JP2010023066A - Method and equipment for cooling hot-rolled steel sheet - Google Patents

Method and equipment for cooling hot-rolled steel sheet Download PDF

Info

Publication number
JP2010023066A
JP2010023066A JP2008186128A JP2008186128A JP2010023066A JP 2010023066 A JP2010023066 A JP 2010023066A JP 2008186128 A JP2008186128 A JP 2008186128A JP 2008186128 A JP2008186128 A JP 2008186128A JP 2010023066 A JP2010023066 A JP 2010023066A
Authority
JP
Japan
Prior art keywords
cooling
hot
rolled steel
steel sheet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008186128A
Other languages
Japanese (ja)
Other versions
JP4924952B2 (en
Inventor
Yasuhiko Takee
康彦 武衛
Tatsuro Honda
達朗 本田
Chihiro Uematsu
千尋 植松
Hisayoshi Tachibana
久好 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2008186128A priority Critical patent/JP4924952B2/en
Publication of JP2010023066A publication Critical patent/JP2010023066A/en
Application granted granted Critical
Publication of JP4924952B2 publication Critical patent/JP4924952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and equipment for cooling a hot-rolled steel sheet by which the winding temperature of the hot-rolled sheet is accurately controlled to a target winding temperature. <P>SOLUTION: This cooling equipment 100 is provided with: a plurality of cooling systems 1 which are switchable to water cooling and air cooling; a plurality of thermometers 2, 2A which are respectively arranged on the inlet side and the outlet side of each cooling system; a heat transfer coefficient calculating means 3 for calculating the heat transfer coefficients at the water cooling and the air cooling on the basis of the temperature difference between the inlet side and the outlet side of the cooling system; a winding temperature predicting means 4 for predicting the winding temperature of the hot-rolled steel sheet about a plurality of cooling patterns by performing the heat transfer calculation by using the heat transfer coefficients at the water cooling and at the air cooling which are calculated by the heat transfer coefficient calculating means; and a cooling control means 5 for selecting the cooling pattern by which the predicted winding temperature of the hot-rolled steel sheet becomes a prescribed temperature from among the plurality of the cooling patterns and switching the water cooling and the air cooling performed by each cooling system according to a selected cooling pattern by selecting the cooling pattern. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱延鋼板の冷却方法及び冷却設備に関する。特に、本発明は、巻取装置で巻き取られる際の熱延鋼板の温度(巻取温度)を精度良く目標温度(目標巻取温度)に制御することが可能な熱延鋼板の冷却方法及び冷却設備に関する。   The present invention relates to a method for cooling a hot-rolled steel sheet and a cooling facility. In particular, the present invention relates to a method for cooling a hot-rolled steel sheet capable of accurately controlling the temperature of the hot-rolled steel sheet (winding temperature) when being wound by a winding device to a target temperature (target winding temperature), and It relates to cooling equipment.

熱延鋼板は、熱間圧延機で圧延された後、搬送テーブルによって巻取装置に向けて搬送され、巻取装置によってコイル状に巻き取られる。搬送テーブルには冷却装置が設置されている。この冷却装置により、熱延鋼板は巻取装置で巻き取られる前に冷却される。巻取装置で巻き取られる際の熱延鋼板の温度(巻取温度)は、熱延鋼板の機械的特性を所定の範囲内に収めて良好な品質の熱延鋼板を得る上で、重要な管理項目である。従って、熱延鋼板の巻取温度を精度良く目標温度(目標巻取温度)に制御することが望まれている。   The hot-rolled steel sheet is rolled by a hot rolling mill, then conveyed to a winding device by a conveyance table, and wound in a coil shape by the winding device. A cooling device is installed on the transfer table. With this cooling device, the hot-rolled steel sheet is cooled before being wound by the winding device. The temperature (winding temperature) of the hot-rolled steel sheet when being wound by the winding device is important for obtaining a hot-rolled steel sheet of good quality by keeping the mechanical properties of the hot-rolled steel sheet within a predetermined range. It is a management item. Therefore, it is desired to accurately control the winding temperature of the hot-rolled steel sheet to the target temperature (target winding temperature).

図4は、従来の一般的な冷却設備の概略構成例を示す模式図である。
図4に示すように、従来の冷却設備100’は、熱間圧延機20で圧延され巻取装置30に向けて搬送テーブル40によって搬送される熱延鋼板Sの巻取温度が所定の温度となるように、熱間圧延機20と巻取装置30との間に配置され、水冷又は空冷の組み合わせからなる所定の冷却パターンで熱延鋼板Sを冷却するように構成されている。
FIG. 4 is a schematic diagram illustrating a schematic configuration example of a conventional general cooling facility.
As shown in FIG. 4, the conventional cooling facility 100 ′ has a coiling temperature of the hot-rolled steel sheet S that is rolled by the hot rolling mill 20 and conveyed by the conveying table 40 toward the winding device 30. It arrange | positions between the hot rolling mill 20 and the winding device 30, and it is comprised so that the hot-rolled steel plate S may be cooled with the predetermined | prescribed cooling pattern which consists of a combination of water cooling or air cooling.

具体的には、冷却設備100’は、熱延鋼板Sの搬送方向に沿ってそれぞれ配置され、水冷及び空冷の切り替えが可能な複数の冷却装置1(11〜1n)と、熱間圧延機20の出側(熱延鋼板Sの搬送方向最上流側に配置された冷却装置11の入側)に配置され、熱延鋼板Sの温度を測定する温度計(放射温度計)2と、各冷却装置1がそれぞれ水冷又は空冷の何れかを行う複数の冷却パターンを想定し、該複数の冷却パターンについて伝熱計算を行うことにより、各冷却パターンについての熱延鋼板Sの巻取温度を予測する巻取温度予測手段4と、前記想定した複数の冷却パターンのうち巻取温度予測手段4によって予測した熱延鋼板Sの巻取温度が所定の温度(目標巻取温度との差が所定値以下となる温度)となる冷却パターンを選択し、該選択した冷却パターンに従って各冷却装置1が行う水冷又は空冷を切り替える冷却制御手段5とを備える。   Specifically, the cooling equipment 100 ′ is arranged along the conveying direction of the hot-rolled steel sheet S, and a plurality of cooling devices 1 (11 to 1 n) capable of switching between water cooling and air cooling, and the hot rolling mill 20. The thermometer (radiation thermometer) 2 for measuring the temperature of the hot-rolled steel sheet S, which is arranged on the outlet side (the inlet side of the cooling device 11 arranged on the most upstream side in the conveying direction of the hot-rolled steel sheet S), and each cooling Assuming a plurality of cooling patterns in which the apparatus 1 performs either water cooling or air cooling, the heat transfer calculation is performed for the plurality of cooling patterns, thereby predicting the winding temperature of the hot-rolled steel sheet S for each cooling pattern. The winding temperature of the hot-rolled steel sheet S predicted by the winding temperature prediction means 4 and the winding temperature prediction means 4 among the plurality of assumed cooling patterns is a predetermined temperature (the difference from the target winding temperature is less than a predetermined value). Select the cooling pattern to be And a cooling control unit 5 for switching the water cooling or air the cooling device 1 is carried out according to the cooling pattern the selected.

各冷却装置1は、上下一対の冷却ヘッダを具備し、各冷却ヘッダには、熱延鋼板Sに向けて冷却水を噴射する複数の水冷ノズルが設置されている。水冷ノズルに冷却水を供給するか否かは、各冷却装置1が具備するバルブの開閉によって制御される。換言すれば、冷却装置1が具備するバルブを開くと、当該冷却装置1が具備する各水冷ノズルに冷却水が供給され、各水冷ノズルから熱延鋼板Sに向けて冷却水が噴射される。すなわち、熱延鋼板Sが水冷される。一方、冷却装置1が具備するバルブを閉じると、当該冷却装置1が具備する各水冷ノズルへの冷却水の供給が停止し、各水冷ノズルから熱延鋼板Sに向けての冷却水の噴射が停止される。すなわち、熱延鋼板Sが空冷(放冷)される。   Each cooling device 1 includes a pair of upper and lower cooling headers, and each cooling header is provided with a plurality of water cooling nozzles that inject cooling water toward the hot-rolled steel sheet S. Whether or not the cooling water is supplied to the water cooling nozzle is controlled by opening and closing valves provided in each cooling device 1. In other words, when the valve provided in the cooling device 1 is opened, the cooling water is supplied to each water cooling nozzle provided in the cooling device 1, and the cooling water is jetted toward the hot-rolled steel sheet S from each water cooling nozzle. That is, the hot rolled steel sheet S is water cooled. On the other hand, when the valve provided in the cooling device 1 is closed, the supply of the cooling water to each water cooling nozzle provided in the cooling device 1 is stopped, and the injection of the cooling water from each water cooling nozzle toward the hot-rolled steel sheet S is performed. Stopped. That is, the hot-rolled steel sheet S is air-cooled (cooled).

また、冷却設備100’は、熱間圧延機20の出側に配置され、熱延鋼板Sの厚みを測定する厚み計6と、熱間圧延機20の出側に配置され、熱延鋼板Sの速度を測定する速度計7とを備える。
さらに、冷却設備100’は、温度計2の視野内にある熱延鋼板S上に冷却装置1からの冷却水が飛散することによって、温度計2に測温誤差が生じることを低減するため、高圧パージ水を噴射する水切り装置8を備える。また、冷却設備100’は、巻取装置30の入側(熱延鋼板Sの搬送方向最下流側に配置された冷却装置1nの出側)に配置され、熱延鋼板Sの巻取温度を測定する温度計(放射温度計)9と、温度計9に測温誤差が生じることを低減するための水切り装置10とを備える。
In addition, the cooling facility 100 ′ is disposed on the exit side of the hot rolling mill 20, and is disposed on the exit side of the hot rolling mill 20 and a thickness gauge 6 that measures the thickness of the hot rolling steel sheet S, and the hot rolling steel sheet S. And a speedometer 7 for measuring the speed of
Furthermore, the cooling facility 100 ′ reduces the occurrence of a temperature measurement error in the thermometer 2 by the cooling water from the cooling device 1 splashing on the hot-rolled steel sheet S in the field of view of the thermometer 2. A draining device 8 for injecting high-pressure purge water is provided. Moreover, cooling equipment 100 'is arrange | positioned at the entrance side (outside of the cooling device 1n arrange | positioned in the conveyance direction most downstream side of the hot-rolled steel sheet S) of the winding apparatus 30, and takes up the winding temperature of the hot-rolled steel sheet S. A thermometer (radiation thermometer) 9 to be measured and a drainer 10 for reducing the occurrence of temperature measurement errors in the thermometer 9 are provided.

上記の構成を有する冷却設備100’において、熱間圧延機20で圧延された熱延鋼板Sが温度計2の下方を通過する際、所定のサンプリング周期で、熱延鋼板Sの温度及び厚みが、それぞれ温度計2及び厚み計6によって測定される。温度計2と厚み計6とは近接しているため、温度を測定した熱延鋼板Sの部位と、厚みを測定した熱延鋼板Sの部位とは、同一の部位(以下、この部位をサンプリング点という)であると考えても問題はない。また、温度計2によって各サンプリング点の温度を測定する際、速度計7によって各サンプリング点の速度が測定される。これら各サンプリング点について測定した温度、厚み及び速度は、巻取温度予測手段4に入力される。   In the cooling facility 100 ′ having the above configuration, when the hot-rolled steel sheet S rolled by the hot rolling mill 20 passes below the thermometer 2, the temperature and thickness of the hot-rolled steel sheet S are set at a predetermined sampling period. These are measured by the thermometer 2 and the thickness gauge 6, respectively. Since the thermometer 2 and the thickness meter 6 are close to each other, the part of the hot-rolled steel sheet S whose temperature is measured and the part of the hot-rolled steel sheet S whose thickness is measured are the same part (hereinafter, this part is sampled). There is no problem even if it is considered to be a point. Further, when the temperature at each sampling point is measured by the thermometer 2, the speed at each sampling point is measured by the speedometer 7. The temperature, thickness, and speed measured for each of these sampling points are input to the winding temperature prediction means 4.

巻取温度予測手段4は、前述のようにして測定され入力された各サンプリング点についての温度、厚み及び速度の他、予め入力された熱延鋼板Sの比熱、密度、水冷時及び空冷時の熱伝達率、冷却装置1が水冷する場合の冷却水の水量密度、水温、並びに気温などのパラメータを用いて、複数の冷却パターン(各冷却装置1が具備するバルブの開閉状態が異なる複数のパターン)を想定してそれぞれ伝熱計算を行うことにより、各冷却パターンについての各サンプリング点の巻取温度を予測する。この巻取温度の予測は、各サンプリング点が熱延鋼板Sの搬送方向最上流側に配置された冷却装置11に到達する前に実行される。   The coiling temperature predicting means 4 is not only the temperature, thickness and speed for each sampling point measured and inputted as described above, but also the specific heat, density, water cooling and air cooling of the hot rolled steel sheet S inputted in advance. A plurality of cooling patterns (a plurality of patterns with different opening / closing states of the valves included in each cooling device 1) are used using parameters such as heat transfer rate, water density of cooling water when the cooling device 1 is water-cooled, water temperature, and air temperature. ) To estimate the coiling temperature at each sampling point for each cooling pattern. The prediction of the coiling temperature is executed before each sampling point reaches the cooling device 11 arranged on the most upstream side in the transport direction of the hot-rolled steel sheet S.

