JP2017170488A - Method and apparatus for cooling thick steel plate - Google Patents

Method and apparatus for cooling thick steel plate Download PDF

Info

Publication number
JP2017170488A
JP2017170488A JP2016059926A JP2016059926A JP2017170488A JP 2017170488 A JP2017170488 A JP 2017170488A JP 2016059926 A JP2016059926 A JP 2016059926A JP 2016059926 A JP2016059926 A JP 2016059926A JP 2017170488 A JP2017170488 A JP 2017170488A
Authority
JP
Japan
Prior art keywords
cooling
steel plate
thick steel
thickness direction
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016059926A
Other languages
Japanese (ja)
Other versions
JP6650308B2 (en
Inventor
崇広 小原
Takahiro Ohara
崇広 小原
圭一 山下
Keiichi Yamashita
圭一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016059926A priority Critical patent/JP6650308B2/en
Publication of JP2017170488A publication Critical patent/JP2017170488A/en
Application granted granted Critical
Publication of JP6650308B2 publication Critical patent/JP6650308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for cooling a thick steel plate, in which occurrence of warpage due to thermal stress is sufficiently suppressed so that post-cooling quality is adequately improved.SOLUTION: There is provided a method for cooling a thick steel plate of the present invention in which a thick steel plate after hot rolling is cooled by a cooling apparatus, that includes the steps of: including at least one cooling zone in the cooling apparatus along a conveyance direction, and extracting a point which is positioned above a thickness direction center and at which a distance to the thickness direction center is the largest, and a point which is positioned below the thickness direction center and at which a distance to the thickness direction center is the largest, among multiple points in the thickness direction of the thick steel plate at which a standard deviation ratio relative to an average cooling rate in the cooling zone is a prescribed threshold or less; forming a pair of determination points obtained by combining a point at which the distance to the thickness direction center is shorter out of the extracted pair of points with a point that is symmetrical to this point and to the thickness direction center; and adjusting an upper and lower water amount ratio so that a temperature difference of a pair of determination points is a prescribed value or less at a final point of the cooling zone.SELECTED DRAWING: Figure 3

Description

本発明は、厚鋼板冷却方法及び厚鋼板冷却装置に関する。   The present invention relates to a thick steel plate cooling method and a thick steel plate cooling device.

厚鋼板の製造において、焼き入れ効果等を得るために熱間圧延された厚鋼板を冷却水によって急速に冷却することがある。このような処理を行うための装置として、搬送状態の厚鋼板に冷却装置から冷却水を散水するよう構成された厚鋼板冷却装置が知られている。   In the manufacture of thick steel plates, the hot-rolled thick steel plates may be rapidly cooled with cooling water in order to obtain a quenching effect or the like. As a device for performing such processing, a thick steel plate cooling device configured to spray cooling water from a cooling device onto a transported thick steel plate is known.

しかしながら、この厚鋼板冷却装置によって厚鋼板に冷却水を散水すると、厚鋼板の厚さ方向中心を基準として上下方向に非対称な温度分布を生じ易い。その結果、熱応力により厚鋼板に反りが発生し、満足な板形状が得られないおそれがある。   However, when the cooling water is sprayed on the thick steel plate by this thick steel plate cooling device, an asymmetric temperature distribution is easily generated in the vertical direction with respect to the thickness direction center of the thick steel plate. As a result, the thick steel plate may be warped due to thermal stress, and a satisfactory plate shape may not be obtained.

このような事情に鑑みて、今日では「冷却制御方法、冷却制御装置及び冷却水量計算装置」(特開2007−190597号公報参照)が発案されている。上記公報に記載の冷却制御方法は、厚鋼板を所定の温度に冷却する条件を定めた予定冷却スケジュールにおける温度、及びこの厚鋼板の片面を冷却する冷却水における第1冷却水量密度から熱伝達係数を求め、この熱伝達係数を基に厚鋼板の上下面に散水する水量を規定するもので、この冷却制御方法によると、上下面の冷却速度の差に起因する厚鋼板の形状悪化を抑制できるとされている。   In view of such circumstances, a “cooling control method, a cooling control device, and a cooling water amount calculation device” (see JP 2007-190597 A) has been proposed today. The cooling control method described in the above publication is based on the temperature in the scheduled cooling schedule that defines the conditions for cooling the thick steel plate to a predetermined temperature, and the heat transfer coefficient from the first cooling water density in the cooling water that cools one side of the thick steel plate. The amount of water sprayed on the upper and lower surfaces of the thick steel plate is defined based on this heat transfer coefficient. According to this cooling control method, the shape deterioration of the thick steel plate due to the difference in the cooling rate between the upper and lower surfaces can be suppressed. It is said that.

しかしながら、この公報に記載の冷却制御方法は、鋼板の片面を冷却する冷却水における第1冷却水量密度から求めた熱伝達係数を基に上下面の散水量を決定しており、板厚方向内部における温度分布の非対称性が十分に考慮されていない。そのため、この冷却制御方法は、熱応力による鋼板の反りを十分に抑制することができないおそれがある。   However, the cooling control method described in this publication determines the amount of water sprayed on the upper and lower surfaces based on the heat transfer coefficient obtained from the first cooling water density in the cooling water for cooling one side of the steel plate, The asymmetry of the temperature distribution in is not fully considered. Therefore, this cooling control method may not be able to sufficiently suppress warpage of the steel sheet due to thermal stress.

特開2007−190597号公報JP 2007-190597 A

本発明は、このような事情に鑑みてなされたものであり、熱応力による厚鋼板の反りの発生を十分に抑制し、冷却後の厚鋼板の品質を十分に向上することができる厚鋼板冷却方法及び厚鋼板冷却装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and the steel plate cooling capable of sufficiently suppressing the occurrence of warpage of the steel plate due to thermal stress and sufficiently improving the quality of the steel plate after cooling. An object is to provide a method and a steel plate cooling device.

上記課題を解決するためになされた本発明は、熱間圧延後の厚鋼板の搬送方向に設けられる冷却装置を用い、熱間圧延後の厚鋼板を冷却する厚鋼板冷却方法であって、上記冷却装置が、上記搬送方向に沿う少なくとも1つの冷却ゾーンを有し、上記冷却装置に投入される厚鋼板の上下面の温度を測定する工程と、上記測定工程で測定した測定温度と、上記冷却ゾーンにおける水量密度分布、上記厚鋼板の幅、上記厚鋼板の搬送速度及び補正係数を用いて設定される熱伝達係数とに基づいて、上記厚鋼板の厚さ方向における複数点の上記冷却ゾーンにおける冷却開始から終了までの時間毎の温度を予想する工程と、上記複数点の上記冷却ゾーンにおける冷却開始から終了までの平均冷却速度を算出する工程と、上記冷却ゾーンの時間毎における上記複数点の冷却速度を算出し、この時間毎における冷却速度の標準偏差を算出する工程と、上記冷却ゾーンにおいて上記平均冷却速度に対する標準偏差の比が所定の閾値以下となる厚鋼板の厚さ方向における複数の点のうち、厚さ方向中心よりも上方に位置し、厚さ方向中心との距離が最大となる点、及び厚さ方向中心よりも下方に位置し、厚さ方向中心との距離が最大となる点を抽出する工程と、上記抽出工程で抽出した一対の点のうち厚さ方向中心との距離が短い方の点及びこの点と厚さ方向中心に対して対称な点を一対の判定点とする工程と、上記冷却ゾーンの終点において、上記一対の判定点の温度差が所定値以下となるように上下水量比を調整する工程とを備える。   This invention made in order to solve the said subject is a thick steel plate cooling method which cools the thick steel plate after hot rolling using the cooling device provided in the conveyance direction of the thick steel plate after hot rolling, A cooling device having at least one cooling zone along the conveying direction, a step of measuring the temperature of the upper and lower surfaces of the thick steel plate that is put into the cooling device, the measurement temperature measured in the measurement step, and the cooling Based on the water density distribution in the zone, the width of the thick steel plate, the transport speed of the thick steel plate and the heat transfer coefficient set using the correction coefficient, the cooling zone at a plurality of points in the thickness direction of the thick steel plate A step of predicting a temperature for every time from the start to the end of cooling, a step of calculating an average cooling rate from the start to the end of cooling in the cooling zone at the plurality of points, and a time for each time of the cooling zone The step of calculating the cooling rate at multiple points and calculating the standard deviation of the cooling rate for each time, and the thickness of the thick steel plate in which the ratio of the standard deviation to the average cooling rate in the cooling zone is a predetermined threshold or less Among the plurality of points in the direction, it is located above the center in the thickness direction, the point where the distance from the center in the thickness direction is the maximum, and located below the center in the thickness direction, A step of extracting the point having the maximum distance, a point having a shorter distance from the center in the thickness direction of the pair of points extracted in the extraction step, and a point symmetrical to the center in the thickness direction. And a step of adjusting the water / water ratio so that the temperature difference between the pair of determination points is equal to or less than a predetermined value at the end point of the cooling zone.

