JP6327208B2 - Heating furnace extraction temperature prediction method and heating furnace extraction temperature prediction apparatus for billets - Google Patents

Heating furnace extraction temperature prediction method and heating furnace extraction temperature prediction apparatus for billets Download PDF

Info

Publication number
JP6327208B2
JP6327208B2 JP2015119330A JP2015119330A JP6327208B2 JP 6327208 B2 JP6327208 B2 JP 6327208B2 JP 2015119330 A JP2015119330 A JP 2015119330A JP 2015119330 A JP2015119330 A JP 2015119330A JP 6327208 B2 JP6327208 B2 JP 6327208B2
Authority
JP
Japan
Prior art keywords
temperature
steel slab
heating furnace
steel
scale removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015119330A
Other languages
Japanese (ja)
Other versions
JP2017001070A (en
Inventor
岡田 邦明
邦明 岡田
建太 苅部
建太 苅部
雅朗 正司
雅朗 正司
西村 隆
隆 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015119330A priority Critical patent/JP6327208B2/en
Publication of JP2017001070A publication Critical patent/JP2017001070A/en
Application granted granted Critical
Publication of JP6327208B2 publication Critical patent/JP6327208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Heat Treatment Processes (AREA)

Description

本発明は、熱間圧延などに供される鋼片の加熱炉抽出温度を予測する技術に関する。   The present invention relates to a technique for predicting a furnace extraction temperature of a steel piece to be subjected to hot rolling or the like.

熱間圧延に供される鋼片は、通常、加熱炉で目標とする目標抽出温度に加熱して抽出されて、圧延に供される。したがって、加熱炉で鋼片を加熱するときには目標抽出温度となるように均一に鋼片を加熱する必要があり、鋼片を目標抽出温度へ均一に加熱するためには、加熱炉の炉内温度や鋼片の加熱炉抽出温度を随時監視する必要がある。しかし、加熱炉から抽出された鋼片の表面にスケールが生成されている場合には、鋼片の加熱炉抽出温度を直接的に測定することは困難となる。   The steel slab subjected to hot rolling is usually extracted by heating to a target extraction temperature targeted in a heating furnace and subjected to rolling. Therefore, when heating the steel slab in the heating furnace, it is necessary to heat the steel slab uniformly so as to reach the target extraction temperature. In order to uniformly heat the steel slab to the target extraction temperature, the furnace temperature of the heating furnace is required. It is necessary to monitor the furnace extraction temperature of steel and billets as needed. However, when the scale is generated on the surface of the steel slab extracted from the heating furnace, it is difficult to directly measure the furnace extraction temperature of the steel slab.

これに対し、特許文献1には、加熱炉内の雰囲気ガス成分を炭酸ガス計と露点計とを用いて測定し、その測定値からガス放射率を求め、ガス放射率から総括熱吸収率を計算して鋼片の加熱炉抽出温度を予測する方法が記載されている。また、特許文献2には、鋼片が圧延される際の圧延荷重と鋼片の圧延前後の外形寸法とに基づいて圧延時における鋼片温度を求め、鋼片が加熱炉から圧延機に至るまでの冷却を加味して鋼片の加熱炉抽出温度を計算する方法が記載されている。   On the other hand, in Patent Document 1, the atmospheric gas components in the heating furnace are measured using a carbon dioxide gas meter and a dew point meter, the gas emissivity is obtained from the measured value, and the overall heat absorption rate is obtained from the gas emissivity. A method for calculating and predicting the furnace extraction temperature of a billet is described. Further, in Patent Document 2, the steel slab temperature at the time of rolling is obtained based on the rolling load when the steel slab is rolled and the outer dimensions of the steel slab before and after rolling, and the steel slab reaches the rolling mill from the heating furnace. The method of calculating the furnace extraction temperature of a steel piece in consideration of the cooling up to is described.

また、特許文献3には、加熱炉から抽出された鋼片の表面を高圧水でスケール除去し、スケール除去された鋼片表面の復熱が完了した後に鋼片の表面温度を測定し、その温度測定値に基づいて鋼片の加熱炉抽出温度を演算して予測することが記載されている。
さらに、特許文献4には、加熱炉から抽出された鋼片の表面に空気を噴出ノズルから吹き付けてスケールを除去し、その後段で鋼片表面温度の復熱完了後に測定し、その測定値を基に加熱炉抽出時の鋼片表面温度を演算して予測することが記載されている。
In Patent Document 3, the surface of the steel slab extracted from the heating furnace is descaled with high-pressure water, and after reheating of the scale-removed steel slab surface is completed, the surface temperature of the steel slab is measured, It describes that the extraction temperature of the steel slab is calculated and predicted based on the temperature measurement value.
Furthermore, in Patent Document 4, air is blown to the surface of the steel slab extracted from the heating furnace to remove the scale, and after the reheating of the steel slab surface temperature is completed at the subsequent stage, the measured value is measured. Based on this, it is described that a steel slab surface temperature at the time of extraction in a heating furnace is calculated and predicted.

特開平6−192751号公報JP-A-6-192751 特開昭63−26214号公報Japanese Unexamined Patent Publication No. 63-26214 特許第4349177号公報Japanese Patent No. 4349177 特願2012−135022号公報Japanese Patent Application No. 2012-135522

しかしながら、加熱炉内は雰囲気ガスの分布が均一ではないため、特許文献1に記載された方法では、雰囲気ガス成分の時間的変動が非常に大きくなり、適正な総括熱吸収率を同定することはきわめて難しいという問題がある。また、鋼片の圧延抵抗や外形寸法から鋼片温度を精度よく計算することは困難であり、加熱炉から圧延機に至るまでの冷却条件が外乱要因となるため、特許文献2に記載された方法では、鋼片の加熱炉抽出温度を正確に求めることができないという問題がある。   However, since the distribution of the atmospheric gas is not uniform in the heating furnace, the method described in Patent Document 1 has a very large temporal variation of the atmospheric gas components, and it is not possible to identify an appropriate overall heat absorption rate. There is a problem that it is extremely difficult. Further, it is difficult to accurately calculate the slab temperature from the rolling resistance and outer dimensions of the slab, and the cooling condition from the heating furnace to the rolling mill becomes a disturbance factor. In the method, there is a problem that the furnace extraction temperature of the billet cannot be accurately obtained.

特許文献3に記載された方法では、スケール除去された鋼片の表面温度を測定するため、スケールの影響を受けることなく鋼片の表面温度を測定することが可能であるが、デスケーリング水の熱伝達係数が非常に大きく、デスケーリング水の沸騰状態によって鋼片表面の温度測定値が大きく変動するため、鋼片の加熱炉抽出温度を正確に予測できないおそれがあるという問題がある。   In the method described in Patent Document 3, since the surface temperature of the scale-removed billet is measured, the surface temperature of the billet can be measured without being affected by the scale. Since the heat transfer coefficient is very large and the temperature measurement value on the steel slab surface varies greatly depending on the boiling state of the descaling water, there is a problem that the furnace extraction temperature of the steel slab may not be accurately predicted.

また、特許文献4に記載された方法において、空気を噴出ノズルから吹き付ける方式では、表面の剥離し易い1次スケールは除去できるものの、鋼片の表面近傍に強固に生成されたタイトスケールをほとんど除去できないため、結果として鋼片表面温度の真値を測定し難いという問題がある。
そして、測定された温度の精度が保証できない場合、その測定温度を用いたその後のいかなる演算を行っても、鋼片の加熱炉抽出温度を正確に予測できない。
本発明は、以上のような事情を鑑み、従来の加熱炉抽出鋼材の温度評価方法の見直しを図り、より高精度に鋼片の加熱炉抽出温度を求めることができる技術を提供することを目的としている。
Further, in the method described in Patent Document 4, the method of blowing air from the ejection nozzle can remove the primary scale that easily peels off the surface, but almost eliminates the tight scale that is strongly generated near the surface of the steel slab. As a result, there is a problem that it is difficult to measure the true value of the surface temperature of the slab.
And when the accuracy of the measured temperature cannot be guaranteed, the furnace extraction temperature of the steel slab cannot be accurately predicted by any subsequent calculation using the measured temperature.
In view of the circumstances as described above, an object of the present invention is to review a conventional temperature evaluation method for a heating furnace extracted steel material, and to provide a technique capable of obtaining the heating furnace extraction temperature of a steel piece with higher accuracy. It is said.

