JP2004244721A - Method for estimating heat transfer coefficient and method for controlling cooling in water-cooling process for steel plate - Google Patents
Method for estimating heat transfer coefficient and method for controlling cooling in water-cooling process for steel plate Download PDFInfo
- Publication number
- JP2004244721A JP2004244721A JP2004010072A JP2004010072A JP2004244721A JP 2004244721 A JP2004244721 A JP 2004244721A JP 2004010072 A JP2004010072 A JP 2004010072A JP 2004010072 A JP2004010072 A JP 2004010072A JP 2004244721 A JP2004244721 A JP 2004244721A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- water
- temperature
- heat transfer
- steel plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Control Of Metal Rolling (AREA)
- Control Of Heat Treatment Processes (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
本発明は、移動する加熱された鋼板を水冷して所定の温度まで所定の冷却速度で冷却を行う水冷プロセスの冷却制御の方法に関する。 The present invention relates to a cooling control method for a water cooling process in which a moving heated steel plate is cooled with water to a predetermined temperature at a predetermined cooling rate.
水冷プロセスにおける鋼板の表面温度(以下簡単の為、板温と呼ぶ)を正確に制御する為には、水冷後の板温を正確に予測することが必要で、その為には、水冷時の鋼板表面と冷却水との間の熱伝達係数を知ることが必要である。従来、熱伝達係数を計算する為には、実験室等で、鋼板を水冷しながら板温を測定して求めることが一般的である。熱伝達係数は一般的に冷却水量密度や板温などの水冷条件の関数であることが知られており、前記の様に実験室等で計算する場合は、例えば下記の非特許文献1に示されている様に、様々な水冷条件での測定を行うことが必要となる。
しかしながら、実験室と実製造設備とでは、冷却水量密度や移動速度等の水冷条件や、鋼板のサイズ等が異なる場合が多いこと、鋼板の表面性状(表面粗度や酸化皮膜の付着具合等)によっても熱伝達係数が変化することなどから、実験室で計算した熱伝達係数を用いて実水冷プロセスでの鋼板温度を予測する場合に、温度予測誤差やそのばらつきが大きいという問題があった。 However, there are many cases where the water cooling conditions such as cooling water density and moving speed, the size of the steel plate, etc. are different between the laboratory and the actual production equipment, and the surface properties of the steel plate (surface roughness, oxide film adhesion, etc.) Since the heat transfer coefficient also changes depending on the temperature, there is a problem that the temperature prediction error and its variation are large when the steel sheet temperature in the actual water cooling process is predicted using the heat transfer coefficient calculated in the laboratory.
上記問題を解決する為には、実水冷プロセスにおいて、冷却を行う鋼板についての実測データやプロセス条件から、直接熱伝達係数を計算することが望ましい。ところが、前述の様に、熱伝達係数は鋼板表面温度や冷却水量密度などの水冷条件の関数であり、鋼板を冷却する過程でその値が時々刻々変化する。従って、鋼板表面温度や冷却水量密度などの関数としての熱伝達係数の値が既知であれば、水冷開始から終了までの伝熱計算を行うことで、冷却終了後の水冷プロセス出側温度を予測することは可能であるが、時々刻々板温を計測することが一般に不可能な実水冷プロセスで、出側温度だけから熱伝達係数を計算することは困難であった。 In order to solve the above problem, it is desirable to directly calculate the heat transfer coefficient from actual measurement data and process conditions of the steel sheet to be cooled in the actual water cooling process. However, as described above, the heat transfer coefficient is a function of water cooling conditions such as the surface temperature of the steel sheet and the cooling water density, and the value changes from time to time during the process of cooling the steel sheet. Therefore, if the value of the heat transfer coefficient as a function of the steel sheet surface temperature, cooling water density, etc. is known, the water cooling process outlet temperature after cooling is predicted by performing heat transfer calculation from the start to the end of water cooling. Although it is possible, it is difficult to calculate the heat transfer coefficient only from the outlet side temperature in an actual water cooling process in which it is generally impossible to measure the plate temperature from moment to moment.
そこで本発明は、実水冷プロセスにおいて冷却を行う鋼板についての実測データやプロセス条件から、オンラインで熱伝達係数を正確に推定する方法を提供することで、所定の冷却速度で、所定の温度まで、精度良く鋼板を冷却することを可能とすることを目的とする。 Therefore, the present invention provides a method for accurately estimating the heat transfer coefficient online from measured data and process conditions for a steel sheet that is cooled in an actual water cooling process, to a predetermined temperature at a predetermined cooling rate, It aims at enabling it to cool a steel plate accurately.
本発明の鋼板の水冷プロセスにおける熱伝達係数推定方法は、加熱された鋼板を移動させながら複数の冷却ゾーンを通過させ、所定の冷却速度パターンを得るべく、各冷却ゾーンの冷却水量密度を調整して所定の温度まで冷却する鋼板の水冷プロセスにおいて、該鋼板の前記水冷プロセスの入側および出側での表面温度実績値、板厚、板幅、および移動速度実績値と各冷却ゾーンの冷却水温および冷却水量密度とを入力として、前記水冷プロセス通過後の鋼板に対して、熱伝達計算によって水冷開始から終了までの鋼板温度を逐次計算し、前記計算した鋼板温度と実測した鋼板温度との誤差が小さくなる様に、探索法を用いて前記伝熱計算に用いた熱伝達係数を修正することによって、熱伝達係数を計算することを特徴とする。
また、本発明の鋼板の水冷プロセスにおける熱伝達係数推定方法は、探索法としてシミュレーテッドアニーリング法を用いることを特徴とする。
また、本発明の鋼板の冷却制御方法は、上述した熱伝達係数推定方法によって求めた熱伝達係数を用いて、水冷プロセスでこれから処理を行う予定の鋼板に対して、水冷条件を変えて水冷途中及び終了後の鋼板温度を繰り返し計算することにより、前記計算した鋼板温度が目標温度と一致する様に最適水冷条件を決定することを特徴とする。
The heat transfer coefficient estimation method in the water cooling process of the steel sheet of the present invention adjusts the cooling water density of each cooling zone to obtain a predetermined cooling rate pattern by passing the heated steel sheet through a plurality of cooling zones. In the water cooling process of the steel sheet that is cooled to a predetermined temperature, the actual surface temperature value, the plate thickness, the plate width, the actual moving speed value, and the cooling water temperature in each cooling zone of the steel sheet on the inlet side and the outlet side of the water cooling process. And the cooling water density as input, the steel plate temperature from the start to the end of the water cooling is sequentially calculated by heat transfer for the steel plate after passing through the water cooling process, and the error between the calculated steel plate temperature and the actually measured steel plate temperature. The heat transfer coefficient is calculated by correcting the heat transfer coefficient used in the heat transfer calculation by using a search method so that becomes smaller.
Moreover, the heat transfer coefficient estimation method in the water cooling process of the steel sheet of the present invention is characterized by using a simulated annealing method as a search method.
In addition, the steel sheet cooling control method of the present invention uses the heat transfer coefficient obtained by the above-described heat transfer coefficient estimation method, and changes the water cooling conditions for the steel sheet to be processed in the water cooling process. And the optimal water cooling condition is determined by repeatedly calculating the steel plate temperature after completion | finish, so that the said calculated steel plate temperature may correspond with target temperature.
以上に説明した様に、本発明によれば、実水冷プロセスにおいて水冷処理を行う鋼板についてのプロセス条件、測定データから、オンラインで熱伝達係数を正確に推定することが可能となり、その値を用いることで、所定の冷却速度で、所定の温度まで、精度良く鋼板を冷却することが可能となる。 As described above, according to the present invention, it is possible to accurately estimate the heat transfer coefficient online from the process conditions and measurement data for the steel sheet subjected to water cooling in the actual water cooling process, and use that value. As a result, the steel sheet can be accurately cooled to a predetermined temperature at a predetermined cooling rate.
以下、図面を参照して、本発明の実施の1形態について説明する。
図1は、本実施形態の鋼板の水冷プロセスにおける熱伝達係数推定方法の構成を示す概念図である。尚、熱伝達係数は水冷条件の関数であり、様々な形が提案されているが、ここでは以下の式(1)の関数を用いた例について説明する(前記非特許文献1より)。
log(α)=A+B・log(W)+C・Ts ・・・・・ (1)
但し;αは熱伝達係数
Wは水量密度
Tsは鋼板表面温度
A、B、Cは推定すべきパラメータである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a conceptual diagram illustrating a configuration of a heat transfer coefficient estimation method in a water cooling process for a steel plate according to the present embodiment. The heat transfer coefficient is a function of the water cooling condition, and various forms have been proposed. Here, an example using the function of the following formula (1) will be described (from Non-Patent Document 1).
log (α) = A + B · log (W) + C · Ts (1)
Where α is the heat transfer coefficient
W is water density
Ts is steel sheet surface temperature
A, B, and C are parameters to be estimated.
まず、後に詳細に説明する、シミュレーテッドアニーリング法等の探索法にて計算を行う際の計算条件を入力する(ステップS1)。
次に、推定すべき上記パラメータA、B、Cの初期値を入力する(ステップS2)。前記パラメータ初期値は、本発明で推定する最終値との誤差が小さい正確な値である必要はないので、これまでに実験室での測定で求めた値などを適当に入力すれば良い。続けて、水冷される鋼板の実績データを入力する(ステップS3)。具体的には、鋼板の板厚、板幅、冷却水の水量密度、水温、水冷前(水冷プロセス入側)の板温、水冷後(水冷プロセス出側)の板温、水冷を行う時間などを入力する。ここでは、板温は放射温度計で測定し、また水冷プロセス中で鋼板を移動させながら冷却を行うプロセスなので、水冷時間の代わりに水冷ゾーンの長さと移動速度を入力しても等価である。この場合、ゾーンが複数に分かれ、それぞれ水量密度が異なる場合は、それぞれのゾーン毎の水量密度を入力する。また、鋼板の上面と下面の両方から水冷を行う場合は、上面、下面それぞれの水量密度を入力する。また、水冷プロセス内で、即ち水冷ゾーン間に水切りゾーンを設け、水冷途中で板温測定を行うことが可能な場合は、その測定実績も入力する。
First, calculation conditions for performing a calculation by a search method such as a simulated annealing method, which will be described in detail later, are input (step S1).
Next, initial values of the parameters A, B, and C to be estimated are input (step S2). Since the initial parameter value does not have to be an accurate value with a small error from the final value estimated in the present invention, a value obtained by a laboratory measurement so far may be appropriately input. Subsequently, the record data of the steel sheet to be water-cooled is input (step S3). Specifically, steel plate thickness, width, cooling water volume density, water temperature, plate temperature before water cooling (water cooling process entry side), plate temperature after water cooling (water cooling process delivery side), time for water cooling, etc. Enter. Here, the plate temperature is measured by a radiation thermometer, and cooling is performed while moving the steel plate in the water cooling process. Therefore, it is equivalent to input the length of the water cooling zone and the moving speed instead of the water cooling time. In this case, when the zone is divided into a plurality of areas and the water density is different, the water density for each zone is input. Moreover, when performing water cooling from both the upper surface and lower surface of a steel plate, the water density of each of an upper surface and a lower surface is input. Further, if a drainage zone is provided in the water cooling process, that is, between the water cooling zones, and the plate temperature can be measured during the water cooling, the measurement result is also input.
次に、前記ステップS3で入力した条件と、ステップS2で入力した熱伝達係数パラメータA、B、Cの初期値を用いて、例えば下記の文献に示す様な、一般的な伝熱計算方法により、水冷後の板温を計算する(ステップS4)。
「連続鋼片加熱炉における伝熱実験と計算方法」、S45/11、
(社)日本鉄鋼協会、5章 伝熱計算法 P68
より具体的にこの手順を説明すると、まず、式(1)の各値のうち、水量密度は水冷プロセス全体を通して既知であり、水冷開始時の板温も既知である。従って、これら2つの値と、熱伝達係数パラメータA、B、Cの初期値を用いて、式(1)から、水冷開始時の熱伝達係数を計算することが出来る。次に、前記熱伝達係数と、水冷開始時の板温、及び、ステップS3で入力した、鋼板の板厚、板幅、冷却水の水温から、伝熱計算によって、水冷開始後短時間(例えば0.1秒)経過した時点の板温を計算することが出来る。この様に計算した板温と既知の水量密度を用いて、熱伝達係数の前記短時間経過時点での値を、式(1)から再び計算することが出来る。この様に短時間刻みで次々に板温と熱伝達係数を計算していくことで、水冷プロセス出側の板温を計算することが可能である。
短時間刻みで前記計算を繰り返すのは、その間の熱伝達係数の変化が無視出来る程度であり、精度の高い伝熱計算が出来る為であり、一般的には例えば0.1秒程度以下とするのが良い。
Next, using the conditions input in step S3 and the initial values of the heat transfer coefficient parameters A, B, and C input in step S2, for example, according to a general heat transfer calculation method as shown in the following document: Then, the plate temperature after water cooling is calculated (step S4).
"Heat transfer experiment and calculation method in continuous billet furnace", S45 / 11,
Japan Iron and Steel Institute,
This procedure will be described more specifically. First, among each value of the formula (1), the water density is known throughout the water cooling process, and the plate temperature at the start of water cooling is also known. Therefore, using these two values and the initial values of the heat transfer coefficient parameters A, B, and C, the heat transfer coefficient at the start of water cooling can be calculated from Equation (1). Next, from the heat transfer coefficient, the plate temperature at the start of water cooling, and the plate thickness of the steel plate, the plate width, and the water temperature of the cooling water input in step S3, a short time after the start of water cooling (for example, The plate temperature at the time when 0.1 second) has elapsed can be calculated. Using the plate temperature calculated in this way and the known water density, the value of the heat transfer coefficient at the time when the short time has passed can be calculated again from Equation (1). Thus, by calculating the plate temperature and the heat transfer coefficient one after another in short time increments, it is possible to calculate the plate temperature on the outlet side of the water cooling process.
The reason why the above calculation is repeated in short time increments is that the change in the heat transfer coefficient during that time can be ignored, and heat transfer calculation with high accuracy can be performed. Is good.
また、鋼板の各部分の温度を厳密に計算しようとすると、鋼板の厚み、幅、長さについての3次元の伝熱計算を行う必要があるが、ここでは、オンラインで高速に計算を行うことを目的としていること、水冷条件は長さ方向では基本的に一定であり、長さ方向の温度変化が厚み方向や幅方向に比較して小さいので、厚み方向と幅方向の2次元での伝熱計算を行うことで良い。
更に、冷却ゾーン毎に水量密度が異なる場合は、それぞれの冷却ゾーン毎の水量密度を用いて計算を行うことは勿論である。
In addition, when trying to calculate the temperature of each part of the steel plate strictly, it is necessary to perform a three-dimensional heat transfer calculation for the thickness, width, and length of the steel plate. The water cooling condition is basically constant in the length direction and the temperature change in the length direction is small compared to the thickness direction and width direction. You can do thermal calculations.
Furthermore, when the water density is different for each cooling zone, it is a matter of course that the calculation is performed using the water density for each cooling zone.
前記水冷プロセス出側板温の計算値と、ステップS3で入力した出側板温の実績値との差を、温度計算誤差として求める(ステップS5)。尚、水冷途中での板温測定を行うことが可能な場合は、その測定実績値とその点での計算板温との差も計算し、前記出側板温の計算誤差と、絶対値或いは自乗を取って加えあわせることで、入側、出側に加えて、中間点の温度誤差を考慮した合わせ込みを行うことになり、熱伝達係数計算の精度が向上する。 A difference between the calculated value of the water cooling process outlet side plate temperature and the actual value of the outlet side plate temperature input in step S3 is obtained as a temperature calculation error (step S5). If it is possible to measure the plate temperature in the middle of water cooling, the difference between the measured actual value and the calculated plate temperature at that point is also calculated, and the calculation error and absolute value or square of the outlet side plate temperature are calculated. By adding and adding, in addition to the entry side and the exit side, adjustment is performed in consideration of the temperature error at the intermediate point, and the accuracy of heat transfer coefficient calculation is improved.
ステップ3からステップ5の処理を対象鋼板の枚数分だけ繰り返し、前記板温計算誤差のそれぞれ絶対値或いは自乗を取った値の合計値を計算する(ステップS6)。ここで、熱伝達係数を計算する対象となる鋼板が一枚だけの場合は、ステップS3からステップS5は1回行うのみで、ステップS6は不要であるが、複数枚の鋼板の実績データによって計算を行うことで、よりばらつきの少ない精度の高い推定が可能となる。
The processing from
前記計算誤差合計値が予め定められた許容範囲よりも大きければ、探索法により熱伝達係数パラメータA、B、Cの値を修正する(ステップS7)。探索法の基本的な考え方を、代表的な探索法である局所探索法について以下に説明する。まず、これまでのパラメータの値(本実施例では熱伝達係数パラメータA、B、C)を少し変更して、その結果を評価する(本実施例では温度計算誤差が増大したか縮小したかを評価する)。改善が得られた場合は、変更した後のパラメータの値を、新たなパラメータの値として採用する。改善が得られなかった場合は、変更する前の値に戻す。これを繰り返し、評価結果が予め与えた許容範囲内に収束するか、或いは予め定めた回数だけ前記計算を繰り返した時点で探索を終了する。
温度計算誤差が十分小さな許容範囲内に収束すれば、その時点で正しい熱伝達係数パラメータが得られたことになる。
If the calculation error total value is larger than a predetermined allowable range, the values of the heat transfer coefficient parameters A, B, and C are corrected by a search method (step S7). The basic concept of the search method will be described below with respect to the local search method, which is a typical search method. First, the values of the parameters so far (in this embodiment, heat transfer coefficient parameters A, B, C) are slightly changed, and the result is evaluated (whether the temperature calculation error has increased or decreased in this embodiment). evaluate). When the improvement is obtained, the changed parameter value is adopted as the new parameter value. If no improvement is obtained, return to the previous value. This search is repeated, and the search is terminated when the evaluation result converges within a predetermined allowable range or when the calculation is repeated a predetermined number of times.
If the temperature calculation error converges within a sufficiently small allowable range, the correct heat transfer coefficient parameter is obtained at that time.
ここで、熱伝達係数として例えば式(1)を用いる場合に、水冷開始から終了までの全ての温度範囲で、パラメータA、B、Cに同じ値を用いても良いが、温度範囲を複数の区間に分けて、それぞれについて別個のパラメータA、B、Cを割り当てることで、より精度の高い推定が可能となる。例えば、鋼板温度200度程度で区間を2つに分けることで、核沸騰領域(200度以下)とそれ以外の領域(膜沸騰領域および遷移沸騰領域;200度以上)について、より精度の高いパラメータフィッティングが可能となる。 Here, for example, when using the equation (1) as the heat transfer coefficient, the same value may be used for the parameters A, B, and C in all temperature ranges from the start to the end of the water cooling. By dividing into sections and assigning separate parameters A, B, and C to each, estimation with higher accuracy becomes possible. For example, by dividing the section into two at a steel plate temperature of about 200 degrees, more accurate parameters for the nucleate boiling area (200 degrees or less) and other areas (film boiling area and transition boiling area; 200 degrees or more) Fitting is possible.
図2は、探索法の1つであるシミュレーテッドアニーリング法によって熱伝達係数を推定する手順を示す図である。シミュレーテッドアニーリング法は、前記局所探索法では評価値が極小値に落ち込んでしまい、十分小さな値に収束しないことが生じうる欠点を補う為に考案された手法であり、金属等の焼鈍工程で温度が低下する過程での原子の動きとそのエネルギー状態を模擬した手法である。局所探索法では、評価値を悪化させるパラメータ変更は受け入れないが、シミュレーテッドアニーリング法ではそれを一定の確率で受け入れる点が特長である。受け入れ確率は、焼鈍過程での温度(探索アルゴリズム上での仮想的な温度であり、本発明の対象である鋼板の水冷時の温度とは無関係の値であるので、以降は仮想温度と呼ぶ)が高い時ほど、また、パラメータ変化による評価値の悪化代が小さいほど高く、仮想温度が下がるにつれて受け入れ確率を低くする。これによって、極小値に陥った場合でも、仮想温度が高い間はそこから抜け出し、仮想温度が下がるにつれて、評価値の良いパラメータに収束することが期待出来る。以下、図2に従って順番に手順を説明する。尚、ここで熱伝達係数の関数形としては前記の式(1)の場合を例に取って説明する。 FIG. 2 is a diagram illustrating a procedure for estimating a heat transfer coefficient by a simulated annealing method which is one of search methods. The simulated annealing method is a method devised to compensate for the disadvantage that the evaluation value falls to the minimum value in the local search method and may not converge to a sufficiently small value. It is a technique that simulates the movement of atoms and their energy states in the process of decreasing. The local search method does not accept parameter changes that deteriorate the evaluation value, but the simulated annealing method accepts it with a certain probability. The acceptance probability is the temperature in the annealing process (it is a virtual temperature on the search algorithm, and is a value that is independent of the temperature at the time of water cooling of the steel plate that is the subject of the present invention, and is hereinafter referred to as a virtual temperature) The higher the value is, the smaller the deterioration rate of the evaluation value due to the parameter change is, and the higher the virtual temperature is, the lower the acceptance probability is. As a result, even if it falls to the minimum value, it can be expected that the virtual temperature will escape from the high temperature and converge to a parameter with a good evaluation value as the virtual temperature decreases. Hereinafter, the procedure will be described in order according to FIG. Here, the function form of the heat transfer coefficient will be described by taking the case of the above formula (1) as an example.
まず、計算条件と、パラメータA、B、Cの初期値を入力する(ステップS11)。具体的には、仮想温度を変化させる場合の、初期仮想温度、最終仮想温度、仮想温度の変化幅、繰り返し回数(同じ仮想温度で何回計算を繰り返すか)、A、B、Cの初期値とその最大変化幅、である。仮想温度の変化幅については、一定温度刻みで下げていっても良いが、一定比率(例えば前回仮想温度の0.95倍とする)で下げる方がより収束性が良い。 First, calculation conditions and initial values of parameters A, B, and C are input (step S11). Specifically, when changing the virtual temperature, the initial virtual temperature, the final virtual temperature, the change range of the virtual temperature, the number of repetitions (how many times the calculation is repeated at the same virtual temperature), the initial values of A, B, and C And its maximum change width. The fluctuating range of the fictive temperature may be lowered in steps of a constant temperature, but the convergence is better when it is lowered at a constant ratio (for example, 0.95 times the fictive temperature of the previous time).
次に、各パラメータA、B、Cの値を少し変化させる(ステップS12)。ここでは、3つのパラメータを同時に変化させても良いし、一度に変化させるパラメータは一つだけとし、例えば乱数計算でそれを選択させる方法でも良い。また、パラメータの変化幅は、ステップS11で入力した最大変化幅に対して、例えば−1から+1迄の範囲の値を取る乱数を掛け合わせた値を変化幅とする。この様な手順を取ることで、3つのパラメータのどれを変化させるか、どの程度変化させるかを、毎回ランダムに決める。 Next, the values of the parameters A, B, and C are slightly changed (step S12). Here, three parameters may be changed simultaneously, or only one parameter may be changed at a time, and for example, a method of selecting it by random number calculation may be used. Further, the parameter change width is set to a value obtained by multiplying the maximum change width input in step S11 by, for example, a random number having a value in the range from −1 to +1. By taking such a procedure, it is determined at random each time which of the three parameters is changed and how much is changed.
前記ステップS12で計算したパラメータA、B、Cと式(1)によって計算される熱伝達係数によって、水冷後の板温を計算し、実績出側板温との計算誤差を求める(ステップS13)。複数枚の鋼板によって1組のパラメータA、B、Cを推定する場合には、それら全ての鋼板についての温度誤差を合計する(図1のステップS3からS6に詳細に記述の通り)。 Based on the parameters A, B, and C calculated in step S12 and the heat transfer coefficient calculated by equation (1), the plate temperature after water cooling is calculated to obtain a calculation error from the actual delivery side plate temperature (step S13). When estimating a set of parameters A, B, and C using a plurality of steel plates, the temperature errors for all the steel plates are summed (as described in detail in steps S3 to S6 in FIG. 1).
次に、ステップS12で行ったパラメータ変更を採用するかどうかを決定する(ステップS14)。ここでは例えば以下の様に決定する。
・板温計算誤差がパラメータ変更で小さくなった場合には確率1で採用
・板温計算誤差がパラメータ変更で大きくなった場合には確率Exp(−Δ/t)で採用
ここで、Δはパラメータ変更後の板温計算誤差からパラメータ変更前の板温計算誤差を引いた値であり、tは仮想温度である。Exp(−Δ/t)は、仮想温度tが十分大きい場合は1に近い値を取り、仮想温度が小さくなるに従って0に近づく。また、Δが大きいほど小さな値となる。即ち、仮想温度が低下するに従い、パラメータ変更を採用する確率が低下し、また、パラメータ変更による板温計算精度が悪化するほど、その変更を採用する確率が低下する。
Next, it is determined whether or not to adopt the parameter change performed in step S12 (step S14). Here, for example, it is determined as follows.
• Adopted with
予め定めた繰り返し回数になるまでステップS12からS14を繰り返し(ステップS15)、その中で温度計算誤差が最小のパラメータA、B、Cを、その仮想温度での確定パラメータとし、次の仮想温度におけるパラメータ初期値とする(ステップS16)。
次に、仮想温度を1ステップ下げる(ステップS17)。ここで仮想温度がステップS11で読み込んだ最終仮想温度になっていなければ、ステップS12に戻り、ステップS17までの手順を繰り返す(ステップS18)。最終仮想温度に到達した時点で手順を終了し、その時のパラメータA、B、Cを推定結果とする。
ここで、温度計算誤差の許容値を予めステップS11で入力しておき、温度計算誤差がその許容値以下になった時点で探索を打ち切っても良い。
Steps S12 to S14 are repeated until a predetermined number of repetitions is reached (step S15). Among them, parameters A, B, and C having the smallest temperature calculation error are determined parameters at the virtual temperature, and at the next virtual temperature. Parameter initial values are set (step S16).
Next, the virtual temperature is lowered by one step (step S17). If the virtual temperature is not the final virtual temperature read in step S11, the process returns to step S12 and the procedure up to step S17 is repeated (step S18). When the final virtual temperature is reached, the procedure is terminated, and the parameters A, B, and C at that time are used as estimation results.
Here, an allowable value for the temperature calculation error may be input in advance in step S11, and the search may be terminated when the temperature calculation error becomes equal to or less than the allowable value.
また、パラメータA、B、Cの最大変化幅は、仮想温度の全範囲で一定の値を用いても良いが、仮想温度が高い間は大きな値に、仮想温度が低くなるに従って小さな値にすることで、仮想温度が高い間は、パラメータの変化幅が大きいため高速に最適値に向かって収束し、仮想温度が低くなった時には、パラメータの変化幅が小さくなるので、小刻みに計算誤差が縮小されることが期待出来るので、より高速に精度の高い推定を行うことが可能となる。 In addition, the maximum change width of the parameters A, B, and C may be a constant value in the entire range of the virtual temperature, but is set to a large value while the virtual temperature is high, and to a small value as the virtual temperature decreases. Therefore, when the virtual temperature is high, the parameter change range is large, so it converges rapidly toward the optimum value. When the virtual temperature is low, the parameter change range becomes small, so the calculation error is reduced in small increments. Therefore, it is possible to perform highly accurate estimation at a higher speed.
この様に、熱伝達係数の各パラメータを高い精度で求めることが出来れば、冷却後の板温が指定された値になる様に水冷プロセスの冷却条件を精度良く設定することが可能となる。即ち、指定された冷却条件に対して、図1のステップS4で行ったのと同じ伝熱計算によって、水冷プロセス出側板温を計算し、目標温度と比較して差異があれば、水量密度、鋼板の移動速度等の調整可能な水冷条件を変更し、再度伝熱計算を行う。この様にして、水冷プロセス出側板温が目標温度と一致する水冷条件を求め、その値を用いて水冷プロセスの制御を行うことで、精度の高い板温制御を行うことが出来る。 In this way, if each parameter of the heat transfer coefficient can be obtained with high accuracy, it becomes possible to accurately set the cooling condition of the water cooling process so that the plate temperature after cooling becomes a specified value. That is, for the specified cooling condition, the water cooling process outlet side plate temperature is calculated by the same heat transfer calculation performed in step S4 of FIG. 1, and if there is a difference from the target temperature, the water density, Change the water cooling conditions that can be adjusted, such as the moving speed of the steel sheet, and perform the heat transfer calculation again. In this way, by obtaining a water cooling condition in which the water cooling process outlet side plate temperature matches the target temperature, and using the value to control the water cooling process, it is possible to perform highly accurate plate temperature control.
ここで、熱伝達係数の各パラメータは、請求項1、請求項2の方法で事前に計算して求めておいて、その値を固定的に冷却制御に用いることも可能であるが、冷却制御の結果、水冷プロセス出側板温と目標温度とに差異が生じた場合には、オンラインで熱伝達係数を計算しなおし、以後その値を用いる様にすることで、水冷設備の経時変化等の影響を受けず、冷却制御の精度を高く保つことが可能となる。
Here, each parameter of the heat transfer coefficient is calculated in advance by the method of
以下、本発明の1実施例として、厚板の水冷プロセスにおける熱伝達係数の推定の例について説明する。図3に本実施例で用いた水冷プロセス実験設備の構成を示す。全体が[1]から[3]の3つのゾーンに分割されており、図中で左から右へ鋼板を移動させながら、上下両面から水冷を行う。プロセス入側と出側には、板温を測定する為の温度計が設置されている。 Hereinafter, as one embodiment of the present invention, an example of estimating a heat transfer coefficient in a water cooling process for a thick plate will be described. FIG. 3 shows the configuration of the water-cooling process experimental equipment used in this example. The whole is divided into three zones [1] to [3], and water cooling is performed from both the upper and lower sides while moving the steel plate from left to right in the figure. Thermometers for measuring the plate temperature are installed at the process entry and exit sides.
水冷条件は以下の通りである。
鋼板板厚 20mm
鋼板板幅 300mm
入側板温 750度
出側板温 540度
各ゾーン滞在時間と上面、下面の水量密度(単位はm3/m2・分)
1ゾーン 2 秒 上面 0.3 下面 0.3
2ゾーン 5 秒 1.0 1.0
3ゾーン 8 秒 1.0 1.0
冷却水温度 25度
シミュレーテッドアニーリング計算条件
初期仮想温度 1000度
最終仮想温度 1度
仮想温度の変化幅 前回仮想温度の0.95倍
同じ仮想温度での計算繰り返し回数 30回
初期値 A:2.0 B:1.0 C:−0.001
最大変化幅 A:0.1 B:0.04 C:0.0001
熱伝達係数の関数の形としては前記の式(1)を用いた。
The water cooling conditions are as follows.
Steel plate thickness 20mm
Steel plate width 300mm
Inlet side plate temperature 750 degrees Outlet side plate temperature 540 degrees Time spent in each zone and the water density of the upper and lower surfaces (unit: m 3 / m 2 · min)
1
2
3 zones 8 seconds 1.0 1.0
Cooling water temperature 25 degrees Simulated annealing calculation conditions Initial virtual temperature 1000 degrees Final
Maximum change width A: 0.1 B: 0.04 C: 0.0001
The above formula (1) was used as the function shape of the heat transfer coefficient.
この結果得られた伝熱係数パラメータの値は以下の通りである。
A:2.516
B:0.576
C:−0.00173
伝熱パラメータを用いた伝熱計算によって、前記鋼板とは別の鋼板について、水冷後の鋼板温度を求めたところ、実績温度との誤差が10度以内の精度高い計算結果が得られた。
The value of the heat transfer coefficient parameter obtained as a result is as follows.
A: 2.516
B: 0.576
C: -0.00173
When the steel plate temperature after water cooling was determined for a steel plate different from the steel plate by heat transfer calculation using heat transfer parameters, an accurate calculation result with an error from the actual temperature within 10 degrees was obtained.
また、上記伝熱係数パラメータを用いて、以下の鋼板に対して、適切な水量密度を計算した。
鋼板板厚 25mm
鋼板板幅 300mm
入側板温 750度
目標出側板温 530度
冷却水温度 25度
各ゾーン滞在時間 1ゾーン 2 秒
2ゾーン 5 秒
3ゾーン 8 秒
結果は以下の通りであった(単位はm3/m2・分)。
上面 下面
1ゾーン 0.5 0.5
2ゾーン 1.4 1.4
3ゾーン 1.4 1.4
この値を用いて水冷プロセスの制御を行い、同じ条件で10枚の鋼板の水冷処理を行ったところ、目標出側板温度に対して誤差10度以内の高い精度で制御することが出来た。
Moreover, the suitable water quantity density was calculated with respect to the following steel plates using the said heat-transfer coefficient parameter.
Steel plate thickness 25mm
Steel plate width 300mm
Inlet side plate temperature 750 degrees Target outlet side sheet temperature 530 degrees Cooling water temperature 25 degrees Each zone stay
2
The results of 3 zones and 8 seconds were as follows (unit: m 3 / m 2 · min).
Upper
2 zones 1.4 1.4
3 zones 1.4 1.4
When this value was used to control the water cooling process and 10 steel plates were subjected to water cooling under the same conditions, it was possible to control with high accuracy within an error of 10 degrees with respect to the target delivery side plate temperature.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004010072A JP4408221B2 (en) | 2003-01-23 | 2004-01-19 | Heat transfer coefficient estimation method and cooling control method in water cooling process of steel sheet |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003014531 | 2003-01-23 | ||
JP2004010072A JP4408221B2 (en) | 2003-01-23 | 2004-01-19 | Heat transfer coefficient estimation method and cooling control method in water cooling process of steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004244721A true JP2004244721A (en) | 2004-09-02 |
JP4408221B2 JP4408221B2 (en) | 2010-02-03 |
Family
ID=33032012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004010072A Expired - Fee Related JP4408221B2 (en) | 2003-01-23 | 2004-01-19 | Heat transfer coefficient estimation method and cooling control method in water cooling process of steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4408221B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006281258A (en) * | 2005-03-31 | 2006-10-19 | Jfe Steel Kk | Device for automatically adjusting nonlinear model of coefficient of heat transfer in water cooling |
JP2012101235A (en) * | 2010-11-08 | 2012-05-31 | Jfe Steel Corp | Apparatus and method for controlling cooling stop temperature |
US9364879B2 (en) | 2007-07-19 | 2016-06-14 | Nippon Steel & Sumitomo Metal Corporation | Cooling control method, cooling control apparatus, and cooling water amount calculation apparatus |
US20190362627A1 (en) * | 2018-05-24 | 2019-11-28 | Mitsubishi Heavy Industries, Ltd. | Estimation device, estimation system, estimation method, and program |
CN111822527A (en) * | 2020-08-26 | 2020-10-27 | 武汉钢铁有限公司 | Experimental device and method for simulating cooling process after hot rolling |
EP3731036A1 (en) | 2019-04-26 | 2020-10-28 | Fujitsu Limited | Optimization device and control method for optimization device |
JP2021020247A (en) * | 2019-07-30 | 2021-02-18 | 株式会社神戸製鋼所 | Processing device for temperature data of steel plate and processing method of temperature data of steel plate |
-
2004
- 2004-01-19 JP JP2004010072A patent/JP4408221B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006281258A (en) * | 2005-03-31 | 2006-10-19 | Jfe Steel Kk | Device for automatically adjusting nonlinear model of coefficient of heat transfer in water cooling |
JP4701794B2 (en) * | 2005-03-31 | 2011-06-15 | Jfeスチール株式会社 | Automatic adjustment device for nonlinear water-cooled heat transfer coefficient model |
US9364879B2 (en) | 2007-07-19 | 2016-06-14 | Nippon Steel & Sumitomo Metal Corporation | Cooling control method, cooling control apparatus, and cooling water amount calculation apparatus |
JP2012101235A (en) * | 2010-11-08 | 2012-05-31 | Jfe Steel Corp | Apparatus and method for controlling cooling stop temperature |
US20190362627A1 (en) * | 2018-05-24 | 2019-11-28 | Mitsubishi Heavy Industries, Ltd. | Estimation device, estimation system, estimation method, and program |
JP7131964B2 (en) | 2018-05-24 | 2022-09-06 | 三菱重工業株式会社 | Estimation device, estimation system, estimation method and program |
EP3731036A1 (en) | 2019-04-26 | 2020-10-28 | Fujitsu Limited | Optimization device and control method for optimization device |
JP2021020247A (en) * | 2019-07-30 | 2021-02-18 | 株式会社神戸製鋼所 | Processing device for temperature data of steel plate and processing method of temperature data of steel plate |
JP7179426B2 (en) | 2019-07-30 | 2022-11-29 | 株式会社神戸製鋼所 | Steel plate temperature data processing device and steel plate temperature data processing method |
CN111822527A (en) * | 2020-08-26 | 2020-10-27 | 武汉钢铁有限公司 | Experimental device and method for simulating cooling process after hot rolling |
CN111822527B (en) * | 2020-08-26 | 2022-03-01 | 武汉钢铁有限公司 | Experimental device and method for simulating cooling process after hot rolling |
Also Published As
Publication number | Publication date |
---|---|
JP4408221B2 (en) | 2010-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI224144B (en) | Heat treating device, heat treating method, recording medium recording heat treating program and steel product | |
KR101285990B1 (en) | Controller | |
TW200904558A (en) | Method and device for controlling cooling and device for calculating quantity of cooling water | |
JP2011167754A (en) | Method and device for controlling cooling of thick steel plate and method for manufacturing thick steel plate | |
JP4408221B2 (en) | Heat transfer coefficient estimation method and cooling control method in water cooling process of steel sheet | |
CN104271277A (en) | Temperature control device | |
JP6558060B2 (en) | Thick steel plate cooling control method, cooling control device, manufacturing method, and manufacturing device | |
JP5493993B2 (en) | Thick steel plate cooling control device, cooling control method, and manufacturing method | |
Ding et al. | Multi‐Objective Optimization of Slab Heating Process in Walking Beam Reheating Furnace Based on Particle Swarm Optimization Algorithm | |
WO2020162004A1 (en) | Method of cooling control for thick steel plate, cooling control device, and method of producing thick steel plate | |
CN109522677A (en) | A method of for the temperature controlled strip cross section layered method of hot-strip | |
JP4349177B2 (en) | Steel extraction temperature prediction method for continuous heating furnace | |
JP2008161924A (en) | Method of manufacturing steel, cooling controller of steel and apparatus for manufacturing steel | |
JP2554414B2 (en) | Prediction method of rolling temperature of steel sheet in hot rolling | |
JPH01162508A (en) | Cooling control method for steel material | |
JP4256558B2 (en) | Steel plate shape determination apparatus, method, and computer-readable storage medium | |
JP6451331B2 (en) | Identification method of heat transfer coefficient | |
JPH0671315A (en) | Method for estimating rolling temperature of steel sheet in hot rolling | |
JPH0550143A (en) | Method for predicting rolling temp. of steel sheet on hot rolling | |
JP6485196B2 (en) | Thick steel plate cooling control method, cooling control device, manufacturing method, and manufacturing device | |
JP5544345B2 (en) | Temperature estimation device, temperature estimation method, rolling mill control device | |
JP2008188604A (en) | Temperature control method in cooling of steel sheet | |
JPS63317208A (en) | Control device for cooling hot rolled steel strip | |
JP2019151864A (en) | Steel sheet temperature prediction method, steel sheet temperature prediction device, and steel sheet temperature control method | |
JP2020525302A (en) | METHOD AND ELECTRONIC DEVICE FOR DETERMINING TEMPERATURE OF METAL STRIP, RELATED CONTROL METHOD, COMPUTER PROGRAM, CONTROL DEVICE, AND HOT ROLLING EQUIPMENT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060906 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091104 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091106 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4408221 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121120 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121120 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131120 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131120 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |