JP2013086132A - Method for controlling cooling of steel sheet and device for manufacturing steel sheet - Google Patents

Method for controlling cooling of steel sheet and device for manufacturing steel sheet Download PDF

Info

Publication number
JP2013086132A
JP2013086132A JP2011229144A JP2011229144A JP2013086132A JP 2013086132 A JP2013086132 A JP 2013086132A JP 2011229144 A JP2011229144 A JP 2011229144A JP 2011229144 A JP2011229144 A JP 2011229144A JP 2013086132 A JP2013086132 A JP 2013086132A
Authority
JP
Japan
Prior art keywords
cooling
temperature
steel sheet
steel plate
specific heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011229144A
Other languages
Japanese (ja)
Other versions
JP5757217B2 (en
Inventor
Hisayoshi Tachibana
久好 橘
Shigemasa Nakagawa
繁政 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011229144A priority Critical patent/JP5757217B2/en
Publication of JP2013086132A publication Critical patent/JP2013086132A/en
Application granted granted Critical
Publication of JP5757217B2 publication Critical patent/JP5757217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Heat Treatment Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling cooling of a steel sheet which highly accurately predicts a steel sheet temperature and controls the steel sheet temperature after cooling to a prescribed level by a method for calculating specific heat of the steel sheet without predicting a transformation rate.SOLUTION: The method for controlling cooling of a steel sheet comprises controlling a cooling water amount based on a temperature prediction calculation result of a steel sheet and controlling a steel sheet temperature after cooling to a prescribed temperature using a cooling device for jetting cooling water while conveying a high temperature steel sheet heated to a transformation point Ac3 or higher. The predicted temperature of the steel sheet is calculated by using specific heat of the steel sheet derived by analyzing steel sheet temperature actual values before and after cooling measured at an inlet side and an outlet side in the cooling device, and steel sheet temperature actual values measured at one or more spots in the cooling device.

Description

本発明は加熱された高温の鋼板を搬送しながら、冷却水を噴出する冷却装置で冷却し、冷却された後の鋼板温度が所定の温度となるように制御する鋼板の冷却制御方法、及びそのための鋼板の製造装置に関する。   The present invention is a steel sheet cooling control method for controlling a steel sheet temperature to be a predetermined temperature by cooling with a cooling device that jets cooling water while conveying a heated high-temperature steel sheet, and therefore The present invention relates to a steel plate manufacturing apparatus.

熱間圧延を例に挙げると、該熱間圧延された高温の鋼板を搬送しながら冷却水を噴出する冷却装置で冷却する際、冷却後の鋼板温度は鋼板の機械的な特性を左右する重要な要因のひとつである。従って、所定の機械的な特性を備えた鋼板を製造するためには、冷却後の鋼板温度を所定の温度に精度良く制御する必要がある。   Taking hot rolling as an example, when cooling with a cooling device that jets cooling water while conveying the hot-rolled hot steel plate, the steel plate temperature after cooling is important to influence the mechanical properties of the steel plate This is one of the major factors. Therefore, in order to manufacture a steel plate having a predetermined mechanical characteristic, it is necessary to accurately control the steel plate temperature after cooling to a predetermined temperature.

冷却後の鋼板温度を制御するためには、圧延された鋼板が冷却装置に進入する前に冷却装置の冷却水量および鋼板が冷却装置を通過する際の搬送速度を設定する必要がある。そこで、この設定条件を導出するため、鋼板の板厚、比熱、密度、搬送速度、冷却開始時の温度、冷却装置の冷却水量、水温、および冷却装置付近の気温に基づき、鋼板温度予測モデルを用いて冷却後の鋼板温度を予測し、この予測結果に基づいた冷却条件設定の調整が行われる。   In order to control the steel plate temperature after cooling, it is necessary to set the cooling water amount of the cooling device and the conveyance speed when the steel plate passes through the cooling device before the rolled steel plate enters the cooling device. Therefore, in order to derive this setting condition, the steel sheet temperature prediction model is based on the plate thickness, specific heat, density, conveyance speed, temperature at the start of cooling, cooling water amount of the cooling device, water temperature, and the temperature near the cooling device. The steel plate temperature after cooling is predicted by using it, and the cooling condition setting is adjusted based on the prediction result.

ここで、冷却後の鋼板温度を所定の温度に精度良く制御するためには、鋼板温度予測モデルの予測精度が高くなければならない。そのためには、鋼板表面から水冷によって奪われる熱量(水冷抜熱量)、空冷によって奪われる熱量(空冷抜熱量)に加え、鋼の相変態進行中に発生する熱量(変態発熱量)を正確に予測する必要がある。   Here, in order to accurately control the steel plate temperature after cooling to a predetermined temperature, the prediction accuracy of the steel plate temperature prediction model must be high. To that end, in addition to the amount of heat deprived from the steel sheet surface by water cooling (water cooling extraction heat amount), the amount of heat deprived by air cooling (air cooling extraction heat amount), the amount of heat generated during steel phase transformation (transformation heat generation amount) is accurately predicted There is a need to.

特許文献1では、鋼板温度予測モデルの高精度化が困難であることを前提とし、冷却装置内において鋼板搬送方向の多くの地点で鋼板温度を測定し、この測定値に基づいて冷却装置の水量設定を途中で修正して冷却後の鋼板温度を精度良く制御する方法が示されている。   In Patent Document 1, assuming that it is difficult to improve the accuracy of the steel plate temperature prediction model, the steel plate temperature is measured at many points in the steel plate conveyance direction in the cooling device, and the amount of water in the cooling device is based on the measured value. A method of correcting the setting in the middle and controlling the steel plate temperature after cooling with high accuracy is shown.

特許文献2では、鋼の相変態進行中に発生する熱量を、鋼板の比熱に換算して考慮することで鋼板温度予測精度を高精度化し、表裏面を均一に冷却する技術が示されている。   Patent Document 2 discloses a technique for increasing the accuracy of steel plate temperature prediction by uniformly converting the amount of heat generated during the progress of steel phase transformation into the specific heat of the steel plate and cooling the front and back surfaces uniformly. .

