JP2554414B2 - Prediction method of rolling temperature of steel sheet in hot rolling - Google Patents

Prediction method of rolling temperature of steel sheet in hot rolling

Info

Publication number
JP2554414B2
JP2554414B2 JP3210610A JP21061091A JP2554414B2 JP 2554414 B2 JP2554414 B2 JP 2554414B2 JP 3210610 A JP3210610 A JP 3210610A JP 21061091 A JP21061091 A JP 21061091A JP 2554414 B2 JP2554414 B2 JP 2554414B2
Authority
JP
Japan
Prior art keywords
rolling
temperature
steel sheet
thickness direction
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3210610A
Other languages
Japanese (ja)
Other versions
JPH0550128A (en
Inventor
憲一 大江
雄一 安田
篤男 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3210610A priority Critical patent/JP2554414B2/en
Publication of JPH0550128A publication Critical patent/JPH0550128A/en
Application granted granted Critical
Publication of JP2554414B2 publication Critical patent/JP2554414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、TMCP鋼板等の熱間
圧延鋼板の圧延温度を、圧延工程においてオンラインで
予測する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting a rolling temperature of a hot rolled steel sheet such as a TMCP steel sheet online in a rolling process.

【0002】[0002]

【従来の技術】近年、鋼構造物の大型化と使用環境の過
酷化に伴って、厚板製品の重要特性である強度,じん
性,溶接性等に対する要求はますます厳しくなってきて
いる。
2. Description of the Related Art In recent years, demands for strength, toughness, weldability, etc., which are important characteristics of thick plate products, have become more and more stringent with the increase in size of steel structures and the severer usage environment.

【0003】そこで、TMCP(Thermo Mechanical Con
trol Process)が適用され、圧延工程でオンライン冷却
を施して各種のじん性,溶接性に優れた高張力鋼板(以
下、TMCP鋼板という;例えば、加速冷却鋼板,直接
焼入れ鋼板)が製造されている。
Therefore, TMCP (Thermo Mechanical Con
trol process) is applied and online cooling is performed in the rolling process to produce high-strength steel sheets with excellent toughness and weldability (hereinafter referred to as TMCP steel sheets; for example, accelerated cooling steel sheets, direct-quenched steel sheets). .

【0004】これらのTMCP鋼板の材質の安定化や板
厚精度および平坦度の向上に際して(つまりは熱間圧延
鋼板についての形状制御,板厚制御,制御圧延に際し
て)、圧延工程での圧延温度予測の高精度化は極めて重
要な要素である。
For stabilization of the material of these TMCP steel plates and improvement of plate thickness accuracy and flatness (that is, at the time of shape control, plate thickness control, and controlled rolling of hot rolled steel plates), prediction of rolling temperature in the rolling process Improving the accuracy of is an extremely important factor.

【0005】[0005]

【発明が解決しようとする課題】このため、熱間圧延鋼
板の圧延温度を予測すべく、従来から種々のオンライン
モデルが構築されてきたが、以下に記すような問題があ
った。
For this reason, various online models have been constructed so far in order to predict the rolling temperature of the hot-rolled steel sheet, but there were the following problems.

【0006】加熱炉抽出から圧延完了までの鋼板の熱
履歴を差分法による圧延温度シミュレーションにより計
算し、その熱履歴から求めた平均温度に基づいて、平均
温度の簡易予測式を作成しているが、その平均温度の簡
易予測式の基本形が熱伝導方程式に立脚したものでない
ために、普通圧延,制御圧延等を含めて圧延ラインでの
ダイナミックな冷却形態に追従できない。
The thermal history of the steel sheet from extraction of the heating furnace to completion of rolling is calculated by rolling temperature simulation using the difference method, and a simple prediction formula for the average temperature is prepared based on the average temperature obtained from the thermal history. Since the basic form of the simple prediction formula for the average temperature is not based on the heat conduction equation, it cannot follow the dynamic cooling form in the rolling line including ordinary rolling and controlled rolling.

【0007】加えて、制御圧延のように圧延ラインで
必要な温度範囲で適正な圧下量を確保するために、鋼板
の冷却装置を用いて鋼板を圧延途中で冷却するが、その
際に鋼板の平均温度を目標温度にするだけでなく、表面
温度の過冷を防止することも重要になるが、従来手段で
は、平均温度しか予測しえないために、鋼板の表面温度
の管理が不可能である。
In addition, in order to secure an appropriate amount of reduction in the temperature range required in the rolling line as in the case of controlled rolling, the steel sheet cooling device is used to cool the steel sheet during rolling. It is important not only to set the average temperature to the target temperature but also to prevent the surface temperature from overcooling, but with the conventional means, it is impossible to control the surface temperature of the steel sheet because only the average temperature can be predicted. is there.

【0008】従来行なわれている表面温度の推定は、
板厚方向の温度分布が板厚方向位置のベキ乗で表わされ
ることを前提にしているが、その際に板厚方向位置のベ
キ乗の次数nが固定されているため、予測された平均温
度から高精度に変換できない。
The conventional estimation of the surface temperature is as follows.
It is assumed that the temperature distribution in the plate thickness direction is represented by the power of the position in the plate thickness direction, but at that time, since the order n of the power of the plate in the plate thickness direction is fixed, the predicted average temperature Can not be converted to high precision.

【0009】差分法による圧延温度シミュレーションに
より計算されたベキ乗の次数nは、圧延ラインの種々の
冷却形態,圧延時の板厚等によって、30次以上の高次
の次数から1〜3次程度まで粗圧延から仕上げ圧延にか
かえてダイナミックに変化するため、こうした変換を高
精度で行なうには、ベキ乗の次数nを正確に推定する必
要があるが、固定された次数では形だけの変換がなされ
ているにすぎない。
The order n of the power to be calculated by the rolling temperature simulation by the difference method is from the higher order of 30th order or more to the 1st to 3rd order depending on various cooling modes of the rolling line, the plate thickness during rolling, and the like. Since it changes dynamically from rough rolling to finish rolling, in order to perform such conversion with high accuracy, it is necessary to accurately estimate the order n of the power, but with a fixed order, only the form is converted. It's just done.

【0010】圧延時のミルセッティングに際して、圧
延途中で温度計測されても表面温度の予測ができないた
めに、あるいは、予測しても前記項の理由から高精度
の推定ができないために、板厚方向の平均温度を計測値
に基づいてチェックしたり、修正したりすることも高精
度で行なえなかった。
In the mill setting during rolling, the surface temperature cannot be predicted even if the temperature is measured during rolling, or even if it is predicted, highly accurate estimation cannot be performed for the reasons described above. It was also not possible to check or correct the average temperature of the above with high accuracy.

【0011】以上の理由から、近年、差分モデルを用
いて、圧延ラインでの温度予測,実績温度計算を行なっ
ている場合もあるが、計算負担が多大になることから予
測計算を行なうには自ずと限界があり、実績計算を含め
た温度計算に際しては、計算機として容量,能力等につ
いて非常に大規模のものが必要になる。
For the above reasons, in recent years, there has been a case where temperature prediction and actual temperature calculation in the rolling line are performed using the difference model, but since the calculation load becomes large, it is naturally necessary to perform the prediction calculation. There is a limit, and in the temperature calculation including the actual calculation, a very large-scale computer is required in terms of capacity and capacity.

【0012】本発明は、このような状況に鑑みてなされ
たもので、平均温度だけでなく鋼板の板厚方向の温度分
布をも簡易な計算により高精度で推定できるようにし
て、板厚方向の必要位置での温度評価を可能にした、熱
間圧延における鋼板の圧延温度予測方法を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and enables not only the average temperature but also the temperature distribution in the plate thickness direction of a steel plate to be estimated with high accuracy by a simple calculation. It is an object of the present invention to provide a method for predicting the rolling temperature of a steel sheet in hot rolling, which enables the temperature evaluation at the required position of.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明の熱間圧延における鋼板の圧延温度予測方法
は、圧延工程での冷却形態にのみ支配される鋼板板厚方
向の第1の温度分布と、鋼板内での復熱挙動を表わす鋼
板板厚方向の第2の温度分布とを、それぞれ、熱伝導方
程式に基づく連立偏微分方程式からなる初期値境界値問
題の解として求めるべく、前記連立偏微分方程式につい
て弱表現形式を用いることにより該連立偏微分方程式を
時間の連立常微分方程式系に帰着させ、該連立常微分方
程式を解くことにて第1および第2の温度分布を求めた
後、圧延工程での各冷却形態下における前記鋼板の板厚
方向に形成される温度場についてのオンライン圧延温度
予測モデルを、第1の温度分布と前記第2の温度分布と
を重畳したものとして構築してから、該オンライン圧延
温度予測モデルによって算定された板厚方向の圧延温度
分布に圧延の塑性加工発熱による温度上昇量を加えるこ
とにより、鋼板の圧延工程での板厚方向の圧延温度を予
測することを特徴としている。
In order to achieve the above object, the method for predicting the rolling temperature of a steel sheet in hot rolling according to the present invention is a first method in the thickness direction of a steel sheet governed only by the cooling mode in the rolling process. And the second temperature distribution in the thickness direction of the steel sheet, which represents the recuperation behavior in the steel sheet, as the solution of the initial value boundary value problem consisting of simultaneous partial differential equations based on the heat conduction equation. , The weak partial expression is used for the simultaneous partial differential equations to reduce the simultaneous partial differential equations to a system of simultaneous ordinary differential equations in time, and solve the simultaneous ordinary differential equations to obtain the first and second temperature distributions. After the determination, the online rolling temperature prediction model for the temperature field formed in the sheet thickness direction of the steel sheet under each cooling mode in the rolling process was superposed with the first temperature distribution and the second temperature distribution. things and From building Te, the online rolling
Rolling temperature in the plate thickness direction calculated by the temperature prediction model
The amount of temperature rise due to rolling plastic working heat is added to the distribution.
Is used to predict the rolling temperature in the plate thickness direction in the rolling process of the steel plate.

【0014】[0014]

【作用】周知のように、加熱炉抽出から仕上げ圧延完了
までの熱間圧延工程においては、加熱炉抽出後のHSB
(高圧水スケールブレーカ)による冷却状態、粗圧延完
了後のシャワ水冷による冷却状態、このシャワ水冷停止
直後の冷却状態、粗圧延あるいは仕上げ圧延の各パスに
おけるロール接触による冷却状態などの種々の冷却形態
がある。上述した本発明の熱間圧延における鋼板の圧延
温度予測方法では、圧延工程での前記のような各冷却形
でのオンライン圧延温度予測モデルが、熱伝導方程式
の弱表現式を用いることにより、熱伝導方程式に基づい
て物理的意味をもたせながら構築されるので、そのモデ
ルにより、鋼板板厚方向の温度分布を高精度で算定する
ことができる。
[Function] As is well known, heating furnace extraction to finish rolling is completed.
In the hot rolling process up to
(High-pressure water scale breaker) cooled state, rough rolling completed
Cooling state by shower water cooling after completion, stop shower water cooling
Immediately after cooling, for each pass of rough rolling or finish rolling
Various cooling modes such as the cooling state due to roll contact in
There is. In the method for predicting the rolling temperature of the steel sheet in the hot rolling of the present invention described above, each cooling type as described above in the rolling process is used.
The on-line rolling temperature prediction model in the state is constructed while having a physical meaning based on the heat conduction equation by using the weak expression of the heat conduction equation. Can be calculated with high accuracy.

【0015】[0015]

【実施例】本発明では、圧延工程における種々の冷却形
態での圧延温度予測を熱伝導方程式に基づいて、物理的
意味をもたせながら高精度に構築するために、熱伝導方
程式の弱表現式を用いることにより、板厚方向の温度分
布を算定できるオンライン圧延温度予測モデルを新たに
構築したので、その予測モデル構築の概略を以下に記
す。なお、熱伝導方程式の弱表現式については、B.A.Fi
nlayson:The Methodof Weighted Residuals and Varia
tional Principle(1972,Academic Press)や、O.C.Zienk
iewicz:The Finite Element Method(1977,McGraw-Hil
l)に記載されている。
EXAMPLES In the present invention, in order to construct a rolling temperature prediction in various cooling modes in a rolling process based on the heat conduction equation with high precision while having a physical meaning, a weak expression of the heat conduction equation is used. An online rolling temperature prediction model that can calculate the temperature distribution in the sheet thickness direction was newly constructed by using it. The outline of the prediction model construction is described below. For the weak expression of the heat conduction equation, see BAFi
nlayson: The Methodof Weighted Residuals and Varia
tional Principle (1972, Academic Press) and OCZienk
iewicz: The Finite Element Method (1977, McGraw-Hil
It is described in l).

【0016】圧延温度予測モデルの構築に際しての前提
として下記(a)〜(d)の仮定を設定することにより、圧
延工程での温度予測モデルは、各冷却形態下における板
厚方向の熱伝導に関する初期値境界値問題の解を導出す
ることによって構築される。
By setting the following assumptions (a) to (d) as a premise for constructing the rolling temperature prediction model, the temperature prediction model in the rolling process relates to heat conduction in the plate thickness direction under each cooling mode. It is constructed by deriving a solution of the initial value boundary value problem.

【0017】(a)加熱炉抽出時におけるスラブの板厚方
向温度分布は一様である。 (b)圧延工程における鋼板上下面の熱伝達係数は同一で
ある。 (c)圧延中の塑性加工による加工発熱は板厚方向に一様
である。 (d)ロール接触時の鋼板の板厚は入出側の平均厚であ
る。
(A) The temperature distribution in the plate thickness direction of the slab during extraction in the heating furnace is uniform. (b) The heat transfer coefficients of the upper and lower surfaces of the steel plate in the rolling process are the same. (c) Processing heat generated by plastic working during rolling is uniform in the plate thickness direction. (d) The plate thickness of the steel plate at the time of contact with the roll is the average thickness on the entrance and exit sides.

【0018】以上の仮定のもと、以下に予測モデルの定
式化について説明する。初期温度分布φ0(x)を有する鋼
板を一定の冷却形態下で冷却した場合、図1に示すよう
に、鋼板の板厚方向に形成される温度場T(x,t)は、次
の連立偏微分方程式(2),(3)からなる初期値境界値問題
の解U,Vを重畳した(1)式のような形で表わすことが
できる。 T(x,t)=U(x,t)+V(x,t) (1)
Based on the above assumptions, the formulation of the prediction model will be described below. When a steel sheet having an initial temperature distribution φ 0 (x) is cooled under a constant cooling mode, as shown in FIG. 1, the temperature field T (x, t) formed in the thickness direction of the steel sheet is It can be expressed in the form of equation (1) in which the solutions U and V of the initial value boundary value problem consisting of simultaneous partial differential equations (2) and (3) are superimposed. T (x, t) = U (x, t) + V (x, t) (1)

【0019】[0019]

【数1】 [Equation 1]

【0020】ここで、上式(2),(3)において、λ,c,
ρはそれぞれ鋼板の熱伝導率,比熱,密度、αは熱伝達
係数、hは鋼板の板厚、T0は雰囲気温度、tは時間、
xは鋼板の板厚方向位置である。
In the above equations (2) and (3), λ, c,
ρ is the thermal conductivity, specific heat and density of the steel sheet, α is the heat transfer coefficient, h is the thickness of the steel sheet, T 0 is the ambient temperature, t is the time,
x is the position in the plate thickness direction of the steel plate.

【0021】この時、Vは冷却形態に支配される温度分
布を表わし、Uは鋼板内での復熱挙動を表わす温度分布
である。
At this time, V represents the temperature distribution governed by the cooling mode, and U is the temperature distribution representing the recuperation behavior in the steel sheet.

【0022】U,Vを定式化するに際して、初期値境界
値問題(3)式における鋼板表面での境界条件は、モデル
の簡略化のために、次式(4),(5)のように近似化した。
When formulating U and V, the boundary conditions on the steel plate surface in the initial value boundary value problem (3) are expressed by the following formulas (4) and (5) in order to simplify the model. Approximated.

【0023】[0023]

【数2】 [Equation 2]

【0024】圧延工程での各冷却形態における鋼板の板
厚方向の温度分布は、板厚方向位置xの巾乗の関数とし
て表わされるとする。今、解析対象とする冷却工程の前
履歴の冷却工程数をkとおけば、初期温度分布φ0(x)は
次式(6) のように教示することができる。ここで、式
(6) におけるμ i 、A i は、熱間圧延工程でのi番目の
冷却工程(例えば粗圧延完了後のシャワ水冷工程)にお
いて生じた温度分布(初期値境界値問題の式(2) ,(3)
の解U,Vを重畳したものとして表される)を、A i (1
−x/μ i n という板厚方向位置xを変数とする関数
で近似することによって定まる定数である。また、n
は、予め定められた次数(正整数)であり、任意に設定
することができ、後述する実施例ではn=2と設定して
いる。この次数nは、求めるべき板厚方向温度分布を表
すための基本になる温度分布を表す関数(板厚方向位置
xを変数とする関数)の次数である。
It is assumed that the temperature distribution in the plate thickness direction of the steel plate in each cooling mode in the rolling process is expressed as a function of the power of the position x in the plate thickness direction. Now, if the number of cooling steps in the previous history of the cooling step to be analyzed is k, the initial temperature distribution φ 0 (x) can be taught as in the following equation (6). Where the expression
Μ i and A i in (6) are the i-th in the hot rolling process.
For cooling process (for example, shower water cooling process after rough rolling is completed)
Generated temperature distribution (equation (2), (3) in the initial value boundary value problem)
Of the solution U and V) of A i (1
-X / μ i ) n function with the position x in the plate thickness direction as a variable
It is a constant determined by approximating. Also, n
Is a predetermined order (positive integer) and can be set arbitrarily
In the embodiment described later, n = 2 is set.
I have. This order n expresses the temperature distribution in the plate thickness direction to be obtained.
Function that represents the basic temperature distribution for
It is the order of a function having x as a variable).

【0025】[0025]

【数3】 ここで、μ i ≦h/2であり、T a は加熱炉抽出時にお
けるスラブの板厚方向温度分布(一定値)である。そし
て、初期温度分布φ 0 (x)は次のようにして求められる。
なおここでは、前記次数nを例えばn=2に設定する。
まず、1番目の冷却工程での初期温度分布φ 0 (x)は、前
述した仮定(a)より、T a となる。2番目の冷却工程
での初期温度分布φ 0 (x)は、1番目の冷却工程において
生じた温度分布をA 1 (1−x/μ 1 2 で近似すると、
a +A 1 (1−x/μ 1 2 となる。そして、3番目の
冷却工程での初期温度分布φ 0 (x)は、2番目の冷却工程
において生じた温度分布をA 2 (1−x/μ 2 2 で近似
すると、T a +A 1 (1−x/μ 1 2 +A 2 (1−x/μ
2 2 となる。以下同様に、k+1番目の冷却工程での
初期温度分布φ 0 (x)は、k番目の冷却工程において生じ
た温度分布をA k (1−x/μ k 2 で近似すると、T a
+ΣA i (1−x/μ i 2 、i=1,…,k、となり、
このようにして初期温度分布φ 0 (x)が求められることに
なる。
(Equation 3) Here, μ i ≦ h / 2, and T a is the value when the heating furnace is extracted.
This is a temperature distribution (constant value) in the plate thickness direction of the slab. That
Then, the initial temperature distribution φ 0 (x) is obtained as follows.
Here, the order n is set to n = 2, for example.
First, the initial temperature distribution φ 0 (x) in the first cooling step is
From the assumption (a) described above, T a is obtained. Second cooling step
Initial temperature distribution φ 0 (x) at
If the generated temperature distribution is approximated by A 1 (1−x / μ 1 ) 2 ,
It becomes T a + A 1 (1−x / μ 1 ) 2 . And the third
The initial temperature distribution φ 0 (x) in the cooling process is the second cooling process
Approximate the temperature distribution generated at A 2 (1−x / μ 2 ) 2
Then, T a + A 1 (1−x / μ 1 ) 2 + A 2 (1−x / μ 1
2 ) It becomes 2 . Similarly, in the k + 1th cooling step
The initial temperature distribution φ 0 (x) is generated in the kth cooling step.
If the temperature distribution is approximated by A k (1−x / μ k ) 2 , T a
+ ΣA i (1−x / μ i ) 2 , i = 1, ..., k,
In this way, the initial temperature distribution φ 0 (x) can be obtained.
Become.

【0026】この時、初期値境界値問題(2),(3)式の解
U,Vは次式(7),(8)のように表わすことができる。
At this time, the solutions U and V of the initial value boundary value problems (2) and (3) can be expressed as the following expressions (7) and (8).

【0027】[0027]

【数4】 [Equation 4]

【0028】次に、連立偏微分方程式(2),(3)につい
て、弱表現式を用いることにより、下記に示すように、
Next, by using the weak expression for the simultaneous partial differential equations (2) and (3), as shown below,

【数5】 を未知関数とする時間の連立常微分方程式系に帰着させ
ることができる。
(Equation 5) It can be reduced to a system of simultaneous ordinary differential equations with time as an unknown function.

【0029】[0029]

【数6】 (Equation 6)

【0030】[0030]

【数7】 (Equation 7)

【0031】(7)〜(16)式で構成される連立常微分方程
式は、前記未知関数に関して解析的に解くことができ
る。具体的には、下記(17)〜(37)式に示すようになる。
The simultaneous ordinary differential equations composed of equations (7) to (16) can be solved analytically with respect to the unknown function. Specifically, it becomes as shown in the following equations (17) to (37).

【0032】[0032]

【数8】 (Equation 8)

【0033】[0033]

【数9】 [Equation 9]

【0034】[0034]

【数10】 [Equation 10]

【0035】[0035]

【数11】 [Equation 11]

【0036】以上により、初期値境界値問題(2),(3)式
の解U,Vは定式化され、鋼板の板厚方向温度分布を算
定できる新たな圧延温度予測モデルが構築された。
From the above, the solutions U and V of the initial value boundary value problems (2) and (3) were formulated, and a new rolling temperature prediction model capable of calculating the temperature distribution in the plate thickness direction was constructed.

【0037】つまり、本実施例では、圧延工程での冷却
形態にのみ支配される鋼板板厚方向の第1の温度分布V
と、鋼板内での復熱挙動を表わす鋼板板厚方向の第2の
温度分布Uとを、それぞれ、熱伝導方程式に基づく連立
偏微分方程式(2),(3)からなる初期値境界値問題の解と
して求めるべく、連立偏微分方程式(2),(3)について弱
表現形式を用いることにより連立偏微分方程式(2),(3)
を時間の連立常微分方程式系(9)〜(16)に帰着させる。
That is, in the present embodiment, the first temperature distribution V in the steel plate thickness direction governed only by the cooling mode in the rolling process.
And the second temperature distribution U in the thickness direction of the steel sheet, which represents the recuperative behavior in the steel sheet, and the initial value boundary value problem consisting of simultaneous partial differential equations (2) and (3) based on the heat conduction equation, respectively. In order to obtain the solution of, the weak partial form of the simultaneous partial differential equations (2) and (3) is used to solve the simultaneous partial differential equations (2) and (3).
To a system of simultaneous ordinary differential equations (9) to (16).

【0038】そして、この連立偏微分方程式(9) 〜(16)
を(17)〜(37)式のように解くことにより、温度分布U,
Vを求めた後、各冷却形態下における鋼板板厚方向に形
成される温度場T(x,t) についてのオンライン圧延温度
予測モデルを、温度分布UとVとを重畳したものとして
構築し、このオンライン圧延温度予測モデルによって算
定された板厚方向の圧延温度分布に圧延の塑性加工発熱
による温度上昇量を加えることにより、鋼板の圧延工程
での板厚方向の圧延温度が予測されるのである。
Then, the simultaneous partial differential equations (9) to (16)
By solving the equations (17) to (37), the temperature distribution U,
After obtaining V, an online rolling temperature prediction model for the temperature field T (x, t) formed in the steel sheet thickness direction under each cooling mode is constructed by superimposing the temperature distributions U and V, Calculated by this online rolling temperature prediction model
Heat generated during plastic working of rolling in a specified rolling temperature distribution in the plate thickness direction
By adding the amount of temperature rise due to , the rolling temperature in the plate thickness direction in the rolling process of the steel plate is predicted.

【0039】ここで、加熱炉抽出から仕上げ圧延完了ま
での一連の工程における鋼板の温度変化挙動を、差分法
に基づく圧延温度シミュレーションモデルと、本実施例
により新しく構築したオンライン圧延温度予測モデルと
を用いて計算し、精度比較を行なう。
Here, the temperature change behavior of the steel sheet in a series of steps from the extraction of the heating furnace to the completion of finish rolling is performed by using a rolling temperature simulation model based on the difference method and an online rolling temperature prediction model newly constructed by this embodiment. Calculate using and compare accuracy.

【0040】この精度比較計算における計算結果を下表
に示す。また式(6) の次数nはn=2とした。
The calculation results of this precision comparison calculation are shown in the table below. Further, the order n of the equation (6) is n = 2.

【表1】 [Table 1]

【0041】また、圧延中のロールとの接触における熱
伝達係数αRは次式のようになる。
The heat transfer coefficient α R at the time of contact with the roll during rolling is given by the following equation.

【数12】 ここで、λR,cR,ρRはそれぞれロールの熱伝導度,
比熱,密度、Rはロール径、rは圧下率、h0は入側
厚、vは圧延速度である。
(Equation 12) Where λ R , c R and ρ R are the thermal conductivity of the roll,
Specific heat, density, R is roll diameter, r is rolling reduction, h 0 is inlet side thickness, and v is rolling speed.

【0042】また、圧延の塑性加工発熱による鋼板温度
の上昇量ΔTと平均厚hm との算出には、それぞれ次式
を用いた。
Further, the following equations were used to calculate the amount ΔT of increase in steel sheet temperature due to heat generated by plastic working of rolling and the average thickness h m .

【数13】 ここで、h1 は出側厚、pm は平均圧延圧力である。(Equation 13) Here, h 1 is DegawaAtsu, is p m is the average rolling pressure.

【0043】圧延工程における鋼板の平均温度,表面温
度および中心温度の経時変化に関して、上記表および各
式に基づいて行なった本実施例による予測方法と高精度
な計算を行なえる差分モデルとによる精度比較結果を図
2に示す。
Regarding the changes with time of the average temperature, the surface temperature and the central temperature of the steel sheet in the rolling process, the accuracy of the prediction method according to the present embodiment based on the above table and each formula and the difference model capable of performing highly accurate calculation The comparison result is shown in FIG.

【0044】図2から明らかなように、本実施例のオン
ライン圧延温度予測モデルによる計算結果は、全工程を
通じて、差分モデルによる計算結果にほぼ一致してい
る。このことから、本実施例の予測モデルの推定精度
は、差分モデルによる推定精度とほぼ同等であることが
分かる。
As is apparent from FIG. 2, the calculation results obtained by the online rolling temperature prediction model of this embodiment are almost the same as the calculation results obtained by the differential model throughout the entire process. From this, it is understood that the estimation accuracy of the prediction model of the present embodiment is almost the same as the estimation accuracy of the difference model.

【0045】このように、本実施例の方法によれば、熱
伝導方程式の弱表現式を用いて構築されたオンライン圧
延温度予測モデルから得られた、圧延工程での冷却形態
に支配される温度分布Vと、その冷却形態下での鋼板内
の復熱挙動を表わす温度分布Uとに、圧延の塑性加工発
熱による温度上昇量ΔTを加えることにより、厳密な圧
延ラインでの温度変化を再現できる差分モデルと同等の
温度予測を、極めて簡易な計算により実現でき、その有
効性の高さが確認された。
As described above, according to the method of this embodiment, the online pressure constructed by using the weak expression of the heat conduction equation is used.
The temperature distribution V governed by the cooling form in the rolling process and the temperature distribution U representing the reheat behavior in the steel sheet under the cooling form, which were obtained from the rolling temperature prediction model, were used to determine the plastic deformation of rolling.
By adding the temperature rise amount ΔT due to heat, it is possible to realize the temperature prediction equivalent to the difference model capable of reproducing the temperature change on the strict rolling line by extremely simple calculation, and its high effectiveness was confirmed.

【0046】また、これまで簡易式により予測を行なえ
なかった鋼板の板厚方向の温度分布を圧延工程での任意
の冷却形態下で高精度に推定することが可能になる。
Further, it becomes possible to highly accurately estimate the temperature distribution in the plate thickness direction of the steel sheet which could not be predicted by a simple formula until now under an arbitrary cooling mode in the rolling process.

【0047】さらに、本実施例のモデルによる温度予測
計算は、差分モデルによる温度予測計算の10分の1程
度の計算量にて行なうことができ、温度予測に要する時
間を大幅に短縮できる。
Further, the temperature prediction calculation by the model of the present embodiment can be performed with a calculation amount of about 1/10 of the temperature prediction calculation by the difference model, and the time required for temperature prediction can be greatly shortened.

【0048】[0048]

【発明の効果】以上詳述したように、本発明の熱間圧延
における鋼板の圧延温度予測方法によれば、圧延工程で
の種々の冷却形態でのオンライン圧延温度予測モデル
を、熱伝導方程式の弱表現式を用いることにより、熱伝
導方程式に基づいて物理的意味をもたせながら構築する
ので、そのモデルにより、平均温度だけでなく、鋼板板
厚方向の温度分布を極めて簡易な計算により高精度で算
定でき、板厚方向の必要位置での確実な温度評価を実現
できる効果がある。
As described in detail above, according to the method for predicting the rolling temperature of a steel sheet in hot rolling according to the present invention, an online rolling temperature prediction model in various cooling modes in the rolling process can be used as a heat conduction equation model. By using the weak expression, it is constructed while giving a physical meaning based on the heat conduction equation, so that the model can calculate not only the average temperature but also the temperature distribution in the plate thickness direction with extremely simple calculation with high accuracy. There is an effect that it can be calculated and a reliable temperature evaluation at a required position in the plate thickness direction can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としての熱間圧延における鋼
板の圧延温度予測方法を説明すべく鋼板板厚方向の温度
分布例を示すグラフである。
FIG. 1 is a graph showing an example of temperature distribution in a steel sheet thickness direction for explaining a method for predicting a rolling temperature of a steel sheet in hot rolling as an embodiment of the present invention.

【図2】本実施例の方法による温度予測値と差分法によ
る温度予測値とを比較して示すグラフである。
FIG. 2 is a graph showing a temperature predicted value by the method of the present embodiment and a temperature predicted value by the difference method in comparison.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱間圧延における鋼板の圧延温度を予測
する方法において、 圧延工程での冷却形態にのみ支配される前記鋼板の板厚
方向の第1の温度分布と、前記鋼板内での復熱挙動を表
わす前記鋼板の板厚方向の第2の温度分布とを、それぞ
れ、熱伝導方程式に基づく連立偏微分方程式からなる初
期値境界値問題の解として求めるべく、前記連立偏微分
方程式について弱表現形式を用いることにより該連立偏
微分方程式を時間の連立常微分方程式系に帰着させ、 該連立常微分方程式を解くことにより前記の第1および
第2の温度分布を求めた後、圧延工程での各冷却形態下における 前記鋼板の板厚方向
に形成される温度場についてのオンライン圧延温度予測
モデルを、前記第1の温度分布と前記第2の温度分布と
を重畳したものとして構築してから、前記オンライン圧延温度予測モデルによって算定された
板厚方向の圧延温度分布に圧延の塑性加工発熱による温
度上昇量を加えることにより 、前記鋼板の圧延工程での
板厚方向の圧延温度を予測することを特徴とする熱間圧
延における鋼板の圧延温度予測方法。
1. A method for predicting a rolling temperature of a steel sheet in hot rolling, comprising: a first temperature distribution in the thickness direction of the steel sheet, which is governed only by a cooling mode in a rolling process; In order to obtain the second temperature distribution in the plate thickness direction of the steel sheet, which represents the thermal behavior, as the solution of the initial value boundary value problem composed of the simultaneous partial differential equations based on the heat conduction equation, the weak partial differential equations are weakened. By using the expression form, the simultaneous partial differential equations are reduced to a system of simultaneous ordinary differential equations in time, and the first and second temperature distributions are obtained by solving the simultaneous ordinary differential equations, and then, in the rolling process. build online rolling temperature prediction model, as obtained by superimposing a second temperature distribution and the first temperature distribution of the temperature field formed in the thickness direction of the steel plate under each cooling form of After it was calculated by the online rolling temperature prediction model
In the rolling temperature distribution in the plate thickness direction, the temperature due to the plastic working heat of rolling
A method of predicting a rolling temperature of a steel sheet in hot rolling, comprising predicting a rolling temperature in a sheet thickness direction in the rolling step of the steel sheet by adding a degree of increase in degree .
JP3210610A 1991-08-22 1991-08-22 Prediction method of rolling temperature of steel sheet in hot rolling Expired - Fee Related JP2554414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3210610A JP2554414B2 (en) 1991-08-22 1991-08-22 Prediction method of rolling temperature of steel sheet in hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3210610A JP2554414B2 (en) 1991-08-22 1991-08-22 Prediction method of rolling temperature of steel sheet in hot rolling

Publications (2)

Publication Number Publication Date
JPH0550128A JPH0550128A (en) 1993-03-02
JP2554414B2 true JP2554414B2 (en) 1996-11-13

Family

ID=16592177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3210610A Expired - Fee Related JP2554414B2 (en) 1991-08-22 1991-08-22 Prediction method of rolling temperature of steel sheet in hot rolling

Country Status (1)

Country Link
JP (1) JP2554414B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1306770A1 (en) * 2001-10-23 2003-05-02 ABB Schweiz AG Method and system for estimating the temperature distribution in solid bodies
CN103028615B (en) * 2012-11-29 2014-12-10 一重集团大连设计研究院有限公司 Method for predicting temperature evolution in hot continuous rolling process of strip steel
CN103605390B (en) * 2013-10-16 2015-11-11 东北大学 A kind of water-supply control of hot-rolling line ultra-rapid cooling system
JP6197676B2 (en) * 2014-02-04 2017-09-20 東芝三菱電機産業システム株式会社 Temperature distribution prediction device
JP6323563B2 (en) * 2014-09-01 2018-05-16 新日鐵住金株式会社 Rolling method and rolling apparatus
CN114722732B (en) * 2022-06-09 2022-09-02 华中科技大学 Method for predicting temperature field of fuel tank of hypersonic aircraft based on point cloud network

Also Published As

Publication number Publication date
JPH0550128A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
Laasraoui et al. Prediction of temperature distribution, flow stress and microstructure during the multipass hot rolling of steel plate and strip
Beynon et al. Modelling microstructure and its effects during multipass hot rolling
TWI312069B (en) Rolling line material quality prediction and control apparatus
Chen et al. Fundamental phenomena governing heat transfer during rolling
CN103761370B (en) A kind of Forecasting Methodology of process of plate belt hot rolling surface film thermal conductance
JP2554414B2 (en) Prediction method of rolling temperature of steel sheet in hot rolling
CN106540967A (en) A kind of Wide and Thick Slab temperature monitoring method of mesh index distribution
Serajzadeh et al. Unsteady state work-roll temperature distribution during continuous hot slab rolling
JP4402502B2 (en) Winding temperature controller
CN115121626A (en) Hot-rolled strip steel transient hot roll shape forecasting method based on error compensation
US3628358A (en) Method of revising workpiece temperature estimates or measurements using workpiece deformation behavior
CN109522677A (en) A method of for the temperature controlled strip cross section layered method of hot-strip
Pietrzyk et al. A study of heat transfer during flat rolling
JP5610869B2 (en) Method for controlling cooling of rolled material, and continuous rolling machine to which this cooling control method is applied
JPH0671315A (en) Method for estimating rolling temperature of steel sheet in hot rolling
JP4408221B2 (en) Heat transfer coefficient estimation method and cooling control method in water cooling process of steel sheet
Byon et al. Flow stress equation in range of intermediate strain rates and high temperatures to predict roll force in four-pass continuous rod rolling
Ding et al. Multi‐Objective Optimization of Slab Heating Process in Walking Beam Reheating Furnace Based on Particle Swarm Optimization Algorithm
JP2768637B2 (en) Rolling load prediction method
JP2786760B2 (en) Prediction method of rolling temperature of steel sheet in hot rolling
Pietrzyk et al. A study of thermal-mechanical modeling of hot flat rolling
JPH07214133A (en) Coiling temperature control method of hot rolled steel strip
Shao et al. Influence of Strip Transverse Temperature Deviation in Hot Rolling Based on Two Dimension Alternating Difference
JPH0688060B2 (en) Temperature control method for hot rolled steel
Xin et al. Roll pass evaluation for hot shape rolling processes

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960702

LAPS Cancellation because of no payment of annual fees