JP2013084562A - Electrolyte and manufacturing method thereof, and electric storage device using the same - Google Patents

Electrolyte and manufacturing method thereof, and electric storage device using the same Download PDF

Info

Publication number
JP2013084562A
JP2013084562A JP2012147964A JP2012147964A JP2013084562A JP 2013084562 A JP2013084562 A JP 2013084562A JP 2012147964 A JP2012147964 A JP 2012147964A JP 2012147964 A JP2012147964 A JP 2012147964A JP 2013084562 A JP2013084562 A JP 2013084562A
Authority
JP
Japan
Prior art keywords
solution
free acid
amount
solvent
ionic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012147964A
Other languages
Japanese (ja)
Other versions
JP6093516B2 (en
Inventor
Yasunori Okumura
康則 奥村
Shinpei Sato
信平 佐藤
Izuho Okada
出穂 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2012147964A priority Critical patent/JP6093516B2/en
Publication of JP2013084562A publication Critical patent/JP2013084562A/en
Application granted granted Critical
Publication of JP6093516B2 publication Critical patent/JP6093516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolyte suitably used for an electric storage device, which is further an electrolyte allowing suppression of increase over time in a free acid amount and/or a moisture content giving an adverse effect to an electrochemical characteristic of an electrolyte; and a manufacturing method thereof.SOLUTION: The electrolyte of the present invention comprises an ionic compound represented by the following general formula (1) and a free acid with less than 25 ppm (by mass). In addition, the manufacturing method of the present invention comprises a step of mixing the above ionic compound and a hydrocarbon-based solvent and/or a carbonate-based solvent, followed by distilling some or all of the solvent off; and/or a step of contacting with a molecular sieve. (XSO)(X'SO)NY(1) (in the formula, X and X' represent a fluorine atom or an alkyl or fluoroalkyl group having a carbon number of 1 to 6, at least one of X and X' is a fluorine atom, and Yrepresents an alkali metal cation or an onium cation)

Description

本発明は電解液に関するものであり、より詳細には、イオン性化合物を含む電解液、さらには、遊離酸及び/又は水分の含有量が低減された電解液及びその製造方法、並びに、これを用いた蓄電デバイスに関する。   The present invention relates to an electrolytic solution, and more specifically, an electrolytic solution containing an ionic compound, an electrolytic solution with reduced free acid and / or moisture content, a method for producing the same, and It relates to the electricity storage device used.

一次電池、リチウム(イオン)二次電池、燃料電池などの充電及び放電機構を有する電池の他、電解コンデンサ、電気二重層キャパシタ、太陽電池等の各種蓄電デバイスには電解液が備えられるが、電解液に含まれる不純物に起因する電解質の分解、電気化学特性の劣化及び蓄電デバイス性能の低下を防ぐため、電解液中の不純物量を低減する試みが多数なされている。   In addition to batteries with charging and discharging mechanisms such as primary batteries, lithium (ion) secondary batteries, fuel cells, etc., various power storage devices such as electrolytic capacitors, electric double layer capacitors, solar cells, etc. are equipped with an electrolyte. Many attempts have been made to reduce the amount of impurities in the electrolytic solution in order to prevent the decomposition of the electrolyte, the deterioration of electrochemical characteristics, and the deterioration of the performance of the electricity storage device due to the impurities contained in the solution.

例えば、特許文献1では、電解液に含まれる水、HF、カリウム及びナトリウムの量が規定されており、また、LiFSI、LiDCTA、LiPF6、TFSI、LiTFS
I等を含む電解液と炭化カルシウム粒子とを接触させて、電解液中の水分量を低減する方法が記載されている。特許文献2〜5には、リチウム電池用電解液中のHF等の酸性物質量を低減するための方法が開示されており、特許文献2には、HF生成の原因となるアルコール類の含有量を低減するため、電解液に用いられる非水溶媒を、精密蒸留、晶析又はモレキュラーシーブにより処理する方法が記載され、特許文献3には、電解液中のHF等の酸性種除去のため、電解液と塩基性樹脂とを接触させる方法が記載され、特許文献4には、電解質に含まれるHF等の酸性物質をハロゲン化物と反応させてハロゲン化水素として除去する方法が開示されている。また、特許文献5には、電解液中に水分吸収物質と、フッ素と難溶性の塩を形成する物質とを混合することで、電解質に由来するフッ素と電解液中の水分量を低減する方法が記載されている。
For example, Patent Document 1, water contained in the electrolytic solution, HF, and the amount of potassium and sodium is defined, also, LiFSI, LiDCTA, LiPF 6, TFSI, LiTFS
A method is described in which the amount of water in the electrolytic solution is reduced by bringing an electrolytic solution containing I or the like into contact with calcium carbide particles. Patent Documents 2 to 5 disclose methods for reducing the amount of acidic substances such as HF in the electrolyte solution for lithium batteries, and Patent Document 2 includes the content of alcohols that cause HF generation. In order to reduce the non-aqueous solvent used in the electrolytic solution, a method of treating by non-aqueous distillation, crystallization, or molecular sieve is described. In Patent Document 3, for removing acidic species such as HF in the electrolytic solution, A method of bringing an electrolytic solution into contact with a basic resin is described, and Patent Document 4 discloses a method of removing an acidic substance such as HF contained in an electrolyte as a hydrogen halide by reacting with a halide. Patent Document 5 discloses a method of reducing the amount of moisture in an electrolyte and fluorine derived from an electrolyte by mixing a moisture-absorbing substance and a substance that forms a sparingly soluble salt with fluorine in the electrolyte. Is described.

特表2009−506505号公報Special table 2009-506505 gazette 特開平10−270076号公報JP-A-10-270076 特表2000−505042号公報JP 2000-505042 特開平10−92468号公報Japanese Patent Laid-Open No. 10-92468 特開2010−257572号公報JP 2010-257572 A

上記酸性物質等は、電解液製造直後の含有量が低いものであっても、経時的にその量が増加する場合があり、かかる電解液では、初期の電気化学的特性を長期に亘って発揮し得る蓄電デバイスの実現は困難となる。   Even if the content of the above acidic substances is low immediately after the production of the electrolytic solution, the amount thereof may increase over time, and such an electrolytic solution exhibits the initial electrochemical characteristics over a long period of time. It is difficult to realize an electric storage device that can be used.

本発明は上記の様な事情に着目してなされたものであって、その目的は、蓄電デバイスに好適に用いられる電解液、更には、電解液の電気化学的特性に悪影響を与える遊離酸量等の経時的な増加が抑制された電解液、及び、その製造方法を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and the purpose thereof is an electrolytic solution suitably used for an electricity storage device, and further, an amount of free acid that adversely affects the electrochemical characteristics of the electrolytic solution. It is an object of the present invention to provide an electrolytic solution in which an increase over time or the like is suppressed, and a method for producing the same.

本発明の電解液とは、下記一般式(1)で表されるイオン性化合物と遊離酸を含み、前記遊離酸の含有量が25ppm未満(質量基準)であるところに特徴を有する。
(XSO2)(X’SO2)N-+ (1)
(式中、X、X’はフッ素原子又は炭素数1〜6のアルキル基又はフルオロアルキル基を表し、X、X’の少なくとも一方はフッ素原子であり、Y+はアルカリ金属カチオン又は
オニウムカチオンを表す。)
The electrolytic solution of the present invention is characterized in that it contains an ionic compound represented by the following general formula (1) and a free acid, and the content of the free acid is less than 25 ppm (mass basis).
(XSO 2 ) (X′SO 2 ) N Y + (1)
(In the formula, X and X ′ represent a fluorine atom, an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group, at least one of X and X ′ is a fluorine atom, and Y + represents an alkali metal cation or an onium cation. Represents.)

上記遊離酸としては、HF、H2SO4及びFSO3Hよりなる群から選ばれる1種以上
の遊離酸であるのが好ましい。また、本発明の電解液に含まれる水分量は50ppm以下(質量基準)であるのが好ましい。遊離酸量、又は、遊離酸量及び水分量が上記範囲であれば、経時的にこれらの量が増大し難いため好ましい。上記一般式(1)において、X及びX’がフッ素原子であり、Y+がリチウムカチオンであるのが望ましい。
The free acid is preferably at least one free acid selected from the group consisting of HF, H 2 SO 4 and FSO 3 H. Moreover, it is preferable that the moisture content contained in the electrolyte solution of this invention is 50 ppm or less (mass reference | standard). If the amount of free acid, or the amount of free acid and the amount of water are in the above ranges, it is preferable because these amounts hardly increase over time. In the above general formula (1), it is desirable that X and X ′ are fluorine atoms and Y + is a lithium cation.

本発明には、上記電解液を用いた蓄電デバイスも含まれる。   The present invention also includes an electricity storage device using the above electrolytic solution.

本発明の製造方法とは、上記電解液の製造方法であって、上記一般式(1)で表されるイオン性化合物と、炭化水素系溶媒及び/又は非プロトン性溶媒を混合した後、
(i)一部又は全ての溶媒を留去させる工程、及び/又は、
(ii)モレキュラーシーブと接触させる工程、
を含むところに特徴を有する。
The production method of the present invention is a production method of the above electrolytic solution, and after mixing the ionic compound represented by the general formula (1) with a hydrocarbon solvent and / or an aprotic solvent,
(I) distilling off some or all of the solvent, and / or
(Ii) a step of contacting with the molecular sieve;
It has the characteristic in including.

本発明の電解液は、遊離酸の含有量が低減されており、経時的な遊離酸量や水分量の増加が生じ難く、保存安定性に優れるものである。したがって、本発明の電解液を蓄電デバイスに使用すれば、経時的な性能低下が生じ難い高性能な蓄電デバイスになると考えられる。また、本発明法によれば、経時的な遊離酸量の増加が生じ難い電解液を製造することができる。   The electrolytic solution of the present invention has a reduced free acid content, is less prone to increase in free acid amount and water content over time, and has excellent storage stability. Therefore, if the electrolytic solution of the present invention is used for an electricity storage device, it is considered that a high-performance electricity storage device in which performance deterioration with time does not easily occur. Moreover, according to the method of the present invention, it is possible to produce an electrolytic solution in which an increase in the amount of free acid over time hardly occurs.

≪電解液≫
本発明の電解液とは、下記一般式(1)で表されるイオン性化合物(以下、イオン性化合物(1)という場合がある)と遊離酸を含み、前記遊離酸の含有量が25ppm未満(質量基準、以下同様)であるところに特徴を有する。
(XSO2)(X’SO2)N-+ (1)
(式中、X、X’はフッ素原子又は炭素数1〜6のアルキル基又はフルオロアルキル基を表し、X、X’の少なくとも一方はフッ素原子であり、Y+はアルカリ金属カチオン又は
オニウムカチオンを表す。)
≪Electrolytic solution≫
The electrolytic solution of the present invention contains an ionic compound represented by the following general formula (1) (hereinafter sometimes referred to as ionic compound (1)) and a free acid, and the content of the free acid is less than 25 ppm. (Mass basis, the same applies hereinafter).
(XSO 2 ) (X′SO 2 ) N Y + (1)
(In the formula, X and X ′ represent a fluorine atom, an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group, at least one of X and X ′ is a fluorine atom, and Y + represents an alkali metal cation or an onium cation. Represents.)

電解液中の遊離酸は、当該電解液が用いられる各種蓄電デバイスの周辺部材を腐食させるのみならず、遊離酸量を増大させる原因ともなる。電解液中の遊離酸量が25ppm未満であれば、経時的な遊離酸量の増大や、各種蓄電デバイスの周辺部材の腐食を抑制することができる。したがって、上記遊離酸の含有量は、本発明の電解液中20ppm以下であるのが好ましい。より好ましくは15ppm以下である。電解液中の遊離酸量が上記範囲内であれば上述のような問題が生じ難い。   The free acid in the electrolytic solution not only corrodes peripheral members of various power storage devices in which the electrolytic solution is used, but also increases the amount of free acid. When the amount of free acid in the electrolytic solution is less than 25 ppm, increase in the amount of free acid over time and corrosion of peripheral members of various power storage devices can be suppressed. Therefore, the content of the free acid is preferably 20 ppm or less in the electrolytic solution of the present invention. More preferably, it is 15 ppm or less. If the amount of free acid in the electrolyte is within the above range, the above-described problems are unlikely to occur.

尚、電解液中の遊離酸量は少ないほど好ましいが、後述するように遊離酸はイオン性化合物(1)に由来するものであるため、電解液中の含有量を0ppmにまで低減することは困難であり、経済的理由から好ましくない場合もある。したがって、本発明の電解液に含まれる遊離酸量の下限は0.1ppm程度であればよい。遊離酸の含有量が0.1ppm程度であれば電解液の特性に対する影響が少ないからである。また、下限は1ppm程度であってもよい。この場合、顕著な特性の低下が見られ難く、実用上の問題を生じ難いからである。本発明における遊離酸の含有量は、例えば、中和滴定により測定される値である。   The amount of free acid in the electrolytic solution is preferably as small as possible. However, since the free acid is derived from the ionic compound (1) as described later, it is possible to reduce the content in the electrolytic solution to 0 ppm. It is difficult and may not be preferable for economic reasons. Therefore, the lower limit of the amount of free acid contained in the electrolytic solution of the present invention may be about 0.1 ppm. This is because if the content of the free acid is about 0.1 ppm, the influence on the characteristics of the electrolytic solution is small. The lower limit may be about 1 ppm. In this case, it is difficult to cause a remarkable deterioration in characteristics and hardly cause a practical problem. The free acid content in the present invention is, for example, a value measured by neutralization titration.

本発明において、その含有量を上記範囲とすべき遊離酸としては、HF、H2SO4及びFSO3Hよりなる群から選ばれる1種以上の遊離酸が挙げられる。これらの遊離酸は、イオン性化合物(1)合成時の出発原料、副生成物、あるいは、イオン性化合物(1)の分解生成物として、電解液中に不可避的に含まれるものであり、含有量を0%にまで低減することは難しいが、その含有量を上記範囲とすることで、これらの遊離酸に由来する問題を抑制できる。これらの遊離酸の中でも、電解液中に含まれるHF、H2SO4及びFSO3Hの量を上記範囲とすることが推奨される。尚、上記遊離酸の含有量は、HF、H2SO4及びFSO3Hよりなる群から選ばれる1種以上の遊離酸の合計量が上記範囲であればよい。 In the present invention, examples of the free acid whose content should be in the above range include one or more free acids selected from the group consisting of HF, H 2 SO 4 and FSO 3 H. These free acids are inevitably contained in the electrolyte as starting materials, by-products during the synthesis of the ionic compound (1), or decomposition products of the ionic compound (1). Although it is difficult to reduce the amount to 0%, by setting the content within the above range, problems derived from these free acids can be suppressed. Among these free acids, it is recommended that the amount of HF, H 2 SO 4 and FSO 3 H contained in the electrolytic solution be in the above range. The content of the free acid, HF, the total amount of one or more free acid selected from the group consisting of H 2 SO 4 and FSO 3 H may be within the above range.

本発明の電解液は、当該電解液に含まれる水分量が50ppm程度以下(質量基準、以下同様)であるのが望ましい。電解液に含まれる水分は、電解液の製造工程において、例えばイオン性化合物(1)の合成反応、あるいは精製の際に使用される水や溶媒、空気中等の環境からの吸湿により混入した水分が残留したものと考えられる。本発明の電解液の用途としては上記各種蓄電デバイスが挙げられるが、電解液に水分が含まれていると、電解液の耐電圧性を低下させたり、あるいは、蓄電デバイス稼動時に水分が電気分解されて水素イオンが生成し、これにより電解液のpHが低下(酸性)する結果、電極材料が溶解したり、電極材料と反応、腐食したりして蓄電デバイスの性能が低下するといった問題が生じる。また、電解液に含まれる水分は、イオン性化合物(1)の加水分解反応を起し、電解液中のイオン性化合物(1)量を減少させるのみならず、遊離酸量を増加させる原因にもなる。さらに、水分が電気分解される際にガスが発生し、これにより密閉構造の各種蓄電デバイスの内圧が上昇し変形や破損に至る場合がある。そのためデバイスが使用できない状態となるばかりか、安全上も問題となることがある。   In the electrolytic solution of the present invention, the amount of water contained in the electrolytic solution is desirably about 50 ppm or less (mass reference, the same applies hereinafter). The water contained in the electrolytic solution is, for example, the water mixed in the electrolytic solution manufacturing process due to moisture absorption from the environment such as water or solvent used in the synthesis reaction of the ionic compound (1) or purification, or in the air. It is thought that it remained. The use of the electrolytic solution of the present invention includes the above various electric storage devices. If the electrolytic solution contains moisture, the voltage resistance of the electrolytic solution is reduced, or the water is electrolyzed during operation of the electric storage device. As a result, hydrogen ions are generated and the pH of the electrolytic solution is lowered (acidic). As a result, the electrode material dissolves, reacts with the electrode material, corrodes, and the performance of the electricity storage device deteriorates. . In addition, the moisture contained in the electrolytic solution causes a hydrolysis reaction of the ionic compound (1), which not only decreases the amount of the ionic compound (1) in the electrolytic solution but also increases the amount of free acid. Also become. Furthermore, when water is electrolyzed, gas is generated, which may increase the internal pressure of various power storage devices having a sealed structure, leading to deformation or breakage. As a result, the device becomes unusable and may cause a safety problem.

したがって、本発明の電解液に含まれる水分量は約30ppm以下であるのがより好ましく、さらに好ましくは10ppm以下である。上記範囲であれば、周辺部材の劣化抑制に加えて、経時的な遊離酸量の増加も抑制することができる。   Therefore, the amount of water contained in the electrolytic solution of the present invention is more preferably about 30 ppm or less, and further preferably 10 ppm or less. If it is the said range, in addition to the deterioration suppression of a peripheral member, the increase in the amount of free acids with time can also be suppressed.

なお、電解液中の水分量は低ければ低いほどよいが、0ppmまで低減することは技術的に困難であり、経済的理由から好ましくない場合がある。したがって、本発明の電解液に含まれる水分量の下限は0.1ppm程度であればよい。水分含有量が0.1ppm程度であれば電解液の特性に対する影響が少ないからである。また、下限は1ppm程度であってもよい。顕著な特性の低下は見られ難く実用上の問題は生じ難いからである。   In addition, although the moisture content in electrolyte solution is so low that it is good, it is technically difficult to reduce to 0 ppm, and it may be unpreferable for economical reasons. Therefore, the lower limit of the amount of water contained in the electrolytic solution of the present invention may be about 0.1 ppm. This is because if the water content is about 0.1 ppm, the influence on the characteristics of the electrolytic solution is small. The lower limit may be about 1 ppm. This is because a remarkable deterioration in characteristics is hardly seen and practical problems are unlikely to occur.

本発明における水分の含有量は、例えば、電量滴定法若しくは容量滴定法によるカールフィッシャー水分測定装置(例えば、平沼産業株式会社製のカールフィッシャー水分計)を使用して、後述する実施例に記載の手順により測定される値である。   The water content in the present invention is, for example, described in the examples described later using a Karl Fischer moisture measuring device (for example, a Karl Fischer moisture meter manufactured by Hiranuma Sangyo Co., Ltd.) by a coulometric titration method or a volumetric titration method. It is a value measured by the procedure.

<イオン性化合物(1)>
次に、上記一般式(1):(XSO2)(X’SO2)N-+で表されるイオン性化合物について説明する。本発明の電解液には、電解質として、アニオン成分:(XSO2)(X’SO2)N-と、カチオン成分:Y+とからなるイオン性化合物(1)が含まれる。一般式(1)中、X及びX’はフッ素原子又は炭素数1〜6のアルキル基又はフルオロアルキル基を表し、X、X’の少なくとも一方はフッ素原子である。炭素数1〜6アルキル基としては、直鎖状のアルキル基であるのが好ましく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基が挙げられる。炭素数1〜6のフルオロアルキル基としては、上記アルキル基が有する水素原子の一部又は全部がフッ素原子で置換されたものが挙げられ、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、ペンタフルオロエチル基等が挙げられる。これらの中でも、X、X’としては、フッ素原子、トリフルオロメチル基、ペンタフルオロエチル基が好ましい。
<Ionic compound (1)>
Next, the ionic compound represented by the general formula (1): (XSO 2 ) (X′SO 2 ) N Y + will be described. The electrolytic solution of the present invention contains an ionic compound (1) composed of an anion component: (XSO 2 ) (X′SO 2 ) N and a cation component: Y + as an electrolyte. In general formula (1), X and X ′ represent a fluorine atom, an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group, and at least one of X and X ′ is a fluorine atom. The alkyl group having 1 to 6 carbon atoms is preferably a linear alkyl group, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, and a hexyl group. Examples of the fluoroalkyl group having 1 to 6 carbon atoms include those in which some or all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms, such as a fluoromethyl group, a difluoromethyl group, and a trifluoromethyl group. , Fluoroethyl group, difluoroethyl group, trifluoroethyl group, pentafluoroethyl group and the like. Among these, as X and X ′, a fluorine atom, a trifluoromethyl group, and a pentafluoroethyl group are preferable.

一方、一般式(1)中、Y+はアルカリ金属カチオン又はオニウムカチオンを表す。アルカリ金属としては、リチウム、ナトリウム及びカリウム等が挙げられる。これらの中でもリチウムが好ましい。 On the other hand, in the general formula (1), Y + represents an alkali metal cation or an onium cation. Examples of the alkali metal include lithium, sodium and potassium. Among these, lithium is preferable.

一方、オニウムカチオンとしては、一般式(2):L+−Rs(式中、Lは、C、Si、N、P、S又はOを表す。Rは、同一若しくは異なって、水素原子、フッ素原子、または、有機基であり、Rが有機基の場合、これらは互いに結合していてもよい。sは、2、3又は4であり、元素Lの価数によって決まる値である。尚、L−R間の結合は、単結合であってもよく、また二重結合であってもよい。)で表されるオニウムカチオンが挙げられる。 On the other hand, as the onium cation, the general formula (2): L + -R s (wherein L represents C, Si, N, P, S or O. R is the same or different and represents a hydrogen atom, When R is an organic group and is a fluorine atom or an organic group, these may be bonded to each other, s is 2, 3 or 4, and is a value determined by the valence of the element L. , A bond between L and R may be a single bond or a double bond).

上記Rで示される「有機基」は、炭素原子を少なくとも1個有する基を意味する。上記「炭素原子を少なくとも1個有する基」は、炭素原子を少なくとも1個有していればよく、また、ハロゲン原子やヘテロ原子などの他の原子や、置換基などを有していてもよい。具体的な置換基としては、例えば、アミノ基、イミノ基、アミド基、エーテル結合を有する基、チオエーテル結合を有する基、エステル基、ヒドロキシル基、アルコキシ基、カルボキシル基、カルバモイル基、シアノ基、ジスルフィド基、ニトロ基、ニトロソ基、スルホニル基などが挙げられる。   The “organic group” represented by R means a group having at least one carbon atom. The “group having at least one carbon atom” may have at least one carbon atom, and may have another atom such as a halogen atom or a hetero atom, a substituent, or the like. . Specific examples of the substituent include an amino group, an imino group, an amide group, a group having an ether bond, a group having a thioether bond, an ester group, a hydroxyl group, an alkoxy group, a carboxyl group, a carbamoyl group, a cyano group, and a disulfide. Group, nitro group, nitroso group, sulfonyl group and the like.

一般式(2)で表されるオニウムカチオンとしては、具体的には下記一般式;   Specific examples of the onium cation represented by the general formula (2) include the following general formula:

Figure 2013084562
Figure 2013084562

(式中、Rは、一般式(2)と同様)で表されるものが好適である。このようなオニウムカチオンは単独で用いてもよく、2種以上を併用してもよい。具体的なオニウムカチオンとしては、WO2009/123328号公報に記載される複素環オニウムカチオン、不飽和オニウムカチオン、飽和環オニウムカチオン、及び、鎖状オニウムカチオン等が挙げられる。   (Wherein R is the same as in general formula (2)) is preferred. Such onium cations may be used alone or in combination of two or more. Specific examples of the onium cation include a heterocyclic onium cation, an unsaturated onium cation, a saturated ring onium cation, and a chain onium cation described in WO2009 / 123328.

なお、好ましいオニウムカチオンとしては、一般式(2);L+−RsにおいてLがN、Rが、水素、または、C1〜C8のアルキル基、sが4である鎖状オニウムカチオンや下記一般式で表される5種類のオニウムカチオンが挙げられる。 Preferred onium cations are those represented by the general formula (2): L + -R s in which L is N, R is hydrogen, or a C 1 to C 8 alkyl group, and a chain onium cation in which s is 4. There are 5 types of onium cations represented by the following general formula.

Figure 2013084562
Figure 2013084562

上記一般式中、R1〜R12は、同一若しくは異なって、水素原子、フッ素原子、又は、有機基であり、有機基の場合、これらは互いに結合していてもよい。有機基としては、直鎖、分岐鎖又は環状の炭素数1〜18の飽和又は不飽和炭化水素基、炭化フッ素基等が好ましく、より好ましくは炭素数1〜8の飽和又は不飽和炭化水素基、炭化フッ素基である。これらの有機基は、水素原子、フッ素原子、窒素原子、酸素原子、硫黄原子や、アミノ基、イミノ基、アミド基、エーテル基、エステル基、ヒドロキシル基、カルボキシル基、カルバモイル基、シアノ基、スルホン基、スルフィド基等の官能基を含んでいてもよい。より好ましくは、R1〜R12は、水素原子、フッ素原子、シアノ基及びスルホン基等のいずれか1種以上を有するものである。なお、2以上の有機基が結合している場合は、当該結合は、有機基の主骨格間に形成されたものでも、また、有機基の主骨格と上述の官能基との間、あるいは、上記官能基間に形成されたものであっても良い。 In the general formula, R 1 to R 12 are the same or different and are a hydrogen atom, a fluorine atom, or an organic group, and in the case of an organic group, these may be bonded to each other. As the organic group, a linear, branched, or cyclic C1-C18 saturated or unsaturated hydrocarbon group, a fluorocarbon group, or the like is preferable, and a C1-C8 saturated or unsaturated hydrocarbon group is more preferable. , A fluorocarbon group. These organic groups are hydrogen atom, fluorine atom, nitrogen atom, oxygen atom, sulfur atom, amino group, imino group, amide group, ether group, ester group, hydroxyl group, carboxyl group, carbamoyl group, cyano group, sulfone. A functional group such as a group or sulfide group may be contained. More preferably, R 1 to R 12 have one or more of a hydrogen atom, a fluorine atom, a cyano group, a sulfone group, and the like. When two or more organic groups are bonded, the bond may be formed between the main skeleton of the organic group, or between the main skeleton of the organic group and the functional group described above, or It may be formed between the functional groups.

上記鎖状オニウムカチオンとしては、例えば、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、テトラヘプチルアンモニウム、テトラヘキシルアンモニウム、テトラオクチルアンモニウム、トリエチルメチルアンモニウム、メトキシエチルジエチルメチルアンモニウム、トリメチルフェニルアンモニウム、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、ベンジルトリブチルアンモニウム、ジメチルジステアリルアンモニウム、ジアリルジメチルアンモニウム、(2−メトキシエトキシメチル)トリメチルアンモニウム、ジエチルメチル(2−メトキシエチル)アンモニウム、テトラキス(ペンタフルオロエチル)アンモニウム等の第4級アンモニウム類、トリメチルアンモニウム、トリエチルアンモニウム、トリブチルアンモニウム、ジエチルメチルアンモニウム、ジメチルエチルアンモニウム、ジブチルメチルアンモニウム等の第3級アンモニウム類、ジメチルアンモニウム、ジエチルアンモニウム、ジブチルアンモニウム等の第2級アンモニウム類、メチルアンモニウム、エチルアンモニウム、ブチルアンモニウム、ヘキシルアンモニウム、オクチルアンモニウム等の第1級アンモニウム類、N−メトキシトリメチルアンモニウム、N−エトキシトリメチルアンモニウム、N−プロポキシトリメチルアンモニウム及びNH4等のアンモニウム化合物等が挙げられる。これら例示の鎖状オニウムカチオンの中でも、アンモニウム、トリメチルアンモニウム、トリエチルアンモニウム、トリブチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウムおよびジエチルメチル(2−メトキシエチル)アンモニウムが好ましい鎖状オニウムカチオンとして挙げられる。 Examples of the chain onium cation include tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, tetraheptylammonium, tetrahexylammonium, tetraoctylammonium, triethylmethylammonium, methoxyethyldiethylmethylammonium, and trimethylphenylammonium. , Benzyltrimethylammonium, benzyltriethylammonium, benzyltributylammonium, dimethyldistearylammonium, diallyldimethylammonium, (2-methoxyethoxymethyl) trimethylammonium, diethylmethyl (2-methoxyethyl) ammonium, tetrakis (pentafluoroethyl) ammonium, etc. No. 4 Ammonius , Tertiary ammonium such as trimethylammonium, triethylammonium, tributylammonium, diethylmethylammonium, dimethylethylammonium and dibutylmethylammonium, secondary ammoniums such as dimethylammonium, diethylammonium and dibutylammonium, methylammonium and ethyl ammonium, butyl ammonium, hexyl ammonium, primary ammonium such as octyl ammonium, N- methoxymethyl-trimethylammonium, N- ethoxymethyl trimethylammonium, ammonium compounds such as N- propoxymethyl trimethyl ammonium and NH 4 and the like. Among these exemplified chain onium cations, preferred chain onium cations are ammonium, trimethylammonium, triethylammonium, tributylammonium, triethylmethylammonium, tetraethylammonium and diethylmethyl (2-methoxyethyl) ammonium.

イオン性化合物(1)は、上記カチオンとアニオンとの組み合わせであればよいが、好ましいイオン性化合物(1)としては、リチウムビス(フルオロスルホニル)イミドが挙げられる。   The ionic compound (1) may be a combination of the above cation and anion, but preferred ionic compound (1) includes lithium bis (fluorosulfonyl) imide.

<媒体>
本発明の電解液には媒体が含まれていてもよい。媒体としては、非プロトン性溶媒、ポリマー等が挙げられる。非プロトン性有機溶媒としては、誘電率が大きく、電解質塩(フルオロスルホニルイミドのアルカリ金属塩、後述する他の電解質)の溶解性が高く、沸点が60℃以上であり、且つ、電気化学的安定範囲が広い溶媒が好適である。より好ましくは非水系溶媒である。非水系溶媒としては、エチレングリコールジメチルエーテル(1,2−ジメトキシエタン)、エチレングリコールジエチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、2,6−ジメチルテトラヒドロフラン、テトラヒドロピラン、クラウンエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエ−テル、1,4−ジオキサン、1,3−ジオキソラン等のエーテル類;炭酸ジメチル、炭酸エチルメチル(メチルエチルカーボネート)、炭酸ジエチル(ジエチルカーボネート)、炭酸ジフェニル、炭酸メチルフェニル等の鎖状炭酸エステル類;炭酸エチレン(エチレンカーボネート)、炭酸プロピレン(プロピレンカーボネート)、2,3−ジメチル炭酸エチレン、炭酸ブチレン、炭酸ビニレン、2−ビニル炭酸エチレン等の環状炭酸エステル類;蟻酸メチル、酢酸メチル、プロピオン酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸アミル等の脂肪族カルボン酸エステル類;安息香酸メチル、安息香酸エチル等の芳香族カルボン酸エステル類;γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン等のカルボン酸エステル類;リン酸トリメチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリエチル等のリン酸エステル類;アセトニトリル、プロピオニトリル、メトキシプロピオニトリル、グルタロニトリル、アジポニトリル、2−メチルグルタロニトリル、バレロニトリル、ブチロニトリル、イソブチロニトリル等のニトリル類;N−メチルホルムアミド、N−エチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリジノン、N−メチルピロリドン、N−ビニルピロリドン等のアミド類;ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン等の硫黄化合物類:エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のアルコール類;ジメチルスルホキシド、メチルエチルスルホキシド、ジエチルスルホキシド等のスルホキシド類;ベンゾニトリル、トルニトリル等の芳香族ニトリル類;ニトロメタン、1,3−ジメチル−2−イミダゾリジノン、1,3−ジメチル−3,4,5,6−テトラヒドロ−2(1H)−ピリミジノン、3−メチル−2−オキサゾリジノン等を挙げることができ、これらの1種又は2種以上が好適である。これらの中でも、炭酸エステル類、脂肪族カルボン酸エステル類、カルボン酸エステル類、エーテル類がより好ましく、炭酸エステル類がさらに好ましい。
<Medium>
The electrolyte solution of the present invention may contain a medium. Examples of the medium include aprotic solvents and polymers. As an aprotic organic solvent, the dielectric constant is large, the solubility of the electrolyte salt (alkali metal salt of fluorosulfonylimide, other electrolyte described later) is high, the boiling point is 60 ° C. or more, and the electrochemical stability A wide range of solvents is preferred. More preferred is a non-aqueous solvent. Non-aqueous solvents include ethylene glycol dimethyl ether (1,2-dimethoxyethane), ethylene glycol diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 2,6-dimethyltetrahydrofuran, tetrahydropyran, crown ether, triethylene glycol dimethyl ether, tetraethylene Ethers such as glycol dimethyl ether, 1,4-dioxane, 1,3-dioxolane; chains such as dimethyl carbonate, ethyl methyl carbonate (methyl ethyl carbonate), diethyl carbonate (diethyl carbonate), diphenyl carbonate, methyl phenyl carbonate -Like carbonates; ethylene carbonate (ethylene carbonate), propylene carbonate (propylene carbonate), 2,3-dimethylethylene carbonate, butylene carbonate, carbonic acid Cyclic carbonates such as nylene and 2-vinylethylene carbonate; aliphatic carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate, ethyl acetate, propyl acetate, butyl acetate, amyl acetate; methyl benzoate, benzoic acid Aromatic carboxylic acid esters such as ethyl; carboxylic acid esters such as γ-butyrolactone, γ-valerolactone, and δ-valerolactone; phosphorous such as trimethyl phosphate, ethyldimethyl phosphate, diethylmethyl phosphate, triethyl phosphate Acid esters; nitriles such as acetonitrile, propionitrile, methoxypropionitrile, glutaronitrile, adiponitrile, 2-methylglutaronitrile, valeronitrile, butyronitrile, isobutyronitrile; N-methylformamide, N-ethyl Formamide, N, N Amides such as dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidinone, N-methylpyrrolidone, N-vinylpyrrolidone; dimethylsulfone, ethylmethylsulfone, diethylsulfone, sulfolane, 3-methylsulfolane, 2,4- Sulfur compounds such as dimethylsulfolane: alcohols such as ethylene glycol, propylene glycol, ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; sulfoxides such as dimethyl sulfoxide, methyl ethyl sulfoxide and diethyl sulfoxide; aromas such as benzonitrile and tolunitrile Group nitriles; nitromethane, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone , 3-methyl-2-oxazolidinone and the like, and one or more of these are preferable. Among these, carbonic acid esters, aliphatic carboxylic acid esters, carboxylic acid esters, and ethers are more preferable, and carbonic acid esters are more preferable.