一般に、冷却ゾーンにおいて厚鋼板の厚さ方向における複数の点の平均冷却速度に対するこれら複数の点の時間毎の冷却速度の標準偏差の比は厚さ方向の中心からの距離が大きくなる程増加する傾向にある。また、これらの比は、厚さ方向の中心を基準として上下方向で相違する。この点に関し、当該厚鋼板の製造方法は、冷却ゾーンにおいて上記平均冷却速度に対する標準偏差の比が所定の閾値以下となる厚鋼板の厚さ方向における複数の点のうち、厚さ方向中心よりも上方に位置し、厚さ方向中心との距離が最大となる点、及び厚さ方向中心よりも下方に位置し、厚さ方向中心との距離が最大となる点を抽出した上、この抽出した一対の点のうち厚さ方向中心との距離が短い方の点及びこの点と厚さ方向中心に対して対称な点を一対の判定点とし、この一対の判定点の温度差が所定値以下となるように上下水量比を調整する。そのため、当該厚鋼板の製造方法は、厚さ方向における一対の判定点間に存在する部分の冷却速度を略均等に維持できると共に、この一対の判定点よりも厚さ方向外側に位置する部分の冷却速度の上下対称性を促進することができる。従って、当該厚鋼板の製造方法は、熱応力による厚鋼板の反りの発生を十分に抑制し、冷却後の厚鋼板の品質を十分に向上することができる。   In general, in the cooling zone, the ratio of the standard deviation of the cooling rate per hour of the plurality of points to the average cooling rate of the plurality of points in the thickness direction of the thick steel plate increases as the distance from the center in the thickness direction increases. There is a tendency. Further, these ratios are different in the vertical direction with respect to the center in the thickness direction. In this regard, the method of manufacturing the thick steel plate is more than the center in the thickness direction among the plurality of points in the thickness direction of the thick steel plate in which the ratio of the standard deviation to the average cooling rate is equal to or less than a predetermined threshold in the cooling zone. The point that is located above and has the maximum distance from the center in the thickness direction, and the point that is located below the center in the thickness direction and has the maximum distance from the center in the thickness direction are extracted and extracted. A point having a shorter distance from the center in the thickness direction of the pair of points and a point symmetric with respect to the center in the thickness direction are defined as a pair of determination points, and a temperature difference between the pair of determination points is a predetermined value or less. Adjust the water and water ratio so that Therefore, the manufacturing method of the thick steel plate can maintain the cooling rate of the portion existing between the pair of determination points in the thickness direction substantially evenly, and the portion positioned on the outer side in the thickness direction than the pair of determination points. The vertical symmetry of the cooling rate can be promoted. Therefore, the manufacturing method of the said thick steel plate can fully suppress generation | occurrence | production of the warp of the thick steel plate by a thermal stress, and can fully improve the quality of the thick steel plate after cooling.

当該厚鋼板冷却方法は、上記一対の判定点の温度差が上記所定値以下となった場合に上下水量比を決定する工程をさらに備えるとよい。このように、上記一対の判定点の温度差が上記所定値以下となった場合に上下水量比を決定する工程をさらに備えることによって、反りの発生が十分に抑制され、十分に品質の高い厚鋼板を容易かつ確実に製造することができる。   The steel plate cooling method may further include a step of determining a water / water ratio when the temperature difference between the pair of determination points is equal to or less than the predetermined value. Thus, by further providing a step of determining the water / water ratio when the temperature difference between the pair of determination points is equal to or less than the predetermined value, occurrence of warpage is sufficiently suppressed, and the thickness is sufficiently high. A steel plate can be manufactured easily and reliably.

上記課題を解決するためになされた本発明の厚鋼板冷却装置は、厚鋼板を搬送する搬送装置と、上記厚鋼板の搬送方向に設けられる少なくとも1つの冷却ゾーンと、上記冷却ゾーンの上流側で厚鋼板の上下面の温度を測定する温度測定装置と、上記温度測定装置の測定結果に基づいて上記冷却ゾーンにおける上下水量比を調整する制御装置とを備え、上記制御装置が、上記温度測定装置が測定した測定温度と、上記冷却ゾーンにおける水量密度分布、上記厚鋼板の幅、上記厚鋼板の搬送速度及び補正係数を用いて設定される熱伝達係数とに基づいて、上記厚鋼板の厚さ方向における複数点の上記冷却ゾーンにおける冷却開始から終了までの時間毎の温度を予想する制御要素と、上記複数点の上記冷却ゾーンにおける冷却開始から終了までの平均冷却速度を算出する制御要素と、上記冷却ゾーンの時間毎における上記複数点の冷却速度を算出し、この時間毎における冷却速度の標準偏差を算出する制御要素と、上記冷却ゾーンにおいて上記平均冷却速度に対する標準偏差の比が所定の閾値以下となる厚鋼板の厚さ方向における複数の点のうち、厚さ方向中心よりも上方に位置し、厚さ方向中心との距離が最大となる点、及び厚さ方向中心よりも下方に位置し、厚さ方向中心との距離が最大となる点を抽出する制御要素と、上記抽出工程で抽出した一対の点のうち厚さ方向中心との距離が短い方の点及びこの点と厚さ方向中心に対して対称な点を一対の判定点とする制御要素と、上記冷却ゾーンの終点において、上記一対の判定点の温度差が所定値以下となるように上下水量比を調整する制御要素とを備える。   The thick steel plate cooling device of the present invention made to solve the above-described problems is a transport device for transporting a thick steel plate, at least one cooling zone provided in the transport direction of the thick steel plate, and upstream of the cooling zone. A temperature measuring device for measuring the temperature of the upper and lower surfaces of the thick steel plate, and a control device for adjusting a water / water ratio in the cooling zone based on a measurement result of the temperature measuring device, wherein the control device is the temperature measuring device. The thickness of the thick steel plate based on the measured temperature measured by the water temperature density distribution in the cooling zone, the width of the thick steel plate, the transport speed of the thick steel plate and the heat transfer coefficient set using the correction coefficient A control element that predicts the temperature for each time from the start to the end of cooling in the cooling zone at a plurality of points in the direction; A control element for calculating the cooling rate, a control element for calculating the cooling rate at the plurality of points for each time of the cooling zone, and calculating a standard deviation of the cooling rate for each time, and the average cooling rate for the cooling zone Of the plurality of points in the thickness direction of the thick steel plate where the ratio of the standard deviation to the predetermined threshold or less, the point located above the center in the thickness direction and the distance from the center in the thickness direction is the maximum, and The distance between the control element that extracts the point that is located below the center in the thickness direction and has the maximum distance from the center in the thickness direction and the center in the thickness direction among the pair of points extracted in the extraction process is short. And a control element having a pair of determination points that are symmetrical with respect to this point and the center in the thickness direction, and at the end point of the cooling zone, the temperature difference between the pair of determination points is equal to or less than a predetermined value. Adjust the water / water ratio And a control element.

当該厚鋼板冷却装置は、冷却ゾーンにおいて厚鋼板の厚さ方向における複数の点の平均冷却速度に対する時間毎の冷却速度の標準偏差の比が所定の閾値以下となる複数の点のうち、厚さ方向中心よりも上方に位置し、厚さ方向中心との距離が最大となる点、及び厚さ方向中心よりも下方に位置し、厚さ方向中心との距離が最大となる点を抽出し、この抽出した一対の点のうち厚さ方向中心との距離が短い方の点及びこの点と厚さ方向中心に対して対称な点を一対の判定点とした上、冷却ゾーンの終点において、上記一対の判定点の温度差が所定値以下となるように上下水量比を調整することができるので、上述のように熱応力による反りの発生が十分に抑制され、冷却後の品質が十分に向上される厚鋼板を製造することができる。   The steel plate cooling device is configured such that the ratio of the standard deviation of the cooling rate for each hour to the average cooling rate of the plurality of points in the thickness direction of the thick steel plate in the cooling zone is the thickness among the plurality of points where the ratio is equal to or less than a predetermined threshold. The point that is located above the center of the direction and has the maximum distance from the center in the thickness direction, and the point that is located below the center of the thickness direction and has the maximum distance from the center in the thickness direction, are extracted. Among the extracted pair of points, a point having a shorter distance from the center in the thickness direction and a point symmetric with respect to this point and the center in the thickness direction are set as a pair of determination points, and at the end point of the cooling zone, Since the water / water ratio can be adjusted so that the temperature difference between the pair of judgment points is less than or equal to a predetermined value, the occurrence of warpage due to thermal stress is sufficiently suppressed as described above, and the quality after cooling is sufficiently improved. Can be manufactured.

以上説明したように、本発明の厚鋼板冷却方法及び厚鋼板冷却装置は、熱応力による厚鋼板の反りの発生を十分に抑制し、冷却後における厚鋼板の品質を十分に向上することができる。   As described above, the thick steel plate cooling method and the thick steel plate cooling apparatus of the present invention can sufficiently suppress the occurrence of warpage of the thick steel plate due to thermal stress, and can sufficiently improve the quality of the thick steel plate after cooling. .

