JPH1092468A - Electrolyte for lithium battery, method for refining it, and lithium battery using it - Google Patents

Electrolyte for lithium battery, method for refining it, and lithium battery using it

Info

Publication number
JPH1092468A
JPH1092468A JP8247385A JP24738596A JPH1092468A JP H1092468 A JPH1092468 A JP H1092468A JP 8247385 A JP8247385 A JP 8247385A JP 24738596 A JP24738596 A JP 24738596A JP H1092468 A JPH1092468 A JP H1092468A
Authority
JP
Japan
Prior art keywords
electrolyte
lithium battery
halide
lithium
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8247385A
Other languages
Japanese (ja)
Other versions
JP3034202B2 (en
Inventor
Shoichi Tsujioka
辻岡  章一
Mitsuo Takahata
満夫 高畑
Hisakazu Ito
久和 伊東
Tadayuki Kawashima
忠幸 川島
Sunao Yamamoto
素直 山本
Hiromi Sasaki
広美 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP8247385A priority Critical patent/JP3034202B2/en
Priority to CA002193119A priority patent/CA2193119C/en
Publication of JPH1092468A publication Critical patent/JPH1092468A/en
Application granted granted Critical
Publication of JP3034202B2 publication Critical patent/JP3034202B2/en
Priority to US09/572,887 priority patent/US6197205B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide electrolyte for a battery having high purity, from which oxide impurities is removed, by removing generated hydrogen halide from electrolyte after converting oxide impurities into hydrogen halide through a process of adding halide into electrolyte for a lithium battery containing oxide impurities. SOLUTION: Halide containing Cl, Br, I is added into electrolyte for a lithium battery containing oxide impurities and allowed to react with oxide impurities, and H ion harmful to the lithium battery is converted into hydrogen halide. The hydrogen halide HCl, HBr, HI are oxide impurities, have high vapor pressure, not to be solvated to organic solvent to be generally used for the lithium battery, and can be easily separated by a separating method making use of vapor presser difference of distillation. Therefore, electrolyte in which oxide impurities are hardly remain can be provided. If this electrolyte is applied to the lithium battery, problems of deterioration of solvent with time, increase of inner resistance, drop of battery capacity, shortening of the cycle life can be solved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム電池用電
解液及びその精製する方法並びにそれを利用したリチウ
ム電池に関する。
The present invention relates to an electrolyte for a lithium battery, a method for purifying the same, and a lithium battery using the same.

【0002】[0002]

【従来技術】リチウム金属、リチウム合金、炭素等を負
極活物質とするようなリチウム電池において、イオン伝
導性を付与する電解液として、電解質を溶解した有機非
水溶液が一般に使用されている。この有機非水溶媒には
カーボネート類、エーテル類、カルボン酸エステル類等
が、電解質には主にフッ素化合物のリチウム塩類が使用
されている。
2. Description of the Related Art In a lithium battery using lithium metal, lithium alloy, carbon or the like as a negative electrode active material, an organic non-aqueous solution in which an electrolyte is dissolved is generally used as an electrolyte for imparting ionic conductivity. As the organic non-aqueous solvent, carbonates, ethers, carboxylic esters and the like are used, and as the electrolyte, lithium salts of fluorine compounds are mainly used.

【0003】これらの電解質は、フッ化水素等の種々の
酸性不純物を含有しており、なかでもヘキサフルオロリ
ン酸リチウム(LiPF6)などは溶媒に含まれる水分
により、容易に加水分解して、フッ化水素、リン酸、オ
キシフルオロリン酸等の酸性不純物を生成するという問
題点を有する。このような酸性不純物を含有した電解液
を、リチウム電池に使用すると正極、負極、溶媒と反応
し、電池の放電容量の低下、内部抵抗の増大、サイクル
寿命の低下等種々の問題を引き起こす。
[0003] These electrolytes contain various acidic impurities such as hydrogen fluoride. Among them, lithium hexafluorophosphate (LiPF 6 ) and the like are easily hydrolyzed by water contained in a solvent. There is a problem in that acidic impurities such as hydrogen fluoride, phosphoric acid, and oxyfluorophosphoric acid are generated. When an electrolytic solution containing such an acidic impurity is used in a lithium battery, it reacts with a positive electrode, a negative electrode, and a solvent, causing various problems such as a decrease in battery discharge capacity, an increase in internal resistance, and a decrease in cycle life.

【0004】従来は、電解液中の酸性不純物を低減する
ために、電解質からの酸性成分の除去が種々の方法によ
り行われてきたが、電解質は結晶性の固体であるため、
結晶内部に噛み込んだ酸性不純物を完全に除くことは困
難である。また、加水分解防止のため、非水溶媒の脱水
も種々の方法により行われてきたが、水と電池用の非水
溶媒との相互作用が強いため、これも完全に除くことが
困難であり、この溶媒より調製した電解液は加水分解に
より酸性成分が増加する。
Heretofore, in order to reduce acidic impurities in the electrolytic solution, acidic components have been removed from the electrolyte by various methods. However, since the electrolyte is a crystalline solid,
It is difficult to completely remove the acidic impurities caught inside the crystal. In order to prevent hydrolysis, dehydration of the non-aqueous solvent has also been performed by various methods. However, since the interaction between water and the non-aqueous solvent for a battery is strong, it is difficult to completely remove the non-aqueous solvent. In the electrolyte prepared from this solvent, the amount of acidic components increases due to hydrolysis.

【0005】このように従来の方法においては、いずれ
も電解液の純度という面で、必ずしも満足できるもので
はなかった。
[0005] As described above, all of the conventional methods are not always satisfactory in terms of the purity of the electrolytic solution.

【0006】[0006]

【問題点を解決するための具体的手段】本発明者らは、
かかる従来技術の問題点に鑑み鋭意検討の結果、特定の
方法で精製することにより高純度の電池用電解液を得る
ことを見いだし本発明に到達したものである。
[Specific means for solving the problem]
As a result of intensive studies in view of the problems of the prior art, the inventors have found that a high-purity battery electrolyte solution can be obtained by refining by a specific method, and have reached the present invention.

【0007】すなわち本発明は、酸性不純物を含有する
リチウム電池用電解液中に、ハロゲン化物を添加して、
種々の酸性不純物をハロゲン化水素に変換した後、発生
したハロゲン化水素を電解液中から除去することを特徴
とするリチウム電池用電解液の精製方法で、酸性不純物
として、フッ化水素を含有する場合は、該リチウム電池
用電解液中に、フッ化物以外のハロゲン化物を添加し
て、フッ化水素を他のハロゲン化水素に変換した後、発
生したハロゲン化水素を電解液中から除去し、また、こ
の発生したハロゲン化水素を電解液中から除去する方法
が、蒸留または不活性ガス流通による溶媒との蒸気圧差
を利用する方法であり、さらには、先のハロゲン化物が
ハロゲン化リチウムまたは、沸点150℃以下の揮発性
を有する化合物であり、さらに好ましくは、ここで使用
するハロゲン化物は塩化物であり、また、上記精製方法
が使用される電解液が電解質として、ヘキサフルオロリ
ン酸リチウムを含有してなり、さらには上記精製方法に
より得られるリチウム電池用電解液を用いることを特徴
とするリチウム電池をそれぞれ提供するものである。
That is, according to the present invention, a halide is added to an electrolyte for a lithium battery containing an acidic impurity,
After converting various acidic impurities into hydrogen halide, a method for purifying an electrolyte for a lithium battery, which comprises removing generated hydrogen halide from the electrolyte, contains hydrogen fluoride as an acidic impurity. In this case, in the lithium battery electrolyte, a halide other than fluoride is added to convert hydrogen fluoride into another hydrogen halide, and then the generated hydrogen halide is removed from the electrolyte. Further, a method of removing the generated hydrogen halide from the electrolytic solution is a method of utilizing a vapor pressure difference with a solvent due to distillation or the flow of an inert gas, and further, the halide is lithium halide or It is a compound having a boiling point of 150 ° C. or less, more preferably, a halide used here is a chloride, and an electrolytic solution used in the above purification method. As the electrolyte, and also contains lithium hexafluorophosphate, further there is provided respectively a lithium battery, which comprises using an electrolytic solution for a lithium cell obtained by the above purification method.

【0008】本発明の精製方法によれば、電解質として
用いられるフッ素化合物のリチウム塩類に由来するフッ
化水素(HF)やその他の原料や電解質の加水分解生成
物に由来する酸性不純物(例えばLiPF6の場合、H
PF6やHPOxFy等)が従来の方法に比べて、極め
て低いリチウム電池用電解液を得ることができ、これを
リチウム電池に応用すれば、経時的な溶媒の劣化、それ
に伴う内部抵抗の増大、電池容量の低下、サイクル寿命
の低下等の種々の問題が解決され、極めて良好な結果が
得られる。
According to the purification method of the present invention, hydrogen fluoride (HF) derived from a lithium salt of a fluorine compound used as an electrolyte and acidic impurities (eg, LiPF 6 ) derived from other raw materials and hydrolysis products of the electrolyte are used. In the case of H
PF 6 and HPOxFy) can obtain an extremely low electrolyte for a lithium battery as compared with the conventional method. If this is applied to a lithium battery, the deterioration of the solvent with the lapse of time, the increase in the internal resistance associated therewith, Various problems such as a decrease in battery capacity and a decrease in cycle life are solved, and extremely good results are obtained.

【0009】本発明の精製法において、精製される電解
液中に含まれる電解質として、代表的なものは、LiP
6(ヘキサフルオロリン酸リチウム)であるが、その
他のものとしては、LiBF4、LiSbF6、LiAs
6、LiCF3SO3、LiN(CF3SO22、LiC
lO4、など、ここに記述されたもの以外にも酸性不純
物を含む種々の強酸のリチウム塩に適用可能である。
In the purification method of the present invention, a typical electrolyte contained in the electrolytic solution to be purified is LiP
F 6 (lithium hexafluorophosphate), but other examples include LiBF 4 , LiSbF 6 , LiAs
F 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC
The present invention is applicable to various lithium salts of strong acids containing acidic impurities other than those described herein, such as 10 4 .

【0010】本発明において、使用される電解液用溶媒
としては、特に限定するものではないが、炭酸エステ
ル、カルボン酸エステル、エーテル、ニトリル等の溶媒
が使用される。具体的には、エチレンカーボネート、プ
ロピレンカーボネート、ジメチルカーボネート、ジエチ
ルカーボネート、エチルメチルカーボネート、ジメトキ
シエタン、酢酸メチル、酢酸エチル、ジエチルエーテ
ル、イソプロピルエーテル、アセトニトリル等がある。
In the present invention, the solvent for the electrolytic solution to be used is not particularly limited, but a solvent such as a carbonate ester, a carboxylate ester, an ether and a nitrile is used. Specifically, there are ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethoxyethane, methyl acetate, ethyl acetate, diethyl ether, isopropyl ether, acetonitrile and the like.

【0011】ここで問題となる酸性不純物とは、例え
ば、原料の強酸に由来するHPF6、HBF4、HSbF
6、HAsF6、HCF3SO3、HN(CF3SO22
HClO4等や加水分解及び熱分解等により生ずるH
F、HPO22、HBOF2、HSbO22、H2PO3
F、H2SO4、等が挙げられる。
The acidic impurities which are problematic here include, for example, HPF 6 , HBF 4 , and HSbF derived from the strong acid of the raw material.
6 , HAsF 6 , HCF 3 SO 3 , HN (CF 3 SO 2 ) 2 ,
HClO 4 or the like and hydrolysis and H generated by thermal decomposition or the like
F, HPO 2 F 2 , HBOF 2 , HSbO 2 F 2 , H 2 PO 3
F, H 2 SO 4 and the like.

【0012】これらの酸性不純物は、固体状の電解質の
内部に含まれており、電解質の精製のみでは十分に除去
できない。また、有機溶媒に溶解して、蒸留等の一般的
な精製を実施しても、これらの酸性不純物自体の蒸気圧
が低いことと、溶媒和の影響でさらに蒸気圧が抑えられ
ることにより、蒸発させることが困難である。酸性不純
物を除去する一般的な方法である水酸化物や酸化物によ
る中和反応も、反応後に水が副生物として発生し、これ
がリチウム電池の性能に悪影響を及ぼすため、この方法
も問題がある。
These acidic impurities are contained in the solid electrolyte, and cannot be sufficiently removed only by refining the electrolyte. In addition, even when the acidic impurities are dissolved in an organic solvent and subjected to general purification such as distillation, the vapor pressure of these acidic impurities themselves is low, and the vapor pressure is further suppressed by the effect of solvation, so that evaporation is performed. It is difficult to let. The neutralization reaction with hydroxides and oxides, which is a common method for removing acidic impurities, also has a problem because water is generated as a by-product after the reaction, which adversely affects the performance of the lithium battery. .

【0013】これらの問題点を考慮した上で、本発明者
らが種々検討した結果、同じ酸性不純物でも、HCl、
HBr、HIというハロゲン化水素は、蒸気圧が高い上
に、リチウム電池に一般的に使用される有機溶媒と溶媒
和せず、蒸留等の蒸気圧差を利用した分離法により容易
に分離できることを見出した。これらのことを利用し
て、本発明においては、Cl、Br、Iを含むハロゲン
化物と上記酸性不純物を反応させることにより、リチウ
ム電池に有害なHイオンをハロゲン化水素に変換した
後、分離するようにしたものであり、この方法によれ
ば、酸性不純物がほとんど残存しない電解液が得られ
る。
In consideration of these problems, the inventors of the present invention have made various studies, and as a result, even with the same acidic impurities, HCl,
HBr and HI have a high vapor pressure and are not solvated with organic solvents commonly used in lithium batteries, and can be easily separated by a separation method using a vapor pressure difference such as distillation. Was. Utilizing these facts, in the present invention, H ions harmful to a lithium battery are converted into hydrogen halide by reacting the above-mentioned acidic impurities with a halide containing Cl, Br, I, and then separated. According to this method, an electrolytic solution in which almost no acidic impurities remain can be obtained.

【0014】ここで添加するハロゲン化物としては、フ
ッ化物以外の塩化物、臭化物、ヨウ化物があげられ、具
体的には、LiCl、LiBr、LiI、NaCl、N
aBr、NaI、CaCl2、CaBr2、CaI2、M
gCl2、MgBr2、MgI2、KCl、KBr、K
I、SiCl4、BCl3、PCl3、PCl5、POCl
3、PF3Cl2、SCl4、等の無機化合物や塩化アセチ
ル、塩化オキサリル、ホスゲン、等の活性なCl、B
r、Iを有する有機化合物も使用できる。フッ化物の場
合は、酸性不純物と反応して、発生するHFとリチウム
電池に一般的に使用される有機溶媒との相互作用が強
く、除去できないため好ましくない。さらに、反応後に
発生するハロゲン化水素の除去の容易さやハロゲン化物
の溶解による電解液中への残存等を考慮すると、蒸気圧
が最も高いHClを発生し、しかも他のハロゲン化物に
比べて、溶解度が低い塩化物が最も好ましい。また、L
i以外の元素が混入することを嫌う高純度用途の電解液
を必要とする場合は、ハロゲン化リチウム好ましくは塩
化リチウムを用いるか、もしくは酸性不純物を除去後、
蒸気圧を利用して過剰分を除去することが可能な沸点1
50℃以下の揮発性を有するハロゲン化物を用いるほう
がよい。沸点150℃以上のハロゲン化物では減圧によ
る除去を試みた場合においても、沸点近くまで電解液の
温度を上げなくては、過剰の未反応ハロゲン化物の除去
が十分でなく、ここで温度を上げることにより、溶媒の
ロスが多くなるため、経済的でないことと、反応性の高
い電解質(例えば、LiPF6、LiBF4、LiSbF
6、LiAsF6、等)の場合は、電解質による溶媒の分
解反応が起こるという理由により好ましくない。
Examples of the halide to be added include chlorides, bromides and iodides other than fluorides. Specifically, LiCl, LiBr, LiI, NaCl, NCl
aBr, NaI, CaCl 2, CaBr 2, CaI 2, M
gCl 2, MgBr 2, MgI 2 , KCl, KBr, K
I, SiCl 4 , BCl 3 , PCl 3 , PCl 5 , POCl
3 , inorganic compounds such as PF 3 Cl 2 and SCl 4 , and active Cl and B such as acetyl chloride, oxalyl chloride and phosgene.
Organic compounds having r and I can also be used. Fluoride is not preferred because it reacts with acidic impurities and generates strong interaction between HF and an organic solvent generally used for lithium batteries, and cannot be removed. Furthermore, considering the ease of removal of hydrogen halide generated after the reaction and remaining in the electrolytic solution due to dissolution of the halide, HCl having the highest vapor pressure is generated, and the solubility is higher than that of other halides. Is the most preferred. Also, L
When an electrolytic solution for high-purity applications that dislikes the incorporation of elements other than i is required, use lithium halide, preferably lithium chloride, or after removing acidic impurities,
Boiling point 1 capable of removing excess using vapor pressure
It is better to use a halide having a volatility of 50 ° C. or less. For halides with a boiling point of 150 ° C or higher, even if removal under reduced pressure is attempted, the removal of excess unreacted halide is not sufficient without raising the temperature of the electrolytic solution to near the boiling point. As a result, the loss of the solvent increases, so that it is not economical, and the highly reactive electrolytes (for example, LiPF 6 , LiBF 4 , LiSbF
6 , LiAsF 6 , etc.) are not preferred because the decomposition reaction of the solvent by the electrolyte occurs.

【0015】また、添加剤の量は酸性不純物に対して、
等モル量以上であればよいが、添加剤が新たな不純物と
なる場合もあるため、また、反応は定量的に進行するこ
とから、等モル量から1.5倍量添加するのが好まし
い。
The amount of the additive is
The amount may be equal to or more than the equimolar amount, but since the additive may become a new impurity, and the reaction proceeds quantitatively, it is preferable to add the equimolar amount to 1.5 times the amount.

【0016】上記ハロゲン化物と酸性不純物の反応の方
法はどのような方法を用いてもよく、例えば、反応槽中
でバッチ反応を行う方法やハロゲン化物が固体の場合
は、ハロゲン化物をカラムに詰めて、酸性不純物含有の
電解液を流通することにより連続的に処理する方法も実
施できる。
Any method may be used for the reaction between the halide and the acidic impurities. For example, a batch reaction in a reaction tank, or when the halide is a solid, the halide is packed in a column. In addition, a method of continuously treating by flowing an electrolytic solution containing an acidic impurity can also be performed.

【0017】上記反応により酸性不純物は、HCl、H
Br、HI等のハロゲン化水素に変換される。このハロ
ゲン化水素は、次の工程で蒸気圧差を利用する一般的な
方法により、除去する。すなわち、減圧下で脱気する方
法や、不活性気体を電解液中に流通バブリングし、不活
性気体と共に追い出す方法等により除去される。
According to the above reaction, acidic impurities include HCl, H
It is converted to hydrogen halide such as Br and HI. This hydrogen halide is removed by a general method utilizing a vapor pressure difference in the next step. That is, it is removed by a method of degassing under reduced pressure, a method of bubbling an inert gas through the electrolyte, and expelling the inert gas together with the inert gas.

【0018】また、このときハロゲン化水素の脱離を促
進するために、熱を加えることも有効であるが、温度と
しては0℃〜150℃、好ましくは、30℃〜100℃
でハロゲン化水素の除去を行ったほうがよい。0℃以下
ではハロゲン化水素の除去の速度が遅く実用的でなく、
150℃以上では溶媒の蒸気圧が高くなり、溶媒のロス
が多くなるため、経済的でないことと、反応性の高い電
解質(例えば、LiPF6、LiBF4、LiSbF6
LiAsF6、等)の場合は、電解質による溶媒の分解
反応が起こるという理由により好ましくない。
At this time, it is effective to add heat to promote the elimination of hydrogen halide, but the temperature is 0 ° C. to 150 ° C., preferably 30 ° C. to 100 ° C.
To remove the hydrogen halide. Below 0 ° C, the rate of hydrogen halide removal is slow and impractical,
At 150 ° C. or higher, the vapor pressure of the solvent increases and the loss of the solvent increases, so that it is not economical and a highly reactive electrolyte (for example, LiPF 6 , LiBF 4 , LiSbF 6 ,
LiAsF 6 , etc.) is not preferred because the decomposition reaction of the solvent by the electrolyte occurs.

【0019】揮発性のハロゲン化物を添加剤として使用
した場合は、このハロゲン化水素を除去する工程で同時
に過剰分のハロゲン化物の除去も行われる。固体のハロ
ゲン化物を添加剤として使用した場合は、過剰分のハロ
ゲン化物および酸性不純物との反応により生ずる副生物
の沈殿を除去するために濾過等の固液分離をすることが
必要である。
When a volatile halide is used as an additive, excess halide is simultaneously removed in the step of removing hydrogen halide. When a solid halide is used as an additive, it is necessary to perform a solid-liquid separation such as filtration to remove a precipitate of a by-product generated by a reaction with an excess of the halide and an acidic impurity.

【0020】以上のような操作により、従来の方法に比
べて、酸性不純物の量が極めて低いリチウム電池用電解
液が得られる。
By the above operation, an electrolyte for a lithium battery having an extremely low amount of acidic impurities as compared with the conventional method can be obtained.

【0021】[0021]

【実施例】以下実施例により本発明を具体的に説明する
が、本発明はかかる実施例により限定されるものではな
い。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0022】実施例1 露点−60℃に管理されたグローブボックス中にて、ヘ
キサフルオロリン酸リチウム(LiPF6)152gを
ジエチルカーボネートとエチレンカーボネートの1:1
(容積比)混合溶媒に溶解し、容積を1000mlに調
製した。このようにして得られた濃度1mol/lのL
iPF6/(ジエチルカーボネート+エチレンカーボネ
ート)溶液を滴定法およびイオンクロマト法で分析した
ところ、酸性不純物としてHFが100ppm含まれて
いた。
Example 1 In a glove box controlled at a dew point of -60 ° C, 152 g of lithium hexafluorophosphate (LiPF 6 ) was mixed with diethyl carbonate and ethylene carbonate at a ratio of 1: 1.
(Volume ratio) It was dissolved in a mixed solvent to adjust the volume to 1000 ml. The thus obtained L having a concentration of 1 mol / l
When the iPF 6 / (diethyl carbonate + ethylene carbonate) solution was analyzed by a titration method and an ion chromatography method, it was found that 100 ppm of HF was contained as an acidic impurity.

【0023】上記の溶液に塩化リチウム0.3gを添加
して、室温で12時間撹拌した。次にこの溶液を窒素吹
き込み用ノズルを備えたPTFE製の容器に移し、50
℃で4時間溶液中に窒素ガスを流通した。このときの排
ガスをサンプリングし、IRにより分析したところ、窒
素中にHClとジエチルカーボネートが含まれているこ
とが確認された。
0.3 g of lithium chloride was added to the above solution and stirred at room temperature for 12 hours. The solution was then transferred to a PTFE container equipped with a nitrogen blowing nozzle,
Nitrogen gas was passed through the solution at 4 ° C. for 4 hours. The exhaust gas at this time was sampled and analyzed by IR. As a result, it was confirmed that HCl and diethyl carbonate were contained in nitrogen.

【0024】上記操作によりロスした量に相当するジエ
チルカーボネートを加え、反応により発生したフッ化リ
チウムの沈殿を濾別した。この溶液のHF濃度を測定し
たところ、定量下限(10ppm)以下であった。
Diethyl carbonate corresponding to the amount lost by the above operation was added, and the precipitate of lithium fluoride generated by the reaction was separated by filtration. When the HF concentration of this solution was measured, it was below the lower limit of quantification (10 ppm).

【0025】このようにして得られた濃度1mol/l
のLiPF6/(ジエチルカーボネート+エチレンカー
ボネート(1:1))電解液のイオン伝導度を交流二極
式の伝導度計を用いて25℃で測定したところ、7.8
mS/cmであり、LiPF 6を単純にエチレンカーボ
ネートとジエチルカーボネートの混合溶媒に溶解したも
のと同等であった。また、IR、NMR、ガスクロマト
グラフィー、液体クロマトグラフィーにより溶媒等の分
解について調べたが、全く分解生成物の存在は確認され
なかった。
The thus obtained concentration of 1 mol / l
LiPF6/ (Diethyl carbonate + ethylene car
Carbonate (1: 1))
When measured at 25 ° C. using a conductivity meter of the formula, 7.8 was obtained.
mS / cm and LiPF 6Simply ethylene carbonate
Dissolved in a mixed solvent of sodium carbonate and diethyl carbonate
Was equivalent to In addition, IR, NMR, gas chromatography
Chromatography, liquid chromatography
The solution was examined, but the presence of decomposition products was confirmed.
Did not.

【0026】次に、この溶液を用いてテストセルを作製
し、充放電試験により電解液としての性能を評価した。
具体的には、天然黒鉛粉末95重量部に、バインダーと
して5重量部のポリフッ化ビニリデン(PVDF)を混
合し、さらにN,N−ジメチルホルムアミドを添加し、
スラリー状にした。このスラリーをニッケルメッシュ上
に塗布して、150℃で12時間乾燥させることによ
り、試験用負極体とした。また、コバルト酸リチウム8
5重量部に、黒鉛粉末10重量部およびPVDF5重量
部を混合し、さらに、N,N−ジメチルホルムアミドを
添加し、スラリー状にした。このスラリーをアルミニウ
ム箔上に塗布して、150℃で12時間乾燥させること
により、試験用正極体とした。ポリプロピレン不織布を
セパレーターとして、本実施例の電解液を用い、上記負
極体および正極体とを用いてテストセルを組み立てた。
続いて、次のような条件で、定電流充放電試験を実施し
た。充電、放電ともに電流密度0.35mA/cm2
行い、充電は4.2V、放電は2.5Vまで行い、この
充放電サイクルを繰り返して放電容量の変化を観察し
た。その結果、充放電効率はほぼ100%で、充放電を
500サイクル繰り返したところ、放電容量は全く変化
しなかった。このテストセルを劣化の加速試験のため、
60℃で3ヶ月保存した後に、再び上記と同様の条件で
充放電試験を行ったところ、放電容量は初期の96%程
度であり、テストセル中の電解液を観察したところ、着
色等の変質は見られなかった。
Next, a test cell was prepared using this solution, and the performance as an electrolyte was evaluated by a charge / discharge test.
Specifically, 5 parts by weight of polyvinylidene fluoride (PVDF) is mixed as a binder with 95 parts by weight of natural graphite powder, and N, N-dimethylformamide is further added.
A slurry was formed. This slurry was applied on a nickel mesh and dried at 150 ° C. for 12 hours to obtain a test negative electrode body. In addition, lithium cobaltate 8
10 parts by weight of graphite powder and 5 parts by weight of PVDF were mixed with 5 parts by weight, and N, N-dimethylformamide was further added to form a slurry. This slurry was applied on an aluminum foil and dried at 150 ° C. for 12 hours to obtain a positive electrode for testing. A test cell was assembled using the negative electrode body and the positive electrode body with the electrolytic solution of this example using a polypropylene nonwoven fabric as a separator.
Subsequently, a constant current charge / discharge test was performed under the following conditions. Both charging and discharging were performed at a current density of 0.35 mA / cm 2 , charging was performed up to 4.2 V, and discharging was performed up to 2.5 V. The charge / discharge cycle was repeated to observe changes in discharge capacity. As a result, the charge / discharge efficiency was almost 100%. When charge / discharge was repeated 500 cycles, the discharge capacity did not change at all. This test cell is used for accelerated deterioration test.
After storage at 60 ° C. for 3 months, a charge / discharge test was conducted again under the same conditions as above, and the discharge capacity was about 96% of the initial value. Was not seen.

【0027】実施例2 露点−60℃に管理されたグローブボックス中にて、ヘ
キサフルオロリン酸リチウム(LiPF6)304gを
プロピレンカーボネートに溶解し、容積を1000ml
に調製した。このようにして得られた濃度2mol/l
のLiPF6/プロピレンカーボネート溶液を滴定法に
より分析したところ、酸性不純物としてHFが130p
pm含まれていた。
Example 2 In a glove box controlled at a dew point of -60 ° C., 304 g of lithium hexafluorophosphate (LiPF 6 ) was dissolved in propylene carbonate, and the volume was 1000 ml.
Was prepared. The thus obtained concentration of 2 mol / l
The LiPF 6 / propylene carbonate solution was analyzed by titration to find that HF was 130 pP as an acidic impurity.
pm.

【0028】上記の溶液に臭化リチウム0.7gを添加
して、室温で12時間撹拌した。次にこの溶液を温度6
0℃、圧力10torrで7時間減圧脱気した。上記反
応により発生したフッ化リチウムの沈殿を濾別した後、
この溶液の酸性不純物濃度を測定したところ、定量下限
(10ppm)以下であった。
0.7 g of lithium bromide was added to the above solution and stirred at room temperature for 12 hours. The solution is then brought to temperature 6
The mixture was degassed under reduced pressure at 0 ° C. and a pressure of 10 torr for 7 hours. After filtering off the precipitate of lithium fluoride generated by the above reaction,
The acidic impurity concentration of this solution was measured and found to be below the lower limit of quantification (10 ppm).

【0029】実施例3 露点−60℃に管理されたグローブボックス中にて、ヘ
キサフルオロリン酸リチウム(LiPF6)304gを
30ppmの水分を含有したプロピレンカーボネートに
溶解し、その容積を1000mlに調製した。このよう
にして得られた濃度2mol/lのLiPF6/プロピ
レンカーボネート溶液を滴定法およびイオンクロマト法
により分析したところ、酸性不純物としてHFが130
ppm、HPO22が50ppm含まれていた。
Example 3 In a glove box controlled at a dew point of -60 ° C., 304 g of lithium hexafluorophosphate (LiPF 6 ) was dissolved in propylene carbonate containing 30 ppm of water, and the volume was adjusted to 1000 ml. . The thus obtained LiPF 6 / propylene carbonate solution having a concentration of 2 mol / l was analyzed by a titration method and an ion chromatography method.
ppm and 50 ppm of HPO 2 F 2 .

【0030】上記の溶液に塩化リチウム1.0gを添加
して、室温で12時間撹拌した。次にこの溶液を温度6
0℃、圧力10torrで7時間減圧脱気した。上記反
応により発生したフッ化リチウムの沈殿を濾別した後、
この溶液の酸性不純物濃度を測定したところ、定量下限
(10ppm)以下であった。
To the above solution, 1.0 g of lithium chloride was added, and the mixture was stirred at room temperature for 12 hours. The solution is then brought to temperature 6
The mixture was degassed under reduced pressure at 0 ° C. and a pressure of 10 torr for 7 hours. After filtering off the precipitate of lithium fluoride generated by the above reaction,
The acidic impurity concentration of this solution was measured and found to be below the lower limit of quantification (10 ppm).

【0031】実施例4 露点−60℃に管理されたグローブボックス中にて、ヘ
キサフルオロリン酸リチウム(LiPF6)152gを
ジメチルカーボネートに溶解し、容積を1000mlに
調製した。このようにして得られた濃度1mol/lの
LiPF6/ジメチルカーボネート溶液を滴定法により
分析したところ、酸性不純物としてHFが90ppm含
まれていた。
Example 4 In a glove box controlled at a dew point of −60 ° C., 152 g of lithium hexafluorophosphate (LiPF 6 ) was dissolved in dimethyl carbonate to adjust the volume to 1,000 ml. When the thus obtained LiPF 6 / dimethyl carbonate solution having a concentration of 1 mol / l was analyzed by a titration method, it was found that 90 ppm of HF was contained as an acidic impurity.

【0032】上記の溶液を粒状の塩化リチウムを充填し
た60cmのカラム中に10ml/minの流速で導入
した。カラム通過後の溶液を窒素吹き込み用ノズルを備
えたPTFE製の容器に移し、40℃で5時間溶液中に
窒素ガスを流通した。得られた溶液の酸性不純物濃度を
測定したところ、定量下限(10ppm)以下であっ
た。
The above solution was introduced into a 60 cm column packed with granular lithium chloride at a flow rate of 10 ml / min. The solution after passing through the column was transferred to a PTFE container equipped with a nitrogen blowing nozzle, and nitrogen gas was passed through the solution at 40 ° C. for 5 hours. When the concentration of the acidic impurities in the obtained solution was measured, it was lower than the lower limit of quantification (10 ppm).

【0033】実施例5 露点−60℃に管理されたグローブボックス中にて、テ
トラフルオロホウ酸リチウム(LiBF4)94gをジ
エチルカーボネートに溶解し、容積を1000mlに調
製した。このようにして得られた濃度1mol/lのL
iBF4/ジエチルカーボネート溶液を滴定法により分
析したところ、酸性不純物としてHFが110ppm含
まれていた。
Example 5 In a glove box controlled at a dew point of −60 ° C., 94 g of lithium tetrafluoroborate (LiBF 4 ) was dissolved in diethyl carbonate to adjust the volume to 1000 ml. The thus obtained L having a concentration of 1 mol / l
When the iBF 4 / diethyl carbonate solution was analyzed by a titration method, it was found that 110 ppm of HF was contained as an acidic impurity.

【0034】上記の溶液に塩化アセチル1.1gを添加
して、室温で12時間撹拌した。次にこの溶液を窒素吹
き込み用ノズルを備えたPTFE製の容器に移し、70
℃で4時間溶液中に窒素ガスを流通し、HClおよび過
剰の塩化アセチルを除去した。得られた溶液の酸性不純
物濃度を測定したところ、定量下限(10ppm)以下
であった。
To the above solution, 1.1 g of acetyl chloride was added, and the mixture was stirred at room temperature for 12 hours. Next, the solution was transferred to a PTFE container equipped with a nitrogen blowing nozzle,
Nitrogen gas was passed through the solution at 4 ° C. for 4 hours to remove HCl and excess acetyl chloride. When the concentration of the acidic impurities in the obtained solution was measured, it was lower than the lower limit of quantification (10 ppm).

【0035】実施例6 露点−60℃に管理されたグローブボックス中にて、ヘ
キサフルオロリン酸リチウム(LiPF6)152gを
ジエチルカーボネートに溶解し、容積を1000mlに
調製した。このようにして得られた濃度1mol/lの
LiPF6/ジエチルカーボネート溶液を滴定法により
分析したところ、酸性不純物がHF換算で100ppm
含まれていた。
Example 6 In a glove box controlled at a dew point of -60 ° C, 152 g of lithium hexafluorophosphate (LiPF 6 ) was dissolved in diethyl carbonate to adjust the volume to 1000 ml. When the thus obtained LiPF 6 / diethyl carbonate solution having a concentration of 1 mol / l was analyzed by a titration method, it was found that acidic impurities were 100 ppm in terms of HF.
Was included.

【0036】上記の溶液に三塩化リン0.4gを添加し
て、室温で12時間撹拌した。次にこの溶液を窒素吹き
込み用ノズルを備えたPTFE製の容器に移し、70℃
で4時間溶液中に窒素ガスを流通し、HClおよび過剰
の三塩化リンを除去した。得られた溶液の酸性不純物濃
度を測定したところ、定量下限(10ppm)以下であ
った。
0.4 g of phosphorus trichloride was added to the above solution, followed by stirring at room temperature for 12 hours. Next, the solution was transferred to a PTFE container equipped with a nitrogen blowing nozzle,
A nitrogen gas was passed through the solution for 4 hours to remove HCl and excess phosphorus trichloride. When the concentration of the acidic impurities in the obtained solution was measured, it was lower than the lower limit of quantification (10 ppm).

【0037】実施例7 露点−60℃に管理されたグローブボックス中にて、ヘ
キサフルオロリン酸リチウム(LiPF6)152gを
プロピレンカーボネートに溶解し、容積を1000ml
に調製した。このようにして得られた濃度1mol/l
のLiPF6/プロピレンカーボネート溶液を滴定法に
より分析したところ、酸性不純物がHF換算で100p
pm含まれていた。
Example 7 In a glove box controlled at a dew point of -60 ° C., 152 g of lithium hexafluorophosphate (LiPF 6 ) was dissolved in propylene carbonate, and the volume was 1000 ml.
Was prepared. The thus obtained concentration of 1 mol / l
The LiPF 6 / propylene carbonate solution was analyzed by titration to find that acidic impurities were 100 p
pm.

【0038】上記の溶液に塩化カルシウム2.0gを添
加して、室温で12時間撹拌した。次にこの溶液を窒素
吹き込み用ノズルを備えたPTFE製の容器に移し、7
0℃で4時間溶液中に窒素ガスを流通し、HClを除去
した。次に過剰の塩化カルシウムおよび反応により発生
したフッ化カルシウムの沈殿を濾別した後、この溶液の
酸性不純物濃度を測定したところ、定量下限(10pp
m)以下であった。
2.0 g of calcium chloride was added to the above solution, and the mixture was stirred at room temperature for 12 hours. The solution was then transferred to a PTFE container equipped with a nitrogen blowing nozzle,
Nitrogen gas was passed through the solution at 0 ° C. for 4 hours to remove HCl. Next, the excess calcium chloride and the precipitate of calcium fluoride generated by the reaction were filtered off, and the concentration of acidic impurities in this solution was measured.
m).

【0039】実施例8 露点−60℃に管理されたグローブボックス中にて、ヘ
キサフルオロリン酸リチウム(LiPF6)304gを
プロピレンカーボネートに溶解し、容積を1000ml
に調製した。このようにして得られた濃度2mol/l
のLiPF6/プロピレンカーボネート溶液にHFを添
加して、HF濃度を2wt%とした。
Example 8 In a glove box controlled at a dew point of -60 ° C., 304 g of lithium hexafluorophosphate (LiPF 6 ) was dissolved in propylene carbonate, and the volume was 1000 ml.
Was prepared. The thus obtained concentration of 2 mol / l
HF was added to the LiPF 6 / propylene carbonate solution of Example 2 to adjust the HF concentration to 2% by weight.

【0040】上記の溶液に塩化リチウム70gを添加し
て、室温で12時間撹拌した。次にこの溶液を温度60
℃、圧力10torrで7時間減圧脱気した。上記反応
により発生したフッ化リチウムの沈殿を濾別した後、こ
の溶液の酸性不純物濃度を測定したところ、定量下限
(10ppm)以下であった。
70 g of lithium chloride was added to the above solution, and the mixture was stirred at room temperature for 12 hours. The solution is then brought to a temperature of 60
The mixture was degassed under reduced pressure at a pressure of 10 torr for 7 hours. After the precipitate of lithium fluoride generated by the above reaction was filtered off, the concentration of acidic impurities in this solution was measured, and it was lower than the lower limit of quantification (10 ppm).

【0041】比較例 露点−60℃に管理されたグローブボックス中にて、ヘ
キサフルオロリン酸リチウム(LiPF6)152gを
ジエチルカーボネートとエチレンカーボネートの1:1
(容積比)混合溶媒に溶解し、容積を1000mlに調
製した。このようにして得られた濃度1mol/lのL
iPF6/(ジエチルカーボネート+エチレンカーボネ
ート)溶液を分析したところ、酸性不純物としてHFが
70ppm、HPO22が30ppm含まれていた(滴
定法により濃度を決定)。
Comparative Example In a glove box controlled at a dew point of −60 ° C., 152 g of lithium hexafluorophosphate (LiPF 6 ) was mixed with diethyl carbonate and ethylene carbonate in a ratio of 1: 1.
(Volume ratio) It was dissolved in a mixed solvent to adjust the volume to 1000 ml. The thus obtained L having a concentration of 1 mol / l
Analysis of the iPF 6 / (diethyl carbonate + ethylene carbonate) solution revealed that 70 ppm of HF and 30 ppm of HPO 2 F 2 were contained as acidic impurities (the concentration was determined by titration).

【0042】上記の溶液を窒素吹き込み用ノズルを備え
たPTFE製の容器に移し、50℃で4時間溶液中に窒
素ガスを流通した。このときの排ガスをサンプリング
し、IRにより分析したところ、窒素中にはジエチルカ
ーボネートのみが含まれており、HFは確認されなかっ
た。
The above solution was transferred to a PTFE container equipped with a nitrogen blowing nozzle, and nitrogen gas was passed through the solution at 50 ° C. for 4 hours. When the exhaust gas at this time was sampled and analyzed by IR, only diethyl carbonate was contained in nitrogen, and HF was not confirmed.

【0043】上記操作によりロスした量に相当するジエ
チルカーボネートを加え、この溶液のHFおよびHPO
22濃度を測定したところ、それぞれ70ppmと30
ppmで操作前と変わらなかった。すなわち、HFは蒸
気圧差を利用する分離法では分離不可能であった。
Diethyl carbonate corresponding to the amount lost by the above operation was added, and HF and HPO of this solution were added.
When the 2 F 2 concentration was measured, it was 70 ppm and 30 ppm, respectively.
ppm was the same as before operation. That is, HF could not be separated by a separation method utilizing a difference in vapor pressure.

【0044】このようにして得られた濃度1mol/l
のLiPF6/(ジエチルカーボネート+エチレンカー
ボネート(1:1))電解液のイオン伝導度を交流二極
式の伝導度計を用いて25℃で測定したところ、7.8
mS/cmであった。
The thus obtained concentration of 1 mol / l
The ionic conductivity of the LiPF 6 / (diethyl carbonate + ethylene carbonate (1: 1)) electrolyte was measured at 25 ° C. using an AC bipolar conductivity meter, and was 7.8.
mS / cm.

【0045】次に、この溶液を用いてテストセルを作製
し、充放電試験により電解液としての性能を評価した。
具体的には、天然黒鉛粉末95重量部に、バインダーと
して5重量部のポリフッ化ビニリデン(PVDF)を混
合し、さらにN,N−ジメチルホルムアミドを添加し、
スラリー状にした。このスラリーをニッケルメッシュ上
に塗布して、150℃で12時間乾燥させることによ
り、試験用負極体とした。また、コバルト酸リチウム8
5重量部に、黒鉛粉末10重量部およびPVDF5重量
部を混合し、さらに、N,N−ジメチルホルムアミドを
添加し、スラリー状にした。このスラリーをアルミニウ
ム箔上に塗布して、150℃で12時間乾燥させること
により、試験用正極体とした。ポリプロピレン不織布を
セパレーターとして、本比較例の電解液を用い、上記負
極体および正極体とを用いてテストセルを組み立てた。
続いて、次のような条件で、定電流充放電試験を実施し
た。充電、放電ともに電流密度0.35mA/cm2
行い、充電は4.2V、放電は2.5Vまで行い、この
充放電サイクルを繰り返して放電容量の変化を観察し
た。その結果、充放電効率はほぼ100%で、充放電を
500サイクル繰り返したところ、放電容量は全く変化
しなかった。このテストセルを劣化の加速試験のため、
60℃で3ヶ月保存した後に、再び上記と同様の条件で
充放電試験を行ったところ、放電容量は初期の88%程
度であり、テストセル中の電解液を観察したところ、黄
色の着色が見られた。
Next, a test cell was prepared using this solution, and the performance as an electrolyte was evaluated by a charge / discharge test.
Specifically, 5 parts by weight of polyvinylidene fluoride (PVDF) is mixed as a binder with 95 parts by weight of natural graphite powder, and N, N-dimethylformamide is further added.
A slurry was formed. This slurry was applied on a nickel mesh and dried at 150 ° C. for 12 hours to obtain a test negative electrode body. In addition, lithium cobaltate 8
10 parts by weight of graphite powder and 5 parts by weight of PVDF were mixed with 5 parts by weight, and N, N-dimethylformamide was further added to form a slurry. This slurry was applied on an aluminum foil and dried at 150 ° C. for 12 hours to obtain a positive electrode for testing. A test cell was assembled by using the negative electrode body and the positive electrode body with the electrolytic solution of this comparative example using a polypropylene nonwoven fabric as a separator.
Subsequently, a constant current charge / discharge test was performed under the following conditions. Both charging and discharging were performed at a current density of 0.35 mA / cm 2 , charging was performed up to 4.2 V, and discharging was performed up to 2.5 V. The charge / discharge cycle was repeated to observe changes in discharge capacity. As a result, the charge / discharge efficiency was almost 100%. When charge / discharge was repeated 500 cycles, the discharge capacity did not change at all. This test cell is used for accelerated deterioration test.
After storing at 60 ° C. for 3 months, the charge / discharge test was performed again under the same conditions as above, and the discharge capacity was about 88% of the initial value. Was seen.

【0046】[0046]

【発明の効果】本発明の精製方法によれば、電解質とし
て用いられるフッ素化合物のリチウム塩類に由来するフ
ッ化水素(HF)やその他の原料や電解質の加水分解生
成物に由来する酸性不純物(例えばLiPF6の場合、
HPF6やHPOxFy等)が従来の方法に比べて、極
めて低いリチウム電池用電解液を得ることができ、これ
をリチウム電池に応用すれば、経時的な溶媒の劣化、そ
れに伴う内部抵抗の増大、電池容量の低下、サイクル寿
命の低下等の種々の問題が解決され、極めて良好な結果
が得られる。
According to the purification method of the present invention, hydrogen fluoride (HF) derived from lithium salts of a fluorine compound used as an electrolyte and acidic impurities derived from other raw materials and hydrolysis products of the electrolyte (for example, For LiPF 6 ,
HPF 6 and HPOxFy) can obtain an electrolyte solution for lithium batteries that is extremely low as compared with the conventional method. If this is applied to lithium batteries, the deterioration of the solvent over time, the increase in internal resistance associated therewith, Various problems such as a decrease in battery capacity and a decrease in cycle life are solved, and extremely good results are obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川島 忠幸 山口県宇部市大字沖宇部5253番地 セント ラル硝子株式会社化学研究所内 (72)発明者 山本 素直 山口県宇部市大字沖宇部5253番地 セント ラル硝子株式会社化学研究所内 (72)発明者 佐々木 広美 山口県宇部市大字沖宇部5253番地 セント ラル硝子株式会社化学研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tadayuki Kawashima 5253 Oki Obe, Oji, Ube, Yamaguchi Prefecture Inside the Chemical Research Laboratory of Central Glass Co., Ltd. Inside the Chemical Laboratory Co., Ltd. (72) Inventor Hiromi Sasaki 5253 Oki Obe, Ube City, Yamaguchi Prefecture Central Glass Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 酸性不純物を含有するリチウム電池用電
解液中に、ハロゲン化物を添加して、酸性不純物をハロ
ゲン化水素に変換した後、発生したハロゲン化水素を電
解液中から除去することを特徴とするリチウム電池用電
解液の精製方法。
1. A method for removing a generated hydrogen halide from an electrolytic solution after converting an acidic impurity into a hydrogen halide by adding a halide to an electrolytic solution for a lithium battery containing the acidic impurity. A method for purifying an electrolyte for a lithium battery.
【請求項2】 不純物として、フッ化水素を含有するリ
チウム電池用電解液中に、フッ化物以外のハロゲン化物
を添加して、フッ化水素を他のハロゲン化水素に変換し
た後、発生したハロゲン化水素を電解液中から除去する
ことを特徴とするリチウム電池用電解液の精製方法。
2. A halogen other than fluoride is added to an electrolyte for lithium batteries containing hydrogen fluoride as an impurity to convert hydrogen fluoride into another hydrogen halide, and then generate halogen. A method for purifying an electrolyte for a lithium battery, comprising removing hydrogen hydride from the electrolyte.
【請求項3】 請求項1、2記載の発生したハロゲン化
水素を電解液中から除去する方法が、蒸留または不活性
ガス流通による溶媒との蒸気圧差を利用する方法である
ことを特徴とするリチウム電池用電解液の精製方法。
3. A method for removing generated hydrogen halide from an electrolytic solution according to claim 1 or 2, wherein the method uses a vapor pressure difference with a solvent due to distillation or a flow of an inert gas. A method for purifying an electrolyte for a lithium battery.
【請求項4】 請求項1、2記載のハロゲン化物がハロ
ゲン化リチウムであることを特徴とするリチウム電池用
電解液の精製方法。
4. A method for purifying an electrolyte for a lithium battery, wherein the halide according to claim 1 is lithium halide.
【請求項5】 請求項1、2記載のハロゲン化物が沸点
150℃以下の化合物であることを特徴とするリチウム
電池用電解液の精製方法。
5. A method for purifying an electrolyte for a lithium battery, wherein the halide according to claim 1 is a compound having a boiling point of 150 ° C. or lower.
【請求項6】 請求項1、2記載のハロゲン化物が塩化
物であることを特徴とするリチウム電池用電解液の精製
方法。
6. A method for purifying an electrolytic solution for a lithium battery, wherein the halide according to claim 1 is a chloride.
【請求項7】 請求項1〜6記載の精製方法で得られる
リチウム電池用電解液が電解質として、ヘキサフルオロ
リン酸リチウムを含有してなることを特徴とするリチウ
ム電池用電解液。
7. An electrolyte for a lithium battery, wherein the electrolyte for a lithium battery obtained by the purification method according to claim 1 contains lithium hexafluorophosphate as an electrolyte.
【請求項8】 請求項7記載のリチウム電池用電解液を
用いることを特徴とするリチウム電池。
8. A lithium battery using the electrolyte solution for a lithium battery according to claim 7.
JP8247385A 1995-12-14 1996-09-19 Electrolyte for lithium battery, method for purifying the same, and lithium battery using the same Expired - Fee Related JP3034202B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8247385A JP3034202B2 (en) 1996-09-19 1996-09-19 Electrolyte for lithium battery, method for purifying the same, and lithium battery using the same
CA002193119A CA2193119C (en) 1995-12-14 1996-12-16 Electrolytic solution for lithium cell and method for producing same
US09/572,887 US6197205B1 (en) 1995-12-14 2000-05-18 Electrolytic solution for lithium cell and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8247385A JP3034202B2 (en) 1996-09-19 1996-09-19 Electrolyte for lithium battery, method for purifying the same, and lithium battery using the same

Publications (2)

Publication Number Publication Date
JPH1092468A true JPH1092468A (en) 1998-04-10
JP3034202B2 JP3034202B2 (en) 2000-04-17

Family

ID=17162651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8247385A Expired - Fee Related JP3034202B2 (en) 1995-12-14 1996-09-19 Electrolyte for lithium battery, method for purifying the same, and lithium battery using the same

Country Status (1)

Country Link
JP (1) JP3034202B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029324A1 (en) * 1998-11-17 2000-05-25 Stella Chemifa Kabushiki Kaisha Method of purifying lithium hexafluorophosphate
WO2001042133A1 (en) * 1999-12-09 2001-06-14 Stella Chemifa Kabushiki Kaisha Method for producing lithium hexafluorophosphate
JP2006302591A (en) * 2005-04-19 2006-11-02 Central Glass Co Ltd Purification method of electrolyte for lithium ion battery and battery using it
JP2007027084A (en) * 2005-06-17 2007-02-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte solution secondary battery
WO2007066464A1 (en) * 2005-12-06 2007-06-14 Central Glass Company, Limited Method for producing electrolyte solution for lithium ion battery and lithium ion battery using same
JP2007184246A (en) * 2005-12-06 2007-07-19 Central Glass Co Ltd Method of manufacturing electrolyte solution for lithium ion battery and lithium ion battery using it
JP2009506505A (en) * 2005-08-29 2009-02-12 イドロ−ケベック Method for purifying electrolyte, electrolyte obtained by this method, power generation device and use
JP2010060511A (en) * 2008-09-05 2010-03-18 Sumika Chemical Analysis Service Ltd Method of quantitatively determining hydrogen fluoride, and method of evaluating electrolyte
JP2011258371A (en) * 2010-06-08 2011-12-22 Central Glass Co Ltd Method for manufacturing electrolytic solution for lithium ion battery and lithium ion battery using the same
JP2013084562A (en) * 2011-09-30 2013-05-09 Nippon Shokubai Co Ltd Electrolyte and manufacturing method thereof, and electric storage device using the same
JP2014189454A (en) * 2013-03-27 2014-10-06 Mitsui Chemicals Inc Method of producing lithium hexafluorophosphate
WO2016072158A1 (en) * 2014-11-05 2016-05-12 セントラル硝子株式会社 Method for purifying electrolyte solution and method for producing electrolyte solution
WO2016080063A1 (en) * 2014-11-19 2016-05-26 セントラル硝子株式会社 Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte lithium battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029324A1 (en) * 1998-11-17 2000-05-25 Stella Chemifa Kabushiki Kaisha Method of purifying lithium hexafluorophosphate
US6514474B1 (en) 1998-11-17 2003-02-04 Stella Chemifa Kabushiki Kaisha Method of purifying lithium hexafluorosphate
KR100620861B1 (en) * 1998-11-17 2006-09-13 스텔라 케미파 코포레이션 Method of purifying lithium hexafluorosphate
WO2001042133A1 (en) * 1999-12-09 2001-06-14 Stella Chemifa Kabushiki Kaisha Method for producing lithium hexafluorophosphate
US6955795B2 (en) 1999-12-09 2005-10-18 Stella Chemifa Kabushiki Kaisha Method for producing lithium hexafluorophosphate
JP2006302591A (en) * 2005-04-19 2006-11-02 Central Glass Co Ltd Purification method of electrolyte for lithium ion battery and battery using it
JP2007027084A (en) * 2005-06-17 2007-02-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte solution secondary battery
JP2009506505A (en) * 2005-08-29 2009-02-12 イドロ−ケベック Method for purifying electrolyte, electrolyte obtained by this method, power generation device and use
US10811731B2 (en) 2005-08-29 2020-10-20 Hydro-Quebec Electrolyte purification method using calcium carbide, and electrolytes thus obtained
US10147978B2 (en) 2005-08-29 2018-12-04 Hydro-Quebec Electrolyte purification method using calcium carbide, and electrolytes thus obtained
WO2007066464A1 (en) * 2005-12-06 2007-06-14 Central Glass Company, Limited Method for producing electrolyte solution for lithium ion battery and lithium ion battery using same
JP2007184246A (en) * 2005-12-06 2007-07-19 Central Glass Co Ltd Method of manufacturing electrolyte solution for lithium ion battery and lithium ion battery using it
US8771882B2 (en) 2005-12-06 2014-07-08 Central Glass Company, Limited Method for producing electrolyte solution for lithium ion battery and lithium ion battery using same
JP2010060511A (en) * 2008-09-05 2010-03-18 Sumika Chemical Analysis Service Ltd Method of quantitatively determining hydrogen fluoride, and method of evaluating electrolyte
JP2011258371A (en) * 2010-06-08 2011-12-22 Central Glass Co Ltd Method for manufacturing electrolytic solution for lithium ion battery and lithium ion battery using the same
JP2013084562A (en) * 2011-09-30 2013-05-09 Nippon Shokubai Co Ltd Electrolyte and manufacturing method thereof, and electric storage device using the same
JP2014189454A (en) * 2013-03-27 2014-10-06 Mitsui Chemicals Inc Method of producing lithium hexafluorophosphate
WO2016072158A1 (en) * 2014-11-05 2016-05-12 セントラル硝子株式会社 Method for purifying electrolyte solution and method for producing electrolyte solution
JP2016091808A (en) * 2014-11-05 2016-05-23 セントラル硝子株式会社 Method for purifying liquid electrolyte, and method for manufacturing liquid electrolyte
TWI594489B (en) * 2014-11-05 2017-08-01 Central Glass Co Ltd Electrolyte solution purification method and electrolyte solution manufacturing method
WO2016080063A1 (en) * 2014-11-19 2016-05-26 セントラル硝子株式会社 Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte lithium battery
JP2016100100A (en) * 2014-11-19 2016-05-30 セントラル硝子株式会社 Electrolyte for nonaqueous electrolyte battery, and lithium nonaqueous electrolyte battery
US10270132B2 (en) 2014-11-19 2019-04-23 Central Glass Company, Limited Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte lithium battery

Also Published As

Publication number Publication date
JP3034202B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
JP4810867B2 (en) Method for producing electrolyte for lithium ion battery
JP6580131B2 (en) Method for purifying difluorophosphate
US6197205B1 (en) Electrolytic solution for lithium cell and method for producing same
JP3034202B2 (en) Electrolyte for lithium battery, method for purifying the same, and lithium battery using the same
JP6370852B2 (en) Granule or powder of disulfonylamide salt
US10967295B2 (en) Processes for removing reactive solvent from lithium bis(fluorosulfonyl)imide (LiFSI) using organic solvents that are stable toward anodes in lithium-ion and lithium-metal batteries
KR20210077773A (en) Method for Removal of Reactive Solvents from Lithium Bis(fluorosulfonyl)imide (LiFSI) Using Organic Solvents Stable for Lithium Ion and Anode in Lithium Metal Batteries
JP5862094B2 (en) Method for producing lithium hexafluorophosphate concentrate
JP3369937B2 (en) Purification method of lithium tetrafluoroborate
JP2987397B2 (en) Method for producing lithium hexafluorophosphate
CN108408711B (en) Preparation method of lithium difluorophosphate
KR20150016533A (en) Fluorine-containing esters and methods of preparation thereof
JP4747654B2 (en) Purification method of electrolyte for lithium ion battery
JP3087956B2 (en) Electrolyte for lithium secondary battery, method for producing the same, and lithium secondary battery using the electrolyte
JP3375049B2 (en) Method for producing lithium tetrafluoroborate
JP5151121B2 (en) Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
JP3555720B2 (en) Addition compound of lithium hexafluorophosphate, method for producing the same, and electrolyte using the same
JP3715436B2 (en) Salt, electrolytic solution and electrochemical device using the same
JP2001307772A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP2982950B2 (en) Method for producing electrolyte for lithium battery and lithium battery
JPH11185811A (en) Electrolytic solution for lithium battery and its manufacture
JP2001052741A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JPH10270074A (en) Secondary lithium battery electrolyte
JP2000315522A (en) Electrolytic solution for lithium battery
CN114084881A (en) Method for preparing lithium monofluorophosphate, electrolyte and lithium battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees