JP7194784B2 - Electrolyte material - Google Patents

Electrolyte material Download PDF

Info

Publication number
JP7194784B2
JP7194784B2 JP2021119435A JP2021119435A JP7194784B2 JP 7194784 B2 JP7194784 B2 JP 7194784B2 JP 2021119435 A JP2021119435 A JP 2021119435A JP 2021119435 A JP2021119435 A JP 2021119435A JP 7194784 B2 JP7194784 B2 JP 7194784B2
Authority
JP
Japan
Prior art keywords
solvent
solvents
electrolyte
solution
electrolyte material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021119435A
Other languages
Japanese (ja)
Other versions
JP2021182551A (en
Inventor
康則 奥村
信平 佐藤
正幸 岡島
貴之 小畠
裕大 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Publication of JP2021182551A publication Critical patent/JP2021182551A/en
Application granted granted Critical
Publication of JP7194784B2 publication Critical patent/JP7194784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/083Compounds containing nitrogen and non-metals and optionally metals containing one or more halogen atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/086Compounds containing nitrogen and non-metals and optionally metals containing one or more sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Fuel Cell (AREA)

Description

本発明は、フルオロスルホニルイミド類、詳しくは、N-(フルオロスルホニル)-N-(フルオロアルキルスルホニル)イミド、ジ(フルオロスルホニル)イミドを含有する電解液材料、並びに、その製造方法に関する。 TECHNICAL FIELD The present invention relates to electrolyte materials containing fluorosulfonylimides, more specifically N-(fluorosulfonyl)-N-(fluoroalkylsulfonyl)imides and di(fluorosulfonyl)imides, and methods for producing the same.

N-(フルオロスルホニル)-N-(フルオロアルキルスルホニル)イミドや、ジ(フルオロスルホニル)イミド等のフルオロスルホニルイミド類やその誘導体は、N(SOF)基又はN(SOF)基を有する化合物の中間体として有用であり、また、電解質や、燃料電池の電解液への添加物や、選択的求電子フッ素化剤、光酸発生剤、熱酸発生剤、近赤外線吸収色素等として使用されるなど、様々な用途において有用な化合物である。
しかし同時にフルオロスルホニルイミドはその突出した極性に由来し、不純物の除去が非常に困難な化合物でもある。
Fluorosulfonylimides such as N-(fluorosulfonyl)-N-(fluoroalkylsulfonyl)imide and di(fluorosulfonyl)imide and derivatives thereof have an N(SO 2 F) group or an N(SO 2 F) 2 group. It is useful as an intermediate for a compound having a It is a useful compound in various applications such as being used as
At the same time, however, fluorosulfonylimide is a compound from which impurities are very difficult to remove due to its prominent polarity.

特許文献1には、フルオロスルホニルイミドのアルカリ金属塩から反応溶媒を除去して粉体を得る製法が開示されているが、反応溶媒と親和性が高く溶媒の除去が困難であるという課題と、その課題を解決した溶媒留去方法が開示されている。 Patent Document 1 discloses a method for obtaining a powder by removing the reaction solvent from an alkali metal salt of fluorosulfonylimide, but the problem is that the solvent has a high affinity with the reaction solvent and is difficult to remove. A solvent distillation method that solves the problem is disclosed.

国際公開第2011/149095号WO2011/149095

しかしながら、特許文献1に記載の製造方法では、フルオロスルホニルイミドのアルカリ金属塩中に、1000ppm程度の残留溶媒(特に、フルオロスルホニルイミドの製造に用いた溶媒)が残ってしまう。また、フルオロスルホニルイミド塩を一旦粉体化すると、残留溶媒(上記製造溶媒)が粉体内部に取り込まれ、その除去は単純に乾燥するだけでは困難である。たとえば、フルオロスルホニルイミド塩を、リチウム電池の電解質として用いる場合には、残存溶媒は、電池の膨れの原因となる虞がある。特にハロゲン系溶媒は、分解によりリチウム電池のアルミ集電体を腐食する虞があるため、長期の使用を想定する自動車用の電池に使用する電解液においては特に低減が望まれている。
本発明は上記の様な事情に着目してなされたものであって、その目的は、電解液材料の特性に影響を与える残留溶媒を削減した電解液材料とその製造方法を提供することにある。
However, in the production method described in Patent Document 1, about 1000 ppm of residual solvent (especially the solvent used in the production of fluorosulfonylimide) remains in the alkali metal salt of fluorosulfonylimide. In addition, once the fluorosulfonylimide salt is pulverized, the residual solvent (the above-mentioned manufacturing solvent) is taken into the powder, and its removal is difficult only by drying. For example, when a fluorosulfonylimide salt is used as an electrolyte in a lithium battery, the residual solvent may cause swelling of the battery. Halogen-based solvents, in particular, may corrode aluminum current collectors of lithium batteries due to their decomposition. Therefore, reduction of halogen-based solvents is particularly desired in electrolyte solutions used in batteries for automobiles, which are expected to be used for a long period of time.
The present invention has been made in view of the circumstances described above, and its object is to provide an electrolyte material in which the amount of residual solvent that affects the properties of the electrolyte material is reduced, and a method for producing the same. .

上記課題を解決した本発明の製造方法とは、下記一般式(1)で表されるフルオロスルホニルイミド塩と電解液溶媒を含む電解液材料の製造方法であって、フルオロスルホニルイミド塩と電解液溶媒を含む溶液を減圧及び/又は加熱して、フルオロスルホニルイミド塩の製造溶媒を揮発させるところに特徴を有する。 The production method of the present invention that solves the above problems is a method for producing an electrolyte material containing a fluorosulfonylimide salt represented by the following general formula (1) and an electrolyte solvent, wherein the fluorosulfonylimide salt and the electrolyte It is characterized by reducing the pressure and/or heating the solution containing the solvent to volatilize the solvent for producing the fluorosulfonylimide salt.

Figure 0007194784000001
Figure 0007194784000001

なお、上記一般式(1)中、R1は、フッ素又は炭素数1~6のフッ化アルキル基、R2は、アルカリ金属イオンである。上記電解液溶媒は、環状カーボネート系溶媒又は環状エステル系溶媒であることが好ましい。 In general formula (1) above, R 1 is fluorine or a fluorinated alkyl group having 1 to 6 carbon atoms, and R 2 is an alkali metal ion. The electrolyte solvent is preferably a cyclic carbonate-based solvent or a cyclic ester-based solvent.

本発明には、上記製造方法により得られた電解液材料に、さらに非水電解液調製用溶媒を混合することを特徴とする非水電解液の製造方法が含まれる。 The present invention includes a method for producing a non-aqueous electrolyte, characterized in that the electrolyte material obtained by the above-described production method is further mixed with a solvent for preparing a non-aqueous electrolyte.

又、本発明には、上記一般式(1)で表されるフルオロスルホニルイミド塩と電解液溶媒を含む電解液材料であって、電解液材料中に含まれるフルオロスルホニルイミド塩の濃度が30質量%以上であり、電解液材料中のフルオロスルホニルイミド塩の製造溶媒の残存量が3000ppm以下であることを特徴とする電解液材料も含まれる。
この場合、上記電解液溶媒において、環状カーボネート系溶媒又は環状エステル系溶媒を90質量%以上含むことが好ましい。
Further, the present invention provides an electrolytic solution material containing the fluorosulfonylimide salt represented by the general formula (1) and an electrolytic solution solvent, wherein the concentration of the fluorosulfonylimide salt contained in the electrolytic solution material is 30 mass % or more, and the remaining amount of the solvent for producing the fluorosulfonylimide salt in the electrolyte material is 3000 ppm or less.
In this case, the electrolyte solvent preferably contains 90% by mass or more of the cyclic carbonate-based solvent or the cyclic ester-based solvent.

本発明には、上記電解液材料から得られる非水電解液、この非水電解液を備えた蓄電デバイスも含まれる。 The present invention also includes a non-aqueous electrolyte obtained from the electrolyte material and an electric storage device provided with this non-aqueous electrolyte.

又、本発明には、上記一般式(1)で表されるフルオロスルホニルイミド塩と電解液溶媒を含み、フルオロスルホニルイミド塩の濃度が30質量%以上である電解液材料を保存することを特徴とする電解液材料の保存方法、および、上記一般式(1)で表されるフルオロスルホニルイミド塩と電解液溶媒を含み、フルオロスルホニルイミド塩の濃度が30質量%以上である電解液材料を輸送することを特徴とする電解液材料の輸送方法も包含される。 In addition, the present invention is characterized by storing an electrolyte material containing the fluorosulfonylimide salt represented by the general formula (1) and an electrolyte solvent, wherein the concentration of the fluorosulfonylimide salt is 30% by mass or more. and transporting an electrolyte material containing the fluorosulfonylimide salt represented by the general formula (1) and an electrolyte solvent, and having a concentration of the fluorosulfonylimide salt of 30% by mass or more. Also included is a method of transporting an electrolyte material characterized by:

本発明では、一旦粉体化し、残留溶媒が粉体内部に取り込まれてしまったフルオロスルホニルイミド塩に対して、電解液溶媒を加え溶解し溶液とすることで、残留溶媒が揮発しやすい状態となり、また電解液溶媒はフルオロスルホニルイミド塩に対して、残留溶媒よりも親和性が高いため、減圧及び/又は加熱により残留溶媒を効率よく除去することができる。しかも得られた溶液はそのまま電解液材料として使用することができる。また本発明は粉体からの残留溶媒の除去に限らず、フルオロスルホニルイミド塩が残留溶媒に溶解している溶液に対しても、電解液溶媒を加えて減圧及び/又は加熱することで同様に残留溶媒を除去することができる。 In the present invention, the fluorosulfonylimide salt, which has been powdered once and the residual solvent has been taken into the powder, is dissolved by adding the electrolyte solvent to form a solution, so that the residual solvent easily volatilizes. Also, since the electrolyte solvent has a higher affinity for the fluorosulfonylimide salt than the residual solvent, the residual solvent can be efficiently removed by reducing the pressure and/or heating. Moreover, the obtained solution can be used as it is as an electrolytic solution material. In addition, the present invention is not limited to removing the residual solvent from the powder, and the solution in which the fluorosulfonylimide salt is dissolved in the residual solvent can be similarly treated by adding the electrolyte solvent and depressurizing and / or heating. Residual solvent can be removed.

本発明によれば、電解液材料の特性に影響を与える残留溶媒を削減した、N-(フルオロスルホニル)-N-(フルオロアルキルスルホニル)イミド、ジ(フルオロスルホニル)イミドを含有する電解液材料が得られる。また電解液材料は液体であり、吸湿性の高いフルオロスルホニルイミド塩粉体を取扱うための設備が不要となるため生産コストが低減できる。さらに、本発明の電解液材料をそのまま、又は希釈するだけで、非水電解液を得ることができるため、作業性が向上し、安価且つ簡便に非水電解液を製造することができる。また予め液体の電解液材料を調製しておくことで、フルオロスルホニルイミド塩粉体を電解液用の溶媒と混合する際の発熱(溶解熱)を抑制できるという効果が発現する。さらに、本発明の電解液材料は、溶液状態で保存している際にHFの発生量が少ないというメリットも有する。
また、上記一般式(1)で表されるフルオロスルホニルイミド塩(以下、「フルオロスルホニルイミド塩(1)」ということがある)と環状カーボネート系溶媒または環状エステル系溶媒を主成分として含む電解液材料を用いることで、非水電解液の分解を生じるような温度上昇を抑制できると共に、非水電解液を調製する際に、フルオロスルホニルイミド塩(1)の添加速度の調整が不要となるため、生産性を向上できる。したがって、本発明法によれば、従来の製造方法と比べて短時間で良好な品質を有するフルオロスルホニルイミド塩含有非水電解液を製造できる。
According to the present invention, an electrolyte material containing N-(fluorosulfonyl)-N-(fluoroalkylsulfonyl)imide and di(fluorosulfonyl)imide with reduced residual solvent that affects the properties of the electrolyte material is provided. can get. In addition, since the electrolyte material is a liquid, there is no need for equipment for handling highly hygroscopic fluorosulfonylimide salt powder, so production costs can be reduced. Furthermore, since the non-aqueous electrolyte can be obtained by using the electrolyte material of the present invention as it is or by simply diluting it, the workability is improved, and the non-aqueous electrolyte can be produced inexpensively and simply. In addition, by preparing a liquid electrolyte material in advance, an effect of suppressing heat generation (heat of dissolution) when mixing the fluorosulfonylimide salt powder with the solvent for the electrolyte is exhibited. Furthermore, the electrolyte material of the present invention also has the advantage of generating a small amount of HF when stored in a solution state.
Further, an electrolytic solution containing a fluorosulfonylimide salt represented by the above general formula (1) (hereinafter sometimes referred to as "fluorosulfonylimide salt (1)") and a cyclic carbonate-based solvent or a cyclic ester-based solvent as main components By using the material, it is possible to suppress the temperature rise that causes decomposition of the non-aqueous electrolyte, and it is unnecessary to adjust the addition rate of the fluorosulfonylimide salt (1) when preparing the non-aqueous electrolyte. , can improve productivity. Therefore, according to the method of the present invention, a fluorosulfonylimide salt-containing non-aqueous electrolyte having good quality can be produced in a shorter time than the conventional production method.

本発明者らは、従来よりも良好な品質を有し、フルオロスルホニルイミド塩(1)を含有する非水電解液を効率よく製造する方法を提供すべく検討を重ねた結果、予め、フルオロスルホニルイミド塩(1)と環状カーボネート系溶媒または環状エステル系溶媒を主成分として含む電解液材料を、非水電解液の出発原料とすることで、その後の非水電解液の製造過程で、電解液材料に、電解液調製用溶媒や他の電解質塩を添加しても発熱による非水電解液の劣化を抑制して、良好な品質を維持しつつ、従来よりも短時間で非水電解液を製造できることを見出し、本発明を完成させた。 The present inventors have conducted repeated studies to provide a method for efficiently producing a non-aqueous electrolytic solution containing the fluorosulfonylimide salt (1), which has better quality than conventional ones. By using an electrolytic solution material containing imide salt (1) and a cyclic carbonate-based solvent or a cyclic ester-based solvent as main components as a starting material for a non-aqueous electrolytic solution, the electrolytic solution Even if a solvent for electrolyte preparation and other electrolyte salts are added to the material, deterioration of the non-aqueous electrolyte due to heat generation is suppressed, and the non-aqueous electrolyte can be prepared in a shorter time than before while maintaining good quality. We found that it can be manufactured, and completed the present invention.

まず、本発明に至った経緯について説明する。従来、非水電解液の製造には、エチレンカーボネート、メチルエチルカーボネート、ジエチルカーボネートなど使用する電解液調製用溶媒を全て混合した溶媒溶液を予め調合し、これにフルオロスルホニルイミド塩(1)などの電解質塩を添加していた。溶媒溶液を調合する際、エチレンカーボネートは常温では固体であるため、エチレンカーボネートの融点を超える温度(通常は50℃超)に加熱処理してから他の電解液調製用溶媒と混合していた。そのためフルオロスルホニルイミド塩(1)を添加する際の溶媒溶液の温度が高くなっており、フルオロスルホニルイミド塩(1)を添加すると発熱反応によって液温が60℃以上に上昇してしまい、非水電解液が劣化していた。このような問題を解決する手段として従来は、フルオロスルホニルイミド塩(1)の添加速度を制御して温度上昇をコントロールする必要があったが、上記したように非水電解液の調製に時間がかかり、生産性が悪く、コスト増加要因となっていた。 First, the circumstances leading to the present invention will be described. Conventionally, in the production of a non-aqueous electrolyte, a solvent solution is prepared in advance by mixing all the solvents used for electrolyte preparation, such as ethylene carbonate, methyl ethyl carbonate, and diethyl carbonate, and then a fluorosulfonylimide salt (1) or the like is added thereto. Electrolyte salts were added. When preparing the solvent solution, since ethylene carbonate is solid at room temperature, it is heat-treated to a temperature exceeding the melting point of ethylene carbonate (usually above 50° C.) before being mixed with another solvent for preparing an electrolytic solution. Therefore, the temperature of the solvent solution is high when adding the fluorosulfonylimide salt (1), and when the fluorosulfonylimide salt (1) is added, the liquid temperature rises to 60 ° C. or higher due to an exothermic reaction, resulting in a non-aqueous The electrolyte has deteriorated. Conventionally, as a means to solve such problems, it was necessary to control the temperature rise by controlling the addition rate of the fluorosulfonylimide salt (1). It takes a long time, the productivity is bad, and it is a factor of cost increase.