本発明の一実施形態に係る厚鋼板冷却装置を備える厚鋼板加工設備の構成を示す模式図である。It is a schematic diagram which shows the structure of the steel plate processing equipment provided with the steel plate cooling device which concerns on one Embodiment of this invention. 図1の厚鋼板冷却装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the thick steel plate cooling device of FIG. 図1の厚鋼板冷却装置を用いた本発明の一実施形態に係る厚鋼板冷却方法の流れ図である。It is a flowchart of the thick steel plate cooling method which concerns on one Embodiment of this invention using the thick steel plate cooling device of FIG. 実施例における各冷却ゾーンにおける冷却開始から終了までの予想温度を示すグラフである。It is a graph which shows the estimated temperature from the cooling start in each cooling zone in an Example to an end. 実施例の第1冷却ゾーンから第3冷却ゾーンにおける厚鋼板の厚さ方向中心と下面との中間点の平均冷却速度及び時間毎における冷却速度の関係を示すグラフである。It is a graph which shows the relationship between the average cooling rate of the intermediate point of the thickness direction center of a thick steel plate in a 3rd cooling zone from a 1st cooling zone of an Example, and the lower surface, and the cooling rate for every time. 実施例の各冷却ゾーンにおける上下水量比を示すグラフである。It is a graph which shows the amount of up-and-down water amount in each cooling zone of an Example. 実施例の各冷却ゾーンにおける厚鋼板の厚さ方向中心から上下対称位置の冷却速度比を示すグラフである。It is a graph which shows the cooling rate ratio of a vertically symmetrical position from the thickness direction center of the thick steel plate in each cooling zone of an Example. 比較例の各冷却ゾーンにおける上下水量比を示すグラフである。It is a graph which shows the amount of upper and lower water volume in each cooling zone of a comparative example. 比較例の各冷却ゾーンにおける厚鋼板の厚さ方向中心から上下対称位置の冷却速度比を示すグラフである。It is a graph which shows the cooling rate ratio of a vertically symmetrical position from the thickness direction center of the thick steel plate in each cooling zone of a comparative example.

以下、本発明の実施の形態を詳説する。   Hereinafter, embodiments of the present invention will be described in detail.

[厚鋼板加工設備]
図1の厚鋼板加工設備は、原料厚鋼板(スラブ)Pを加熱する加熱炉1と、加熱された原料厚鋼板Pを熱間圧延する粗圧延機2と、粗圧延機2で圧延された厚鋼板Pをさらに熱間圧延する仕上圧延機3と、仕上圧延機3で熱間圧延された厚鋼板Pを冷却する本発明の一実施形態に係る厚鋼板冷却装置4と、冷却された厚鋼板Pを矯正するレベラー5とを備える。
[Thick steel plate processing equipment]
The thick steel plate processing facility of FIG. 1 was rolled by a heating furnace 1 for heating a raw material thick steel plate (slab) P, a rough rolling machine 2 for hot rolling the heated raw material thick steel plate P, and a rough rolling mill 2. A finishing mill 3 for further hot rolling the thick steel plate P, a thick steel plate cooling device 4 according to an embodiment of the present invention for cooling the thick steel plate P hot-rolled by the finishing mill 3, and the cooled thickness And a leveler 5 for correcting the steel plate P.

加熱炉1、粗圧延機2、仕上圧延機3及びレベラー5については、それぞれ公知の構成とすることができるので、詳細な説明は省略する。   About the heating furnace 1, the roughing mill 2, the finishing mill 3, and the leveler 5, since it can be set as a well-known structure, detailed description is abbreviate | omitted.

〔厚鋼板冷却装置〕
当該厚鋼板冷却装置4は、図2に示すように、熱間圧延後の厚鋼板Pを矢印D方向に搬送しつつ、厚鋼板Pの上面及び下面に冷却水を散水することにより厚鋼板Pを冷却するものであって、加速冷却装置とも呼ばれる。この厚鋼板冷却装置4において、厚鋼板Pの冷却は、予め設定される冷却停止温度まで急速に冷却される。この冷却停止温度としては、目的とする製品(厚鋼板Pの用途)に応じて定められるが、例えば200℃以上650℃以下とされる。
[Thick steel plate cooling device]
As shown in FIG. 2, the thick steel plate cooling device 4 conveys the hot steel plate P after hot rolling in the direction of arrow D while sprinkling cooling water on the upper and lower surfaces of the thick steel plate P. This is also called an accelerated cooling device. In the thick steel plate cooling device 4, the thick steel plate P is rapidly cooled to a preset cooling stop temperature. The cooling stop temperature is determined according to the target product (use of the thick steel plate P), and is, for example, 200 ° C. or higher and 650 ° C. or lower.

当該厚鋼板冷却装置4で冷却される厚鋼板Pの平均厚さとしては、特に限定されないが、例えば12mm以上100mm以下とすることができる。また、厚鋼板Pの平均幅B(搬送方向Dに垂直な横断方向の平均長さ)としては、特に限定されないが、例えば1500mm以上5000mm以下とすることができる。   Although it does not specifically limit as average thickness of the thick steel plate P cooled with the said thick steel plate cooling device 4, For example, it can be 12 mm or more and 100 mm or less. In addition, the average width B (average length in the transverse direction perpendicular to the conveyance direction D) of the thick steel plate P is not particularly limited, but may be, for example, 1500 mm or more and 5000 mm or less.

当該厚鋼板冷却装置4は、図2に示すように、厚鋼板Pを搬送する搬送装置10と、厚鋼板Pの搬送方向に設けられる複数の冷却ゾーン20a〜20dと、複数の冷却ゾーン20a〜20dの搬送方向上流側で厚鋼板Pの上下面の温度を測定する温度測定装置30と、温度測定装置30の測定結果に基づいて複数の冷却ゾーン20a〜20dにおける上下水量比を調整する制御装置40とを備える。   As shown in FIG. 2, the thick steel plate cooling device 4 includes a transport device 10 for transporting the thick steel plate P, a plurality of cooling zones 20 a to 20 d provided in the transport direction of the thick steel plate P, and a plurality of cooling zones 20 a to 20. A temperature measuring device 30 that measures the temperature of the upper and lower surfaces of the thick steel plate P on the upstream side in the conveying direction of 20d, and a control device that adjusts the water / water ratio in the plurality of cooling zones 20a to 20d based on the measurement results of the temperature measuring device 30 40.

<搬送装置>
搬送装置10は、例えば図2に例示するように、複数のローラー11によって構成されるローラーコンベアーとすることができる。
<Conveyor>
The conveyance apparatus 10 can be made into the roller conveyor comprised by the some roller 11, as illustrated in FIG.

<温度測定装置>
温度測定装置30としては、複数の冷却ゾーン20a〜20dのうち、最上流に位置する第1冷却ゾーン20aの上流側で厚鋼板Pの上下面の温度を測定できるものであればよく、例えば放射温度計を用いることができる。
<Temperature measuring device>
Any temperature measuring device 30 may be used as long as the temperature of the upper and lower surfaces of the thick steel plate P can be measured on the upstream side of the first cooling zone 20a located at the most upstream among the plurality of cooling zones 20a to 20d. A thermometer can be used.

<冷却ゾーン>
複数の冷却ゾーン20a〜20dは、搬送方向Dに沿って設けられる。複数の冷却ゾーン20a〜20dには、それぞれ複数の冷却ヘッダー(不図示)が備えられている。具体的には、各冷却ゾーン20a〜20dには、それぞれ厚鋼板Pの上面を冷却する1又は複数の上面冷却ヘッダー及び厚鋼板Pの下面を冷却する1又は複数の下面冷却ヘッダーが備えられてる。上記上面冷却ヘッダー及び下面冷却ヘッダーの具体的構成としては、特に限定さないが、例えばそれぞれ横断方向(搬送方向Dと垂直な水平方向)に長い直方体状であり、厚鋼板Pと対向する側の面に複数のノズルを有する構成とすることができる。また、上記上面冷却ヘッダー及び下面冷却ヘッダーが複数のノズルを有する場合、これら複数のノズルは、流量調整弁を介して冷却水が供給されるよう構成される。上記上面冷却ヘッダー及び下面冷却ヘッダーは、それぞれ複数のノズルから厚鋼板Pに冷却水を散水可能に構成されている。なお、各冷却ゾーン20a〜20dに複数の冷却ヘッダーが備えられる場合、上面冷却ヘッダー及び下面冷却ヘッダーを1組とする複数対の冷却ヘッダーが備えられることが好ましい。
<Cooling zone>
The plurality of cooling zones 20 a to 20 d are provided along the transport direction D. The plurality of cooling zones 20a to 20d are each provided with a plurality of cooling headers (not shown). Specifically, each of the cooling zones 20a to 20d is provided with one or more upper surface cooling headers for cooling the upper surface of the thick steel plate P and one or more lower surface cooling headers for cooling the lower surface of the thick steel plate P. . Although it does not specifically limit as a specific structure of the said upper surface cooling header and a lower surface cooling header, For example, it is a rectangular parallelepiped shape long in a cross direction (horizontal direction perpendicular | vertical to the conveyance direction D), respectively, and the side facing the thick steel plate P It can be set as the structure which has a some nozzle in the surface. When the upper surface cooling header and the lower surface cooling header have a plurality of nozzles, the plurality of nozzles are configured to be supplied with cooling water via a flow rate adjustment valve. Each of the upper surface cooling header and the lower surface cooling header is configured such that cooling water can be sprinkled from the plurality of nozzles to the thick steel plate P. In addition, when a plurality of cooling headers are provided in each of the cooling zones 20a to 20d, it is preferable that a plurality of pairs of cooling headers each including a top cooling header and a bottom cooling header are provided.

