JP5983071B2 - Prediction method for steel slab extraction temperature - Google Patents

Prediction method for steel slab extraction temperature Download PDF

Info

Publication number
JP5983071B2
JP5983071B2 JP2012135022A JP2012135022A JP5983071B2 JP 5983071 B2 JP5983071 B2 JP 5983071B2 JP 2012135022 A JP2012135022 A JP 2012135022A JP 2012135022 A JP2012135022 A JP 2012135022A JP 5983071 B2 JP5983071 B2 JP 5983071B2
Authority
JP
Japan
Prior art keywords
steel slab
temperature
air
heating furnace
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012135022A
Other languages
Japanese (ja)
Other versions
JP2013255943A (en
Inventor
建太 苅部
建太 苅部
聡 渋谷
聡 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012135022A priority Critical patent/JP5983071B2/en
Publication of JP2013255943A publication Critical patent/JP2013255943A/en
Application granted granted Critical
Publication of JP5983071B2 publication Critical patent/JP5983071B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱間圧延などに供される鋼片の加熱炉抽出温度を予測する方法に関する。   The present invention relates to a method for predicting a furnace extraction temperature of a steel piece subjected to hot rolling or the like.

熱間圧延に供される鋼片は、通常、加熱炉で所定温度に加熱されてから圧延に供される。このため、鋼片を加熱炉で加熱するときには目標温度まで均一に加熱する必要があり、鋼片を目標温度まで均一に加熱するためには、加熱炉の炉内温度や鋼片の加熱炉抽出温度を随時監視する必要がある。
しかし、加熱炉から抽出される鋼片の表面にスケールが生成されていると鋼片の加熱炉抽出温度を直接的に測定することは困難である。そこで、特許文献1には、加熱炉内の雰囲気ガス成分を炭酸ガス計と露点計とを用いて測定し、その測定値からガス放射率を求め、ガス放射率から総括熱吸収率を計算して鋼片の加熱炉抽出温度を予測する方法が記載されている。
The steel slab to be subjected to hot rolling is usually heated to a predetermined temperature in a heating furnace and then subjected to rolling. For this reason, when heating a steel slab in a heating furnace, it is necessary to heat it uniformly to the target temperature. To heat the steel slab uniformly to the target temperature, the furnace temperature of the heating furnace or the extraction of the steel slab into the furnace It is necessary to monitor the temperature from time to time.
However, if scale is generated on the surface of the steel slab extracted from the heating furnace, it is difficult to directly measure the furnace extraction temperature of the steel slab. Therefore, in Patent Document 1, the atmospheric gas components in the heating furnace are measured using a carbon dioxide gas meter and a dew point meter, the gas emissivity is obtained from the measured value, and the overall heat absorption rate is calculated from the gas emissivity. A method for predicting the furnace extraction temperature of a billet is described.

また、特許文献2には、鋼片が圧延される際の圧延荷重と鋼片の圧延前後の外形寸法とに基づいて圧延時における鋼片温度を求め、鋼片が加熱炉から圧延機に至るまでの冷却を加味して鋼片の加熱炉抽出温度を計算する方法が記載されている。
さらに、特許文献3には、加熱炉から抽出された鋼片の表面を高圧水でデスケーリングし、デスケーリングされた鋼片表面の復熱が完了した後に鋼片の表面温度を測定し、その温度測定値に基づいて鋼片の加熱炉抽出温度を演算して予測する方法が記載されている。
Further, in Patent Document 2, the steel slab temperature at the time of rolling is obtained based on the rolling load when the steel slab is rolled and the outer dimensions of the steel slab before and after rolling, and the steel slab reaches the rolling mill from the heating furnace. The method of calculating the furnace extraction temperature of a steel piece in consideration of the cooling up to is described.
Furthermore, in Patent Document 3, the surface of the steel slab extracted from the heating furnace is descaled with high-pressure water, and after reheating of the descaled steel slab surface is completed, the surface temperature of the steel slab is measured, A method of calculating and predicting the furnace extraction temperature of a billet based on a temperature measurement value is described.

特開平6−192751号公報JP-A-6-192751 特開昭63−26214号公報Japanese Unexamined Patent Publication No. 63-26214 特許第4349177号公報Japanese Patent No. 4349177

しかしながら、加熱炉内は雰囲気ガスの分布が均一でないため、特許文献1に記載された方法では、雰囲気ガス成分の時間的変動が非常に大きくなり、適正な総括熱吸収率を同定することは極めて難しいという問題がある。
また、鋼片の圧延抵抗や外形寸法から鋼片温度を精度よく計算することは困難であり、加熱炉から圧延機に至るまでの冷却条件が外乱要因となるため、特許文献2に記載された方法では、鋼片の加熱炉抽出温度を正確に求めることができないという問題がある。
However, since the distribution of the atmospheric gas is not uniform in the heating furnace, the method described in Patent Document 1 has a very large temporal variation of atmospheric gas components, and it is extremely difficult to identify an appropriate overall heat absorption rate. There is a problem that it is difficult.
Further, it is difficult to accurately calculate the slab temperature from the rolling resistance and outer dimensions of the slab, and the cooling condition from the heating furnace to the rolling mill becomes a disturbance factor. In the method, there is a problem that the furnace extraction temperature of the billet cannot be accurately obtained.

一方、特許文献3に記載された方法では、デスケーリングされた鋼片の表面温度を測定するため、スケールの影響を受けることなく鋼片の表面温度を測定することが可能であるが、デスケーリング水の熱伝達係数が非常に大きく、デスケーリング水の沸騰状態によって鋼片表面の温度測定値が大きく変動するため、鋼片の加熱炉抽出温度を正確に予測できないという問題があった。
本発明は、かかる事情に鑑みてなされたものであり、熱間圧延などに供される鋼片の加熱炉抽出温度を正確に予測することのできる鋼片の加熱炉抽出温度予測方法を提供することを目的とするものである。
On the other hand, in the method described in Patent Document 3, since the surface temperature of the descaled billet is measured, the surface temperature of the billet can be measured without being affected by the scale. Since the heat transfer coefficient of water is very large, and the measured temperature of the steel slab surface varies greatly depending on the boiling state of descaling water, the furnace extraction temperature of the steel slab cannot be accurately predicted.
This invention is made | formed in view of this situation, and provides the heating furnace extraction temperature prediction method of the steel slab which can estimate the heating furnace extraction temperature of the steel slab provided to hot rolling etc. correctly. It is for the purpose.

上記目的を達成するために、本発明は、加熱炉にて加熱された鋼片の加熱炉抽出温度を予測する方法であって、前記加熱炉から抽出された鋼片の表面に空気をエアー噴出ノズルから吹き付けて前記鋼片の表面からスケールを除去するスケール除去工程と、該スケール除去上程の後に前記鋼片の表面温度を当該鋼片表面の復熱が完了した後に測定する温度測定工程と、該温度測定工程で得られた温度測定値を基に加熱炉抽出時の鋼片表面温度を演算して前記鋼片の加熱炉抽出温度を予測する加熱炉抽出温度予測工程と、を有し、前記スケール除去工程では、前記エアー噴出ノズルから前記鋼片の表面に噴射される空気の1ノズル当りの噴射流量を200〜5000Nm /hに設定して前記鋼片の表面からスケールを除去することを特徴とする。 In order to achieve the above object, the present invention is a method for predicting a furnace extraction temperature of a steel slab heated in a heating furnace, wherein air is blown out onto the surface of the steel slab extracted from the heating furnace. A scale removing step of removing scale from the surface of the steel slab by spraying from a nozzle; and a temperature measuring step of measuring the surface temperature of the steel slab after completion of reheating of the steel slab surface after the scale removal process; the temperature measurements obtained by the temperature measuring step calculates the billet surface temperature at the heating furnace extraction based have a, a heating furnace extraction temperature prediction step of predicting a heating furnace extraction temperature of the steel strip, In the scale removal step, the scale is removed from the surface of the steel slab by setting an injection flow rate per nozzle of air injected from the air ejection nozzle to the surface of the steel slab at 200 to 5000 Nm 3 / h. Features .

本発明において、前記加熱炉抽出時の鋼片表面温度を、前記温度測定工程で測定された鋼片の表面温度と、前記鋼片の周囲の空気温度と、前記鋼片が自然空冷によって冷却されるときの熱伝達係数と、前記鋼片の比熱と、前記鋼片の加熱炉抽出時から表面温度測定時に至るまでの経過時間と、前記エアー噴出ノズルから噴出する空気によって鋼片が冷却されるときの熱伝達係数と、前記エアー噴出ノズルから前記鋼片の表面に噴射される空気の温度とに基づいて演算することが望ましい。   In the present invention, the surface temperature of the steel slab at the time of the heating furnace extraction, the surface temperature of the steel slab measured in the temperature measuring step, the air temperature around the steel slab, and the steel slab are cooled by natural air cooling. The steel slab is cooled by the heat transfer coefficient, the specific heat of the steel slab, the elapsed time from the extraction of the steel slab to the surface temperature measurement, and the air ejected from the air ejection nozzle. It is desirable to calculate based on the heat transfer coefficient and the temperature of the air sprayed from the air ejection nozzle onto the surface of the steel slab.

また、前記エアー噴出ノズルから前記鋼片の表面に噴射される空気の噴射距離を50〜200mmに設定して前記鋼片の表面からスケールを除去すること好ましい。
また、前記エアー噴出ノズルから前記鋼片の表面に噴射される空気の噴射圧力を0.2〜2.0MPaに設定して前記鋼片の表面からスケールを除去することが好ましい
Moreover, it is preferable to remove the scale from the surface of the steel slab by setting the injection distance of air injected from the air ejection nozzle to the surface of the steel slab to 50 to 200 mm.
Moreover, it is preferable that the scale is removed from the surface of the steel slab by setting an injection pressure of air injected from the air ejection nozzle to the surface of the steel slab at 0.2 to 2.0 MPa .

本発明によれば、加熱炉から抽出された鋼片の表面を高圧水でデスケーリングする必要がなく、デスケーリング水の熱伝達係数やデスケーリング水の沸騰状態によって鋼片表面の温度測定値が大きく変動することがない。従って、熱間圧延などに供される鋼片の加熱炉抽出温度を正確に予測することができる。   According to the present invention, there is no need to descal the surface of the steel slab extracted from the heating furnace with high-pressure water, and the temperature measurement value of the steel slab surface depends on the heat transfer coefficient of the descaling water and the boiling state of the descaling water. It does not fluctuate greatly. Accordingly, it is possible to accurately predict the furnace extraction temperature of a steel piece to be subjected to hot rolling or the like.