特許文献3も鋼の相変態進行中に発生する熱量を、鋼板の比熱に換算して考慮するアプローチであるが、特許文献2とは異なりオーステナイト相、フェライト相のエンタルピーと、それぞれの相の変態率を用いて比熱を算出している。   Patent Document 3 is also an approach that considers the amount of heat generated during the progress of steel phase transformation by converting it to the specific heat of the steel sheet, but unlike Patent Document 2, the enthalpy of the austenite phase and ferrite phase and the transformation of each phase. The specific heat is calculated using the rate.

特開2010−23066号公報JP 2010-23066 A 特開2006−281271号公報JP 2006-281271 A 特開2006−193759号公報JP 2006-193759 A

しかしながら、特許文献1に記載の方法では、冷却装置内に多数の温度計測手段を常時設けることが必要になることから、設備費用、保守費用が嵩むことになる。   However, in the method described in Patent Document 1, it is necessary to always provide a large number of temperature measuring means in the cooling device, which increases equipment costs and maintenance costs.

また、特許文献2には鋼板の成分に対応した比熱を算出するモデルの存在が示されているものの、この比熱を算出するモデルの内容についての記載が無く具体的にこれを用いて鋼板の温度制御をすることができない。   Although Patent Document 2 shows the existence of a model for calculating the specific heat corresponding to the components of the steel sheet, there is no description about the content of the model for calculating the specific heat, and the temperature of the steel sheet is specifically described using this model. I can't control it.

特許文献3に記載の方法は、実際の鋼板製造における冷却を前提とした動的な変態発熱を考慮した方法であるが、この方法は変態率を精度良く予測可能なことが前提となっている。ここには変態率を実験により求める方法や、変態予測計算モデルによって算出する方法が示されているが、実際に製造している数多くの鋼種について実験することは多大なコストを伴い、変態予測計算モデルでは計算誤差が避けられない。また、その誤差の測定も困難なことから、誤差を補償することができない。   The method described in Patent Document 3 is a method that considers dynamic transformation heat generation on the premise of cooling in actual steel sheet production, but this method is based on the assumption that the transformation rate can be accurately predicted. . Here, a method for obtaining the transformation rate by experiment and a method for calculating by a transformation prediction calculation model are shown, but experimenting with many steel types that are actually manufactured involves considerable costs, and transformation prediction calculation Calculation errors are inevitable in the model. In addition, since it is difficult to measure the error, the error cannot be compensated.

そこで本発明は上記問題点に鑑み、変態率の予測を行うことなく鋼板の比熱を算出する方法によって、鋼板温度予測を高精度化し、冷却後の鋼板温度を所定の温度に制御する鋼板の冷却制御方法を提供することを課題とする。またそのための鋼板の製造装置を提供する。   Therefore, in view of the above problems, the present invention provides a method for calculating the specific heat of a steel sheet without predicting the transformation rate, thereby increasing the accuracy of the steel sheet temperature prediction and controlling the steel sheet temperature after cooling to a predetermined temperature. It is an object to provide a control method. Moreover, the manufacturing apparatus of the steel plate for that is provided.

従来、冷却後の鋼板温度を精度良く予測するには、水冷抜熱量と空冷抜熱量と変態発熱量とを正確に予測する必要があった。これに対して、発明者らは鋭意検討の結果、変態発熱量を予測することなく、実際の鋼板温度の変化量(測定値)と算出した水冷抜熱量と空冷抜熱量とを用い、鋼板温度予測モデルの計算結果と鋼板温度測定値とが合致するような、鋼板の比熱を導き出すことで、鋼板温度予測の高精度化を図れるとの知見を得て本発明を完成させた。以下、本発明について説明する。   Conventionally, in order to accurately predict the steel plate temperature after cooling, it is necessary to accurately predict the amount of water-cooled heat removal, air-cooled heat removal, and transformation heat generation. On the other hand, as a result of intensive studies, the inventors used the actual steel plate temperature change (measured value), the calculated water-cooled heat removal amount, and the air-cooled heat removal amount without predicting the transformation heat generation amount, and the steel plate temperature. The present invention was completed with the knowledge that the accuracy of the steel plate temperature prediction can be improved by deriving the specific heat of the steel plate so that the calculation result of the prediction model matches the measured value of the steel plate temperature. The present invention will be described below.

請求項1に記載の発明は、Ac3変態点以上にまで加熱された高温の鋼板を搬送しながら冷却水を噴出する冷却装置を用い、鋼板の温度予測計算結果に基づいて冷却水量を操作して冷却後の鋼板温度を所定の温度に制御する冷却制御方法であって、冷却装置の入側および出側で測定した冷却前後の鋼板温度実績値と、冷却装置内の1箇所以上の地点で測定した鋼板温度実績値と、を解析して導出した鋼板の比熱を用い、鋼板の予測温度を演算することを特徴とする、鋼板の冷却制御方法である。   The invention according to claim 1 uses a cooling device that ejects cooling water while conveying a high-temperature steel plate heated to the Ac3 transformation point or higher, and manipulates the amount of cooling water based on the temperature prediction calculation result of the steel plate. A cooling control method for controlling the steel plate temperature after cooling to a predetermined temperature, measured at one or more points in the cooling device and the actual steel plate temperature value before and after cooling measured on the inlet side and outlet side of the cooling device. The steel sheet cooling control method is characterized in that the predicted temperature of the steel plate is calculated using the specific heat of the steel plate derived by analyzing the actual steel plate temperature value.

請求項2に記載の発明は、請求項1に記載の鋼板の冷却制御方法において、比熱の値は鋼板の温度に応じて変化するものとして、変化を5点以上の節点で表すことを特徴とする。   The invention according to claim 2 is characterized in that, in the cooling control method for a steel sheet according to claim 1, the value of the specific heat changes according to the temperature of the steel sheet, and the change is expressed by five or more nodes. To do.

請求項3に記載の発明は、請求項2に記載の鋼板の冷却制御方法において、節点は、鋼板温度予測結果と、鋼板温度実績値との誤差の二乗和を最小とするように求められることを特徴とする。   The invention according to claim 3 is the method for cooling control of a steel sheet according to claim 2, wherein the node is calculated so as to minimize the sum of squares of errors between the steel sheet temperature prediction result and the steel sheet temperature actual value. It is characterized by.