そこで本発明者らが非水電解液の製造工程について検討した結果、予め調合したフルオロスルホニルイミド塩(1)と環状カーボネート系溶媒又は環状エステル系溶媒を主成分として含む電解液材料を用いれば、非水電解液の製造過程で従来必要であった固体の環状カーボネート系溶媒又は環状エステル系溶媒の加熱処理が不要になること、また室温程度の電解液材料を出発原料として、これに所望の非水電解液調製用溶媒や電解質塩を添加すれば、これらの添加に伴って発熱反応が生じても、電解液の分解などが生じるような温度まで液温は上昇しないため、従来必要であった温度コントロールのための電解質塩の添加速度の制御が不要となり、短時間で非水電解液を調製できることを見出し、本発明に至っ
た。
Therefore, as a result of the present inventors' investigation of the manufacturing process of the non-aqueous electrolytic solution, if an electrolytic solution material containing a fluorosulfonylimide salt (1) prepared in advance and a cyclic carbonate solvent or a cyclic ester solvent as main components is used, The heat treatment of a solid cyclic carbonate-based solvent or cyclic ester-based solvent, which was conventionally required in the manufacturing process of a non-aqueous electrolyte, is no longer necessary. By adding a solvent for preparing the aqueous electrolyte solution and an electrolyte salt, even if an exothermic reaction occurs due to the addition of these, the liquid temperature does not rise to a temperature at which decomposition of the electrolyte solution occurs. The inventors have found that it is possible to prepare a non-aqueous electrolytic solution in a short period of time without controlling the addition rate of the electrolyte salt for controlling the temperature, and have completed the present invention.

本発明における「フルオロスルホニルイミド」との文言には、フルオロスルホニル基を2つ有するジ(フルオロスルホニル)イミドの他、フルオロスルホニル基と、フッ化アルキル基を有するN-(フルオロスルホニル)-N-(フルオロアルキルスルホニル)イミドが含まれる。 The term "fluorosulfonylimide" in the present invention includes di(fluorosulfonyl)imide having two fluorosulfonyl groups, N-(fluorosulfonyl)-N- (Fluoroalkylsulfonyl) imides are included.

本発明の製造方法とは、上記一般式(1)で表されるフルオロスルホニルイミド塩と溶媒を含む電解液材料の製造方法であって、フルオロスルホニルイミド塩と電解液溶媒を含む溶液を減圧及び/又は加熱して、フルオロスルホニルイミド塩の製造溶媒を揮発させる(以下、揮発工程ということがある)ところに特徴を有する。なお、フルオロスルホニルイミド塩の製造溶媒とは、フルオロスルホニルイミド塩の製造に用いた溶媒であり、従来の製法で得られたフルオロスルホニルイミド塩に含まれている溶媒であり、残留溶媒と同義である。 The production method of the present invention is a method for producing an electrolyte material containing the fluorosulfonylimide salt represented by the general formula (1) and a solvent, wherein a solution containing the fluorosulfonylimide salt and the electrolyte solvent is decompressed and It is characterized by volatilizing the production solvent of the fluorosulfonylimide salt by heating (hereinafter sometimes referred to as a volatilization step). The solvent for producing the fluorosulfonylimide salt is the solvent used in the production of the fluorosulfonylimide salt, the solvent contained in the fluorosulfonylimide salt obtained by the conventional production method, and is synonymous with the residual solvent. be.

上記一般式(1)で表される化合物としては、R1は、フッ素又は炭素数1~6のフッ化アルキル基を有する化合物が挙げられる。上記フッ化アルキル基の炭素数は1~6であるのが好ましく、より好ましくは1~4である。具体的な炭素数1~6のフッ化アルキル基としては、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、3,3,3-トリフルオロプロピル基、ペルフルオロ-n-プロピル基、フルオロプロピル基、ペルフルオロイソプロピル基、フルオロブチル基、3,3,4,4,4-ペンタフルオロブチル基、ペルフルオロ-n-ブチル基、ペルフルオロイソブチル基、ペルフルオロ-t-ブチル基、ペルフルオロ-sec-ブチル基、フルオロペンチル基、ペルフルオロペンチル基、ペルフルオロイソペンチル基、ペルフルオロ-t-ペンチル基、フルオロヘキシル基、ペルフルオロ-n-ヘキシル基、ペルフルオロイソヘキシル基等が挙げられる。これらの中でも、R1は、フッ素、トリフルオロメチル基、ペンタフルオロエチル基、ペルフルオロ-n-プロピル基が好ましく、より好ましいのはフッ素、トリフルオロメチル基及びペンタフルオロエチル基である。 Compounds represented by the general formula (1) include compounds in which R 1 has fluorine or a fluorinated alkyl group having 1 to 6 carbon atoms. The fluorinated alkyl group preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms. Specific fluorinated alkyl groups having 1 to 6 carbon atoms include, for example, fluoromethyl group, difluoromethyl group, trifluoromethyl group, fluoroethyl group, difluoroethyl group, 2,2,2-trifluoroethyl group, pentafluoroethyl group, 3,3,3-trifluoropropyl group, perfluoro-n-propyl group, fluoropropyl group, perfluoroisopropyl group, fluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, perfluoro-n-butyl group, perfluoroisobutyl group, perfluoro-t-butyl group, perfluoro-sec-butyl group, fluoropentyl group, perfluoropentyl group, perfluoroisopentyl group, perfluoro-t-pentyl group, fluorohexyl group, perfluoro -n-hexyl group, perfluoroisohexyl group and the like. Among these, R 1 is preferably fluorine, trifluoromethyl group, pentafluoroethyl group or perfluoro-n-propyl group, more preferably fluorine, trifluoromethyl group or pentafluoroethyl group.

また、R2は上記化合物(1)を構成するカチオンであり、アルカリ金属イオンを表す。アルカリ金属元素としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムがあげられ、リチウム、ナトリウム、カリウムが好ましく、より好ましくはリチウムである。 R 2 is a cation constituting the compound (1) and represents an alkali metal ion. Alkali metal elements include lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably lithium.

一般式(1)で表される具体的な化合物としては、リチウムジ(フルオロスルホニル)イミド、ナトリウムジ(フルオロスルホニル)イミド、リチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド、ナトリウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド、リチウム(フルオロスルホニル)(ペンタフルオロエチルスルホニル)イミド等が挙げられる。より好ましくはリチウムジ(フルオロスルホニル)イミド、リチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミドである。 Specific compounds represented by the general formula (1) include lithium di(fluorosulfonyl)imide, sodium di(fluorosulfonyl)imide, lithium(fluorosulfonyl)(trifluoromethylsulfonyl)imide, sodium(fluorosulfonyl)( trifluoromethylsulfonyl)imide, lithium(fluorosulfonyl)(pentafluoroethylsulfonyl)imide, and the like. More preferred are lithium di(fluorosulfonyl)imide and lithium(fluorosulfonyl)(trifluoromethylsulfonyl)imide.

本発明においては、上記化合物(1)で表されるフルオロスルホニルイミド塩を合成する方法は特に限定されず、従来公知の方法は全て採用することが出来る。例えば、国際公開第2011/149095号、特開2010-189372号公報、特表平8-511274号公報、国際公開第2012/108284号、国際公開第2012/117961号、国際公開第2012/118063号、特開2010-280586号公報、特開2010-254543号公報、特開2007-182410号公報、国際公開第2010/010613号等に記載の方法が挙げられる。 In the present invention, the method for synthesizing the fluorosulfonylimide salt represented by compound (1) is not particularly limited, and all conventionally known methods can be employed. For example, WO 2011/149095, JP 2010-189372, JP 8-511274, WO 2012/108284, WO 2012/117961, WO 2012/118063 , JP-A-2010-280586, JP-A-2010-254543, JP-A-2007-182410, and International Publication No. 2010/010613.

本発明の上記一般式(1)で表されるフルオロスルホニルイミド塩と電解液溶媒を含む電解液材料の製造方法とは、フルオロスルホニルイミド塩と電解液溶媒を混合した溶液を減圧及び/又は加熱して、フルオロスルホニルイミド塩の製造溶媒を揮発させる工程、を含む点に特徴を有するものである。フルオロスルホニルイミド塩は、上述した通り、粉体(固体)として単離しても粉体内部に単離前に使用された溶媒(以後、残留溶媒又は製造溶媒という)を含んでいるが、このようなフルオロスルホニルイミド塩を電解液溶媒に溶解した溶液を減圧及び/又は加熱して、フルオロスルホニルイミド塩の製造溶媒を揮発させることにより、当該製造溶媒の濃度を低減することが出来る。また、本発明の電解液材料の製造方法は、フルオロスルホニルイミド塩の製造や精製により得られた溶液(フルオロスルホニルイミド塩と溶媒を含む溶液)に電解液溶媒を添加してから減圧及び/又は加熱して、製造溶媒を揮発させてもよく、この方法によってフルオロスルホニルイミド塩を製造した後に、フルオロスルホニルイミド塩と電解液溶媒を含む電解液材料を製造することもできる。
電解液溶媒は上記化合物(1)に対して、残留溶媒よりも親和性が高く、沸点も高いため、減圧及び/又は加熱により残留溶媒を効率よく揮発・除去することができる。
The method for producing an electrolytic solution material containing the fluorosulfonylimide salt represented by the general formula (1) and an electrolytic solution solvent of the present invention comprises reducing the pressure and/or heating a solution obtained by mixing the fluorosulfonylimide salt and the electrolytic solution solvent. and volatilizing the solvent for producing the fluorosulfonylimide salt. As described above, even if the fluorosulfonylimide salt is isolated as a powder (solid), the powder contains the solvent used before isolation (hereinafter referred to as residual solvent or manufacturing solvent). The concentration of the production solvent can be reduced by reducing the pressure and/or heating the solution in which the fluorosulfonylimide salt is dissolved in the electrolyte solvent to volatilize the production solvent of the fluorosulfonylimide salt. Further, the method for producing an electrolytic solution material of the present invention includes adding an electrolytic solution solvent to a solution obtained by producing or refining a fluorosulfonylimide salt (a solution containing a fluorosulfonylimide salt and a solvent), and then reducing the pressure and / or The production solvent may be volatilized by heating, and after producing the fluorosulfonylimide salt by this method, an electrolytic solution material containing the fluorosulfonylimide salt and the electrolytic solution solvent can be produced.
Since the electrolyte solvent has a higher affinity and a higher boiling point than the residual solvent for the compound (1), the residual solvent can be efficiently volatilized and removed by reducing pressure and/or heating.

本発明における残留溶媒とは、上記化合物(1)の製造反応に使用した溶媒や、精製工程に用いた溶媒などである。残留溶媒と後述の電解液溶媒の親和性で分類すると、例えば、上記化合物(1)と親和性が中程度の溶媒としては、水;メタノール、エタノール、プロパノール、ブタノール等のアルコール系溶媒;蟻酸、酢酸等のカルボン酸系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等のケトン類;イソブチロニトリル、アセトニトリル、バレロニトリル、ベンゾニトリル等のニトリル系溶媒;酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒;ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、シクロペンチルメチルエーテル等の脂肪族エーテル系溶媒;HF等のハロゲン系溶媒;ニトロメタン、ニトロベンゼン等のニトロ基含有溶媒;エチルホルムアミド、N-メチルピロリドン等の含窒素有機溶媒;ジメチルスルホキシド;グライム系溶媒等が挙げられる。その中でも、アセトニトリル、バレロニトリル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、シクロペンチルメチルエーテルが好ましい。上記化合物(1)と親和性が低い溶媒としては、トルエン、o-キシレン、m-キシレン、p-キシレン、ベンゼン、エチルベンゼン、イソプロピルベンゼン、1,2,3-トリメチルベンゼン、1,2,4-トリメチルベンゼン、1,3,5-トリメチルベンゼン、テトラリン、シメン、メチルエチルベンゼン、2-エチルトルエン、クロロベンゼン、ジクロロベンゼン等の芳香族炭化水素系溶媒;ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、ウンデカン、トリデカン、デカリン、2,2,4,6,6-ペンタメチルヘプタン、イソパラフィン(例えば、「マルカゾールR」(丸善石油化学株式会社製の2,2,4,6,6-ペンタメチルヘプタン、2,2,4,4,6-ペンタメチルヘプタンの混合物)、「アイソパー(登録商標)G」(エクソンモービル製のC9-C11混合イソパラフィン)、「アイソパー(登録商標)E」(エクソンモービル製のC8-C10混合イソパラフィン)ジクロロメタン、クロロホルム、1,2-ジクロロエタン等の鎖状脂肪族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、1,2-ジメチルシクロヘキサン、1,3-ジメチルシクロヘキサン、1,4-ジメチルシクロヘキサン、エチルシクロヘキサン、1,2,4-トリメチルシクロヘキサン、1,3,5-トリメチルシクロヘキサン、プロピルシクロヘキサン、ブチルシクロヘキサン、「スワクリーン150」(丸善石油化学株式会社製のC9アルキルシクロヘキサンの混合物)等の環状脂肪族炭化水素系溶媒;アニソール、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール等の芳香族エーテル系溶媒、等が挙げられる。これらの溶媒は単独であってもよく、また2種以上を混合していてもよい。トルエン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、イソプロピルベンゼン、1,2,4-トリメチルベンゼン、ヘキサン、ヘプタン、クロロベンゼン、ジクロロベンゼン、ジクロロメタン、1,2-ジクロロエタンが好ましい。 The residual solvent in the present invention includes the solvent used in the production reaction of compound (1), the solvent used in the purification step, and the like. When classified according to the affinity between the residual solvent and the electrolyte solvent described below, for example, the solvent having a medium affinity for the compound (1) includes water; alcoholic solvents such as methanol, ethanol, propanol and butanol; formic acid, Carboxylic acid solvents such as acetic acid; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and diisobutyl ketone; Nitrile solvents such as isobutyronitrile, acetonitrile, valeronitrile, and benzonitrile; Ethyl acetate, isopropyl acetate, butyl acetate, etc. Ester solvents; diethyl ether, diisopropyl ether, t-butyl methyl ether, aliphatic ether solvents such as cyclopentyl methyl ether; Halogen solvents such as HF; Nitromethane, nitro group-containing solvents such as nitrobenzene; Ethylformamide, N- Nitrogen-containing organic solvents such as methylpyrrolidone; dimethylsulfoxide; and glyme-based solvents. Among them, acetonitrile, valeronitrile, ethyl acetate, isopropyl acetate, butyl acetate and cyclopentyl methyl ether are preferred. Solvents with low affinity for the compound (1) include toluene, o-xylene, m-xylene, p-xylene, benzene, ethylbenzene, isopropylbenzene, 1,2,3-trimethylbenzene, 1,2,4- Aromatic hydrocarbon solvents such as trimethylbenzene, 1,3,5-trimethylbenzene, tetralin, cymene, methylethylbenzene, 2-ethyltoluene, chlorobenzene, dichlorobenzene; pentane, hexane, heptane, octane, decane, dodecane, undecane , tridecane, decalin, 2,2,4,6,6-pentamethylheptane, isoparaffin (e.g., "Marcazol R" (Maruzen Petrochemical Co., Ltd. 2,2,4,6,6-pentamethylheptane, 2 , 2,4,4,6-pentamethylheptane), "Isopar® G" (C 9 -C 11 mixed isoparaffins from ExxonMobil), "Isopar® E" (ExxonMobil C 8 -C 10 mixed isoparaffins) chain aliphatic hydrocarbon solvents such as dichloromethane, chloroform, 1,2-dichloroethane; cyclohexane, methylcyclohexane, 1,2-dimethylcyclohexane, 1,3-dimethylcyclohexane, 4-dimethylcyclohexane, ethylcyclohexane, 1,2,4-trimethylcyclohexane, 1,3,5-trimethylcyclohexane, propylcyclohexane, butylcyclohexane, "Swaclean 150" (a mixture of C9 alkylcyclohexane manufactured by Maruzen Petrochemical Co., Ltd. ), aromatic ether solvents such as anisole, 2-methylanisole, 3-methylanisole, 4-methylanisole, etc. These solvents may be used alone. , or a mixture of two or more of them: toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, isopropylbenzene, 1,2,4-trimethylbenzene, hexane, heptane, chlorobenzene, dichlorobenzene, Dichloromethane and 1,2-dichloroethane are preferred.

本発明における電解液溶媒は、残留溶媒と比べて上記化合物(1)との親和性が高く、揮発工程に好適に使用することができ、電解液材料としてそのまま使用できる溶媒を使用することが出来る。このような電解液溶媒を用いることにより、効率よく残留溶媒を除去することができる。またさらに、本発明の電解液材料は、必要な溶媒や添加剤、電解質等を混合することにより、そのままリチウム二次電池の電解液として使用できる。使用する電解液溶媒は、電解液溶媒と上記化合物(1)の親和性、残留溶媒と上記一般式(1)の親和性、それぞれの溶媒の沸点などから適宜選択すればよい。例えば、上記化合物(1)と親和性が高い溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒;ジメトキシメタン、1,2-ジメトキシエタン等の鎖状エーテル系溶媒;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキサン、4-メチル-1,3-ジオキソラン等の環状エーテル系溶媒;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル系溶媒;スルホラン、3-メチルスルホラン等のスルホラン系溶媒;N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルオキサゾリジノン等が挙げられる。これらの溶媒は単独で用いてもよく、また2種以上を混合して用いてもよい。上記例示の溶媒の中でも、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒(特にエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート)や、γ-ブチロラクトン、γ-バレロラクトン等の環状エステル系溶媒が好ましい。 The electrolyte solvent in the present invention has a higher affinity with the compound (1) than the residual solvent, can be suitably used in the volatilization step, and can be used as it is as an electrolyte material. . By using such an electrolytic solution solvent, the residual solvent can be removed efficiently. Furthermore, the electrolytic solution material of the present invention can be used as it is as an electrolytic solution for lithium secondary batteries by mixing necessary solvents, additives, electrolytes, and the like. The electrolyte solvent to be used may be appropriately selected from the affinity between the electrolyte solvent and the compound (1), the affinity between the residual solvent and the general formula (1), the boiling point of each solvent, and the like. For example, solvents having a high affinity with the compound (1) include carbonate-based solvents such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethylmethyl carbonate, and diethyl carbonate; dimethoxymethane, 1,2-dimethoxyethane, and the like. Cyclic ether solvents such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxane and 4-methyl-1,3-dioxolane; Cyclic ester solvents such as γ-butyrolactone and γ-valerolactone sulfolane solvents such as sulfolane and 3-methylsulfolane; and N,N-dimethylformamide, dimethylsulfoxide, N-methyloxazolidinone and the like. These solvents may be used alone or in combination of two or more. Among the solvents exemplified above, carbonate-based solvents such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethylmethyl carbonate, and diethyl carbonate (especially cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate) and γ-butyrolactone , and γ-valerolactone are preferred.

本発明の電解液材料の製造方法においては、揮発工程に用いる溶液は、上記一般式(1)で表されるフルオロスルホニルイミド塩の粉体に、電解液溶媒を混合することで調製することが出来る。また、上記一般式(1)で表されるフルオロスルホニルイミド塩を溶媒中で製造、精製して得られた溶液に電解液溶媒を混合して、揮発工程を行ってもよい。 In the method for producing the electrolyte material of the present invention, the solution used in the volatilization step can be prepared by mixing the powder of the fluorosulfonylimide salt represented by the general formula (1) with the electrolyte solvent. I can. Alternatively, the fluorosulfonylimide salt represented by the general formula (1) may be produced and purified in a solvent, and an electrolyte solvent may be mixed with the resulting solution to perform the volatilization step.

本発明の電解液材料の製造方法において、揮発工程前に含まれる残留溶媒量は、下限については特に制限はないが、上記一般式(1)で表されるフルオロスルホニルイミド塩100gに対して、例えば、1000g以下が好ましく、より好ましくは100g以下、さらに好ましくは10g以下、最も好ましくは1g以下である。残留溶媒が多い場合には、電解液溶媒の使用量が増えたり、揮発に要する時間が増えたりするので望ましくない。溶液中でフルオロスルホニルイミド塩を製造、精製して得られた溶液を揮発工程に用いる場合は、揮発工程の前に(電解液溶媒を添加する前に)溶媒留去を行って、含有する残留溶媒量を低減させ、残留溶媒量を上記範囲とすることが好ましい。 In the method for producing an electrolyte material of the present invention, the amount of residual solvent contained before the volatilization step is not particularly limited with respect to the lower limit, but with respect to 100 g of the fluorosulfonylimide salt represented by the above general formula (1), For example, it is preferably 1000 g or less, more preferably 100 g or less, still more preferably 10 g or less, and most preferably 1 g or less. A large amount of residual solvent is not desirable because the amount of electrolyte solvent used increases and the time required for volatilization increases. When the solution obtained by producing and purifying the fluorosulfonylimide salt in the solution is used in the volatilization step, the solvent is distilled off before the volatilization step (before adding the electrolyte solvent) to remove the residual contained It is preferable to reduce the amount of solvent and make the amount of residual solvent within the above range.

本発明の電解液材料の製造方法において、電解液溶媒の使用量は、下限については特に制限はなく、残留溶媒の量などにより適宜調整すればよい。例えば、上記一般式(1)で表されるフルオロスルホニルイミド塩100gに対して、10000g以下が好ましく、より好ましくは1000g以下、さらに好ましくは500g以下、さらに好ましくは200g以下、さらに好ましくは100g以下、最も好ましくは50g以下である。
本発明の電解液材料の製造方法において、電解液溶媒の使用量は、例えば、上記一般式(1)で表されるフルオロスルホニルイミド塩100質量部に対して、1~1000質量部が好ましく、より好ましくは5~500質量部、さらに好ましくは10~300質量部、特に好ましくは30~200質量部、さらに特に好ましくは50~100質量部である。
In the method for producing the electrolyte material of the present invention, the amount of electrolyte solvent used is not particularly limited as to the lower limit, and may be appropriately adjusted depending on the amount of residual solvent and the like. For example, with respect to 100 g of the fluorosulfonylimide salt represented by the general formula (1), it is preferably 10000 g or less, more preferably 1000 g or less, still more preferably 500 g or less, still more preferably 200 g or less, still more preferably 100 g or less, Most preferably, it is 50 g or less.
In the method for producing the electrolyte material of the present invention, the amount of the electrolyte solvent used is preferably 1 to 1000 parts by mass with respect to 100 parts by mass of the fluorosulfonylimide salt represented by the general formula (1), More preferably 5 to 500 parts by mass, still more preferably 10 to 300 parts by mass, particularly preferably 30 to 200 parts by mass, and even more preferably 50 to 100 parts by mass.

揮発工程は、一般式(1)で表されるフルオロスルホニルイミド塩と電解液溶媒を減圧及び/又は加熱する工程を含んでいればよく、常圧下、減圧下いずれでも行うことができる。熱によるフルオロスルホニルイミド塩の分解を防ぐ点からは、減圧下で行うのが望ましい。減圧度は残留溶媒の種類、電解液溶媒の種類に応じて適宜調整すればよく特に限定はされないが、例えば、200kPa以下とするのが好ましく、より好ましくは40kPa以下であり、さらに好ましくは15kPa以下であり、特に好ましくは5kPa以下である。 The volatilization step may include a step of reducing the pressure and/or heating the fluorosulfonylimide salt represented by the general formula (1) and the electrolyte solvent, and can be carried out under normal pressure or under reduced pressure. From the viewpoint of preventing thermal decomposition of the fluorosulfonylimide salt, it is desirable to carry out the reaction under reduced pressure. The degree of pressure reduction may be appropriately adjusted according to the type of residual solvent and the type of electrolyte solvent, and is not particularly limited. and particularly preferably 5 kPa or less.

揮発温度は、減圧度、残留溶媒の種類、電解液溶媒の種類に応じて適宜調整すればよく特に限定はされないが、熱によるフルオロスルホニルイミド塩の分解を防ぐ点からは比較的低い温度で行うのが望ましい。例えば、10~110℃が好ましく、より好ましくは15~80℃であり、さらに好ましくは20~60℃であり、特に好ましくは30~50℃である。 The volatilization temperature is not particularly limited and may be appropriately adjusted depending on the degree of pressure reduction, the type of residual solvent, and the type of electrolyte solvent, but it is performed at a relatively low temperature in order to prevent decomposition of the fluorosulfonylimide salt due to heat. is desirable. For example, it is preferably 10 to 110°C, more preferably 15 to 80°C, even more preferably 20 to 60°C, and particularly preferably 30 to 50°C.

揮発時間は、減圧度、加熱温度、残存溶媒の量などに応じて適宜調整すればよく特に限定はされないが、例えば、0.1~24時間が好ましく、より好ましくは0.5~12時間、さらに好ましくは1~8時間であり、特に好ましくは2~5時間である。 The volatilization time is not particularly limited and may be appropriately adjusted according to the degree of pressure reduction, heating temperature, amount of residual solvent, etc., but is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours, More preferably 1 to 8 hours, particularly preferably 2 to 5 hours.

揮発工程に用いる減圧及び/又は加熱が行える装置としては、溶液量、減圧度、加熱温度などに応じて適宜選択すればよい。例えば、槽型反応器、減圧可能な槽型反応器等が挙げられる。 The apparatus capable of depressurization and/or heating used in the volatilization step may be appropriately selected according to the amount of solution, degree of decompression, heating temperature, and the like. For example, a tank reactor, a pressure-reduced tank reactor, and the like can be mentioned.

電解液材料中に含まれる一般式(1)で表されるフルオロスルホニルイミド塩の濃度は、電解液溶媒の種類に応じて適宜調整すればよく特に限定はされないが、例えば、15~95質量%が好ましく、より好ましくは20~90質量%、さらに好ましくは30~90質量%である。電解液材料に有機溶媒を添加して非水電解液を製造する際に、非水電解液中の電解質塩濃度を適宜設定できるという面から、電解液材料中に含まれる一般式(1)で表されるフルオロスルホニルイミド塩の濃度は、30質量%以上であることが好ましく、より好ましくは40質量%以上、さらに好ましくは50質量%以上である。本発明の電解液材料は一般式(1)で表されるフルオロスルホニルイミド塩の濃度が30質量%以上であることにより、安定性が良く、保存や輸送に用いる容器の腐食の原因となるHF(フッ化水素酸)の発生が抑制されるため、一般式(1)で表されるフルオロスルホニルイミド塩の保存や輸送にも適している。 The concentration of the fluorosulfonylimide salt represented by the general formula (1) contained in the electrolyte material is not particularly limited and may be appropriately adjusted according to the type of the electrolyte solvent. is preferred, more preferably 20 to 90% by mass, and still more preferably 30 to 90% by mass. When the non-aqueous electrolyte is produced by adding an organic solvent to the electrolyte material, the electrolyte salt concentration in the non-aqueous electrolyte can be appropriately set. The concentration of the represented fluorosulfonylimide salt is preferably 30% by mass or more, more preferably 40% by mass or more, and still more preferably 50% by mass or more. Since the concentration of the fluorosulfonylimide salt represented by the general formula (1) is 30% by mass or more, the electrolyte material of the present invention has good stability and causes corrosion of containers used for storage and transportation. Since generation of (hydrofluoric acid) is suppressed, it is also suitable for storage and transportation of the fluorosulfonylimide salt represented by the general formula (1).

本発明の電解液材料に含まれる電解液溶媒としては、上述した電解液溶媒を用いることができるが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート又はγ-ブチロラクトン、γ-バレロラクトン等の環状エステル系溶媒を含むことが好ましい。中でも、エチレンカーボネート又はγ-ブチロラクトンを含むことが好ましく、特に好ましくはエチレンカーボネートである。上記の環状カーボネート又は環状エステル系溶媒を電解液溶媒の合計量に対して90質量%以上含むことが好ましく、より好ましくは95質量%以上、さらに好ましくは98質量%以上含むことである。 As the electrolyte solvent contained in the electrolyte material of the present invention, the electrolyte solvent described above can be used. It preferably contains a cyclic ester solvent. Among them, ethylene carbonate or γ-butyrolactone is preferable, and ethylene carbonate is particularly preferable. The above cyclic carbonate or cyclic ester solvent is preferably contained in an amount of 90% by mass or more, more preferably 95% by mass or more, and still more preferably 98% by mass or more, based on the total amount of the electrolyte solvent.

電解液材料中の残留溶媒量は、電解液材料の濃度残留溶媒の種類に応じて適宜調整すればよく特に限定はされないが、例えば、3000ppm以下が好ましく、より好ましくは2000ppm以下、さらに好ましくは1000ppm以下、特に好ましくは500ppm以下、最も好ましくは200ppm以下である。電解液中に含まれるフルオロスルホニルイミド塩の製造溶媒の残留量が上記範囲であることにより、得られる非水電解液中の溶媒量を抑制することができるため、当該非水電解液を用いた電池においては、駆動時の副反応が抑制され、電池の膨れが抑制できる。 The amount of residual solvent in the electrolyte material is not particularly limited and may be appropriately adjusted according to the concentration of the residual solvent in the electrolyte material, but is preferably 3000 ppm or less, more preferably 2000 ppm or less, and still more preferably 1000 ppm. Below, particularly preferably 500 ppm or less, most preferably 200 ppm or less. When the residual amount of the production solvent for the fluorosulfonylimide salt contained in the electrolytic solution is within the above range, the amount of solvent in the obtained non-aqueous electrolytic solution can be suppressed, so the non-aqueous electrolytic solution was used. In the battery, side reactions during driving are suppressed, and swelling of the battery can be suppressed.

揮発工程終了後は、必要に応じて、ろ過、カラム精製、活性炭処理、モレキュラーシーブ処理などを実施しても良い。 After completion of the volatilization step, filtration, column purification, activated carbon treatment, molecular sieve treatment, etc. may be performed as necessary.

本発明の製造方法により得られる電解液材料は、一次電池、リチウムイオン二次電池、燃料電池等の充電/放電機構を有する電池、電解コンデンサ、電気二重層キャパシタ、太陽電池、エレクトロクロミック表示素子等の蓄電デバイス(電気化学デバイス)を構成するイオン伝導体の材料として好適に用いられる。 Electrolyte materials obtained by the production method of the present invention include batteries having a charge/discharge mechanism such as primary batteries, lithium ion secondary batteries, and fuel cells, electrolytic capacitors, electric double layer capacitors, solar cells, electrochromic display elements, and the like. It is suitably used as a material for an ion conductor constituting an electrical storage device (electrochemical device).

本発明には、上記電解液材料を用いて得られる非水電解液、上記電解液材料を用いた非水電解液の製造方法も含まれる。上記電解液材料に必要に応じて非水電解液調製用溶媒を混合することにより、非水電解液を得ることができる。非水電解液には電池特性向上を目的として各種電解質、添加剤等を添加することがあり、電解質等の溶解に適した溶媒を電解液材料に添加してもよく、本発明では電解液材料に所望の溶媒を添加することにより、非水電解液を調製することができる。
したがって電解液調製用溶媒としては、電解液溶媒と相溶し、所望の電解質塩を溶解、分散させられるものであれば特に限定されない。また本発明では非水系溶媒、溶媒に代えて用いられるポリマー、ポリマーゲル等の媒体等、電池に用いられる従来公知の溶媒はいずれも使用できる。なお、電解液材料には電解液溶媒が含まれているが、必要に応じて電解液材料に更に電解液溶媒と同種の溶媒を添加してもよく、上述した電解液溶媒はいずれも用いることができる。電解液調製用溶媒は液体、固体のいずれでもよいが、効率的に混合するためには液体が好ましい。また電解液調製用溶媒の温度も特に限定されず、室温でよいが必要に応じて適宜温度を調整してもよい。
The present invention also includes a non-aqueous electrolyte obtained using the electrolyte material and a method for producing a non-aqueous electrolyte using the electrolyte material. A non-aqueous electrolytic solution can be obtained by mixing a non-aqueous electrolytic solution-preparing solvent with the above electrolytic solution material, if necessary. Various electrolytes, additives, etc. may be added to the non-aqueous electrolyte for the purpose of improving battery characteristics, and a solvent suitable for dissolving the electrolyte may be added to the electrolyte material. A non-aqueous electrolyte can be prepared by adding a desired solvent to .
Therefore, the solvent for preparing the electrolytic solution is not particularly limited as long as it is compatible with the electrolytic solution solvent and dissolves and disperses the desired electrolytic salt. Further, in the present invention, conventionally known solvents used in batteries, such as non-aqueous solvents and media such as polymers and polymer gels used in place of solvents, can be used. The electrolyte solvent contains the electrolyte solvent, but if necessary, the same solvent as the electrolyte solvent may be added to the electrolyte material, and any of the electrolyte solvents described above may be used. can be done. The solvent for electrolyte preparation may be liquid or solid, but liquid is preferred for efficient mixing. Also, the temperature of the solvent for preparing the electrolytic solution is not particularly limited.

電解液調製用溶媒の中でも、鎖状炭酸エステル類、環状炭酸エステル類等の炭酸エステル類(カーボネート系溶媒)、ラクトン類、エーテル類が好ましく、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン等がより好ましく、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒がさらに好ましい。上記溶媒は1種を単独で用いてもよく、また、2種以上を組み合わ
せて用いてもよい。
Among the solvents for preparing the electrolytic solution, carbonic acid esters (carbonate-based solvents) such as chain carbonic acid esters and cyclic carbonic acid esters, lactones, and ethers are preferable, and dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate, ethylene carbonate, More preferred are propylene carbonate, γ-butyrolactone and γ-valerolactone, and more preferred are carbonate solvents such as dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate, ethylene carbonate and propylene carbonate. One of the above solvents may be used alone, or two or more thereof may be used in combination.

本発明ではさらに必要に応じて電解液材料にフルオロスルホニルイミド塩(1)とは異なる電解質塩(以下、「他の電解質塩」ということがある)を混合してもよい。他の電解質塩は上記電解質調製用溶媒を添加する前の電解液材料に添加してもよいが、他の電解質塩の溶解効率を考慮すると上記電解質調製用溶媒を電解液材料に添加した後に、他の電解質塩を添加することが望ましい。例えば添加する他の電解質塩がLiPF6などのようにエチレンカーボネートに難溶性の場合、該電解質塩の溶解に適した溶媒を上記電解質調製用溶媒として電解液材料に添加した後、該電解質塩を添加することが望ましい。 In the present invention, an electrolyte salt different from the fluorosulfonylimide salt (1) (hereinafter sometimes referred to as "another electrolyte salt") may be mixed with the electrolyte material, if necessary. The other electrolyte salt may be added to the electrolyte material before the electrolyte preparation solvent is added, but considering the dissolution efficiency of the other electrolyte salt, after adding the electrolyte preparation solvent to the electrolyte material Adding other electrolyte salts may be desirable. For example, when the other electrolyte salt to be added is poorly soluble in ethylene carbonate such as LiPF 6 , a solvent suitable for dissolving the electrolyte salt is added to the electrolyte material as the electrolyte preparation solvent, and then the electrolyte salt is added. It is desirable to add

他の電解質塩としては、特に限定されず、リチウムイオン二次電池の電解液において用いられている従来公知の電解質はいずれも使用できる。例えば他の電解質塩としては、トリフルオロメタンスルホン酸イオン(CF3SO3 -)、フルオロリン酸イオン(PF6 -)、過塩素酸イオン(ClO4 -)、テトラフルオロ硼酸イオン(BF4 -)、ヘキサフルオロ砒酸イオン(AsF6 -)、テトラシアノホウ酸イオン([B(CN)4-)、テトラクロロアルミニウムイオン(AlCl4 -)、トリシアノメチドイオン(C[(CN)3-)、ジシアナミドイオン(N[(CN)2-)、トリス(トリフルオロメタンスルホニル)メチドイオン(C[(CF3SO23-)、ヘキサフルオロアンチモン酸イオン(SbF6 -)およびジシアノトリアゾレートイオン(DCTA)等をアニオンとする無機又は有機カチオン塩等の従来公知の電解質塩が使用できる。より具体的には、LiPF6、LiPF3(C253、LiBF4、LiBF(CF33が挙げられ、好ましくはLiPF6、LiBF4であり、さらに好ましくはLiPF6である。本発明の電解液材料に、電解液調製用溶媒、他の電解質塩を混合して非水電解液を製造することにより、電解質塩を混合する際の発熱を抑制できるため、非水電解液の分解を抑制し、良好な品質の電解液を得ることができる。 Other electrolyte salts are not particularly limited, and any conventionally known electrolytes used in electrolyte solutions for lithium ion secondary batteries can be used. For example, other electrolyte salts include trifluoromethanesulfonate (CF 3 SO 3 ), fluorophosphate (PF 6 ), perchlorate (ClO 4 ), tetrafluoroborate (BF 4 ). , hexafluoroarsenate ion (AsF 6 - ), tetracyanoborate ion ([B(CN) 4 ] - ), tetrachloroaluminum ion (AlCl 4 - ), tricyanomethide ion (C[(CN) 3 ] - ), dicyanamide ion (N[(CN) 2 ] ), tris(trifluoromethanesulfonyl)methide ion (C[(CF 3 SO 2 ) 3 ] ), hexafluoroantimonate ion (SbF 6 ) and dicyanotri Conventionally known electrolyte salts such as inorganic or organic cation salts having anions such as azolate ions (DCTA) can be used. More specifically, LiPF 6 , LiPF 3 (C 2 F 5 ) 3 , LiBF 4 and LiBF(CF 3 ) 3 are listed, with LiPF 6 and LiBF 4 being preferred, and LiPF 6 being more preferred. By mixing the electrolyte material of the present invention with a solvent for electrolyte preparation and other electrolyte salts to produce a non-aqueous electrolyte, heat generation during mixing of the electrolyte salt can be suppressed. Decomposition can be suppressed, and an electrolytic solution of good quality can be obtained.

本発明に係る非水電解液は、リチウムイオン二次電池の各種特性の向上を目的とする添加剤を含んでいてもよい。添加剤は非水電解液の製造過程の任意の段階で加えればよく、特に限定されず、例えば上記電解質塩の添加後に加えればよい。 The nonaqueous electrolyte according to the present invention may contain additives for the purpose of improving various characteristics of the lithium ion secondary battery. The additive may be added at any stage of the manufacturing process of the non-aqueous electrolytic solution, and is not particularly limited. For example, it may be added after adding the electrolyte salt.

本発明には、本発明の電解液材料の保存方法、輸送方法も包含される。本発明の電解液材料は、一般式(1)で表されるフルオロスルホニルイミド塩と電解液溶媒を含み、一般式(1)で表されるフルオロスルホニルイミド塩の濃度が30質量%以上であることにより、安定性が良く、保存や輸送に用いる容器の腐食の原因となるHF(フッ化水素酸)の発生が抑制されるため、一般式(1)で示されるフルオロスルホニルイミド塩の保存や輸送にも適している。電解液材料中の一般式(1)で表されるフルオロスルホニルイミド塩の濃度は、35質量%が好ましく、より好ましくは40質量%以上、さらに好ましくは50質量%以上である。当該濃度の上限としては、95質量%以下が好ましく、より好ましくは90質量%以下である。電解液材料中の一般式(1)で表されるフルオロスルホニルイミド塩の濃度が30質量%未満である場合は、フルオロスルホニルイミド塩の分解によりHF等の酸が発生し、容器を腐食したり、電解液材料が劣化するおそれがある。 The present invention also includes methods for storing and transporting the electrolyte material of the present invention. The electrolyte material of the present invention contains a fluorosulfonylimide salt represented by the general formula (1) and an electrolyte solvent, and the concentration of the fluorosulfonylimide salt represented by the general formula (1) is 30% by mass or more. As a result, the stability is good and the generation of HF (hydrofluoric acid), which causes corrosion of containers used for storage and transportation, is suppressed, so the fluorosulfonylimide salt represented by the general formula (1) can be stored and Also suitable for transport. The concentration of the fluorosulfonylimide salt represented by general formula (1) in the electrolyte material is preferably 35% by mass, more preferably 40% by mass or more, and still more preferably 50% by mass or more. The upper limit of the concentration is preferably 95% by mass or less, more preferably 90% by mass or less. If the concentration of the fluorosulfonylimide salt represented by general formula (1) in the electrolyte material is less than 30% by mass, the decomposition of the fluorosulfonylimide salt generates an acid such as HF, which corrodes the container. , the electrolyte material may deteriorate.

本発明の電解液材料の保存、輸送に用いる容器としては、容器のサイズや材質などの形態は特に制限されず、従来公知の知見が適宜参照されうる。実験室レベルで合成された少量の電解液材料を保存するためには、小さい保存用容器を用いればよい。また、工業レベルで合成された大量の電解液材料を保存するためには、大きい保存用容器を用いればよい。 As for the container used for storing and transporting the electrolytic solution material of the present invention, there are no particular restrictions on the shape of the container, such as the size and material, and conventionally known knowledge can be referred to as appropriate. Small storage containers can be used to store small quantities of electrolyte materials synthesized in the laboratory. Also, in order to store a large amount of electrolyte material synthesized on an industrial level, a large storage container may be used.

保存用容器の材質については、例えば、ステンレス鋼、ハステロイなどの金属材料、ポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂等が採用されうる。なかでも、耐圧圧力が高いという観点からは、容器はステンレス鋼から構成されることが好ましい。また、保存用容器の耐蝕性をより一層向上させる目的で、上記の金属等の材料から構成される容器の内面を樹脂でコーティングするとよい。この際、コーティングに用いられる樹脂は特に制限されないが、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系樹脂やポリプロピレンなどのオレフィン系樹脂が例示される。なかでも、耐蝕性の向上効果が優れるという観点からは、PTFEを用いてコーティングすることが好ましい。ここで、樹脂コーティングのコーティング厚さについては特に制限はないが、好ましくは10~3000μmであり、より好ましくは500~1000μmである。さらに、保存用容器は密封可能であることが好ましく、容器を密封可能とする手段としては、例えば、容器の一部にバルブを設ける形態が例示される。 As for the material of the storage container, for example, metal materials such as stainless steel and Hastelloy, fluorine-based resins such as polytetrafluoroethylene (PTFE), and the like can be used. Among others, the container is preferably made of stainless steel from the viewpoint of high withstand pressure. For the purpose of further improving the corrosion resistance of the storage container, it is preferable to coat the inner surface of the container made of the above materials such as metal with a resin. At this time, the resin used for coating is not particularly limited, but examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene/hexafluoropropylene copolymer ( Fluorinated resins such as FEP) and olefinic resins such as polypropylene are exemplified. Among them, PTFE is preferably used for coating from the viewpoint that the effect of improving the corrosion resistance is excellent. Here, the coating thickness of the resin coating is not particularly limited, but is preferably 10 to 3000 μm, more preferably 500 to 1000 μm. Furthermore, the storage container is preferably sealable, and examples of means for making the container sealable include a form in which a valve is provided in a portion of the container.

本願は、2014年10月3日に出願された日本国特許出願第2014-204815号および2015年6月11日に出願された日本国特許出願第2015-118065号に基づく優先権の利益を主張するものである。2014年10月3日に出願された日本国特許出願第2014-204815号および2015年6月11日に出願された日本国特許出願第2015-118065号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2014-204815 filed on October 3, 2014 and Japanese Patent Application No. 2015-118065 filed on June 11, 2015 It is something to do. The entire contents of the specifications of Japanese Patent Application No. 2014-204815 filed on October 3, 2014 and Japanese Patent Application No. 2015-118065 filed on June 11, 2015 are referred to in this application. Incorporated for

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより以下の実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited by the following examples, and can be modified appropriately within the scope of the above and later descriptions. Of course, it is also possible to carry out the method using other methods, and all of them are included in the technical scope of the present invention.

[残留溶媒量]
電解液材料0.05gにジメチルスルホキシド水溶液(ジメチルスルホキシド/超純水=20/80、体積比)200μl、20質量%塩化ナトリウム水溶液2mlを加えて測定溶液とし、これをバイアル瓶に入れ密閉し、ヘッドスペース-ガスクロマトグラフィーシステム(「Agilent6890」、Agilent社製)により、電解液材料に含まれる残留溶媒量を測定した。
装置:Agilent6890
カラム:HP-5(長さ:30m、カラム内径:0.32mm、膜厚:0.25μm)(Agilent社製)
カラム温度条件:60℃(2分保持)、30℃/分で300℃まで昇温、300℃(2分保持)
ヘッドスペース条件:80℃(30分保持)
インジェクター温度:250℃
検出器:FID(300℃)
[Residual solvent amount]
200 μl of a dimethyl sulfoxide aqueous solution (dimethyl sulfoxide/ultrapure water=20/80, volume ratio) and 2 ml of a 20% by mass sodium chloride aqueous solution were added to 0.05 g of the electrolyte material to prepare a measurement solution, which was placed in a vial and sealed. A headspace-gas chromatography system (“Agilent 6890”, manufactured by Agilent) was used to measure the amount of residual solvent contained in the electrolyte material.
Equipment: Agilent 6890
Column: HP-5 (length: 30 m, column inner diameter: 0.32 mm, film thickness: 0.25 μm) (manufactured by Agilent)
Column temperature conditions: 60°C (hold for 2 minutes), heat up to 300°C at 30°C/min, 300°C (hold for 2 minutes)
Headspace conditions: 80°C (held for 30 minutes)
Injector temperature: 250°C
Detector: FID (300°C)

製造例1 リチウム ジ(フルオロスルホニル)イミド(LiFSI)の製造
撹拌装置、冷却器を備えた容量500mLのPFA製反応容器に、酢酸ブチル120gを加え、ここにジ(クロロスルホニル)イミド16.1g(75mmol)を加え攪拌して溶解させた。得られたジ(クロロスルホニル)イミド溶液に、塩化アンモニウム4.45g(82.5mmol)を加え、80℃で1時間攪拌した。ジ(クロロスルホニル)イミド溶液に酸性フッ化アンモニウムNH4F・HFを20.53g(360mmol)加え、80℃で4時間攪拌を続けた。
反応終了後、反応溶液を室温まで冷却した後、固形分を濾過により除去した。ろ液を、分液ロートに移し、そこへ水酸化リチウム・一水和物3.15g(75mmol)を超純水21gに溶解した水溶液を加え、混合した。静置したのち、水層を除去した。再び水酸化リチウム・一水和物1.57g(37mmol)を超純水11gに溶解した水溶液を加え、混合した。静置したのち、水層を除去した。
有機層に、リチウム ジ(フルオロスルホニル)イミド10gを含んだ溶液128gが得られた。得られた溶液を50℃、1.5kPaで1時間加熱して酢酸ブチルを揮発させ、リチウム ジ(フルオロスルホニル)10g、酢酸ブチル20gからなる溶液30gを得た。19F-NMR(溶媒:重アセトニトリル)測定において、内部標準物質として加えたトリフルオロメチルベンゼンの量、及び、これに由来するピークの積分値と、目的生成物に由来するピークの積分値との比較から、有機層に含まれるリチウム ジ(フルオロスルホニル)イミドの量を求めた。
Production Example 1 Production of lithium di(fluorosulfonyl)imide (LiFSI) 120 g of butyl acetate was added to a 500 mL PFA reaction vessel equipped with a stirrer and a cooler, and 16.1 g of di(chlorosulfonyl)imide ( 75 mmol) was added and dissolved by stirring. 4.45 g (82.5 mmol) of ammonium chloride was added to the obtained di(chlorosulfonyl)imide solution, and the mixture was stirred at 80° C. for 1 hour. 20.53 g (360 mmol) of ammonium acid fluoride NH 4 F.HF was added to the di(chlorosulfonyl)imide solution, and stirring was continued at 80° C. for 4 hours.
After completion of the reaction, the reaction solution was cooled to room temperature, and solid content was removed by filtration. The filtrate was transferred to a separating funnel, and an aqueous solution prepared by dissolving 3.15 g (75 mmol) of lithium hydroxide monohydrate in 21 g of ultrapure water was added and mixed. After allowing to stand still, the aqueous layer was removed. An aqueous solution prepared by dissolving 1.57 g (37 mmol) of lithium hydroxide monohydrate in 11 g of ultrapure water was again added and mixed. After allowing to stand still, the aqueous layer was removed.
128 g of a solution containing 10 g of lithium di(fluorosulfonyl)imide in the organic layer was obtained. The obtained solution was heated at 50° C. and 1.5 kPa for 1 hour to volatilize the butyl acetate to obtain 30 g of a solution composed of 10 g of lithium di(fluorosulfonyl) and 20 g of butyl acetate. In 19 F-NMR (solvent: deuterated acetonitrile) measurement, the amount of trifluoromethylbenzene added as an internal standard substance, the integrated value of the peak derived from this, and the integrated value of the peak derived from the target product By comparison, the amount of lithium di(fluorosulfonyl)imide contained in the organic layer was determined.

実施例1
50mlナスフラスコに、別途調製した、酢酸ブチルを208ppm、ジクロロメタンを4621ppm含有するリチウム ジ(フルオロスルホニル)イミド粉体4.99gにジエチルカーボネート7.56gを加えて溶解した。溶液を25℃、1kPaで3時間減圧して溶媒を揮発させた。電解液材料として、リチウム ジ(フルオロスルホニル)イミドのジエチルカーボネート溶液11.64gを得た。得られた溶液は、酢酸ブチルを83ppm含有していたが、ジクロロメタンは確認されなかった。リチウム ジ(フルオロスルホニル)イミドと親和性が低いジクロロメタンは揮発工程により削減できた。
Example 1
7.56 g of diethyl carbonate was added and dissolved in 4.99 g of separately prepared lithium di(fluorosulfonyl)imide powder containing 208 ppm of butyl acetate and 4621 ppm of dichloromethane in a 50 ml eggplant flask. The solution was decompressed at 25° C. and 1 kPa for 3 hours to volatilize the solvent. As an electrolyte material, 11.64 g of a solution of lithium di(fluorosulfonyl)imide in diethyl carbonate was obtained. The resulting solution contained 83 ppm of butyl acetate, but no dichloromethane was identified. Dichloromethane, which has a low affinity for lithium di(fluorosulfonyl)imide, was reduced by the volatilization process.

実施例2
25mlナスフラスコに、酢酸ブチルを208ppm、ジクロロメタンを4621ppm含有するリチウム ジ(フルオロスルホニル)イミド粉体3.23gにエチレンカーボネート(EC)4.76gを加えて溶解した。溶液を25℃、1kPaで3時間減圧して溶媒を揮発させた。電解液材料として、リチウム ジ(フルオロスルホニル)イミドのエチレンカーボネート溶液7.83gを得た。得られた溶液は、酢酸ブチルを85ppm、ジクロロメタンを40ppm含有することを確認した。
Example 2
4.76 g of ethylene carbonate (EC) was added to 3.23 g of lithium di(fluorosulfonyl)imide powder containing 208 ppm of butyl acetate and 4621 ppm of dichloromethane in a 25 ml eggplant flask and dissolved. The solution was decompressed at 25° C. and 1 kPa for 3 hours to volatilize the solvent. As an electrolyte material, 7.83 g of an ethylene carbonate solution of lithium di(fluorosulfonyl)imide was obtained. The obtained solution was confirmed to contain 85 ppm of butyl acetate and 40 ppm of dichloromethane.

実施例3
100mlナスフラスコに、リチウム ジ(フルオロスルホニル)イミド10gが酢酸ブチル20gに溶解した溶液とエチレンカーボネート20gを加えた。溶液を60℃、1.5kPaで8時間、加熱および減圧して溶媒を揮発させた。電解液材料としてリチウム ジ(フルオロスルホニル)イミドのエチレンカーボネート溶液28gを得た。得られた溶液は、酢酸ブチルを60ppm含有することを確認した。リチウム ジ(フルオロスルホニル)イミドと親和性が中程度の酢酸ブチルは揮発工程により削減できた。
Example 3
A solution of 10 g of lithium di(fluorosulfonyl)imide dissolved in 20 g of butyl acetate and 20 g of ethylene carbonate were added to a 100 ml eggplant flask. The solution was heated at 60° C. and 1.5 kPa for 8 hours under reduced pressure to volatilize the solvent. 28 g of an ethylene carbonate solution of lithium di(fluorosulfonyl)imide was obtained as an electrolyte material. The obtained solution was confirmed to contain 60 ppm of butyl acetate. Butyl acetate, which has a moderate affinity for lithium di(fluorosulfonyl)imide, could be reduced by the volatilization process.

実施例4-1~7-5
ジ(フルオロスルホニル)イミド溶液に含まれる溶媒、電解液溶媒、溶液温度、減圧度、加熱時間を表1~4の通りとした以外は実施例3と同じようにしてジ(フルオロスルホニル)イミドを含む電解液材料を得た。得られた溶液の残留溶媒量を表に示す。
Examples 4-1 to 7-5
Di(fluorosulfonyl)imide was prepared in the same manner as in Example 3 except that the solvent contained in the di(fluorosulfonyl)imide solution, the electrolyte solvent, the solution temperature, the degree of pressure reduction, and the heating time were as shown in Tables 1 to 4. An electrolyte material containing The table shows the amount of residual solvent in the resulting solution.

実施例8-1~8-3
製造例1で得られたリチウム ジ(フルオロスルホニル)イミド10g、酢酸ブチル20gからなる溶液を用い、溶液温度、減圧度、加熱時間を表5のとおりとした以外は実施例3と同じようにしてジ(フルオロスルホニル)イミドを含む電解液材料を得た。得られた溶液の残留溶媒量を表に示す。
Examples 8-1 to 8-3
A solution of 10 g of lithium di(fluorosulfonyl)imide obtained in Production Example 1 and 20 g of butyl acetate was used, and the procedure of Example 3 was repeated except that the solution temperature, the degree of pressure reduction, and the heating time were as shown in Table 5. An electrolyte material containing di(fluorosulfonyl)imide was obtained. The table shows the amount of residual solvent in the resulting solution.

実施例9-1~13-5
ジ(フルオロスルホニル)イミド溶液に含まれる溶媒、電解液溶媒、溶液温度、減圧度、加熱時間を表6~10のとおりとした以外は実施例3と同じようにしてジ(フルオロスルホニル)イミドを含む電解液材料を得た。得られた溶液の残留溶媒量を表に示す。
Examples 9-1 to 13-5
Di(fluorosulfonyl)imide was prepared in the same manner as in Example 3 except that the solvent contained in the di(fluorosulfonyl)imide solution, the electrolyte solvent, the solution temperature, the degree of pressure reduction, and the heating time were as shown in Tables 6 to 10. An electrolyte material containing The table shows the amount of residual solvent in the resulting solution.

Figure 0007194784000002
Figure 0007194784000002

Figure 0007194784000003
Figure 0007194784000003

Figure 0007194784000004
Figure 0007194784000004

Figure 0007194784000005
Figure 0007194784000005

Figure 0007194784000006
Figure 0007194784000006

Figure 0007194784000007
Figure 0007194784000007

Figure 0007194784000008
Figure 0007194784000008

Figure 0007194784000009
Figure 0007194784000009

Figure 0007194784000010
Figure 0007194784000010

Figure 0007194784000011
Figure 0007194784000011

比較例1
真空乾燥器で、酢酸ブチル208ppm、ジクロロメタン4621ppm含有したリチウム ジ(フルオロスルホニル)イミド粉体5gをシャーレに広げ、60℃、1kPaで12時間乾燥したが残留溶媒量は減少しなかった。
Comparative example 1
In a vacuum dryer, 5 g of lithium di(fluorosulfonyl)imide powder containing 208 ppm of butyl acetate and 4621 ppm of dichloromethane was spread on a petri dish and dried at 60° C. and 1 kPa for 12 hours, but the amount of residual solvent did not decrease.

比較例2
酢酸ブチル208ppm、ジクロロメタン4621ppm含有したリチウム ジ(フルオロスルホニル)イミド粉体5gを乳鉢で粉砕した。それをシャーレに広げ、真空乾燥器で、60℃、1kPa、12時間乾燥したが残留溶媒量は減少しなかった。
Comparative example 2
5 g of lithium di(fluorosulfonyl)imide powder containing 208 ppm of butyl acetate and 4621 ppm of dichloromethane was pulverized in a mortar. It was spread on a Petri dish and dried in a vacuum dryer at 60° C. and 1 kPa for 12 hours, but the amount of residual solvent did not decrease.

実施例15-1
50mlのナスフラスコに、残留溶媒の酢酸ブチルを208ppm、ジクロロメタンを4621ppm含有したリチウム ジ(フルオロスルホニル)イミド粉体5.00gを入れ、EC5.10gを加えて溶解した。溶液を60℃、1kPaで3時間加熱して、溶媒を揮発させた。LiFSI5.00gとEC5.00gからなる電解液材料が得られた。
調製直後の電解液材料の残存溶媒量は、酢酸ブチルが55ppm、ジクロロメタンが5ppm、水分は20ppm、HFは4ppmであった。この電解液材料をステンレス鋼製の容器で、60℃で30日保存した。保存後の電解液材料中のHFは8ppmであった。
保存中にHFは4ppm発生したことになり、これをリチウム ジ(フルオロスルホニル)イミド(LiFSI)の質量当たりに換算すると、8ppm/LiFSI-kgとなった。
なお、HFの定量は、Metrohm社製の自動滴定装置を用いて行った。具体的には、非水用ソルボトロード電極を用い、0.01N水酸化ナトリウム/メタノール溶液で、中和滴定を行い、発生した酸をHFとして換算した。
Example 15-1
5.00 g of lithium di(fluorosulfonyl)imide powder containing 208 ppm of butyl acetate and 4621 ppm of dichloromethane as residual solvents was placed in a 50 ml eggplant flask, and 5.10 g of EC was added and dissolved. The solution was heated at 60° C. and 1 kPa for 3 hours to volatilize the solvent. An electrolyte material consisting of 5.00 g of LiFSI and 5.00 g of EC was obtained.
The amount of residual solvent in the electrolytic solution material immediately after preparation was 55 ppm for butyl acetate, 5 ppm for dichloromethane, 20 ppm for water, and 4 ppm for HF. This electrolyte material was stored in a stainless steel container at 60° C. for 30 days. HF in the electrolyte material after storage was 8 ppm.
4 ppm of HF was generated during storage, and when converted to the mass of lithium di(fluorosulfonyl)imide (LiFSI), it was 8 ppm/LiFSI-kg.
HF was quantified using an automatic titrator manufactured by Metrohm. Specifically, using a non-aqueous solvotrode electrode, neutralization titration was performed with a 0.01N sodium hydroxide/methanol solution, and the generated acid was converted to HF.

実施例15-2
50mlのナスフラスコに、残留溶媒の酢酸ブチルを208ppm、ジクロロメタンを4621ppm含有したリチウム ジ(フルオロスルホニル)イミド粉体5.00gを入れ、EC1.98gを加えて溶解した。この溶液を60℃、1kPaで3時間加熱して、溶媒を揮発させた。LiFSI5.00gとEC1.78gからなる溶液が得られた。この溶液にエチルメチルカーボネート(EMC)3.22g加え電解液材料を得た。調製直後の電解液材料の残存溶媒量は、酢酸ブチルが45ppm、ジクロロメタンが6ppmであった。後は、実施例15-1と同様にして、保存前後のHF量等を測定した。
Example 15-2
5.00 g of lithium di(fluorosulfonyl)imide powder containing 208 ppm of butyl acetate and 4621 ppm of dichloromethane as residual solvents was placed in a 50 ml eggplant flask, and 1.98 g of EC was added and dissolved. This solution was heated at 60° C. and 1 kPa for 3 hours to volatilize the solvent. A solution was obtained consisting of 5.00 g of LiFSI and 1.78 g of EC. 3.22 g of ethyl methyl carbonate (EMC) was added to this solution to obtain an electrolytic solution material. The amount of residual solvent in the electrolytic solution material immediately after preparation was 45 ppm for butyl acetate and 6 ppm for dichloromethane. After that, the amount of HF before and after storage was measured in the same manner as in Example 15-1.

実施例15-3
50mlのナスフラスコに、残留溶媒の酢酸ブチルを208ppm、ジクロロメタンを4621ppm含有したリチウム ジ(フルオロスルホニル)イミド粉体5.00gを入れ、EC4.50gを加えて溶解した。この溶液を60℃、1kPaで3時間加熱して、溶媒を揮発させた。LiFSI5.00gとEC4.40gからなる溶液が得られた。この溶液にEMCを0.6g加え電解液材料を得た。調製直後の電解液材料の残存溶媒量は、酢酸ブチルが43ppm、ジクロロメタンが5ppmであった。後は、実施例15-1と同様にして、保存前後のHF量等を測定した。
Example 15-3
5.00 g of lithium di(fluorosulfonyl)imide powder containing 208 ppm of butyl acetate and 4621 ppm of dichloromethane as residual solvents was placed in a 50 ml eggplant flask, and 4.50 g of EC was added and dissolved. This solution was heated at 60° C. and 1 kPa for 3 hours to volatilize the solvent. A solution consisting of 5.00 g LiFSI and 4.40 g EC was obtained. 0.6 g of EMC was added to this solution to obtain an electrolyte material. The amount of residual solvent in the electrolytic solution material immediately after preparation was 43 ppm for butyl acetate and 5 ppm for dichloromethane. After that, the amount of HF before and after storage was measured in the same manner as in Example 15-1.

実施例15-4
50mlのナスフラスコに、残留溶媒の酢酸ブチルを208ppm、ジクロロメタンを4621ppm含有したリチウム ジ(フルオロスルホニル)イミド粉体5.00gを入れ、γ-ブチロラクトン(GBL)を5.20g加えて溶解した。この溶液を60℃、1kPaで3時間加熱して、溶媒を揮発させた。LiFSI5.00gとGBL5.00gからなる電解液材料を得た。調製直後の電解液材料の残存溶媒量は、酢酸ブチルが85ppm、ジクロロメタンが9ppmであった。後は、実施例15-1と同様にして、保存前後のHF量等を測定した。
Example 15-4
5.00 g of lithium di(fluorosulfonyl)imide powder containing 208 ppm of butyl acetate and 4621 ppm of dichloromethane as residual solvents was placed in a 50 ml eggplant flask, and 5.20 g of γ-butyrolactone (GBL) was added and dissolved. This solution was heated at 60° C. and 1 kPa for 3 hours to volatilize the solvent. An electrolyte material consisting of 5.00 g of LiFSI and 5.00 g of GBL was obtained. The amount of residual solvent in the electrolytic solution material immediately after preparation was 85 ppm for butyl acetate and 9 ppm for dichloromethane. After that, the amount of HF before and after storage was measured in the same manner as in Example 15-1.

実施例15-5
50mlのナスフラスコに、残留溶媒の酢酸ブチルを208ppm、ジクロロメタンを4621ppm含有したリチウム ジ(フルオロスルホニル)イミド粉体6.20gを入れ、ECを4.00g加えて溶解した。この溶液を60℃、1kPaで3時間加熱して、溶媒を揮発させた。LiFSI6.20gとEC3.80gからなる電解液材料を得た。調製直後の電解液材料の残存溶媒量は、酢酸ブチルが78ppm、ジクロロメタンが7ppmであった。後は、実施例15-1と同様にして、保存前後のHF量等を測定した。
Example 15-5
6.20 g of lithium di(fluorosulfonyl)imide powder containing 208 ppm of butyl acetate and 4621 ppm of dichloromethane as residual solvents was placed in a 50 ml eggplant flask, and 4.00 g of EC was added and dissolved. This solution was heated at 60° C. and 1 kPa for 3 hours to volatilize the solvent. An electrolyte material consisting of 6.20 g of LiFSI and 3.80 g of EC was obtained. The amount of residual solvent in the electrolytic solution material immediately after preparation was 78 ppm for butyl acetate and 7 ppm for dichloromethane. After that, the amount of HF before and after storage was measured in the same manner as in Example 15-1.

実施例15-6
50mlのナスフラスコに、残留溶媒の酢酸ブチルを208ppm、ジクロロメタンを4621ppm含有したリチウム ジ(フルオロスルホニル)イミド粉体6.20gを入れ、ECを1.50g加えて溶解した。この溶液を60℃、1kPaで3時間加熱して、溶媒を揮発させた。LiFSI6.20gとEC1.35gからなる溶液を得た。この溶液にEMC2.45g加え、電解液材料を得た。調製直後の電解液材料の残存溶媒量は、酢酸ブチルが95ppm、ジクロロメタンが10ppmであった。後は、実施例15-1と同様にして、保存前後のHF量等を測定した。
Example 15-6
6.20 g of lithium di(fluorosulfonyl)imide powder containing 208 ppm of butyl acetate and 4621 ppm of dichloromethane as residual solvents was placed in a 50 ml eggplant flask, and 1.50 g of EC was added and dissolved. This solution was heated at 60° C. and 1 kPa for 3 hours to volatilize the solvent. A solution consisting of 6.20 g LiFSI and 1.35 g EC was obtained. 2.45 g of EMC was added to this solution to obtain an electrolyte material. The amount of residual solvent in the electrolytic solution material immediately after preparation was 95 ppm for butyl acetate and 10 ppm for dichloromethane. After that, the amount of HF before and after storage was measured in the same manner as in Example 15-1.

参考例1
実施例15-1と同様にして、LiFSI5.00gとEC5.00gからなる溶液を得た。この溶液にさらにECを加え、LiFSIが10.2質量%のEC溶液を得た。この溶液の残存溶媒量は、酢酸ブチルが13ppm、ジクロロメタンが2ppmであった。後は、実施例15-1と同様にして、保存前後のHF量等を測定した。
Reference example 1
A solution of 5.00 g of LiFSI and 5.00 g of EC was obtained in the same manner as in Example 15-1. EC was further added to this solution to obtain an EC solution containing 10.2% by mass of LiFSI. The amount of residual solvent in this solution was 13 ppm for butyl acetate and 2 ppm for dichloromethane. After that, the amount of HF before and after storage was measured in the same manner as in Example 15-1.

参考例2
実施例15-2と同様にして、LiFSI5.00gとEC1.78g、EMC3.22gからなる溶液を得た。この溶液にさらにEC13.88g、EMC25.12gを加え、LiFSIが10.2質量%の溶液を得た。この溶液の残存溶媒量は、酢酸ブチルが14ppm、ジクロロメタンが1ppmであった。後は、実施例15-1と同様にして、保存前後のHF量等を測定した。
Reference example 2
A solution of 5.00 g of LiFSI, 1.78 g of EC, and 3.22 g of EMC was obtained in the same manner as in Example 15-2. Further, 13.88 g of EC and 25.12 g of EMC were added to this solution to obtain a solution containing 10.2% by mass of LiFSI. The amount of residual solvent in this solution was 14 ppm for butyl acetate and 1 ppm for dichloromethane. After that, the amount of HF before and after storage was measured in the same manner as in Example 15-1.

Figure 0007194784000012
Figure 0007194784000012

表11に示したとおり、電解液材料中のLiFSI濃度が50質量%以上である実施例15-1~15-6と比較すると、参考例では、電解液材料中のLiFSI濃度が10.2質量%であるが、保存中のHFの発生量が顕著であることがわかる。このことから、LiFSIを所定量以上有する本発明の電解液材料は保存中のHFの発生を抑制する作用があることが確認できた。 As shown in Table 11, when compared with Examples 15-1 to 15-6 in which the LiFSI concentration in the electrolyte material is 50% by mass or more, in the reference example, the LiFSI concentration in the electrolyte material is 10.2 mass. %, it can be seen that the amount of HF generated during storage is remarkable. From this, it was confirmed that the electrolyte material of the present invention having a predetermined amount or more of LiFSI has the effect of suppressing the generation of HF during storage.

実施例A-1
実施例2において、エチレンカーボネートの使用量を4.60gとしたこと以外は、実施例2と同様にして、電解液材料を得た。得られた電解液材料に、LiPF62.62gと、EC5.69gと、エチルメチルカーボネート(EMC)18.40gを追加し、リチウム ジ(フルオロスルホニル)イミドが9.3質量%(0.6M)、LiPF6が67.5質量%(0.6M)のEC/EMC=3/7(体積比)混合溶媒の非水電解液を得た。この非水電解液の残留溶媒量は、酢酸ブチル8ppm、ジクロロメタン4ppmであった。
Example A-1
An electrolytic solution material was obtained in the same manner as in Example 2, except that the amount of ethylene carbonate used was 4.60 g. 2.62 g of LiPF 6 , 5.69 g of EC, and 18.40 g of ethyl methyl carbonate (EMC) were added to the obtained electrolyte material, and 9.3% by mass of lithium di(fluorosulfonyl)imide (0.6M ), a non-aqueous electrolytic solution of EC/EMC=3/7 (volume ratio) mixed solvent containing 67.5% by mass (0.6M) of LiPF 6 was obtained. The amount of residual solvent in this non-aqueous electrolytic solution was 8 ppm of butyl acetate and 4 ppm of dichloromethane.

実施例A-2
実施例A-1において、残留溶媒を揮発させる条件を25℃、40kPaで3時間とした以外は実施例A-1と同様にして、電解液材料を得た。このときの残留溶媒量は、酢酸ブチル96ppm、ジクロロメタン308ppmであった。得られた電解液材料に、実施例A-1と同量のLiPF6と、ECおよびEMCを追加し、LiFSI9.3質量%(0.6M)、LiPF6が67.5質量%(0.6M)のEC/EMC=3/7(体積比)混合溶媒の非水電解液を得た。この非水電解液の残留溶媒量は、酢酸ブチル9ppm、ジクロロメタン29ppmであった。
Example A-2
An electrolytic solution material was obtained in the same manner as in Example A-1, except that the conditions for volatilizing the residual solvent were 25° C., 40 kPa and 3 hours. The amount of residual solvent at this time was 96 ppm of butyl acetate and 308 ppm of dichloromethane. LiPF6 in the same amount as in Example A-1, EC and EMC were added to the resulting electrolyte material, and LiFSI was 9.3% by mass (0.6M) and LiPF6 was 67.5% by mass (0.6M). A non-aqueous electrolytic solution of EC/EMC=3/7 (volume ratio) of 6 M) mixed solvent was obtained. The amount of residual solvent in this non-aqueous electrolytic solution was 9 ppm of butyl acetate and 29 ppm of dichloromethane.

実施例A-3
実施例A-1において、残留溶媒を揮発させる条件を25℃、100kPaで3時間とした以外は実施例A-1と同様にして、電解液材料を得た。このときの残留溶媒量は、酢酸ブチル150ppm、ジクロロメタン1280ppmであった。得られた電解液材料に、実施例A-1と同量のLiPF6と、ECおよびEMCを追加し、LiFSI9.3質量%(0.6M)、LiPF6が67.5質量%(0.6M)のEC/EMC=3/7(体積比)混合溶媒の非水電解液を得た。この非水電解液の残留溶媒量は、酢酸ブチル19ppm、ジクロロメタン119ppmであった。
Example A-3
An electrolytic solution material was obtained in the same manner as in Example A-1, except that the conditions for volatilizing the residual solvent were 25° C., 100 kPa and 3 hours. The amount of residual solvent at this time was 150 ppm of butyl acetate and 1280 ppm of dichloromethane. LiPF6 in the same amount as in Example A-1, EC and EMC were added to the resulting electrolyte material, and LiFSI was 9.3% by mass (0.6M) and LiPF6 was 67.5% by mass (0.6M). A non-aqueous electrolytic solution of EC/EMC=3/7 (volume ratio) of 6 M) mixed solvent was obtained. The amount of residual solvent in this non-aqueous electrolyte was 19 ppm for butyl acetate and 119 ppm for dichloromethane.

比較例A-1
実施例A-1において、残留溶媒を揮発させる操作を行わなかった以外は実施例A-1と同様にして、電解液材料を得た。このときの残留溶媒量は、酢酸ブチル208ppm、ジクロロメタン4621ppmであった。得られた電解液材料に、実施例A-1と同量のLiPF6と、ECおよびEMCを追加し、LiFSI9.3質量%(0.6M)、LiPF6が67.5質量%(0.6M)のEC/EMC=3/7(体積比)混合溶媒の非水電解液を得た。この非水電解液の残留溶媒量は、酢酸ブチル17ppm、ジクロロメタン430ppmであった。
表12に示したとおり、実施例A-1~A-3では、60℃で1ヶ月保存した際の電池の体積膨張は0.03~0.06ml程度であったが、比較例A-1では0.21mlという結果であった。残存溶媒量の低減された電解液材料を用いた非水電解液を備えた電池においては、電池を充放電する際の電池の膨れが抑制できることが確認できた。
Comparative Example A-1
An electrolytic solution material was obtained in the same manner as in Example A-1, except that the operation of volatilizing the residual solvent was not performed. The amount of residual solvent at this time was 208 ppm of butyl acetate and 4621 ppm of dichloromethane. LiPF6 in the same amount as in Example A-1, EC and EMC were added to the resulting electrolyte material, and LiFSI was 9.3% by mass (0.6M) and LiPF6 was 67.5% by mass (0.6M). A non-aqueous electrolytic solution of EC/EMC=3/7 (volume ratio) of 6 M) mixed solvent was obtained. The amount of residual solvent in this non-aqueous electrolytic solution was 17 ppm of butyl acetate and 430 ppm of dichloromethane.
As shown in Table 12, in Examples A-1 to A-3, the volume expansion of the batteries when stored at 60° C. for one month was about 0.03 to 0.06 ml, but Comparative Example A-1 The result was 0.21 ml. It was confirmed that, in a battery including a non-aqueous electrolyte using an electrolyte material with a reduced amount of residual solvent, swelling of the battery during charging and discharging of the battery can be suppressed.

ラミネート型リチウムイオン二次電池の作製
1.正極シートの作製
正極活物質(LiCoO2)、導電助剤1(アセチレンブラック、AB)、導電助剤2(グラファイト)、及び結着剤(ポリフッ化ビニリデン、PVdF)を92:2:2:4の質量比で混合し、これをN-メチルピロリドンに分散させた正極合剤スラリーをアルミニウム箔に塗布し、乾燥、圧縮することにより正極シートを作製した。
Preparation of Laminated Lithium Ion Secondary Battery 1. Preparation of positive electrode sheet Positive electrode active material (LiCoO 2 ), conductive aid 1 (acetylene black, AB), conductive aid 2 (graphite), and binder (polyvinylidene fluoride, PVdF) were mixed at a ratio of 92:2:2:4. and dispersed in N-methylpyrrolidone. The positive electrode mixture slurry was applied to an aluminum foil, dried and compressed to prepare a positive electrode sheet.

2.負極シートの作製
負極活物質(グラファイト)、導電助剤(VGCF)、及び結着剤(SBR+CMC)を97:0.5:2.5の質量比で混合し、これをN-メチルピロリドンと混合して得られた負極合剤スラリーを作製した。4.2V充電での正極の充電容量を計算し、負極のリチウムイオン吸蔵可能容量/正極充電容量=1.1となるように負極合剤スラリーを銅箔(負極集電体)に塗布し、乾燥、圧縮することにより負極シートを作製した。
2. Preparation of negative electrode sheet A negative electrode active material (graphite), a conductive agent (VGCF), and a binder (SBR + CMC) were mixed at a mass ratio of 97:0.5:2.5, and this was mixed with N-methylpyrrolidone. The resulting negative electrode mixture slurry was prepared. Calculate the charge capacity of the positive electrode at 4.2 V charge, apply the negative electrode mixture slurry to the copper foil (negative electrode current collector) so that the lithium ion occluding capacity of the negative electrode/positive electrode charge capacity = 1.1, A negative electrode sheet was produced by drying and compressing.

3.ラミネート型リチウムイオン二次電池の作製
上記で作製した正極シート1枚と負極シート1枚それぞれの未塗工部分にアルミタブ、ニッケルタブを溶接し、ポリエチレン製セパレーターを挟んで対向させ、巻回機にて巻き取り、巻回体を作製した。作製した巻回体を適正な深さに絞り加工済みのアルミニウムラミネートフィルムと未処理のアルミニウムラミネートフィルムで挟み込み、アルミニウムラミネートフィルム内をそれぞれ上記実施例A-1~A-3と比較例A-1で作製した混合溶媒電解液で満たし、真空状態で密閉し、容量1Ahのラミネート型リチウムイオン二次電池を作製した。
3. Fabrication of laminated lithium-ion secondary battery An aluminum tab and a nickel tab are welded to the uncoated portions of each of the positive electrode sheet and the negative electrode sheet prepared above, and placed facing each other with a polyethylene separator sandwiched therebetween. to produce a wound body. The prepared wound body was sandwiched between aluminum laminate films that had been drawn to an appropriate depth and untreated aluminum laminate films, and the insides of the aluminum laminate films were respectively the above Examples A-1 to A-3 and Comparative Example A-1. was filled with the mixed solvent electrolyte prepared in 1. and sealed in a vacuum state to prepare a laminated lithium ion secondary battery with a capacity of 1 Ah.

4.電池評価
比容量(mAh/g)
ラミネート型リチウムイオン二次電池について、温度25℃の環境下、充放電試験装置(株式会社アスカ電子製ACD-01、以下同じ。)を使用し、所定の充電条件(0.5C、4.2V、定電流定電圧モード)で5時間充電を行った。その後、所定の放電条件(0.2C、放電終止電圧3.0V、定電流放電)で放電を行い、初回の放電容量を記録し、下記式に基づいて電池の質量比容量を算出し、初期放電特性を評価した。
質量比容量(mAh/g)=電池の初回の充電容量(mAh)/正極活物質質量(g)
4. Battery evaluation Specific capacity (mAh/g)
For the laminated lithium ion secondary battery, use a charge/discharge test device (ACD-01 manufactured by Aska Electronics Co., Ltd., hereinafter the same) in an environment at a temperature of 25 ° C., under predetermined charging conditions (0.5 C, 4.2 V , constant current and constant voltage mode) for 5 hours. After that, discharge is performed under predetermined discharge conditions (0.2 C, discharge final voltage 3.0 V, constant current discharge), the initial discharge capacity is recorded, and the mass specific capacity of the battery is calculated based on the following formula. Discharge characteristics were evaluated.
Mass specific capacity (mAh/g) = initial charge capacity of battery (mAh)/mass of positive electrode active material (g)

5.高温保存特性
上記比容量を測定した後、ラミネート型リチウムイオン二次電池について、温度25℃の環境下、充放電試験装置を使用し、所定の充電条件(1C、4.2V又、定電流定電圧モード0.02Cカット)で充電した後、所定の放電条件(0.2C、放電終止電圧3.0V、定電流放電)で放電を行いその後、再び、所定の充電条件(1C、4.2V、定電流定電圧モード0.02Cカット)で充電を行った。得られたセルを60℃の恒温槽に1か月間保存した。保存前後のセルをそれぞれ水に浸漬させて体積を求め、その差分により保存後のセルの膨れ量を得た。結果を表12に示した。
5. High-temperature storage characteristics After measuring the specific capacity, the laminated lithium-ion secondary battery was subjected to a charge-discharge test under a temperature of 25 ° C. After charging in voltage mode 0.02C cut), discharge under predetermined discharge conditions (0.2C, discharge end voltage 3.0V, constant current discharge), and then again under predetermined charging conditions (1C, 4.2V , constant current constant voltage mode 0.02C cut). The obtained cell was stored in a constant temperature bath at 60° C. for one month. The cells before and after storage were immersed in water to determine the volume, and the difference was used to obtain the swelling amount of the cell after storage. The results are shown in Table 12.

Figure 0007194784000013
Figure 0007194784000013

実施例B-1
表13に示す投入順序で各材料を混合釜に投入して非水電解液を製造した。表中、投入順序が1であるLiFSIとECは、予めLiFSI11.22kgと、EC36.36kgとを混合して準備した電解液材料として使用した。電解液材料を混合釜(容量150L)に投入した後、電解液調製用溶媒としてEMC27.82kg、ジエチルカーボネート(以下、「DEC」ということがある)35.81kg、他の電解質塩としてLiPF6(キシダ化学株式会社製)9.12kgを混合釜に順次投入した後、10分間撹拌を行って非水電解液を得た。なお、電解液材料、各電解液調製用溶媒、他の電解質塩の投入には夫々10分要した。また表中、「所要時間」は投入開始から投入終了までの時間であり、投入は撹拌しながら行った。各材料を混合釜に投入した後の液温を測定して表1に記載した。他の実施例も同様に温度を測定した。
Example B-1
A non-aqueous electrolyte was produced by charging each material into the mixing vessel in the charging order shown in Table 13. In the table, LiFSI and EC whose charging order is 1 were used as electrolytic solution materials prepared in advance by mixing 11.22 kg of LiFSI and 36.36 kg of EC. After the electrolyte materials were put into a mixing pot (capacity 150 L), 27.82 kg of EMC as a solvent for electrolyte preparation, 35.81 kg of diethyl carbonate (hereinafter sometimes referred to as "DEC"), and LiPF 6 ( Kishida Chemical Co., Ltd.) 9.12 kg was sequentially put into the mixing vessel, and then stirred for 10 minutes to obtain a non-aqueous electrolyte. It took 10 minutes to add the electrolytic solution materials, the solvents for preparing the electrolytic solutions, and the other electrolytic salts. In the table, "required time" is the time from the start of charging to the end of charging, and charging was performed while stirring. Table 1 shows the measured liquid temperature after each material was put into the mixing vessel. Temperature was measured in the same manner for other examples.

Figure 0007194784000014
Figure 0007194784000014

表13に示すように非水電解液の製造過程で混合釜内の液温を測定したが、60℃以上の温度になることはなかった。具体的には電解液材料に電解液調製用溶媒(EMC、DEC)を投入した際に発熱はなかった。またLiPF6を投入した後の液温は45℃まで上昇したが、電解液の分解は生じなかった。 As shown in Table 13, the liquid temperature in the mixing vessel was measured during the manufacturing process of the non-aqueous electrolyte, but the temperature did not exceed 60°C. Specifically, no heat was generated when the electrolytic solution preparation solvent (EMC, DEC) was added to the electrolytic solution material. Although the temperature of the liquid after charging LiPF 6 rose to 45° C., decomposition of the electrolyte did not occur.

実施例B-2
表14に示す投入順序で各材料を混合釜に投入して非水電解液を製造した。具体的にはLiFSI11.22kgと、EC20.0kgとを混合して準備した電解液材料を混合釜(容量150L)に投入した後、電解液調製用溶媒としてEMC27.82kg、DEC35.81kgを投入した。その後、混合釜に電解液調製用溶媒として60℃に加熱したEC16.36kgを投入し、続いて他の電解質塩としてLiPF69.12kgを投入した後、10分間撹拌を行って非水電解液を得た。なお、電解液材料、各電解液調製用溶媒、他の電解質塩の投入には夫々10分要した。
Example B-2
A non-aqueous electrolyte was produced by charging each material into the mixing vessel in the charging order shown in Table 14. Specifically, an electrolyte material prepared by mixing 11.22 kg of LiFSI and 20.0 kg of EC was put into a mixing pot (capacity: 150 L), and then 27.82 kg of EMC and 35.81 kg of DEC were added as solvents for preparing the electrolyte solution. . After that, 16.36 kg of EC heated to 60° C. as a solvent for electrolyte preparation was added to the mixing pot, and then 9.12 kg of LiPF 6 was added as another electrolyte salt, followed by stirring for 10 minutes to obtain a non-aqueous electrolyte. got It took 10 minutes to add the electrolytic solution materials, the solvents for preparing the electrolytic solutions, and the other electrolytic salts.

Figure 0007194784000015
Figure 0007194784000015

非水電解液の製造過程で混合釜内の液温を測定したが、60℃以上の温度になることはなかった。具体的には電解液材料に電解液調製用溶媒(EMC、DEC)を投入した際に発熱はなかった。また60℃に加熱したECを投入した後の液温は30℃、LiPF6を投入した後の液温は50℃まで上昇したが、電解液の分解は生じなかった。 The liquid temperature in the mixing pot was measured during the manufacturing process of the non-aqueous electrolyte, but the temperature did not exceed 60°C. Specifically, no heat was generated when the electrolytic solution preparation solvent (EMC, DEC) was added to the electrolytic solution material. The liquid temperature after adding EC heated to 60° C. was 30° C., and the liquid temperature after adding LiPF 6 was increased to 50° C. However, no decomposition of the electrolytic solution occurred.

比較例B-1
表15に示す投入順序で各材料を混合釜に投入して非水電解液を製造した。具体的には60℃に加熱したEC溶液36.36kgを混合釜に投入した後、EMC27.82kg、DEC35.81kgを投入して非水溶媒溶液を調製した。続いてLiFSIを投入したが、液温が55℃を超えないようにLiFSI11.22kgを3回(3.74kg/回)に分けて投入した。続いてLiPF69.12kgを3回(3.04kg/回)に分けて投入した。投入後10分間撹拌を行って非水電解液を得た。各電解液調製用溶媒、LiFSI、及びLiPF6の投入所要時間は、夫々10分であった。なお、LiFSI、及びLiPF6の投入所要時間は、合計時間(1回10分×3回)である。
Comparative Example B-1
A non-aqueous electrolyte was produced by charging each material into the mixing vessel in the charging order shown in Table 15. Specifically, 36.36 kg of the EC solution heated to 60° C. was put into a mixing vessel, and then 27.82 kg of EMC and 35.81 kg of DEC were put into the mixture to prepare a non-aqueous solvent solution. Subsequently, LiFSI was added, and 11.22 kg of LiFSI was added in 3 portions (3.74 kg/time) so that the liquid temperature did not exceed 55°C. Subsequently, 9.12 kg of LiPF 6 was charged in 3 portions (3.04 kg/time). Stirring was performed for 10 minutes after charging to obtain a non-aqueous electrolyte. It took 10 minutes to add each electrolyte solution preparation solvent, LiFSI, and LiPF 6 . The time required for adding LiFSI and LiPF 6 is the total time (10 minutes once×3 times).

Figure 0007194784000016
Figure 0007194784000016

非水電解液の製造過程で混合釜内の液温を測定したが、60℃以上の温度になることはなかった。具体的にはEC溶液に電解液調製用溶媒(EMC、DEC)を投入した際に発熱はなく、非水溶媒溶液を調整した後の液温は40℃であった(投入順序3)。その後LiFSI、LiPF6を分割投入したため、温度上昇が抑制されて非水電解液の分解は生じなかった。しかしながらLiFSI、LiPF6の添加に時間がかかり、生産性が悪かった。 The liquid temperature in the mixing pot was measured during the manufacturing process of the non-aqueous electrolyte, but the temperature did not exceed 60°C. Specifically, no heat was generated when the electrolyte solution preparation solvents (EMC and DEC) were added to the EC solution, and the solution temperature after preparing the non-aqueous solvent solution was 40° C. (addition order 3). After that, LiFSI and LiPF 6 were charged separately, so that the temperature rise was suppressed and the decomposition of the non-aqueous electrolyte did not occur. However, the addition of LiFSI and LiPF6 took a long time, resulting in poor productivity.

比較例B-2
表16に示す投入順序で各材料を混合釜に投入して非水電解液を製造した。具体的には比較例1と同様にして非水溶媒溶液(40℃)を調製した後、LiFSI11.22kgを投入した。続いてLiPF69.12kgを投入した。投入後10分間撹拌を行って非水電解液を得た。各電解液調製用溶媒、LiFSI、及びLiPF6の投入所要時間は、夫々10分であった。
Comparative Example B-2
A non-aqueous electrolyte was produced by charging each material into the mixing vessel in the charging order shown in Table 16. Specifically, after preparing a non-aqueous solvent solution (40° C.) in the same manner as in Comparative Example 1, 11.22 kg of LiFSI was added. Subsequently, 9.12 kg of LiPF 6 was added. Stirring was performed for 10 minutes after charging to obtain a non-aqueous electrolyte. It took 10 minutes to add each electrolyte solution preparation solvent, LiFSI, and LiPF 6 .

Figure 0007194784000017
Figure 0007194784000017

LiFSI投入後の液温は55℃、LiPF6投入後の液温は75℃まで上昇した。得られた非水電解液は薄橙色に着色されており、電解液の分解が生じていた。 After LiFSI was added, the liquid temperature was 55°C, and after LiPF 6 was added, the liquid temperature was increased to 75°C. The resulting non-aqueous electrolyte was colored light orange, indicating decomposition of the electrolyte.

上記実施例B-1、B-2、比較例B-1、B-2の結果から次のことがわかる。実施例B-1、B-2に示すようにフルオロスルホニルイミド塩(1)とエチレンカーボネートとを予め調合して容易した電解液材料を出発原料とし、これに電解液調製用溶媒や他の電解質塩を添加して発熱が生じても液温は低く抑えられていた。そのため非水電解液の分解を防止でき、良好な品質の非水電解液が得られた。また非水電解液の調製に要する時間も50~60分であり、比較例B-1と比べると製造効率に優れていた。 From the results of Examples B-1 and B-2 and Comparative Examples B-1 and B-2, the following can be understood. As shown in Examples B-1 and B-2, an electrolytic solution material prepared by pre-mixing fluorosulfonylimide salt (1) and ethylene carbonate was used as a starting material, and a solvent for preparing an electrolytic solution and other electrolytes were added thereto. Even if salt was added and heat was generated, the liquid temperature was kept low. Therefore, the decomposition of the non-aqueous electrolyte was prevented, and a good quality non-aqueous electrolyte was obtained. Moreover, the time required to prepare the non-aqueous electrolytic solution was 50 to 60 minutes, and the production efficiency was superior to that of Comparative Example B-1.

一方、比較例B-1では非水電解液が分解しないように温度をコントロールするため、LiFSIやLiPF6を分割投入した。その結果、温度上昇は抑制できたが、非水電解液の調製に要する時間が長くなり(120分)、上記実施例B-1や実施例B-2と比べると製造効率が悪かった。 On the other hand, in Comparative Example B-1, LiFSI and LiPF 6 were charged separately in order to control the temperature so that the non-aqueous electrolyte would not decompose. As a result, although the temperature rise could be suppressed, the time required to prepare the non-aqueous electrolytic solution was lengthened (120 minutes), and the production efficiency was poor as compared with Examples B-1 and B-2.

また比較例B-2では非水溶媒溶液を調製した後、LiFSIやLiPF6を分割せずに一度に投入した。その結果、非水電解液の調製に要する時間は短縮できるが、温度上昇を抑制できなかったため、非水電解液が分解されて着色が生じた。 In Comparative Example B-2, LiFSI and LiPF 6 were added all at once without dividing after preparing the non-aqueous solvent solution. As a result, although the time required for preparing the non-aqueous electrolyte can be shortened, the temperature rise could not be suppressed, so the non-aqueous electrolyte was decomposed and colored.

以上の結果から、フルオロスルホニルイミド塩(1)と、環状カーボネート系溶媒または環状エステル系溶媒とを主成分として含む本発明の電解液材料を用いることで、製造過程での温度上昇が適切にコントロールされて非水電解液の分解抑制効果が得られると共に、従来よりも短時間で効率的に非水電解液を調製できることがわかった。 From the above results, by using the electrolyte material of the present invention containing fluorosulfonylimide salt (1) and a cyclic carbonate-based solvent or a cyclic ester-based solvent as main components, the temperature rise during the manufacturing process can be appropriately controlled. As a result, the non-aqueous electrolytic solution can be effectively prepared in a shorter period of time than in the conventional method, while suppressing the decomposition of the non-aqueous electrolytic solution.

本発明の製造方法により得られる電解液材料は、一次電池、リチウムイオン二次電池、燃料電池等の充電/放電機構を有する電池、電解コンデンサ、電気二重層キャパシタ、太陽電池、エレクトロクロミック表示素子等の蓄電デバイス(電気化学デバイス)を構成するイオン伝導体の材料として好適に用いられる。 Electrolyte materials obtained by the production method of the present invention include batteries having a charge/discharge mechanism such as primary batteries, lithium ion secondary batteries, and fuel cells, electrolytic capacitors, electric double layer capacitors, solar cells, electrochromic display elements, and the like. It is suitably used as a material for an ion conductor constituting an electrical storage device (electrochemical device).

Claims (6)

第1の溶媒が粉体内部に取り込まれた下記一般式(1)で表されるフルオロスルホニルイミド塩と、第2の溶媒として電解液溶媒とを含む電解液材料であって、
前記第1の溶媒は、水、アルコール系溶媒、カルボン酸系溶媒、ケトン類、ニトリル系溶媒、エステル系溶媒、脂肪族エーテル系溶媒、ハロゲン系溶媒、ニトロ基含有溶媒、含窒素有機溶媒、ジメチルスルホキシド、グライム系溶媒、芳香族炭化水素系溶媒、鎖状脂肪族炭化水素系溶媒、環状脂肪族炭化水素系溶媒、および芳香族エーテル系溶媒よりなる群から選択される少なくとも一種であり、
前記第2の溶媒は、カーボネート系溶媒、鎖状エーテル系溶媒、および環状エステル系溶媒よりなる群から選択される少なくとも一種であり、
前記電解液材料中に含まれる、前記フルオロスルホニルイミド塩の濃度が30質量%以上、且つ前記第1の溶媒の合計残存量が200ppm以下であることを特徴とする電解液材料。
Figure 0007194784000018
(一般式(1)中、R1は、フッ素又は炭素数1~6のフッ化アルキル基、R2は、アルカリ金属イオンを表す)
An electrolytic solution material containing a fluorosulfonylimide salt represented by the following general formula (1) in which a first solvent is incorporated into powder, and an electrolytic solution solvent as a second solvent,
The first solvent includes water, alcohol solvents, carboxylic acid solvents, ketones, nitrile solvents, ester solvents, aliphatic ether solvents, halogen solvents, nitro group-containing solvents, nitrogen-containing organic solvents, dimethyl At least one selected from the group consisting of sulfoxides, glyme solvents, aromatic hydrocarbon solvents, chain aliphatic hydrocarbon solvents, cycloaliphatic hydrocarbon solvents, and aromatic ether solvents,
The second solvent is at least one selected from the group consisting of carbonate solvents, chain ether solvents, and cyclic ester solvents,
An electrolyte material, wherein the concentration of the fluorosulfonylimide salt is 30% by mass or more, and the total residual amount of the first solvent is 200 ppm or less.
Figure 0007194784000018
(In general formula (1), R 1 represents fluorine or a fluorinated alkyl group having 1 to 6 carbon atoms, and R 2 represents an alkali metal ion.)
下記一般式(1)で表されるフルオロスルホニルイミド塩と電解液溶媒とを含む電解液材料であって、
前記電解液溶媒は、カーボネート系溶媒、鎖状エーテル系溶媒、および環状エステル系溶媒よりなる群から選択される少なくとも一種であり、
前記フルオロスルホニルイミド塩と前記電解液溶媒とを含む溶液が減圧及び/又は加熱されて、該フルオロスルホニルイミド塩の粉体内部に取り込まれている残留溶媒が揮発された前記電解液材料中に含まれる、前記フルオロスルホニルイミド塩の濃度が30質量%以上、且つ前記残留溶媒の合計残存量が200ppm以下であることを特徴とする電解液材料。
Figure 0007194784000019
(一般式(1)中、R1は、フッ素又は炭素数1~6のフッ化アルキル基、R2は、アルカリ金属イオンを表す)
An electrolytic solution material containing a fluorosulfonylimide salt represented by the following general formula (1) and an electrolytic solution solvent,
The electrolyte solvent is at least one selected from the group consisting of carbonate-based solvents, chain ether-based solvents, and cyclic ester-based solvents,
The solution containing the fluorosulfonylimide salt and the electrolyte solvent is depressurized and/or heated, and the residual solvent incorporated in the powder of the fluorosulfonylimide salt is volatilized and contained in the electrolyte material. wherein the concentration of the fluorosulfonylimide salt is 30% by mass or more, and the total residual amount of the residual solvent is 200 ppm or less.
Figure 0007194784000019
(In general formula (1), R 1 represents fluorine or a fluorinated alkyl group having 1 to 6 carbon atoms, and R 2 represents an alkali metal ion.)
前記残留溶媒は、水、アルコール系溶媒、カルボン酸系溶媒、ケトン類、ニトリル系溶媒、エステル系溶媒、脂肪族エーテル系溶媒、ハロゲン系溶媒、ニトロ基含有溶媒、含窒素有機溶媒、ジメチルスルホキシド、グライム系溶媒、芳香族炭化水素系溶媒、鎖状脂肪族炭化水素系溶媒、環状脂肪族炭化水素系溶媒、および芳香族エーテル系溶媒よりなる群から選択される少なくとも一種であることを特徴とする請求項2に記載の電解液材料。 The residual solvent includes water, alcohol solvents, carboxylic acid solvents, ketones, nitrile solvents, ester solvents, aliphatic ether solvents, halogen solvents, nitro group-containing solvents, nitrogen-containing organic solvents, dimethyl sulfoxide, It is characterized by being at least one solvent selected from the group consisting of glyme solvents, aromatic hydrocarbon solvents, chain aliphatic hydrocarbon solvents, cycloaliphatic hydrocarbon solvents, and aromatic ether solvents. The electrolyte material according to claim 2. 前記電解液溶媒において、環状カーボネート系溶媒又は環状エステル系溶媒を90質量%以上含む請求項1~3の何れか一項に記載の電解液材料。 The electrolyte material according to any one of claims 1 to 3, wherein the electrolyte solvent contains 90% by mass or more of a cyclic carbonate solvent or a cyclic ester solvent. 請求項1~4の何れか一項に記載の電解液材料を保存することを特徴とする電解液材料の保存方法。 A method for storing an electrolyte material, comprising storing the electrolyte material according to any one of claims 1 to 4. 請求項1~4の何れか一項に記載の電解液材料を輸送することを特徴とする電解液材料の輸送方法。 A method for transporting an electrolyte material, comprising transporting the electrolyte material according to any one of claims 1 to 4.
JP2021119435A 2014-10-03 2021-07-20 Electrolyte material Active JP7194784B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014204815 2014-10-03
JP2014204815 2014-10-03
JP2015118065 2015-06-11
JP2015118065 2015-06-11
JP2019021302A JP6918855B2 (en) 2014-10-03 2019-02-08 Electrolyte material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019021302A Division JP6918855B2 (en) 2014-10-03 2019-02-08 Electrolyte material

Publications (2)

Publication Number Publication Date
JP2021182551A JP2021182551A (en) 2021-11-25
JP7194784B2 true JP7194784B2 (en) 2022-12-22

Family

ID=55630772

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016552361A Active JP6523314B2 (en) 2014-10-03 2015-10-05 Method of manufacturing electrolyte material
JP2019021302A Active JP6918855B2 (en) 2014-10-03 2019-02-08 Electrolyte material
JP2021119435A Active JP7194784B2 (en) 2014-10-03 2021-07-20 Electrolyte material

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2016552361A Active JP6523314B2 (en) 2014-10-03 2015-10-05 Method of manufacturing electrolyte material
JP2019021302A Active JP6918855B2 (en) 2014-10-03 2019-02-08 Electrolyte material

Country Status (6)

Country Link
US (2) US11637320B2 (en)
EP (1) EP3203570A4 (en)
JP (3) JP6523314B2 (en)
KR (1) KR102443835B1 (en)
CN (2) CN107112591A (en)
WO (1) WO2016052752A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6246983B2 (en) * 2015-06-23 2017-12-13 株式会社日本触媒 Conductive material, production method and purification method thereof, and non-aqueous electrolyte and antistatic agent using the conductive material
EP3466872B1 (en) 2016-05-27 2021-02-24 Nippon Shokubai Co., Ltd. Method for producing bis(fluorosulfonyl)imide alkali metal salt and method for producing non-aqueous electrolytic solution
JP7042018B2 (en) * 2016-05-27 2022-03-25 株式会社日本触媒 Manufacturing method of electrolytic solution material
JP6792394B2 (en) * 2016-09-27 2020-11-25 株式会社日本触媒 A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent.
JP6806514B2 (en) * 2016-09-27 2021-01-06 株式会社日本触媒 A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent.
JP7223221B2 (en) * 2017-09-12 2023-02-16 セントラル硝子株式会社 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and non-aqueous electrolyte battery
US20220115700A1 (en) * 2019-01-31 2022-04-14 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery and electrolytic solution used therefor
KR20220106202A (en) 2020-02-27 2022-07-28 가부시키가이샤 닛폰 쇼쿠바이 Compositions, Electrolyte Materials and Electrolytes
EP4263427A1 (en) 2020-12-16 2023-10-25 Specialty Operations France Method for producing onium sulfonyl imide salts and alkali metal sulfonyl imide salts
EP4347484A1 (en) 2021-05-26 2024-04-10 Specialty Operations France Method for producing alkali sulfonyl imide salts
KR20240026207A (en) 2021-06-30 2024-02-27 가부시키가이샤 닛폰 쇼쿠바이 Method for producing non-aqueous electrolyte
KR102395110B1 (en) * 2021-09-24 2022-05-09 제이엘켐 주식회사 Method for manufacturing pentaerythritol disulfate used as an additive for secondary battery electrolyte
WO2023164140A1 (en) * 2022-02-26 2023-08-31 Purdue Research Foundation Electrochemical cells and electrolyte compositions therefor
KR20240070173A (en) 2022-11-14 2024-05-21 주식회사 천보비엘에스 Producing method for solution of lithium bis(fluorosulfony)imide containing reduced content of acid and water
KR20240070174A (en) 2022-11-14 2024-05-21 주식회사 천보비엘에스 A solution of lithium bis(fluorosulfony)imide containing reduced content of acid and water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054407A (en) 2007-08-27 2009-03-12 Sony Corp Electrolyte solution and secondary battery
WO2011149095A1 (en) 2010-05-28 2011-12-01 株式会社日本触媒 Alkali metal salt of fluorosulfonyl imide, and production method therefor
JP2013084562A (en) 2011-09-30 2013-05-09 Nippon Shokubai Co Ltd Electrolyte and manufacturing method thereof, and electric storage device using the same
JP2013197055A (en) 2012-03-22 2013-09-30 Kansai Univ Lithium ion secondary battery and electrical equipment including the same
JP2013211224A (en) 2012-03-30 2013-10-10 Mitsubishi Chemicals Corp Nonaqueous electrolyte and lithium secondary battery using the same
JP2014201453A (en) 2013-04-01 2014-10-27 株式会社日本触媒 Method for producing alkali metal salt of fluorosulfonyl imide

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW238254B (en) * 1991-12-31 1995-01-11 Minnesota Mining & Mfg
EP0699349B1 (en) * 1994-03-21 2007-10-10 Centre National De La Recherche Scientifique (Cnrs) Ionic conducting material having good anticorrosive properties
JP5315582B2 (en) 2001-07-26 2013-10-16 ダイキン工業株式会社 Method for dehydrating lithium bis (pentafluoroethanesulfonyl) imide-containing composition
JP2006210816A (en) 2005-01-31 2006-08-10 Tokuyama Corp Nonaqueous electrolyte
US9153836B2 (en) 2007-08-23 2015-10-06 Sony Corporation Electrolytic solutions and battery
JP4831018B2 (en) 2007-08-28 2011-12-07 日本電気株式会社 Parallel cyclic code generation apparatus and parallel cyclic code inspection apparatus
US8134027B2 (en) * 2008-03-31 2012-03-13 Nippon Shokubai Co., Ltd. Sulfonylimide salt and method for producing the same
JP6018820B2 (en) * 2012-07-04 2016-11-02 株式会社日本触媒 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
KR20140082573A (en) * 2012-12-24 2014-07-02 주식회사 엘지화학 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054407A (en) 2007-08-27 2009-03-12 Sony Corp Electrolyte solution and secondary battery
WO2011149095A1 (en) 2010-05-28 2011-12-01 株式会社日本触媒 Alkali metal salt of fluorosulfonyl imide, and production method therefor
JP2013084562A (en) 2011-09-30 2013-05-09 Nippon Shokubai Co Ltd Electrolyte and manufacturing method thereof, and electric storage device using the same
JP2013197055A (en) 2012-03-22 2013-09-30 Kansai Univ Lithium ion secondary battery and electrical equipment including the same
JP2013211224A (en) 2012-03-30 2013-10-10 Mitsubishi Chemicals Corp Nonaqueous electrolyte and lithium secondary battery using the same
JP2014201453A (en) 2013-04-01 2014-10-27 株式会社日本触媒 Method for producing alkali metal salt of fluorosulfonyl imide

Also Published As

Publication number Publication date
JPWO2016052752A1 (en) 2017-09-14
CN107112591A (en) 2017-08-29
US11539078B2 (en) 2022-12-27
EP3203570A1 (en) 2017-08-09
JP6918855B2 (en) 2021-08-11
US20170214092A1 (en) 2017-07-27
JP2021182551A (en) 2021-11-25
CN113793986A (en) 2021-12-14
US11637320B2 (en) 2023-04-25
JP2019083204A (en) 2019-05-30
WO2016052752A1 (en) 2016-04-07
KR20170063765A (en) 2017-06-08
JP6523314B2 (en) 2019-05-29
EP3203570A4 (en) 2018-05-23
US20210036371A1 (en) 2021-02-04
KR102443835B1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
JP7194784B2 (en) Electrolyte material
JP6353564B2 (en) Electrolytic solution and lithium ion secondary battery provided with the same
JP5074636B2 (en) Fluorosulfonylimide alkali metal salt and process for producing the same
JP2018035054A (en) Manufacturing method of bis(fluorosulfonyl)imide alkali metal salt and bis(fluorosulfonyl)imide alkali metal salt composition
KR102208181B1 (en) Method for producing bis(fluorosulfonyl)imide alkali metal salt
US20120225359A1 (en) Electrolytes in Support of 5 V Li ion Chemistry
WO2015046175A1 (en) Nonaqueous liquid electrolyte for use in secondary battery, and lithium-ion secondary battery
WO2012133698A1 (en) Lithium ion secondary battery and nonaqueous electrolyte for lithium ion secondary battery
JP2020533753A (en) Electrolyte for metal ion battery cells with high capacity, micron scale, volume change anode particles
CN104885286B (en) The salt of the anion of heterocycle containing N is as the component in electrolyte
JP2014072102A (en) Nonaqueous electrolyte, electrochemical device, lithium ion secondary battery, and module
JP2018035059A (en) Lithium bis(fluorosulfonyl) imide composition
JP6097708B2 (en) Electrolyte and secondary battery using the same
JP2018035060A (en) Lithium bis(fluorosulfonyl) imide composition
JP2014022291A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP7042018B2 (en) Manufacturing method of electrolytic solution material
WO2020246519A1 (en) Non-aqueous electrolyte container and method for storing non-aqueous electrolyte
JP6212180B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
WO2023276568A1 (en) Method for purifying aqueous sulfonylimide solution, method for producing non-aqueous electrolyte, and method for producing electrolyte composition
JP2012216387A (en) Electrochemical device and nonaqueous electrolyte for electrochemical device
JP2018147740A (en) Method for manufacturing lithium ion secondary battery
JP6169265B2 (en) Electrolytic solution containing phthalate phosphine anion, additive for secondary battery containing the same, and secondary battery containing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R150 Certificate of patent or registration of utility model

Ref document number: 7194784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150