課題を解決するために、本発明の一態様である鋼片の加熱炉抽出温度予測方法は、加熱炉から抽出された鋼片の加熱炉抽出温度を予測する方法であって、上記加熱炉から抽出された鋼片の表面に対し、噴出ノズルから水および圧縮空気をそれぞれ吹き付けて、上記鋼片の表面からスケールを除去するスケール除去工程と、上記スケール除去工程の後に、上記スケールを除去した鋼片の表面温度を当該鋼片表面の復熱が完了した後に測定する温度測定工程と、上記温度測定工程で得られた温度測定値を基に加熱炉抽出時の鋼片表面温度を演算して上記鋼片の加熱炉抽出温度を予測する加熱炉抽出温度予測工程と、を有することを特徴とする。   In order to solve the problem, a method for predicting a furnace extraction temperature of a steel slab according to one aspect of the present invention is a method for predicting a furnace extraction temperature of a steel slab extracted from a heating furnace. A scale removing step for removing scale from the surface of the steel piece by spraying water and compressed air from the ejection nozzle to the surface of the extracted steel piece, and steel from which the scale has been removed after the scale removing step. Calculate the steel slab surface temperature at the time of furnace extraction based on the temperature measurement process to measure the surface temperature of the slab after the reheating of the steel slab surface is completed, and the temperature measurement value obtained in the above temperature measurement process. A heating furnace extraction temperature prediction step for predicting a heating furnace extraction temperature of the steel slab.

また、本発明の一態様である鋼片の加熱炉抽出温度予測装置は、加熱炉から抽出された鋼片の加熱炉抽出温度を予測する装置であって、上記加熱炉から抽出された鋼片の表面に対し、上記鋼片の表面からスケールを除去するために、水および圧縮空気をそれぞれ吹き付けるための噴出ノズルと、上記水および圧縮空気の吹き付けに対する上記鋼片表面の復熱が完了後の位置で、上記鋼片の表面温度を測定する温度測定部と、上記温度測定部が測定した温度測定値を基に加熱炉抽出時の鋼片表面温度を演算して上記鋼片の加熱炉抽出温度を予測する加熱炉抽出温度予測部と、を有することを特徴とする。   Moreover, the heating furnace extraction temperature prediction apparatus of the steel slab which is one aspect of the present invention is an apparatus for predicting the heating furnace extraction temperature of the steel slab extracted from the heating furnace, and the steel slab extracted from the heating furnace. In order to remove scale from the surface of the steel slab with respect to the surface of the steel, a jet nozzle for spraying water and compressed air, respectively, and after the reheating of the steel slab surface to the spray of water and compressed air is completed The temperature measurement unit for measuring the surface temperature of the steel slab at the position, and the furnace slab extraction of the steel slab by calculating the steel slab surface temperature at the time of heating furnace extraction based on the temperature measurement value measured by the temperature measurement unit A heating furnace extraction temperature prediction unit for predicting the temperature.

本発明の一態様によれば、加熱炉から抽出された鋼片の表面を所定圧力以上の高圧水でスケール除去する必要が無く、デスケーリング水の熱伝達係数やデスケーリング水の沸騰状態によって鋼片表面の温度測定値が大きく変動することを抑えられる。また、高圧水でスケール除去することが抑えつつも圧縮空気による吹き付けを併用することで、スケール除去能力の不足が防止されて、鋼片表面緒温度測定が真値から大きくずれることを抑制可能となる。これによって、熱間圧延などに供される鋼片の加熱炉抽出温度を正確に予測することができる。   According to one aspect of the present invention, it is not necessary to remove the scale of the surface of a steel piece extracted from a heating furnace with high-pressure water having a predetermined pressure or higher, and depending on the heat transfer coefficient of descaling water and the boiling state of descaling water, It is possible to prevent the temperature measurement value on one surface from fluctuating greatly. In addition, by using both compressed air and spraying while suppressing the removal of scale with high-pressure water, it is possible to prevent the deficiency of the scale removal capability and to suppress the deviation of the temperature measurement of the billet surface from the true value. Become. Thereby, the heating furnace extraction temperature of the steel slab used for hot rolling etc. can be estimated accurately.

本発明に基づく実施形態に係る加熱炉抽出温度予測装置の構成を説明する図である。It is a figure explaining the structure of the heating furnace extraction temperature prediction apparatus which concerns on embodiment based on this invention. 本発明に基づく実施形態に係る水及び圧縮空気によるスケール除去と温度測定位置を示す概念図である。It is a conceptual diagram which shows the scale removal and temperature measurement position by the water and compressed air which concern on embodiment based on this invention. 本発明に基づく実施形態に係る水及び圧縮空気によるスケール除去と温度測定位置を示す他の概念図である。It is another conceptual diagram which shows the scale removal by water and compressed air which concerns on embodiment based on this invention, and a temperature measurement position. 鋼片の加熱炉抽出から温度測定までの温度変化の例を示す図である。It is a figure which shows the example of the temperature change from the heating furnace extraction of a steel piece to temperature measurement.

次に、本発明の実施形態について図面を参照しつつ説明する。
(構成)
本実施形態では、本発明を熱延鋼板の連続製造ラインに適用する場合を例に説明する。
本実施形態の熱延鋼板の連続製造ラインは、図1に示すように、鋼片Sを加熱する加熱炉1、及び加熱炉1で加熱された鋼片Sを粗圧延する粗圧延機2を備える。連続式加熱炉1の抽出口から抽出された鋼片S(スラブ)は、複数の搬送ローラ3によって規定されるパスラインに沿って、粗圧延機2に向けて搬送される。
Next, embodiments of the present invention will be described with reference to the drawings.
(Constitution)
In this embodiment, a case where the present invention is applied to a continuous production line for hot-rolled steel sheets will be described as an example.
As shown in FIG. 1, the continuous production line for hot-rolled steel sheets of the present embodiment includes a heating furnace 1 for heating a steel slab S and a rough rolling mill 2 for rough rolling the steel slab S heated in the heating furnace 1. Prepare. The steel piece S (slab) extracted from the extraction port of the continuous heating furnace 1 is transported toward the roughing mill 2 along a pass line defined by the plurality of transport rollers 3.

この搬送中に、加熱炉抽出温度予測装置は、鋼片Sの上面に形成されているスケールの一部分の除去を行うと共に、スケールを除去した鋼片Sの上面の温度を測定し、その測定した温度に基づき鋼片Sの加熱炉抽出温度の予測を行う。なお、本実施形態では鋼片S上面の温度から加熱炉抽出温度の予測を行う場合を例示するが、鋼片Sの上面及び下面の温度を測定して、その温度測定値から鋼片Sの加熱炉抽出温度の予測を行うようにしても良い。
本実施形態の鋼片Sの加熱炉抽出温度予測装置は、スケール除去用の噴出ノズル5と、温度測定部6と、コントローラ4とを備える。コントローラ4は、加熱炉抽出温度予測部4Aと、スケール除去評価部4Bとを備える。
During the conveyance, the heating furnace extraction temperature prediction device removes a part of the scale formed on the upper surface of the steel slab S, measures the temperature of the upper surface of the steel slab S from which the scale has been removed, and measures the temperature. The furnace extraction temperature of the steel slab S is predicted based on the temperature. In the present embodiment, the case where the heating furnace extraction temperature is predicted from the temperature of the upper surface of the steel slab S is exemplified, but the temperatures of the upper and lower surfaces of the steel slab S are measured, and the temperature measurement value of the steel slab S is measured. The heating furnace extraction temperature may be predicted.
The furnace extraction temperature prediction device for the steel slab S of the present embodiment includes a scale removal jet nozzle 5, a temperature measurement unit 6, and a controller 4. The controller 4 includes a heating furnace extraction temperature prediction unit 4A and a scale removal evaluation unit 4B.

(噴出ノズル5)
噴出ノズル5は、加熱炉1から抽出されて粗圧延機2に向けて搬送中の鋼片Sの表面に向けて、水および圧縮空気をそれぞれ吹き付けることで、鋼片Sの表面からスケールを除去する。本実施形態では、図2に示すように、鋼片Sの幅方向中央部に生成されたスケールを、搬送方向に沿って帯状に除去する場合を例示する。スケールの除去部分はスポット的に実行しても良い。
(Ejecting nozzle 5)
The ejection nozzle 5 removes the scale from the surface of the steel slab S by spraying water and compressed air toward the surface of the steel slab S being extracted from the heating furnace 1 and being conveyed toward the roughing mill 2. To do. In this embodiment, as shown in FIG. 2, the case where the scale produced | generated in the width direction center part of the steel slab S is removed in strip shape along a conveyance direction is illustrated. The removal portion of the scale may be performed in a spot manner.

本実施形態のスケール除去用の噴出ノズル5は、高圧水噴出用ノズル5Aと、圧縮空気噴出用ノズル5Bとを備える。高圧水噴出用ノズル5Aと、圧縮空気噴出用ノズル5Bとが、鋼片Sの搬送方向に並ぶように配置されている。そして、高圧水噴出用ノズル5Aから鋼片S上面に向けて高圧水7を噴出し、その後、圧縮空気噴出用ノズル5Bから鋼片S上面に向けて圧縮空気8を噴出することで、スケール除去を行う。   The scale removal jet nozzle 5 of the present embodiment includes a high-pressure water jet nozzle 5A and a compressed air jet nozzle 5B. The high-pressure water ejection nozzle 5A and the compressed air ejection nozzle 5B are arranged so as to be aligned in the conveying direction of the steel piece S. Then, the high pressure water 7 is ejected from the high pressure water ejection nozzle 5A toward the upper surface of the steel piece S, and then the compressed air 8 is ejected from the compressed air ejection nozzle 5B toward the upper surface of the steel piece S, thereby removing the scale. I do.

ここで、高圧水7を噴出した後に圧縮空気8を噴出する場合を例示しているが、圧縮空気8を噴出した後に高圧水7を噴出するようにノズルを配置しても良い。
又は、図3のように、一つのノズルの噴出部に対し、高圧水7を噴出する噴出穴と圧縮空気8を噴出する噴出穴とを設けて、一つのノズルから同時に高圧水7と圧縮空気8を噴出するように構成しても良い。この場合、例えば、一つのノズルの噴出部の中央側に高圧水用の噴出穴を配置し、それを囲むように外周に圧縮空気用の噴出穴を配置したり、一つのノズルの噴出部の中央側に圧縮空気用の噴出穴を配置し、それを囲むように外周に高圧水用の噴出穴を配置したりする。
Here, although the case where the compressed air 8 is ejected after the high pressure water 7 is ejected is illustrated, the nozzle may be arranged so that the high pressure water 7 is ejected after the compressed air 8 is ejected.
Alternatively, as shown in FIG. 3, an ejection hole for ejecting the high-pressure water 7 and an ejection hole for ejecting the compressed air 8 are provided in the ejection portion of one nozzle, and the high-pressure water 7 and the compressed air are simultaneously ejected from one nozzle. You may comprise so that 8 may be ejected. In this case, for example, an ejection hole for high-pressure water is arranged at the center side of the ejection part of one nozzle, and an ejection hole for compressed air is arranged on the outer periphery so as to surround it, or the ejection part of one nozzle A jet hole for compressed air is arranged on the center side, and a jet hole for high-pressure water is arranged on the outer periphery so as to surround it.

高圧水噴出用ノズル5Aは、鋼片S表面への噴出距離を50mm以上200mm以下の間に設定し、ノズル5Aから噴出する水の圧力を0.35MPa以上0.65MPa以下の範囲から選択した水圧となるように設定すると良い。
圧縮空気噴出用ノズル5Bは、鋼片S表面への噴出距離を50mm以上200mm以下の間に設定し、ノズル5Bから噴出する空気の圧力を0.65MPa以上0.35MPa以下の範囲から選択した空気圧となるように設定すると良い。
The high pressure water jet nozzle 5A has a water pressure selected from a range of 0.35 MPa to 0.65 MPa in which the jet distance to the surface of the steel slab S is set between 50 mm and 200 mm and the pressure of water jetted from the nozzle 5A is selected from the range of 0.35 MPa to 0.65 MPa. It is good to set so that.
The compressed air ejection nozzle 5B has an air pressure selected from the range of 0.65 MPa or more and 0.35 MPa or less, with the ejection distance to the surface of the steel piece S set between 50 mm and 200 mm, and the pressure of the air ejected from the nozzle 5B. It is good to set so that.

(温度測定部6)
温度測定部6は、噴出ノズル5の下流側であって、水7および圧縮空気8の吹き付けに対する鋼片S表面の復熱が完了していると推定される位置に配置される。復熱が完了した位置は、鋼片Sの搬送速度とスケール除去の際の温度降下分とから推定すれば良い。
本実施形態の温度測定部6は、スケール除去位置の鋼片S表面の温度を測定する第1の温度測定部6Aと、スケール除去が行われていない鋼片S表面の温度である第2の温度測定部6Bとを有する。各温度測定部6A、6Bは例えば放射温度計からなる。
(Temperature measuring unit 6)
The temperature measuring unit 6 is disposed on the downstream side of the ejection nozzle 5 and at a position where it is estimated that the reheating of the surface of the steel piece S with respect to the spraying of the water 7 and the compressed air 8 is completed. What is necessary is just to estimate the position where the recuperation was completed from the conveyance speed of the steel slab S and the temperature drop at the time of scale removal.
The temperature measurement unit 6 of the present embodiment includes a first temperature measurement unit 6A that measures the temperature of the surface of the steel slab S at the scale removal position, and a second temperature that is the temperature of the surface of the steel slab S that has not been subjected to scale removal. And a temperature measuring unit 6B. Each temperature measurement part 6A, 6B consists of a radiation thermometer, for example.

ここで、第1の温度測定部6A及び第2の温度測定部6Bをそれぞれ複数配置しても良い。この場合には、例えば複数の第1の温度測定部6Aで測定した温度の平均値を採用する。また複数の第2の温度測定部6Bで測定した温度の平均値を採用する。第2の温度測定部6Bを複数配置する場合には、例えば、スケール除去位置の左右両側など、鋼片Sの幅方向に沿って並ぶように配置することが好ましい。複数配置する場合には、加熱炉1での加熱の偏りも考慮して温度の取得が可能となる。
各温度測定部6が測定した鋼片Sの表面温度に応じた信号は、コントローラ4に供給される。
Here, a plurality of first temperature measurement units 6A and a plurality of second temperature measurement units 6B may be arranged. In this case, for example, an average value of temperatures measured by the plurality of first temperature measuring units 6A is employed. Further, an average value of the temperatures measured by the plurality of second temperature measuring units 6B is employed. When a plurality of second temperature measuring units 6B are arranged, it is preferable to arrange the second temperature measuring units 6B so as to line up along the width direction of the steel slab S, for example, on both the left and right sides of the scale removal position. In the case of arranging a plurality of temperatures, it is possible to obtain the temperature in consideration of uneven heating in the heating furnace 1.
A signal corresponding to the surface temperature of the steel slab S measured by each temperature measuring unit 6 is supplied to the controller 4.

(コントローラ4)
コントローラ4は、上述の通り、加熱炉抽出温度予測部4A及びスケール除去評価部4Bを備える。
(加熱炉抽出温度予測部4A)
加熱炉抽出温度予測部4Aは、第1の温度測定部6Aからの信号からなる温度測定値を基に、加熱炉抽出時の鋼片Sの表面温度を演算して上記鋼片Sの加熱炉抽出温度(加熱炉抽出時の板厚方向平均温度)を予測する。予測した加熱炉抽出温度は、例えば、加熱炉の制御部や圧延の制御部に供給される。
(Controller 4)
As described above, the controller 4 includes the heating furnace extraction temperature prediction unit 4A and the scale removal evaluation unit 4B.
(Heating furnace extraction temperature prediction unit 4A)
The heating furnace extraction temperature prediction unit 4A calculates the surface temperature of the steel slab S at the time of extraction from the heating furnace based on the temperature measurement value formed from the signal from the first temperature measurement unit 6A, and the heating furnace for the steel slab S described above. Predict the extraction temperature (average temperature in the plate thickness direction when extracting from the heating furnace). The predicted heating furnace extraction temperature is supplied to, for example, a heating furnace control unit or a rolling control unit.

加熱炉抽出温度予測部4Aは、第1の温度測定部6Aが測定した鋼片Sの表面温度と、鋼片Sの周囲の空気温度と、鋼片Sが自然放冷によって冷却されるときの熱伝達係数と、鋼片Sの比熱と、鋼片Sの加熱炉抽出時から表面温度測定時に至るまでの経過時間と、噴出ノズルから噴出する空気及び水によって鋼片Sが冷却されるときの熱伝達係数と、噴出ノズルから鋼片Sの表面に噴出される空気及び水の温度とに基づいて、加熱炉抽出時の鋼片表面温度を演算する。   The heating furnace extraction temperature predicting unit 4A is used when the surface temperature of the steel slab S measured by the first temperature measuring unit 6A, the air temperature around the steel slab S, and the steel slab S are cooled by natural cooling. When the steel slab S is cooled by the heat transfer coefficient, the specific heat of the steel slab S, the elapsed time from the time when the steel slab S is extracted from the furnace to the surface temperature measurement, and the air and water ejected from the ejection nozzle Based on the heat transfer coefficient and the temperature of the air and water ejected from the ejection nozzle onto the surface of the steel slab S, the surface temperature of the steel slab during the heating furnace extraction is calculated.

本実施形態の加熱炉抽出温度予測部4Aは、下記に示す(1)式から加熱炉抽出時の鋼片表面温度Tを求めて鋼片Sの加熱炉抽出温度を演算して予測するように構成されている。
=T+ΔTa1+ΔT−ΔT+ΔTa2 ‥‥(1)
Furnace extraction temperature prediction unit 4A of this embodiment, so as to predict by calculating the heating furnace extraction temperature of the steel strip S seeking billet surface temperature T A at the time of the heating furnace extraction from below (1) It is configured.
T A = T E + ΔT a1 + ΔT c −ΔT R + ΔT a2 (1)

ここで、
:第1の温度測定部6Aによる表面温度測定値
ΔTa1:図1に示すA点(加熱炉抽出点)からB点(噴出ノズルによるスケール除去開始点)に至るまでの鋼片Sの温度降下量(T−T
ΔT:図1に示すB点からC点(噴出ノズルによるスケール除去終了点)に至るまでの鋼片Sの温度降下量(T−T
ΔT:図1に示すC点からD点(鋼片Sの表面の復熱完了点)に至るまでの鋼片Sの温度上昇量(T−T
ΔTa2:図3に示すD点からE点(第1の温度測定部6Aによる温度測定点)に至るまでの鋼片Sの温度降下量(T−T
here,
T E : Surface temperature measurement value by the first temperature measurement unit 6A ΔT a1 : The steel piece S from point A (heating furnace extraction point) to point B (scale removal start point by the ejection nozzle) shown in FIG. the amount of temperature drop (T A -T B)
ΔT c : temperature drop amount of steel slab S from point B shown in FIG. 1 to point C (end point of scale removal by the ejection nozzle) (T B −T C )
[Delta] T R: D from the point C to the point shown in Figure 1 the temperature rise of the steel strip S down to (recuperation completion point of the surface of the steel strip S) (T D -T C)
ΔT a2 : temperature drop amount of steel slab S from point D to point E (temperature measurement point by first temperature measurement unit 6A) shown in FIG. 3 (T D −T E )

をそれぞれ表す。   Respectively.

(1)式の温度降下量ΔTa1は、下記に示す(2)式によって表される。

Figure 0006327208
The temperature drop amount ΔT a1 in the equation (1) is expressed by the following equation (2).
Figure 0006327208

ここで、
T:鋼片Sの表面温度(t=0でT=T
S:鋼片Sの表面積
l:鋼片S表面の代表厚み
Q:鋼片Sの内部への熱伝導により表面が失う熱量
α:鋼片Sが自然空冷によって冷却されるときの熱伝達係数
C:鋼片Sの比熱
a1:図1に示すA点からB点までの経過時間
:鋼片S周囲の空気温度
をそれぞれ表す。
here,
T: Surface temperature of the steel slab S (T = 0, T = T A )
S: Surface area of the slab S l: Typical thickness of the surface of the slab S Q: Amount of heat lost by the heat conduction to the inside of the slab S α a : Heat transfer coefficient when the slab S is cooled by natural air cooling C: Specific heat of steel slab S t a1 : Elapsed time from point A to point B shown in FIG. 1 T a : Air temperature around steel slab S

また、(1)式の温度降下量ΔTは、下記に示す(3)式によって表される。

Figure 0006327208
Further, the temperature drop amount ΔT c in the equation (1) is expressed by the following equation (3).
Figure 0006327208

ここで、
αc1:高圧水噴出用ノズル5Aから噴出する水によって鋼片Sが冷却されるときの熱伝達係数
αc2:圧縮空気噴出用ノズル5Bから噴出する圧縮空気によって鋼片Sが冷却されるときの熱伝達係数
C:鋼片Sの比熱
:図1に示すB点からC点までの経過時間(高圧水噴出用ノズル5Aから噴出する水を鋼片に吹き付けている時間。同一箇所を圧縮空気噴出用ノズル5Bから噴出する圧縮空気を吹き付けているため、ノズル5Aとノズル5Bで同じ時間となる)
c1:高圧水噴出用ノズル5Aから噴出する水の温度
c2:圧縮空気噴出用ノズル5Bから噴出する空気の温度
をそれぞれ表す。
here,
α c1 : Heat transfer coefficient when the steel slab S is cooled by water ejected from the high pressure water ejection nozzle 5A α c2 : When the steel slab S is cooled by the compressed air ejected from the compressed air ejection nozzle 5B Heat transfer coefficient C: Specific heat of steel slab S Tc : Elapsed time from point B to point C shown in FIG. 1 (time for spraying water ejected from nozzle 5A for high-pressure water ejection to steel slab. (Since the compressed air ejected from the air ejection nozzle 5B is blown, the nozzle 5A and the nozzle 5B have the same time)
T c1 : temperature of water ejected from the high pressure water ejection nozzle 5A T c2 : temperature of air ejected from the compressed air ejection nozzle 5B

また、(1)式の温度上昇量ΔTおよび温度降下量ΔTa2は、下記に示す(4)式によって表される。

Figure 0006327208
Further, (1) increase in temperature [Delta] T R and the amount of temperature drop [Delta] T a2 of formula is represented by below equation (4).
Figure 0006327208

ここで、
α:鋼片Sが自然空冷によって冷却されるときの熱伝達係数
C:鋼片Sの比熱
:図1に示すC点からD点までの経過時間
a2:図1に示すD点からE点までの経過時間
をそれぞれ表す。
ここで、図4は、鋼片Sの表面温度と加熱炉抽出からの経過時間との関係の一例を示す図である。
here,
α a : Heat transfer coefficient when billet S is cooled by natural air cooling C: Specific heat of billet S t R : Elapsed time from point C to point D shown in FIG. 1 t a2 : Point D shown in FIG. Represents the elapsed time from point to point E.
Here, FIG. 4 is a diagram illustrating an example of the relationship between the surface temperature of the steel slab S and the elapsed time since the extraction with the heating furnace.

この図4に例示されるように、鋼片Sの表面温度は加熱炉1から抽出された直後の図1のA点では加熱炉抽出温度T=約1200℃であるが、その後自然空冷されてB点ではT=約1175℃に下降する。そして、B点からC点に至るまで噴出ノズル5A、5Bから噴出される水及び空気によって、鋼片Sの表面が強制的に冷却されることで、鋼片Sの温度はC点ではT=1165℃に下降する。その後、鋼片S表面で復熱がなされ、その復熱が完了した時点のD点では鋼片Sの温度はT=約1170℃に上昇する。その後、鋼片Sの表面は自然空冷され、第1の温度測定部6Aで測定されるE点では、鋼片Sの温度はT=約1160℃に下降する。
従って、上記(1)〜(4)式を解くことによって、加熱炉抽出時の鋼片表面温度Tを算出することができ、鋼片表面温度Tの算出値から鋼片Sの加熱炉抽出温度を予測することができる。
As illustrated in FIG. 4, the surface temperature of the steel slab S is the furnace extraction temperature T A = about 1200 ° C. at the point A in FIG. 1 immediately after being extracted from the heating furnace 1, but is then naturally air-cooled thereafter. At point B, the temperature falls to T B = about 1175 ° C. Then, the surface of the steel slab S is forcibly cooled by water and air ejected from the ejection nozzles 5A and 5B from the point B to the point C. = 1165 ° C. Thereafter, recuperation is performed on the surface of the steel slab S, and the temperature of the steel slab S rises to T D = about 1170 ° C. at point D when the recuperation is completed. Thereafter, the surface of the steel slab S is naturally air-cooled, and at the point E measured by the first temperature measuring unit 6A, the temperature of the steel slab S falls to T E = about 1160 ° C.
Therefore, by solving the above (1) to (4), it is possible to calculate a billet surface temperature T A at the time of the heating furnace extraction, heating furnace of steel strip S from the calculated value of the billet surface temperature T A The extraction temperature can be predicted.

(スケール除去評価部4B)
スケール除去評価部4Bは、鋼片Sから取得した第1の温度測定部6Aが測定する第1の温度と第2の温度測定部6Bが測定する第2の温度とに基づき、噴出ノズル5から噴出した水および圧縮空気8によるスケール除去の状態を評価する。すなわち、同一の鋼片Sから取得した第1の温度と第2の温度との乖離度合によってスケール除去の状態を評価する。
(Scale removal evaluation unit 4B)
The scale removal evaluation part 4B is based on the first temperature measured by the first temperature measurement part 6A acquired from the steel slab S and the second temperature measured by the second temperature measurement part 6B. The state of scale removal by the jetted water and the compressed air 8 is evaluated. That is, the state of scale removal is evaluated by the degree of deviation between the first temperature and the second temperature acquired from the same steel piece S.

ここで、スケールを除去した部分の鋼片S表面の温度は、スケールの存在する鋼片S表面の温度よりも温度が高い。このため、スケールの除去が十分でない場合には、その分だけ、第1の温度と第2の温度との温度差が小さくなる。
また、加熱炉1での目標加熱温度は、粗圧延工程などの次工程からの要求に応じて決まるため、加熱炉1で連続して抽出される鋼片Sの表面温度の範囲は自ずと一定の範囲に規定される。また連続して加熱される鋼片Sの加熱炉1での加熱条件についても一定の範囲に限定される。このため、各鋼片Sの加熱状況や加熱によるスケールの形成状況は、大幅な変化は無いものと思われる。特に連続して加熱される鋼片Sの中でも、今回の温度測定対象とする鋼片Sに対し直近の鋼片Sであればあるほど近似の状態となる。
Here, the temperature of the surface of the steel slab S where the scale is removed is higher than the temperature of the surface of the steel slab S where the scale exists. For this reason, when the scale is not sufficiently removed, the temperature difference between the first temperature and the second temperature is reduced accordingly.
Moreover, since the target heating temperature in the heating furnace 1 is determined according to a request from the next process such as a rough rolling process, the range of the surface temperature of the steel slab S continuously extracted in the heating furnace 1 is naturally constant. Specified in range. Moreover, it is limited to the fixed range also about the heating conditions in the heating furnace 1 of the steel piece S heated continuously. For this reason, it seems that the heating situation of each steel slab S and the formation situation of the scale by heating do not change significantly. In particular, among the steel pieces S that are continuously heated, the closer the steel piece S is to the steel piece S that is the object of temperature measurement this time, the closer the state is.

本実施形態のスケール除去評価部4Bは、次のように処理を行う。
即ち、本実施形態のスケール除去評価部4Bは、鋼片S毎に取得した第1の温度及び第2の温度の温度差ΔTを求めて、順次記憶部9に記憶する。
スケール除去評価部4Bは、温度差ΔTが記憶部9に記憶される度に、記憶部9に記憶されている温度差ΔTのうちの、直近の予め設定した本数の鋼片Sから取得した温度差ΔTの平均値ΔTmを算出する。設定した本数は、例えば3本〜6本の範囲から選択する。本実施形態では4本とする。なお、加熱される鋼種が変更される場合には、同じ鋼種のデータを使用することが好ましい。また、予め設定した本数の直近の温度差の情報が無い場合には、同じ鋼種の近似の目標温度の温度差ΔTの平均値を一時的に採用しても良い。この場合には、半年以内でかつ10本程度以上の温度差データの平均値が好ましい。
The scale removal evaluation unit 4B of the present embodiment performs processing as follows.
That is, the scale removal evaluation unit 4B of the present embodiment obtains the temperature difference ΔT between the first temperature and the second temperature acquired for each steel piece S, and sequentially stores them in the storage unit 9.
Each time the temperature difference ΔT is stored in the storage unit 9, the scale removal evaluation unit 4 </ b> B acquires the temperature obtained from the latest preset number of steel slabs S among the temperature differences ΔT stored in the storage unit 9. An average value ΔTm of the difference ΔT is calculated. The set number is selected from a range of 3 to 6, for example. In this embodiment, the number is four. In addition, when the steel grade heated is changed, it is preferable to use the data of the same steel grade. Moreover, when there is no information on the latest temperature difference of the preset number, the average value of the temperature differences ΔT of the approximate target temperatures of the same steel type may be temporarily employed. In this case, an average value of temperature difference data of about 10 or more within half a year is preferable.

次に、スケール除去評価部4Bは、今回取得した温度差ΔTiと平均値ΔTmとの差(ΔTm−ΔTi)の絶対値が予め設定した閾値以上か否かを判定する。閾値以上乖離している場合には、スケール除去異常と判定する。閾値は、加熱炉1による加熱のバラツキを実験や公知の理論式から設定する。例えば閾値は10%以上20%以下、例えば10%に設定する。閾値は複数持って、スケール除去の状態にグレードを付けて評価しても良い。   Next, the scale removal evaluation unit 4B determines whether or not the absolute value of the difference (ΔTm−ΔTi) between the temperature difference ΔTi and the average value ΔTm acquired this time is equal to or greater than a preset threshold value. If the difference is more than the threshold, it is determined that the scale removal is abnormal. The threshold value is set based on experiments and known theoretical formulas for variations in heating by the heating furnace 1. For example, the threshold is set to 10% or more and 20% or less, for example, 10%. There may be a plurality of thresholds, and the scale removal state may be graded and evaluated.

ここで、スケール除去の評価は上記内容に限定されない。例えば、温度差ΔTの変化の推移を逐次求め、温度差ΔTが小さくなる傾向があれば、その傾向に応じてスケール除去を評価するようにしても良い。
又は、簡便に、今回取得した温度差ΔTだけからスケール除去の評価をしても良い。
ここで、スケール除去評価部4Bでスケール除去が不十分になってきていると判定すると、鋼片Sに噴出する水や高圧空気の噴出圧や単位時間当たりの噴出量、噴出時間を増加するなどの処理を行う。
ここで、スケール除去用の噴出ノズル5による水及び圧縮空気の噴射の処理が、スケール除去工程を構成する。温度測定部6による温度測定が温度測定工程を構成する。加熱炉抽出温度予測部4Aの処理が加熱炉抽出温度予測工程を構成する。スケール除去評価部4Bの処理がスケール除去評価工程を構成する。
Here, the evaluation of scale removal is not limited to the above content. For example, the change of the temperature difference ΔT may be sequentially obtained, and if the temperature difference ΔT tends to be small, the scale removal may be evaluated according to the tendency.
Alternatively, the scale removal may be evaluated simply from the temperature difference ΔT acquired this time.
Here, if the scale removal evaluation unit 4B determines that the scale removal has become insufficient, the ejection pressure of water or high-pressure air ejected to the steel slab S, the ejection amount per unit time, the ejection time, etc. are increased. Perform the process.
Here, the process of jetting water and compressed air by the jet nozzle 5 for removing scale constitutes the scale removing process. Temperature measurement by the temperature measurement unit 6 constitutes a temperature measurement process. The processing of the heating furnace extraction temperature prediction unit 4A constitutes the heating furnace extraction temperature prediction step. The processing of the scale removal evaluation unit 4B constitutes the scale removal evaluation process.

(動作その他)
加熱炉1から連続的に抽出された鋼片Sの表面に水7及び圧縮空気8を吹き付けて鋼片Sの表面の一部分からスケール10を除去し、その後、鋼片Sの表面温度を測定する。
ここで、高圧水だけでスケール除去を行う場合、高圧水の熱伝達係数が非常に大きく、高圧水の沸騰状態によって鋼片S表面の温度測定値が大きく変動する。このため、鋼片Sの加熱炉抽出温度を正確に予測できないおそれがある。一方、圧縮空気だけでスケール除去を行う場合、鋼片S表面の剥離し易い1次スケールは除去できるが、鋼片Sの表面近傍に強固に生成されたタイトスケールをほとんど除去できないおそれがあり、結果として鋼片表面温度の真値を測定し難い。
(Operation other)
Water 7 and compressed air 8 are sprayed onto the surface of the steel slab S extracted continuously from the heating furnace 1 to remove the scale 10 from a part of the surface of the steel slab S, and then the surface temperature of the steel slab S is measured. .
Here, when scale removal is performed using only high-pressure water, the heat transfer coefficient of high-pressure water is very large, and the temperature measurement value on the surface of the steel slab S varies greatly depending on the boiling state of the high-pressure water. For this reason, there exists a possibility that the heating furnace extraction temperature of the steel slab S cannot be estimated correctly. On the other hand, when the scale removal is performed only with compressed air, the primary scale that is easily peeled off from the surface of the steel slab S can be removed, but there is a possibility that the tight scale that is strongly generated near the surface of the steel slab S can hardly be removed. As a result, it is difficult to measure the true value of the steel slab surface temperature.

これに対し、本実施形態では、水7と圧縮空気8との両方を使用してスケール除去を行うことで、スケール除去のための水7の圧力や水7の吹き付け量を、水だけでスケール除去する場合に比べて低く抑えた状態で、所要のスケール除去が可能となる。また水7の熱伝達係数や水7の沸騰状態によって鋼片S表面の温度測定値が大きく変動することを抑えられる。   On the other hand, in this embodiment, the scale removal is performed using both the water 7 and the compressed air 8 so that the pressure of the water 7 and the spraying amount of the water 7 for scale removal can be scaled only with water. The required scale removal can be performed in a state of being kept low compared to the case of removal. Moreover, it can suppress that the measured temperature value of the steel piece S surface fluctuates greatly depending on the heat transfer coefficient of the water 7 and the boiling state of the water 7.

これによって、鋼片S表面の温度測定が真値から大きくずれることを抑制可能となる。したがって、熱間圧延などの次工程に供される鋼片Sの加熱炉抽出温度を正確に予測することができる。
すなわち、スケール除去を行った部分の温度を、デスケーリング水の熱伝達係数やデスケーリング水の沸騰状態による変動を抑えつつ、鋼片Sの表面の復熱が完了した後に行うので、正確な鋼片Sの表面温度を測定することができる。従って、第1の温度測定部6A、第2の温度測定部6Bの温度測定値を基に、鋼片Sの加熱炉抽出温度を予測することで、熱間圧延などに供される鋼片Sの加熱炉抽出温度を正確に予測することができる。
Thereby, it is possible to suppress the temperature measurement on the surface of the steel slab S from greatly deviating from the true value. Therefore, the furnace extraction temperature of the steel slab S used for the next process such as hot rolling can be accurately predicted.
That is, since the temperature of the part where scale removal has been performed is performed after reheating of the surface of the steel slab S is completed while suppressing fluctuations due to the heat transfer coefficient of the descaling water and the boiling state of the descaling water, accurate steel The surface temperature of the piece S can be measured. Therefore, by predicting the heating furnace extraction temperature of the steel slab S based on the temperature measured values of the first temperature measuring unit 6A and the second temperature measuring unit 6B, the steel slab S used for hot rolling or the like. It is possible to accurately predict the furnace extraction temperature.

また、加熱炉抽出温度予測装置で予測した鋼片Sの加熱炉抽出温度を加熱炉内温度制御モデルに基づいて予測した鋼片Sの加熱炉抽出温度と比較することで、加熱炉1内の総括熱吸収率を補正することが可能になり、目標抽出温度的中精度を向上させることができる。
また、加熱炉抽出時の鋼片表面温度Tを(1)式から求めて鋼片Sの加熱炉抽出温度を予測することで、熱間圧延などに供される鋼片Sの加熱炉抽出温度をより正確に予測することができる。
Moreover, by comparing the heating furnace extraction temperature of the steel slab S predicted by the heating furnace extraction temperature prediction device with the heating furnace extraction temperature of the steel slab S predicted based on the temperature control model in the heating furnace, It becomes possible to correct the overall heat absorption rate and improve the medium accuracy of the target extraction temperature.
Further, by the billet surface temperature T A at the time of the heating furnace extraction (1) determined from equation predicting the furnace extraction temperature of the steel strip S, a heating furnace of steel strip S to be subjected, such as hot rolling extraction The temperature can be predicted more accurately.

また本実施形態では、スケール除去評価部4Bでスケール除去を評価することで、温度測定値が真値とずれたどうかの判定が可能となり、早期に測定値の異常を把握することがきる。
ここで、本実施形態では、鋼片Sの上面側の温度に基づき加熱炉抽出温度を予測しているが、鋼片Sの下面、或いは上下面の温度に基づいて加熱炉抽出温度を予測しても良い。
In the present embodiment, the scale removal evaluation unit 4B evaluates the scale removal, so that it is possible to determine whether or not the temperature measurement value has deviated from the true value, and the measurement value abnormality can be grasped at an early stage.
Here, in this embodiment, the heating furnace extraction temperature is predicted based on the temperature of the upper surface side of the steel slab S, but the heating furnace extraction temperature is predicted based on the temperature of the lower surface or the upper and lower surfaces of the steel slab S. May be.

また、噴出する圧縮空気8に対し鋼片S表面に固体の状態で衝突した後に、気化若しくは溶融する粒体を含有させて、スケール除去能力を向上させるようにしても良い。この場合には、圧縮空気だけでのスケール除去も可能となる。
粒体の材質としては、ドライアイス(商標名)や重曹からなる固体を例示出来る。これらは、鋼片Sに化学変化を起こさず、人体にも無害であり、品質上も環境衛生上も問題が発生することはない。
Moreover, after colliding in a solid state with the surface of the steel slab S against the jetted compressed air 8, particles that evaporate or melt may be included to improve the scale removal capability. In this case, the scale can be removed only with compressed air.
Examples of the material of the granule include a solid made of dry ice (trade name) or baking soda. These do not cause a chemical change in the steel slab S, are harmless to the human body, and do not cause problems in terms of quality and environmental hygiene.

また、上記実施形態では、水7及び圧縮空気8によってスケール除去を行う場合を例示している。これに対して、高圧水7だけでスケール除去を行いつつスケール除去評価部4Bでスケール除去の評価を行っても良い。
ここで、スケール除去評価部4Bで、スケール除去の異常との判定は、スケール除去が不十分な場合と、第1の温度部の温度測定の異常の場合とがある。すなわち、スケール除去評価部4Bは、温度測定値の異常評価をしているとみなすことが出来る。
Moreover, in the said embodiment, the case where scale removal is performed with the water 7 and the compressed air 8 is illustrated. On the other hand, the scale removal evaluation unit 4 </ b> B may evaluate the scale removal while removing the scale using only the high-pressure water 7.
Here, the scale removal evaluation unit 4B determines that the scale removal is abnormal. The scale removal is insufficient, and the temperature measurement of the first temperature part is abnormal. That is, the scale removal evaluation unit 4B can be regarded as performing an abnormal evaluation of the temperature measurement value.

次に、本発明の実施例について説明する。
<実施例>
加熱炉1から抽出された鋼片S(板幅1.25m、板厚230mm)の上面に向けて、水および圧縮空気噴出ノズルから、順次、水及び圧縮空気8を噴出してスケール除去を実施した。
このとき、水および圧縮空気8の噴出距離を150mm、噴出条件を水量密度5510L/m.min(ノズル前水圧力0.45MPa)、圧縮空気8700Nm3/h(ノズル前圧縮空気圧力0.45MPa)に設定した。
Next, examples of the present invention will be described.
<Example>
Scale removal is performed by sequentially ejecting water and compressed air 8 from the water and compressed air ejection nozzle toward the upper surface of the steel piece S (plate width 1.25 m, plate thickness 230 mm) extracted from the heating furnace 1. did.
At this time, the ejection distance of water and compressed air 8 is 150 mm, and the ejection condition is a water density of 5510 L / m 2 . min (pre-nozzle water pressure 0.45 MPa) and compressed air 8700 Nm3 / h (pre-nozzle compressed air pressure 0.45 MPa).

そして、鋼片Sの表面からスケールを除去した後、鋼片Sの表面温度を当該鋼片S表面の復熱が完了した後に放射温度計により測定し、放射温度計の温度測定値に基づいて鋼片Sの加熱炉抽出温度を演算して予測した場合における加熱炉1での鋼片S過加熱温度、加熱炉1原単位、加熱不足に起因する品質不良発生率指標について調査した。その結果を表1に示す。   Then, after removing the scale from the surface of the steel slab S, the surface temperature of the steel slab S is measured by a radiation thermometer after the reheating of the surface of the steel slab S is completed, and based on the temperature measurement value of the radiation thermometer. When calculating and predicting the heating furnace extraction temperature of the slab S, the steel slab S overheating temperature in the heating furnace 1, the heating furnace 1 unit, and the quality defect occurrence rate index due to insufficient heating were investigated. The results are shown in Table 1.

<比較例>
また加熱炉1から抽出された鋼片Sの表面に高圧のデスケーリング水だけをスプレーノズルから噴出してスケール除去を実施した。
比較例では、水の距離を150mm、噴出条件を水量密度17万L/m・min(ノズル前水圧力15MPa)に設定した。
<Comparative example>
Further, only the high-pressure descaling water was ejected from the spray nozzle onto the surface of the steel piece S extracted from the heating furnace 1, and the scale was removed.
In the comparative example, the distance of water was set to 150 mm, and the ejection condition was set to a water density of 170,000 L / m 2 · min (nozzle pre-water pressure 15 MPa).

そして、実施例と同様に、加熱炉1での鋼片S過加熱温度、加熱炉1原単位、加熱不足に起因する品質不良発生率指標について調査した。その結果を表1に記載する。

Figure 0006327208
And like the Example, the steel slab S overheating temperature in the heating furnace 1, the heating furnace 1 basic unit, and the quality defect occurrence rate parameter | index resulting from insufficient heating were investigated. The results are listed in Table 1.
Figure 0006327208

この表1から分かるように、比較例では鋼片S過加熱温度の平均が31℃前後であったのに対し、実施例では鋼片S過加熱温度の平均が10℃未満となった。
また、比較例での加熱炉1原単位を1.0、加熱不測に起因する品質不良発生率指標を1.0とした場合、実施例では0.9、品質不良発生率指標が0.5未満となった。
このように、実施例では、温度測定の温度変動を抑えつつ、精度良く加熱炉抽出温度を予測できることが分かる。
ここで、実施例の構成において、同一のノズルから中央部から水を周辺部から圧縮空気8を噴出した場合、及び同一のノズルから中央部から圧縮空気8をその周辺部から水を噴出する場合でも実施してみた。この場合でも、実施例と同様な効果を得ることを確認している。
As can be seen from Table 1, in the comparative example, the average of the steel slab S superheating temperature was around 31 ° C., whereas in the example, the average of the steel slab S superheating temperature was less than 10 ° C.
Further, when the basic unit of the heating furnace in the comparative example is 1.0 and the quality defect occurrence rate index resulting from unexpected heating is 1.0, in the example, 0.9 and the quality defect occurrence rate index are 0.5. It became less than.
Thus, in the Example, it turns out that a heating furnace extraction temperature can be estimated accurately, suppressing the temperature fluctuation of temperature measurement.
Here, in the configuration of the embodiment, when water is ejected from the central portion from the same nozzle and compressed air 8 is ejected from the peripheral portion, and when compressed air 8 is ejected from the peripheral portion from the central portion from the same nozzle. But I tried it. Even in this case, it has been confirmed that the same effect as that of the example can be obtained.

1 加熱炉
2 粗圧延機
3 搬送ローラ
4 コントローラ
4A 加熱炉抽出温度予測部
4B スケール除去評価部
5 噴出ノズル
5A 高圧水噴出用ノズル
5B 圧縮空気噴出用ノズル
6 温度測定部
6A 第1の温度測定部
6B 第2の温度測定部
7 高圧水
8 圧縮空気
9 記憶部
S 鋼片
ΔT 温度差
ΔTi 温度差
ΔTm 平均値
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Rough rolling mill 3 Conveying roller 4 Controller 4A Heating furnace extraction temperature prediction part 4B Scale removal evaluation part 5 Injection nozzle 5A High pressure water injection nozzle 5B Compressed air injection nozzle 6 Temperature measurement part 6A 1st temperature measurement part 6B Second temperature measurement unit 7 High pressure water 8 Compressed air 9 Storage unit S Steel slab ΔT Temperature difference ΔTi Temperature difference ΔTm Average value

Claims (6)

加熱炉から抽出された鋼片の加熱炉抽出温度を予測する方法であって、
上記加熱炉から抽出された鋼片の表面に対し、噴出ノズルから水および圧縮空気をそれぞれ吹き付けて、上記鋼片の表面からスケールを除去するスケール除去工程と、
上記スケール除去工程の後に、上記スケールを除去した鋼片の表面温度を当該鋼片表面の復熱が完了した後に測定する温度測定工程と、
上記温度測定工程で得られた温度測定値を基に加熱炉抽出時の鋼片表面温度を演算して上記鋼片の加熱炉抽出温度を予測する加熱炉抽出温度予測工程と、
を有し、
上記温度測定工程での温度測定は、スケール除去位置の鋼片表面の温度である第1の温度を測定すると共に、上記スケール除去工程でスケール除去が行われていない鋼片表面の温度である第2の温度を測定し、
更に、上記第1の温度及び上記第2の温度から、上記スケール除去工程によるスケール除去を評価するスケール除去評価工程を備えることを特徴とする鋼片の加熱炉抽出温度予測方法。
A method for predicting a furnace extraction temperature of a steel slab extracted from a furnace,
A scale removal step of removing scale from the surface of the steel piece by blowing water and compressed air from the ejection nozzle to the surface of the steel piece extracted from the heating furnace,
After the scale removal step, a temperature measurement step of measuring the surface temperature of the steel slab from which the scale has been removed after the reheating of the steel slab surface is completed,
A furnace extraction temperature prediction step for calculating a steel slab surface temperature at the time of furnace extraction based on the temperature measurement value obtained in the temperature measurement process and predicting a furnace extraction temperature of the steel slab, and
I have a,
The temperature measurement in the temperature measurement step measures the first temperature, which is the temperature of the steel slab surface at the scale removal position, and is the temperature of the steel slab surface where scale removal has not been performed in the scale removal step. Measure the temperature of 2,
Furthermore, the steel slab heating furnace extraction temperature prediction method characterized by including the scale removal evaluation process which evaluates the scale removal by the said scale removal process from said 1st temperature and said 2nd temperature .
上記スケール除去評価工程は、上記第1の温度及び上記第2の温度の温度差を、抽出した鋼片毎に記録しておき、直近で測定した複数の鋼片での各温度差ΔTの平均値ΔTmを求め、今回測定した温度差と上記平均値ΔTmとの差の絶対値が予め設定した閾値以上乖離した場合に、スケール除去異常と判定することを特徴とする請求項に記載した鋼片の加熱炉抽出温度予測方法。 In the scale removal evaluation step, the temperature difference between the first temperature and the second temperature is recorded for each extracted steel slab, and the average of each temperature difference ΔT in a plurality of steel slabs measured most recently is recorded. 2. The steel according to claim 1 , wherein a value ΔTm is obtained, and when the absolute value of the difference between the temperature difference measured this time and the average value ΔTm deviates more than a preset threshold value, it is determined that the scale removal is abnormal. Method for predicting the extraction temperature of a piece of heating furnace. 上記加熱炉抽出温度予測工程は、上記温度測定工程で測定されたスケールが除去された鋼片部分の表面温度と、上記鋼片の周囲の空気温度と、上記鋼片が自然放冷によって冷却されるときの熱伝達係数と、上記鋼片の比熱と、上記鋼片の加熱炉抽出時から表面温度測定時に至るまでの経過時間と、上記噴出ノズルから噴出する空気及び水によって鋼片が冷却されるときの熱伝達係数と、上記噴出ノズルから上記鋼片の表面に噴出される空気及び水の温度とに基づいて、上記加熱炉抽出時の鋼片表面温度を演算することを特徴とする請求項1又は請求項2に記載した鋼片の加熱炉抽出温度予測方法。 In the heating furnace extraction temperature prediction step, the surface temperature of the steel slab portion from which the scale measured in the temperature measurement step has been removed, the air temperature around the steel slab, and the steel slab are cooled by natural cooling. The steel slab is cooled by the heat transfer coefficient, the specific heat of the steel slab, the elapsed time from the extraction of the steel slab to the surface temperature measurement, and the air and water jetted from the jet nozzle. And calculating the steel slab surface temperature at the time of extraction in the heating furnace based on the heat transfer coefficient at the time of heating and the temperature of air and water jetted from the jet nozzle to the surface of the steel slab. The method for predicting the extraction temperature of a steel slab according to claim 1 or claim 2 . 加熱炉から抽出された鋼片の加熱炉抽出温度を予測する装置であって、
上記加熱炉から抽出された鋼片の表面に対し、上記鋼片の表面からスケールを除去するために、水および圧縮空気をそれぞれ吹き付けるための噴出ノズルと、
上記水および圧縮空気の吹き付けに対する上記鋼片表面の復熱が完了後の位置で、上記スケールを除去した鋼片の表面温度を測定する温度測定部と、
上記温度測定部が測定した温度測定値を基に加熱炉抽出時の鋼片表面温度を演算して上記鋼片の加熱炉抽出温度を予測する加熱炉抽出温度予測部と、
を有し、
上記温度測定部として、スケール除去位置の鋼片表面の温度を測定する第1の温度測定部と、スケール除去が行われていない鋼片表面の温度である第2の温度測定部とを有し、
更に、上記第1の温度測定部が測定する第1の温度と上記第2の温度測定部が測定する第2の温度とから、上記水および圧縮空気によるスケール除去を評価するスケール除去評価部と、を備えることを特徴とする鋼片の加熱炉抽出温度予測装置。
An apparatus for predicting a heating furnace extraction temperature of a steel piece extracted from a heating furnace,
In order to remove scale from the surface of the steel slab with respect to the surface of the steel slab extracted from the heating furnace, an ejection nozzle for spraying water and compressed air, respectively,
A temperature measuring unit for measuring the surface temperature of the steel slab from which the scale has been removed, at a position after completion of recuperation of the steel slab surface with respect to the water and compressed air;
A furnace extraction temperature prediction unit that calculates a steel slab surface temperature during heating furnace extraction based on a temperature measurement value measured by the temperature measurement unit and predicts a furnace extraction temperature of the steel slab, and
I have a,
As said temperature measurement part, it has the 1st temperature measurement part which measures the temperature of the steel slab surface of a scale removal position, and the 2nd temperature measurement part which is the temperature of the steel slab surface where scale removal is not performed ,
And a scale removal evaluation unit for evaluating scale removal by the water and compressed air from the first temperature measured by the first temperature measurement unit and the second temperature measured by the second temperature measurement unit; a heating furnace extraction temperature predicting apparatus of the steel strip, characterized in that it comprises a.
上記スケール除去評価部は、上記第1の温度及び上記第2の温度の温度差を、抽出した鋼片毎に記録しておき、直近で測定した複数の鋼片での各温度差ΔTの平均値ΔTmを求め、今回測定した温度差と上記平均値ΔTmとの差の絶対値が設定した閾値以上乖離した場合に、スケール除去異常と判定することを特徴とする請求項に記載した鋼片の加熱炉抽出温度予測装置。 The scale removal evaluation unit records the temperature difference between the first temperature and the second temperature for each extracted steel slab, and averages the temperature differences ΔT for a plurality of steel slabs measured most recently. The steel slab according to claim 4 , wherein a value ΔTm is obtained, and when the absolute value of the difference between the temperature difference measured this time and the average value ΔTm deviates more than a set threshold value, it is determined that the scale removal is abnormal. Furnace extraction temperature prediction device. 上記加熱炉抽出温度予測部は、上記温度測定工程で測定されたスケールが除去された鋼片部分の表面温度と、上記鋼片の周囲の空気温度と、上記鋼片が自然放冷によって冷却されるときの熱伝達係数と、上記鋼片の比熱と、上記鋼片の加熱炉抽出時から表面温度測定時に至るまでの経過時間と、上記噴出ノズルから噴出する空気及び水によって鋼片が冷却されるときの熱伝達係数と、上記噴出ノズルから上記鋼片の表面に噴出される空気及び水の温度とに基づいて、上記加熱炉抽出時の鋼片表面温度を演算することを特徴とする請求項4又は請求項5に記載した鋼片の加熱炉抽出温度予測装置。 The heating furnace extraction temperature predicting unit is a surface temperature of the steel piece part from which the scale measured in the temperature measuring step is removed, the air temperature around the steel piece, and the steel piece is cooled by natural cooling. The steel slab is cooled by the heat transfer coefficient, the specific heat of the steel slab, the elapsed time from the extraction of the steel slab to the surface temperature measurement, and the air and water ejected from the ejection nozzle. And calculating the steel slab surface temperature at the time of extraction in the heating furnace based on the heat transfer coefficient at the time of heating and the temperature of air and water jetted from the jet nozzle to the surface of the steel slab. Item 6. The apparatus for predicting the extraction temperature of a steel slab according to item 4 or claim 5 .
JP2015119330A 2015-06-12 2015-06-12 Heating furnace extraction temperature prediction method and heating furnace extraction temperature prediction apparatus for billets Active JP6327208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015119330A JP6327208B2 (en) 2015-06-12 2015-06-12 Heating furnace extraction temperature prediction method and heating furnace extraction temperature prediction apparatus for billets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015119330A JP6327208B2 (en) 2015-06-12 2015-06-12 Heating furnace extraction temperature prediction method and heating furnace extraction temperature prediction apparatus for billets

Publications (2)

Publication Number Publication Date
JP2017001070A JP2017001070A (en) 2017-01-05
JP6327208B2 true JP6327208B2 (en) 2018-05-23

Family

ID=57751137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015119330A Active JP6327208B2 (en) 2015-06-12 2015-06-12 Heating furnace extraction temperature prediction method and heating furnace extraction temperature prediction apparatus for billets

Country Status (1)

Country Link
JP (1) JP6327208B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110238210A (en) * 2019-06-28 2019-09-17 昆明理工大学 A method of removing hot rolling titanium plate titanium oxide surface skin

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108405635A (en) * 2018-02-27 2018-08-17 首钢京唐钢铁联合有限责任公司 A method of examining hot rolling line scale removal effect
JP6870640B2 (en) * 2018-03-22 2021-05-12 Jfeスチール株式会社 How to modify the slab temperature model in the heating furnace, as well as the slab extraction temperature control method and control device
JP7040497B2 (en) * 2019-05-28 2022-03-23 Jfeスチール株式会社 Heating furnace extraction temperature prediction method for steel pieces and heating furnace extraction temperature prediction device
CN112016198B (en) * 2020-08-19 2024-04-19 北京和隆优化科技股份有限公司 Heating furnace tapping temperature prediction method based on coupling iteration

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045367B2 (en) * 1977-04-15 1985-10-09 石川島播磨重工業株式会社 Hot flaw detection method
JP5983071B2 (en) * 2012-06-14 2016-08-31 Jfeスチール株式会社 Prediction method for steel slab extraction temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110238210A (en) * 2019-06-28 2019-09-17 昆明理工大学 A method of removing hot rolling titanium plate titanium oxide surface skin

Also Published As

Publication number Publication date
JP2017001070A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6327208B2 (en) Heating furnace extraction temperature prediction method and heating furnace extraction temperature prediction apparatus for billets
JP5218435B2 (en) Controlled cooling method for thick steel plate
JP4238260B2 (en) Steel plate cooling method
US8414716B2 (en) Cooling method of hot-rolled steel strip
JP7040497B2 (en) Heating furnace extraction temperature prediction method for steel pieces and heating furnace extraction temperature prediction device
JP7176507B2 (en) Hot rolling warpage prediction method, warpage control method, hot rolled steel sheet manufacturing method, warpage prediction model generation method, and hot rolling equipment
KR101149210B1 (en) Cooling control apparatus for hot rolled steel sheets and method thereof
JP4604564B2 (en) Method and apparatus for controlling cooling of thick steel plate
JP5983071B2 (en) Prediction method for steel slab extraction temperature
JP5682205B2 (en) Defect detection method and defect detection system for continuous cast slab
JP2012040593A (en) Device for controlling finishing temperature in hot rolling
JP5310965B1 (en) Hot-rolled steel sheet cooling method
KR20140100884A (en) Hot rolled steel sheet cooling device
KR100711414B1 (en) Device for manufacturing bar on roughing stand in hot rolling process
JP4349177B2 (en) Steel extraction temperature prediction method for continuous heating furnace
KR101140901B1 (en) Colling method for inverted angle
JP6699688B2 (en) Hot rolled steel sheet manufacturing method
KR20160142956A (en) Cooling Apparatus for roll of Rolling and Cooling Water Control Method for roll of Rolling
KR101140965B1 (en) Cooling method for inverted angle
JP2017170488A (en) Method and apparatus for cooling thick steel plate
JP5712572B2 (en) Defect detection method and defect detection device for continuous cast slab for thin steel sheet
JP4714628B2 (en) Thick steel plate cooling equipment row and cooling method
JP5696456B2 (en) Cooling method after rolling striped steel plate
JP2008212956A (en) Use method of descaling device in hot rolling and hot-rolling method using the same
JP6367756B2 (en) Thick steel plate cooling method and thick steel plate cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6327208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250