請求項4に記載の発明は、Ac3変態点以上にまで加熱された高温の鋼板を搬送する搬送装置と、搬送された鋼板に対して、冷却水を噴出する冷却装置と、冷却装置の入側、出側、および内側のそれぞれに少なくとも1つずつ配置された温度計と、冷却装置の入側および出側に配置された温度計で測定した冷却前後の鋼板温度実績値、並びに、冷却装置の内側に配置された温度計で測定した鋼板温度実績値を解析して導出した鋼板の比熱を用いて鋼板の予測温度を演算する演算装置と、を備える鋼板の製造装置である。   The invention according to claim 4 is a conveying device that conveys a high-temperature steel plate heated to an Ac3 transformation point or higher, a cooling device that jets cooling water to the conveyed steel plate, and an inlet side of the cooling device , At least one thermometer disposed on each of the outlet side and the inner side, the steel plate actual temperature value before and after cooling measured by the thermometers disposed on the inlet side and the outlet side of the cooling device, and the cooling device A steel plate manufacturing apparatus comprising: an arithmetic device that calculates a predicted temperature of a steel plate using a specific heat of the steel plate derived by analyzing a steel plate temperature actual value measured by a thermometer disposed inside.

請求項5に記載の発明は、請求項4に記載の鋼板の製造装置において、演算装置における比熱の導出は、該比熱の値が鋼板の温度に応じて変化するものとして、変化を5点以上の節点で表して演算することを特徴とする。   The invention according to claim 5 is the steel plate manufacturing apparatus according to claim 4, wherein the specific heat is derived by the arithmetic unit assuming that the value of the specific heat changes according to the temperature of the steel plate, and the change is 5 points or more. It is characterized by being expressed in terms of nodes.

本発明により、冷却後の鋼板温度を精度良く所定の温度に制御することが可能となる。   By this invention, it becomes possible to control the steel plate temperature after cooling to predetermined | prescribed temperature accurately.

1つの実施形態に係る鋼板の製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the steel plate which concerns on one embodiment. 比熱の導出形態の一例を示す図である。It is a figure which shows an example of the derived | led-out form of specific heat. 鋼種1の比熱の導出結果を示した図である。It is the figure which showed the derivation | leading-out result of the specific heat of the steel type 1. FIG. 鋼種2の比熱の導出結果を示した図である。It is the figure which showed the derivation | leading-out result of the specific heat of the steel type 2. FIG. 鋼板冷却制御をおこなう際の鋼板の製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the steel plate at the time of performing steel plate cooling control. 実施例と比較例に用いた比熱を示す図である。It is a figure which shows the specific heat used for the Example and the comparative example.

本発明の上記した作用および利得は、次に説明する発明を実施するための形態から明らかにされる。ただし本発明はこれら実施形態に限定されるものではない。   The above-mentioned operation and gain of the present invention will be clarified from the following embodiments for carrying out the invention. However, the present invention is not limited to these embodiments.

図1は1つの実施形態を説明する図で、冷却装置20を含み、データ取得に際して用いられる鋼板の製造装置100を模式的に表した図である。
鋼板の製造装置100は、冷却制御の対象となる鋼板1を搬送する搬送装置2を具備し、鋼板1を搬送するラインの途中に冷却装置20が設けられている。
FIG. 1 is a diagram illustrating one embodiment, and is a diagram schematically showing a steel plate manufacturing apparatus 100 that includes a cooling device 20 and is used for data acquisition.
The steel plate manufacturing apparatus 100 includes a transport device 2 that transports a steel plate 1 that is an object of cooling control, and a cooling device 20 is provided in the middle of a line that transports the steel plate 1.

冷却装置20は、ここを通過する鋼板1に対して上下から冷却水を噴出して鋼板1を冷却する装置である。具体的には、冷却ヘッダー3が鋼板1の搬送方向に合計n個配置され、各冷却ヘッダーには水量調整バルブおよび鋼板1に噴出した冷却水量を測定する水量計が設けられている。
このような冷却装置20としては公知のものを適用することができる。
The cooling device 20 is a device that cools the steel plate 1 by ejecting cooling water from above and below the steel plate 1 that passes through the cooling device 20. Specifically, a total of n cooling headers 3 are arranged in the conveying direction of the steel plate 1, and each cooling header is provided with a water amount adjusting valve and a water meter that measures the amount of cooling water ejected to the steel plate 1.
A known device can be applied as such a cooling device 20.

さらに、鋼板の製造装置100には、冷却装置20より搬送方向上流側に速度計7、板厚計8、及び冷却装置入側温度計4を具備し、これにより冷却装置20に進入する際の鋼板1の速度、板厚、及び入側温度が測定される。   Furthermore, the steel plate manufacturing apparatus 100 includes a speedometer 7, a plate thickness gauge 8, and a cooling device entry-side thermometer 4 on the upstream side in the transport direction from the cooling device 20, and thereby, when entering the cooling device 20. The speed, plate thickness, and entry temperature of the steel plate 1 are measured.

また、鋼板の製造装置100には、冷却装置20内に2つの冷却装置内温度計6、及び冷却装置出側に冷却装置出側温度計5を具備し、それぞれにより鋼板1の冷却装置内温度、冷却装置出側温度が測定される。さらに、鋼板1が冷却装置20を通過するに際し、冷却装置20に具備された上記水量計により各ヘッダーからの噴出水量も測定される。   Further, the steel plate manufacturing apparatus 100 includes two cooling device thermometers 6 in the cooling device 20 and a cooling device outlet thermometer 5 on the cooling device outlet side. The cooling device outlet temperature is measured. Furthermore, when the steel plate 1 passes through the cooling device 20, the amount of water ejected from each header is also measured by the water meter provided in the cooling device 20.

以上に加えて、鋼板の製造装置100には、演算装置10及びデータ保存装置11が設けられている。
演算装置10は、上記冷却装置入側温度計4、冷却装置出側温度計5、冷却装置内温度計6、速度計7、板厚計8、及び冷却装置20の水量計(以下、これらをまとめて記載するときには「各測定機器」と記載することがある。)からの各測定値を取得し、これに基づいて演算を行い、その結果を出力する装置である。具体的な演算については後で詳しく説明するが、当該演算には温度予測モデルに基づいて鋼板温度を予測する演算、およびこの中でおこなわれる比熱の演算が含まれる。
In addition to the above, the steel plate manufacturing apparatus 100 is provided with an arithmetic device 10 and a data storage device 11.
The arithmetic unit 10 includes a cooling device inlet side thermometer 4, a cooling device outlet side thermometer 5, a cooling device thermometer 6, a speed meter 7, a plate thickness meter 8, and a water meter of the cooling device 20 (hereinafter referred to as these). When collectively describing, it may be described as “each measuring device.”) Is a device that obtains each measured value from, calculates based on this, and outputs the result. The specific calculation will be described in detail later. The calculation includes calculation for predicting the steel plate temperature based on the temperature prediction model, and calculation of specific heat performed in the calculation.

このような演算装置10の具体的な形態は特に限定されることはないが、いわゆるコンピュータ装置を挙げることができる。すなわち、演算装置10は、上記した各測定値を受信する受信手段、演算の根拠となるプログラムが記憶された記憶手段、プログラムに基づいて演算をおこなう中央演算子(CPU)、CPUの作業領域や一時的なデータ保管手段として機能するRAM、及び演算結果を出力する出力手段を備えている。   Although the specific form of such an arithmetic unit 10 is not specifically limited, What is called a computer apparatus can be mentioned. That is, the arithmetic unit 10 includes a receiving unit that receives each measurement value described above, a storage unit that stores a program that is a basis for the calculation, a central operator (CPU) that performs a calculation based on the program, a work area of the CPU, A RAM that functions as a temporary data storage unit and an output unit that outputs a calculation result are provided.

保存装置11は、演算装置10が取得した測定値データや演算装置10の演算結果等、保存しておくべきデータが演算装置10から送り込まれて保存する装置である。   The storage device 11 is a device that sends data to be stored, such as measurement value data acquired by the arithmetic device 10 and calculation results of the arithmetic device 10, from the arithmetic device 10, and stores the data.

以上のような鋼板の製造装置100で鋼板の冷却制御をおこなうことにより、冷却後の鋼板温度を精度良く所定の温度に制御できるようになる。以下、鋼板の冷却制御方法により、さらに具体的に説明する。   By performing the cooling control of the steel plate with the steel plate manufacturing apparatus 100 as described above, the steel plate temperature after cooling can be accurately controlled to a predetermined temperature. Hereinafter, the steel sheet cooling control method will be described more specifically.

鋼板1が搬送装置2上を移動し、鋼板1の先端が各測定機器に到達すると、演算装置10は、鋼板1が所定の一定長さ進行する間隔で各測定機器からの測定値を採取し続け、鋼板1の尾端が冷却装置出側温度計5に到達するまで採取を継続する。そしてその後に採取した測定データに基づいて各種の演算をおこない、その結果等を保存装置11に保存する。   When the steel plate 1 moves on the conveying device 2 and the tip of the steel plate 1 reaches each measuring device, the arithmetic device 10 collects measurement values from each measuring device at intervals of the predetermined length of the steel plate 1. The sampling is continued until the tail end of the steel plate 1 reaches the cooling device outlet thermometer 5. Then, various calculations are performed based on the collected measurement data, and the results are stored in the storage device 11.

ここで、各種演算では、鋼板1は該鋼板1が所定の長さで切り分けられた切り板の集合体であり、それぞれの切り板が各測定機器の測定領域を通過すると考える。これにより、後で説明する鋼板温度の予測が容易になるとともに、1つの鋼板を所定の長さで切り分けられた複数の切り板として扱うため、1つの鋼板から複数の予測値を得ることができる。   Here, in various calculations, the steel plate 1 is an aggregate of cut plates obtained by cutting the steel plate 1 with a predetermined length, and each cut plate is considered to pass through the measurement region of each measuring device. This facilitates the prediction of the steel sheet temperature, which will be described later, and treats one steel sheet as a plurality of cut plates cut into a predetermined length, so that a plurality of predicted values can be obtained from one steel sheet. .

次に、鋼板の冷却制御のために演算装置10でおこなわれる鋼板温度の予測演算について説明する。この予測演算は以下の鋼板温度予測モデルによっておこなわれる。   Next, prediction calculation of the steel sheet temperature performed by the arithmetic device 10 for cooling control of the steel sheet will be described. This prediction calculation is performed by the following steel plate temperature prediction model.

上記のように、冷却装置10では鋼板1の搬送方向にn個の冷却ヘッダーが配置されているが、この1つの領域を冷却ゾーンと呼び、鋼板温度予測モデルは1ゾーン毎に温度降下量を算出することで冷却後の鋼板温度を予測する。   As described above, in the cooling device 10, n cooling headers are arranged in the conveyance direction of the steel plate 1, but this one region is called a cooling zone, and the steel plate temperature prediction model indicates the temperature drop amount for each zone. The steel plate temperature after cooling is estimated by calculating.

冷却ヘッダーから冷却水を噴出して水冷する冷却ゾーンについては、水冷部温度降下量△Twを式(1)の水冷部温度降下量予測式を用いて計算する。   For the cooling zone in which cooling water is jetted from the cooling header and cooled by water, the water cooling part temperature drop ΔTw is calculated using the water cooling part temperature drop prediction formula of equation (1).

Figure 2013086132
Figure 2013086132

ここで、iは冷却ゾーンを表す添え字、αは水冷部分の熱伝達率(kcal/mh℃)、ρは鋼板の密度(kg/m)、hは板厚(m)、Tは鋼板温度(℃)、Tは冷却水温度(℃)、tは冷却ゾーンiの通過時間(h)をそれぞれ表す。以下に表す式も同じである。 Here, i is a subscript indicating a cooling zone, α L is a heat transfer coefficient (kcal / m 2 h ° C.) of a water-cooled portion, ρ is a density (kg / m 3 ) of a steel plate, h is a plate thickness (m), T represents the steel sheet temperature (° C.), TL represents the cooling water temperature (° C.), and t represents the passage time (h) of the cooling zone i. The following expressions are also the same.

また、cは比熱(kcal/kg℃)を意味するが、比熱cの算出については後で詳しく説明する。下記式(4)に用いられる比熱cも同様である。   Further, c means specific heat (kcal / kg ° C.), and calculation of the specific heat c will be described in detail later. The same applies to the specific heat c used in the following formula (4).

式(1)で、αLiは式(2)により得られ、tは式(3)から得られる。 In equation (1), α Li is obtained from equation (2), and t is obtained from equation (3).

Figure 2013086132
Figure 2013086132

Figure 2013086132
Figure 2013086132

式(2)、式(3)において、a、bは定数、Wは冷却水量密度(m/m・h)、Lは冷却ゾーンの長さ(m)、Vは鋼板の冷却ゾーン通過速度(m/h)である。以下で表す式でも同様である。 In Equations (2) and (3), a and b are constants, W is the cooling water density (m 3 / m 2 · h), L is the cooling zone length (m), and V is the steel sheet passing through the cooling zone. Speed (m / h). The same applies to the following expressions.

一方、冷却水を噴出しないゾーンについては空冷部温度降下量△Taを式(4)の空冷部温度降下量予測式を用いて計算する。   On the other hand, for the zone where the cooling water is not jetted, the air cooling part temperature drop ΔTa is calculated using the air cooling part temperature drop prediction formula (4).

Figure 2013086132
Figure 2013086132

ここで、Tは気温(℃)、σはステファンボルツマン定数、εは輻射率(−)、αは空冷部の対流熱伝達率(kcal/mh℃)、である。 Here, T A is the temperature (° C.), σ is the Stefan-Boltzmann constant, ε is the emissivity (−), and α A is the convective heat transfer coefficient (kcal / m 2 h ° C.) of the air-cooled part.

このような計算方法によって、冷却装置入側温度計4で測定した温度Tを基点に冷却後の温度Tを予測することができる。また、冷却装置内の2つの温度計6に対する予測温度TM1、TM2についても冷却装置の途中冷却ゾーンの温度予測値であるため、ゾーン数を変更するだけで求めることができる。Tを求める式を式(5)に、TM1を求める式を式(6)に、TM2を求める式を式(7)にそれぞれ表す。 Such calculation method, the temperature T S measured by the cooling device inlet temperature meter 4 can predict the temperature T E after cooling to a base point. In addition, the predicted temperatures T M1 and T M2 for the two thermometers 6 in the cooling device are also predicted temperature values of the cooling zone in the middle of the cooling device, and can be obtained simply by changing the number of zones. The equation for obtaining T E is represented by Equation (5), the equation for obtaining T M1 is represented by Equation (6), and the equation for obtaining T M2 is represented by Equation (7).

Figure 2013086132
Figure 2013086132

ここで、nは全冷却ゾーン数、m1、m2は冷却装置内温度計6が設置されている冷却ゾーン番号である。   Here, n is the total number of cooling zones, and m1 and m2 are the cooling zone numbers where the thermometer 6 in the cooling device is installed.

次に比熱cを導出する方法について説明する。本実施形態における鋼板温度予測計算で用いる比熱は、鋼板温度に対応して比熱値が変化するもので、変態発熱中のある温度域で比熱値が上昇し、当該上昇する部位の低温側、および上昇する部位の高温側では比熱値の変化が小さく、概ね一定である。   Next, a method for deriving the specific heat c will be described. The specific heat used in the steel sheet temperature prediction calculation in the present embodiment is such that the specific heat value changes corresponding to the steel plate temperature, the specific heat value increases in a certain temperature range during the transformation heat generation, and the low temperature side of the rising part, and On the high temperature side of the rising part, the change in specific heat value is small and almost constant.

図2に導出する比熱の形態について説明する図を示した。図2からわかるように、鋼板温度に対応して変化する比熱値を5点の節点(節点A〜節点E)としてで設定し、各節点間は直線補間された値を用いる。5つの節点の位置は、後述する方法で導くが、各節点の位置は以下の制約を受けるものとする。以下の説明で「温度方向」は図2の水平軸方向を意味し、「比熱方向」とは図2の垂直軸方向を意味する。   The figure explaining the form of the specific heat derived | led-out in FIG. 2 was shown. As can be seen from FIG. 2, specific heat values that change in accordance with the steel plate temperature are set as five nodes (nodes A to E), and linearly interpolated values are used between the nodes. The positions of the five nodes are derived by a method described later, but the positions of the nodes are subject to the following restrictions. In the following description, “temperature direction” means the horizontal axis direction in FIG. 2, and “specific heat direction” means the vertical axis direction in FIG.

変態発熱前の比熱はオーステナイト相の値であり、節点Eは温度、比熱共に固定である。節点Dは温度方向のみ移動可能とするが、温度方向の移動については節点Bよりも高温側とする。また、変態発熱後の比熱はフェライト相の値であり、節点Aは温度、比熱共に固定値である。節点Bは線分X−Y上を移動可能とするが、温度方向の移動については節点Dよりも低温側とする。そして節点Cは温度方向、比熱方向共に移動可能とするが、温度方向の移動ついては節点Bと節点Dの間とする。   The specific heat before transformation exotherm is the value of the austenite phase, and the node E is fixed at both temperature and specific heat. The node D is movable only in the temperature direction, but the movement in the temperature direction is higher than the node B. The specific heat after transformation heat generation is the value of the ferrite phase, and the node A is a fixed value for both temperature and specific heat. The node B is movable on the line segment X-Y, but the temperature direction is lower than the node D. The node C can move in both the temperature direction and the specific heat direction, but the movement in the temperature direction is between the node B and the node D.

ここでは節点がA〜Eの5点の場合を説明したが、オーステナイト相、フェライト相の比熱をより厳密に表現するため、固定された節点をさらに増やして、5点を超える節点としても良い。また、鋼板の成分や冷却条件によって温度域や発熱量が異なる変態発熱現象を考慮するため、移動可能な節点は最低でも3点は必要である。ただし、多すぎると各節点の制約条件の設定が困難になるため移動可能な節点は多くても4点が望ましい。   Here, the description has been given of the case where there are five nodes A to E. However, in order to more accurately express the specific heat of the austenite phase and the ferrite phase, the number of fixed nodes may be further increased and the number of nodes may be more than five. Further, in order to take into account the transformation heat generation phenomenon in which the temperature range and the heat generation amount vary depending on the components and cooling conditions of the steel plate, at least three movable nodes are necessary. However, if there are too many, it becomes difficult to set the constraint condition of each node, so it is desirable that there are at most four movable nodes.

従って、式(1)、式(4)には、このような節点が考慮された温度と比熱の関係により決定される比熱cが適用される。   Therefore, the specific heat c determined by the relationship between the temperature and the specific heat in consideration of such nodes is applied to the expressions (1) and (4).

次に、比熱cの節点を導出する方法について説明する。図2に示した移動可能な節点B、節点C、節点Dの温度方向の値をそれぞれTXB,TXC,TXDとし、移動可能な節点Cの比熱方向の値をCXCとする。上記したように、鋼板温度予測値は1つの鋼板から所定の長さで切り分けられたj個のTM1,TM2,Tが算出されるが、これを3×j個の予測値TCALと定義し、これに対応する2つの冷却装置内温度計6での測定値と冷却装置出側温度計5での測定値を同じく3×j個のTACTとする。
これにより、TCALは節点B、節点C、節点Dの位置に対する関数と見なすことができ、予測精度を向上させるためには式(8)に示すTCALとTACTとの誤差の二乗和を最小にするようなTXB,TXC,TXD,CXCを求めれば良い。これには例えば最小二乗法のような最適化手法を用いて算出すれば良いし、これ以外の最適化手法を用いても良い。
Next, a method for deriving a node of specific heat c will be described. The values in the temperature direction of the movable nodes B, C, and D shown in FIG. 2 are T XB , T XC , and T XD , respectively, and the value in the specific heat direction of the movable node C is C XC . As described above, the steel plate temperature prediction value is calculated as j pieces of T M1 , T M2 , and T E cut by a predetermined length from one steel plate, and this is calculated as 3 × j prediction values T CAL. The measured values at the two cooling device thermometers 6 and the measured values at the cooling device outlet side thermometer 5 corresponding to this are similarly 3 × j TACTs .
Thus, T CAL can be regarded as a function with respect to the positions of the nodes B, C, and D, and in order to improve the prediction accuracy, the sum of squares of errors between T CAL and T ACT shown in Equation (8) is used. What is necessary is just to obtain T XB , T XC , T XD , and C XC that are minimized. For example, the calculation may be performed using an optimization method such as a least square method, or an optimization method other than this may be used.

Figure 2013086132
Figure 2013086132

次に、ここまでに説明してきた比熱の導出について2つの鋼種について適用した例を示す。表1に鋼種1、および鋼種2の添加元素を表した。   Next, an example in which two steel types are applied to the derivation of specific heat described so far will be shown. Table 1 shows the additive elements of Steel Type 1 and Steel Type 2.

Figure 2013086132
Figure 2013086132

鋼種1の結果を図3に示した。図3(a)が比熱の導出の結果、図3(b)が冷却装置入側温度計、2地点の冷却装置内温度計、冷却装置出側温度で測定した測定値と、導出した比熱を用いて冷却装置入側温度計の測定値を基点に算出した2つの冷却装置内温度計と冷却装置出側温度計に対応した予測値である。
同様に、鋼種2について図4(a)、図4(b)に結果を示した。
The result of steel type 1 is shown in FIG. FIG. 3 (a) shows the result of the derivation of the specific heat. FIG. 3 (b) shows the measured value measured at the cooling device inlet side thermometer, the two-point cooling device thermometer, the cooling device outlet temperature, and the derived specific heat. It is a predicted value corresponding to the two thermometers in the cooling device and the cooling device outlet side thermometer calculated using the measured value of the cooling device inlet side thermometer as a base point.
Similarly, the results for steel type 2 are shown in FIGS. 4 (a) and 4 (b).

このように、それぞれの鋼種に対して導出した比熱を用いて鋼板温度予測を行えば良好な温度予測精度を得ることができる。導出された比熱は実際の鋼板温度測定値に合致するように算出されたものであるため、鋼板温度予測モデルにこの比熱を適用することで、水冷抜熱量や空冷抜熱量に多少の算出誤差が存在したとしても冷却後の鋼板温度を精度良く予測することができる。   Thus, if the steel plate temperature prediction is performed using the specific heat derived for each steel type, good temperature prediction accuracy can be obtained. Since the derived specific heat is calculated so as to match the actual steel plate temperature measurement value, applying this specific heat to the steel plate temperature prediction model causes some calculation errors in the water-cooled heat extraction amount and air-cooled heat extraction amount. Even if it exists, the steel plate temperature after cooling can be accurately predicted.

なお、本発明は鋼板の温度測定値から変態発熱量を導くが、変態発熱中の温度測定値が無ければ比熱の節点を精度良く導出することができない。従って冷却装置内の温度計設置位置は変態発熱中の温度が測定できることが必要である。そのため、冷却装置内に設置されている温度計は1つでも可能であるが、異なる温度域で相変態が進行する多様な鋼種に対応するためには2つ以上の温度計が設置されていることが望ましい。また、冷却装置内温度計は比熱の節点を導出するためだけに必要であって常設の必要はない。   Although the present invention derives the transformation heat value from the temperature measurement value of the steel sheet, the specific heat nodal point cannot be accurately derived without the temperature measurement value during the transformation heat generation. Therefore, the thermometer installation position in the cooling device needs to be able to measure the temperature during the transformation heat generation. Therefore, although one thermometer is installed in the cooling device, two or more thermometers are installed in order to cope with various steel types that undergo phase transformation in different temperature ranges. It is desirable. In addition, the thermometer in the cooling device is necessary only for deriving a specific heat node, and is not necessarily provided permanently.

以上説明した式(1)〜式(5)、およびここに用いらる比熱を上記のように求めることで、予測される冷却後の鋼板温度Tを算出することができる。ここで、式(1)〜式(5)において、導出した比熱c以外の誤差要因はできるだけ小さくしておくことが望ましい。具体的には、水冷部の温度降下量を求めるための定数a、b、空冷部の温度降下量を求めるための輻射率ε、空冷部の対流熱伝達率αを適切に調整することである。これらの値は冷却中に変態発熱が生じず、比熱cの値が既知のオーステナイト系ステンレス鋼板か、冷却前に相変態が終了しているような冷却開始温度が低温の条件での冷却データを用いて調整しておくことが望ましい。 Above-described formula (1) to (5), and wherein the Mochiiraru specific heat by finding as described above, it is possible to calculate the temperature of the steel strip T E after cooling to be predicted. Here, in the formulas (1) to (5), it is desirable to make error factors other than the derived specific heat c as small as possible. Specifically, by appropriately adjusting the constants a and b for obtaining the temperature drop amount of the water cooling part, the emissivity ε for obtaining the temperature drop amount of the air cooling part, and the convective heat transfer coefficient α A of the air cooling part. is there. These values show cooling data under conditions where the transformation heat generation does not occur during cooling and the specific heat c value is a known austenitic stainless steel plate, or the cooling start temperature is low so that the phase transformation is completed before cooling. It is desirable to use and adjust.

ここまでで、比熱の導出、及びこれを用いた温度予測について説明してきたが、次に導出した比熱及び温度予測を用いて鋼板温度を所定の温度に制御するための方法について説明する。図5にそのための図を示した。なお、図1と共通する部分については同じ符号を付して説明は省略する。   So far, the derivation of the specific heat and the temperature prediction using the specific heat have been described. Next, a method for controlling the steel plate temperature to a predetermined temperature using the specific heat and temperature prediction derived will be described. FIG. 5 shows a diagram for this purpose. In addition, the same code | symbol is attached | subjected about the part which is common in FIG. 1, and description is abbreviate | omitted.

鋼板の製造装置200は、冷却装置20を有し、冷却ヘッダー3が鋼板の搬送方向に合計n個配置され、各冷却ヘッダーには水量調整バルブが設置されており、冷却装置制御コントローラ12が指示した水量を鋼板に噴出することができる構造になっている。
鋼板1は冷却装置20に進入する際に速度計7、板厚計8、冷却装置入側温度計4によって速度、板厚、温度が測定される。この測定情報に加え、鋼板1の密度、冷却装置20の初期冷却水量、水温、冷却装置付近の気温、及びデータ保存装置11に保存されている多種の鋼種に対応した比熱から対応する鋼種の比熱を選択し、式(1)〜式(5)を用いて冷却後の鋼板温度を予測する。
The steel plate manufacturing apparatus 200 has a cooling device 20, a total of n cooling headers 3 are arranged in the conveying direction of the steel plate, a water amount adjusting valve is installed in each cooling header, and the cooling device controller 12 instructs It is the structure which can eject the amount of water which was made to the steel plate.
When the steel plate 1 enters the cooling device 20, the speed, plate thickness, and temperature are measured by the speedometer 7, the plate thickness meter 8, and the cooling device entry side thermometer 4. In addition to this measurement information, the specific heat of the corresponding steel type from the density of the steel plate 1, the initial cooling water amount of the cooling device 20, the water temperature, the air temperature in the vicinity of the cooling device, and the specific heat corresponding to various steel types stored in the data storage device 11. Is selected, and the steel plate temperature after cooling is predicted using Equations (1) to (5).

そしてこの鋼板温度予測値が目標値と一致するような冷却装置20の水量密度を算出し、この水量密度設定が実現するように水量設定指示を行うことで冷却後の鋼板温度を目標値に制御することができる。   Then, the water density of the cooling device 20 is calculated such that the predicted steel plate temperature value matches the target value, and the cooling steel plate temperature is controlled to the target value by instructing the water amount setting so that the water density setting is realized. can do.

以上の説明では、熱間圧延された鋼板を対象としたが、これに限らず他の工程、例えば連続焼鈍等にも適用可能である。   In the above description, a hot-rolled steel sheet is targeted, but the present invention is not limited to this, and can be applied to other processes such as continuous annealing.

実施例として表2に示す5つの鋼種について表2に記載の条件で上記のように導出した比熱を用いた鋼板の冷却制御をおこなった。比較例として下記文献1に記載の比熱を用いた冷却制御も実施した。
(文献1)鉄鋼製造プロセスにおける冷却技術、冷却技術研究小委員会報告書、
昭和63年8月 日本鉄鋼協会
As an example, for the five steel types shown in Table 2, cooling control of the steel sheet was performed using the specific heat derived as described above under the conditions described in Table 2. As a comparative example, cooling control using specific heat described in Document 1 below was also performed.
(Reference 1) Cooling technology in steel manufacturing process, cooling technology research subcommittee report,
August 1988 Japan Iron and Steel Association

Figure 2013086132
Figure 2013086132

表2には、冷却停止温度±20℃の的中率(%)を示し、導出した比熱と、比較例の文献1に記載の比熱とを図6に示した。なお、比較例で用いた比熱は0.06%C炭素鋼のものを鋼種A、B、Cに、0.23%C炭素鋼のものを鋼種D、Eに用いた。   Table 2 shows the target ratio (%) of the cooling stop temperature ± 20 ° C., and the derived specific heat and the specific heat described in Reference 1 of the comparative example are shown in FIG. The specific heat used in the comparative examples was 0.06% C carbon steel for steel types A, B and C, and 0.23% C carbon steel for steel types D and E.

表2に示した的中率は、鋼種A〜Eには冷却後の鋼板温度である冷却停止温度の目標値が定められており、この目標値の±20℃の範囲にどれだけの確率で制御することができるかを評価したものである。表2からわかるように、比較例に比べ実施例の方が高い確率で目標値に制御することが確認できた。   The target values shown in Table 2 are determined for steel types A to E with a target value for the cooling stop temperature, which is the steel plate temperature after cooling, and with a probability of ± 20 ° C. of this target value. It is evaluated whether it can be controlled. As can be seen from Table 2, it was confirmed that the example controlled to the target value with higher probability than the comparative example.

1 鋼板
2 搬送手段
3 冷却ヘッダー
4 冷却装置入側温度計
5 冷却装置出側温度計
6 冷却装置内温度計
7 鋼板速度測定装置
8 鋼板板厚測定装置
10 演算装置
11 データ保存装置
12 冷却装置制御コントローラ
20 冷却装置
100 鋼板の製造装置
200 鋼板の製造装置
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Conveying means 3 Cooling header 4 Cooling device entrance side thermometer 5 Cooling device exit side thermometer 6 Cooling device thermometer 7 Steel plate speed measuring device 8 Steel plate thickness measuring device 10 Arithmetic device 11 Data storage device 12 Cooling device control Controller 20 Cooling device 100 Steel plate manufacturing device 200 Steel plate manufacturing device

Claims (5)

Ac3変態点以上にまで加熱された高温の鋼板を搬送しながら冷却水を噴出する冷却装置を用い、鋼板の温度予測計算結果に基づいて冷却水量を操作して冷却後の鋼板温度を所定の温度に制御する冷却制御方法であって、
前記冷却装置の入側および出側で測定した冷却前後の鋼板温度実績値と、前記冷却装置内の1箇所以上の地点で測定した鋼板温度実績値と、を解析して導出した鋼板の比熱を用い、鋼板の予測温度を演算することを特徴とする、鋼板の冷却制御方法。
Using a cooling device that ejects cooling water while conveying a high-temperature steel plate heated to the Ac3 transformation point or higher, the amount of cooling water is manipulated based on the temperature prediction calculation result of the steel plate, and the steel plate temperature after cooling is set to a predetermined temperature. A cooling control method for controlling
The specific heat of the steel sheet derived by analyzing and analyzing the steel sheet temperature actual value before and after cooling measured at the inlet side and the outlet side of the cooling apparatus and the steel sheet temperature actual value measured at one or more points in the cooling apparatus. A method for controlling the cooling of a steel sheet, comprising calculating a predicted temperature of the steel sheet.
前記比熱の値は前記鋼板の温度に応じて変化するものとして、前記変化を5点以上の節点で表すことを特徴とする請求項1に記載の鋼板の冷却制御方法。   The steel sheet cooling control method according to claim 1, wherein the specific heat value changes according to the temperature of the steel sheet, and the change is expressed by five or more nodes. 前記節点は、鋼板温度予測結果と、鋼板温度実績値との誤差の二乗和を最小とするように求められることを特徴とする請求項2に記載の鋼板の冷却制御方法。   The steel sheet cooling control method according to claim 2, wherein the node is calculated so as to minimize a sum of squares of errors between the steel plate temperature prediction result and the steel plate temperature actual value. Ac3変態点以上にまで加熱された高温の鋼板を搬送する搬送装置と、
前記搬送された鋼板に対して、冷却水を噴出する冷却装置と、
前記冷却装置の入側、出側、および内側のそれぞれに少なくとも1つずつ配置された温度計と、
前記冷却装置の入側および出側に配置された前記温度計で測定した冷却前後の鋼板温度実績値、並びに、前記冷却装置の内側に配置された前記温度計で測定した鋼板温度実績値を解析して導出した鋼板の比熱を用いて鋼板の予測温度を演算する演算装置と、を備える鋼板の製造装置。
A transport device for transporting a high-temperature steel sheet heated to an Ac3 transformation point or higher;
A cooling device for ejecting cooling water to the conveyed steel plate;
At least one thermometer disposed on each of the inlet side, the outlet side, and the inner side of the cooling device;
Analyzing the actual steel plate temperature measured before and after cooling measured with the thermometers arranged on the inlet side and the outlet side of the cooling device, and the actual steel plate temperature measured with the thermometer arranged inside the cooling device And a computing device that computes the predicted temperature of the steel sheet using the specific heat of the steel sheet derived as described above.
前記演算装置における前記比熱の導出は、該比熱の値が前記鋼板の温度に応じて変化するものとして、前記変化を5点以上の節点で表して演算することを特徴とする請求項4に記載の鋼板の製造装置。   The derivation of the specific heat in the arithmetic device is calculated by expressing the change with five or more nodes, assuming that the value of the specific heat changes according to the temperature of the steel sheet. Steel plate manufacturing equipment.
JP2011229144A 2011-10-18 2011-10-18 Steel sheet cooling control method, steel sheet manufacturing equipment Active JP5757217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011229144A JP5757217B2 (en) 2011-10-18 2011-10-18 Steel sheet cooling control method, steel sheet manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229144A JP5757217B2 (en) 2011-10-18 2011-10-18 Steel sheet cooling control method, steel sheet manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2013086132A true JP2013086132A (en) 2013-05-13
JP5757217B2 JP5757217B2 (en) 2015-07-29

Family

ID=48530610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229144A Active JP5757217B2 (en) 2011-10-18 2011-10-18 Steel sheet cooling control method, steel sheet manufacturing equipment

Country Status (1)

Country Link
JP (1) JP5757217B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09164413A (en) * 1995-12-14 1997-06-24 Hitachi Ltd Method and device for controlling spray
JP2010023066A (en) * 2008-07-17 2010-02-04 Sumitomo Metal Ind Ltd Method and equipment for cooling hot-rolled steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09164413A (en) * 1995-12-14 1997-06-24 Hitachi Ltd Method and device for controlling spray
JP2010023066A (en) * 2008-07-17 2010-02-04 Sumitomo Metal Ind Ltd Method and equipment for cooling hot-rolled steel sheet

Also Published As

Publication number Publication date
JP5757217B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
TWI224144B (en) Heat treating device, heat treating method, recording medium recording heat treating program and steel product
JP2012040593A (en) Device for controlling finishing temperature in hot rolling
JPWO2017130508A1 (en) Steel plate temperature control device and temperature control method
JP4598586B2 (en) Cooling control method, apparatus, and computer program
JP6558060B2 (en) Thick steel plate cooling control method, cooling control device, manufacturing method, and manufacturing device
JP2014000593A (en) Temperature unevenness prediction method of hot rolled steel sheet, flatness control method, temperature unevenness control method and manufacturing method
CN104815853A (en) Temperature distribution prediction device
JP2020192578A (en) Method for estimating temperature of billet extracted from heating furnace and device for estimating temperature of billet extracted from heating furnace
JP5803838B2 (en) Method for estimating slab temperature
JP5493993B2 (en) Thick steel plate cooling control device, cooling control method, and manufacturing method
JP5757217B2 (en) Steel sheet cooling control method, steel sheet manufacturing equipment
JP5983071B2 (en) Prediction method for steel slab extraction temperature
JP5948967B2 (en) Temperature prediction method, cooling control method and cooling control device for metal plate in hot rolling
JP4349177B2 (en) Steel extraction temperature prediction method for continuous heating furnace
JP4894686B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP6645036B2 (en) Cooling control method, cooling control device, manufacturing method, and manufacturing device for thick steel plate
EP3922371B1 (en) Method of cooling control for thick steel plate, cooling control device, and method of producing thick steel plate
JP2006272395A (en) Method and apparatus for controlling cooling and computer program
JP3546864B2 (en) Hot rolling method and apparatus
JP5239887B2 (en) Hot rolled steel sheet manufacturing apparatus and manufacturing method
JP2017170488A (en) Method and apparatus for cooling thick steel plate
JP6645037B2 (en) Cooling control method, cooling control device, manufacturing method, and manufacturing device for thick steel plate
JP2004244721A (en) Method for estimating heat transfer coefficient and method for controlling cooling in water-cooling process for steel plate
JP6485196B2 (en) Thick steel plate cooling control method, cooling control device, manufacturing method, and manufacturing device
Ostapenko et al. Sheet cooling in a roller quenching machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R151 Written notification of patent or utility model registration

Ref document number: 5757217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350