1)を持たないアダマンチル基を有する重合性不飽和単量体(c4)と、反応性官能基(r3)を有する重合性不飽和単量体(c5)とを必須の単量体成分として共重合させて得られる重合体(P2)に、前記官能基(r1)又は前記官能基(r3)に対して反応性を有する官能基(r2)及び重合性不飽和基を有する1種以上の化合物(c3)を反応させて得られる請求項1記載の反射防止塗料組成物。
  4. 前記単量体(c2)又は(c5)が有する反応性官能基(r1)又は(r3)が、水酸基、イソシアネート基、エポキシ基、カルボキシル基、カルボン酸ハライド基及び酸無水物基からなる群から選ばれる少なくとも1つの官能基であり、前記化合物(c3)が有する官能基(r2)が、前記反応性官能基(r1)又は(r3)と反応性を有し、かつ水酸基、イソシアネート基、エポキシ基、カルボキシル基、カルボン酸ハライド基及び酸無水物基からなる群から選ばれる少なくとも1つの官能基である請求項2又は3記載の反射防止塗料組成物。
  5. 前記低屈折率剤(A)及び活性エネルギー線硬化性化合物(B)の合計100質量部に対して、前記含フッ素重合性樹脂(C)を0.1〜20質量部含有する請求項1〜4のいずれか1項記載の反射防止塗料組成物。
  6. 請求項1〜5のいずれか1項記載の反射防止塗料組成物の硬化塗膜を有することを特徴とする反射防止フィルム。
JP2011236056A 2011-10-27 2011-10-27 反射防止塗料組成物及び反射防止フィルム Pending JP2013091749A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011236056A JP2013091749A (ja) 2011-10-27 2011-10-27 反射防止塗料組成物及び反射防止フィルム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011236056A JP2013091749A (ja) 2011-10-27 2011-10-27 反射防止塗料組成物及び反射防止フィルム

Publications (1)

Publication Number Publication Date
JP2013091749A true JP2013091749A (ja) 2013-05-16

Family

ID=48615139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011236056A Pending JP2013091749A (ja) 2011-10-27 2011-10-27 反射防止塗料組成物及び反射防止フィルム

Country Status (1)

Country Link
JP (1) JP2013091749A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138150A (ja) * 2014-01-22 2015-07-30 株式会社ダイセル 耐擦傷性ハードコートフィルム及びその製造方法
JPWO2020017251A1 (ja) * 2018-07-19 2020-07-27 Dic株式会社 活性エネルギー線硬化性組成物、その硬化膜及び反射防止フィルム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002129A (ja) * 2003-10-24 2006-01-05 Daikin Ind Ltd 硬化性含フッ素樹脂組成物およびそれを硬化してなる光学部材
WO2009133770A1 (ja) * 2008-04-30 2009-11-05 Dic株式会社 活性エネルギー線硬化型塗料組成物、その硬化物、及び新規硬化性樹脂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002129A (ja) * 2003-10-24 2006-01-05 Daikin Ind Ltd 硬化性含フッ素樹脂組成物およびそれを硬化してなる光学部材
WO2009133770A1 (ja) * 2008-04-30 2009-11-05 Dic株式会社 活性エネルギー線硬化型塗料組成物、その硬化物、及び新規硬化性樹脂

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138150A (ja) * 2014-01-22 2015-07-30 株式会社ダイセル 耐擦傷性ハードコートフィルム及びその製造方法
JPWO2020017251A1 (ja) * 2018-07-19 2020-07-27 Dic株式会社 活性エネルギー線硬化性組成物、その硬化膜及び反射防止フィルム

Similar Documents

Publication Publication Date Title
JP4547642B2 (ja) 活性エネルギー線硬化型塗料組成物、その硬化物、及び新規硬化性樹脂
JP4873107B2 (ja) 含フッ素硬化性樹脂及びそれを用いた活性エネルギー線硬化性組成物
JP5794474B2 (ja) 含フッ素重合性樹脂、それを用いた活性エネルギー線硬化型組成物及びその硬化物
JP5187471B2 (ja) 含フッ素硬化性樹脂、活性エネルギー線硬化性組成物及びその硬化物
JP5581943B2 (ja) 含フッ素重合性樹脂、活性エネルギー線硬化型塗料組成物及びその硬化物
JP5397686B2 (ja) 含フッ素硬化性樹脂、活性エネルギー線硬化型塗料組成物及びその硬化物
JP5887834B2 (ja) 含フッ素重合性樹脂、それを用いた活性エネルギー線硬化性組成物及びその硬化物
JP6056155B2 (ja) 反射防止塗料組成物及び反射防止フィルム
JP5760308B2 (ja) 反射防止塗料組成物及び反射防止フィルム
JP5939419B2 (ja) フッ素原子含有シリコーン系重合性樹脂、それを用いた活性エネルギー線硬化性組成物、その硬化物及び物品
JP2011213818A (ja) 含フッ素硬化性樹脂及びそれを用いた活性エネルギー線硬化型塗料組成物
JP5858318B2 (ja) 含フッ素ウレタン(メタ)アクリレート、硬化性組成物及び反射防止フィルム
JP5979423B2 (ja) 反射防止塗料組成物及び反射防止フィルム
WO2020017251A1 (ja) 活性エネルギー線硬化性組成物、その硬化膜及び反射防止フィルム
JP5487860B2 (ja) 含フッ素硬化性樹脂、活性エネルギー線硬化型塗料組成物及びその硬化物
JP5487859B2 (ja) 含フッ素硬化性樹脂、活性エネルギー線硬化型塗料組成物及びその硬化物
JP5979424B2 (ja) 反射防止塗料組成物及び反射防止フィルム
JP2013091749A (ja) 反射防止塗料組成物及び反射防止フィルム
JP6002965B2 (ja) 反射防止塗料組成物及び反射防止フィルム
JP5605305B2 (ja) 重合性フッ素表面修飾シリカ粒子及びそれを用いた活性エネルギー線硬化性組成物
JP5353632B2 (ja) 含フッ素硬化性樹脂、活性エネルギー線硬化型塗料組成物及びその硬化物
JP2013156331A (ja) 反射防止塗料組成物及び反射防止フィルム
JP2013156333A (ja) 反射防止塗料組成物及び反射防止フィルム
WO2021256131A1 (ja) 含フッ素重合性樹脂、活性エネルギー線硬化性組成物、硬化塗膜及び物品
JP2013156332A (ja) 反射防止塗料組成物及び反射防止フィルム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804