<制御装置>
制御装置40は、例えば上記流量調整弁の開度を制御することで、複数の冷却ゾーン20a〜20dから散水される冷却水の上下水量比を調整する。制御装置40は、例えばパーソナルコンピューターやプログラマブルコントローラー等により構成することができる。制御装置40は、温度測定装置30が測定した測定温度と、冷却ゾーン20a〜20dにおける搬送方向Dにおける水量密度分布W(x)、厚鋼板Pの幅B、厚鋼板Pの搬送速度v及び補正係数を用いて設定される熱伝達係数α(x)とに基づいて、厚鋼板Pの厚さ方向における複数点の冷却ゾーン20a〜20dにおける冷却開始から終了までの時間毎の温度を予想する制御要素と、上記複数点iの冷却ゾーン20a〜20dにおける冷却開始から終了までの平均冷却速度CRavg(i,k)(但し、kは上流側から第k番目の冷却ゾーンを意味する)を算出する制御要素と、冷却ゾーン20a〜20dにおける時間j毎における上記複数点の冷却速度CR(i,j,k)を算出し、この時間毎における冷却速度CR(i,j,k)の標準偏差σ(i,k)を算出する制御要素と、冷却ゾーン20a〜20dにおいて上記平均冷却速度CRavg(i,k)に対する標準偏差σ(i,k)の比が所定の閾値以下となる厚鋼板Pの厚さ方向における複数の点のうち、厚さ方向中心よりも上方に位置し、厚さ方向中心との距離が最大となる点、及び厚さ方向中心よりも下方に位置し、厚さ方向中心との距離が最大となる点を抽出する制御要素と、上記抽出工程で抽出した一対の点のうち厚さ方向中心との距離が短い方の点及びこの点と厚さ方向中心に対して対称な点を一対の判定点とする制御要素と、冷却ゾーン20a〜20dの終点において、上記一対の判定点の温度差が所定値以下となるように上下水量比を調整する制御要素と、上記一対の判定点の温度差が上記所定値以下となった場合に上下水量比を決定する制御要素とを有し、当該厚鋼板冷却装置4の動作を制御する。
<Control device>
For example, the control device 40 controls the opening / closing amount of the cooling water sprayed from the cooling zones 20a to 20d by controlling the opening degree of the flow rate adjusting valve. The control device 40 can be configured by, for example, a personal computer or a programmable controller. The control device 40 measures the measured temperature measured by the temperature measuring device 30, the water density distribution W (x) in the transport direction D in the cooling zones 20a to 20d, the width B of the thick steel plate P, the transport speed v of the thick steel plate P, and the correction. Control for predicting the temperature for each time from the start to the end of cooling in the cooling zones 20a to 20d at a plurality of points in the thickness direction of the thick steel plate P based on the heat transfer coefficient α (x) set using the coefficient. And the average cooling rate CR avg (i, k) from the start to the end of cooling in the cooling zones 20a to 20d at the plurality of points i (where k is the kth cooling zone from the upstream side). The control elements to be calculated and the cooling speeds CR (i, j, k) at the plurality of points for each time j in the cooling zones 20a to 20d are calculated, and the cooling speed CR (i, j, k) for each time is calculated. The ratio of the standard deviation σ (i, k) to the average cooling rate CR avg (i, k) in the cooling zones 20a to 20d is equal to or less than a predetermined threshold in the control element for calculating the quasi-deviation σ (i, k). Of the plurality of points in the thickness direction of the thick steel plate P, located above the center in the thickness direction, located at the point where the distance from the center in the thickness direction is the maximum, and below the center in the thickness direction, A control element that extracts a point having the maximum distance from the center in the thickness direction, a point having a shorter distance from the center in the thickness direction among the pair of points extracted in the extraction step, and this point and the center in the thickness direction Control element having a pair of determination points that are symmetrical to each other, and a control element that adjusts the water / water ratio so that the temperature difference between the pair of determination points is equal to or less than a predetermined value at the end points of the cooling zones 20a to 20d. And the temperature difference between the pair of determination points is equal to or less than the predetermined value. When Tsu and a control element for determining the vertical water volume ratio, and controls the operation of the steel plate cooling device 4.

[厚鋼板冷却方法]
次に、熱間圧延後の搬送方向Dに設けられる当該厚鋼板冷却装置4を用い、熱間圧延後の厚鋼板Pを冷却する本発明の一実施形態に係る厚鋼板冷却方法について説明する。当該厚鋼板冷却方法は、図3に示すように、初期条件設定工程(S01)と、温度測定工程(S02)と、温度予想工程(S03)と、平均冷却速度算出工程(S04)と、標準偏差算出工程(S05)と、抽出工程(S06)と、判定点決定工程(S07)と、温度差収束判定工程(S08)と、決定工程(S09)と、上下水量比調整工程(S10)とを備える。当該厚鋼板冷却方法において、上記温度測定工程(S02)は温度測定装置30によって行われ、その他の工程は制御装置40によって行われる。また、当該厚鋼板冷却方法では、上記温度予想工程(S03)から上下水量比調整工程(S10)までは各冷却ゾーン20a〜20d単位で行われる。
[Thick steel plate cooling method]
Next, a thick steel plate cooling method according to an embodiment of the present invention for cooling the thick steel plate P after hot rolling using the thick steel plate cooling device 4 provided in the transport direction D after hot rolling will be described. As shown in FIG. 3, the steel plate cooling method includes an initial condition setting step (S01), a temperature measurement step (S02), a temperature prediction step (S03), an average cooling rate calculation step (S04), and a standard. Deviation calculation step (S05), extraction step (S06), determination point determination step (S07), temperature difference convergence determination step (S08), determination step (S09), and water amount ratio adjustment step (S10) Is provided. In the thick steel plate cooling method, the temperature measuring step (S02) is performed by the temperature measuring device 30, and the other steps are performed by the control device 40. Moreover, in the said steel plate cooling method, it is performed for each cooling zone 20a-20d from the said temperature estimation process (S03) to a water-and-water ratio adjustment process (S10).

<初期条件設定工程>
上記初期条件設定工程(S01)では、搬送方向Dにおける水量密度分布W(x)の初期値及びその他の運転条件を設定する。ステップS01で設定されるその他の運転条件としては、厚鋼板Pの板厚、幅、比熱、熱伝導率、変態発熱量等の物性、冷却水の水温、冷却停止温度、冷却速度管理幅、厚鋼板Pの搬送速度、冷却前厚鋼板P温度実績等が設定される。これらの初期条件は、例えばハードディスクドライブやメモリー等の記憶装置からの読み込み、外部の制御装置等との通信、ユーザーの手入力などによって設定することができる。
<Initial condition setting process>
In the initial condition setting step (S01), the initial value of the water density distribution W (x) in the transport direction D and other operating conditions are set. Other operating conditions set in step S01 include physical properties such as plate thickness, width, specific heat, thermal conductivity, transformation calorific value, thickness of cooling water, cooling stop temperature, cooling rate control width, thickness of thick steel plate P. The conveyance speed of the steel plate P, the actual temperature of the thick steel plate P before cooling, and the like are set. These initial conditions can be set, for example, by reading from a storage device such as a hard disk drive or a memory, communicating with an external control device, etc., or manually input by a user.

<温度測定工程>
上記温度測定工程(S02)では、当該厚鋼板冷却装置4に投入される厚鋼板Pの上面の温度Ts[K]及び下面の温度Ts[K]を測定する。ステップS02では、温度測定装置30によって、第1冷却ゾーン20aの上流側で冷却水散水前(第1冷却ゾーン20aに進入する直前)の厚鋼板Pの上下面の温度を測定する。ステップS02における厚鋼板Pの上下面の温度の測定位置としては、特に限定されるものではないが、幅方向中央部分が好ましい。なお、厚鋼板Pの上下面の温度Ts,Tsは、厚鋼板Pの仕様等に応じて差異があり、同じ仕様の厚鋼板Pであっても、加熱炉1での偏熱、スキッドの影響等により一定ではない。
<Temperature measurement process>
In the temperature measurement step (S02), the temperature Ts 1 [K] of the upper surface and the temperature Ts 2 [K] of the lower surface of the thick steel plate P charged into the thick steel plate cooling device 4 are measured. In step S02, the temperature measuring device 30 measures the temperature of the upper and lower surfaces of the thick steel plate P before the cooling water sprinkling (immediately before entering the first cooling zone 20a) on the upstream side of the first cooling zone 20a. Although it does not specifically limit as a measurement position of the temperature of the upper and lower surfaces of the thick steel plate P in step S02, The center part of the width direction is preferable. Note that the temperatures Ts 1 and Ts 2 on the upper and lower surfaces of the thick steel plate P vary depending on the specifications of the thick steel plate P, etc. It is not constant due to the influence of

<温度予想工程>
上記温度予想工程(S03)では、ステップS02で測定した測定温度に基づいて、予め設定した水量密度分布W(x)で厚鋼板Pの上下面に冷却水を散水した場合の各冷却ゾーン20a〜20dにおける厚鋼板Pの厚さ方向における複数点の冷却開始から終了までの時間毎の温度を予想する。ステップS03では、ステップS02で測定した測定温度に基づいて温度を予想するため、ステップS02で厚鋼板Pの幅方向中央部分の温度を測定した場合、厚鋼板Pの幅方向中央部分の厚さ方向における複数点の温度を予想する。なお、上記複数の点は、厚鋼板Pの厚さ方向の中心から上下対称に設定される。ステップS03における厚鋼板Pの厚さ方向の測定点数の下限としては、5が好ましく、9がより好ましい。一方、ステップS03における厚鋼板Pの厚さ方向の測定点数の上限としては、31が好ましく、21がより好ましい。厚鋼板Pの厚さ方向の測定点数が上記下限に満たないと、測定点数が不足して、上下水量比の調整が不十分となるおそれがある。逆に、厚鋼板Pの厚さ方向の測定点数が上記上限を超えると、測定点数が不要に多くなり、上下水量比を調整するまでの計算量が膨大となって上下水量比を素早く調整し難くなるおそれがある。なお、上記複数の点の間隔は全て等しいことが好ましいが、厚鋼板Pの厚さ方向中心から上下対称に設定される限り、隣接する点間の距離は異なっていてもよい。
<Temperature prediction process>
In the temperature prediction step (S03), the cooling zones 20a to 20a when the cooling water is sprayed on the upper and lower surfaces of the thick steel plate P based on the measured temperature measured in step S02 with a preset water density distribution W (x). A temperature for each time from the start to the end of cooling at a plurality of points in the thickness direction of the thick steel plate P at 20d is predicted. In step S03, in order to estimate the temperature based on the measurement temperature measured in step S02, when the temperature of the central portion in the width direction of the thick steel plate P is measured in step S02, the thickness direction of the central portion in the width direction of the thick steel plate P is measured. Predict the temperature at multiple points at. The plurality of points are set symmetrically from the center in the thickness direction of the thick steel plate P. As a minimum of the number of measurement points of the thickness direction of thick steel plate P in Step S03, 5 is preferred and 9 is more preferred. On the other hand, as an upper limit of the number of measurement points in the thickness direction of the thick steel plate P in step S03, 31 is preferable and 21 is more preferable. If the number of measurement points in the thickness direction of the steel plate P is less than the lower limit, the number of measurement points may be insufficient, and the adjustment of the water / water ratio may be insufficient. Conversely, if the number of measurement points in the thickness direction of the steel plate P exceeds the above upper limit, the number of measurement points will increase unnecessarily, and the amount of calculation required to adjust the water and water ratio will become enormous and the water and water ratio will be adjusted quickly. May be difficult. In addition, although it is preferable that all the space | intervals of said several point are equal, the distance between adjacent points may differ as long as it sets up and down symmetrically from the thickness direction center of the thick steel plate P.

具体的には、ステップS03では、ステップS02で測定した上記厚鋼板Pの上下面の測定温度Ts,Tsと、各冷却ゾーン20a〜20dにおける水量密度分布W(x)、厚鋼板Pの幅B[mm]、厚鋼板Pの搬送速度v[m/s]及び補正係数εを用いて設定される熱伝達係数αとに基づいて、厚鋼板Pの厚さ方向における複数点の各冷却ゾーン20a〜20dにおける冷却開始から終了までの時間毎の温度を予想する。ステップS03では、厚鋼板Pの厚さ方向における熱伝導を厚さ方向の一次元熱伝導方程式を用いて計算することで厚鋼板Pの厚さ方向における複数点の予想温度を算出する。 Specifically, in step S03, the measured temperatures Ts 1 and Ts 2 on the upper and lower surfaces of the thick steel plate P measured in step S02, the water density distribution W (x) in each of the cooling zones 20a to 20d, and the thick steel plate P Based on the width B [mm], the conveying speed v [m / s] of the thick steel plate P, and the heat transfer coefficient α set by using the correction coefficient ε, each cooling of a plurality of points in the thickness direction of the thick steel plate P is performed. The temperature for each time from the start to the end of cooling in the zones 20a to 20d is predicted. In step S03, the predicted temperatures at a plurality of points in the thickness direction of the thick steel plate P are calculated by calculating the heat conduction in the thickness direction of the thick steel plate P using a one-dimensional heat conduction equation in the thickness direction.

<平均冷却速度算出工程>
上記平均冷却速度算出工程(S04)では、上記複数点の各冷却ゾーン20a〜20dにおける冷却開始から終了までの平均冷却温度を算出する。ステップS04では、例えば各冷却ゾーン20a〜20dにおける各点の入口から出口に至るまでの降下温度{Tzin(k)−TZout(k)}をこれら各点の各冷却ゾーン20a〜20dの通過時間{tzout(k)−tzin(k)}を用いて、各冷却ゾーン20a〜20dにおける上記平均冷却温度CRavg[℃/sec]を下記式(1)により算出する。
CRavg(i,k)={Tzin(k)−TZout(k)}/{tzout(k)−tzin(k)} ・・・(1)
<Average cooling rate calculation step>
In the average cooling rate calculation step (S04), an average cooling temperature from the start to the end of cooling in each of the cooling zones 20a to 20d at the plurality of points is calculated. In step S04, for example, the temperature drop {T jin (k) −T Zout (k)} from the entrance to the exit of each point in each cooling zone 20a to 20d is passed through each cooling zone 20a to 20d at each point. time using a {t zout (k) -t zin (k)}, the average cooling temperature CR avg [℃ / sec] in each cooling zone 20a~20d is calculated by the following equation (1).
CR avg (i, k) = {T zin (k) −T Zout (k)} / {t zout (k) −t zin (k)} (1)

<標準偏差算出工程>
上記標準偏差算出工程(S05)では、各冷却ゾーン20a〜20dの時間毎における上記複数点の冷却速度CR(i,j,k)を算出し、この時間毎における冷却速度CR(i,j,k)の標準偏差σ(i,k)を算出する。S05では、各冷却ゾーン20a〜20dにおける上記複数の点の通過時間を一定の計算ステップjで区切り、この計算ステップj毎の冷却速度CR(i,j,k)をこの計算ステップj毎の降下温度{Tjin(k)−Tjout(k)}及び時間{tjout(k)−tjin(k)}を用いて下記式(2)によって算出することで、標準偏差σ(i,k)を下記式(3)により算出する。
CR(i,j,k)={Tjin(k)−Tjout(k)}/{tjout(k)−tjin(k)} ・・・(2)
<Standard deviation calculation process>
In the standard deviation calculation step (S05), the cooling rates CR (i, j, k) at the plurality of points for each time of each of the cooling zones 20a to 20d are calculated, and the cooling rates CR (i, j, k) for each time are calculated. The standard deviation σ (i, k) of k) is calculated. In S05, the passage times of the plurality of points in each of the cooling zones 20a to 20d are separated by a constant calculation step j, and the cooling rate CR (i, j, k) for each calculation step j is decreased for each calculation step j. The standard deviation σ (i, k) is calculated by the following equation (2) using the temperature {T jin (k) −T jout (k)} and the time {t jout (k) −t jin (k)}. ) Is calculated by the following equation (3).
CR (i, j, k) = {T jin (k) −T jout (k)} / {t jout (k) −t jin (k)} (2)

Figure 2017170488
Figure 2017170488

<抽出工程>
上記抽出工程(S06)では、各冷却ゾーン20a〜20dにおいて上記平均冷却速度CRavg(i,k)に対する標準偏差σ(i,k)の比が所定の閾値以下となる厚鋼板Pの厚さ方向における複数の点のうち、厚さ方向中心よりも上方に位置し、厚さ方向中心との距離が最大となる点、及び厚さ方向中心よりも下方に位置し、厚さ方向中心との距離が最大となる点を抽出する。なお、この閾値は、品質を一定に保つため例えば厚鋼板Pの造り込み上必要とされる冷却速度の管理幅に基づいて決定される。
<Extraction process>
In the extraction step (S06), the thickness of the thick steel plate P in which the ratio of the standard deviation σ (i, k) to the average cooling rate CR avg (i, k) is equal to or less than a predetermined threshold in each of the cooling zones 20a to 20d. Among the plurality of points in the direction, it is located above the center in the thickness direction, the point where the distance from the center in the thickness direction is the maximum, and located below the center in the thickness direction, The point with the maximum distance is extracted. This threshold value is determined based on, for example, the management width of the cooling rate required for building the thick steel plate P in order to keep the quality constant.

<判定点決定工程>
上記判定点決定工程(S07)では、ステップS06で抽出した一対の点のうち厚さ方向中心との距離が短い方の点及びこの点と厚さ方向中心に対して対称な点を一対の判定点とする。
<Decision point determination process>
In the determination point determination step (S07), a pair of determinations is made of a point having a shorter distance from the center in the thickness direction and a point symmetrical to the center in the thickness direction among the pair of points extracted in step S06. Let it be a point.

<温度差収束判定工程>
上記温度差収束判定工程(S08)では、各冷却ゾーン20a〜20dの終点において、ステップS07で決定した一対の判定点の温度差が所定範囲内となるかどうかを判定する。ステップS08で上記一対の判定点の温度差が所定値以下となった場合、ステップS09に進んで上下水量を決定する。一方、ステップS08において上記一対の判定点の温度差が所定値を超える場合、ステップS10に進んで上下水量比を調整する。上記所定値は、例えば0.05℃以上5℃以下の範囲で設定することが可能であり、0.1℃が好ましい。
<Temperature difference convergence determination process>
In the temperature difference convergence determination step (S08), it is determined whether the temperature difference between the pair of determination points determined in step S07 is within a predetermined range at the end points of the cooling zones 20a to 20d. When the temperature difference between the pair of determination points becomes equal to or less than the predetermined value in step S08, the process proceeds to step S09 to determine the amount of water and sewage. On the other hand, when the temperature difference between the pair of determination points exceeds a predetermined value in step S08, the process proceeds to step S10 to adjust the water / water ratio. The predetermined value can be set, for example, in the range of 0.05 ° C. or more and 5 ° C. or less, and preferably 0.1 ° C.

<決定工程>
上記決定工程(S09)では、上記一対の判定点の温度差が上記所定値以下となった場合に上下方向の温度差が収束したものとして上下水量比を決定する。
<Decision process>
In the determination step (S09), when the temperature difference between the pair of determination points becomes equal to or less than the predetermined value, the water flow ratio is determined on the assumption that the temperature difference in the vertical direction has converged.

<上下水量調整工程>
上記上下水量調整工程(S10)では、各冷却ゾーン20a〜20dの終点において、上記一対の判定点の温度差が所定値以下となるように上下水量比を調整する。ステップS10では、各冷却ゾーン20a〜20dの終点における上記一対の判定点の温度差が所定値以下となるように、収束計算を用いて上下水量比を調整する。ステップS10では、各冷却ゾーン20a〜20dの上下水量比を上流側の第1冷却ゾーン20aから順に調整していく。
<Water and sewage adjustment process>
In the water / water amount adjustment step (S10), the water / water ratio is adjusted so that the temperature difference between the pair of determination points is equal to or less than a predetermined value at the end points of the cooling zones 20a to 20d. In step S10, the water / water ratio is adjusted using convergence calculation so that the temperature difference between the pair of determination points at the end points of the cooling zones 20a to 20d is equal to or less than a predetermined value. In step S10, the water / water ratio between the cooling zones 20a to 20d is sequentially adjusted from the upstream first cooling zone 20a.

ステップS10によって上下水量比を調整した場合、再度ステップS03に戻って調整後の上下水量比に基づく水量密度分布W(x)を用いて厚鋼板Pの上下面に冷却水を散水した場合の厚鋼板Pの厚さ方向における複数点の各冷却ゾーン20a〜20dにおける冷却開始から終了までの時間毎の温度を予想する。   When the water / water ratio is adjusted in step S10, the thickness when the cooling water is sprayed on the upper and lower surfaces of the thick steel plate P using the water density distribution W (x) based on the adjusted water / water ratio again after returning to step S03. The temperature for each time from the start to the end of cooling in each of the cooling zones 20a to 20d at a plurality of points in the thickness direction of the steel sheet P is predicted.

そして、上記一対の判定点の温度差が所定値以下となるまで上記手順により水量密度分布W(x)の調整が繰り返される。   Then, the adjustment of the water density distribution W (x) is repeated by the above procedure until the temperature difference between the pair of determination points becomes equal to or less than a predetermined value.

<利点>
当該厚鋼板の製造方法は、冷却ゾーン20a〜20dにおいて上記平均冷却速度CRavg(i,k)に対する標準偏差σ(i,k)の比が所定の閾値以下となる厚鋼板Pの厚さ方向における複数の点のうち、厚さ方向中心よりも上方に位置し、厚さ方向中心との距離が最大となる点、及び厚さ方向中心よりも下方に位置し、厚さ方向中心との距離が最大となる点を抽出した上、この抽出した一対の点のうち厚さ方向中心との距離が短い方の点及びこの点と厚さ方向中心に対して対称な点を一対の判定点とし、この一対の判定点の温度差が所定値以下となるように上下水量比を調整する。そのため、当該厚鋼板の製造方法は、厚さ方向における一対の判定点間に存在する部分の冷却速度を略均等に維持できると共に、この一対の判定点よりも厚さ方向外側に位置する部分の冷却速度の上下対称性を促進することができる。従って、当該厚鋼板の製造方法は、熱応力による厚鋼板Pの反りの発生を十分に抑制し、冷却後の厚鋼板Pの品質を十分に向上することができる。
<Advantages>
In the manufacturing method of the thick steel plate, the thickness direction of the thick steel plate P in which the ratio of the standard deviation σ (i, k) to the average cooling rate CR avg (i, k) is equal to or less than a predetermined threshold in the cooling zones 20a to 20d. Among the plurality of points, the point located above the center in the thickness direction and having the maximum distance from the center in the thickness direction, and the distance from the center in the thickness direction located below the center in the thickness direction Of the pair of extracted points, the point having the shorter distance from the center in the thickness direction and the point symmetrical to the center in the thickness direction as a pair of determination points. The water / water ratio is adjusted so that the temperature difference between the pair of determination points is equal to or less than a predetermined value. Therefore, the manufacturing method of the thick steel plate can maintain the cooling rate of the portion existing between the pair of determination points in the thickness direction substantially evenly, and the portion positioned on the outer side in the thickness direction than the pair of determination points. The vertical symmetry of the cooling rate can be promoted. Therefore, the manufacturing method of the said thick steel plate can fully suppress generation | occurrence | production of the curvature of the thick steel plate P by a thermal stress, and can fully improve the quality of the thick steel plate P after cooling.

当該厚鋼板冷却装置4は、冷却ゾーン20a〜20dにおいて厚鋼板Pの厚さ方向における複数の点の平均冷却速度CRavg(i,k)に対する時間毎の冷却速度の標準偏差σ(i,k)の比が所定の閾値以下となる複数の点のうち、厚さ方向中心よりも上方に位置し、厚さ方向中心との距離が最大となる点、及び厚さ方向中心よりも下方に位置し、厚さ方向中心との距離が最大となる点を抽出し、この抽出した一対の点のうち厚さ方向中心との距離が短い方の点及びこの点と厚さ方向中心に対して対称な点を一対の判定点とした上、冷却ゾーン20a〜20dの終点において、上記一対の判定点の温度差が所定値以下となるように上下水量比を調整することができるので、上述のように熱応力による反りの発生が十分に抑制され、冷却後の品質が十分に向上される厚鋼板Pを製造することができる。 The steel plate cooling device 4 has a standard deviation σ (i, k) of the cooling rate per time with respect to the average cooling rate CR avg (i, k) at a plurality of points in the thickness direction of the thick steel plate P in the cooling zones 20a to 20d. ) Of the plurality of points whose ratio is equal to or less than a predetermined threshold value, located above the center in the thickness direction, located at the maximum distance from the center in the thickness direction, and located below the center in the thickness direction Then, the point having the maximum distance from the thickness direction center is extracted, and the point having the shorter distance from the thickness direction center of the pair of extracted points and the point and the thickness direction center are symmetric. As described above, the water / water ratio can be adjusted so that the temperature difference between the pair of determination points is equal to or less than a predetermined value at the end points of the cooling zones 20a to 20d. Warpage due to thermal stress is sufficiently suppressed, and after cooling It is possible to manufacture a thick steel plate P whose quality is sufficiently improved.

[その他の実施形態]
なお、本発明に係る厚鋼板冷却方法及び厚鋼板冷却装置は、上記態様の他、種々の変更、改変を施した態様で実施することができる。例えば当該厚鋼板冷却装置は、冷却後の厚鋼板の反りの発生をより的確に抑制するためには複数の冷却ゾーンを備えることが好ましいが、1つの冷却ゾーンのみを備えていてもよい。また、1つの冷却ゾーンは、必ずしも複数対の冷却ヘッダ―を有する必要はなく、例えば上下一対の冷却ヘッダ―のみを有していてもよく、上下の冷却ヘッダ―数が異なっていてもよい。さらに、上記冷却ヘッダ―は、横断方向の水量密度分布を調整できるよう構成されていてもよい。
[Other Embodiments]
In addition, the thick steel plate cooling method and the thick steel plate cooling apparatus according to the present invention can be implemented in various modified and modified modes in addition to the above mode. For example, the steel plate cooling device preferably includes a plurality of cooling zones in order to more accurately suppress warpage of the thick steel plate after cooling, but may include only one cooling zone. One cooling zone does not necessarily have to have a plurality of pairs of cooling headers, and may have only a pair of upper and lower cooling headers, for example, or may have a different number of upper and lower cooling headers. Further, the cooling header may be configured to adjust the water density distribution in the transverse direction.

当該厚鋼板冷却装置は、複数の上面冷却ヘッダー間に冷却水の噴射により滞留水を横断方向に押し流す(滞留水高さを0にする)水切りヘッダーを備えていてもよい。このような水切りヘッダーを使用する場合、使用する水切りヘッダーの配置パターン毎に最適な冷却モデルに基づく熱伝達率の計算式を予め設定しておくことが好ましい。   The said steel plate cooling device may be provided with the draining header which pushes a stagnant water in the cross direction by the injection of a cooling water between several upper surface cooling headers (it makes a stagnant water height 0). When such a draining header is used, it is preferable to set in advance a heat transfer coefficient calculation formula based on an optimal cooling model for each layout pattern of the draining header to be used.

以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。   EXAMPLES Hereinafter, although this invention is explained in full detail based on an Example, this invention is not interpreted limitedly based on description of this Example.