媒体として用いられるポリマーには、ポリエチレンオキシド(PEO)、ポリプロピレンオキシドなどのポリエーテル系ポリマー、ポリメチルメタクリレート(PMMA)などのメタクリル系ポリマー、ポリアクリロニトリル(PAN)等のニトリル系ポリマー、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン−ヘキサフルオロプロピレンなどのフッ素系ポリマー、および、これらの共重合体等が含まれる。また、これらのポリマーと他の有機溶媒とを混合したポリマーゲルも本発明に係る媒体として用いることができる。他の有機溶媒としては上述の非プロトン性溶媒が挙げられる。   Polymers used as a medium include polyether polymers such as polyethylene oxide (PEO) and polypropylene oxide, methacrylic polymers such as polymethyl methacrylate (PMMA), nitrile polymers such as polyacrylonitrile (PAN), and polyvinylidene fluoride ( PVDF), fluoropolymers such as polyvinylidene fluoride-hexafluoropropylene, and copolymers thereof. In addition, a polymer gel obtained by mixing these polymers with another organic solvent can also be used as the medium according to the present invention. Examples of the other organic solvent include the aprotic solvents described above.

上記ポリマーゲルを媒体とする場合の電解液の製造方法としては、従来公知の方法で成膜したポリマーに、上述の非プロトン性溶媒に、電解質(イオン性化合物(1)や後述する他の電解質)を溶解させた溶液を滴下して、電解質並びに非プロトン性溶媒を含浸、担持させる方法;ポリマーの融点以上の温度でポリマーと電解質とを溶融、混合した後、成膜し、ここに非プロトン性溶媒を含浸させる方法;予め非プロトン性溶媒に溶解させた電解質溶液とポリマーとを混合した後、これをキャスト法やコーティング法により成膜し、非プロトン性溶媒を揮発させる方法(以上、ゲル電解質);ポリマーの融点以上の温度でポリマーと電解質とを溶融し、混合して成形する方法(真性ポリマー電解質);等が挙げられる。   As a method for producing an electrolytic solution using the polymer gel as a medium, a polymer formed by a conventionally known method, an aprotic solvent described above, an electrolyte (ionic compound (1) or other electrolyte described later) A solution in which the electrolyte and the aprotic solvent are impregnated and supported; the polymer and the electrolyte are melted and mixed at a temperature equal to or higher than the melting point of the polymer, and a film is formed. A method of impregnating an aprotic solvent; a method in which an electrolyte solution previously dissolved in an aprotic solvent and a polymer are mixed, and then a film is formed by a casting method or a coating method to volatilize the aprotic solvent (hereinafter referred to as a gel). Electrolyte); a method in which a polymer and an electrolyte are melted at a temperature equal to or higher than the melting point of the polymer, mixed and molded (intrinsic polymer electrolyte); and the like.

媒体の使用量は、電解質(イオン性化合物(1)と後述する他の電解質)と媒体の合計量100質量部に対して、50質量部〜99.9質量部であるのが好ましい。より好ましくは60質量部〜99.5質量部であり、さらに好ましくは70質量部〜99質量部である。媒体量が少なすぎると、充分なイオン伝導度が得られ難い場合があり、一方、多すぎると、溶媒の揮発による電解液中のイオン濃度が変化し易くなり、安定したイオン伝導度が得られ難い場合がある。   The amount of the medium used is preferably 50 parts by mass to 99.9 parts by mass with respect to 100 parts by mass of the total amount of the electrolyte (ionic compound (1) and other electrolyte described later) and the medium. More preferably, they are 60 mass parts-99.5 mass parts, More preferably, they are 70 mass parts-99 mass parts. If the amount of the medium is too small, sufficient ionic conductivity may be difficult to obtain. On the other hand, if the amount is too large, the ionic concentration in the electrolytic solution is likely to change due to volatilization of the solvent, and stable ionic conductivity is obtained. It may be difficult.

<他の成分>
本発明に係る電解液には、上記イオン性化合物(1)のみが電解質として含まれていてもよいが、これ以外の他の電解質が含まれていてもよい。他の電解質を用いることで、電解液中のイオンの絶対量を増加させることができ、電気伝導度の向上を図ることができる。
<Other ingredients>
The electrolyte solution according to the present invention may contain only the ionic compound (1) as an electrolyte, but may contain other electrolytes. By using another electrolyte, the absolute amount of ions in the electrolytic solution can be increased, and the electrical conductivity can be improved.

他の電解質としては、電解液中での解離定数が大きく、また、上記非プロトン性溶媒と溶媒和し難いアニオンを有するものが好ましい。他の電解質を構成するカチオン種としては、例えば、Li+、Na+、K+等のアルカリ金属イオン、Ca2+、Mg2+等のアルカリ土類金属イオンおよびオニウムカチオンが挙げられ、特に、リチウムイオンが好ましい。一方、アニオン種としては、PF6 -、BF4 -、ClO4 -、AlCl4 -、C[(CN)3-、N[(CN)2-、B[(CN)4]-、N[(SO2CF32]-、CF3(SO3-、C[
(CF3SO23-、AsF6 -、SbF6 -およびジシアノトリアゾレートイオン(DCTA)などが挙げられる。これらの中でも、PF6 -、BF4 -がより好ましく、PF6 -が特に好ましい。
As other electrolytes, those having a large dissociation constant in the electrolytic solution and having an anion that is difficult to solvate with the aprotic solvent are preferable. Examples of cation species constituting other electrolytes include alkali metal ions such as Li + , Na + and K + , alkaline earth metal ions such as Ca 2+ and Mg 2+ , and onium cations. Lithium ions are preferred. On the other hand, as anionic species, PF 6 , BF 4 , ClO 4 , AlCl 4 , C [(CN) 3 ] , N [(CN) 2 ] , B [(CN) 4 ] , N [(SO 2 CF 3 ) 2 ] , CF 3 (SO 3 ) , C [
(CF 3 SO 2 ) 3 ] , AsF 6 , SbF 6 and dicyanotriazolate ion (DCTA). Among these, PF 6 and BF 4 are more preferable, and PF 6 is particularly preferable.

上記他の電解質の存在量としては、イオン性化合物(1)と他の電解質との合計100質量%中、0.1質量%以上、99質量%以下であることが好適である。他の電解質量が少なすぎる場合には、他の電解質を用いた効果(たとえばイオンの絶対量が充分なものとならず、電気伝導度が小さくなる)が得られ難い場合があり、他の電解質量が多すぎる場合には、イオンの移動が大きく阻害される虞がある。より好ましくは1質量%以上、さらに好ましくは5質量%以上であり、より好ましくは95質量%以下、さらに好ましくは90質量%以下である。   The abundance of the other electrolyte is preferably 0.1% by mass or more and 99% by mass or less in a total of 100% by mass of the ionic compound (1) and the other electrolyte. If the amount of other electrolytes is too small, it may be difficult to obtain the effect of using other electrolytes (for example, the absolute amount of ions is not sufficient and the electrical conductivity is reduced). When there is too much quantity, there exists a possibility that the movement of ion may be inhibited greatly. More preferably, it is 1 mass% or more, More preferably, it is 5 mass% or more, More preferably, it is 95 mass% or less, More preferably, it is 90 mass% or less.

なお、本発明に係る電解液中における電解質濃度(イオン性化合物(1)と他の電解質の総量)は、0.1質量%以上が好ましく、また、飽和濃度以下が好ましい。0.1質量%未満であると、イオン伝導度が低くなるため好ましくない。より好ましくは0.5質量%以上であり、さらに好ましくは1質量%以上である。また、電解液中における電解質濃度は50質量%未満であるのがより好ましく、さらに好ましくは40質量%以下、特に好ましくは30質量%以下である。   In addition, the electrolyte concentration (the total amount of the ionic compound (1) and other electrolytes) in the electrolytic solution according to the present invention is preferably 0.1% by mass or more, and more preferably a saturation concentration or less. If it is less than 0.1% by mass, the ionic conductivity is lowered, which is not preferable. More preferably, it is 0.5 mass% or more, More preferably, it is 1 mass% or more. The electrolyte concentration in the electrolytic solution is more preferably less than 50% by mass, further preferably 40% by mass or less, and particularly preferably 30% by mass or less.

≪電解液の製造方法≫
本発明の製造方法とは、上記電解液の製造方法であって、上記一般式(1)で表されるイオン性化合物を炭化水素系溶媒及び/又は非プロトン性溶媒から選ばれる溶媒と混合した後、
(i)一部又は全ての溶媒を留去させる工程、及び/又は
(ii)モレキュラーシーブと接触させる工程、
を含むところに特徴を有する。
≪Electrolytic solution manufacturing process≫
The production method of the present invention is a method for producing the electrolytic solution, wherein the ionic compound represented by the general formula (1) is mixed with a solvent selected from a hydrocarbon solvent and / or an aprotic solvent. rear,
(I) a step of distilling off a part or all of the solvent, and / or (ii) a step of contacting with a molecular sieve,
It has the characteristic in including.

本発明者らは、本発明に係るイオン性化合物(1)を合成した後、これを媒体等と混合して放置した場合に、当該電解液中に含まれる遊離酸量が経時的に増加し、電解液中のイオン性化合物(1)濃度の低下、更には、当該電解液が用いられる蓄電デバイスの周辺部材(電極材料等)の劣化が生じることを見出した。既に述べたように、上記遊離酸は、イオン性化合物(1)合成時の出発原料や副生成物、あるいは、イオン性化合物(1)の分解生成物に相当するため、遊離酸の発生や混入を完全に防止することは困難である。   When the present inventors synthesized the ionic compound (1) according to the present invention and then left it mixed with a medium or the like, the amount of free acid contained in the electrolytic solution increases with time. It has been found that the concentration of the ionic compound (1) in the electrolytic solution is lowered, and further, deterioration of peripheral members (electrode materials and the like) of the electricity storage device in which the electrolytic solution is used occurs. As described above, the free acid corresponds to a starting material and a by-product during the synthesis of the ionic compound (1), or a decomposition product of the ionic compound (1). Is difficult to completely prevent.

そこで、電解液中における経時的な遊離酸量の増加を抑制するべく検討を重ねた結果、本発明者らは驚くべきことに、炭化水素系溶媒及び/又は電解液用溶媒としても用いられる非プロトン性溶媒にイオン性化合物を溶解させた状態で、(i)一部又は全ての溶媒を留去させる工程(以下、溶媒留去工程と称する場合がある)、及び/又は、(ii)モレキュラーシーブとの接触工程を行うことで、経時的な遊離酸量の増加抑制のみならず、遊離酸の発生に寄与する水分量を低減でき、電気化学用途に用いた場合にも電気化学的特性が経時的に低下し難いと考えられる電解液が得られることを見出し、本発明を完成した。以下、イオン性化合物(1)の合成方法から順に説明する。   Therefore, as a result of repeated studies to suppress the increase in the amount of free acid over time in the electrolytic solution, the present inventors have surprisingly found that the non-solvent used as a hydrocarbon solvent and / or a solvent for the electrolytic solution is also used. (I) a step of distilling off some or all of the solvent (hereinafter sometimes referred to as a solvent distilling step) and / or (ii) molecular in a state where the ionic compound is dissolved in the protic solvent. By performing the contact process with the sieve, not only the increase in the free acid amount over time can be suppressed, but also the amount of water that contributes to the generation of free acid can be reduced. The present inventors have found that an electrolytic solution that is considered to be less likely to decrease with time can be obtained. Hereinafter, the synthesis method of the ionic compound (1) will be described in order.

<イオン性化合物(1)の製造方法>
本発明の電解液の製造方法は、上記(i)溶媒留去工程及び/又は(ii)モレキュラーシーブと接触させる工程を含む点に特徴を有するものであり、その他の工程は特に限定されない。したがって、本発明では、イオン性化合物(1)を合成する方法は特に限定されず、従来公知の方法は全て採用することが出来る。例えば、特表平8−511274号公報に記載されるように、尿素の存在下で、フルオロスルホン酸(HFSO3)を蒸留することによって(フルオロスルホニル)イミドを得る方法;クロロスルホニルイミドからフッ素化剤を用いてフルオロスルホニルイミドを合成する方法、及びフルオロスルホニルイミド塩を得る方法としては、上記方法により得られたフルオロスルホニルイミド又はその塩を、所望のアルカリ金属又は有機基を与えるカチオンを有する塩との反応によりカチオン交換する方法(国際公開第2009/123328号パンフレット);等が挙げられる。
<Method for producing ionic compound (1)>
The method for producing an electrolytic solution of the present invention is characterized in that it includes the above (i) solvent distillation step and / or (ii) a step of contacting with a molecular sieve, and other steps are not particularly limited. Therefore, in the present invention, the method for synthesizing the ionic compound (1) is not particularly limited, and all conventionally known methods can be employed. For example, as described in JP-A-8-511274, a method for obtaining (fluorosulfonyl) imide by distillation of fluorosulfonic acid (HFSO 3 ) in the presence of urea; fluorination from chlorosulfonylimide As a method for synthesizing fluorosulfonylimide using an agent and a method for obtaining a fluorosulfonylimide salt, the fluorosulfonylimide obtained by the above method or a salt thereof is a salt having a cation that gives a desired alkali metal or organic group. A method of exchanging cations by a reaction with (Patent Publication No. 2009/123328 pamphlet);

なお、本発明における「フルオロスルホニルイミド」との文言には、一般式(1)において、X、X’がいずれもフッ素原子であるビス(フルオロスルホニル)イミドの他、X、X’の一方がフッ素原子であり、他方がフッ化アルキル基であるN−(フルオロスルホニル)−N−(フルオロアルキルスルホニル)イミドが含まれる。出発原料である「クロロスルホニルイミド」も同様である。   In addition, in the term “fluorosulfonylimide” in the present invention, in the general formula (1), in addition to bis (fluorosulfonyl) imide in which both X and X ′ are fluorine atoms, one of X and X ′ is N- (fluorosulfonyl) -N- (fluoroalkylsulfonyl) imide which is a fluorine atom and the other is a fluorinated alkyl group is included. The same applies to “chlorosulfonylimide” as a starting material.