冷却制御手段5は、前記想定した複数の冷却パターンのうち巻取温度予測手段4によって予測した各サンプリング点の巻取温度が所定の温度(目標巻取温度との差が所定値以下となる温度)となる冷却パターンを選択し、該選択した冷却パターンに従って各冷却装置1が実際に行う水冷又は空冷を切り替える。すなわち、冷却制御手段5は、前記選択した冷却パターンに従って、各冷却装置1が具備するバルブの開閉状態を切り替える。この冷却制御手段5によるバルブの切り替え動作は、各サンプリング点が各冷却装置11に到達する前に実行される。そして、各サンプリング点は、前記選択した冷却パターンに従って各冷却装置11により冷却される。   The cooling control means 5 is configured such that the winding temperature at each sampling point predicted by the winding temperature prediction means 4 among the plurality of assumed cooling patterns is a predetermined temperature (the temperature at which the difference from the target winding temperature is a predetermined value or less). ) Is selected, and water cooling or air cooling actually performed by each cooling device 1 is switched according to the selected cooling pattern. That is, the cooling control means 5 switches the open / close state of the valves included in each cooling device 1 in accordance with the selected cooling pattern. The valve switching operation by the cooling control means 5 is executed before each sampling point reaches each cooling device 11. Each sampling point is cooled by each cooling device 11 according to the selected cooling pattern.

以上に説明した冷却設備100’は、伝熱計算によって予測した熱延鋼板Sの巻取温度が目標巻取温度乃至その近傍となるように、各冷却装置1が具備するバルブの開閉状態を切り替えるものであるため、熱延鋼板Sの実際の巻取温度が目標巻取温度乃至その近傍となるには、熱延鋼板Sの巻取温度を高精度に予測する必要がある。
しかしながら、熱延鋼板Sの巻取温度を高精度に予測するには、水冷時に熱延鋼板Sから奪われる熱量や空冷時に熱延鋼板Sから奪われる熱量を予測することに加え、鋼の相変態により発生する発熱量を予測する必要があるが、これらを全て正確に予測することは困難である。
換言すれば、水冷時及び空冷時の熱伝達率として、経験的に定めた固定値を用いたのでは、熱延鋼板Sの巻取温度を高精度に予測することは困難である。
The cooling facility 100 ′ described above switches the open / close state of the valves included in each cooling device 1 so that the winding temperature of the hot-rolled steel sheet S predicted by heat transfer calculation is equal to or close to the target winding temperature. Therefore, in order for the actual winding temperature of the hot-rolled steel sheet S to be equal to or close to the target winding temperature, it is necessary to predict the winding temperature of the hot-rolled steel sheet S with high accuracy.
However, in order to predict the coiling temperature of the hot-rolled steel sheet S with high accuracy, in addition to predicting the amount of heat taken from the hot-rolled steel sheet S during water cooling and the amount of heat taken from the hot-rolled steel sheet S during air cooling, Although it is necessary to predict the calorific value generated by transformation, it is difficult to accurately predict all of these.
In other words, it is difficult to predict the winding temperature of the hot-rolled steel sheet S with high accuracy by using empirically determined fixed values as the heat transfer coefficients during water cooling and air cooling.

このため、例えば、特許文献1に記載のように、熱延鋼板の実測温度を用いて熱伝達率を補正(学習)する方法が提案されている。特許文献1に記載の方法は、熱間圧延機の出側と巻取装置の入側で熱延鋼板の温度を測定し、その測定結果に基づいて逐次最小二乗法を用い、水冷時及び空冷時の熱伝達率を学習する方法である。
特開昭64−62206号公報
For this reason, for example, as described in Patent Document 1, a method of correcting (learning) the heat transfer coefficient using the measured temperature of the hot-rolled steel sheet has been proposed. The method described in Patent Document 1 measures the temperature of a hot-rolled steel sheet on the outlet side of a hot rolling mill and the inlet side of a winding device, and uses a sequential least-squares method based on the measurement results to perform water cooling and air cooling. It is a method of learning the heat transfer coefficient at the time.
JP-A 64-62206

しかしながら、特許文献1に記載の方法では、水冷時及び空冷時の熱伝達率を学習するに際し、熱間圧延機の出側における熱延鋼板の実測温度と、熱間圧延機と巻取装置との間に位置する冷却設備での水冷及び空冷の双方の影響を受けた巻取装置の入側における熱延鋼板の実測温度しか用いておらず、冷却設備での冷却過程における熱延鋼板の実測温度については何ら考慮していない。従って、特許文献1に記載の方法では、冷却設備での水冷時及び空冷時の熱伝達率を分離して学習させることができず、学習精度が低い、すなわち、水冷時及び空冷時の実際の熱伝達率を精度良く算出することができない。この結果、熱延鋼板の巻取温度を精度良く予測できず、熱延鋼板の巻取温度を精度良く目標巻取温度に制御できないという問題がある。   However, in the method described in Patent Document 1, when learning the heat transfer coefficient during water cooling and air cooling, the measured temperature of the hot-rolled steel sheet on the outlet side of the hot rolling mill, the hot rolling mill and the winding device, Only the measured temperature of the hot-rolled steel sheet on the inlet side of the winding device affected by both water cooling and air cooling in the cooling facility located between the No consideration is given to temperature. Therefore, in the method described in Patent Document 1, it is not possible to separately learn the heat transfer coefficient at the time of water cooling and air cooling in the cooling facility, and the learning accuracy is low, that is, the actual accuracy at the time of water cooling and air cooling. The heat transfer coefficient cannot be calculated with high accuracy. As a result, there is a problem that the winding temperature of the hot-rolled steel sheet cannot be accurately predicted, and the winding temperature of the hot-rolled steel sheet cannot be accurately controlled to the target winding temperature.

本発明は、斯かる従来技術の問題点に鑑みてなされたものであり、熱延鋼板の巻取温度を精度良く目標巻取温度に制御することが可能な熱延鋼板の冷却方法及び冷却設備を提供することを課題とする。   The present invention has been made in view of the problems of the prior art, and a hot-rolled steel sheet cooling method and cooling equipment capable of accurately controlling the coiling temperature of a hot-rolled steel sheet to a target coiling temperature. It is an issue to provide.

前記課題を解決するため、本発明者らは鋭意検討した結果、熱間圧延機と巻取装置との間に位置する冷却帯(冷却設備)において、水冷前後と空冷前後の熱延鋼板の温度をそれぞれ実測し、この実測温度を用いて水冷時及び空冷時の熱伝達率を個別に算出すれば、水冷時及び空冷時の実際の熱伝達率を精度良く算出することができることを見出した。そして、この熱伝達率を用いれば、熱延鋼板の巻取温度を精度良く予測でき、ひいては熱延鋼板の巻取温度を精度良く目標巻取温度に制御できることに想到し、本発明を完成した。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies. As a result, in the cooling zone (cooling equipment) located between the hot rolling mill and the winding device, the temperature of the hot-rolled steel sheet before and after water cooling and before and after air cooling. It was found that the actual heat transfer coefficient at the time of water cooling and air cooling can be calculated with high accuracy by individually measuring the heat transfer coefficient at the time of water cooling and air cooling using this measured temperature. Then, by using this heat transfer coefficient, the coiling temperature of the hot-rolled steel sheet can be predicted with high accuracy, and consequently the coiling temperature of the hot-rolled steel sheet can be accurately controlled to the target coiling temperature, and the present invention has been completed. .

すなわち、本発明は、熱間圧延機で圧延され巻取装置に向けて搬送される熱延鋼板の巻取温度が所定の温度となるように、前記熱間圧延機と前記巻取装置との間に位置し熱延鋼板の搬送方向に沿って複数の区間に分割された冷却帯において、前記各区間でそれぞれ行われる水冷又は空冷の組み合わせからなる所定の冷却パターンで熱延鋼板を冷却する方法であって、以下の(1)〜(4)の各ステップを含むことを特徴とする熱延鋼板の冷却方法を提供する。
(1)前記冷却帯のうち熱延鋼板が水冷される区間の入側と出側の熱延鋼板の温度をそれぞれ測定し、該測定した熱延鋼板の温度差に基づき、水冷時の熱伝達率(熱延鋼板から水への熱伝達率)を算出するステップ。
(2)前記冷却帯のうち熱延鋼板が空冷される区間の入側と出側の熱延鋼板の温度をそれぞれ測定し、該測定した熱延鋼板の温度差に基づき、空冷時の熱伝達率(熱延鋼板から空気への熱伝達率)を算出するステップ。
(3)前記冷却帯における複数の冷却パターンを想定し、該複数の冷却パターンについて、前記算出した水冷時及び空冷時の熱伝達率を用いてそれぞれ伝熱計算を行うことにより、各冷却パターンについての熱延鋼板の巻取温度を予測するステップ。
(4)前記想定した複数の冷却パターンのうち前記予測した熱延鋼板の巻取温度が所定の温度となる冷却パターンを選択し、該選択した冷却パターンにより熱延鋼板を冷却するステップ。
That is, the present invention provides the hot rolling mill and the winding device so that the winding temperature of the hot rolled steel sheet rolled by the hot rolling mill and conveyed toward the winding device becomes a predetermined temperature. A method of cooling a hot-rolled steel sheet with a predetermined cooling pattern consisting of a combination of water cooling or air cooling performed in each of the sections in a cooling zone located between and divided into a plurality of sections along the conveying direction of the hot-rolled steel sheet And the cooling method of the hot rolled sheet steel characterized by including each step of the following (1)-(4) is provided.
(1) Measure the temperature of the hot-rolled steel sheet on the inlet side and the outlet side of the section where the hot-rolled steel sheet is water-cooled in the cooling zone, and based on the measured temperature difference of the hot-rolled steel sheet, heat transfer during water cooling Calculating the rate (heat transfer rate from hot-rolled steel sheet to water).
(2) The temperature of the hot-rolled steel sheet on the inlet side and the outlet side of the section where the hot-rolled steel sheet is air-cooled in the cooling zone is measured, and the heat transfer during air-cooling is based on the measured temperature difference of the hot-rolled steel sheet. Calculating the rate (heat transfer rate from hot-rolled steel sheet to air).
(3) Assuming a plurality of cooling patterns in the cooling zone, each of the plurality of cooling patterns is subjected to heat transfer calculation using the calculated heat transfer coefficient during water cooling and air cooling. Predicting the winding temperature of the hot rolled steel sheet.
(4) A step of selecting a cooling pattern in which the predicted coiling temperature of the hot-rolled steel sheet is a predetermined temperature among the plurality of assumed cooling patterns, and cooling the hot-rolled steel sheet with the selected cooling pattern.

また、前記課題を解決するため、本発明は、熱間圧延機で圧延され巻取装置に向けて搬送される熱延鋼板の巻取温度が所定の温度となるように、前記熱間圧延機と前記巻取装置との間に配置され、水冷又は空冷の組み合わせからなる所定の冷却パターンで熱延鋼板を冷却する設備であって、熱延鋼板の搬送方向に沿ってそれぞれ配置され、水冷及び空冷の切り替えが可能な複数の冷却装置と、前記各冷却装置の入側及び出側にそれぞれ配置され、熱延鋼板の温度を測定する複数の温度計と、前記複数の冷却装置のうち熱延鋼板を水冷する冷却装置の入側と出側にそれぞれ配置された前記温度計によって測定した熱延鋼板の温度差に基づき、水冷時の熱伝達率(熱延鋼板から水への熱伝達率)を算出し、前記複数の冷却装置のうち熱延鋼板を空冷する冷却装置の入側と出側にそれぞれ配置された前記温度計によって測定した熱延鋼板の温度差に基づき、空冷時の熱伝達率(熱延鋼板から空気への熱伝達率)を算出する熱伝達率算出手段と、前記各冷却装置がそれぞれ水冷又は空冷の何れかを行う複数の冷却パターンを想定し、該複数の冷却パターンについて、前記熱伝達率算出手段によって算出した水冷時及び空冷時の熱伝達率を用いて伝熱計算を行うことにより、各冷却パターンについての熱延鋼板の巻取温度を予測する巻取温度予測手段と、前記想定した複数の冷却パターンのうち前記巻取温度予測手段によって予測した熱延鋼板の巻取温度が所定の温度となる冷却パターンを選択し、該選択した冷却パターンに従って前記各冷却装置が行う水冷又は空冷を切り替える冷却制御手段とを備えることを特徴とする熱延鋼板の冷却設備としても提供される。   Moreover, in order to solve the said subject, this invention is the said hot rolling mill so that the winding temperature of the hot rolled steel plate rolled with a hot rolling mill and conveyed toward a winding apparatus may turn into predetermined | prescribed temperature. And the winding device, and is a facility for cooling the hot-rolled steel sheet with a predetermined cooling pattern consisting of a combination of water cooling or air cooling, each arranged along the conveying direction of the hot-rolled steel sheet, A plurality of cooling devices capable of switching between air cooling, a plurality of thermometers arranged on the inlet side and the outlet side of each of the cooling devices, respectively, for measuring the temperature of the hot-rolled steel sheet, and hot rolling of the plurality of cooling devices Heat transfer rate during water cooling (heat transfer rate from hot-rolled steel plate to water) based on the temperature difference of hot-rolled steel plate measured by the thermometers placed on the inlet side and the outlet side of the cooling device for water cooling the steel plate And the hot-rolled steel sheet is emptied of the plurality of cooling devices. Based on the temperature difference between the hot-rolled steel sheets measured by the thermometers arranged on the inlet side and the outlet side of the cooling device, the heat transfer coefficient at the time of air cooling (heat transfer coefficient from the hot-rolled steel sheet to the air) is calculated. Assuming a plurality of cooling patterns in which the heat transfer coefficient calculating means and each of the cooling devices perform either water cooling or air cooling, water cooling and air cooling calculated by the heat transfer coefficient calculating means for the plurality of cooling patterns. A winding temperature predicting means for predicting the winding temperature of the hot-rolled steel sheet for each cooling pattern by performing heat transfer calculation using the heat transfer coefficient, and the winding temperature among the plurality of assumed cooling patterns. A cooling control unit that selects a cooling pattern in which the coiling temperature of the hot-rolled steel sheet predicted by the prediction unit becomes a predetermined temperature, and switches between water cooling and air cooling performed by each of the cooling devices according to the selected cooling pattern. Are provided as cooling equipment for a hot rolled steel sheet, characterized in that it comprises and.

なお、本発明において「熱伝達率を算出する」とは、変数として与えられる熱伝達率そのものを算出することの他、固定値として与えられる熱伝達率に乗算する補正係数を算出することをも含む概念である。   In the present invention, “calculating the heat transfer coefficient” means calculating the correction coefficient for multiplying the heat transfer coefficient given as a fixed value in addition to calculating the heat transfer coefficient given as a variable itself. It is a concept that includes.

本発明によれば、水冷時及び空冷時の熱伝達率を精度良く算出することができるため、熱延鋼板の巻取温度を精度良く予測でき、ひいては熱延鋼板の巻取温度を精度良く目標巻取温度に制御することが可能である。   According to the present invention, since the heat transfer coefficient at the time of water cooling and air cooling can be calculated with high accuracy, the winding temperature of the hot-rolled steel plate can be accurately predicted, and consequently the winding temperature of the hot-rolled steel plate can be accurately targeted. It is possible to control the coiling temperature.

以下、添付図面を適宜参照しつつ、本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings as appropriate.

<1.冷却設備の構成>
図1は、本発明の一実施形態に係る冷却設備の概略構成例を示す模式図である。
図1に示すように、本実施形態に係る冷却設備100は、熱間圧延機20で圧延され巻取装置30に向けて搬送テーブル40によって搬送される熱延鋼板Sの巻取温度が所定の温度となるように、熱間圧延機20と巻取装置30との間に配置され、水冷又は空冷の組み合わせからなる所定の冷却パターンで熱延鋼板Sを冷却するように構成されている。
<1. Configuration of cooling equipment>
FIG. 1 is a schematic diagram illustrating a schematic configuration example of a cooling facility according to an embodiment of the present invention.
As shown in FIG. 1, the cooling facility 100 according to the present embodiment has a predetermined winding temperature of the hot-rolled steel sheet S that is rolled by the hot rolling mill 20 and transported by the transport table 40 toward the winding device 30. It arrange | positions between the hot rolling mill 20 and the winding device 30 so that it may become temperature, and it is comprised so that the hot-rolled steel plate S may be cooled with the predetermined cooling pattern which consists of a combination of water cooling or air cooling.

具体的には、冷却設備100は、熱延鋼板Sの搬送方向に沿ってそれぞれ配置され、水冷及び空冷の切り替えが可能な複数の冷却装置1(11〜1n)と、各冷却装置1の入側及び出側にそれぞれ配置され、熱延鋼板Sの温度を測定する複数の温度計(放射温度計)2、2A(21〜2n)と、複数の冷却装置1のうち熱延鋼板Sを水冷する冷却装置1の入側と出側にそれぞれ配置された温度計によって測定した熱延鋼板Sの温度差に基づき、水冷時の熱伝達率(熱延鋼板から水への熱伝達率)を算出(具体的には熱伝達率の補正係数を算出)し、複数の冷却装置1のうち熱延鋼板Sを空冷する冷却装置1の入側と出側にそれぞれ配置された温度計によって測定した熱延鋼板Sの温度差に基づき、空冷時の熱伝達率(熱延鋼板から空気への熱伝達率)を算出(具体的には熱伝達率の補正係数を算出)する熱伝達率算出手段3と、各冷却装置1がそれぞれ水冷又は空冷の何れかを行う複数の冷却パターンを想定し、該複数の冷却パターンについて、熱伝達率算出手段3によって算出した水冷時及び空冷時の熱伝達率を用いて伝熱計算を行うことにより、各冷却パターンについての熱延鋼板Sの巻取温度を予測する巻取温度予測手段4と、前記想定した複数の冷却パターンのうち巻取温度予測手段4によって予測した熱延鋼板Sの巻取温度が所定の温度(目標巻取温度との差が所定値以下となる温度)となる冷却パターンを選択し、該選択した冷却パターンに従って各冷却装置1が行う水冷又は空冷を切り替える冷却制御手段5とを備える。   Specifically, the cooling equipment 100 is arranged along the conveying direction of the hot-rolled steel sheet S, and a plurality of cooling devices 1 (11 to 1n) capable of switching between water cooling and air cooling, and the input of each cooling device 1 are provided. The plurality of thermometers (radiation thermometers) 2 and 2A (21 to 2n) that are arranged on the side and the outlet side and measure the temperature of the hot-rolled steel sheet S, and the water-cooled hot-rolled steel sheet S among the plurality of cooling devices 1 are water-cooled. Based on the temperature difference of the hot-rolled steel sheet S measured by the thermometers arranged on the inlet side and the outlet side of the cooling device 1 that performs cooling, the heat transfer coefficient during heat cooling (heat transfer coefficient from the hot-rolled steel sheet to water) is calculated. (Specifically, a heat transfer coefficient correction coefficient is calculated), and heat measured by thermometers respectively disposed on the inlet side and the outlet side of the cooling device 1 that cools the hot-rolled steel sheet S among the plurality of cooling devices 1. Based on the temperature difference of the rolled steel sheet S, the heat transfer coefficient during air cooling (heat from the hot rolled steel sheet to the air) Assuming a plurality of cooling patterns in which each cooling device 1 performs either water cooling or air cooling, and a heat transfer coefficient calculating means 3 that calculates (specifically a heat transfer coefficient correction coefficient). About this cooling pattern, by performing heat transfer calculation using the heat transfer coefficient at the time of water cooling and air cooling calculated by the heat transfer coefficient calculating means 3, the winding temperature of the hot rolled steel sheet S for each cooling pattern is set. The coiling temperature predicting means 4 to predict and the coiling temperature of the hot-rolled steel sheet S predicted by the coiling temperature predicting means 4 among the plurality of assumed cooling patterns are set to a predetermined temperature (the difference from the target coiling temperature is predetermined). A cooling control means 5 that selects a cooling pattern that is equal to or lower than the value and switches between water cooling and air cooling performed by each cooling device 1 in accordance with the selected cooling pattern.

各冷却装置1は、上下一対の冷却ヘッダを具備し、各冷却ヘッダには、熱延鋼板Sに向けて冷却水を噴射する複数の水冷ノズルが設置されている。水冷ノズルに冷却水を供給するか否かは、各冷却装置1が具備するバルブの開閉によって制御される。換言すれば、冷却装置1が具備するバルブを開くと、当該冷却装置1が具備する各水冷ノズルに冷却水が供給され、各水冷ノズルから熱延鋼板Sに向けて冷却水が噴射される。すなわち、熱延鋼板Sが水冷される。一方、冷却装置1が具備するバルブを閉じると、当該冷却装置1が具備する各水冷ノズルへの冷却水の供給が停止し、各水冷ノズルから熱延鋼板Sに向けての冷却水の噴射が停止される。すなわち、熱延鋼板Sが空冷(放冷)される。
なお、図1では、図示の便宜上、熱延鋼板Sの搬送方向について、各冷却装置11〜1nの間に隙間が生じているが、実際には、各冷却装置11〜1nは隙間無く連続的に配置されている。
また、冷却装置11〜1nが配置されている全体の領域が、本発明における「冷却帯」に相当し、各冷却装置11〜1nがそれぞれ配置されている領域が、本発明における「区間」に相当する。
Each cooling device 1 includes a pair of upper and lower cooling headers, and each cooling header is provided with a plurality of water cooling nozzles that inject cooling water toward the hot-rolled steel sheet S. Whether or not the cooling water is supplied to the water cooling nozzle is controlled by opening and closing valves provided in each cooling device 1. In other words, when the valve provided in the cooling device 1 is opened, the cooling water is supplied to each water cooling nozzle provided in the cooling device 1, and the cooling water is jetted toward the hot-rolled steel sheet S from each water cooling nozzle. That is, the hot rolled steel sheet S is water cooled. On the other hand, when the valve provided in the cooling device 1 is closed, the supply of the cooling water to each water cooling nozzle provided in the cooling device 1 is stopped, and injection of the cooling water from each water cooling nozzle toward the hot-rolled steel sheet S is performed. Stopped. That is, the hot-rolled steel sheet S is air-cooled (cooled).
In FIG. 1, for convenience of illustration, there is a gap between the cooling devices 11 to 1n in the conveying direction of the hot-rolled steel sheet S, but actually, the cooling devices 11 to 1n are continuous without a gap. Is arranged.
Moreover, the whole area | region where the cooling devices 11-1n are arrange | positioned corresponds to the "cooling zone" in this invention, and the area | region where each cooling device 11-1n is each arrange | positioned in the "section" in this invention. Equivalent to.

各温度計2Aは、各冷却装置1の出側に1台ずつ配置されている。例えば、温度計21は、冷却装置11の出側に配置された温度計であると同時に、冷却装置12の入側に配置された温度計にも相当する。冷却装置11の出側に配置される温度計と、冷却装置12の入側に配置される温度計とを、別個の温度計とすることも可能であるが、温度計を設置するスペースの確保や設備費用の観点より、1台の温度計21を、冷却装置11の出側に配置される温度計で且つ冷却装置12の入側に配置される温度計として使用することが望ましい。各冷却装置1の間に配置される他の温度計2Aについても同様である。
各温度計2Aとしては、搬送テーブル40を構成する搬送ロール41用の冷却水が飛散してきたり、水蒸気が籠もることによって、測温誤差が生じることを低減するため、いわゆる水柱温度計が用いられている。すなわち、熱延鋼板Sの裏面と放射温度計との間に、光導波路としての水柱を形成し、当該水柱を介して熱延鋼板S裏面からの放射光を前記放射温度計で受光することにより、熱延鋼板Sの温度を測定する構成とされている。温度計2Aのより詳しい構成については後述する。
Each thermometer 2 </ b> A is arranged on the exit side of each cooling device 1. For example, the thermometer 21 is a thermometer disposed on the exit side of the cooling device 11 and also corresponds to a thermometer disposed on the entry side of the cooling device 12. The thermometer arranged on the outlet side of the cooling device 11 and the thermometer arranged on the inlet side of the cooling device 12 can be made as separate thermometers, but securing a space for installing the thermometer From the viewpoint of equipment costs, it is desirable to use one thermometer 21 as a thermometer arranged on the outlet side of the cooling device 11 and a thermometer arranged on the inlet side of the cooling device 12. The same applies to the other thermometers 2 </ b> A disposed between the cooling devices 1.
As each thermometer 2A, a so-called water column thermometer is used in order to reduce the occurrence of temperature measurement errors due to the cooling water for the transport roll 41 constituting the transport table 40 being scattered or the water vapor stagnating. It has been. That is, by forming a water column as an optical waveguide between the back surface of the hot-rolled steel sheet S and the radiation thermometer, and receiving the emitted light from the back surface of the hot-rolled steel sheet S through the water column with the radiation thermometer. The temperature of the hot-rolled steel sheet S is measured. A more detailed configuration of the thermometer 2A will be described later.

また、冷却設備100は、熱間圧延機20の出側に配置され、熱延鋼板Sの厚みを測定する厚み計6と、熱間圧延機20の出側に配置され、熱延鋼板Sの速度を測定する速度計7とを備える。
さらに、冷却設備100は、温度計2の視野内にある熱延鋼板S上に冷却装置1からの冷却水が飛散することによって、温度計2に測温誤差が生じることを低減するため、高圧パージ水を噴射する水切り装置8を備える。また、冷却設備100は、巻取装置30の入側に配置され、熱延鋼板Sの巻取温度を測定する温度計(放射温度計)9と、温度計9に測温誤差が生じることを低減するための水切り装置10とを備える。
Moreover, the cooling facility 100 is disposed on the exit side of the hot rolling mill 20, and is disposed on the exit side of the hot rolling mill 20 and a thickness meter 6 that measures the thickness of the hot rolling steel sheet S. A speedometer 7 for measuring the speed.
Furthermore, the cooling facility 100 reduces the occurrence of temperature measurement errors in the thermometer 2 due to splashing of the cooling water from the cooling device 1 on the hot-rolled steel sheet S in the field of view of the thermometer 2. A draining device 8 for injecting purge water is provided. Further, the cooling facility 100 is disposed on the entrance side of the winding device 30, and a thermometer (radiation thermometer) 9 that measures the winding temperature of the hot-rolled steel sheet S and a temperature measurement error occur in the thermometer 9. And a draining device 10 for reduction.

以下、上記の構成を有する冷却設備100の巻取温度予測手段4が行う巻取温度の予測方法、冷却手段5が行う水冷又は空冷の切り替え動作、及び、熱伝達率算出手段3が行う熱伝達率の算出(具体的には熱伝達率の補正係数の算出)方法について、具体的に説明する。   Hereinafter, the winding temperature prediction method performed by the winding temperature prediction unit 4 of the cooling facility 100 having the above-described configuration, the water cooling or air cooling switching operation performed by the cooling unit 5, and the heat transfer performed by the heat transfer coefficient calculation unit 3. The method of calculating the rate (specifically, calculating the correction coefficient of the heat transfer coefficient) will be specifically described.

<2.巻取温度予測手段による巻取温度予測方法>
熱間圧延機20で圧延された熱延鋼板Sが温度計2の下方を通過する際、所定のサンプリング周期(例えば、0.4〜2.0秒周期)で、熱延鋼板Sの温度及び厚みが、それぞれ温度計2及び厚み計6によって測定される。温度計2と厚み計6とは近接しているため、温度を測定した熱延鋼板Sの部位と、厚みを測定した熱延鋼板Sの部位とは、同一の部位(以下、この部位をサンプリング点という)であると考えても問題はない。また、温度計2によって各サンプリング点の温度を測定する際、速度計7によって各サンプリング点の速度が測定される。これら各サンプリング点について測定した温度、厚み及び速度は、巻取温度予測手段4に入力される。
<2. Winding temperature prediction method using winding temperature prediction means>
When the hot-rolled steel sheet S rolled by the hot rolling mill 20 passes below the thermometer 2, the temperature of the hot-rolled steel sheet S and the temperature of the hot-rolled steel sheet S are determined at a predetermined sampling period (for example, a period of 0.4 to 2.0 seconds). The thickness is measured by the thermometer 2 and the thickness meter 6, respectively. Since the thermometer 2 and the thickness meter 6 are close to each other, the part of the hot-rolled steel sheet S whose temperature is measured and the part of the hot-rolled steel sheet S whose thickness is measured are the same part (hereinafter, this part is sampled). There is no problem even if it is considered to be a point. Further, when the temperature at each sampling point is measured by the thermometer 2, the speed at each sampling point is measured by the speedometer 7. The temperature, thickness, and speed measured for each of these sampling points are input to the winding temperature prediction means 4.

巻取温度予測手段4は、前述のようにして測定され入力された各サンプリング点についての温度、厚み及び速度の他、予め入力された熱延鋼板Sの比熱、密度、水冷時及び空冷時の熱伝達率、冷却装置1が水冷する場合の冷却水の水量密度、水温、並びに気温などのパラメータを用いて、複数の冷却パターン(各冷却装置1が具備するバルブの開閉状態が異なる複数のパターン)を想定してそれぞれ伝熱計算を行うことにより、各冷却パターンについての各サンプリング点の巻取温度を予測する。この巻取温度の予測は、各サンプリング点が熱延鋼板Sの搬送方向最上流側に配置された冷却装置11に到達する前に実行される。   The coiling temperature predicting means 4 is not only the temperature, thickness and speed for each sampling point measured and inputted as described above, but also the specific heat, density, water cooling and air cooling of the hot rolled steel sheet S inputted in advance. A plurality of cooling patterns (a plurality of patterns with different opening / closing states of the valves included in each cooling device 1) are used using parameters such as heat transfer rate, water density of cooling water when the cooling device 1 is water-cooled, water temperature, and air temperature. ) To estimate the coiling temperature at each sampling point for each cooling pattern. The prediction of the coiling temperature is executed before each sampling point reaches the cooling device 11 arranged on the most upstream side in the transport direction of the hot-rolled steel sheet S.

具体的には、想定した冷却パターンにおいて、熱延鋼板Sの搬送方向上流側から数えてi番目の冷却装置1が水冷する(バルブを開状態とする)場合には、下記の式(1)によって、i番目の冷却装置による熱延鋼板Sの各サンプリング点の温度降下量ΔTWiを計算する。一方、想定した冷却パターンにおいて、i番目の冷却装置1が空冷する(バルブを閉状態とする)場合には、下記の式(2)によって、i番目の冷却装置による熱延鋼板Sの各サンプリング点の温度降下量ΔTaiを計算する。そして、下記の式(7)に示すように、熱間圧延機20の出側(熱延鋼板Sの搬送方向最上流側に配置された冷却装置11の入側)に配置された温度計2によって測定された各サンプリング点の温度Tから、全ての冷却装置1による温度降下量を減算し、各サンプリング点の巻取温度Tを予測する。

Figure 2010023066
Specifically, in the assumed cooling pattern, when the i-th cooling device 1 counted from the upstream side in the conveying direction of the hot-rolled steel sheet S is water-cooled (the valve is opened), the following formula (1) Thus, the temperature drop amount ΔT Wi at each sampling point of the hot-rolled steel sheet S by the i-th cooling device is calculated. On the other hand, in the assumed cooling pattern, when the i-th cooling device 1 is air-cooled (the valve is closed), each sampling of the hot-rolled steel sheet S by the i-th cooling device is performed by the following equation (2). The temperature drop amount ΔT ai at the point is calculated. And as shown in following formula (7), the thermometer 2 arrange | positioned at the exit side (entrance side of the cooling device 11 arrange | positioned in the conveyance direction uppermost stream side of the hot-rolled steel sheet S) of the hot rolling mill 20 the temperature T F of each sampling point measured by subtracting the temperature drop due to all the cooling apparatus 1 predicts the winding temperature T C of each sampling point.
Figure 2010023066

なお、上記の式(1)〜(7)に示す各パラメータの意味は、下記の通りである。
i:熱延鋼板Sの搬送方向上流側から数えた冷却装置1の順番を表す添え字
ΔTWi:i番目の冷却装置1が水冷する場合の熱延鋼板Sの各サンプリング点の温度降下量(℃)
αLi:i番目の冷却装置1の水冷時の熱伝達率(kcal/mhr℃)
Li:i番目の冷却装置1の水冷時の熱伝達率の補正係数(無次元量)
c:熱延鋼板Sの比熱(kcal/kg℃)
ρ:熱延鋼板Sの密度(kg/m
h:熱延鋼板Sの厚み(m)
:i番目の冷却装置1の入側における熱延鋼板Sの各サンプリング点の温度(℃)
:冷却装置1の冷却水の水温(℃)
:i番目の冷却装置1を熱延鋼板Sの各サンプリング点が通過する時間(hr)
ΔTai:i番目の冷却装置1が空冷する場合の熱延鋼板Sの各サンプリング点の温度降下量(℃)
σ:ステファン・ボルツマン定数
ε:輻射率(無次元量)
:気温(℃)
αEi:i番目の冷却装置1の空冷時の熱伝達率(kcal/mhr℃)
Ei:i番目の冷却装置1の空冷時の熱伝達率の補正係数(無次元量)
a、b:定数(無次元量)
:i番目の冷却装置1が水冷する場合の冷却水の水量密度(m/mhr)
:i番目の冷却装置1の長さ(m)
:i番目の冷却装置1を熱延鋼板Sの各サンプリング点が通過する際の速度(m/sec)
:熱延鋼板Sの各サンプリング点の熱間圧延機20の出側温度(℃)
:熱延鋼板Sの各サンプリング点の巻取温度予測値(℃)
n:冷却装置1の数
In addition, the meaning of each parameter shown to said Formula (1)-(7) is as follows.
i: Subscript indicating the order of the cooling device 1 counted from the upstream side in the conveying direction of the hot-rolled steel sheet S ΔT Wi : A temperature drop amount at each sampling point of the hot-rolled steel sheet S when the i-th cooling device 1 is water-cooled ( ℃)
α Li : Heat transfer coefficient (kcal / m 2 hr ° C.) at the time of water cooling of the i-th cooling device 1
Z Li : Heat transfer coefficient correction coefficient (dimensionalless amount) at the time of water cooling of the i-th cooling device 1
c: Specific heat of hot-rolled steel sheet S (kcal / kg ° C.)
ρ: density of the hot-rolled steel sheet S (kg / m 3 )
h: thickness of hot-rolled steel sheet S (m)
T i : Temperature (° C.) of each sampling point of the hot-rolled steel sheet S on the entry side of the i-th cooling device 1
T L : Water temperature of the cooling water of the cooling device 1 (° C.)
t i : Time for each sampling point of the hot-rolled steel sheet S to pass through the i-th cooling device 1 (hr)
ΔT ai : Temperature drop amount (° C.) at each sampling point of the hot-rolled steel sheet S when the i-th cooling device 1 is air-cooled.
σ: Stefan-Boltzmann constant ε: Emissivity (dimensionless quantity)
T E : Air temperature (° C)
α Ei : Heat transfer coefficient (kcal / m 2 hr ° C.) of the i-th cooling device 1 during air cooling
Z Ei : Heat transfer coefficient correction coefficient (dimensionalless amount) at the time of air cooling of the i-th cooling device 1
a, b: Constant (dimensionless amount)
W i : Water volume density (m 3 / m 2 hr) of cooling water when the i-th cooling device 1 is water-cooled
L i : length of the i-th cooling device 1 (m)
v i : Speed when each sampling point of the hot-rolled steel sheet S passes through the i-th cooling device 1 (m / sec)
T F : Outlet temperature (° C.) of the hot rolling mill 20 at each sampling point of the hot-rolled steel sheet S
T C : Predicted winding temperature (° C.) at each sampling point of the hot-rolled steel sheet S
n: Number of cooling devices 1

上記の式(1)におけるi番目の冷却装置1の水冷時の熱伝達率αLiは、上記の式(3)によって算出される。
また、上記の式(1)及び(2)におけるi番目の冷却装置1を熱延鋼板Sの各サンプリング点が通過する時間tは、上記の式(4)によって算出される。なお、上記の式(4)におけるi番目の冷却装置1を熱延鋼板Sの各サンプリング点が通過する際の速度vとしては、巻取温度を予測する際には、実測値ではなく、速度計7によって測定された各サンプリング点の速度(各サンプリング点が温度計2の下方を通過する際の速度)に基づき計算された値が用いられる。例えば、前記速度計7によって測定された速度と、予め巻取温度予測手段4に入力された熱延鋼板Sの搬送加速度と、温度計2とi番目の冷却装置1との距離とに基づき、速度vは計算される。
さらに、上記の式(1)及び(2)におけるi番目の冷却装置1の入側における熱延鋼板Sの各サンプリング点の温度Tとしては、巻取温度を予測する際には、1番目の冷却装置11の入側における温度Tを除き、実測値ではなく、上記の式(5)及び(6)によって算出された値が用いられる。すなわち、1番目の冷却装置11の入側における温度Tとしては、冷却装置11の入側に配置された温度計2によって実測された温度Tが用いられる。また、2番目の冷却装置12の入側における温度Tは、1番目の冷却装置11が水冷する場合には、上記の式(1)にT=Tを代入することによって得られるΔTw1を上記の式(5)のΔTとして代入することにより算出される。また、1番目の冷却装置11が空冷する場合には、上記の式(2)にT=Tを代入することによって得られるΔTa1を上記の式(5)のΔTとして代入することにより、2番目の冷却装置12の入側における温度Tが算出される。以下、同様にして、3番目からn番目までの冷却装置1の入側における熱延鋼板Sの各サンプリング点の温度T〜Tnが算出される。
The heat transfer coefficient α Li during water cooling of the i-th cooling device 1 in the above equation (1) is calculated by the above equation (3).
The time t i of the i-th cooling device 1 in the above formula (1) and (2) of the sampling points of the hot-rolled steel sheet S passes is calculated by the above equation (4). Note that the speed v i when each sampling point of the hot-rolled steel sheet S passes through the i-th cooling device 1 in the above formula (4) is not an actually measured value when predicting the coiling temperature, A value calculated based on the speed of each sampling point measured by the speedometer 7 (speed when each sampling point passes under the thermometer 2) is used. For example, based on the speed measured by the speedometer 7, the conveyance acceleration of the hot-rolled steel sheet S previously input to the winding temperature prediction means 4, and the distance between the thermometer 2 and the i-th cooling device 1, The speed v i is calculated.
Further, as the temperature T i of each sampling point of the hot-rolled steel sheet S in the i-th cooling device 1 of the inlet side in the above equation (1) and (2), in predicting coiling temperature, first except for temperatures T 1 in the inlet side of the cooling device 11, rather than the measured values, the values calculated by the above equation (5) and (6) are used. That is, as the temperature T 1 on the entry side of the first cooling device 11, the temperature TF actually measured by the thermometer 2 disposed on the entry side of the cooling device 11 is used. Further, the temperature T 2 on the entry side of the second cooling device 12 is obtained by substituting T 1 = TF into the above equation (1) when the first cooling device 11 is water-cooled. the w1 is calculated by substituting the [Delta] T 1 of formula (5). Further, when the first cooling system 11 is air cooling, by substituting [Delta] T a1 obtained by substituting T 1 = T F in the above formula (2) as [Delta] T 1 of formula (5) Thus, the temperature T 2 on the entry side of the second cooling device 12 is calculated. Hereinafter, similarly, temperatures T 3 to Tn of the respective sampling points of the hot-rolled steel sheet S on the entry side of the third to n-th cooling devices 1 are calculated.

巻取温度予測手段4は、以上に説明した各サンプリング点の巻取温度の予測を、想定した複数の冷却パターンについて実行する。具体的には、例えば、まず最初に、各冷却装置1が具備するバルブが全て閉状態(すなわち、全ての冷却装置1が空冷する状態)である冷却パターンについて、各サンプリング点の巻取温度を予測する。この予測した巻取温度が所定の温度(目標巻取温度との差が所定値以下となる温度)よりも高い場合、巻取温度予測手段4は、予め決められた順番に従い、何れかの冷却装置1のバルブを開いた別の冷却パターンについて、各サンプリング点の巻取温度を予測する。上記の順番は、特に限定されるものではないが、冷却後の熱延鋼板Sの品質や、操業上の安定性等を考慮して、経験則的に決定される。巻取温度予測手段4は、予測した巻取温度が上記所定の温度になるまで、伝熱計算に用いる冷却パターンを変更して、巻取温度の予測を繰り返す。そして、予測した巻取温度が上記所定の温度になったときの冷却パターンを冷却制御手段5に送信する。   The coiling temperature predicting unit 4 executes the above-described prediction of the coiling temperature at each sampling point for a plurality of assumed cooling patterns. Specifically, for example, for the cooling pattern in which all the valves included in each cooling device 1 are all closed (that is, all the cooling devices 1 are air-cooled), the winding temperature at each sampling point is set. Predict. When the predicted winding temperature is higher than a predetermined temperature (a temperature at which the difference from the target winding temperature is equal to or less than a predetermined value), the winding temperature prediction unit 4 performs any cooling according to a predetermined order. The winding temperature at each sampling point is predicted for another cooling pattern in which the valve of the apparatus 1 is opened. The order is not particularly limited, but is determined empirically in consideration of the quality of the hot-rolled steel sheet S after cooling, operational stability, and the like. The coiling temperature predicting unit 4 repeats the coiling temperature prediction by changing the cooling pattern used for the heat transfer calculation until the predicted coiling temperature reaches the predetermined temperature. Then, the cooling pattern when the predicted winding temperature reaches the predetermined temperature is transmitted to the cooling control means 5.

<3.冷却制御手段による水冷又は空冷の切り替え動作>
前述のように、冷却制御手段5は、想定した複数の冷却パターンのうち巻取温度予測手段4によって予測した各サンプリング点の巻取温度が所定の温度(目標巻取温度との差が所定値以下となる温度)となる冷却パターンを選択し、該選択した冷却パターンに従って各冷却装置1が実際に行う水冷又は空冷を切り替える。本実施形態では、前述のように、巻取温度予測手段4から、予測した巻取温度が上記所定の温度になったときの冷却パターンが冷却制御手段5に送信されるため、冷却制御手段5は、送信された冷却パターン(これが冷却制御手段5が選択した冷却パターンに相当する)に従って各冷却装置1が実際に行う水冷又は空冷を切り替えることになる。ただし、本発明はこれに限るものではなく、巻取温度予測手段4が想定した複数の冷却パターンの全てを、巻取温度予測手段4が予測した巻取温度と共に冷却制御手段5に送信し、冷却制御手段5が、送信された複数の冷却パターンのうち巻取温度が所定の温度となる冷却パターンを選択する構成を採用することも可能である。
<3. Switching operation of water cooling or air cooling by cooling control means>
As described above, the cooling control unit 5 determines that the winding temperature at each sampling point predicted by the winding temperature prediction unit 4 among a plurality of assumed cooling patterns is a predetermined temperature (the difference from the target winding temperature is a predetermined value). The cooling pattern to be the following temperature) is selected, and water cooling or air cooling actually performed by each cooling device 1 is switched according to the selected cooling pattern. In the present embodiment, as described above, since the cooling pattern when the predicted winding temperature reaches the predetermined temperature is transmitted from the winding temperature prediction unit 4 to the cooling control unit 5, the cooling control unit 5 The water cooling or the air cooling actually performed by each cooling device 1 is switched in accordance with the transmitted cooling pattern (this corresponds to the cooling pattern selected by the cooling control means 5). However, the present invention is not limited to this, and all of the plurality of cooling patterns assumed by the winding temperature prediction unit 4 are transmitted to the cooling control unit 5 together with the winding temperature predicted by the winding temperature prediction unit 4. It is also possible to adopt a configuration in which the cooling control means 5 selects a cooling pattern in which the winding temperature is a predetermined temperature among the plurality of transmitted cooling patterns.

具体的には、冷却制御手段5は、前記選択した(巻取温度予測手段4から送信された)冷却パターンに従って、各冷却装置1が具備するバルブの開閉状態を切り替える。この冷却制御手段5によるバルブの切り替え動作は、各サンプリング点が各冷却装置11に到達する前に実行される。そして、各サンプリング点は、前記選択した冷却パターンに従って各冷却装置11により冷却される。   Specifically, the cooling control unit 5 switches the open / close state of the valves included in each cooling device 1 in accordance with the selected cooling pattern (transmitted from the winding temperature prediction unit 4). The valve switching operation by the cooling control means 5 is executed before each sampling point reaches each cooling device 11. Each sampling point is cooled by each cooling device 11 according to the selected cooling pattern.

<4.熱伝達率算出手段による熱伝達率の算出(熱伝達率の補正係数の算出)方法>
熱延鋼板Sの各サンプリング点が温度計2の下方を通過する際に、温度計2によって測定された各サンプリング点の温度と、厚み計6によって測定された各サンプリング点の厚みとが、熱伝達率算出手段3に入力される。
また、各サンプリング点が各冷却装置1を通過する際に、速度計7によって測定された各サンプリング点の速度と、各冷却装置1の出側で温度計2Aによって測定された各サンプリング点の温度と、各冷却装置1が具備するバルブの開閉状態とが、熱伝達率算出手段3に入力される。
熱伝達率算出手段3に入力される上記のパラメータは、必要に応じて適宜のバッファに蓄積された後、各サンプリング点の冷却が完了する(各サンプリング点が温度計2nの上方を通過する)毎に、或いは、熱延鋼板Sの全てのサンプリング点の冷却が完了した(最後のサンプリング点が温度計2nの上方を通過した)後に、熱伝達率算出手段3に入力される。
<4. Calculation of heat transfer coefficient by heat transfer coefficient calculation means (calculation of heat transfer coefficient correction coefficient)>
When each sampling point of the hot-rolled steel sheet S passes below the thermometer 2, the temperature of each sampling point measured by the thermometer 2 and the thickness of each sampling point measured by the thickness meter 6 are Input to the transmission rate calculation means 3.
Further, when each sampling point passes through each cooling device 1, the speed of each sampling point measured by the speedometer 7 and the temperature of each sampling point measured by the thermometer 2 </ b> A on the exit side of each cooling device 1. And the open / closed state of the valve included in each cooling device 1 are input to the heat transfer coefficient calculating means 3.
The above parameters input to the heat transfer coefficient calculating means 3 are accumulated in an appropriate buffer as necessary, and then cooling of each sampling point is completed (each sampling point passes above the thermometer 2n). Every time or after cooling of all the sampling points of the hot-rolled steel sheet S is completed (the last sampling point has passed above the thermometer 2n), the heat transfer coefficient calculation means 3 inputs the data.

ここで、熱延鋼板Sの搬送方向上流側から数えてi番目の冷却装置1の出側で、温度計2Aによって測定された熱延鋼板Sの搬送方向下流側から数えてj番目のサンプリング点の温度をTmj,i(℃)とし、i番目の冷却装置1をj番目のサンプリング点が通過する時間をtj,i(hr)とする。ここで、時間tj,iは、前述した式(4)と同様に、i番目の冷却装置1の長さを、i番目の冷却装置1をj番目のサンプリング点が通過する際の速度で除することによって算出される。ただし、i番目の冷却装置1をj番目のサンプリング点が通過する際の速度としては、巻取温度を予測する際と異なり、速度計7によって測定された実測値が用いられる。 Here, on the exit side of the i-th cooling device 1 counted from the upstream side in the transport direction of the hot-rolled steel sheet S, the j-th sampling point counted from the downstream side in the transport direction of the hot-rolled steel sheet S measured by the thermometer 2A. T mj, i (° C.), and the time for the j-th sampling point to pass through the i-th cooling device 1 is t j, i (hr). Here, the time t j, i is the length of the i-th cooling device 1 and the speed at which the j-th sampling point passes through the i-th cooling device 1 in the same manner as the equation (4) described above. It is calculated by dividing. However, as the speed at which the j-th sampling point passes through the i-th cooling device 1, an actual measurement value measured by the speedometer 7 is used, unlike when the coiling temperature is predicted.

熱伝達率算出手段3は、j番目のサンプリング点がi番目の冷却装置1を通過する際、i番目の冷却装置1が水冷する状態(バルブが開状態)であったとすれば、前述した式(1)から導出される下記の式(8)に基づいて、j番目のサンプリング点についてのi番目の冷却装置1の水冷時の熱伝達率の補正係数ZLj,iを算出する。一方、j番目のサンプリング点がi番目の冷却装置1を通過する際、i番目の冷却装置1が空冷する状態(バルブが閉状態)であったとすれば、前述した式(2)から導出される下記の式(9)に基づいて、j番目のサンプリング点についてのi番目の冷却装置1の空冷時の熱伝達率の補正係数ZEj,iを算出する。

Figure 2010023066
If the i-th cooling device 1 is in a state where the i-th cooling device 1 is water-cooled (the valve is open) when the j-th sampling point passes through the i-th cooling device 1, the heat transfer coefficient calculating means 3 Based on the following equation (8) derived from (1), a heat transfer coefficient correction coefficient Z Lj, i of the i-th cooling device 1 for the j-th sampling point during water cooling is calculated. On the other hand, when the j-th sampling point passes through the i-th cooling device 1, if the i-th cooling device 1 is in an air-cooled state (valve closed), it is derived from the above-described equation (2). Based on the following formula (9), the heat transfer coefficient correction coefficient Z Ej, i during air cooling of the i-th cooling device 1 at the j-th sampling point is calculated.
Figure 2010023066

なお、上記の式(8)及び(9)において、Tmj,0(Tmj,i−1のi=1の場合)は、温度計2によって測定されたj番目のサンプリング点の温度を意味する。
また、上記の式(8)及び(9)において、前述した式(1)〜(7)に示すパラメータと同じ記号で表されたパラメータについては、式(1)〜(7)について前述したのと同じ意味であるため、ここではその説明を省略する。
In the above formulas (8) and (9), Tm j, 0 (when i = 1 of Tm j, i−1 ) means the temperature of the j th sampling point measured by the thermometer 2. To do.
In addition, in the above formulas (8) and (9), the parameters represented by the same symbols as the parameters shown in the above formulas (1) to (7) are described above with respect to the formulas (1) to (7). Are the same meaning as those in FIG.

熱伝達率算出手段3は、全てのサンプリング点について上記の演算を繰り返し、各サンプリング点について得られた水冷時の熱伝達率の補正係数ZLj,iを、下記の式(10)に示すように平均化処理して、i番目の冷却装置1の水冷時の熱伝達率の補正係数の平均値ZLi を算出する。同様に、各サンプリング点について得られた空冷時の熱伝達率の補正係数ZEj,iを、下記の式(11)に示すように平均化処理して、i番目の冷却装置1の空冷時の熱伝達率の補正係数の平均値ZEi を算出する。

Figure 2010023066
The heat transfer coefficient calculation means 3 repeats the above calculation for all sampling points, and the heat transfer coefficient correction coefficient Z Lj, i obtained for each sampling point is expressed by the following equation (10). The average value Z Li A of the heat transfer coefficient correction coefficient during water cooling of the i-th cooling device 1 is calculated. Similarly, the correction coefficient Z Ej, i of the heat transfer coefficient at the time of air cooling obtained for each sampling point is averaged as shown in the following equation (11), and the air cooling of the i-th cooling device 1 is performed. The average value Z Ei A of the heat transfer coefficient correction coefficient is calculated.
Figure 2010023066

なお、上記の式(10)及び(11)において、j番目のサンプリング点が、水冷する状態(バルブが開状態)のi番目の冷却装置1を通過する場合、uj,i=1、vj,i=0である。また、j番目のサンプリング点が、空冷する状態(バルブが閉状態)のi番目の冷却装置1を通過する場合、uj,i=0、vj,i=1である。mはサンプリング点の数を意味する。 In the above equations (10) and (11), when the j-th sampling point passes through the i-th cooling device 1 in a water-cooled state (valve is open), u j, i = 1, v j, i = 0. When the j-th sampling point passes through the i-th cooling device 1 in the air-cooled state (valve is closed), u j, i = 0 and v j, i = 1. m means the number of sampling points.

以上のようにして熱伝達率算出手段3で算出したi番目の冷却装置1の水冷時の熱伝達率の補正係数の平均値ZLi を、そのまま前述した式(1)に示すi番目の冷却装置1の水冷時の熱伝達率の補正係数ZLiとして、次回搬送される熱延鋼板(上記のZLi を算出するために温度等を測定した熱延鋼板の次に搬送される熱延鋼板)Sについての巻取温度予測手段4による巻取温度の予測に用いることができる。同様に、熱伝達率算出手段3で算出したi番目の冷却装置1の空冷時の熱伝達率の補正係数の平均値ZEi を、そのまま前述した式(2)に示すi番目の冷却装置1の空冷時の熱伝達率の補正係数ZEiとして、次回搬送される熱延鋼板Sについての巻取温度予測手段4による巻取温度の予測に用いることができる。 The average value Z Li A of the heat transfer coefficient correction coefficient at the time of water cooling of the i-th cooling device 1 calculated by the heat transfer coefficient calculating means 3 as described above is used as the i-th equation shown in the above-described equation (1). As the heat transfer coefficient correction coefficient Z Li of the cooling device 1 at the time of water cooling, the hot-rolled steel sheet to be transported next time (the heat transported next to the hot-rolled steel sheet whose temperature is measured in order to calculate the above Z Li A) It can be used for prediction of the coiling temperature by the coiling temperature predicting means 4 for the rolled steel sheet S. Similarly, the average value Z Ei A of the heat transfer coefficient correction coefficient at the time of air cooling of the i-th cooling device 1 calculated by the heat transfer coefficient calculating means 3 is directly used as the i-th cooling device shown in the above-described equation (2). As the heat transfer coefficient correction coefficient Z Ei at the time of 1 air cooling, it can be used for the prediction of the coiling temperature by the coiling temperature predicting means 4 for the hot rolled steel sheet S to be conveyed next time.

なお、今回搬送された熱延鋼板Sについての巻取温度の予測に用いた水冷時の熱伝達率の補正係数(すなわち、前回搬送された熱延鋼板Sについて測定した温度等によって算出された水冷時の熱伝達率の補正係数)ZLiと、今回搬送された熱延鋼板Sについて測定した温度等によって算出された水冷時の熱伝達率の補正係数の平均値ZLi とを、下記の式(12)に示すように重み付け平均化処理して得られる水冷時の熱伝達率の補正係数の重み付け平均値ZLi AWを、前述した式(1)に示す水冷時の熱伝達率の補正係数ZLiとして、次回搬送される熱延鋼板Sについての巻取温度の予測に用いてもよい。同様に、今回搬送された熱延鋼板Sについての巻取温度の予測に用いた空冷時の熱伝達率の補正係数ZEiと、今回搬送された熱延鋼板Sについて測定した温度等によって算出された空冷時の熱伝達率の補正係数の平均値ZEi とを、下記の式(13)に示すように重み付け平均化処理して得られる空冷時の熱伝達率の補正係数の重み付け平均値ZEi AWを、前述した式(2)に示す空冷時の熱伝達率の補正係数ZEiとして、次回搬送される熱延鋼板Sについての巻取温度の予測に用いてもよい。なお、下記の式(12)及び(13)に示すβは、0<β<1の定数である。

Figure 2010023066
In addition, the correction coefficient of the heat transfer coefficient at the time of water cooling used for predicting the winding temperature of the hot rolled steel sheet S conveyed this time (that is, the water cooling calculated by the temperature measured for the hot rolled steel sheet S conveyed last time) Correction coefficient of heat transfer coefficient at the time) Z Li and the average value Z Li A of the heat transfer coefficient correction coefficient at the time of water cooling calculated by the temperature measured for the hot-rolled steel sheet S conveyed this time, As shown in the equation (12), the weighted average value Z Li AW of the correction coefficient of the heat transfer coefficient during the water cooling obtained by the weighted averaging process is used to correct the heat transfer coefficient during the water cooling shown in the above equation (1). The coefficient Z Li may be used for predicting the coiling temperature of the hot-rolled steel sheet S to be conveyed next time. Similarly, the heat transfer coefficient correction coefficient Z Ei at the time of air cooling used for predicting the coiling temperature of the hot-rolled steel sheet S conveyed this time and the temperature measured for the hot-rolled steel sheet S conveyed this time are calculated. The average value Z Ei A of the heat transfer coefficient correction coefficient during air cooling and the weighted average value of the heat transfer coefficient correction coefficient during air cooling obtained by weighted averaging as shown in the following equation (13) Z Ei AW may be used for predicting the coiling temperature of the hot rolled steel sheet S to be conveyed next time, as the correction coefficient Z Ei of the heat transfer coefficient during air cooling shown in the above-described equation (2). Note that β shown in the following equations (12) and (13) is a constant of 0 <β <1.
Figure 2010023066

また、複数(例えば、100コイル程度)の熱延鋼板Sの各サンプリング点について得られた水冷時及び空冷時の熱伝達率の補正係数ZLj,i、ZEj,iの全てを纏めて、前述した式(10)、(11)に示すように平均化処理し、水冷時及び空冷時の熱伝達率の補正係数の平均値ZLi 、ZEi を算出して、次回以降に搬送される熱延鋼板Sについての巻取温度の予測に用いても良い。 Moreover, all the correction coefficients Z Lj, i , Z Ej, i of the heat transfer coefficient at the time of water cooling and air cooling obtained for each sampling point of a plurality of (for example, about 100 coils) hot rolled steel sheets S are collected, Averaging treatment is performed as shown in the above formulas (10) and (11), and average values Z Li A and Z Ei A of heat transfer coefficient correction coefficients at the time of water cooling and air cooling are calculated and transported after the next time. You may use for prediction of the coiling temperature about the hot-rolled steel sheet S to be performed.

また、一の熱延鋼板Sにおいて冷却が完了したサンプリング点についてのパラメータを用いて水冷時及び空冷時の熱伝達率の補正係数ZLj,i、ZEj,iを逐次算出し、これを同じ熱延鋼板Sであって且つ未だ巻取温度の予測をしていない後続のサンプリング点についての巻取温度の予測に用いることも可能である。 In addition, the heat transfer coefficient correction coefficients Z Lj, i , Z Ej, i at the time of water cooling and air cooling are sequentially calculated using the parameters for the sampling points where the cooling of one hot-rolled steel sheet S has been completed. It is also possible to use the hot-rolled steel sheet S for predicting the coiling temperature for the subsequent sampling points that have not yet been predicted for the coiling temperature.

以上に説明したように、本実施形態に係る冷却設備100及びこれを用いた冷却方法によれば、水冷前後と空冷前後の熱延鋼板Sの温度をそれぞれ実測し、この実測温度を用いて水冷時及び空冷時の熱伝達率(熱伝達率の補正係数)を個別に算出するため、水冷時及び空冷時の実際の熱伝達率を精度良く算出することができる。そして、この熱伝達率を用いれば、熱延鋼板Sの巻取温度を精度良く予測でき、ひいては熱延鋼板Sの巻取温度を精度良く目標巻取温度に制御することが可能である。   As described above, according to the cooling facility 100 and the cooling method using the same according to the present embodiment, the temperatures of the hot-rolled steel sheets S before and after water cooling and before and after air cooling are measured, and the water cooling is performed using the measured temperatures. Since the heat transfer coefficient during heat and air cooling (correction coefficient of heat transfer coefficient) is calculated separately, the actual heat transfer coefficient during water cooling and air cooling can be calculated with high accuracy. And if this heat transfer rate is used, the coiling temperature of the hot-rolled steel sheet S can be predicted with high accuracy, and the coiling temperature of the hot-rolled steel sheet S can be accurately controlled to the target coiling temperature.

<5.水柱温度計の好ましい構成>
以下、温度計2Aとして用いられる水柱温度計の好ましい構成について説明する。
図2は、図1に示す冷却設備100が備える温度計2Aの概略構成例を示す図である。
図2に示すように、温度計2Aは、放射温度計61と、熱延鋼板Sと対向する位置に先端が配置され、後端が放射温度計61に接続された光ファイバ62と、熱延鋼板Sと光ファイバ62の先端との間に光導波路としての水柱Wを形成するべく、熱延鋼板Sの下面に向けて水を噴射するノズル63と、ノズル63に水を供給するための水供給配管64とを備えている。温度計2Aは、水柱W、水供給配管647内の水の一部及び光ファイバ62を介して熱延鋼板Sの下面からの熱放射光を放射温度計61で受光し、熱延鋼板Sの温度を測定するように構成されている。
<5. Preferred configuration of water column thermometer>
Hereinafter, a preferable configuration of the water column thermometer used as the thermometer 2A will be described.
FIG. 2 is a diagram illustrating a schematic configuration example of the thermometer 2A included in the cooling facility 100 illustrated in FIG.
As shown in FIG. 2, the thermometer 2 </ b> A includes a radiation thermometer 61, an optical fiber 62 whose front end is disposed at a position facing the hot-rolled steel sheet S and whose rear end is connected to the radiation thermometer 61, and hot rolling. In order to form a water column W as an optical waveguide between the steel sheet S and the tip of the optical fiber 62, a nozzle 63 for injecting water toward the lower surface of the hot-rolled steel sheet S, and water for supplying water to the nozzle 63 And a supply pipe 64. The thermometer 2A receives the heat radiation light from the lower surface of the hot-rolled steel sheet S through the water column W, a part of the water in the water supply pipe 647 and the optical fiber 62, and receives the heat from the lower surface of the hot-rolled steel sheet S. It is configured to measure temperature.

光ファイバ62の先端部には、光学窓81と、必要に応じて集光用レンズ82とを具備する先端光学系80が取付けられている。光学窓81及び集光用レンズ82としては、例えば石英製のものを適用することができる。   A tip optical system 80 including an optical window 81 and, if necessary, a condensing lens 82 is attached to the tip of the optical fiber 62. As the optical window 81 and the condensing lens 82, for example, those made of quartz can be applied.

次に、放射温度計61によって検出すべき熱放射光の波長について説明する。
温度計2Aを用いて熱延鋼板Sの温度を測定する際には、水柱W及び外乱水(搬送ロール41用の冷却水等)による熱放射光の吸収・減衰に起因する測温誤差を抑制する必要がある。この測温誤差は、冷却水の条件や、熱延鋼板Sのパスライン変動(熱延鋼板S下面の上下方向の位置変動)、周囲温度・湿度の変化に伴う湯気の発生有無等により、熱延鋼板Sと放射温度計61との間に存在する水柱Wや外乱水の厚みが変化し、これに伴って水柱Wや外乱水による熱放射光の吸収・減衰の程度が変化し、検出される熱放射光の光量が変動することによって生じる。
Next, the wavelength of the thermal radiation light to be detected by the radiation thermometer 61 will be described.
When measuring the temperature of the hot-rolled steel sheet S using the thermometer 2A, the temperature measurement error due to absorption / attenuation of thermal radiation by the water column W and disturbance water (cooling water for the transport roll 41, etc.) is suppressed. There is a need to. This temperature measurement error depends on the conditions of the cooling water, the pass line fluctuation of the hot-rolled steel sheet S (position fluctuation in the vertical direction of the lower surface of the hot-rolled steel sheet S), the presence or absence of steam due to changes in ambient temperature and humidity, etc. The thickness of the water column W and disturbance water existing between the rolled steel sheet S and the radiation thermometer 61 changes, and along with this, the degree of absorption / attenuation of thermal radiation by the water column W and disturbance water changes and is detected. This is caused by fluctuations in the amount of heat radiation light.

本発明者らは、熱延鋼板Sと放射温度計61との間に形成した水柱Wを介して熱放射光を検出する場合を想定し、水の分光透過率を調査した。図5は、黒体炉と放射温度計との間に介在させた水柱の厚みを3、11、50、100mmとした場合における、約0.7〜1.9μmの波長帯域における水の分光透過率を示すグラフである。図5に示すように、0.85μm以下の波長帯域で最も水の透過率が高くなり、次いで1.00〜1.20μmの波長帯域で水の透過率が高くなることが分かった。   The present inventors investigated the spectral transmittance of water on the assumption that thermal radiation light is detected through a water column W formed between the hot-rolled steel sheet S and the radiation thermometer 61. FIG. 5 shows the spectral transmission of water in the wavelength band of about 0.7 to 1.9 μm when the thickness of the water column interposed between the black body furnace and the radiation thermometer is 3, 11, 50, 100 mm. It is a graph which shows a rate. As shown in FIG. 5, it was found that the water transmittance was highest in the wavelength band of 0.85 μm or less, and then the water transmittance was increased in the wavelength band of 1.00 to 1.20 μm.

一方、黒体からの熱放射光は、長波長で極端に熱放射光の強度が高く、波長0.9μmよりも短い波長に比べ、長い波長で強く放射されている。従って、放射温度計で検出される光エネルギーは、そもそも長波長の光の寄与が大きく、水の吸収による影響を強く受けるため、できるだけ短波長の熱放射光を検出する方が好ましい。   On the other hand, the heat radiation light from the black body has a long wavelength and extremely high intensity of the heat radiation light, and is strongly emitted at a long wavelength as compared with a wavelength shorter than 0.9 μm. Therefore, the light energy detected by the radiation thermometer is largely influenced by the long wavelength light, and is strongly influenced by the absorption of water. Therefore, it is preferable to detect the heat radiation light having the shortest wavelength.

図6は、約700℃の熱延鋼板において、放射温度計と熱延鋼板との間に存在する水の実効的厚みが30mm変動した場合の測温値の変動(測温誤差)を測定した結果を示す。なお、熱延鋼板Sの冷却設備100において、定常の搬送状態では、熱延鋼板Sのパスライン変動(熱延鋼板S下面の上下方向の位置変動)は最大で30mm程度を考えればよい。   FIG. 6 shows the measurement (temperature measurement error) of the temperature measurement value when the effective thickness of water existing between the radiation thermometer and the hot-rolled steel sheet varies by 30 mm in a hot-rolled steel sheet at about 700 ° C. Results are shown. In the cooling facility 100 for the hot-rolled steel sheet S, the pass line fluctuation of the hot-rolled steel sheet S (the position fluctuation in the vertical direction of the lower surface of the hot-rolled steel sheet S) may be about 30 mm at maximum.

ここで、図6の横軸は放射温度計と熱延鋼板との間に存在する水の厚みをプロットし、縦軸は測温誤差をプロットした。図6に示すように、「フィルタ無し」の場合(長波長成分を遮断せずに全波長帯域の熱放射光を検出する場合)には、例えば、基準となる水の厚み200mmに対して30mmだけ厚みが変動すると、約14℃の測温誤差が生じる(測温値が約14℃変化する)。また、長波長成分を遮断しない場合、基準となる水の厚みを大きくすると、測温誤差が小さくなるものの、例えば10℃以下の測温誤差とするためには、400mm以上の水の厚みが必要となる。なお、熱延鋼板の温度が高くなると、この測温誤差は大きくなり、さらに水の厚みを大きくする必要がある。しかしながら、水の厚みを厚くするための装置は、むやみに大きくなってしまうので、設置条件を大きく制限することが問題となる。   Here, the horizontal axis of FIG. 6 plotted the thickness of water existing between the radiation thermometer and the hot-rolled steel sheet, and the vertical axis plotted the temperature measurement error. As shown in FIG. 6, in the case of “no filter” (when detecting thermal radiation light in the entire wavelength band without blocking the long wavelength component), for example, 30 mm with respect to a reference thickness of 200 mm. When the thickness fluctuates only, a temperature measurement error of about 14 ° C. occurs (the temperature measurement value changes by about 14 ° C.). In addition, when the long wavelength component is not cut off, if the thickness of the reference water is increased, the temperature measurement error is reduced. However, in order to obtain a temperature measurement error of 10 ° C. or less, for example, a water thickness of 400 mm or more is necessary. It becomes. Note that when the temperature of the hot-rolled steel sheet increases, the temperature measurement error increases, and it is necessary to further increase the thickness of water. However, since the device for increasing the thickness of water becomes unnecessarily large, there is a problem in greatly restricting the installation conditions.

一方、図6に示すように、「遮断波長0.85μm」の場合(波長0.85μmよりも長い波長の光を遮断して検出する場合)には、基準となる水の厚みに関わらず、厚みが30mm変動しても6℃程度の測温誤差に抑えることが可能である。   On the other hand, as shown in FIG. 6, in the case of a “cutoff wavelength of 0.85 μm” (when light having a wavelength longer than the wavelength of 0.85 μm is detected by detection), regardless of the thickness of the reference water, Even if the thickness varies by 30 mm, it is possible to suppress the temperature measurement error to about 6 ° C.

しかしながら、図7に示すように、測定温度が600℃以下では測温値の変動が大きくなり、精度良く温度を測定することができないことが分かった。これは、測定対象が低温になると、放射される熱放射光の長波長成分が増大することが原因であると考えられる。従って、600℃以下の低温域の温度を放射測温するには、検出する熱放射光の波長を長波長側にシフトする必要のあることが分かった。   However, as shown in FIG. 7, it was found that when the measured temperature is 600 ° C. or lower, the temperature measurement value fluctuates greatly, and the temperature cannot be measured with high accuracy. This is considered to be caused by an increase in the long wavelength component of the emitted thermal radiation when the object to be measured becomes low temperature. Therefore, it has been found that in order to measure the temperature in a low temperature region of 600 ° C. or less, it is necessary to shift the wavelength of the thermal radiation light to be detected to the longer wavelength side.

そこで、本発明者らは、2番目に水の透過率が高い1.00〜1.20μmの波長帯域の熱放射光を検出する放射温度計を試作し、その温度特性を黒体炉を用いて評価した。図8は、評価結果の一例を示すグラフである。図8に示すように、検出する熱放射光の波長帯域が1.00〜1.20μmである放射温度計の場合、測温値のバラツキ(3σ)が3℃になるまでを許容範囲とすると、310℃まで測定可能であることが分かった。   Therefore, the inventors made a prototype of a radiation thermometer that detects thermal radiation in the wavelength band of 1.00 to 1.20 μm, which has the second highest water transmittance, and used a black body furnace for its temperature characteristics. And evaluated. FIG. 8 is a graph showing an example of the evaluation result. As shown in FIG. 8, in the case of a radiation thermometer in which the wavelength band of the thermal radiation light to be detected is 1.00 to 1.20 μm, if the variation (3σ) of the temperature measurement value is 3 ° C., the allowable range is assumed. It was found that measurement was possible up to 310 ° C.

以上の試験結果より、熱延鋼板Sの温度が600℃以上となる高温域では、放射温度計61で検出する熱放射光の波長帯域を0.85μm以下とし、熱延鋼板Sの温度が600℃以下となる低温域では、放射温度計61で検出する熱放射光の波長帯域を1.00μm以上1.20μm以下とすることが望ましい。   From the above test results, in the high temperature range where the temperature of the hot rolled steel sheet S is 600 ° C. or higher, the wavelength band of the heat radiation light detected by the radiation thermometer 61 is 0.85 μm or less, and the temperature of the hot rolled steel sheet S is 600. In a low temperature range where the temperature is below ℃, it is desirable that the wavelength band of the thermal radiation detected by the radiation thermometer 61 is 1.00 μm or more and 1.20 μm or less.

なお、光ファイバ62は、前述のようにして決定した波長帯域の熱放射光を十分透過させる光ファイバである限りにおいて種々の形態のものを使用することができ、例えば、石英製の光ファイバとすることが可能である。また、単芯の光ファイバを使用することができる他、設置上の制約等により、水中での光路長(図2参照)を比較的長くする必要がある場合には、水による減衰の影響を緩和するべく、必要に応じて複数本の光ファイバを束ねたバンドルファイバとすることも可能である。また、光ファイバのコア径に特に制約は無い。   The optical fiber 62 can be used in various forms as long as it is an optical fiber that sufficiently transmits thermal radiation in the wavelength band determined as described above. For example, an optical fiber made of quartz can be used. Is possible. Moreover, in addition to the use of a single-core optical fiber, if the optical path length in water (see Fig. 2) needs to be relatively long due to installation restrictions, etc., the effect of attenuation by water In order to relax, a bundle fiber in which a plurality of optical fibers are bundled may be used as necessary. Moreover, there is no restriction | limiting in particular in the core diameter of an optical fiber.

また、ノズル63やノズル63の前段に位置する水供給配管64は、気泡の発生を抑制するべく、その水路内での急激な口径や形状変化を極力避けるように設計するのが好ましい。また、ノズル63から吐出される水柱Wの所謂ポテンシャルコアが大きくなるように、ノズル63の形状等を決定するのが好ましい。   In addition, the nozzle 63 and the water supply pipe 64 positioned in front of the nozzle 63 are preferably designed so as to avoid sudden changes in the diameter and shape of the water channel as much as possible in order to suppress the generation of bubbles. Further, it is preferable to determine the shape and the like of the nozzle 63 so that a so-called potential core of the water column W discharged from the nozzle 63 becomes large.

以下、実施例及び比較例を説明することにより、本発明の特徴をより一層明らかにする。   Hereinafter, the features of the present invention will be further clarified by describing examples and comparative examples.

<実施例>
図1に概略構成を示す冷却設備100を用いて 下記の(1)〜(8)の条件で、熱延鋼板Sを冷却する試験を行った。
(1)鋼種:440MPa級高強度熱延鋼板
(2)厚み:3.5mm
(3)目標巻取温度:500℃
(4)搬送速度:570mpm〜650mpm(加速圧延)
(5)冷却装置の数:20
(6)各冷却装置の長さ:5m
(7)各冷却装置の冷却水の水量密度:1.0m/mhr
(8)温度計(水柱温度計)2Aの検出波長帯域:
0.85μm以下(1〜10番目の冷却装置出側)
1.00〜1.20μm(11〜20番目の冷却装置出側)
<Example>
The test which cools the hot-rolled steel sheet S was conducted on condition of following (1)-(8) using the cooling equipment 100 which shows schematic structure in FIG.
(1) Steel type: 440 MPa class high strength hot-rolled steel sheet (2) Thickness: 3.5 mm
(3) Target winding temperature: 500 ° C
(4) Conveying speed: 570 mpm to 650 mpm (accelerated rolling)
(5) Number of cooling devices: 20
(6) Length of each cooling device: 5m
(7) Cooling water volume density of each cooling device: 1.0 m 3 / m 2 hr
(8) Detection wavelength band of thermometer (water column thermometer) 2A:
0.85μm or less (1-10th cooling device outlet side)
1.00-1.20 μm (11th to 20th cooling device outlet side)

<比較例>
図4に概略構成を示す冷却設備100’を用いて、前述した実施例の(1)〜(7)の条件、及び、水冷時及び空冷時の熱伝達率の補正を行わない条件(熱伝達率は固定)で、熱延鋼板Sを冷却する試験を行った。
<Comparative example>
Using the cooling facility 100 ′ shown schematically in FIG. 4, the conditions (1) to (7) of the above-described embodiment and the conditions for not correcting the heat transfer coefficient during water cooling and air cooling (heat transfer) The rate was fixed), and a test for cooling the hot-rolled steel sheet S was performed.

<試験結果>
図3(a)は、上記実施例の試験結果(熱間圧延機出側温度、巻取温度予測値、及び、巻取温度実績値)を示すグラフである。図3(b)は、上記比較例の試験結果(熱間圧延機出側温度、巻取温度予測値、及び、巻取温度実績値)を示すグラフである。
図3に示すように、実施例及び比較例の何れについても、巻取温度予測値が目標巻取温度である500℃に近づくように冷却装置が制御されていることが分かる。
しかしながら、図3(a)に示すように、実施例では、巻取温度実績値が目標巻取温度とほぼ同等になるように冷却されているのに対し、図3(b)に示すように、比較例では、巻取温度実績値が目標巻取温度に対して偏差を生じている。これは、実施例では、比較例に比べて、巻取温度の予測精度が高いことが原因である。
<Test results>
Fig.3 (a) is a graph which shows the test result (The hot rolling mill delivery side temperature, coiling temperature estimated value, and coiling temperature actual value) of the said Example. FIG.3 (b) is a graph which shows the test result (The hot rolling mill delivery side temperature, coiling temperature prediction value, and coiling temperature actual value) of the said comparative example.
As shown in FIG. 3, it can be seen that the cooling device is controlled so that the estimated coiling temperature approaches the target coiling temperature of 500 ° C. in both the example and the comparative example.
However, as shown in FIG. 3 (a), in the embodiment, cooling is performed so that the actual winding temperature value is substantially equal to the target winding temperature, whereas as shown in FIG. 3 (b). In the comparative example, the actual winding temperature value deviates from the target winding temperature. This is due to the fact that in the example, the prediction accuracy of the winding temperature is higher than in the comparative example.

図1は、本発明の一実施形態に係る冷却設備の概略構成例を示す模式図である。FIG. 1 is a schematic diagram illustrating a schematic configuration example of a cooling facility according to an embodiment of the present invention. 図2は、図1に示す冷却設備100が備える温度計(水柱温度計)2Aの概略構成例を示す図である。FIG. 2 is a diagram illustrating a schematic configuration example of a thermometer (water column thermometer) 2A included in the cooling facility 100 illustrated in FIG. 図3は、実施例及び比較例の試験結果を示すグラフである。FIG. 3 is a graph showing test results of Examples and Comparative Examples. 図4は、従来の一般的な冷却設備の概略構成例を示す模式図である。FIG. 4 is a schematic diagram illustrating a schematic configuration example of a conventional general cooling facility. 図5は、約0.7〜1.9μmの波長帯域における水の分光透過率を示すグラフである。FIG. 5 is a graph showing the spectral transmittance of water in a wavelength band of about 0.7 to 1.9 μm. 図6は、水の厚みと測温誤差との関係を示すグラフである。FIG. 6 is a graph showing the relationship between water thickness and temperature measurement error. 図7は、検出する熱放射光の波長帯域を0.85μm以下とした放射温度計の測温値バラツキを評価した結果の一例を示すグラフである。FIG. 7 is a graph showing an example of a result of evaluating a temperature measurement variation of a radiation thermometer in which a wavelength band of detected thermal radiation light is 0.85 μm or less. 図8は、検出する熱放射光の波長帯域を1.00〜1.20μmとした放射温度計の測温値バラツキを評価した結果の一例を示すグラフである。FIG. 8 is a graph showing an example of a result of evaluating a temperature measurement value variation of a radiation thermometer in which a wavelength band of detected thermal radiation light is set to 1.00 to 1.20 μm.

符号の説明Explanation of symbols

1(11〜1n)・・・冷却装置
2・・・温度計
2A(21〜2n)・・・温度計
3・・・熱伝達率算出手段
4・・・巻取温度予測手段
5・・・冷却制御手段
6・・・厚み計
7・・・速度計
8・・・水切り装置
9・・・温度計
10・・・水切り装置
20・・・熱間圧延機
30・・・巻取装置
100・・・冷却設備
S・・・熱延鋼板
DESCRIPTION OF SYMBOLS 1 (11-1n) ... Cooling device 2 ... Thermometer 2A (21-2n) ... Thermometer 3 ... Heat transfer coefficient calculation means 4 ... Winding temperature prediction means 5 ... Cooling control means 6 ... thickness meter 7 ... speedometer 8 ... draining device 9 ... thermometer 10 ... draining device 20 ... hot rolling mill 30 ... winding device 100 ..Cooling equipment S ... Hot rolled steel sheet

Claims (2)

熱間圧延機で圧延され巻取装置に向けて搬送される熱延鋼板の巻取温度が所定の温度となるように、前記熱間圧延機と前記巻取装置との間に位置し熱延鋼板の搬送方向に沿って複数の区間に分割された冷却帯において、前記各区間でそれぞれ行われる水冷又は空冷の組み合わせからなる所定の冷却パターンで熱延鋼板を冷却する方法であって、
前記冷却帯のうち熱延鋼板が水冷される区間の入側と出側の熱延鋼板の温度をそれぞれ測定し、該測定した熱延鋼板の温度差に基づき、水冷時の熱伝達率を算出するステップと、
前記冷却帯のうち熱延鋼板が空冷される区間の入側と出側の熱延鋼板の温度をそれぞれ測定し、該測定した熱延鋼板の温度差に基づき、空冷時の熱伝達率を算出するステップと、
前記冷却帯における複数の冷却パターンを想定し、該複数の冷却パターンについて、前記算出した水冷時及び空冷時の熱伝達率を用いてそれぞれ伝熱計算を行うことにより、各冷却パターンについての熱延鋼板の巻取温度を予測するステップと、
前記想定した複数の冷却パターンのうち前記予測した熱延鋼板の巻取温度が所定の温度となる冷却パターンを選択し、該選択した冷却パターンにより熱延鋼板を冷却するステップとを含むことを特徴とする熱延鋼板の冷却方法。
It is located between the hot rolling mill and the winding device so that the winding temperature of the hot rolled steel sheet rolled by the hot rolling mill and conveyed toward the winding device becomes a predetermined temperature. In the cooling zone divided into a plurality of sections along the conveying direction of the steel sheet, a method of cooling the hot-rolled steel sheet with a predetermined cooling pattern consisting of a combination of water cooling or air cooling performed in each of the sections,
Measure the temperature of the hot-rolled steel sheet on the inlet side and outlet side of the section where the hot-rolled steel sheet is water-cooled in the cooling zone, and calculate the heat transfer coefficient during water cooling based on the measured temperature difference of the hot-rolled steel sheet And steps to
Measure the temperature of the hot-rolled steel sheet on the inlet side and outlet side of the section where the hot-rolled steel sheet is air-cooled in the cooling zone, and calculate the heat transfer coefficient during air-cooling based on the measured temperature difference of the hot-rolled steel sheet And steps to
Assuming a plurality of cooling patterns in the cooling zone, each of the plurality of cooling patterns is subjected to heat transfer calculation using the calculated heat transfer coefficient at the time of water cooling and air cooling. Predicting the coiling temperature of the steel sheet;
Selecting a cooling pattern in which the predicted coiling temperature of the hot-rolled steel sheet is a predetermined temperature among the plurality of assumed cooling patterns, and cooling the hot-rolled steel sheet with the selected cooling pattern. A method for cooling a hot-rolled steel sheet.
熱間圧延機で圧延され巻取装置に向けて搬送される熱延鋼板の巻取温度が所定の温度となるように、前記熱間圧延機と前記巻取装置との間に配置され、水冷又は空冷の組み合わせからなる所定の冷却パターンで熱延鋼板を冷却する設備であって、
熱延鋼板の搬送方向に沿ってそれぞれ配置され、水冷及び空冷の切り替えが可能な複数の冷却装置と、
前記各冷却装置の入側及び出側にそれぞれ配置され、熱延鋼板の温度を測定する複数の温度計と、
前記複数の冷却装置のうち熱延鋼板を水冷する冷却装置の入側と出側にそれぞれ配置された前記温度計によって測定した熱延鋼板の温度差に基づき、水冷時の熱伝達率を算出し、前記複数の冷却装置のうち熱延鋼板を空冷する冷却装置の入側と出側にそれぞれ配置された前記温度計によって測定した熱延鋼板の温度差に基づき、空冷時の熱伝達率を算出する熱伝達率算出手段と、
前記各冷却装置がそれぞれ水冷又は空冷の何れかを行う複数の冷却パターンを想定し、該複数の冷却パターンについて、前記熱伝達率算出手段によって算出した水冷時及び空冷時の熱伝達率を用いて伝熱計算を行うことにより、各冷却パターンについての熱延鋼板の巻取温度を予測する巻取温度予測手段と、
前記想定した複数の冷却パターンのうち前記巻取温度予測手段によって予測した熱延鋼板の巻取温度が所定の温度となる冷却パターンを選択し、該選択した冷却パターンに従って前記各冷却装置が行う水冷又は空冷を切り替える冷却制御手段とを備えることを特徴とする熱延鋼板の冷却設備。
It is arranged between the hot rolling mill and the winding device so that the winding temperature of the hot-rolled steel sheet rolled by the hot rolling mill and conveyed toward the winding device becomes a predetermined temperature, and is water-cooled. Or a facility for cooling a hot-rolled steel sheet with a predetermined cooling pattern comprising a combination of air cooling,
A plurality of cooling devices that are arranged along the conveying direction of the hot-rolled steel sheet, and capable of switching between water cooling and air cooling,
A plurality of thermometers arranged on the inlet side and outlet side of each cooling device, respectively, for measuring the temperature of the hot-rolled steel sheet;
Based on the temperature difference between the hot-rolled steel sheets measured by the thermometers respectively disposed on the inlet side and the outlet side of the cooling apparatus that water-cools the hot-rolled steel sheets among the plurality of cooling apparatuses, the heat transfer coefficient during water cooling is calculated. The heat transfer coefficient at the time of air cooling is calculated based on the temperature difference between the hot rolled steel sheets measured by the thermometers respectively arranged on the inlet side and the outlet side of the cooling apparatus for cooling the hot rolled steel sheet among the plurality of cooling apparatuses. Heat transfer coefficient calculating means for
Assuming a plurality of cooling patterns in which each of the cooling devices performs either water cooling or air cooling, using the heat transfer coefficients at the time of water cooling and air cooling calculated by the heat transfer coefficient calculation means for the plurality of cooling patterns. Winding temperature prediction means for predicting the winding temperature of the hot-rolled steel sheet for each cooling pattern by performing heat transfer calculation,
Among the plurality of assumed cooling patterns, a cooling pattern in which the coiling temperature of the hot-rolled steel sheet predicted by the coiling temperature predicting means becomes a predetermined temperature is selected, and the water cooling performed by each of the cooling devices according to the selected cooling pattern Or the cooling control means which switches air cooling, The cooling equipment of the hot-rolled steel plate characterized by the above-mentioned.
JP2008186128A 2008-07-17 2008-07-17 Hot-rolled steel sheet cooling method and cooling equipment Active JP4924952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008186128A JP4924952B2 (en) 2008-07-17 2008-07-17 Hot-rolled steel sheet cooling method and cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008186128A JP4924952B2 (en) 2008-07-17 2008-07-17 Hot-rolled steel sheet cooling method and cooling equipment

Publications (2)

Publication Number Publication Date
JP2010023066A true JP2010023066A (en) 2010-02-04
JP4924952B2 JP4924952B2 (en) 2012-04-25

Family

ID=41729396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008186128A Active JP4924952B2 (en) 2008-07-17 2008-07-17 Hot-rolled steel sheet cooling method and cooling equipment

Country Status (1)

Country Link
JP (1) JP4924952B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240357A (en) * 2010-05-17 2011-12-01 Nippon Steel Corp Device and method for tracking strip on hot run table
JP2013086132A (en) * 2011-10-18 2013-05-13 Nippon Steel & Sumitomo Metal Corp Method for controlling cooling of steel sheet and device for manufacturing steel sheet
KR101443078B1 (en) * 2013-04-30 2014-09-23 현대제철 주식회사 Cooling device for hot plate
US9169989B2 (en) 2010-08-04 2015-10-27 Element Six Limited Diamond optical element
CN109226258A (en) * 2018-09-05 2019-01-18 湖南华菱涟源钢铁有限公司 A method of prevent medium high carbon hot-strip from generating roll marks
JP2021037524A (en) * 2019-09-02 2021-03-11 株式会社神戸製鋼所 Steel-plate cooling method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462206A (en) * 1987-08-31 1989-03-08 Kawasaki Steel Co Temperature control method for hot rolling steel material
JP2001300628A (en) * 2000-04-21 2001-10-30 Nippon Steel Corp Method for cooling joined steel sheet
JP2004130353A (en) * 2002-10-10 2004-04-30 Sumitomo Metal Ind Ltd Method of manufacturing metallic sheet and temperature controller
JP2006159261A (en) * 2004-12-08 2006-06-22 Sumitomo Metal Ind Ltd Method and apparatus for manufacturing hot-rolled steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462206A (en) * 1987-08-31 1989-03-08 Kawasaki Steel Co Temperature control method for hot rolling steel material
JP2001300628A (en) * 2000-04-21 2001-10-30 Nippon Steel Corp Method for cooling joined steel sheet
JP2004130353A (en) * 2002-10-10 2004-04-30 Sumitomo Metal Ind Ltd Method of manufacturing metallic sheet and temperature controller
JP2006159261A (en) * 2004-12-08 2006-06-22 Sumitomo Metal Ind Ltd Method and apparatus for manufacturing hot-rolled steel sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240357A (en) * 2010-05-17 2011-12-01 Nippon Steel Corp Device and method for tracking strip on hot run table
US9169989B2 (en) 2010-08-04 2015-10-27 Element Six Limited Diamond optical element
JP2013086132A (en) * 2011-10-18 2013-05-13 Nippon Steel & Sumitomo Metal Corp Method for controlling cooling of steel sheet and device for manufacturing steel sheet
KR101443078B1 (en) * 2013-04-30 2014-09-23 현대제철 주식회사 Cooling device for hot plate
CN109226258A (en) * 2018-09-05 2019-01-18 湖南华菱涟源钢铁有限公司 A method of prevent medium high carbon hot-strip from generating roll marks
JP2021037524A (en) * 2019-09-02 2021-03-11 株式会社神戸製鋼所 Steel-plate cooling method

Also Published As

Publication number Publication date
JP4924952B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4924952B2 (en) Hot-rolled steel sheet cooling method and cooling equipment
US9308563B2 (en) Manufacturing method of hot-rolled steel sheet
US8500927B2 (en) Manufacturing apparatus of hot-rolled steel sheet and manufacturing method of hot rolled steel sheet
JP5835483B2 (en) Temperature control device
JP6558060B2 (en) Thick steel plate cooling control method, cooling control device, manufacturing method, and manufacturing device
JP6668280B2 (en) Winding cooling control device and winding cooling control method
JP5333933B2 (en) Surface temperature measuring method and steel material manufacturing method
JP5493993B2 (en) Thick steel plate cooling control device, cooling control method, and manufacturing method
JP4894686B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP4569873B2 (en) Steel surface temperature measuring method, surface temperature measuring device, and steel manufacturing method
JP2007301603A (en) Method for controlling coiling temperature of rolled stock and rolling equipment
EP4151326A1 (en) Method for predicting temperature deviation in thick steel plate, method for controlling temperature deviation in thick steel plate, method for generating temperature deviation prediction model for thick steel plate, method for producing thick steel plate, and equipment for producing thick steel plate
JP4151022B2 (en) Steel surface temperature measuring method, surface temperature measuring device, and steel manufacturing method
JP5310144B2 (en) Thick steel plate surface temperature measuring device and material judgment method
JP2003185501A (en) Method for measuring surface temperature of steel panel and measuring instrument therefor
JP4714061B2 (en) Rolling material cooling device
JP5239887B2 (en) Hot rolled steel sheet manufacturing apparatus and manufacturing method
JP2021128013A (en) Temperature measurement system and temperature measurement method
JP5310149B2 (en) Thick steel plate quality assurance equipment
JP3783396B2 (en) Cooling method for high temperature steel sheet
JP5310147B2 (en) Thick steel plate quality assurance equipment
JP2022108448A (en) Control device, control method, and program
JP2023007380A (en) Method of generating temperature prediction model for hot-rolled plate and modification enthalpy prediction model for hot-rolled plate, rolling temperature prediction model for hot-rolled plate, temperature control method for hot-rolled plate, and method of producing hot-rolled plate
JP2011121072A (en) Equipment for guaranteeing material of steel plate
JP2010214441A (en) Quality guarantee facility for thick steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4924952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350