(サンプル)
平均厚さ20mm、平均幅3000mm、鋼種0.06%C鋼の厚鋼板を用意した。また、厚鋼板冷却装置としては、4つの冷却ゾーン(搬送方向上流側から順に第1冷却ゾーン(1Z)、第2冷却ゾーン(2Z)、第3冷却ゾーン(3Z)、第4冷却ゾーン(4Z))を備えるものを用い、厚鋼板の冷却停止温度は500℃とした。温度測定装置によって測定したこの第1冷却ゾーンに進入する直前の厚鋼板の上下面の温度は800℃であった。
(sample)
A thick steel plate having an average thickness of 20 mm, an average width of 3000 mm, and a steel type of 0.06% C steel was prepared. As the thick steel plate cooling device, there are four cooling zones (first cooling zone (1Z), second cooling zone (2Z), third cooling zone (3Z), fourth cooling zone (4Z )) Was used, and the cooling stop temperature of the thick steel plate was 500 ° C. The temperature of the upper and lower surfaces of the thick steel plate immediately before entering the first cooling zone measured by the temperature measuring device was 800 ° C.

[実施例]
厚鋼板の幅方向中央に厚さ方向に均等な21点の測定点を設定し、これら各測定点の4つの冷却ゾーンにおける冷却開始から終了までの時間毎の温度を上述の温度予想工程の手順に従って予想した。なお、上面から下面までを4分割した各測定点における冷却ゾーン1Z〜4Zの予想温度を図4に示す。
[Example]
21 measurement points that are equal in the thickness direction are set at the center in the width direction of the thick steel plate, and the temperature for each time from the start to the end of the cooling in the four cooling zones at each measurement point is the procedure of the above temperature prediction process. Predicted according to. In addition, the estimated temperature of the cooling zones 1Z-4Z in each measurement point divided into 4 from the upper surface to the lower surface is shown in FIG.

続いて、上述の平均冷却速度算出工程の手順に従って各冷却ゾーン1Z〜4Zにおける冷却開始から終了までの平均冷却速度を算出した。また、上述の標準偏差算出工程の手順に従って各冷却ゾーン1Z〜4Zの時間毎における冷却速度の標準偏差を算出した。なお、冷却ゾーン1Z〜3Zにおける厚さ方向中心と下面との中間点における平均冷却速度及び時間毎における冷却速度の関係を図5に示す。   Subsequently, the average cooling rate from the start to the end of cooling in each of the cooling zones 1Z to 4Z was calculated according to the procedure of the above-described average cooling rate calculation step. Moreover, the standard deviation of the cooling rate for each time of each cooling zone 1Z-4Z was calculated according to the procedure of the above-mentioned standard deviation calculation process. In addition, the relationship of the average cooling rate in the intermediate point of the thickness direction center in cooling zone 1Z-3Z and a lower surface, and the cooling rate for every time is shown in FIG.

次に、各冷却ゾーン1Z〜4Zにおいて平均冷却速度に対する標準偏差の比が閾値以下となる複数の点のうち、厚さ方向中心よりも上方に位置し、厚さ方向中心との距離が最大となる点、及び厚さ方向中心よりも下方に位置し、厚さ方向中心との距離が最大となる点を抽出した。さらに、各冷却ゾーン1Z〜4Zにおいて抽出した各一対の点のうち厚さ方向中心との距離が短い方の点及びこの点と厚さ方向中心に対して対称な点を一対の判定点とした。そして、各冷却ゾーン1Z〜4Zの終点において、一対の判定点の温度差が0.1℃以下となるように上下水量比を調整し、この調整後の水量比で厚鋼板を冷却した。なお、冷却ゾーン1Z,2Zにおける判定点はx/t=0.30、冷却ゾーン3Z,4Zにおける判定点はx/t=0.25であった。なお、tは厚鋼板の平均厚さを意味し、xは厚さ方向の中心から判定点までの距離を意味する。実施例における上下水量比を図6に、厚鋼板の幅方向中央部における厚さ方向中心から上下対称位置の上述の温度予想工程の手順に従って算出した各冷却ゾーン1Z〜4Zの終点における冷却速度比を図7に示す。   Next, among the plurality of points at which the ratio of the standard deviation to the average cooling rate is equal to or less than the threshold value in each of the cooling zones 1Z to 4Z, the distance from the center in the thickness direction is the maximum. And a point located below the center in the thickness direction and having the maximum distance from the center in the thickness direction were extracted. Furthermore, a point having a shorter distance from the center in the thickness direction out of each pair of points extracted in each of the cooling zones 1Z to 4Z and a point symmetrical to the center in the thickness direction are set as a pair of determination points. . Then, at the end points of the respective cooling zones 1Z to 4Z, the water ratio between the upper and lower water was adjusted so that the temperature difference between the pair of determination points was 0.1 ° C. or less, and the thick steel plate was cooled at the adjusted water ratio. The determination points in the cooling zones 1Z and 2Z were x / t = 0.30, and the determination points in the cooling zones 3Z and 4Z were x / t = 0.25. In addition, t means the average thickness of a thick steel plate, and x means the distance from the center in the thickness direction to the determination point. FIG. 6 shows the water / water ratio in the embodiment, and the cooling rate ratios at the end points of the cooling zones 1Z to 4Z calculated according to the procedure of the temperature prediction step above and below the center in the thickness direction at the center in the width direction of the thick steel plate. Is shown in FIG.

[比較例]
各冷却ゾーン1Z〜4Zにおける判定点をx/t=0.25に固定した上、この判定点の温度差が0.1℃以下となるように上下水量比を調整し、この調整後の水量比で厚鋼板を冷却した。比較例における上下水量比を図8に、厚鋼板の幅方向中央部における厚さ方向中心から上下対称位置の上述の温度予想工程の手順に従って算出した各冷却ゾーン1Z〜4Zの終点における冷却速度比を図9に示す。
[Comparative example]
The determination point in each of the cooling zones 1Z to 4Z is fixed at x / t = 0.25, and the water amount ratio is adjusted so that the temperature difference between the determination points is 0.1 ° C. or less. The thick steel plate was cooled at a ratio. FIG. 8 shows the water / water ratio in the comparative example, and the cooling rate ratios at the end points of the respective cooling zones 1Z to 4Z calculated in accordance with the above-described temperature prediction process procedure in the vertically symmetrical position from the center in the thickness direction at the center in the width direction of the steel plate. Is shown in FIG.

[評価結果]
図7,9に示すように、実施例は比較例に対して、厚さ方向中心を基準とする上下対称位置の冷却速度の均一化が図られており、特に上下表面側における冷却速度の均一化が促進されていることが分かる。具体的には、比較例では、一対の判定点における冷却速度を均一化できる一方、この判定点から上下表面側に離れた点では上下方向対称位置の冷却速度に比較的大きなバラツキが生じているのに対し、実施例では、一対の判定点から上下表面側に離れた点でも上下方向対称位置の冷却速度のバラツキが抑えられていることが分かる。
[Evaluation results]
As shown in FIGS. 7 and 9, compared to the comparative example, the embodiment is designed to make the cooling rate uniform in the vertical symmetry position with respect to the center in the thickness direction, and in particular, the uniform cooling rate on the upper and lower surface sides. It can be seen that conversion is promoted. Specifically, in the comparative example, the cooling rate at the pair of determination points can be made uniform, but a relatively large variation occurs in the cooling rate at the vertically symmetrical position at a point away from the determination point toward the upper and lower surfaces. On the other hand, in the example, it is understood that the variation in the cooling rate at the symmetrical position in the vertical direction is suppressed even at a point away from the pair of determination points on the upper and lower surface side.

以上説明したように、本発明の厚鋼板冷却方法及び厚鋼板冷却装置は、熱応力による厚鋼板の反りの発生を十分に抑制することができるので、品質の高い厚鋼板の製造に適している。   As described above, the thick steel plate cooling method and the thick steel plate cooling apparatus according to the present invention can sufficiently suppress the occurrence of warpage of the thick steel plate due to thermal stress, and thus are suitable for manufacturing high-quality thick steel plates. .

1 加熱炉
2 粗圧延機
3 仕上圧延機
4 厚鋼板冷却装置
5 レベラー
10 搬送装置
11 ローラー
20a〜20d 冷却ゾーン
30 温度測定装置
40 制御装置
P 厚鋼板
D 搬送方向
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Coarse rolling mill 3 Finish rolling mill 4 Thick steel plate cooling device 5 Leveler 10 Conveying device 11 Roller 20a-20d Cooling zone 30 Temperature measuring device 40 Control device P Thick steel plate D Conveying direction

Claims (3)

熱間圧延後の厚鋼板の搬送方向に設けられる冷却装置を用い、熱間圧延後の厚鋼板を冷却する厚鋼板冷却方法であって、
上記冷却装置が、上記搬送方向に沿う少なくとも1つの冷却ゾーンを有し、
上記冷却装置に投入される厚鋼板の上下面の温度を測定する工程と、
上記測定工程で測定した測定温度と、上記冷却ゾーンにおける水量密度分布、上記厚鋼板の幅、上記厚鋼板の搬送速度及び補正係数を用いて設定される熱伝達係数とに基づいて、上記厚鋼板の厚さ方向における複数点の上記冷却ゾーンにおける冷却開始から終了までの時間毎の温度を予想する工程と、
上記複数点の上記冷却ゾーンにおける冷却開始から終了までの平均冷却速度を算出する工程と、
上記冷却ゾーンの時間毎における上記複数点の冷却速度を算出し、この時間毎における冷却速度の標準偏差を算出する工程と、
上記冷却ゾーンにおいて上記平均冷却速度に対する標準偏差の比が所定の閾値以下となる厚鋼板の厚さ方向における複数の点のうち、厚さ方向中心よりも上方に位置し、厚さ方向中心との距離が最大となる点、及び厚さ方向中心よりも下方に位置し、厚さ方向中心との距離が最大となる点を抽出する工程と、
上記抽出工程で抽出した一対の点のうち厚さ方向中心との距離が短い方の点及びこの点と厚さ方向中心に対して対称な点を一対の判定点とする工程と、
上記冷却ゾーンの終点において、上記一対の判定点の温度差が所定値以下となるように上下水量比を調整する工程と
を備える厚鋼板冷却方法。
Using a cooling device provided in the conveying direction of the thick steel plate after hot rolling, a thick steel plate cooling method for cooling the thick steel plate after hot rolling,
The cooling device has at least one cooling zone along the conveying direction;
Measuring the temperature of the upper and lower surfaces of the thick steel plate to be charged into the cooling device;
Based on the measurement temperature measured in the measurement step, the water density density distribution in the cooling zone, the width of the thick steel plate, the conveyance speed of the thick steel plate and the heat transfer coefficient set using the correction coefficient, the thick steel plate Predicting the temperature for each time from the start to the end of cooling in the cooling zone at a plurality of points in the thickness direction,
Calculating an average cooling rate from the start to the end of cooling in the cooling zones of the plurality of points;
Calculating a cooling rate of the plurality of points at each time of the cooling zone, and calculating a standard deviation of the cooling rate at each time;
Among the plurality of points in the thickness direction of the thick steel plate in which the ratio of the standard deviation to the average cooling rate is equal to or less than a predetermined threshold in the cooling zone, it is located above the center in the thickness direction, Extracting a point where the distance is maximum and a point located below the center in the thickness direction and having the maximum distance from the center in the thickness direction;
A step of using a point having a shorter distance from the center in the thickness direction of the pair of points extracted in the extraction step and a point symmetrical to the center in the thickness direction as a pair of determination points;
Adjusting the water / water ratio so that the temperature difference between the pair of determination points is a predetermined value or less at the end point of the cooling zone.
上記一対の判定点の温度差が上記所定値以下となった場合に上下水量比を決定する工程をさらに備える請求項1に記載の厚鋼板冷却方法。   The thick steel plate cooling method according to claim 1, further comprising a step of determining a water / water ratio when the temperature difference between the pair of determination points is equal to or less than the predetermined value. 厚鋼板を搬送する搬送装置と、
上記厚鋼板の搬送方向に設けられる少なくとも1つの冷却ゾーンと、
上記冷却ゾーンの上流側で厚鋼板の上下面の温度を測定する温度測定装置と、
上記温度測定装置の測定結果に基づいて上記冷却ゾーンにおける上下水量比を調整する制御装置と
を備え、
上記制御装置が、
上記温度測定装置が測定した測定温度と、上記冷却ゾーンにおける水量密度分布、上記厚鋼板の幅、上記厚鋼板の搬送速度及び補正係数を用いて設定される熱伝達係数とに基づいて、上記厚鋼板の厚さ方向における複数点の上記冷却ゾーンにおける冷却開始から終了までの時間毎の温度を予想する制御要素と、
上記複数点の上記冷却ゾーンにおける冷却開始から終了までの平均冷却速度を算出する制御要素と、
上記冷却ゾーンの時間毎における上記複数点の冷却速度を算出し、この時間毎における冷却速度の標準偏差を算出する制御要素と、
上記冷却ゾーンにおいて上記平均冷却速度に対する標準偏差の比が所定の閾値以下となる厚鋼板の厚さ方向における複数の点のうち、厚さ方向中心よりも上方に位置し、厚さ方向中心との距離が最大となる点、及び厚さ方向中心よりも下方に位置し、厚さ方向中心との距離が最大となる点を抽出する制御要素と、
上記抽出工程で抽出した一対の点のうち厚さ方向中心との距離が短い方の点及びこの点と厚さ方向中心に対して対称な点を一対の判定点とする制御要素と、
上記冷却ゾーンの終点において、上記一対の判定点の温度差が所定値以下となるように上下水量比を調整する制御要素と
を備える厚鋼板冷却装置。
A transport device for transporting thick steel plates;
At least one cooling zone provided in the conveying direction of the thick steel plate;
A temperature measuring device for measuring the temperature of the upper and lower surfaces of the thick steel plate upstream of the cooling zone;
A control device that adjusts the water / water ratio in the cooling zone based on the measurement result of the temperature measuring device,
The control device is
Based on the measured temperature measured by the temperature measuring device, the water density density distribution in the cooling zone, the width of the thick steel plate, the transport speed of the thick steel plate and the heat transfer coefficient set using the correction coefficient, the thickness A control element that predicts the temperature for each time from the start to the end of cooling in the cooling zone at a plurality of points in the thickness direction of the steel sheet;
A control element for calculating an average cooling rate from the start to the end of cooling in the cooling zones of the plurality of points;
A control element that calculates the cooling rate of the plurality of points at each time of the cooling zone, and calculates a standard deviation of the cooling rate at each time;
Among the plurality of points in the thickness direction of the thick steel plate in which the ratio of the standard deviation to the average cooling rate is equal to or less than a predetermined threshold in the cooling zone, it is located above the center in the thickness direction, A control element for extracting a point where the distance is maximum and a point located below the center in the thickness direction and having the maximum distance from the center in the thickness direction;
A control element having a pair of determination points, which is a point having a shorter distance from the center in the thickness direction among the pair of points extracted in the extraction step, and a point symmetric with respect to the center in the thickness direction;
A steel plate cooling apparatus comprising: a control element that adjusts a water / water ratio so that a temperature difference between the pair of determination points is equal to or less than a predetermined value at an end point of the cooling zone.
JP2016059926A 2016-03-24 2016-03-24 Thick steel plate cooling method and thick steel plate cooling device Active JP6650308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016059926A JP6650308B2 (en) 2016-03-24 2016-03-24 Thick steel plate cooling method and thick steel plate cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016059926A JP6650308B2 (en) 2016-03-24 2016-03-24 Thick steel plate cooling method and thick steel plate cooling device

Publications (2)

Publication Number Publication Date
JP2017170488A true JP2017170488A (en) 2017-09-28
JP6650308B2 JP6650308B2 (en) 2020-02-19

Family

ID=59970408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016059926A Active JP6650308B2 (en) 2016-03-24 2016-03-24 Thick steel plate cooling method and thick steel plate cooling device

Country Status (1)

Country Link
JP (1) JP6650308B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110814053A (en) * 2019-11-15 2020-02-21 中冶华天工程技术有限公司 Intelligent calculation method for reverse self-decision temperature control of bar water tank based on trial and error method
CN113687633A (en) * 2021-06-29 2021-11-23 云南昆钢电子信息科技有限公司 Reinforcing steel bar quality management system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110814053A (en) * 2019-11-15 2020-02-21 中冶华天工程技术有限公司 Intelligent calculation method for reverse self-decision temperature control of bar water tank based on trial and error method
CN110814053B (en) * 2019-11-15 2021-04-20 中冶华天工程技术有限公司 Intelligent calculation method for reverse self-decision temperature control of bar water tank based on trial and error method
CN113687633A (en) * 2021-06-29 2021-11-23 云南昆钢电子信息科技有限公司 Reinforcing steel bar quality management system and method

Also Published As

Publication number Publication date
JP6650308B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
JP5218435B2 (en) Controlled cooling method for thick steel plate
JP2008073695A (en) Steel plate cooling method
KR101149210B1 (en) Cooling control apparatus for hot rolled steel sheets and method thereof
JP2015511533A (en) Method for producing hot rolled silicon steel
KR101376565B1 (en) Method and apparatus for controlling the temperature of strip in the rapid cooling section of continuous annealing line
JP4604564B2 (en) Method and apparatus for controlling cooling of thick steel plate
JP6327208B2 (en) Heating furnace extraction temperature prediction method and heating furnace extraction temperature prediction apparatus for billets
CN104289532B (en) Strip steel watermark point temperature-controlled process
JP2017170488A (en) Method and apparatus for cooling thick steel plate
JP6353385B2 (en) Thick steel plate cooling method and thick steel plate cooling device
JP6495069B2 (en) Thick steel plate cooling method and thick steel plate cooling device
JP5407987B2 (en) Method for detecting longitudinal cracks in slabs
JP5983071B2 (en) Prediction method for steel slab extraction temperature
JP6699688B2 (en) Hot rolled steel sheet manufacturing method
JP6275525B2 (en) Thick steel plate cooling method, thick steel plate manufacturing method, and thick steel plate cooling apparatus
JP6897609B2 (en) Hot rolling equipment and hot-rolled steel sheet manufacturing method
JP4894686B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP6367756B2 (en) Thick steel plate cooling method and thick steel plate cooling device
Serizawa et al. Plate cooling Technology for the Thermo Mechanical Control Process (TMCP) in nippon steel & sumitomo metal corporation
JP7016723B2 (en) Steel plate cooling method
JP2002172411A (en) Method and apparatus for heat-treating thick steel plate
US20200377967A1 (en) Steel material cooling device and cooling method
JP2019155372A (en) Thick steel plate cooling method
JP5239887B2 (en) Hot rolled steel sheet manufacturing apparatus and manufacturing method
JP6783080B2 (en) How to cool the wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R150 Certificate of patent or registration of utility model

Ref document number: 6650308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150