熱延鋼板の連続製造ラインの一部を示す図である。It is a figure which shows a part of continuous production line of a hot-rolled steel plate. 鋼片の表面からスケールを除去するときに用いられるエアー噴出ノズルを示す図である。It is a figure which shows the air ejection nozzle used when removing a scale from the surface of a steel piece. 鋼片の加熱炉抽出時から表面温度測定時までの温度変化を示す図である。It is a figure which shows the temperature change from the time of furnace extraction of a steel piece to the time of surface temperature measurement.

以下、図1〜図3を参照して本発明の一実施形態について説明する。
本発明に係る鋼片の加熱炉抽出温度予測方法は、熱延鋼板の連続製造ラインなどに適用されるものであり、熱延鋼板の連続製造ラインとしては、図1に示すように、鋼片1を加熱する加熱炉2や、加熱炉2で加熱された鋼片1を粗圧延する粗圧延機3などを備えたものを用いることができる。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
The method for predicting the extraction temperature of a steel slab according to the present invention is applied to a continuous production line for hot-rolled steel sheets, and as a continuous production line for hot-rolled steel sheets, as shown in FIG. A heating furnace 2 for heating 1, a rough rolling machine 3 for rough rolling the steel slab 1 heated in the heating furnace 2, and the like can be used.

加熱炉2から抽出された鋼片1は、多数の搬送ローラ4により被圧延機3へ搬送されるが、粗圧延機3で粗圧延される前に加熱炉2の出側に配置されたエアー噴出ノズル5a,5bによってスケール(図2参照)が鋼片1の表面から除去される。
エアー噴出ノズル5a,5bは鋼片1の表面に空気を吹き付けて鋼片1の表面からスケール6を除去するためのものであって、搬送ローラ4の上側と下側に配置されている。
The steel slab 1 extracted from the heating furnace 2 is conveyed to the rolling mill 3 by a number of conveying rollers 4, but before being roughly rolled by the rough rolling mill 3, the air disposed on the outlet side of the heating furnace 2. The scale 6 (see FIG. 2) is removed from the surface of the steel piece 1 by the ejection nozzles 5a and 5b.
The air ejection nozzles 5 a and 5 b are for blowing air onto the surface of the steel piece 1 to remove the scale 6 from the surface of the steel piece 1, and are arranged on the upper side and the lower side of the transport roller 4.

ここで、エアー噴出ノズル5a,5bから鋼片1の表面に噴射される空気の噴射距離が50mm未満であると変形した鋼片とエアー噴出ノズル5a,5bとが衝突し、操業トラブルとなる。また、エアー噴出ノズル5a,5bから鋼片1の表面に噴射される空気の噴射距離が200mmを超えるとエアー噴出ノズル5a,5bから噴出したエアーが減速し、スケールを除去できなくなる。従って、エアー噴出ノズル5a,5bから鋼片1の表面に空気を吹き付けて鋼片1の表面からスケール6を除去するときには、エアー噴出ノズル5a,5bから鋼片1の表面に噴射される空気の噴射距離を50〜200mmに設定することが好ましい。   Here, if the spray distance of the air sprayed from the air ejection nozzles 5a and 5b onto the surface of the steel slab 1 is less than 50 mm, the deformed steel slab collides with the air ejection nozzles 5a and 5b, resulting in an operation trouble. Moreover, if the spray distance of the air sprayed from the air ejection nozzles 5a and 5b onto the surface of the steel slab 1 exceeds 200 mm, the air ejected from the air ejection nozzles 5a and 5b is decelerated and the scale cannot be removed. Therefore, when the scale 6 is removed from the surface of the steel piece 1 by blowing air onto the surface of the steel piece 1 from the air ejection nozzles 5a and 5b, the air jetted from the air ejection nozzles 5a and 5b to the surface of the steel piece 1 It is preferable to set the spray distance to 50 to 200 mm.

エアー噴出ノズル5a,5bから鋼片1の表面に噴射される空気の噴射圧力が0.2MPa未満であるとスケールを除去できなくなる。また、エアー噴出ノズル5a,5bから鋼片1の表面に噴射される空気の噴射圧力が2.0MPaを超えるとエアー噴射に使用するコンプレッサのスペックが大きくなり、ランニングコストが増大する。従って、エアー噴出ノズル5a,5bから鋼片1の表面に空気を吹き付けて鋼片1の表面からスケール6を除去するときには、エアー噴出ノズル5a,5bから鋼片1の表面に噴射される空気の噴射圧力を0.2〜2.0MPaに設定することが好ましい。   If the spray pressure of air sprayed from the air spray nozzles 5a and 5b onto the surface of the steel slab 1 is less than 0.2 MPa, the scale cannot be removed. Moreover, if the injection pressure of the air injected to the surface of the steel slab 1 from the air injection nozzles 5a and 5b exceeds 2.0 MPa, the specifications of the compressor used for air injection increase, and the running cost increases. Therefore, when the scale 6 is removed from the surface of the steel piece 1 by blowing air onto the surface of the steel piece 1 from the air ejection nozzles 5a and 5b, the air jetted from the air ejection nozzles 5a and 5b to the surface of the steel piece 1 The injection pressure is preferably set to 0.2 to 2.0 MPa.

エアー噴出ノズル5a,5bから鋼片1の表面に噴射される空気の1ノズル当りの噴射流量が200Nm3/h未満であるとスケールを除去できなくなる。また、エアー噴出ノズル5a,5bから鋼片1の表面に噴射される空気の1ノズル当りの噴射流量が5000Nm3/hを超えるとエアー噴射に使用するコンプレッサのスペックが大きくなり、ランニングコストが増大する。従って、エアー噴出ノズル5a,5bから鋼片1の表面に空気を吹き付けて鋼片1の表面からスケール6を除去するときには、エアー噴出ノズル5a,5bから鋼片1の表面に噴射される空気の1ノズル当りの噴射流量を200〜5000Nm3/hに設定することが好ましい。 If the spraying flow rate per nozzle of air sprayed from the air ejection nozzles 5a, 5b to the surface of the steel slab 1 is less than 200 Nm 3 / h, the scale cannot be removed. In addition, if the injection flow rate per nozzle of air injected from the air injection nozzles 5a and 5b to the surface of the steel slab 1 exceeds 5000 Nm 3 / h, the specifications of the compressor used for the air injection increase and the running cost increases. To do. Therefore, when the scale 6 is removed from the surface of the steel piece 1 by blowing air onto the surface of the steel piece 1 from the air ejection nozzles 5a and 5b, the air jetted from the air ejection nozzles 5a and 5b to the surface of the steel piece 1 It is preferable that the injection flow rate per nozzle is set to 200 to 5000 Nm 3 / h.

エアー噴出ノズル5a,5bから噴出する空気によってスケール6が除去された鋼片1は、搬送ローラ4の上側と下側に相対向して配置された放射温度計7aと放射温度計7bとの間を通過して粗圧延機3へ搬送される。このとき、鋼片1の上面側と下面側の表面温度は放射温度計7a,7bによって測定され、放射温度計7a,7bは鋼片1の表面温度に応じた信号を出力する。   The steel piece 1 from which the scale 6 has been removed by the air ejected from the air ejection nozzles 5a and 5b is located between the radiation thermometer 7a and the radiation thermometer 7b arranged opposite to each other on the upper side and the lower side of the conveying roller 4. And is conveyed to the roughing mill 3. At this time, the surface temperature of the upper surface side and the lower surface side of the steel slab 1 is measured by the radiation thermometers 7 a and 7 b, and the radiation thermometers 7 a and 7 b output signals corresponding to the surface temperature of the steel slab 1.

放射温度計7a,7bから出力された信号は、加熱炉抽出温度予測装置8に供給される。この加熱炉抽出温度予測装置8は鋼片1の加熱炉抽出温度(加熱炉抽出時の板厚方向平均温度)を予測するものであって、下記に示す(1)及び(2)式から加熱炉抽出時の鋼片表面温度TA、TA'を求めて鋼片1の加熱炉抽出温度を予測するように構成されている。
A=TE+ΔTa1+ΔTc−ΔTR+ΔTa2 ‥‥(1)
A'=TE'+ΔTa1'+ΔTc'−ΔTR'+ΔTa2' ‥‥(2)
The signals output from the radiation thermometers 7a and 7b are supplied to the heating furnace extraction temperature prediction device 8. This heating furnace extraction temperature prediction device 8 predicts the heating furnace extraction temperature of the steel slab 1 (plate thickness direction average temperature at the time of heating furnace extraction), and is heated from the following formulas (1) and (2). The steel slab surface temperature T A , T A ′ at the time of furnace extraction is obtained to predict the furnace extraction temperature of the steel slab 1.
T A = T E + ΔT a1 + ΔT c −ΔT R + ΔT a2 (1)
T A '= T E ' + ΔT a1 '+ ΔT c ' −ΔT R '+ ΔT a2 ' (2)

ただし、TE,TE':放射温度計7a,7bの表面温度測定値、ΔTa1,ΔTa1':図3に示すA点(加熱炉抽出点)からB点(エアー噴出ノズル5a,5bによるスケール除去開始点)に至るまでの鋼片1の温度降下量、ΔTc,ΔTc':図3に示すB点からC点(エアー噴出ノズル5a,5bによるスケール除去終了点)に至るまでの鋼片1の温度降下量、ΔTR,ΔTR':図3に示すC点からD点(鋼片1の表面の復熱完了点)に至るまでの鋼片1の温度上昇量、ΔTa2,ΔTa2':図3に示すD点からE点(放射温度計7a,7bによる温度測定点)に至るまでの鋼片1の温度降下量である。 However, T E , T E ′: measured values of the surface temperature of the radiation thermometers 7 a, 7 b, ΔT a1 , ΔT a1 ′: point A (heating furnace extraction point) to point B (air ejection nozzles 5 a, 5 b) shown in FIG. The temperature drop of the steel slab 1 until the scale removal start point by Δ, ΔT c , ΔT c ′: from the point B shown in FIG. 3 to the point C (end point of scale removal by the air ejection nozzles 5a, 5b) Temperature drop of steel slab 1, ΔT R , ΔT R ′: temperature rise of steel slab 1 from point C to point D (recovery completion point on the surface of steel slab 1) shown in FIG. a2 , ΔT a2 ': The temperature drop of the steel slab 1 from point D to point E (temperature measurement points by the radiation thermometers 7a, 7b) shown in FIG.

ここで、鋼片1が自然空冷によって冷却されるときの熱伝達係数をαa,αa'、鋼片1の比熱をc、図3に示すA点からB点までの経過時間をta1,ta1'、鋼片周囲の空気温度をTa,Ta'とすると、(1)及び(2)式の温度降下量ΔTa1,ΔTa1'は、下記に示す(3)及び(4)式によって表される。 Here, the heat transfer coefficient when the steel strip 1 is cooled by natural cooling α a, α a ', the specific heat of the steel piece 1 c, the elapsed time from the point A shown in FIG. 3 up to point B t a1 , T a1 ′, and the air temperature around the steel slab is T a , T a ′, the temperature drop amounts ΔT a1 , ΔT a1 ′ in the equations (1) and (2) are expressed by the following (3) and (4 ).

Figure 0005983071
Figure 0005983071

また、エアー噴出ノズル5a,5bから噴出する空気によって鋼片1が冷却されるときの熱伝達係数をαc,αc'、鋼片1の比熱をc、図3に示すB点からC点までの経過時間をtc,tc'、エアー噴出ノズル5a,5bから噴出する空気の温度をTc,Tc'とすると、(1)及び(2)式の温度降下量ΔTc,ΔTc'は、下記に示す(5)及び(6)式によって表される。 Further, the heat transfer coefficients α c and α c ′ when the steel slab 1 is cooled by the air ejected from the air ejection nozzles 5a and 5b are c, the specific heat of the steel slab 1 is c, and the points B to C shown in FIG. , T c , t c ′, and temperatures of air ejected from the air ejection nozzles 5 a, 5 b are T c , T c ′. Temperature drop amounts ΔT c , ΔT in the expressions (1) and (2) c ′ is expressed by the following equations (5) and (6).

Figure 0005983071
Figure 0005983071

また、鋼片1が自然空冷によって冷却されるときの熱伝達係数をαa,αa'、鋼片1の比熱をc、図3に示すC点からD点までの経過時間をtR,tR'、図3に示すD点からE点までの経過時間をta2,ta2'とすると、(1)及び(2)式の温度上昇量ΔTR、ΔTR'および温度降下量ΔTa2,ΔTa2'は、下記に示す(7)及び(8)式によって表される。 Further, the heat transfer coefficient when the steel strip 1 is cooled by natural cooling α a, α a ', the specific heat of the steel piece 1 c, the elapsed time from the point C shown in FIG. 3 up to point D t R, t R When ', the elapsed time from the point D shown in FIG. 3 up to point E t a2, t a2' and, (1) and (2) temperature rise of formula [Delta] t R, [Delta] t R 'and the amount of temperature drop [Delta] t a2 and ΔT a2 ′ are expressed by the following equations (7) and (8).

Figure 0005983071
Figure 0005983071

図3は、鋼片1の表面温度と加熱炉抽出からの経過時間との関係を示す図である。この図3に例示されるように、鋼片1の表面温度は加熱炉から抽出された直後の図3のA点では約1200℃であるが、その後自然空冷されてB点では約1175℃に下降する。そして、B点からC点に至るまでエアー噴出ノズルからの噴流空気によって、鋼片の表面が強制空冷されるので、鋼片の温度はC点では1165℃に下降する。その後、鋼片表面で復熱がなされ、その復熱が完了した時点のD点では鋼片の温度は約1170℃に上昇する。その後、鋼片の表面は自然空冷され、放射温度計で測定されるE点では、鋼片の温度は約1160℃に下降する。
従って、上記(1)〜(8)式を解くことによって、加熱炉抽出時の鋼片表面温度TA,TA'を算出することができ、鋼片表面温度TA,TA'の算出値から鋼片1の加熱炉抽出温度を予測することができる。
FIG. 3 is a diagram showing the relationship between the surface temperature of the steel slab 1 and the elapsed time from the extraction of the heating furnace. As illustrated in FIG. 3, the surface temperature of the slab 1 is about 1200 ° C. at point A in FIG. 3 immediately after being extracted from the heating furnace, but is then naturally air cooled to about 1175 ° C. at point B. Descend. And since the surface of a steel slab is forcibly air-cooled by the jet air from an air ejection nozzle from the B point to the C point, the temperature of a steel slab falls to 1165 degreeC in the C point. Thereafter, recuperation is performed on the surface of the steel slab, and the temperature of the steel slab rises to about 1170 ° C. at point D when the reheating is completed. Thereafter, the surface of the billet is naturally air-cooled, and at the point E measured by a radiation thermometer, the temperature of the billet is lowered to about 1160 ° C.
Accordingly, by solving the above equations (1) to (8), the steel slab surface temperatures T A and T A ′ at the time of extraction from the heating furnace can be calculated, and the steel slab surface temperatures T A and T A ′ are calculated. The furnace extraction temperature of the steel slab 1 can be predicted from the value.

上記のように、加熱炉2から抽出された鋼片1の表面に空気をエアー噴出ノズル5a,5bから吹き付けて鋼片1の表面からスケール6を除去した後、鋼片1の表面温度を放射温度計7a,7bにより測定することで、加熱炉2から抽出された鋼片1の表面を高圧水でデスケーリングする必要がなく、デスケーリング水の熱伝達係数やデスケーリング水の沸騰状態によって鋼片表面の温度測定値が大きく変動することがない。また、放射温度計7a,7bによる鋼片1の表面の温度測定は、鋼片の表面の復熱が完了した後に行うので、正確な鋼片1の表面温度を測定することができる。従って、放射温度計7a,7bの温度測定値を基に鋼片1の加熱炉抽出温度を予測することで、熱間圧延などに供される鋼片1の加熱炉抽出温度を正確に予測することができる。   As described above, after the scale 6 is removed from the surface of the steel piece 1 by blowing air from the air jet nozzles 5a and 5b to the surface of the steel piece 1 extracted from the heating furnace 2, the surface temperature of the steel piece 1 is radiated. By measuring with the thermometers 7a and 7b, it is not necessary to descal the surface of the steel slab 1 extracted from the heating furnace 2 with high pressure water, and the steel depends on the heat transfer coefficient of the descaling water and the boiling state of the descaling water. The temperature measurement value on one surface does not fluctuate greatly. Moreover, since the surface temperature measurement of the steel piece 1 by the radiation thermometers 7a and 7b is performed after the reheating of the surface of the steel piece is completed, the accurate surface temperature of the steel piece 1 can be measured. Therefore, the furnace extraction temperature of the steel slab 1 used for hot rolling or the like is accurately predicted by predicting the furnace extraction temperature of the steel slab 1 based on the temperature measurement values of the radiation thermometers 7a and 7b. be able to.

また、加熱炉抽出温度予測装置8で予測した鋼片1の加熱炉抽出温度を加熱炉内温度制御モデルに基づいて予測した鋼片の加熱炉抽出温度と比較することで、加熱炉内の総括熱吸収率を補正することが可能になり、目標抽出温度的中精度を向上させることができる。
また、加熱炉抽出時の鋼片表面温度を(1)及び/または(2)式から求めて鋼片1の加熱炉抽出温度を予測することで、熱間圧延などに供される鋼片1の加熱炉抽出温度をより正確に予測することができる。
上述した本発明の一実施形態では、スケール6が除去された鋼片1の上面側と下面側の表面温度を放射温度計7a,7bにより測定して鋼片1の加熱炉抽出温度を予測するようにしたが、鋼片1の上面及び下面のうち一方の表面温度を放射温度計により測定して鋼片1の加熱炉抽出温度を予測するようにしてもよい。
Also, by comparing the heating furnace extraction temperature of the steel slab 1 predicted by the heating furnace extraction temperature prediction device 8 with the heating furnace extraction temperature of the steel slab predicted based on the temperature control model in the heating furnace, a summary of the inside of the heating furnace is obtained. It becomes possible to correct the heat absorption rate and improve the medium accuracy of the target extraction temperature.
Moreover, the steel slab 1 used for hot rolling etc. is calculated | required by calculating | requiring the steel slab surface temperature at the time of heating furnace extraction from (1) and / or (2) Formula, and predicting the heating furnace extraction temperature of the steel slab 1 The extraction temperature of the furnace can be predicted more accurately.
In one Embodiment of this invention mentioned above, the surface temperature of the upper surface side and the lower surface side of the steel piece 1 from which the scale 6 was removed is measured with the radiation thermometers 7a and 7b, and the heating furnace extraction temperature of the steel piece 1 is estimated. However, the surface temperature of one of the upper surface and the lower surface of the steel slab 1 may be measured with a radiation thermometer to predict the heating furnace extraction temperature of the steel slab 1.

(実施例)
本発明者らは、エアー噴出ノズル5a,5bから鋼片(板幅:1.2m、板厚:220mm)Sの表面に噴射される空気の噴射距離を100mm、噴射圧力を1MPa、1ノズル当りの噴射流量を500Nm3/hに設定したときの加熱炉2での鋼片過加熱温度、加熱炉原単位、加熱不足に起因する品質不良発生率指標について調査した。その調査結果を表1に示す。
(Example)
The present inventors have set the injection distance of air to be injected from the air injection nozzles 5a, 5b onto the surface of the steel piece (plate width: 1.2 m, plate thickness: 220 mm) S at 100 mm, injection pressure at 1 MPa per nozzle. The steel slab overheating temperature in the heating furnace 2 when the injection flow rate was set to 500 Nm 3 / h, the heating furnace basic unit, and the quality defect occurrence rate index due to insufficient heating were investigated. The survey results are shown in Table 1.

(比較例)
また、加熱炉から抽出された鋼片の表面にデスケーリング水をスプレーノズルから噴射して鋼片の表面からスケールを除去した後、鋼片の表面温度を当該鋼片表面の復熱が完了した後に放射温度計により測定し、放射温度計の温度測定値に基づいて鋼片1の加熱炉抽出温度を演算して予測した場合における加熱炉での鋼片過加熱温度、加熱炉原単位、加熱不足に起因する品質不良発生率指標について調査した。その調査結果を表1に併記する。
(Comparative example)
Also, after removing the scale from the surface of the steel slab by spraying descaling water from the spray nozzle onto the surface of the steel slab extracted from the heating furnace, the reheating of the surface of the steel slab is completed. Measured with a radiation thermometer later, calculated the furnace extraction temperature of the slab 1 based on the temperature measurement value of the radiation thermometer, and predicted the slab overheating temperature, heating furnace basic unit, heating in the heating furnace We investigated the index of quality failure rate due to the shortage. The survey results are also shown in Table 1.

Figure 0005983071
Figure 0005983071

表1の実施例と比較例とを比較すると、比較例では鋼片過加熱温度の平均が30℃前後であったのに対し、実施例では鋼片過加熱温度の平均が10℃未満となった。
また、比較例での加熱炉原単位を1.0、加熱不足に起因する品質不良発生率指標を1.0とした場合、実施例では加熱炉原単位が0.9、品質不良発生率指標が0.5未満となった。
Comparing the examples in Table 1 with the comparative examples, the average steel slab overheating temperature was about 30 ° C in the comparative example, whereas the average steel slab overheating temperature was less than 10 ° C in the examples. It was.
Further, when the heating furnace basic unit in the comparative example is 1.0 and the quality defect occurrence rate index due to insufficient heating is 1.0, in the example, the heating furnace basic unit is 0.9, and the quality defect occurrence rate index Was less than 0.5.

1…鋼片
2…加熱炉
3…粗圧延機
4…搬送ローラ
5a,5b…エアー噴出ノズル
6…スケール
7a,7b…放射温度計
8…加熱炉抽出温度予測装置
DESCRIPTION OF SYMBOLS 1 ... Steel slab 2 ... Heating furnace 3 ... Rough rolling mill 4 ... Conveying roller 5a, 5b ... Air ejection nozzle 6 ... Scale 7a, 7b ... Radiation thermometer 8 ... Heating furnace extraction temperature prediction apparatus

Claims (4)

加熱炉にて加熱された鋼片の加熱炉抽出温度を予測する方法であって、
前記加熱炉から抽出された鋼片の表面に空気をエアー噴出ノズルから吹き付けて前記鋼片の表面からスケールを除去するスケール除去工程と、
該スケール除去上程の後に前記鋼片の表面温度を当該鋼片表面の復熱が完了した後に測定する温度測定工程と、
該温度測定工程で得られた温度測定値を基に加熱炉抽出時の鋼片表面温度を演算して前記鋼片の加熱炉抽出温度を予測する加熱炉抽出温度予測工程と、を有し、
前記スケール除去工程では、前記エアー噴出ノズルから前記鋼片の表面に噴射される空気の1ノズル当りの噴射流量を200〜5000Nm /hに設定して前記鋼片の表面からスケールを除去することを特徴とする鋼片の加熱炉抽出温度予測方法。
A method for predicting a furnace extraction temperature of a steel slab heated in a heating furnace,
A scale removing step of removing scale from the surface of the steel piece by blowing air from an air jet nozzle onto the surface of the steel piece extracted from the heating furnace;
A temperature measuring step of measuring the surface temperature of the steel slab after completion of reheating of the steel slab surface after the scale removal step;
The temperature measurements obtained by the temperature measuring step calculates the billet surface temperature at the heating furnace extraction based have a, a heating furnace extraction temperature prediction step of predicting a heating furnace extraction temperature of the steel strip,
In the scale removal step, the scale is removed from the surface of the steel slab by setting an injection flow rate per nozzle of air injected from the air ejection nozzle to the surface of the steel slab at 200 to 5000 Nm 3 / h. A method for predicting the extraction temperature of a steel slab, characterized by:
前記加熱炉抽出時の鋼片表面温度を、前記温度測定工程で測定された鋼片の表面温度と、前記鋼片の周囲の空気温度と、前記鋼片が自然空冷によって冷却されるときの熱伝達係数と、前記鋼片の比熱と、前記鋼片の加熱炉抽出時から表面温度測定時に至るまでの経過時間と、前記エアー噴出ノズルから噴出する空気によって鋼片が冷却されるときの熱伝達係数と、前記エアー噴出ノズルから前記鋼片の表面に噴射される空気の温度とに基づいて演算することを特徴とする請求項1に記載の鋼片の加熱炉抽出温度予測方法。   The steel slab surface temperature at the time of the heating furnace extraction, the surface temperature of the steel slab measured in the temperature measuring step, the air temperature around the steel slab, and the heat when the steel slab is cooled by natural air cooling. Heat transfer when the billet is cooled by the transfer coefficient, the specific heat of the billet, the elapsed time from the extraction of the billet to the surface temperature measurement, and the air blown from the air jet nozzle The method for predicting a steel slab heating furnace extraction temperature according to claim 1, wherein the calculation is based on a coefficient and a temperature of air sprayed from the air ejection nozzle onto the surface of the steel slab. 前記エアー噴出ノズルから前記鋼片の表面に噴射される空気の噴射距離を50〜200mmに設定して前記鋼片の表面からスケールを除去することを特徴とする請求項1または2に記載の鋼片の加熱炉抽出温度予測方法。   The steel according to claim 1 or 2, wherein a scale is removed from the surface of the steel slab by setting an injection distance of air injected from the air ejection nozzle to the surface of the steel slab at 50 to 200 mm. Method for predicting the extraction temperature of a piece of heating furnace. 前記エアー噴出ノズルから前記鋼片の表面に噴射される空気の噴射圧力を0.2〜2.0MPaに設定して前記鋼片の表面からスケールを除去することを特徴とする請求項1〜3のいずれか一項に記載の鋼片の加熱炉抽出温度予測方法。   The scale is removed from the surface of the steel slab by setting the injection pressure of air injected from the air ejection nozzle to the surface of the steel slab at 0.2 to 2.0 MPa. The heating furnace extraction temperature prediction method of the steel slab as described in any one of these.
JP2012135022A 2012-06-14 2012-06-14 Prediction method for steel slab extraction temperature Expired - Fee Related JP5983071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012135022A JP5983071B2 (en) 2012-06-14 2012-06-14 Prediction method for steel slab extraction temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012135022A JP5983071B2 (en) 2012-06-14 2012-06-14 Prediction method for steel slab extraction temperature

Publications (2)

Publication Number Publication Date
JP2013255943A JP2013255943A (en) 2013-12-26
JP5983071B2 true JP5983071B2 (en) 2016-08-31

Family

ID=49952837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012135022A Expired - Fee Related JP5983071B2 (en) 2012-06-14 2012-06-14 Prediction method for steel slab extraction temperature

Country Status (1)

Country Link
JP (1) JP5983071B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327208B2 (en) * 2015-06-12 2018-05-23 Jfeスチール株式会社 Heating furnace extraction temperature prediction method and heating furnace extraction temperature prediction apparatus for billets
JP7040497B2 (en) * 2019-05-28 2022-03-23 Jfeスチール株式会社 Heating furnace extraction temperature prediction method for steel pieces and heating furnace extraction temperature prediction device
JP7428868B2 (en) * 2019-08-01 2024-02-07 日本製鉄株式会社 Extraction temperature prediction device for metal pieces in a heating furnace and prediction model learning device
JP7328548B2 (en) * 2020-02-12 2023-08-17 日本製鉄株式会社 Temperature measurement system and temperature measurement method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110117A (en) * 1981-12-24 1983-06-30 Kawasaki Steel Corp Descaling method of steel material
JPS59199110A (en) * 1983-04-26 1984-11-12 Sumitomo Metal Ind Ltd Excellent descaling method for hot cast billet
JP4221766B2 (en) * 1997-11-10 2009-02-12 Jfeスチール株式会社 Hot rolling equipment line and hot rolling strip rolling method
JP2002316206A (en) * 2001-04-17 2002-10-29 Nippon Steel Corp Shape excellent in surface property, steel for the shape, and method and device for manufacturing them
JP4349177B2 (en) * 2004-03-26 2009-10-21 Jfeスチール株式会社 Steel extraction temperature prediction method for continuous heating furnace

Also Published As

Publication number Publication date
JP2013255943A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP6327208B2 (en) Heating furnace extraction temperature prediction method and heating furnace extraction temperature prediction apparatus for billets
JP5983071B2 (en) Prediction method for steel slab extraction temperature
JP7040497B2 (en) Heating furnace extraction temperature prediction method for steel pieces and heating furnace extraction temperature prediction device
JP7158569B2 (en) Methods and electronic devices for monitoring the production of metal products, associated computer programs and equipment
JP5565200B2 (en) Finishing temperature control device in hot rolling
JP5217516B2 (en) Cooling control method in hot rolling and manufacturing method of hot rolled metal strip
KR101592741B1 (en) Temperature distribution prediction apparatus
JP5310965B1 (en) Hot-rolled steel sheet cooling method
JP5310966B1 (en) Hot-rolled steel sheet cooling device
JP4349177B2 (en) Steel extraction temperature prediction method for continuous heating furnace
CN106607459A (en) Wedge control system and method for hot rolled strip steel
KR100711414B1 (en) Device for manufacturing bar on roughing stand in hot rolling process
JP5948967B2 (en) Temperature prediction method, cooling control method and cooling control device for metal plate in hot rolling
JP6699688B2 (en) Hot rolled steel sheet manufacturing method
JP4123582B2 (en) Steel plate shape prediction method and apparatus
JP2011173153A (en) Cooling controller for thick steel plate, cooling control method, and manufacturing method
JP5626275B2 (en) Method for cooling hot-rolled steel sheet
JP6650308B2 (en) Thick steel plate cooling method and thick steel plate cooling device
CN113423517B (en) Cooling control method and cooling control device for thick steel plate, and manufacturing method for thick steel plate
JP4269394B2 (en) Steel plate shape prediction method
JP5712572B2 (en) Defect detection method and defect detection device for continuous cast slab for thin steel sheet
JP7338599B2 (en) Method for predicting generation of blister scale, method for controlling rolling mill, and method for generating prediction model for generation of blister scale
CN114317937B (en) Time control method for heating hot-rolled plate blank in sections in heating furnace
JP2023027537A (en) Method for measuring temperature of heated slab, method for setting draft condition, and method for manufacturing steel plate
JP2023007380A (en) Method of generating temperature prediction model for hot-rolled plate and modification enthalpy prediction model for hot-rolled plate, rolling temperature prediction model for hot-rolled plate, temperature control method for hot-rolled plate, and method of producing hot-rolled plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R150 Certificate of patent or registration of utility model

Ref document number: 5983071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees