JPH0550128A - Method for predicting rolling temperature of steel sheet in hot rolling - Google Patents

Method for predicting rolling temperature of steel sheet in hot rolling

Info

Publication number
JPH0550128A
JPH0550128A JP3210610A JP21061091A JPH0550128A JP H0550128 A JPH0550128 A JP H0550128A JP 3210610 A JP3210610 A JP 3210610A JP 21061091 A JP21061091 A JP 21061091A JP H0550128 A JPH0550128 A JP H0550128A
Authority
JP
Japan
Prior art keywords
temperature
rolling
steel sheet
thickness direction
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3210610A
Other languages
Japanese (ja)
Other versions
JP2554414B2 (en
Inventor
Kenichi Oe
憲一 大江
Yuichi Yasuda
雄一 安田
Tokuo Mizuta
篤男 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3210610A priority Critical patent/JP2554414B2/en
Publication of JPH0550128A publication Critical patent/JPH0550128A/en
Application granted granted Critical
Publication of JP2554414B2 publication Critical patent/JP2554414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To evaluate the temperature at a necessary position in the direction of a plate thickness by predicting not only an average temperature but also the temperature distribution in the thickness direction of a steel plate through a simple calculation with high accuracy concerning a method for predicting the rolling temperature of a hot rolled stock such as a TMCP steel plate, etc., on line in the rolling process. CONSTITUTION:A 1st temperature distribution in the thickness direction of a steel sheet controlled only by the cooling mode of rolling process and a 2nd temperature distribution in the thickness direction of the steel sheet showing a recuperative behavior of heat in the steel sheet are intended to be obtained respectively as a boundary value problem of an initial value derived of simultaneous partial differential equations based on a heat contuction equation. For that purpose, a weak expression from is used for these simultaneous partial differential equations and these simultaneous partial differential equations results in the simultaneous ordinary differential equation series of time. The simultaneous ordinary differential equations are solved to find the 1st and 2nd temperature distributions, the predictive model of an on-line rolling temperature at a temperature field formed when the steel sheet having a prescribed initial temperature distribution is cooled under a specified cooling mode is created by combining the 1st temperature distribution and the 2nd temperature distribution and the rolling temperature in the thickness direction of the steel sheet in the rolling process is predicted in accordance with this model.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、TMCP鋼板等の熱間
圧延鋼板の圧延温度を、圧延工程においてオンラインで
予測する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting a rolling temperature of a hot rolled steel sheet such as a TMCP steel sheet online in a rolling process.

【0002】[0002]

【従来の技術】近年、鋼構造物の大型化と使用環境の過
酷化に伴って、厚板製品の重要特性である強度,じん
性,溶接性等に対する要求はますます厳しくなってきて
いる。
2. Description of the Related Art In recent years, demands for strength, toughness, weldability, etc., which are important characteristics of thick plate products, have become more and more strict with the increase in size of steel structures and the severer usage environment.

【0003】そこで、TMCP(Thermo Mechanical Con
trol Process)が適用され、圧延工程でオンライン冷却
を施して各種のじん性,溶接性に優れた高張力鋼板(以
下、TMCP鋼板という;例えば、加速冷却鋼板,直接
焼入れ鋼板)が製造されている。
Therefore, TMCP (Thermo Mechanical Con
trol Process) is applied and online cooling is performed in the rolling process to produce high-tensile steel sheets (hereinafter referred to as TMCP steel sheets; for example, accelerated cooling steel sheets, direct-quenched steel sheets) with excellent toughness and weldability. ..

【0004】これらのTMCP鋼板の材質の安定化や板
厚精度および平坦度の向上に際して(つまりは熱間圧延
鋼板についての形状制御,板厚制御,制御圧延に際し
て)、圧延工程での圧延温度予測の高精度化は極めて重
要な要素である。
For stabilization of the material of these TMCP steel plates and improvement of plate thickness accuracy and flatness (that is, for shape control, plate thickness control, and controlled rolling of hot-rolled steel plates), prediction of rolling temperature in rolling process Improving the accuracy of is an extremely important factor.

【0005】[0005]

【発明が解決しようとする課題】このため、熱間圧延鋼
板の圧延温度を予測すべく、従来から種々のオンライン
モデルが構築されてきたが、以下に記すような問題があ
った。
For this reason, various online models have been conventionally constructed in order to predict the rolling temperature of the hot-rolled steel sheet, but there are problems as described below.

【0006】加熱炉抽出から圧延完了までの鋼板の熱
履歴を差分法による圧延温度シミュレーションにより計
算し、その熱履歴から求めた平均温度に基づいて、平均
温度の簡易予測式を作成しているが、その平均温度の簡
易予測式の基本形が熱伝導方程式に立脚したものでない
ために、普通圧延,制御圧延等を含めて圧延ラインでの
ダイナミックな冷却形態に追従できない。
The thermal history of the steel sheet from extraction of the heating furnace to completion of rolling is calculated by rolling temperature simulation by the difference method, and a simple prediction formula for the average temperature is prepared based on the average temperature obtained from the thermal history. Since the basic form of the simple prediction formula of the average temperature is not based on the heat conduction equation, it cannot follow the dynamic cooling form in the rolling line including ordinary rolling and controlled rolling.

【0007】加えて、制御圧延のように圧延ラインで
必要な温度範囲で適正な圧下量を確保するために、鋼板
の冷却装置を用いて鋼板を圧延途中で冷却するが、その
際に鋼板の平均温度を目標温度にするだけでなく、表面
温度の過冷を防止することも重要になるが、従来手段で
は、平均温度しか予測しえないために、鋼板の表面温度
の管理が不可能である。
In addition, in order to secure an appropriate reduction amount in a temperature range required in a rolling line as in controlled rolling, the steel sheet cooling device is used to cool the steel sheet during rolling. It is important not only to set the average temperature to the target temperature but also to prevent the surface temperature from overcooling, but with the conventional means, it is impossible to control the surface temperature of the steel sheet because only the average temperature can be predicted. is there.

【0008】従来行なわれている表面温度の推定は、
板厚方向の温度分布が板厚方向位置のベキ乗で表わされ
ることを前提にしているが、その際に板厚方向位置のベ
キ乗の次数nが固定されているため、予測された平均温
度から高精度に変換できない。
The conventional estimation of the surface temperature is as follows.
It is assumed that the temperature distribution in the plate thickness direction is represented by the power of the position in the plate thickness direction, but at that time, the order n of the power of the plate in the plate thickness direction is fixed, so the predicted average temperature Can not be converted to high precision.

【0009】差分法による圧延温度シミュレーションに
より計算されたベキ乗の次数nは、圧延ラインの種々の
冷却形態,圧延時の板厚等によって、30次以上の高次
の次数から1〜3次程度まで粗圧延から仕上げ圧延にか
かえてダイナミックに変化するため、こうした変換を高
精度で行なうには、ベキ乗の次数nを正確に推定する必
要があるが、固定された次数では形だけの変換がなされ
ているにすぎない。
The order n of the power to the power calculated by the rolling temperature simulation by the difference method is from the higher order of 30th order or higher to the 1st to 3rd order depending on various cooling modes of the rolling line, plate thickness during rolling, and the like. Since it changes dynamically from rough rolling to finish rolling, in order to perform such conversion with high accuracy, it is necessary to accurately estimate the order n of the power, but with a fixed order, only the form is converted. It's just done.

【0010】圧延時のミルセッティングに際して、圧
延途中で温度計測されても表面温度の予測ができないた
めに、あるいは、予測しても前記項の理由から高精度
の推定ができないために、板厚方向の平均温度を計測値
に基づいてチェックしたり、修正したりすることも高精
度で行なえなかった。
In mill setting during rolling, the surface temperature cannot be predicted even if the temperature is measured during rolling, or even if it is predicted, highly accurate estimation cannot be performed for the reasons described above. It was also not possible to check or correct the average temperature of the above with high accuracy.

【0011】以上の理由から、近年、差分モデルを用
いて、圧延ラインでの温度予測,実績温度計算を行なっ
ている場合もあるが、計算負担が多大になることから予
測計算を行なうには自ずと限界があり、実績計算を含め
た温度計算に際しては、計算機として容量,能力等につ
いて非常に大規模のものが必要になる。
For the above reasons, in recent years, there has been a case where temperature prediction and actual temperature calculation in a rolling line are performed using a difference model, but since the calculation load becomes large, it is naturally necessary to perform the prediction calculation. There is a limit, and in the temperature calculation including actual calculation, a very large-scaled computer is required in terms of capacity and capacity.

【0012】本発明は、このような状況に鑑みてなされ
たもので、平均温度だけでなく鋼板の板厚方向の温度分
布をも簡易な計算により高精度で推定できるようにし
て、板厚方向の必要位置での温度評価を可能にした、熱
間圧延における鋼板の圧延温度予測方法を提供すること
を目的とする。
The present invention has been made in view of such a situation, and enables not only the average temperature but also the temperature distribution in the plate thickness direction of the steel plate to be estimated with high accuracy by a simple calculation. It is an object of the present invention to provide a method for predicting the rolling temperature of a steel sheet in hot rolling, which enables the temperature evaluation at the required position of.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明の熱間圧延における鋼板の圧延温度予測方法
は、圧延工程での冷却形態にのみ支配される鋼板板厚方
向の第1の温度分布と、鋼板内での復熱挙動を表わす鋼
板板厚方向の第2の温度分布とを、それぞれ、熱伝導方
程式に基づく連立偏微分方程式からなる初期値境界値問
題の解として求めるべく、前記連立偏微分方程式につい
て弱表現形式を用いることにより該連立偏微分方程式を
時間の連立常微分方程式系に帰着させ、該連立常微分方
程式を解くことにて第1および第2の温度分布を求めた
後、所定初期温度分布を有する鋼板を所定冷却形態下で
冷却した場合に前記鋼板の板厚方向に形成される温度場
についてのオンライン圧延温度予測モデルを、第1の温
度分布と第2の温度分布とを重畳したものとして構築し
てから、該オンライン圧延温度予測モデルに基づき、鋼
板の圧延工程での板厚方向の圧延温度を予測することを
特徴としている。
In order to achieve the above object, the method for predicting the rolling temperature of a steel sheet in hot rolling according to the present invention is a first method in the thickness direction of a steel sheet governed only by the cooling mode in the rolling process. And the second temperature distribution in the thickness direction of the steel sheet, which represents the recuperative behavior in the steel sheet, as the solution of the initial value boundary value problem consisting of simultaneous partial differential equations based on the heat conduction equation. , By using a weak representation form for the simultaneous partial differential equations to reduce the simultaneous partial differential equations to a system of simultaneous ordinary differential equations in time, and solve the simultaneous ordinary differential equations to obtain the first and second temperature distributions. After the determination, the on-line rolling temperature prediction model for the temperature field formed in the plate thickness direction of the steel plate when the steel plate having the predetermined initial temperature distribution is cooled under the predetermined cooling form is calculated using the first temperature distribution and the second The temperature of From building as obtained by superimposing the distribution, on the basis of the online rolling temperature prediction model, it is characterized by predicting the thickness direction of the rolling temperature in the rolling process of the steel sheet.

【0014】[0014]

【作用】上述した本発明の熱間圧延における鋼板の圧延
温度予測方法では、圧延工程での種々の冷却形態でのオ
ンライン圧延温度予測モデルが、熱伝導方程式の弱表現
式を用いることにより、熱伝導方程式に基づいて物理的
意味をもたせながら構築されるので、そのモデルによ
り、鋼板板厚方向の温度分布を高精度で算定することが
できる。
In the method for predicting the rolling temperature of the steel sheet in the hot rolling of the present invention described above, the on-line rolling temperature prediction model in various cooling forms in the rolling process uses the weak expression of the heat conduction equation to Since it is constructed while giving a physical meaning based on the conduction equation, the temperature distribution in the steel plate thickness direction can be calculated with high accuracy by the model.

【0015】[0015]

【実施例】本発明では、圧延工程における種々の冷却形
態での圧延温度予測を熱伝導方程式に基づいて、物理的
意味をもたせながら高精度に構築するために、熱伝導方
程式の弱表現式を用いることにより、板厚方向の温度分
布を算定できるオンライン圧延温度予測モデルを新たに
構築したので、その予測モデル構築の概略を以下に記
す。なお、熱伝導方程式の弱表現式については、B.A.Fi
nlayson:The Methodof Weighted Residuals and Varia
tional Principle(1972,Academic Press)や、O.C.Zienk
iewicz:The Finite Element Method(1977,McGraw-Hil
l)に記載されている。
EXAMPLE In the present invention, in order to construct a rolling temperature prediction in various cooling modes in a rolling process based on a heat conduction equation with high precision while having a physical meaning, a weak expression of the heat conduction equation is used. By using this, a new online rolling temperature prediction model that can calculate the temperature distribution in the plate thickness direction was newly constructed. The outline of the prediction model construction is described below. For the weak expression of the heat conduction equation, see BAFi
nlayson: The Methodof Weighted Residuals and Varia
tional Principle (1972, Academic Press), OCZienk
iewicz: The Finite Element Method (1977, McGraw-Hil
It is described in l).

【0016】圧延温度予測モデルの構築に際しての前提
として下記(a)〜(d)の仮定を設定することにより、圧
延工程での温度予測モデルは、各冷却形態下における板
厚方向の熱伝導に関する初期値境界値問題の解を導出す
ることによって構築される。
By setting the following assumptions (a) to (d) as a premise for constructing the rolling temperature prediction model, the temperature prediction model in the rolling process relates to heat conduction in the plate thickness direction under each cooling mode. It is constructed by deriving the solution of the initial value boundary value problem.

【0017】(a)加熱炉抽出時におけるスラブの板厚方
向温度分布は一様である。 (b)圧延工程における鋼板上下面の熱伝達係数は同一で
ある。 (c)圧延中の塑性加工による加工発熱は板厚方向に一様
である。 (d)ロール接触時の鋼板の板厚は入出側の平均厚であ
る。
(A) The temperature distribution in the plate thickness direction of the slab during extraction in the heating furnace is uniform. (b) The heat transfer coefficients of the upper and lower surfaces of the steel plate in the rolling process are the same. (c) Processing heat generated by plastic working during rolling is uniform in the plate thickness direction. (d) The plate thickness of the steel plate at the time of contact with the roll is the average thickness on the inlet and outlet sides.

【0018】以上の仮定のもと、以下に予測モデルの定
式化について説明する。初期温度分布φ0(x)を有する鋼
板を一定の冷却形態下で冷却した場合、図1に示すよう
に、鋼板の板厚方向に形成される温度場T(x,t)は、次
の連立偏微分方程式(2),(3)からなる初期値境界値問題
の解U,Vを重畳した(1)式のような形で表わすことが
できる。 T(x,t)=U(x,t)+V(x,t) (1)
Based on the above assumptions, the formulation of the prediction model will be described below. When a steel sheet having an initial temperature distribution φ 0 (x) is cooled under a constant cooling mode, as shown in FIG. 1, the temperature field T (x, t) formed in the thickness direction of the steel sheet is It can be expressed in the form of equation (1) in which the solutions U and V of the initial value boundary value problem consisting of simultaneous partial differential equations (2) and (3) are superimposed. T (x, t) = U (x, t) + V (x, t) (1)

【0019】[0019]

【数1】 [Equation 1]

【0020】ここで、上式(2),(3)において、λ,c,
ρはそれぞれ鋼板の熱伝導率,比熱,密度、αは熱伝達
係数、hは鋼板の板厚、T0は雰囲気温度、tは時間、
xは鋼板の板厚方向位置である。
In the above equations (2) and (3), λ, c,
ρ is the thermal conductivity, specific heat and density of the steel sheet, α is the heat transfer coefficient, h is the thickness of the steel sheet, T 0 is the ambient temperature, t is the time,
x is the position in the plate thickness direction of the steel plate.

【0021】この時、Vは冷却形態に支配される温度分
布を表わし、Uは鋼板内での復熱挙動を表わす温度分布
である。
At this time, V represents the temperature distribution governed by the cooling mode, and U is the temperature distribution representing the recuperation behavior in the steel sheet.

【0022】U,Vを定式化するに際して、初期値境界
値問題(3)式における鋼板表面での境界条件は、モデル
の簡略化のために、次式(4),(5)のように近似化した。
In formulating U and V, the boundary conditions on the steel plate surface in the initial value boundary value problem (3) are expressed by the following formulas (4) and (5) in order to simplify the model. Approximated.

【0023】[0023]

【数2】 [Equation 2]

【0024】圧延工程での各冷却形態における鋼板の板
厚方向の温度分布は、板厚方向位置xの巾乗の関数とし
て表わされるとする。今、解析対象とする冷却工程の前
履歴の冷却工程数をkとおけば、初期温度分布φ0(x)は
次式(6)のように表示することができる。
It is assumed that the temperature distribution in the plate thickness direction of the steel plate in each cooling mode in the rolling process is expressed as a function of the power of the position x in the plate thickness direction. If the number of cooling processes in the previous history of the cooling process to be analyzed is k, the initial temperature distribution φ 0 (x) can be displayed as in the following equation (6).

【0025】[0025]

【数3】 [Equation 3]

【0026】この時、初期値境界値問題(2),(3)式の解
U,Vは次式(7),(8)のように表わすことができる。
At this time, the solutions U and V of the initial value boundary value problems (2) and (3) can be expressed as the following expressions (7) and (8).

【0027】[0027]

【数4】 [Equation 4]

【0028】次に、連立偏微分方程式(2),(3)につい
て、弱表現式を用いることにより、下記に示すように、
Next, by using the weak expression for the simultaneous partial differential equations (2) and (3), as shown below,

【数5】 を未知関数とする時間の連立常微分方程式系に帰着させ
ることができる。
[Equation 5] Can be reduced to a system of simultaneous ordinary differential equations with time as an unknown function.

【0029】[0029]

【数6】 [Equation 6]

【0030】[0030]

【数7】 [Equation 7]

【0031】(7)〜(16)式で構成される連立常微分方程
式は、前記未知関数に関して解析的に解くことができ
る。具体的には、下記(17)〜(37)式に示すようになる。
The simultaneous ordinary differential equations composed of equations (7) to (16) can be solved analytically with respect to the unknown function. Specifically, it becomes as shown in the following equations (17) to (37).

【0032】[0032]

【数8】 [Equation 8]

【0033】[0033]

【数9】 [Equation 9]

【0034】[0034]

【数10】 [Equation 10]

【0035】[0035]

【数11】 [Equation 11]

【0036】以上により、初期値境界値問題(2),(3)式
の解U,Vは定式化され、鋼板の板厚方向温度分布を算
定できる新たな圧延温度予測モデルが構築された。
As described above, the solutions U and V of the initial value boundary value problems (2) and (3) were formulated, and a new rolling temperature prediction model capable of calculating the temperature distribution in the plate thickness direction was constructed.

【0037】つまり、本実施例では、圧延工程での冷却
形態にのみ支配される鋼板板厚方向の第1の温度分布V
と、鋼板内での復熱挙動を表わす鋼板板厚方向の第2の
温度分布Uとを、それぞれ、熱伝導方程式に基づく連立
偏微分方程式(2),(3)からなる初期値境界値問題の解と
して求めるべく、連立偏微分方程式(2),(3)について弱
表現形式を用いることにより連立偏微分方程式(2),(3)
を時間の連立常微分方程式系(9)〜(16)に帰着させる。
That is, in this embodiment, the first temperature distribution V in the thickness direction of the steel sheet is governed only by the cooling mode in the rolling process.
And the second temperature distribution U in the thickness direction of the steel sheet that represents the recuperative behavior in the steel sheet, and the initial value boundary value problem consisting of simultaneous partial differential equations (2) and (3) based on the heat conduction equation. In order to obtain the solution of the simultaneous partial differential equations (2), (3), the partial partial differential equations (2), (3)
To a system of simultaneous ordinary differential equations (9) to (16).

【0038】そして、この連立常微分方程式(9)〜(16)
を(17)〜(37)式のように解くことにより、温度分布U,
Vを求めた後、所定初期温度分布φ0(x)を有する鋼板を
所定冷却形態下で冷却した場合に鋼板板厚方向に形成さ
れる温度場T(x,t)についてのオンライン圧延温度予測
モデルを、温度分布UとVとを重畳したものとして構築
し、この圧延温度予測モデルに基づき、鋼板の圧延工程
での板厚方向の圧延温度が予測されるのである。
Then, the simultaneous ordinary differential equations (9) to (16)
By solving the equations (17) to (37), the temperature distribution U,
After obtaining V, the online rolling temperature prediction for the temperature field T (x, t) formed in the steel plate thickness direction when the steel plate having the predetermined initial temperature distribution φ 0 (x) is cooled under the predetermined cooling mode. The model is constructed by superimposing the temperature distributions U and V, and the rolling temperature in the plate thickness direction in the rolling process of the steel sheet is predicted based on this rolling temperature prediction model.

【0039】ここで、加熱炉抽出から仕上げ圧延完了ま
での一連の工程における鋼板の温度変化挙動を、差分法
に基づく圧延温度シミュレーションモデルと、本実施例
により新しく構築したオンライン圧延温度予測モデルと
を用いて計算し、精度比較を行なう。
Here, the temperature change behavior of the steel sheet in a series of steps from the extraction of the heating furnace to the completion of the finish rolling is performed using a rolling temperature simulation model based on the difference method and an online rolling temperature prediction model newly constructed by this embodiment. Calculate using and compare accuracy.

【0040】この精度比較計算における計算条件を下表
に示す。
The calculation conditions for this precision comparison calculation are shown in the table below.

【表1】 [Table 1]

【0041】また、圧延中のロールとの接触における熱
伝達係数αRは次式のようになる。
Further, the heat transfer coefficient α R in contact with the roll being rolled is given by the following equation.

【数12】 ここで、λR,cR,ρRはそれぞれロールの熱伝導度,
比熱,密度、Rはロール径、rは圧下率、h0は入側
厚、vは圧延速度である。
[Equation 12] Where λ R , c R and ρ R are the thermal conductivity of the roll,
Specific heat, density, R is roll diameter, r is rolling reduction, h 0 is inlet side thickness, and v is rolling speed.

【0042】また、圧延の塑性加工発熱による鋼板温度
の上昇量ΔTと平均厚hmとの算出には、それぞれ次式
を用いた。
Further, the following equations were used to calculate the amount ΔT of increase in steel plate temperature due to heat generated by plastic working of rolling and the average thickness h m .

【数13】 ここで、h1は出側厚、pmは平均圧延圧力である。[Equation 13] Here, h 1 is DegawaAtsu, is p m is the average rolling pressure.

【0043】圧延工程における鋼板の平均温度,表面温
度および中心温度の経時変化に関して、上記表および各
式に基づいて行なった本実施例による予測方法と高精度
な計算を行なえる差分モデルとによる精度比較結果を図
2に示す。
Regarding the changes with time of the average temperature, the surface temperature and the central temperature of the steel sheet in the rolling process, the accuracy of the prediction method according to the present embodiment performed based on the above table and each formula and the difference model capable of performing highly accurate calculation The comparison result is shown in FIG.

【0044】図2から明らかなように、本実施例のオン
ライン圧延温度予測モデルによる計算結果は、全工程を
通じて、差分モデルによる計算結果にほぼ一致してい
る。このことから、本実施例の予測モデルの推定精度
は、差分モデルによる推定精度とほぼ同等であることが
分かる。
As is apparent from FIG. 2, the calculation results obtained by the online rolling temperature prediction model of this embodiment are almost the same as the calculation results obtained by the differential model throughout the entire process. From this, it is understood that the estimation accuracy of the prediction model of the present embodiment is almost the same as the estimation accuracy of the difference model.

【0045】このように、本実施例の方法によれば、熱
伝導方程式の弱表現式を用いて得られた、圧延工程での
冷却形態に支配される温度分布Vと、その冷却形態下で
の鋼板内の復熱挙動を表わす温度分布Uとに、圧延によ
る塑性加工発熱による温度上昇量ΔTを加味することに
より、厳密な圧延ラインでの温度変化を再現できる差分
モデルと同等の温度予測を、極めて簡易な計算により実
現でき、その有効性の高さが確認された。
As described above, according to the method of this embodiment, the temperature distribution V governed by the cooling form in the rolling process, which is obtained by using the weak expression of the heat conduction equation, and the cooling form under the cooling form. In addition to the temperature distribution U representing the recuperation behavior in the steel sheet, the temperature increase amount ΔT due to the heat generated by the plastic working due to rolling is taken into consideration, so that the temperature prediction equivalent to that of the differential model capable of reproducing the temperature change in the strict rolling line can be performed. It was realized by extremely simple calculation, and its high effectiveness was confirmed.

【0046】また、これまで簡易式により予測を行なえ
なかった鋼板の板厚方向の温度分布を圧延工程での任意
の冷却形態下で高精度に推定することが可能になる。
Further, it becomes possible to highly accurately estimate the temperature distribution in the plate thickness direction of the steel sheet, which could not be predicted by the simple formula until now, under any cooling mode in the rolling process.

【0047】さらに、本実施例のモデルによる温度予測
計算は、差分モデルによる温度予測計算の10分の1程
度の計算量にて行なうことができ、温度予測に要する時
間を大幅に短縮できる。
Further, the temperature prediction calculation by the model of the present embodiment can be performed with a calculation amount of about 1/10 of the temperature prediction calculation by the difference model, and the time required for temperature prediction can be greatly shortened.

【0048】[0048]

【発明の効果】以上詳述したように、本発明の熱間圧延
における鋼板の圧延温度予測方法によれば、圧延工程で
の種々の冷却形態でのオンライン圧延温度予測モデル
を、熱伝導方程式の弱表現式を用いることにより、熱伝
導方程式に基づいて物理的意味をもたせながら構築する
ので、そのモデルにより、平均温度だけでなく、鋼板板
厚方向の温度分布を極めて簡易な計算により高精度で算
定でき、板厚方向の必要位置での確実な温度評価を実現
できる効果がある。
As described in detail above, according to the method for predicting the rolling temperature of a steel sheet in hot rolling according to the present invention, an online rolling temperature predicting model in various cooling modes in the rolling process can be used as a heat conduction equation model. By using the weak expression, it is constructed while giving a physical meaning based on the heat conduction equation, so that the model can calculate not only the average temperature but also the temperature distribution in the plate thickness direction with extremely simple calculation with high accuracy. There is an effect that it can be calculated and a reliable temperature evaluation at a required position in the plate thickness direction can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としての熱間圧延における鋼
板の圧延温度予測方法を説明すべく鋼板板厚方向の温度
分布例を示すグラフである。
FIG. 1 is a graph showing an example of temperature distribution in a plate thickness direction of a steel plate for explaining a method for predicting a rolling temperature of a steel plate in hot rolling as an embodiment of the present invention.

【図2】本実施例の方法による温度予測値と差分法によ
る温度予測値とを比較して示すグラフである。
FIG. 2 is a graph showing a temperature predicted value by the method of the present embodiment and a temperature predicted value by the difference method in comparison.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱間圧延における鋼板の圧延温度を予測
する方法において、 圧延工程での冷却形態にのみ支配される前記鋼板の板厚
方向の第1の温度分布と、前記鋼板内での復熱挙動を表
わす前記鋼板の板厚方向の第2の温度分布とを、それぞ
れ、熱伝導方程式に基づく連立偏微分方程式からなる初
期値境界値問題の解として求めるべく、前記連立偏微分
方程式について弱表現形式を用いることにより該連立偏
微分方程式を時間の連立常微分方程式系に帰着させ、 該連立常微分方程式を解くことにより前記の第1および
第2の温度分布を求めた後、 所定初期温度分布を有する鋼板を所定冷却形態下で冷却
した場合に前記鋼板の板厚方向に形成される温度場につ
いてのオンライン圧延温度予測モデルを、前記第1の温
度分布と前記第2の温度分布とを重畳したものとして構
築してから、 前記オンライン圧延温度予測モデルに基づいて、前記鋼
板の圧延工程での板厚方向の圧延温度を予測することを
特徴とする熱間圧延における鋼板の圧延温度予測方法。
1. A method of predicting a rolling temperature of a steel sheet in hot rolling, comprising: a first temperature distribution in the thickness direction of the steel sheet, which is governed only by a cooling mode in a rolling process; In order to obtain the second temperature distribution in the plate thickness direction of the steel sheet, which represents the thermal behavior, as the solution of the initial value boundary value problem consisting of the simultaneous partial differential equations based on the heat conduction equation, the weak partial differential equations are weakened. The simultaneous partial differential equations are reduced to a system of simultaneous ordinary differential equations in time by using the expression form, and the first and second temperature distributions are obtained by solving the simultaneous ordinary differential equations. An online rolling temperature prediction model for a temperature field formed in the thickness direction of the steel sheet when the steel sheet having a distribution is cooled under a predetermined cooling form is calculated by using the first temperature distribution and the second temperature distribution. After constructing as a superposed with a cloth, based on the online rolling temperature prediction model, the rolling temperature of the steel sheet in hot rolling characterized by predicting the rolling temperature in the sheet thickness direction in the rolling process of the steel sheet Temperature prediction method.
JP3210610A 1991-08-22 1991-08-22 Prediction method of rolling temperature of steel sheet in hot rolling Expired - Fee Related JP2554414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3210610A JP2554414B2 (en) 1991-08-22 1991-08-22 Prediction method of rolling temperature of steel sheet in hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3210610A JP2554414B2 (en) 1991-08-22 1991-08-22 Prediction method of rolling temperature of steel sheet in hot rolling

Publications (2)

Publication Number Publication Date
JPH0550128A true JPH0550128A (en) 1993-03-02
JP2554414B2 JP2554414B2 (en) 1996-11-13

Family

ID=16592177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3210610A Expired - Fee Related JP2554414B2 (en) 1991-08-22 1991-08-22 Prediction method of rolling temperature of steel sheet in hot rolling

Country Status (1)

Country Link
JP (1) JP2554414B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1306770A1 (en) * 2001-10-23 2003-05-02 ABB Schweiz AG Method and system for estimating the temperature distribution in solid bodies
CN103028615A (en) * 2012-11-29 2013-04-10 一重集团大连设计研究院有限公司 Method for predicting temperature evolution in hot continuous rolling process of strip steel
CN103605390A (en) * 2013-10-16 2014-02-26 东北大学 Water supply control method of hot continuous rolling line ultra fast cooling system
CN104815853A (en) * 2014-02-04 2015-08-05 东芝三菱电机产业系统株式会社 Temperature distribution prediction device
WO2016035778A1 (en) * 2014-09-01 2016-03-10 新日鐵住金株式会社 Rolling method and rolling device
CN114722732A (en) * 2022-06-09 2022-07-08 华中科技大学 Method for predicting temperature field of fuel tank of hypersonic aircraft based on point cloud network

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1306770A1 (en) * 2001-10-23 2003-05-02 ABB Schweiz AG Method and system for estimating the temperature distribution in solid bodies
CN103028615A (en) * 2012-11-29 2013-04-10 一重集团大连设计研究院有限公司 Method for predicting temperature evolution in hot continuous rolling process of strip steel
CN103605390A (en) * 2013-10-16 2014-02-26 东北大学 Water supply control method of hot continuous rolling line ultra fast cooling system
CN103605390B (en) * 2013-10-16 2015-11-11 东北大学 A kind of water-supply control of hot-rolling line ultra-rapid cooling system
CN104815853A (en) * 2014-02-04 2015-08-05 东芝三菱电机产业系统株式会社 Temperature distribution prediction device
WO2016035778A1 (en) * 2014-09-01 2016-03-10 新日鐵住金株式会社 Rolling method and rolling device
JPWO2016035778A1 (en) * 2014-09-01 2017-04-27 新日鐵住金株式会社 Rolling method and rolling apparatus
CN114722732A (en) * 2022-06-09 2022-07-08 华中科技大学 Method for predicting temperature field of fuel tank of hypersonic aircraft based on point cloud network

Also Published As

Publication number Publication date
JP2554414B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
Laasraoui et al. Prediction of temperature distribution, flow stress and microstructure during the multipass hot rolling of steel plate and strip
US20100018270A1 (en) Method for controlling materials quality in rolling, forging, or leveling process
TWI312069B (en) Rolling line material quality prediction and control apparatus
CN103761370B (en) A kind of Forecasting Methodology of process of plate belt hot rolling surface film thermal conductance
CN111079275B (en) Method and device for acquiring temperature of rolled piece in strip hot rolling production line
CN106540967A (en) A kind of Wide and Thick Slab temperature monitoring method of mesh index distribution
JP2554414B2 (en) Prediction method of rolling temperature of steel sheet in hot rolling
JP2005297015A (en) Winding temperature controller
CN109522677A (en) A method of for the temperature controlled strip cross section layered method of hot-strip
JPH0671315A (en) Method for estimating rolling temperature of steel sheet in hot rolling
JP4962005B2 (en) Steel manufacturing method, steel cooling control device, and steel manufacturing device
JP2012000663A (en) Cooling control method for rolled material, and continuous rolling mill with the cooling control method applied
JP4408221B2 (en) Heat transfer coefficient estimation method and cooling control method in water cooling process of steel sheet
JP2786760B2 (en) Prediction method of rolling temperature of steel sheet in hot rolling
JP2768637B2 (en) Rolling load prediction method
Shao et al. Influence of strip transverse temperature deviation in hot rolling based on two dimension alternating difference
Harding Temperature and structural changes during hot rolling.
Lee et al. Mathematical model to simulate thermo-mechanical controlled processing in rod (or bar) rolling
JPH0688060B2 (en) Temperature control method for hot rolled steel
JP3821665B2 (en) Sheet crown prediction method and hot rolling method in hot rolling
JP2843273B2 (en) Hot rolled steel sheet shape prediction method
Hadała et al. Validation of the boundary conditions in on-line temperature model for plate rolling mill
JP3525522B2 (en) Temperature Prediction Method of Steel Sheet Tip in Hot Rolling
Hsu et al. An improvement of the thermal model for producing the ultra-thin strips in a conventional hot strip mill
Biryukov et al. Modeling of heat engineering parameters of casting and rolling complexes work

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960702

LAPS Cancellation because of no payment of annual fees