本発明では、電解液を得るため、イオン性化合物(1)を、炭化水素系溶媒及び/又は非プロトン性溶媒と混合した後、(i)一部又は全ての溶媒を留去させる工程、及び/又は、(ii)当該混合溶液をモレキュラーシーブと接触させる工程、を実施する。ここで、イオン性化合物(1)は溶媒に溶解したイオン性化合物(1)溶液の状態であっても、また、固体であってもよい。尚、イオン性化合物(1)溶液が、炭化水素系溶媒及び/又は非プロトン性溶媒以外の溶媒を含んでいる場合には、従来公知の手段により予め炭化水素系溶媒及び/又は非プロトン性溶媒以外の溶媒量を低減しておくのが望ましい。   In the present invention, in order to obtain an electrolytic solution, after mixing the ionic compound (1) with a hydrocarbon solvent and / or an aprotic solvent, (i) a step of distilling off a part or all of the solvent, and And / or (ii) performing the step of bringing the mixed solution into contact with the molecular sieve. Here, the ionic compound (1) may be in the state of an ionic compound (1) solution dissolved in a solvent, or may be a solid. In addition, when the ionic compound (1) solution contains a solvent other than the hydrocarbon solvent and / or the aprotic solvent, the hydrocarbon solvent and / or the aprotic solvent in advance by a conventionally known means. It is desirable to reduce the amount of solvent other than.

炭化水素系溶媒、非プロトン性溶媒は、他の溶媒に比べてイオン性化合物(1)の溶解度が高い。また、非プロトン性溶媒は比較的高い沸点を有するものであり、一方、炭化水素系溶媒には、イオン性化合物(1)製造時に使用される溶媒や非プロトン性溶媒及び水と共沸混合物を形成し得るものがあるので、炭化水素系溶媒及び/又は非プロトン性溶媒を用いれば、イオン性化合物(1)の析出を抑制しつつ、効率よく水分含有量を低減させることができる。また、電解質(イオン性化合物(1))の合成時に使用され電解質に残留した溶媒は、電解液に含まれてしまうが、本工程では、その溶媒量も低減させることができる。なお、非プロトン性溶媒は、各種蓄電デバイスの電解液用の溶媒としても用いられるため、イオン性化合物(1)、さらには電解液中に残留しても、その電気化学的特性への影響が少ないものである。加えて、イオン性化合物(1)の合成後、上記工程(i)及び/又は工程(ii)を経て水分含有量が低減されたイオン性化合物(1)溶液はそのまま電解液等の蓄電デバイス用途に使用できることから、プロセス上のメリットも得ることができる。   Hydrocarbon solvents and aprotic solvents have higher solubility of the ionic compound (1) than other solvents. In addition, the aprotic solvent has a relatively high boiling point, while the hydrocarbon solvent includes an azeotrope with a solvent used in the production of the ionic compound (1), an aprotic solvent, and water. Since there is what can be formed, the use of a hydrocarbon solvent and / or an aprotic solvent can effectively reduce the water content while suppressing the precipitation of the ionic compound (1). Moreover, although the solvent used at the time of the synthesis | combination of electrolyte (ionic compound (1)) and remaining in electrolyte will be contained in electrolyte solution, the amount of the solvent can also be reduced in this process. In addition, since an aprotic solvent is used also as a solvent for the electrolyte solution of various electrical storage devices, even if it remains in an ionic compound (1) and electrolyte solution, the influence on the electrochemical property will be exerted. There are few things. In addition, after the synthesis of the ionic compound (1), the ionic compound (1) solution whose water content has been reduced through the step (i) and / or the step (ii) is used as it is for an electric storage device such as an electrolytic solution. Therefore, it is possible to obtain process advantages.

具体的な炭化水素系溶媒としては、ヘキサン、ヘプタン等の脂肪族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素系溶媒;ベンゼン等の芳香族炭化水素等が挙げられる。炭化水素系溶媒は1種を単独で用いてもよく、また、2種以上を組み合わせて用いてもよい。上記例示の溶媒の中でも、シクロヘキサンが好ましい。   Specific examples of the hydrocarbon solvent include aliphatic hydrocarbon solvents such as hexane and heptane; alicyclic hydrocarbon solvents such as cyclohexane and methylcyclohexane; aromatic hydrocarbons such as benzene. A hydrocarbon solvent may be used individually by 1 type, and may be used in combination of 2 or more type. Of the above exemplified solvents, cyclohexane is preferred.

非プロトン性溶媒としては、本発明に係る電解液の媒体として例示した鎖状又は環状炭酸エステル類、脂肪族カルボン酸エステル類、カルボン酸エステル類、エーテル類がより好ましく、鎖状又は環状炭酸エステル類がさらに好ましい。鎖状又は環状炭酸エステルの中でも、炭酸ジメチル、炭酸エチルメチル(メチルエチルカーボネート)、炭酸ジエチル(ジエチルカーボネート)、炭酸ジフェニル、炭酸メチルフェニル、炭酸エチレン(エチレンカーボネート)、炭酸プロピレン(プロピレンカーボネート)、2,3−ジメチル炭酸エチレン、炭酸ブチレン、炭酸ビニレン、2−ビニル炭酸エチレンが好ましい。非プロトン性溶媒は1種を単独で用いてもよく、また、2種以上を組み合わせて用いてもよい。   As the aprotic solvent, chain or cyclic carbonates, aliphatic carboxylic acid esters, carboxylic acid esters, and ethers exemplified as the medium of the electrolytic solution according to the present invention are more preferable. Are more preferred. Among chain or cyclic carbonates, dimethyl carbonate, ethyl methyl carbonate (methyl ethyl carbonate), diethyl carbonate (diethyl carbonate), diphenyl carbonate, methyl phenyl carbonate, ethylene carbonate (ethylene carbonate), propylene carbonate (propylene carbonate), 2 , 3-dimethylethylene carbonate, butylene carbonate, vinylene carbonate, and 2-vinylethylene carbonate are preferred. An aprotic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.

上記炭化水素系溶媒及び非プロトン性溶媒は、含有水分量の低いものが好ましい。具体的な含水量は約200ppm以下であるのが好ましく、100ppm以下であるのがより好ましく、50ppm以下であるのがさらに好ましい。含有水分量が低い溶媒としては、市販の脱水溶媒等を使用することができる。   The hydrocarbon solvent and aprotic solvent preferably have a low water content. The specific water content is preferably about 200 ppm or less, more preferably 100 ppm or less, and even more preferably 50 ppm or less. A commercially available dehydrated solvent or the like can be used as the solvent having a low water content.

これらの溶媒と混合するイオン性化合物(1)は、合成又は他の精製工程で用いた溶媒を含むイオン性化合物(1)の溶液をそのまま用いてもよく、あるいは、固体のイオン性化合物(1)を、炭化水素系溶媒及び/又は非プロトン性溶媒と混合してもよい。   As the ionic compound (1) to be mixed with these solvents, a solution of the ionic compound (1) containing the solvent used in the synthesis or other purification step may be used as it is, or a solid ionic compound (1) ) May be mixed with a hydrocarbon solvent and / or an aprotic solvent.

炭化水素系溶媒及び/又は非プロトン性溶媒の使用量は、イオン性化合物(1)又は溶液中に含まれるイオン性化合物(1)100質量部に対して100質量部〜1000000質量部とするのが好ましく、より好ましくは100質量部〜100000質量部であり、さらに好ましくは100質量部〜10000質量部である。炭化水素系溶媒及び/又は非プロトン性溶媒の使用量が少なすぎる場合は、イオン性化合物(1)が析出してしまい水分を充分に除去し難いことがあり、多すぎる場合は生産性が低下することがある。   The amount of the hydrocarbon solvent and / or the aprotic solvent used is 100 parts by mass to 1000000 parts by mass with respect to 100 parts by mass of the ionic compound (1) or the ionic compound (1) contained in the solution. More preferably, it is 100 mass parts-100,000 mass parts, More preferably, it is 100 mass parts -10000 mass parts. If the amount of the hydrocarbon solvent and / or aprotic solvent used is too small, the ionic compound (1) may precipitate and it may be difficult to remove moisture sufficiently. There are things to do.

イオン性化合物(1)と炭化水素系溶媒及び/又は非プロトン性溶媒との混合溶液には、その他の溶媒が含まれていてもよい。その他の溶媒は、上記反応溶液に含まれるものであっても、また、炭化水素系溶媒及び/又は非プロトン性溶媒と共にイオン性化合物(1)に混合されるものであってもよい。   The mixed solution of the ionic compound (1) and the hydrocarbon solvent and / or the aprotic solvent may contain other solvents. The other solvent may be contained in the reaction solution, or may be mixed with the ionic compound (1) together with the hydrocarbon solvent and / or the aprotic solvent.

その他の溶媒の量は特に限定されるものではないが、工程(i)及び/又は工程(ii)を行う過程において、その他の溶媒は留去されるのが好ましく、最終的には、前記炭化水素系溶媒及び/又は非プロトン性溶媒にイオン性化合物(1)が溶解した状態で工程(i)及び/又は工程(ii)を実施することが推奨される。   The amount of the other solvent is not particularly limited, but in the process of performing the step (i) and / or the step (ii), it is preferable that the other solvent is distilled off. It is recommended that step (i) and / or step (ii) be performed in a state where the ionic compound (1) is dissolved in a hydrogen-based solvent and / or an aprotic solvent.

以下、(i)、(ii)の工程について順に説明する。   Hereinafter, the steps (i) and (ii) will be described in order.

(i)溶媒留去工程について
本発明では、上記一般式(1)で表されるイオン性化合物(1)と炭化水素系溶媒及び/又は非プロトン性溶媒とを混合した後、当該混合溶液を溶媒留去装置へと供して溶媒留去を行う。当該溶媒留去工程では、上記混合溶液に含まれる上記その他の溶媒(合成又は精製工程で用いた溶媒等)や水分を、上記炭化水素系溶媒及び/又は非プロトン性溶媒と共に留去させる工程である。本発明で使用可能な溶媒留去操作としては特に限定されず、単蒸留形式、薄膜蒸留器を用いる形式、蒸留塔を設けた分別蒸留形式、蒸留塔からの留出液を一定の還流比で塔内に戻しながら抜出す蒸留形式、蒸留塔を全還流で保持して還流槽に水分を濃縮し、還流槽の成分が安定したところで、短時間で一括抜き出しを行う蒸留形式等が挙げられる。溶媒留去工程で使用する装置は、いずれも公知の加熱手段を備えたものであるのが好ましい。
(I) Solvent distillation step In the present invention, the ionic compound (1) represented by the general formula (1) is mixed with a hydrocarbon solvent and / or an aprotic solvent, and then the mixed solution is used. The solvent is distilled off using a solvent distillation apparatus. In the solvent distillation step, the other solvent (such as a solvent used in the synthesis or purification step) and water contained in the mixed solution are distilled together with the hydrocarbon solvent and / or the aprotic solvent. is there. Solvent distillation operation that can be used in the present invention is not particularly limited, and is a simple distillation format, a format using a thin-film distiller, a fractional distillation format provided with a distillation column, and a distillate from the distillation column at a constant reflux ratio. Examples include a distillation system that is extracted while returning to the inside of the column, a distillation system in which the distillation column is held at total reflux, moisture is concentrated in the reflux tank, and components are extracted in a short time when the components in the reflux tank are stabilized. It is preferable that any apparatus used in the solvent distillation step is equipped with a known heating means.

混合溶液の加熱温度は30℃以上、250℃以下とするのが好ましく、より好ましくは40℃以上、200℃以下であり、さらに好ましくは50℃以上、150℃以下である。温度が低すぎると、十分に水分を低減させ難い場合があり、一方、温度が高すぎると、イオン性化合物(1)や上記溶媒が分解してしまう虞がある。また、溶媒留去は減圧下で行ってもよい。減圧度をコントロールすることで低温であっても効率よく含水量を低減できるからである。減圧度は、例えば20kPa以下とするのが好ましく、より好ましくは10kPa以下であり、さらに好ましくは5kPa以下である。   The heating temperature of the mixed solution is preferably 30 ° C. or more and 250 ° C. or less, more preferably 40 ° C. or more and 200 ° C. or less, and further preferably 50 ° C. or more and 150 ° C. or less. If the temperature is too low, it may be difficult to reduce moisture sufficiently. On the other hand, if the temperature is too high, the ionic compound (1) and the solvent may be decomposed. The solvent may be distilled off under reduced pressure. This is because the water content can be reduced efficiently even at low temperatures by controlling the degree of vacuum. The degree of reduced pressure is, for example, preferably 20 kPa or less, more preferably 10 kPa or less, and further preferably 5 kPa or less.

溶媒留去工程の実施時間は特に限定されず、所定の溶媒留出量、あるいは、イオン性化合物(1)の濃度が所望の値に達するまで溶媒留去操作を行えばよい。これにより、所望する濃度のイオン性化合物(1)を含む電解液を得ることが出来る。   The implementation time of the solvent distillation step is not particularly limited, and the solvent distillation operation may be performed until the predetermined solvent distillate amount or the concentration of the ionic compound (1) reaches a desired value. Thereby, the electrolyte solution containing the ionic compound (1) having a desired concentration can be obtained.

(ii)モレキュラーシーブとの接触工程について
本発明法に係る工程(ii)では、上記一般式(1)で表されるイオン性化合物と炭化水素系溶媒及び/又は非プロトン性溶媒とを混合した後、この混合溶液をモレキュラーシーブと接触させる接触工程を実施する。
(Ii) Contacting step with molecular sieve In step (ii) according to the method of the present invention, the ionic compound represented by the general formula (1) and a hydrocarbon solvent and / or an aprotic solvent were mixed. Then, the contact process which makes this mixed solution contact with a molecular sieve is implemented.

ここで、モレキュラーシーブとは、一般式:M2/nO・Al23・xSiO2・yH2
(Mは、アルカリ金属、アルカリ土類金属等の金属カチオン、nはMの原子価であって、1〜2を示す)で表されるものである。モレキュラーシーブの形状は特に限定されず、粉状、球(ビーズ)状、柱状(ペレット型)、複数の円柱が組合わさったトライシブ型等いずれも使用できる。モレキュラーシーブは、必要に応じてイオン性化合物の電気化学特性に影響を与えない範囲でバインダー成分を含むものであってもよい。モレキュラーシーブは合成したものを用いてもよく、また、市販のものを用いてもよい。さらに、必要に応じて焼成処理を施した後使用してもよい。具体的なモレキュラーシーブとしては、3A型、4A型、5A型、13X型を基本とする平均細孔径が3Å〜10Å(公称値)のモレキュラーシーブが挙げられる。蓄電デバイスに用いるという観点から金属カチオン等の溶出成分の少ないものが好ましい。尚、これらの中でも金属カチオンとしてLiを含むものは、当該接触工程後に、モレキュラーシーブ由来の金属カチオンが残留していても、蓄電デバイスの性能に対する影響が少ないため好ましく用いられる。また、本発明においては、必要に応じて、モレキュラーシーブに含まれるカチオンMを、他の金属カチオンと交換する処理を行ってもよい。
Here, the molecular sieve, the general formula: M 2 / n O · Al 2 O 3 · xSiO 2 · yH 2 O
(M is a metal cation such as an alkali metal or an alkaline earth metal, and n is a valence of M and represents 1 to 2). The shape of the molecular sieve is not particularly limited, and any of powder, sphere (bead), column (pellet type), trisive type in which a plurality of columns are combined, and the like can be used. The molecular sieve may contain a binder component as long as it does not affect the electrochemical properties of the ionic compound, if necessary. As the molecular sieve, a synthesized one may be used, or a commercially available one may be used. Furthermore, you may use it, after giving a baking processing as needed. Specific molecular sieves include molecular sieves having an average pore diameter of 3 to 10 mm (nominal value) based on 3A type, 4A type, 5A type, and 13X type. From the viewpoint of use in an electricity storage device, those having less elution components such as metal cations are preferred. Of these, those containing Li as the metal cation are preferably used because even if the metal cation derived from the molecular sieve remains after the contacting step, the performance of the electricity storage device is small. Moreover, in this invention, you may perform the process which replaces | exchanges the cation M contained in a molecular sieve for another metal cation as needed.

モレキュラーシーブの使用量は特に限定されるものではなく、上記イオン性化合物(1)の混合溶液に含まれる水分量や遊離酸量に応じて適宜決定することもできるが、例えば、混合溶液100質量部に対してモレキュラーシーブ0.01質量部〜10000質量部とするのが好ましく、より好ましくは0.05質量部〜1000質量部であり、さらに好ましくは0.1質量部〜100質量部である。モレキュラーシーブの使用量が少なすぎると十分に水分量や遊離酸量を低減させ難い場合があり、多量に用いても、使用量に見合う水分等の低減効果は見られ難い。   The amount of molecular sieve used is not particularly limited, and can be appropriately determined according to the amount of water and the amount of free acid contained in the mixed solution of the ionic compound (1). The molecular sieve is preferably 0.01 parts by weight to 10,000 parts by weight, more preferably 0.05 parts by weight to 1000 parts by weight, and still more preferably 0.1 parts by weight to 100 parts by weight with respect to parts. . If the amount of molecular sieve used is too small, it may be difficult to sufficiently reduce the amount of water and the amount of free acid, and even if it is used in a large amount, it is difficult to see the effect of reducing the water content corresponding to the amount used.

混合溶液とモレキュラーシーブとの接触態様は、イオン性化合物(1)とモレキュラーシーブとが接触する限り特に限定されないが、良好な脱水効率を得るため、モレキュラーシーブと接触する混合溶液が更新される方法が好ましい。具体的な接触態様としては、例えば、混合溶液とモレキュラーシーブとを混合し、攪拌する態様;モレキュラーシーブの充填層にイオン性化合物(1)溶液を通過させる態様;等が挙げられる。充填層にイオン性化合物溶液を通過させる態様においては、必要に応じて、充填層に同一のイオン性化合物(1)溶液を繰返し通過させることで、当該溶液中の水分等の含有量をより一層低減させることができる。上記態様の中でも、モレキュラーシーブの充填層にイオン性化合物(1)溶液を通過させる態様は、イオン性化合物(1)溶液とモレキュラーシーブとの分離工程(ろ過、沈降分離、遠心分離などの固液分離工程)を設ける必要がなく、工程が煩雑にならず、特に、実操業レベルでの実施において好適である。   The contact mode between the mixed solution and the molecular sieve is not particularly limited as long as the ionic compound (1) and the molecular sieve are in contact with each other. However, in order to obtain good dehydration efficiency, the mixed solution in contact with the molecular sieve is renewed. Is preferred. Specific contact modes include, for example, a mode in which the mixed solution and the molecular sieve are mixed and stirred; a mode in which the ionic compound (1) solution is passed through the packed bed of the molecular sieve; and the like. In the embodiment in which the ionic compound solution is passed through the packed bed, if necessary, the same ionic compound (1) solution is repeatedly passed through the packed bed, thereby further increasing the content of moisture and the like in the solution. Can be reduced. Among the above embodiments, the embodiment in which the ionic compound (1) solution is passed through the packed bed of the molecular sieve is a solid-liquid process such as filtration, sedimentation separation, and centrifugal separation of the ionic compound (1) solution and the molecular sieve. It is not necessary to provide a separation step), the process is not complicated, and is particularly suitable for implementation at an actual operation level.

上記混合溶液とモレキュラーシーブとを接触させる際の温度は−40℃〜200℃であるのが好ましく、より好ましくは−20℃〜100℃であり、さらに好ましくは0℃〜50℃である。接触時間は特に限定されないが、生産効率の観点から72時間以下とするのが好ましく、より好ましくは24時間以下であり、さらに好ましくは6時間以下である。   The temperature at the time of bringing the mixed solution into contact with the molecular sieve is preferably -40 ° C to 200 ° C, more preferably -20 ° C to 100 ° C, and further preferably 0 ° C to 50 ° C. The contact time is not particularly limited, but is preferably 72 hours or less from the viewpoint of production efficiency, more preferably 24 hours or less, and even more preferably 6 hours or less.

尚、使用後のモレキュラーシーブは、加熱処理することによって再利用することも可能である。モレキュラーシーブの再生条件としては、例えば、窒素などの不活性ガス流通下、200℃以上に加熱処理する方法や、より低温で予備加熱した後に高温処理する方法等が挙げられるが、特に限定されるものではない。   The used molecular sieve can be reused by heat treatment. The molecular sieve regeneration conditions include, for example, a method of heat treatment at 200 ° C. or higher under an inert gas flow such as nitrogen, a method of high temperature treatment after preheating at a lower temperature, and the like. It is not a thing.

モレキュラーシーブとの接触工程の後、必要に応じて、固液分離を行うことで、イオン性化合物(1)を含む溶液が得られる。   After the contact step with the molecular sieve, a solution containing the ionic compound (1) is obtained by performing solid-liquid separation as necessary.

上記工程(i)、(ii)は、イオン性化合物の合成及び他の精製工程に続けて実施することが推奨される。なお、工程(i)、(ii)による水分含有量の低減効果は、合成工程に続けて実施しない場合でも得られる。したがって、固体状のイオン性化合物(1)に水分が含まれている場合には、これを炭化水素系溶媒及び/又は非プロトン性溶媒と混合し溶解させた後に、あるいは、溶液状態で入手したイオン性化合物(1)の溶液について、工程(i)、(ii)を実施してもよい。なお、水分含有量の低減効果は、工程(i)又は(ii)のいずれかを実施することで十分に得られるが、これらの工程を組み合わせて実施してもよい。   It is recommended that the above steps (i) and (ii) be carried out following the synthesis of the ionic compound and other purification steps. In addition, the water content reduction effect by the steps (i) and (ii) can be obtained even when the synthesis step is not performed. Therefore, when the solid ionic compound (1) contains water, it is obtained after being mixed with a hydrocarbon solvent and / or an aprotic solvent and dissolved or in a solution state. You may implement process (i) and (ii) about the solution of an ionic compound (1). In addition, although the reduction effect of moisture content is fully acquired by implementing either process (i) or (ii), you may implement combining these processes.

上記工程(i)及び/又は(ii)を行うことで、遊離酸量が上記範囲に低減された、又は、遊離酸量と水分含有量が所定範囲にまで低減されたイオン性化合物(1)を含む溶液が得られる。このイオン性化合物(1)を含む溶液は、水分含有量が低減されているので、このまま各種蓄電デバイスに使用される電解液として用いることができる。   By carrying out the above steps (i) and / or (ii), the free acid amount is reduced to the above range, or the free acid amount and the water content are reduced to a predetermined range (1) A solution containing is obtained. Since the solution containing the ionic compound (1) has a reduced water content, it can be used as an electrolytic solution for various electric storage devices as it is.

≪用途≫
本発明の電解液は、遊離酸及び/又は水分の含有量が低減されたものである。したがって、本発明の電解液は、一次電池、リチウム(イオン)二次電池、燃料電池などの充電及び放電機構を有する電池の他、電解コンデンサ、電気二重層キャパシタ、太陽電池といった各種蓄電デバイスに好適に用いられる。なお、蓄電デバイスの構造は特に限定されず、本発明の電解液は公知の蓄電デバイスに適用可能である。
≪Usage≫
The electrolytic solution of the present invention has a reduced free acid and / or moisture content. Therefore, the electrolytic solution of the present invention is suitable for various electric storage devices such as electrolytic capacitors, electric double layer capacitors, solar cells, as well as batteries having charging and discharging mechanisms such as primary batteries, lithium (ion) secondary batteries, and fuel cells. Used for. Note that the structure of the electricity storage device is not particularly limited, and the electrolytic solution of the present invention can be applied to a known electricity storage device.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

[NMR測定]
1H−NMR、19F−NMRの測定は、Varian社製の「Unity Plus−400」を使用して行った(内部標準物質:トリフルオロメチルベンゼン、溶媒:重アセトニトリル、積算回数:16回)。
[NMR measurement]
1 H-NMR and 19 F-NMR were measured using “Unity Plus-400” manufactured by Varian (internal standard substance: trifluoromethylbenzene, solvent: deuterated acetonitrile, integration number: 16 times). .

[水分量の測定]
下記実験例で得られた試料溶液、及び、有機溶媒に含まれる水分量は平沼産業(株)製カールフィッシャー水分測定装置「AQ−2100」を用いて測定した。測定用試料の調製、水分量の測定等の一連の操作については、ドライルーム(温度:25℃、露点:−70℃〜−50℃)で行った。試料注入量は試料の水分含有量に応じて0.1ml〜3mlとし、発生液には「ハイドラナール(登録商標) クローマットAK」(Sigma Aldrich社製)を使用し、対極液には「ハイドラナール(登録商標) クローマットCG−K」(Sigma Aldrich社製)を使用した。試料は、外気に触れないよう注射器を用いて試料注入口より注入した。
[Measurement of water content]
The sample solution obtained in the following experimental example and the amount of water contained in the organic solvent were measured using a Karl Fischer moisture measuring device “AQ-2100” manufactured by Hiranuma Sangyo Co., Ltd. A series of operations such as preparation of a measurement sample and measurement of water content were performed in a dry room (temperature: 25 ° C., dew point: −70 ° C. to −50 ° C.). The sample injection amount is 0.1 ml to 3 ml depending on the moisture content of the sample, and “Hydranal (registered trademark) Chromat AK” (manufactured by Sigma Aldrich) is used as the generation solution, while “Hydranal” is used as the counter electrode solution. "Nar (registered trademark) Chromat CG-K" (manufactured by Sigma Aldrich) was used. The sample was injected from the sample inlet using a syringe so as not to touch the outside air.

[遊離酸量の測定]
中和滴定によりHF、H2SO4及びFSO3Hの合計含有量を測定した。
[Measurement of free acid content]
The total content of HF, H 2 SO 4 and FSO 3 H was measured by neutralization titration.

製造例1 リチウムビス(フルオロスルホニル)イミドの合成
〔フッ素化工程〕
攪拌装置を備えたパイレックス(登録商標)製反応容器A(内容量5L)に、窒素気流下で酢酸ブチル900gを加え、ここに100g(467mmol)のビス(クロロスルホニル)イミドを室温(25℃)で滴下した。
Production Example 1 Synthesis of lithium bis (fluorosulfonyl) imide [fluorination step]
To a Pyrex (registered trademark) reaction vessel A equipped with a stirrer (internal volume 5 L), 900 g of butyl acetate was added under a nitrogen stream, and 100 g (467 mmol) of bis (chlorosulfonyl) imide was added thereto at room temperature (25 ° C.). It was dripped at.

得られたビス(クロロスルホニル)イミドの酢酸ブチル溶液に、室温で、フッ化亜鉛50.5g(491mmol、ビス(クロロスルホニル)イミドに対して1.05当量)を一度に加え、これが完全に溶解するまで室温で6時間攪拌した。   To the resulting bis (chlorosulfonyl) imide solution in butyl acetate, 50.5 g of zinc fluoride (491 mmol, 1.05 equivalents relative to bis (chlorosulfonyl) imide) was added in one portion at room temperature, and this completely dissolved. The mixture was stirred at room temperature for 6 hours.

〔カチオン交換工程1−アンモニウム塩の合成〕
攪拌装置を備えたパイレックス(登録商標)製反応容器B(内容量1L)に、25質量%アンモニア水270g(3964mmol、ビス(クロロスルホニル)イミドに対して8.49当量)を加えた。アンモニア水の攪拌下、室温で、反応容器Bに、反応容器Aの反応溶液を滴下して加えた。反応溶液の滴下終了後、攪拌を停止し、水層と酢酸ブチル層の2層に分かれた反応溶液から、塩化亜鉛などの副生物を含む水層を除去し、有機層として、アンモニウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液を得た。得られた有機層を試料として、19F-NMR(溶媒:重アセトニトリル)測定を行った。得られたチャートにおいて、内部標準物質として加えたトリフルオロメチルベンゼンの量、及び、これに由来するピークの積分値と、目的生成物に由来するピークの積分値との比較から、有機層に含まれるアンモニウムビス(フルオロスルホニル)イミドの粗収量を求めた(378mmol)。
19F-NMR(溶媒:重アセトニトリル):δ56.0
[Cation Exchange Step 1-Synthesis of Ammonium Salt]
270 g (3964 mmol, 8.49 equivalents relative to bis (chlorosulfonyl) imide) of 25 mass% ammonia water was added to a Pyrex (registered trademark) reaction vessel B (internal volume: 1 L) equipped with a stirrer. The reaction solution in the reaction vessel A was added dropwise to the reaction vessel B at room temperature with stirring of aqueous ammonia. After completion of the addition of the reaction solution, stirring was stopped, and the aqueous layer containing by-products such as zinc chloride was removed from the reaction solution divided into two layers, an aqueous layer and a butyl acetate layer, and ammonium bis (fluoro A butyl acetate solution of sulfonyl) imide was obtained. 19 F-NMR (solvent: deuterated acetonitrile) was measured using the obtained organic layer as a sample. In the obtained chart, the amount of trifluoromethylbenzene added as an internal standard substance, and the comparison between the integrated value of the peak derived from this and the integrated value of the peak derived from the target product, was included in the organic layer. The crude yield of ammonium bis (fluorosulfonyl) imide was determined (378 mmol).
19 F-NMR (solvent: deuterated acetonitrile): δ 56.0

〔カチオン交換工程2−リチウム塩の合成〕
得られた有機層に含まれるアンモニウムビス(フルオロスルホニル)イミドに対して、リチウムの量が2当量となるように、15質量%の水酸化リチウム水溶液121g(Liとして758mmol)を加え、室温で10分間攪拌した。その後、反応溶液から水層を除去して、リチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液を得た。
[Cation Exchange Step 2-Synthesis of Lithium Salt]
To the ammonium bis (fluorosulfonyl) imide contained in the obtained organic layer, 121 g of a 15% by mass lithium hydroxide aqueous solution (758 mmol as Li) was added so that the amount of lithium was 2 equivalents. Stir for minutes. Thereafter, the aqueous layer was removed from the reaction solution to obtain a butyl acetate solution of lithium bis (fluorosulfonyl) imide.

得られた有機層を試料とし、ICP発光分光分析法により、フルオロスルホニルイミドのプロトンがリチウムイオンに交換されていることを確認した。また、有機層を濃縮乾固することで、リチウムビス(フルオロスルホニル)イミドを得た(収量:63.5g、収率:73%)。   Using the obtained organic layer as a sample, it was confirmed by ICP emission spectroscopic analysis that protons of fluorosulfonylimide were exchanged for lithium ions. Further, the organic layer was concentrated to dryness to obtain lithium bis (fluorosulfonyl) imide (yield: 63.5 g, yield: 73%).

実験例1〜4
フラスコ内で、リチウムビス(フルオロスルホニル)イミド18.71gと、エチレンカーボネート/エチルメチルカーボネート(30/70、体積比)溶液101.21gとを混合し溶解させて、試料溶液を得た。得られた試料溶液の遊離酸量は25ppm、水分量は70.0ppmであった。
Experimental Examples 1-4
In the flask, 18.71 g of lithium bis (fluorosulfonyl) imide and 101.21 g of an ethylene carbonate / ethyl methyl carbonate (30/70, volume ratio) solution were mixed and dissolved to obtain a sample solution. The obtained sample solution had a free acid amount of 25 ppm and a water content of 70.0 ppm.

容量20mlのポリプロピレン製のスクリュー管に、試料溶液と表1に示す各種モレキュラーシーブ(ユニオン昭和株式会社製)とを加え、振とう機で撹拌しながら、一定時間毎に試料溶液の水分量を測定し、その推移を評価した。結果を表2に示す。また、浸とう前(0時間)と、浸とう開始から24時間後の試料溶液に含まれる遊離酸量を表3に示す。   Add the sample solution and various molecular sieves (Union Showa Co., Ltd.) shown in Table 1 to a polypropylene screw tube with a capacity of 20 ml, and measure the water content of the sample solution at regular intervals while stirring with a shaker. And evaluated the transition. The results are shown in Table 2. Table 3 shows the amount of free acid contained in the sample solution before soaking (0 hour) and 24 hours after soaking.

Figure 2013084562
Figure 2013084562

モレキュラーシーブ1:ナトリウムカチオン及びカルシウムカチオンを有するモレキュラーシーブ(型番「5A SDG」、平均孔径(公称値):5Å、球状、ユニオン昭和株式会社社製)
モレキュラーシーブ2:リチウムカチオン及びナトリウムカチオンを有するモレキュラーシーブ(型番「Li−X SDG」、平均孔径(公称値):10Å、球状、ユニオン昭和株式会社社製)
モレキュラーシーブ3:ナトリウムカチオンを有するモレキュラーシーブ(型番「4A SDG」、平均孔径(公称値):4Å、球状、ユニオン昭和株式会社社製)
モレキュラーシーブ4:ナトリウムカチオン及びカルシウムカチオンを有するモレキュラーシーブ(型番「3A SDG」、平均孔径(公称値):3Å、球状、ユニオン昭和株式会社社製)
Molecular sieve 1: Molecular sieve having sodium cation and calcium cation (model number “5A SDG”, average pore diameter (nominal value): 5 mm, spherical, made by Union Showa Co., Ltd.)
Molecular sieve 2: Molecular sieve having lithium cation and sodium cation (model number “Li-X SDG”, average pore size (nominal value): 10 mm, spherical, made by Union Showa Co., Ltd.)
Molecular sieve 3: Molecular sieve having sodium cation (model number “4A SDG”, average pore diameter (nominal value): 4 mm, spherical, made by Union Showa Co., Ltd.)
Molecular sieve 4: Molecular sieve having sodium cation and calcium cation (model number “3A SDG”, average pore size (nominal value): 3 mm, spherical, made by Union Showa Co., Ltd.)

Figure 2013084562
Figure 2013084562

Figure 2013084562
Figure 2013084562

表2〜3より、モレキュラーシーブとの接触により試料溶液中の水分量及び遊離酸量を低減できることが分かる。なお、19F−NMRで確認したところ、モレキュラーシーブとの接触前後の試料溶液中のリチウムビス(フルオロスルホニル)イミド濃度に変化は見られなかった。 From Tables 2-3, it can be seen that the amount of water and the amount of free acid in the sample solution can be reduced by contact with the molecular sieve. As confirmed by 19 F-NMR, no change was observed in the concentration of lithium bis (fluorosulfonyl) imide in the sample solution before and after contact with the molecular sieve.

実験例5
フラスコに、リチウムビス(フルオロスルホニル)イミド6.25gを加え、エチレンカーボネート/エチルメチルカーボネート(30/70、体積比)溶液を33.74g加え溶解した。溶液の水分量は72.5ppm、遊離酸量は35ppmであった。得られた溶液に、シクロヘキサン11.20gを加え、減圧下、温度50℃に加熱してシクロヘキサンを留去し、試料溶液を得た。このとき得られた試料溶液の水分量は8.0ppmであり、遊離酸量は15ppmであった。19F−NMRで確認したが、加熱前後の試料溶液中のリチウムビス(フルオロスルホニル)イミド濃度に変化は見られなかった。
Experimental Example 5
To the flask, 6.25 g of lithium bis (fluorosulfonyl) imide was added, and 33.74 g of an ethylene carbonate / ethyl methyl carbonate (30/70, volume ratio) solution was added and dissolved. The water content of the solution was 72.5 ppm, and the free acid content was 35 ppm. To the resulting solution, 11.20 g of cyclohexane was added and heated to 50 ° C. under reduced pressure to distill off the cyclohexane to obtain a sample solution. The sample solution obtained at this time had a water content of 8.0 ppm and a free acid content of 15 ppm. As confirmed by 19 F-NMR, no change was observed in the concentration of lithium bis (fluorosulfonyl) imide in the sample solution before and after heating.

実験例6〜10
実験例1〜5で得られた試料溶液を各々容量20mlのスクリュー管に入れて密閉し、外部からの水分の浸入を防止した。各電解液を入れたスクリュー管をアルミニウム製の袋に入れて遮光した状態で、温度25℃の環境で2ヶ月間保存し、試料溶液に含まれる水分量及び遊離酸量の経時変化を評価した。結果を表4に示す。なお、2ヶ月間保存した後の試料溶液に外観上の変化は認められず、無色透明の液体であった。
Experimental Examples 6-10
The sample solutions obtained in Experimental Examples 1 to 5 were each sealed in a screw tube with a capacity of 20 ml to prevent moisture from entering from the outside. The screw tube containing each electrolyte solution was placed in an aluminum bag and shielded from light, and stored for 2 months in an environment at a temperature of 25 ° C., and the changes over time in the amount of water and the amount of free acid contained in the sample solution were evaluated. . The results are shown in Table 4. Note that no change in appearance was observed in the sample solution after storage for 2 months, and it was a colorless and transparent liquid.

実験例11
実験例1において調製したモレキュラーシーブとの接触工程前の試料溶液(遊離酸量:25ppm、水分量:70.0ppm)を用いたこと以外は、実験例6〜10と同様にして、2ヶ月間保存し、試料溶液に含まれる水分量及び遊離酸量の経時変化を評価した。結果を表4に示す。なお、2ヶ月間保存した後の試料溶液に外観上の変化は認められず、無色透明の液体であった。
Experimental Example 11
Except for using the sample solution (free acid amount: 25 ppm, water content: 70.0 ppm) before the contacting step with the molecular sieve prepared in Experimental Example 1, the same procedure as in Experimental Examples 6 to 10 was performed for 2 months. The sample was stored, and the change over time in the amount of water and the amount of free acid contained in the sample solution was evaluated. The results are shown in Table 4. Note that no change in appearance was observed in the sample solution after storage for 2 months, and it was a colorless and transparent liquid.

Figure 2013084562
Figure 2013084562

実験例6〜10では、遊離酸量、水分量ともに2ヶ月間の保存前後でほとんど変化がなかった。これに対して、モレキュラーシーブとの接触工程や溶媒留去工程を経ていない実験例11では、遊離酸量が50ppmにまで増加していた。この結果より、本発明の電解液は、保存安定性に優れることがわかった。また、19F−NMRで確認したが、保存前後の試料溶液中のリチウムビス(フルオロスルホニル)イミド濃度に変化は見られなかった。 In Experimental Examples 6 to 10, both the amount of free acid and the amount of water were almost unchanged before and after storage for 2 months. On the other hand, in Experimental Example 11 in which the contact process with the molecular sieve and the solvent distillation process were not performed, the free acid amount was increased to 50 ppm. From this result, it was found that the electrolytic solution of the present invention was excellent in storage stability. Further, as confirmed by 19 F-NMR, no change was observed in the concentration of lithium bis (fluorosulfonyl) imide in the sample solution before and after storage.

製造例2 カリウムビス(フルオロスルホニル)イミドの合成
〔カチオン交換工程2−カリウム塩の合成〕
製造例1と同様にして、フッ素化工程、カチオン交換工程1(アンモニウム塩の合成)を行って得られたアンモニウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液を使用して、カチオン交換工程2を行った。得られた有機層に含まれるアンモニウムビス(フルオロスルホニル)イミドに対して、カリウムの量が2当量となるように、15質量%の水酸化カリウム水溶液283g(Kとして758mmol)を加え、室温で10分間攪拌した。その後、反応溶液から水層を除去して、カリウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液を得た。
Production Example 2 Synthesis of Potassium Bis (fluorosulfonyl) imide [Cation Exchange Step 2-Synthesis of Potassium Salt]
In the same manner as in Production Example 1, cation exchange step 2 was performed using a butyl acetate solution of ammonium bis (fluorosulfonyl) imide obtained by performing fluorination step and cation exchange step 1 (synthesis of ammonium salt). It was. To the ammonium bis (fluorosulfonyl) imide contained in the obtained organic layer, 283 g of a 15 mass% potassium hydroxide aqueous solution (758 mmol as K) was added so that the amount of potassium was 2 equivalents. Stir for minutes. Thereafter, the aqueous layer was removed from the reaction solution to obtain a butyl acetate solution of potassium bis (fluorosulfonyl) imide.

得られた有機層を試料とし、ICP発光分光分析法により、フルオロスルホニルイミドのプロトンがカリウムイオンに交換されていることを確認した。また、有機層を濃縮乾固することで、カリウムビス(フルオロスルホニル)イミドを得た(収量:74g)。   Using the obtained organic layer as a sample, it was confirmed by ICP emission spectroscopic analysis that protons of fluorosulfonylimide were exchanged for potassium ions. Further, the organic layer was concentrated to dryness to obtain potassium bis (fluorosulfonyl) imide (yield: 74 g).

実験例12〜15
フラスコ内で、カリウムビス(フルオロスルホニル)イミド21.9gと、エチレンカーボネート/エチルメチルカーボネート(30/70、体積比)溶液100.1gとを混合し溶解させて、試料溶液を得た。得られた試料溶液の遊離酸量は35ppm、水分量は53ppmであった。
Experimental Examples 12-15
In the flask, 21.9 g of potassium bis (fluorosulfonyl) imide and 100.1 g of an ethylene carbonate / ethyl methyl carbonate (30/70, volume ratio) solution were mixed and dissolved to obtain a sample solution. The obtained sample solution had a free acid amount of 35 ppm and a water content of 53 ppm.

容量20mlのポリプロピレン製のスクリュー管に、試料溶液と表5に示す各種モレキュラーシーブ(ユニオン昭和株式会社製)とを加え、振とう機で撹拌しながら、一定時間毎に試料溶液の水分量を測定し、その推移を評価した。結果を表6に示す。また、浸とう前(0時間)と、浸とう開始から24時間後の試料溶液に含まれる遊離酸量を表7に示す。なお、モレキュラーシーブは、実験例1〜4と同じ物を使用した。   Add the sample solution and various molecular sieves (made by Union Showa Co., Ltd.) shown in Table 5 to a polypropylene screw tube with a capacity of 20 ml, and measure the water content of the sample solution at regular intervals while stirring with a shaker. And evaluated the transition. The results are shown in Table 6. Table 7 shows the amount of free acid contained in the sample solution before soaking (0 hour) and 24 hours after soaking. In addition, the same molecular sieve as Experimental Examples 1-4 was used.

Figure 2013084562
Figure 2013084562

Figure 2013084562
Figure 2013084562

Figure 2013084562
Figure 2013084562

表6〜7より、モレキュラーシーブとの接触により試料溶液中の水分量及び遊離酸量を低減できることが分かる。また、19F−NMRで確認したが、モレキュラーシーブとの接触前後の試料溶液中のカリウムビス(フルオロスルホニル)イミド濃度に変化は見られなかった。 From Tables 6 to 7, it can be seen that the amount of water and the amount of free acid in the sample solution can be reduced by contact with the molecular sieve. Further, as confirmed by 19 F-NMR, no change was observed in the potassium bis (fluorosulfonyl) imide concentration in the sample solution before and after contact with the molecular sieve.

実験例16
フラスコに、カリウムビス(フルオロスルホニル)イミド7.3gを加え、エチレンカーボネート/エチルメチルカーボネート(30/70、体積比)溶液を33.5g加え溶解した。溶液の水分量は52ppm、遊離酸量は35ppmであった。得られた溶液に、シクロヘキサン10.5gを加え、減圧下、温度50℃に加熱してシクロヘキサンを留去し、試料溶液を得た。このとき得られた試料溶液の水分量は8.0ppmであり、遊離酸量は9ppmであった。19F−NMRで確認したが、加熱前後の試料溶液中のカリウムビス(フルオロスルホニル)イミド濃度に変化は見られなかった。
Experimental Example 16
To the flask, 7.3 g of potassium bis (fluorosulfonyl) imide was added, and 33.5 g of an ethylene carbonate / ethyl methyl carbonate (30/70, volume ratio) solution was added and dissolved. The water content of the solution was 52 ppm and the free acid content was 35 ppm. To the resulting solution was added 10.5 g of cyclohexane, and the mixture was heated to 50 ° C. under reduced pressure to distill off the cyclohexane to obtain a sample solution. The sample solution obtained at this time had a water content of 8.0 ppm and a free acid content of 9 ppm. As confirmed by 19 F-NMR, no change was observed in the potassium bis (fluorosulfonyl) imide concentration in the sample solution before and after heating.

実験例17〜21
実験例12〜16で得られた試料溶液を各々容量20mlのスクリュー管に入れて密閉し、外部からの水分の浸入を防止した。各電解液を入れたスクリュー管をアルミニウム製の袋に入れて遮光した状態で、温度25℃の環境で2ヶ月間保存し、試料溶液に含まれる水分量及び遊離酸量の経時変化を評価した。結果を表8に示す。なお、2ヶ月間保存した後の試料溶液に外観上の変化は認められず、無色透明の液体であった。
Experimental Examples 17-21
The sample solutions obtained in Experimental Examples 12 to 16 were each sealed in a 20-ml screw tube to prevent moisture from entering from the outside. The screw tube containing each electrolyte solution was placed in an aluminum bag and shielded from light, and stored for 2 months in an environment at a temperature of 25 ° C., and the changes over time in the amount of water and the amount of free acid contained in the sample solution were evaluated. . The results are shown in Table 8. Note that no change in appearance was observed in the sample solution after storage for 2 months, and it was a colorless and transparent liquid.

実験例22
実験例12で調製したモレキュラーシーブとの接触工程前の試料溶液(遊離酸量:35ppm、水分量:53ppm)を用いたこと以外は、実験例17〜21と同様にして、当該試料溶液を2ヶ月間保存し、試料溶液に含まれる水分量及び遊離酸量の経時変化を評価した。結果を表8に示す。なお、2ヶ月間保存した後の試料溶液に外観上の変化は認められず、無色透明の液体であった。
Experimental Example 22
Except that the sample solution before the contact step with the molecular sieve prepared in Experimental Example 12 (free acid amount: 35 ppm, water content: 53 ppm) was used, the sample solution was prepared in the same manner as in Experimental Examples 17 to 21. The samples were stored for months, and the changes over time in the amount of water and the amount of free acid contained in the sample solution were evaluated. The results are shown in Table 8. Note that no change in appearance was observed in the sample solution after storage for 2 months, and it was a colorless and transparent liquid.

Figure 2013084562
Figure 2013084562

実験例17〜21では、遊離酸量、水分量ともに2ヶ月間の保存前後でほとんど変化がなかった。これに対して、モレキュラーシーブとの接触工程や溶媒留去工程を経ていない実験例22では、遊離酸量が55ppmにまで増加していた。この結果より、本発明の電解液は、保存安定性に優れることがわかった。また、19F−NMRで確認したが、保存前後の試料溶液中のカリウムビス(フルオロスルホニル)イミド濃度に変化は見られなかった。 In Experimental Examples 17 to 21, both the amount of free acid and the amount of water were almost unchanged before and after storage for 2 months. On the other hand, in Experimental Example 22 in which the contact process with the molecular sieve and the solvent distillation process were not performed, the free acid amount was increased to 55 ppm. From this result, it was found that the electrolytic solution of the present invention was excellent in storage stability. Further, as confirmed by 19 F-NMR, no change was observed in the potassium bis (fluorosulfonyl) imide concentration in the sample solution before and after storage.

製造例3 ナトリウムビス(フルオロスルホニル)イミドの合成
〔カチオン交換工程2−ナトリウム塩の合成〕
製造例1と同様にして、フッ素化工程、カチオン交換工程1(アンモニウム塩の合成)を行って得られたアンモニウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液を使用して、カチオン交換工程2を行った。得られた有機層に含まれるアンモニウムビス(フルオロスルホニル)イミドに対して、ナトリウムの量が2当量となるように、15質量%の水酸化ナトリウム水溶液202g(Naとして758mmol)を加え、室温で10分間攪拌した。その後、反応溶液から水層を除去して、ナトリウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液を得た。
Production Example 3 Synthesis of Sodium Bis (fluorosulfonyl) imide [Cation Exchange Step 2-Synthesis of Sodium Salt]
In the same manner as in Production Example 1, cation exchange step 2 was performed using a butyl acetate solution of ammonium bis (fluorosulfonyl) imide obtained by performing fluorination step and cation exchange step 1 (synthesis of ammonium salt). It was. To the ammonium bis (fluorosulfonyl) imide contained in the obtained organic layer, 202 g of a 15% by mass aqueous sodium hydroxide solution (758 mmol as Na) was added so that the amount of sodium was 2 equivalents. Stir for minutes. Thereafter, the aqueous layer was removed from the reaction solution to obtain a butyl acetate solution of sodium bis (fluorosulfonyl) imide.

得られた有機層を試料として、ICP発光分光分析法により、フルオロスルホニルイミドのプロトンがナトリウムイオンに交換されていることを確認した。また、有機層を濃縮乾固することで、ナトリウムビス(フルオロスルホニル)イミドを得た(収量:69g)。   Using the obtained organic layer as a sample, it was confirmed by ICP emission spectroscopic analysis that protons of fluorosulfonylimide were exchanged with sodium ions. Further, the organic layer was concentrated to dryness to obtain sodium bis (fluorosulfonyl) imide (yield: 69 g).

実験例23〜26
フラスコ内で、ナトリウムビス(フルオロスルホニル)イミド20.3gと、エチレンカーボネート/エチルメチルカーボネート(30/70、体積比)溶液99.5gとを混合し溶解させて、試料溶液を得た。得られた試料溶液の遊離酸量は30ppm、水分量は55ppmであった。
Experimental Examples 23-26
In the flask, 20.3 g of sodium bis (fluorosulfonyl) imide and 99.5 g of an ethylene carbonate / ethyl methyl carbonate (30/70, volume ratio) solution were mixed and dissolved to obtain a sample solution. The obtained sample solution had a free acid amount of 30 ppm and a water content of 55 ppm.

容量20mlのポリプロピレン製のスクリュー管に、試料溶液と表9に示す各種モレキュラーシーブ(ユニオン昭和株式会社製)とを加え、振とう機で撹拌しながら、一定時間毎に試料溶液の水分量を測定し、その推移を評価した。結果を表10に示す。また、浸とう前(0時間)と、浸とう開始から24時間後の試料溶液に含まれる遊離酸量を表11に示す。なお、モレキュラーシーブは、実験例1〜4と同じ物を使用した。   Add the sample solution and various molecular sieves (Union Showa Co., Ltd.) shown in Table 9 to a polypropylene screw tube with a capacity of 20 ml, and measure the water content of the sample solution at regular intervals while stirring with a shaker. And evaluated the transition. The results are shown in Table 10. Table 11 shows the amount of free acid contained in the sample solution before soaking (0 hour) and 24 hours after soaking. In addition, the same molecular sieve as Experimental Examples 1-4 was used.

Figure 2013084562
Figure 2013084562

Figure 2013084562
Figure 2013084562

Figure 2013084562
Figure 2013084562

表10〜11より、モレキュラーシーブとの接触により試料溶液中の水分量及び遊離酸量を低減できることが分かる。なお、19F−NMRで確認したところ、モレキュラーシーブとの接触前後の試料溶液中のナトリウムビス(フルオロスルホニル)イミド濃度に変化は見られなかった。 From Tables 10 to 11, it can be seen that the amount of water and the amount of free acid in the sample solution can be reduced by contact with the molecular sieve. As confirmed by 19 F-NMR, no change was observed in the concentration of sodium bis (fluorosulfonyl) imide in the sample solution before and after contact with the molecular sieve.

実験例27
フラスコに、ナトリウムビス(フルオロスルホニル)イミド6.8gを加え、エチレンカーボネート/エチルメチルカーボネート(30/70、体積比)溶液を33.2g加え溶解した。溶液の水分量は53ppm、遊離酸量は30ppmであった。得られた溶液に、シクロヘキサン10.8gを加え、減圧下、温度50℃に加熱してシクロヘキサンを留去し、試料溶液を得た。このとき得られた試料溶液の水分量は7.8ppmであり、遊離酸量は15ppmであった。19F−NMRで確認したが、加熱前後の試料溶液中のナトリウムビス(フルオロスルホニル)イミド濃度に変化は見られなかった。
Experimental Example 27
To the flask, 6.8 g of sodium bis (fluorosulfonyl) imide was added, and 33.2 g of an ethylene carbonate / ethyl methyl carbonate (30/70, volume ratio) solution was added and dissolved. The water content of the solution was 53 ppm, and the free acid content was 30 ppm. To the resulting solution was added 10.8 g of cyclohexane, and the mixture was heated to 50 ° C. under reduced pressure to distill off the cyclohexane to obtain a sample solution. The sample solution obtained at this time had a water content of 7.8 ppm and a free acid content of 15 ppm. As confirmed by 19 F-NMR, no change was observed in the concentration of sodium bis (fluorosulfonyl) imide in the sample solution before and after heating.

実験例28〜32
実験例23〜27で得られた試料溶液を各々容量20mlのスクリュー管に入れて密閉し、外部からの水分の浸入を防止した。各電解液を入れたスクリュー管をアルミニウム製の袋に入れて遮光した状態で、温度25℃の環境で2ヶ月間保存し、試料溶液に含まれる水分量及び遊離酸量の経時変化を評価した。結果を表12に示す。なお、2ヶ月間保存した後の試料溶液に外観上の変化は認められず、無色透明の液体であった。
Experimental Examples 28-32
The sample solutions obtained in Experimental Examples 23 to 27 were each sealed in a screw tube having a capacity of 20 ml to prevent moisture from entering from the outside. The screw tube containing each electrolyte solution was placed in an aluminum bag and shielded from light, and stored for 2 months in an environment at a temperature of 25 ° C., and the changes over time in the amount of water and the amount of free acid contained in the sample solution were evaluated. . The results are shown in Table 12. Note that no change in appearance was observed in the sample solution after storage for 2 months, and it was a colorless and transparent liquid.

実験例33
実験例23で調製したモレキュラーシーブとの接触工程前の試料溶液(遊離酸量:30ppm、水分量:55ppm)を用いたこと以外は、実験例28〜32と同様にして、2ヶ月間保存し、試料溶液に含まれる水分量及び遊離酸量の経時変化を評価した。結果を表12に示す。なお、2ヶ月間保存した後の試料溶液に外観上の変化は認められず、無色透明の液体であった。
Experimental Example 33
Stored for 2 months in the same manner as in Experimental Examples 28 to 32, except that the sample solution before the contacting step with the molecular sieve prepared in Experimental Example 23 (free acid amount: 30 ppm, moisture content: 55 ppm) was used. The time course of the amount of water and the amount of free acid contained in the sample solution was evaluated. The results are shown in Table 12. Note that no change in appearance was observed in the sample solution after storage for 2 months, and it was a colorless and transparent liquid.

Figure 2013084562
Figure 2013084562

実験例28〜32では、遊離酸量、水分量ともに2ヶ月間の保存前後でほとんど変化がなかった。これに対して、モレキュラーシーブとの接触工程や溶媒留去工程を経ていない実験例33では、遊離酸量が44ppmにまで増加していた。この結果より、本発明の電解液は、保存安定性に優れることがわかった。また、19F−NMRで確認したが、保存前後の試料溶液中のナトリウムビス(フルオロスルホニル)イミド濃度に変化は見られなかった。 In Experimental Examples 28 to 32, both the amount of free acid and the amount of water were almost unchanged before and after storage for 2 months. On the other hand, in Experimental Example 33 in which the contacting step with the molecular sieve and the solvent distillation step were not performed, the amount of free acid was increased to 44 ppm. From this result, it was found that the electrolytic solution of the present invention was excellent in storage stability. Further, as confirmed by 19 F-NMR, no change was observed in the concentration of sodium bis (fluorosulfonyl) imide in the sample solution before and after storage.

製造例4 エチルメチルイミダゾリウムビス(フルオロスルホニル)イミドの合成
〔カチオン交換工程3−エチルメチルイミダゾリウム塩の合成〕
製造例1と同様にして、フッ素化工程、カチオン交換工程1(アンモニウム塩の合成)カチオン交換工程2を行って得られたリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液を使用して、カチオン交換工程3を行った。得られた有機層に含まれるリチウムビス(フルオロスルホニル)イミドに対して、エチルメチルイミダゾリウムの量が1.05当量となるように、15質量%のエチルメチルイミダゾリウムブロマイド水溶液453g(エチルメチルイミダゾリウムブロマイドとして356mmol)を加え、室温で10分間攪拌した。その後、反応溶液から水層を除去して、エチルメチルイミダゾリウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液を得た。
Production Example 4 Synthesis of Ethylmethylimidazolium Bis (fluorosulfonyl) imide [Cation Exchange Step 3-Synthesis of Ethylmethylimidazolium Salt]
Cation exchange using a butyl acetate solution of lithium bis (fluorosulfonyl) imide obtained by performing fluorination step, cation exchange step 1 (synthesis of ammonium salt) cation exchange step 2 in the same manner as in Production Example 1 Step 3 was performed. To the lithium bis (fluorosulfonyl) imide contained in the obtained organic layer, 453 g of ethyl methyl imidazolium bromide aqueous solution (ethyl methyl imidazole) was added so that the amount of ethyl methyl imidazolium was 1.05 equivalent. 356 mmol) was added as a lithium bromide and stirred at room temperature for 10 minutes. Thereafter, the aqueous layer was removed from the reaction solution to obtain a butyl acetate solution of ethylmethylimidazolium bis (fluorosulfonyl) imide.

得られた有機層を試料とし、1H−NMRにより、エチルメチルイミダゾリウムに由来するピークを確認し、カチオン交換反応が完了したことを確認した。また、有機層を濃縮乾固することで、エチルメチルイミダゾリウムビス(フルオロスルホニル)イミドを得た(収量:94g)。 Using the obtained organic layer as a sample, 1 H-NMR confirmed a peak derived from ethylmethylimidazolium, and confirmed that the cation exchange reaction was completed. In addition, the organic layer was concentrated to dryness to obtain ethylmethylimidazolium bis (fluorosulfonyl) imide (yield: 94 g).

実験例34〜37
フラスコ内で、エチルメチルイミダゾリウムビス(フルオロスルホニル)イミド29.1gと、エチレンカーボネート/エチルメチルカーボネート(30/70、体積比)溶液98.6gとを混合し溶解させて、試料溶液を得た。得られた試料溶液の遊離酸量は28ppm、水分量は51ppmであった。
Experimental Examples 34 to 37
In the flask, 29.1 g of ethyl methylimidazolium bis (fluorosulfonyl) imide and 98.6 g of ethylene carbonate / ethyl methyl carbonate (30/70, volume ratio) solution were mixed and dissolved to obtain a sample solution. . The obtained sample solution had a free acid amount of 28 ppm and a water content of 51 ppm.

容量20mlのポリプロピレン製のスクリュー管に、試料溶液と表13に示す各種モレキュラーシーブ(ユニオン昭和株式会社製)とを加え、振とう機で撹拌しながら、一定時間毎に試料溶液の水分量を測定し、その推移を評価した。結果を表14に示す。また、浸とう前(0時間)と、浸とう開始から24時間後の試料溶液に含まれる遊離酸量を表15に示す。なお、モレキュラーシーブは、実験例1〜4と同じ物を使用した。   The sample solution and various molecular sieves (Union Showa Co., Ltd.) shown in Table 13 are added to a polypropylene screw tube with a capacity of 20 ml, and the moisture content of the sample solution is measured at regular intervals while stirring with a shaker. And evaluated the transition. The results are shown in Table 14. Table 15 shows the amount of free acid contained in the sample solution before soaking (0 hour) and 24 hours after soaking. In addition, the same molecular sieve as Experimental Examples 1-4 was used.

Figure 2013084562
Figure 2013084562

Figure 2013084562
Figure 2013084562

Figure 2013084562
Figure 2013084562

表14〜15より、モレキュラーシーブとの接触により試料溶液中の水分量及び遊離酸量を低減できることが分かる。なお、19F−NMRで確認したところ、モレキュラーシーブとの接触前後の試料溶液中のエチルメチルイミダゾリウムビス(フルオロスルホニル)イミド濃度に変化は見られなかった。 From Tables 14 to 15, it can be seen that the amount of water and the amount of free acid in the sample solution can be reduced by contact with the molecular sieve. As confirmed by 19 F-NMR, no change was observed in the concentration of ethylmethylimidazolium bis (fluorosulfonyl) imide in the sample solution before and after contact with the molecular sieve.

実験例38
フラスコに、エチルメチルイミダゾリウムビス(フルオロスルホニル)イミド9.7gを加え、エチレンカーボネート/エチルメチルカーボネート(30/70、体積比)溶液を32.7g加え溶解した。溶液の水分量は54ppm、遊離酸量は28ppmであった。得られた溶液に、シクロヘキサン11.0gを加え、減圧下、温度50℃に加熱してシクロヘキサンを留去し、試料溶液を得た。このとき得られた試料溶液の水分量は7.8ppmであり、遊離酸量は13ppmであった。19F−NMRで確認したが、加熱前後の試料溶液中のエチルメチルイミダゾリウムビス(フルオロスルホニル)イミド濃度に変化は見られなかった。
Experimental Example 38
To the flask, 9.7 g of ethylmethylimidazolium bis (fluorosulfonyl) imide was added, and 32.7 g of an ethylene carbonate / ethyl methyl carbonate (30/70, volume ratio) solution was added and dissolved. The water content of the solution was 54 ppm, and the free acid content was 28 ppm. To the resulting solution was added 11.0 g of cyclohexane, and the mixture was heated to 50 ° C. under reduced pressure to distill off the cyclohexane to obtain a sample solution. The sample solution obtained at this time had a water content of 7.8 ppm and a free acid content of 13 ppm. As confirmed by 19 F-NMR, no change was observed in the concentration of ethylmethylimidazolium bis (fluorosulfonyl) imide in the sample solution before and after heating.

実験例39〜43
実験例34〜38で得られた試料溶液を各々容量20mlのスクリュー管に入れて密閉し、外部からの水分の浸入を防止した。各電解液を入れたスクリュー管をアルミニウム製の袋に入れて遮光した状態で、温度25℃の環境で2ヶ月間保存し、試料溶液に含まれる水分量及び遊離酸量の経時変化を評価した。結果を表16に示す。なお、2ヶ月間保存した後の試料溶液に外観上の変化は認められず、無色透明の液体であった。
Experimental Examples 39-43
The sample solutions obtained in Experimental Examples 34 to 38 were each sealed in a 20-ml screw tube to prevent moisture from entering from the outside. The screw tube containing each electrolyte solution was placed in an aluminum bag and shielded from light, and stored for 2 months in an environment at a temperature of 25 ° C., and the changes over time in the amount of water and the amount of free acid contained in the sample solution were evaluated. . The results are shown in Table 16. Note that no change in appearance was observed in the sample solution after storage for 2 months, and it was a colorless and transparent liquid.

実験例44
実験例34において調製したモレキュラーシーブとの接触工程前の試料溶液(遊離酸量:28ppm、水分量:51ppm)を用いたこと以外は、実験例39〜43と同様にして、2ヶ月間保存し、試料溶液に含まれる水分量及び遊離酸量の経時変化を評価した。結果を表16に示す。なお、2ヶ月間保存した後の試料溶液に外観上の変化は認められず、無色透明の液体であった。
Experimental Example 44
Stored for 2 months in the same manner as in Experimental Examples 39 to 43, except that the sample solution before the contact step with the molecular sieve prepared in Experimental Example 34 (free acid amount: 28 ppm, water content: 51 ppm) was used. The time course of the amount of water and the amount of free acid contained in the sample solution was evaluated. The results are shown in Table 16. Note that no change in appearance was observed in the sample solution after storage for 2 months, and it was a colorless and transparent liquid.

Figure 2013084562
Figure 2013084562

実験例39〜43では、遊離酸量、水分量ともに2ヶ月間の保存前後でほとんど変化がなかった。これに対して、モレキュラーシーブとの接触工程や溶媒留去工程を経ていない実験例44では、遊離酸量が40ppmにまで増加していた。この結果より、本発明の電解液は、保存安定性に優れることがわかった。また、19F−NMRで確認したが、保存前後の試料溶液中のエチルメチルイミダゾリウムビス(フルオロスルホニル)イミド濃度に変化は見られなかった。 In Experimental Examples 39 to 43, both the amount of free acid and the amount of water were almost unchanged before and after storage for 2 months. On the other hand, in Experimental Example 44 that did not undergo the contact step with the molecular sieve or the solvent distillation step, the amount of free acid was increased to 40 ppm. From this result, it was found that the electrolytic solution of the present invention was excellent in storage stability. Further, as confirmed by 19 F-NMR, no change was observed in the concentration of ethylmethylimidazolium bis (fluorosulfonyl) imide in the sample solution before and after storage.

本発明の電解液は保存安定性に優れるものであり、遊離酸や水分の経時的な増加が生じ難いものである。したがって、本発明の電解液を蓄電デバイスに使用すれば、経時的な性能低下が生じ難い高性能な蓄電デバイスになると考えられる。また、本発明法によれば、経時的な遊離酸量や水分量の増加が生じ難い電解液を製造することができる。   The electrolytic solution of the present invention is excellent in storage stability, and it is difficult for the free acid and moisture to increase with time. Therefore, if the electrolytic solution of the present invention is used for an electricity storage device, it is considered that a high-performance electricity storage device in which performance deterioration with time does not easily occur. Moreover, according to the method of the present invention, it is possible to produce an electrolytic solution in which the free acid amount and the water amount are hardly increased over time.

Claims (6)

下記一般式(1)で表されるイオン性化合物と遊離酸を含み、前記遊離酸の含有量が25ppm未満(質量基準)であることを特徴とする電解液。
(XSO2)(X’SO2)N-+ (1)
(式中、X、X’はフッ素原子又は炭素数1〜6のアルキル基又はフルオロアルキル基を表し、X、X’の少なくとも一方はフッ素原子であり、Y+はアルカリ金属カチオン又はオニウムカチオンを表す。)
An electrolytic solution comprising an ionic compound represented by the following general formula (1) and a free acid, wherein the content of the free acid is less than 25 ppm (mass basis).
(XSO 2 ) (X′SO 2 ) N Y + (1)
(In the formula, X and X ′ represent a fluorine atom, an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group, at least one of X and X ′ is a fluorine atom, and Y + represents an alkali metal cation or an onium cation. Represents.)
上記遊離酸が、HF、H2SO4及びFSO3Hよりなる群から選ばれる1種以上の遊離酸である請求項1に記載の電解液。 The electrolytic solution according to claim 1, wherein the free acid is one or more free acids selected from the group consisting of HF, H 2 SO 4 and FSO 3 H. 水分量が50ppm以下(質量基準)である請求項1又は2に記載の電解液。   The electrolytic solution according to claim 1 or 2, wherein the water content is 50 ppm or less (mass basis). 上記一般式(1)において、X及びX’がフッ素原子であり、Y+がリチウムカチオンである請求項1〜3のいずれかに記載の電解液。 The electrolytic solution according to any one of claims 1 to 3, wherein, in the general formula (1), X and X 'are fluorine atoms, and Y + is a lithium cation. 請求項1〜4のいずれかに記載の電解液を用いた蓄電デバイス。   The electrical storage device using the electrolyte solution in any one of Claims 1-4. 請求項1〜4のいずれかに記載の電解液の製造方法であって、
上記一般式(1)で表されるイオン性化合物と、炭化水素系溶媒及び/又は非プロトン性溶媒を混合した後、一部又は全ての溶媒を留去させる工程及び/又はモレキュラーシーブと接触させる工程を含むことを特徴とする電解液の製造方法。
It is a manufacturing method of the electrolyte solution in any one of Claims 1-4, Comprising:
After mixing the ionic compound represented by the general formula (1) with a hydrocarbon solvent and / or an aprotic solvent, a part or all of the solvent is distilled off and / or contacted with a molecular sieve. The manufacturing method of the electrolyte solution characterized by including a process.
JP2012147964A 2011-09-30 2012-06-29 Electrolytic solution, method for producing the same, and power storage device using the same Active JP6093516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012147964A JP6093516B2 (en) 2011-09-30 2012-06-29 Electrolytic solution, method for producing the same, and power storage device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011218540 2011-09-30
JP2011218540 2011-09-30
JP2012147964A JP6093516B2 (en) 2011-09-30 2012-06-29 Electrolytic solution, method for producing the same, and power storage device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016074914A Division JP6205451B2 (en) 2011-09-30 2016-04-04 Electrolytic solution, method for producing the same, and power storage device using the same

Publications (2)

Publication Number Publication Date
JP2013084562A true JP2013084562A (en) 2013-05-09
JP6093516B2 JP6093516B2 (en) 2017-03-08

Family

ID=48529541

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012147964A Active JP6093516B2 (en) 2011-09-30 2012-06-29 Electrolytic solution, method for producing the same, and power storage device using the same
JP2016074914A Active JP6205451B2 (en) 2011-09-30 2016-04-04 Electrolytic solution, method for producing the same, and power storage device using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016074914A Active JP6205451B2 (en) 2011-09-30 2016-04-04 Electrolytic solution, method for producing the same, and power storage device using the same

Country Status (1)

Country Link
JP (2) JP6093516B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238935A (en) * 2013-06-06 2014-12-18 住友電気工業株式会社 Ionic liquid and molten salt electrolyte that are used for sodium molten salt battery, sodium molten salt battery, and method for manufacturing molten salt electrolyte for sodium molten salt battery
JP2015118745A (en) * 2013-12-16 2015-06-25 株式会社日本触媒 Nonaqueous electrolyte and lithium ion secondary battery including the same
KR20170063765A (en) * 2014-10-03 2017-06-08 가부시기가이샤 닛뽕쇼꾸바이 Method for manufacturing electrolyte material
JP2018055882A (en) * 2016-09-27 2018-04-05 株式会社日本触媒 Method for manufacturing electrolyte material containing alkali metal salt of bis(fluorosulfonyl)imide and organic solvent, and electrolyte material containing alkali metal salt of bis(fluorosulfonyl)imide and organic solvent
US10290902B2 (en) 2016-05-27 2019-05-14 Samsung Electronics Co., Ltd. Electrolyte for lithium metal battery, lithium metal battery including the electrolyte, and method of manufacturing the lithium metal battery
JPWO2020241161A1 (en) * 2019-05-31 2020-12-03
JP2021131939A (en) * 2020-02-18 2021-09-09 株式会社日本触媒 Nonaqueous electrolyte solution and lithium ion secondary battery
WO2023247806A2 (en) 2022-11-24 2023-12-28 Specialty Operations France Composition comprising an alkali metal salt of bis(fluoro sulfonyl)imide
WO2023247804A2 (en) 2022-11-24 2023-12-28 Specialty Operations France Composition comprising an alkali metal salt of bis(fluoro sulfonyl)imide
WO2023247805A2 (en) 2022-11-24 2023-12-28 Specialty Operations France Composition comprising an alkali metal salt of bis(fluoro sulfonyl)imide
JP7481707B2 (en) 2020-11-30 2024-05-13 旭化成株式会社 Non-aqueous alkali metal storage element

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018098027A (en) * 2016-12-13 2018-06-21 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery
CN113015692A (en) * 2018-11-16 2021-06-22 麻省固能控股有限公司 Process for removing reactive solvents from lithium bis (fluorosulfonyl) imide (LiFSI) using organic solvents that are stable to anodes in lithium ion batteries and lithium metal batteries
US10967295B2 (en) * 2018-11-16 2021-04-06 Ses Holdings Pte. Ltd. Processes for removing reactive solvent from lithium bis(fluorosulfonyl)imide (LiFSI) using organic solvents that are stable toward anodes in lithium-ion and lithium-metal batteries
US11267707B2 (en) 2019-04-16 2022-03-08 Honeywell International Inc Purification of bis(fluorosulfonyl) imide
JP7340685B2 (en) * 2020-02-27 2023-09-07 株式会社日本触媒 Composition, electrolyte material and electrolyte

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981869A (en) * 1982-11-01 1984-05-11 Hitachi Maxell Ltd Manufacture of lithium battery
JPH0237673A (en) * 1982-06-01 1990-02-07 Agence Ntnl Valor Rech <Anvar> Cell using ionizable compound
JPH1092468A (en) * 1996-09-19 1998-04-10 Central Glass Co Ltd Electrolyte for lithium battery, method for refining it, and lithium battery using it
JPH10270074A (en) * 1997-03-25 1998-10-09 Ube Ind Ltd Secondary lithium battery electrolyte
JP2001052741A (en) * 2000-01-01 2001-02-23 Ube Ind Ltd Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP2001283910A (en) * 2000-04-04 2001-10-12 Sony Corp Battery
JP2003045484A (en) * 2001-07-26 2003-02-14 Daikin Ind Ltd Dehydration method for composition containing lithium- bis(pentafluoroethanesulfonyl)imide
JP2007207675A (en) * 2006-02-03 2007-08-16 Dai Ichi Kogyo Seiyaku Co Ltd Lithium secondary cell using ionic liquid
JP2009506505A (en) * 2005-08-29 2009-02-12 イドロ−ケベック Method for purifying electrolyte, electrolyte obtained by this method, power generation device and use
JP2010257639A (en) * 2009-04-22 2010-11-11 Nec Energy Devices Ltd Nonaqueous electrolyte, and secondary battery using the same
JP2011065842A (en) * 2009-09-16 2011-03-31 Nissan Motor Co Ltd Electrolyte for lithium secondary battery, and bipolar secondary battery using the same
WO2011065502A1 (en) * 2009-11-27 2011-06-03 株式会社日本触媒 Fluorosulfonyl imide salt and method for producing fluorosulfonyl imide salt

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3087956B2 (en) * 1997-03-25 2000-09-18 宇部興産株式会社 Electrolyte for lithium secondary battery, method for producing the same, and lithium secondary battery using the electrolyte
JP2002203605A (en) * 2000-12-28 2002-07-19 Denso Corp Nonaqueous electrolyte solution battery
JP2003323916A (en) * 2002-04-30 2003-11-14 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
US7981388B2 (en) * 2004-08-23 2011-07-19 Air Products And Chemicals, Inc. Process for the purification of lithium salts
JP2008277401A (en) * 2007-04-26 2008-11-13 Japan Carlit Co Ltd:The Method of refining electrolyte for electric double-layer capacitor
TWI530316B (en) * 2009-12-17 2016-04-21 恩特葛瑞斯公司 Purifier for removing hydrogen fluoride in an electrolytic solution

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237673A (en) * 1982-06-01 1990-02-07 Agence Ntnl Valor Rech <Anvar> Cell using ionizable compound
JPS5981869A (en) * 1982-11-01 1984-05-11 Hitachi Maxell Ltd Manufacture of lithium battery
JPH1092468A (en) * 1996-09-19 1998-04-10 Central Glass Co Ltd Electrolyte for lithium battery, method for refining it, and lithium battery using it
JPH10270074A (en) * 1997-03-25 1998-10-09 Ube Ind Ltd Secondary lithium battery electrolyte
JP2001052741A (en) * 2000-01-01 2001-02-23 Ube Ind Ltd Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP2001283910A (en) * 2000-04-04 2001-10-12 Sony Corp Battery
JP2003045484A (en) * 2001-07-26 2003-02-14 Daikin Ind Ltd Dehydration method for composition containing lithium- bis(pentafluoroethanesulfonyl)imide
JP2009506505A (en) * 2005-08-29 2009-02-12 イドロ−ケベック Method for purifying electrolyte, electrolyte obtained by this method, power generation device and use
JP2007207675A (en) * 2006-02-03 2007-08-16 Dai Ichi Kogyo Seiyaku Co Ltd Lithium secondary cell using ionic liquid
JP2010257639A (en) * 2009-04-22 2010-11-11 Nec Energy Devices Ltd Nonaqueous electrolyte, and secondary battery using the same
JP2011065842A (en) * 2009-09-16 2011-03-31 Nissan Motor Co Ltd Electrolyte for lithium secondary battery, and bipolar secondary battery using the same
WO2011065502A1 (en) * 2009-11-27 2011-06-03 株式会社日本触媒 Fluorosulfonyl imide salt and method for producing fluorosulfonyl imide salt

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238935A (en) * 2013-06-06 2014-12-18 住友電気工業株式会社 Ionic liquid and molten salt electrolyte that are used for sodium molten salt battery, sodium molten salt battery, and method for manufacturing molten salt electrolyte for sodium molten salt battery
JP2015118745A (en) * 2013-12-16 2015-06-25 株式会社日本触媒 Nonaqueous electrolyte and lithium ion secondary battery including the same
EP3203570A4 (en) * 2014-10-03 2018-05-23 Nippon Shokubai Co., Ltd. Method for manufacturing electrolyte material
CN107112591A (en) * 2014-10-03 2017-08-29 株式会社日本触媒 The preparation method of electrolyte material
JPWO2016052752A1 (en) * 2014-10-03 2017-09-14 株式会社日本触媒 Manufacturing method of electrolyte material
US11637320B2 (en) 2014-10-03 2023-04-25 Nippon Shokubai Co., Ltd. Method for manufacturing electrolyte solution material
CN113793986A (en) * 2014-10-03 2021-12-14 株式会社日本触媒 Electrolyte material, method for producing same, method for storing same, method for transporting same, nonaqueous electrolyte solution, and electricity storage device
KR20170063765A (en) * 2014-10-03 2017-06-08 가부시기가이샤 닛뽕쇼꾸바이 Method for manufacturing electrolyte material
JP2019083204A (en) * 2014-10-03 2019-05-30 株式会社日本触媒 Electrolytic solution material
US11539078B2 (en) 2014-10-03 2022-12-27 Nippon Shokubai Co., Ltd. Method for manufacturing electrolyte solution material
JP7194784B2 (en) 2014-10-03 2022-12-22 株式会社日本触媒 Electrolyte material
KR102443835B1 (en) * 2014-10-03 2022-09-15 가부시기가이샤 닛뽕쇼꾸바이 Method for manufacturing electrolyte material
JP2021182551A (en) * 2014-10-03 2021-11-25 株式会社日本触媒 Electrolytic solution material
US10290902B2 (en) 2016-05-27 2019-05-14 Samsung Electronics Co., Ltd. Electrolyte for lithium metal battery, lithium metal battery including the electrolyte, and method of manufacturing the lithium metal battery
JP2018055882A (en) * 2016-09-27 2018-04-05 株式会社日本触媒 Method for manufacturing electrolyte material containing alkali metal salt of bis(fluorosulfonyl)imide and organic solvent, and electrolyte material containing alkali metal salt of bis(fluorosulfonyl)imide and organic solvent
JP7314264B2 (en) 2019-05-31 2023-07-25 株式会社日本触媒 Electrolyte composition, solvent composition, non-aqueous electrolyte and use thereof
WO2020241161A1 (en) * 2019-05-31 2020-12-03 株式会社日本触媒 Electrolyte composition, solvent composition, non-aqueous electrolyte, and use thereof
JPWO2020241161A1 (en) * 2019-05-31 2020-12-03
EP3979383A4 (en) * 2019-05-31 2023-07-19 Nippon Shokubai Co., Ltd. Electrolyte composition, solvent composition, non-aqueous electrolyte, and use thereof
JP7399738B2 (en) 2020-02-18 2023-12-18 株式会社日本触媒 Nonaqueous electrolyte and lithium ion secondary battery
JP2021131939A (en) * 2020-02-18 2021-09-09 株式会社日本触媒 Nonaqueous electrolyte solution and lithium ion secondary battery
JP7481707B2 (en) 2020-11-30 2024-05-13 旭化成株式会社 Non-aqueous alkali metal storage element
WO2023247806A2 (en) 2022-11-24 2023-12-28 Specialty Operations France Composition comprising an alkali metal salt of bis(fluoro sulfonyl)imide
WO2023247804A2 (en) 2022-11-24 2023-12-28 Specialty Operations France Composition comprising an alkali metal salt of bis(fluoro sulfonyl)imide
WO2023247805A2 (en) 2022-11-24 2023-12-28 Specialty Operations France Composition comprising an alkali metal salt of bis(fluoro sulfonyl)imide
EP4332056A1 (en) 2022-11-24 2024-03-06 Specialty Operations France Composition comprising an alkali metal salt of bis(fluoro sulfonyl)imide
EP4332054A1 (en) 2022-11-24 2024-03-06 Specialty Operations France Composition comprising an alkali metal salt of bis(fluoro sulfonyl)imide
EP4332055A1 (en) 2022-11-24 2024-03-06 Specialty Operations France Composition comprising an alkali metal salt of bis(fluoro sulfonyl)imide

Also Published As

Publication number Publication date
JP6205451B2 (en) 2017-09-27
JP6093516B2 (en) 2017-03-08
JP2016171080A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
JP6205451B2 (en) Electrolytic solution, method for producing the same, and power storage device using the same
US9985317B2 (en) Alkali metal salt of fluorosulfonyl imide, and production method therefor
JP7194784B2 (en) Electrolyte material
JP6856836B2 (en) Phosphoric acid diester salt, its manufacturing method, non-aqueous electrolytic solution of power storage element and power storage device
EP2505551B2 (en) Fluorosulfonyl imide salt and method for producing fluorosulfonyl imide salt
WO2012099259A1 (en) Ionic compound and process for production thereof, and electrolytic solution and electrical storage device each utilizing the ionic compound
KR20190002543A (en) Method for producing bis (fluorosulfonyl) imide alkali metal salt and bis (fluorosulfonyl) imide alkali metal salt composition
KR20160055979A (en) Use of lithium salt mixtures as li-ion battery electrolytes
KR20160132961A (en) Improving the ion conductivity of an electrolyte based on lithium imidazolate salts
JP2016139610A (en) Nonaqueous electrolyte and lithium ion secondary battery including the same
JP2015213046A (en) Electrolytic solution or electrode including nitryl compound having sulfonyl group, and lithium ion secondary battery arranged by use thereof
WO2023276561A1 (en) Method for producing nonaqueous electrolyte solution
JP2015079629A (en) Solvent and electrolyte arranged by use thereof
JP2014143029A (en) Battery electrode and battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6093516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150