JP6806514B2 - A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent. - Google Patents

A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent. Download PDF

Info

Publication number
JP6806514B2
JP6806514B2 JP2016188377A JP2016188377A JP6806514B2 JP 6806514 B2 JP6806514 B2 JP 6806514B2 JP 2016188377 A JP2016188377 A JP 2016188377A JP 2016188377 A JP2016188377 A JP 2016188377A JP 6806514 B2 JP6806514 B2 JP 6806514B2
Authority
JP
Japan
Prior art keywords
organic solvent
alkali metal
imide
fluorosulfonyl
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016188377A
Other languages
Japanese (ja)
Other versions
JP2018052760A (en
Inventor
弘行 水野
弘行 水野
裕大 勝山
裕大 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2016188377A priority Critical patent/JP6806514B2/en
Publication of JP2018052760A publication Critical patent/JP2018052760A/en
Application granted granted Critical
Publication of JP6806514B2 publication Critical patent/JP6806514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明はビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料の製造方法に関し、詳細には不純物を低減させたフルオロスルホニルイミドのアルカリ金属塩とリチウムイオン二次電池用有機溶媒とを含む電解液材料の製造方法に関する。 The present invention relates to a method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent, and more specifically, an alkali metal salt of fluorosulfonylimide with reduced impurities and an organic for a lithium ion secondary battery. The present invention relates to a method for producing an electrolytic solution material containing a solvent.

フルオロスルホニルイミドのアルカリ金属塩は、電解質や燃料電池の電解液への添加物として有用な化合物として注目されており、様々な製造方法が提案されている。 Alkali metal salts of fluorosulfonylimides are attracting attention as compounds useful as additives for electrolytes and electrolytes of fuel cells, and various production methods have been proposed.

フルオロスルホニルイミドのアルカリ金属塩の製造方法については改良が重ねられ、各種技術が提案されている。例えば特許文献1には、フッ素含有スルホニルイミドアルカリ金属塩またはフッ素含有スルホニルイミドアンモニウム塩の製造方法におけるカチオン交換反応効率を向上させる技術が開示されている。 Improvements have been made to the method for producing alkali metal salts of fluorosulfonylimide, and various techniques have been proposed. For example, Patent Document 1 discloses a technique for improving the cation exchange reaction efficiency in a method for producing a fluorine-containing sulfonylimide alkali metal salt or a fluorine-containing sulfonylimide ammonium salt.

また特許文献2には、高純度のジスルホニルアミンアルカリ金属塩を低い温度履歴で且つ低コストで製造する方法が開示されている。 Further, Patent Document 2 discloses a method for producing a high-purity disulfonylamine alkali metal salt with a low temperature history and at a low cost.

また特許文献3には、反応溶液から反応溶媒を容易に除去することができるフルオロスルホニルイミドのアルカリ金属塩の製造方法が開示されている。 Further, Patent Document 3 discloses a method for producing an alkali metal salt of fluorosulfonylimide, which can easily remove the reaction solvent from the reaction solution.

国際公開第2012/118063号パンフレットInternational Publication No. 2012/118063 Pamphlet 国際公開第2014/148258号パンフレットInternational Publication No. 2014/148258 Pamphlet 特開2014−201453号公報Japanese Unexamined Patent Publication No. 2014-201453

本発明者らはビス(フルオロスルホニル)イミドのアルカリ金属塩の品質を検討する中で、ビス(フルオロスルホニル)イミドのアルカリ金属塩の製造工程に由来する不純物が使用時に要求される製品の特性、例えばリチウムイオン二次電池の電池特性などを劣化させる原因であることがわかった。 In examining the quality of the alkali metal salt of bis (fluorosulfonyl) imide, the present inventors have developed the characteristics of the product in which impurities derived from the manufacturing process of the alkali metal salt of bis (fluorosulfonyl) imide are required at the time of use. For example, it has been found that it is a cause of deteriorating the battery characteristics of a lithium ion secondary battery.

本発明は上記の様な事情に着目してなされたものであって、その目的は、ビス(フルオロスルホニル)イミドのアルカリ金属塩の製造過程で生成する不純物を低減できる製造方法を提供することにある。 The present invention has been made by paying attention to the above circumstances, and an object of the present invention is to provide a production method capable of reducing impurities generated in the production process of an alkali metal salt of bis (fluorosulfonyl) imide. is there.

上記課題を解決した本発明の製造方法は、ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解液材料の製造方法であって、前記有機溶媒(A)とは異なる有機溶媒(B)、ビス(フルオロスルホニル)イミドのアンモニウム塩、及びアルカリ金属化合物とを含む溶液中でカチオン交換することにより、ビス(フルオロスルホニル)イミドのアルカリ金属塩を得るカチオン交換工程、得られた反応溶液をアルカリ洗浄及び/又は水洗浄する工程、及び前記洗浄後、前記有機溶媒(A)存在下で減圧及び/又は加熱して前記有機溶媒(B)、及び水を留去する工程を含み、前記カチオン交換工程における前記アルカリ金属化合物の添加量は、前記ビス(フルオロスルホニル)イミドのアンモニウム塩1モルに対して0.90モル当量以上、1.24モル当量以下であるビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含むことに要旨を有する。 The production method of the present invention that solves the above problems is a method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent (A), which is different from the organic solvent (A). A cation exchange step of obtaining an alkali metal salt of bis (fluorosulfonyl) imide by cation exchange in a solution containing a solvent (B), an ammonium salt of bis (fluorosulfonyl) imide, and an alkali metal compound was obtained. Includes a step of alkaline washing and / or washing the reaction solution with water, and a step of distilling off the organic solvent (B) and water by reducing the pressure and / or heating in the presence of the organic solvent (A) after the washing. The amount of the alkali metal compound added in the cation exchange step is 0.90 mol equivalent or more and 1.24 mol equivalent or less with respect to 1 mol of the ammonium salt of the bis (fluorosulfonyl) imide. The gist is that it contains an alkali metal salt of imide and an organic solvent (A).

本発明の製造方法では、前記アルカリ金属化合物を固体で添加すること、前記カチオン交換工程後の反応溶液の含有水分量は、4.5質量%以下であること、前記カチオン交換工程後の反応溶液を、前記有機溶媒(B)の存在下で減圧及び/又は加熱して前記反応溶液からアンモニアを留去する工程を行ってから前記アルカリ洗浄及び/又は前記水洗浄するものであること、前記有機溶媒(B)は、エステル系溶媒であること、前記有機溶媒(A)は、カーボネート系溶媒であることは、いずれも好ましい実施態様である。 In the production method of the present invention, the alkali metal compound is added as a solid, the water content of the reaction solution after the cation exchange step is 4.5% by mass or less, and the reaction solution after the cation exchange step. The organic solvent (B) is depressurized and / or heated to distill off ammonia from the reaction solution, and then the alkali washing and / or the water washing is performed. It is a preferred embodiment that the solvent (B) is an ester solvent and the organic solvent (A) is a carbonate solvent.

本発明の製造方法によれば、ビス(フルオロスルホニル)イミドのアルカリ金属塩の製造過程で生成する不純物、具体的にはアセトアミド、アンモニウム、及び酢酸(以下、これらをまとめて「不純物」ということがある)を低減できる。したがって本発明の製造方法で得られたビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料を用いると不純物に起因する電池特性の劣化を抑制でき、従来よりも優れた電池特性が得られる。 According to the production method of the present invention, impurities produced in the process of producing an alkali metal salt of bis (fluorosulfonyl) imide, specifically acetamide, ammonium, and acetic acid (hereinafter, these are collectively referred to as "impurities"). Yes) can be reduced. Therefore, when an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent obtained by the production method of the present invention is used, deterioration of battery characteristics due to impurities can be suppressed, and the battery is superior to the conventional one. The characteristics are obtained.

本発明者らがリチウムイオン二次電池の特性向上について検討した結果、ビス(フルオロスルホニル)イミドのアルカリ金属塩の製造過程で生成する不純物に起因して初回充放電効率、初期レート特性、及びサイクル容量維持率(以下、これらをまとめて「電池特性」ということがある)が阻害されることがわかった。そしてビス(フルオロスルホニル)イミドのアルカリ金属塩の製造工程の初期段階、具体的にはカチオン交換工程において、アルカリ金属化合物の添加量を従来よりも低減すると、アルカリ度が低いためエステル溶媒の分解による酢酸の生成や、酢酸とアンモニアの脱水縮合物であるアセトアミドの生成など、電池特性を悪化させる上記不純物の生成を抑制できることを見出し、本発明に至った。 As a result of studies on improving the characteristics of the lithium ion secondary battery, the present inventors have conducted initial charge / discharge efficiency, initial rate characteristics, and cycle due to impurities generated in the process of producing an alkali metal salt of bis (fluorosulfonyl) imide. It was found that the capacity retention rate (hereinafter, these are collectively referred to as "battery characteristics") is impaired. When the amount of the alkali metal compound added is reduced in the initial stage of the production process of the alkali metal salt of bis (fluorosulfonyl) imide, specifically, in the cation exchange step, the alkalinity is low, so that the ester solvent is decomposed. We have found that it is possible to suppress the formation of the above-mentioned impurities that deteriorate the battery characteristics, such as the formation of acetic acid and the formation of acetamide, which is a dehydration condensate of acetic acid and ammonia, and have reached the present invention.

以下、ビス(フルオロスルホニル)イミドのアルカリ金属塩の合成方法について説明する。 Hereinafter, a method for synthesizing an alkali metal salt of bis (fluorosulfonyl) imide will be described.

本発明の合成方法には以下の工程を含む。
(I)有機溶媒(B)、ビス(フルオロスルホニル)イミドのアンモニウム塩、及びアルカリ金属化合物とを含む溶液中でカチオン交換することにより、ビス(フルオロスルホニル)イミドのアルカリ金属塩を得る工程(以下、「カチオン交換工程」という)、
(II)得られた反応溶液をアルカリ洗浄及び/又は水洗浄する工程(以下、「洗浄工程」)
The synthesis method of the present invention includes the following steps.
(I) A step of obtaining an alkali metal salt of bis (fluorosulfonyl) imide by cation exchange in a solution containing an organic solvent (B), an ammonium salt of bis (fluorosulfonyl) imide, and an alkali metal compound (hereinafter). , "Cation exchange process"),
(II) A step of alkaline washing and / or water washing of the obtained reaction solution (hereinafter, “washing step”).

本発明では必要に応じて、(i)カチオン交換工程で得られた反応溶液を有機溶媒(B)存在下で減圧及び/又は加熱して前記反応溶液からアンモニアを留去する工程(以下、「アンモニア留去工程」という)を行ってから洗浄工程を行ってもよい。 In the present invention, if necessary, (i) a step of reducing the pressure and / or heating the reaction solution obtained in the cation exchange step in the presence of the organic solvent (B) to distill off ammonia from the reaction solution (hereinafter, "" The cleaning step may be performed after performing the ammonia distillation step).

更に本発明では、ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解液材料の製造方法として、(III)上記工程を経て得られたビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(B)とを含む反応溶液を、有機溶媒(A)の存在下で減圧及び/又は加熱して有機溶媒(B)、及び水を留去する工程(以下、「濃縮工程」という)が含まれる。 Further, in the present invention, as a method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent (A), (III) the alkali metal of bis (fluorosulfonyl) imide obtained through the above steps. A step of distilling off the organic solvent (B) and water by reducing the pressure and / or heating the reaction solution containing the salt and the organic solvent (B) in the presence of the organic solvent (A) (hereinafter, "concentration step"). ) Is included.

(I)カチオン交換工程
本発明では、ビス(フルオロスルホニル)イミドのアンモニウム塩((FSO22N・NH4)を出発原料として用いる(以下、「化合物(1)」という場合がある)。化合物(1)は例えばビス(クロロスルホニル)イミドにNH4F、NH4F・HF、NH4F・2HFなどのフッ化物を加えてフッ素化反応させることによって合成できるが、これに限定されず、各種公知の製造方法で得られたものでよいし、あるいは市販品でもよい。
(I) Cationic Exchange Step In the present invention, an ammonium salt of bis (fluorosulfonyl) imide ((FSO 2 ) 2 N · NH 4 ) is used as a starting material (hereinafter, may be referred to as “compound (1)”). Compound (1) is NH 4 F, for example, bis (chlorosulfonyl) imide, NH 4 F · HF, can be synthesized by fluorination reaction by adding fluoride such NH 4 F · 2HF, is not limited thereto , It may be obtained by various known production methods, or it may be a commercially available product.

化合物(1)を所望のカチオン(Li,Na,K,Rb,Cs)を含むアルカリ金属化合物と反応させることで、カチオン交換できる。反応させるアルカリ金属化合物としては、LiOH、NaOH、KOH、RbOH、CsOH等の水酸化物;Li2CO3、Na2CO3、K2CO3、Rb2CO3、Cs2CO3等の炭酸塩;LiHCO3、NaHCO3、KHCO3、RbHCO3、CsHCO3等の炭酸水素化物;LiCl、NaCl、KCl、RbCl、CsCl等の塩化物;LiF、NaF、KF、RbF、CsF等のフッ化物;CH3OLi、EtOLi等のアルコキシド化合物;EtLi、BuLi、t−BuLi等のアルキルリチウム化合物;等が挙げられる(Etはエチル基、Buはブチル基を示す)。これらの中でもアルカリ金属としてリチウム、ナトリウム又はカリウムを含有する化合物が好ましく、具体的にはLiOH、NaOH、KOH、Li2CO3、Na2CO3、K2CO3、LiCl、NaCl、KCl、LiF、NaF、KFが好ましく、より好ましくはLiOH、NaOH、KOH、Li2CO3、Na2CO3、K2CO3であり、さらに好ましくはLiOH、NaOH、KOHであり、これら化合物は水酸化物であることが好ましい。 The cation can be exchanged by reacting the compound (1) with an alkali metal compound containing a desired cation (Li, Na, K, Rb, Cs). Examples of the alkali metal compound to be reacted include hydroxides such as LiOH, NaOH, KOH, RbOH, and CsOH; carbonates such as Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 , and Cs 2 CO 3. salt; LiHCO 3, NaHCO 3, KHCO 3, RbHCO 3, hydrogen carbonates such as CsHCO 3; LiCl, NaCl, KCl , RbCl, chlorides such as CsCl; LiF, NaF, KF, RbF, fluorides such CsF; CH 3 OLi, alkoxide compounds such EtOLi; etLi, BuLi, alkyl lithium compounds such as t-BuLi; etc. (Et represents an ethyl group, Bu is butyl group). Among these, compounds containing lithium, sodium or potassium as an alkali metal are preferable, and specifically, LiOH, NaOH, KOH, Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , LiCl, NaCl, KCl, LiF. , NaOH, KF are preferred, more preferably LiOH, NaOH, KOH, Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , and even more preferably LiOH, NaOH, KOH, these compounds being hydroxides. Is preferable.

本発明においてアルカリ金属化合物の添加方法はアルカリ金属化合物水溶液、固体のアルカリ金属化合物のいずれでもよいが、固体のアルカリ金属化合物を用いると、カチオン交換工程後の反応溶液の含有水分量を低減できると共に、水溶液で添加する場合と比べてビス(フルオロスルホニル)イミドのアルカリ金属塩の収率を向上できる。特に反応溶液の含有水分量を低減することで反応溶液に溶解するアンモニア量を減少できるため望ましい。固体のアルカリ金属化合物は上記アルカリ金属化合物の水和物が好ましい。また固体の形状はフレーク状、粉状、ビーズ状など特に限定されない。 In the present invention, the method for adding the alkali metal compound may be either an aqueous alkali metal compound or a solid alkali metal compound, but if a solid alkali metal compound is used, the water content of the reaction solution after the cation exchange step can be reduced and the water content of the reaction solution can be reduced. , The yield of the alkali metal salt of bis (fluorosulfonyl) imide can be improved as compared with the case of adding with an aqueous solution. In particular, it is desirable to reduce the amount of water contained in the reaction solution because the amount of ammonia dissolved in the reaction solution can be reduced. The solid alkali metal compound is preferably a hydrate of the alkali metal compound. The shape of the solid is not particularly limited, such as flakes, powders, and beads.

本発明ではアルカリ金属化合物の添加量を所定の範囲内にすることで、リチウム交換工程後の反応溶液のアルカリ度を低く抑えて有機溶媒(B)の分解を抑制できる。その結果、有機溶媒(B)の分解生成物である酢酸の生成を抑えることができると共に、酢酸とアンモニアの脱水縮合物であるアセトアミドの生成も抑えることができる。また固体のアルカリ金属化合物の添加量を少なくするほど、例えば従来の添加量である1.3当量を用いた場合と比べてカチオン交換工程後の反応溶液の含有水分量が少なく、またアルカリ度も小さいため、逆反応等が抑制されて電池特性を低下させる不純物の発生を抑えることができる。したがって本発明の電解液材料を用いることで、リチウムイオン二次電池などに使用する非水電解液中の不純物量を低減できるため、電池特性の悪化を従来よりも抑制できる。アルカリ金属化合物の添加量は、ビス(フルオロスルホニル)イミドのアンモニウム塩1モルに対して、好ましくは0.90モル当量以上、より好ましくは1.00モル当量以上、更に好ましくは1.01モル当量以上であって、好ましくは1.24モル当量以下、より好ましくは1.20モル当量以下、更に好ましくは1.15モル当量以下である。アルカリ金属化合物の使用量が多すぎると有機溶媒(B)の分解が起こりやすくなる。また固体のアルカリ金属を用いた場合でも使用量が多いと反応溶液の含有水分量が多くなって逆反応などが起こりやすくなる。一方、アルカリ金属化合物の使用量が少なすぎるとビス(フルオロスルホニル)イミドのアンモニウム塩が残存することがある。なお、本発明において「当量」は全て化学量論量である。 In the present invention, by keeping the addition amount of the alkali metal compound within a predetermined range, the alkalinity of the reaction solution after the lithium exchange step can be suppressed to a low level and the decomposition of the organic solvent (B) can be suppressed. As a result, the formation of acetic acid, which is a decomposition product of the organic solvent (B), can be suppressed, and the formation of acetamide, which is a dehydration condensate of acetic acid and ammonia, can also be suppressed. Further, the smaller the amount of the solid alkali metal compound added, the smaller the water content of the reaction solution after the cation exchange step and the alkalinity, for example, as compared with the case of using 1.3 equivalents which is the conventional addition amount. Since it is small, it is possible to suppress the generation of impurities that suppress the reverse reaction and deteriorate the battery characteristics. Therefore, by using the electrolytic solution material of the present invention, the amount of impurities in the non-aqueous electrolytic solution used for a lithium ion secondary battery or the like can be reduced, so that deterioration of battery characteristics can be suppressed as compared with the conventional case. The amount of the alkali metal compound added is preferably 0.90 molar equivalent or more, more preferably 1.00 molar equivalent or more, still more preferably 1.01 molar equivalent, relative to 1 mol of the ammonium salt of bis (fluorosulfonyl) imide. The above is preferably 1.24 molar equivalents or less, more preferably 1.20 molar equivalents or less, still more preferably 1.15 molar equivalents or less. If the amount of the alkali metal compound used is too large, the organic solvent (B) is likely to be decomposed. Even when a solid alkali metal is used, if the amount used is large, the amount of water contained in the reaction solution increases and a reverse reaction or the like is likely to occur. On the other hand, if the amount of the alkali metal compound used is too small, the ammonium salt of bis (fluorosulfonyl) imide may remain. In the present invention, all "equivalents" are stoichiometric quantities.

化合物(1)とアルカリ金属化合物は有機溶媒(B)(有機溶媒(A)とは異なる有機溶媒)を含む溶液中でカチオン交換反応させる。カチオン交換工程で使用可能な有機溶媒(B)としては非プロトン性溶媒を用いるのが好ましい。非プロトン性溶媒としては、具体的には、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒が挙げられる。これらの溶媒は単独で用いてもよく、また2種以上を混合して用いてもよい。カチオン交換反応を円滑に進行させる観点からは特に、酢酸エチル、酢酸イソプロピル及び酢酸ブチルが好ましい。 The compound (1) and the alkali metal compound are subjected to a cation exchange reaction in a solution containing an organic solvent (B) (an organic solvent different from the organic solvent (A)). As the organic solvent (B) that can be used in the cation exchange step, it is preferable to use an aprotic solvent. Specific examples of the aprotic solvent include ester solvents such as methyl acetate, ethyl acetate, isopropyl acetate and butyl acetate. These solvents may be used alone or in combination of two or more. Ethyl acetate, isopropyl acetate and butyl acetate are particularly preferable from the viewpoint of facilitating the cation exchange reaction.

カチオン交換する際の溶液の温度は特に限定されないが、高温になり過ぎると有機溶媒(B)が分解して酢酸等の不純物が生成することがあり、一方、低温になりすぎると反応溶液の粘度が上昇し、取り扱いが煩雑になることがある。したがって溶液の温度は、好ましくは40℃以下、より好ましくは常温(25℃)以下であって、好ましくは−2℃以上、より好ましくは0℃以上に制御することが望ましい。 The temperature of the solution at the time of cation exchange is not particularly limited, but if the temperature becomes too high, the organic solvent (B) may be decomposed to generate impurities such as acetic acid, while if the temperature becomes too low, the viscosity of the reaction solution may be generated. May increase and the handling may become complicated. Therefore, it is desirable to control the temperature of the solution to preferably 40 ° C. or lower, more preferably room temperature (25 ° C.) or lower, preferably -2 ° C. or higher, and more preferably 0 ° C. or higher.

本発明ではカチオン交換反応で副生するアンモニアの少なくとも一部を留去することが望ましい。アンモニアを留去することでアセトアミド等の不純物の生成を抑制できる。またアンモニアと共に水も留去することでカチオン交換工程後の反応溶液に含まれるアンモニア量と水分量をより一層低減できるため好ましい。アンモニアはアンモニアガスとして生成するため、カチオン交換工程で容易に留去できる。また水はカチオン交換工程では水が環流しない温度、圧力などを採用すればよい。例えば温度は40℃以下、好ましくは常温以下であって、好ましくは−2℃以上、より好ましくは0℃以上とし、この温度範囲内で水が環流しないように圧力を制御(例えば600hPa以上、800hPa以下)することが好ましい。 In the present invention, it is desirable to distill off at least a part of ammonia produced as a by-product in the cation exchange reaction. By distilling off ammonia, the formation of impurities such as acetamide can be suppressed. Further, it is preferable to distill off water together with ammonia because the amount of ammonia and the amount of water contained in the reaction solution after the cation exchange step can be further reduced. Since ammonia is produced as ammonia gas, it can be easily distilled off in the cation exchange step. Further, for water, the temperature and pressure at which water does not recirculate may be adopted in the cation exchange step. For example, the temperature is 40 ° C. or lower, preferably room temperature or lower, preferably -2 ° C. or higher, more preferably 0 ° C. or higher, and the pressure is controlled so that water does not recirculate within this temperature range (for example, 600 hPa or higher, 800 hPa or higher). The following) is preferable.

カチオン交換工程後の反応溶液の含有水分量を低減させると、水とアンモニアによる逆反応(例えばLiFSI+NH3+H2O→NH4FSI+LiOH)を抑えて生成するアンモニウムを低減できると共に、反応溶液に取り込まれるアンモニア量を低減できる。カチオン交換工程後の反応溶液の含有水分量は、総質量に対して好ましくは4.5質量%以下、より好ましくは4.3質量%以下、更に好ましくは4.0質量%以下である。水分を低減させる観点からは、カチオン交換工程は例えば露点−40℃以下のドライルーム(温度25℃)など低湿環境下で行うことが望ましい。 When the water content of the reaction solution after the cation exchange step is reduced, the reverse reaction between water and ammonia (for example, LiFSI + NH 3 + H 2 O → NH 4 FSI + LiOH) can be suppressed to reduce the amount of ammonium produced, and it is incorporated into the reaction solution. The amount of ammonia can be reduced. The water content of the reaction solution after the cation exchange step is preferably 4.5% by mass or less, more preferably 4.3% by mass or less, still more preferably 4.0% by mass or less, based on the total mass. From the viewpoint of reducing water content, it is desirable that the cation exchange step be performed in a low humidity environment such as a dry room (temperature 25 ° C.) with a dew point of −40 ° C. or lower.

またカチオン交換工程後の反応溶液の含有アンモニア量は、総質量に対して好ましくは3000質量ppm以下、より好ましくは2500質量ppm以下、更に好ましくは2000質量ppm以下である。なお、本発明における水分量、不純物量、ビス(フルオロスルホニル)イミドのアルカリ金属塩量などの各種測定方法は実施例記載の方法によるものである(以下、同じ)。 The amount of ammonia contained in the reaction solution after the cation exchange step is preferably 3000 mass ppm or less, more preferably 2500 mass ppm or less, still more preferably 2000 mass ppm or less, based on the total mass. Various measuring methods such as the amount of water, the amount of impurities, and the amount of alkali metal salt of bis (fluorosulfonyl) imide in the present invention are based on the methods described in Examples (hereinafter, the same applies).

本発明ではカチオン交換工程後、洗浄工程前に必要に応じて(i)アンモニア留去工程を行ってもよい。 In the present invention, (i) ammonia distillation step may be performed after the cation exchange step and before the washing step, if necessary.

(i)アンモニア留去工程
アンモニア留去工程を行うことで、反応溶液からアンモニア含有量を更に低減できる。またアンモニアと共に水や有機溶媒(B)の少なくとも一部を留去することで逆反応などによる不純物の生成抑制に有効であるため望ましい。
(I) Ammonia distillation step By performing the ammonia distillation step, the ammonia content can be further reduced from the reaction solution. Further, it is desirable to distill off at least a part of water or the organic solvent (B) together with ammonia because it is effective in suppressing the formation of impurities due to a reverse reaction or the like.

アンモニアの留去方法は特に限定されないが、減圧下で反応溶液からアンモニアの留去に適した温度に制御することが好ましい。減圧下で行うことによって、低い温度でもアンモニアを留去できるため、好ましくは50hPa以下、より好ましくは20hPa以下であって、好ましくは3hPa以上、より好ましくは5hPa以上である。反応溶液の温度が高くなりすぎると脱水縮合反応によるアセトアミドが増加することがあるため、反応溶液の温度は好ましくは60℃以下、より好ましくは55℃以下、更に好ましくは45℃以下である。下限は特に限定されず、常温(25℃)でもよい。 The method for distilling off ammonia is not particularly limited, but it is preferable to control the temperature from the reaction solution to a temperature suitable for distilling off ammonia under reduced pressure. By carrying out under reduced pressure, ammonia can be distilled off even at a low temperature, so that it is preferably 50 hPa or less, more preferably 20 hPa or less, preferably 3 hPa or more, and more preferably 5 hPa or more. If the temperature of the reaction solution becomes too high, acetamide due to the dehydration condensation reaction may increase. Therefore, the temperature of the reaction solution is preferably 60 ° C. or lower, more preferably 55 ° C. or lower, still more preferably 45 ° C. or lower. The lower limit is not particularly limited and may be normal temperature (25 ° C.).

アンモニアを留去することで電解質材料に含まれるアセトアミドやアンモニウムなどの不純物量を低減できる。したがってアンモニア留去工程を複数回行ってアンモニア量を低減させてもよい。留去後の反応溶液に含まれるアンモニア含有量は、総質量に対して好ましくは500質量ppm以下、より好ましくは300質量ppm以下、更に好ましくは200質量ppm以下である。 By distilling off ammonia, the amount of impurities such as acetamide and ammonium contained in the electrolyte material can be reduced. Therefore, the ammonia distillation step may be performed a plurality of times to reduce the amount of ammonia. The ammonia content in the reaction solution after distillation is preferably 500 mass ppm or less, more preferably 300 mass ppm or less, still more preferably 200 mass ppm or less, based on the total mass.

本発明ではカチオン交換工程後、あるいはアンモニア留去工程後、(II−1)アルカリ洗浄工程、(II−2)水洗浄工程の少なくともいずれかの工程を行う。なお、両方行う場合は、アルカリ洗浄工程、水洗浄工程の順である。 In the present invention, at least one of (II-1) alkali washing step and (II-2) water washing step is performed after the cation exchange step or the ammonia distillation step. When both are performed, the order is the alkaline cleaning step and the water cleaning step.

(II−1)アルカリ洗浄工程
アルカリ洗浄工程を行うことによって、反応溶液から化合物(1)に含まれていた水溶性不純物やカチオン交換時の水溶性副生成物などの不純物を低減できる。アルカリ洗浄工程は反応溶液とアルカリ水溶液とが接触するものであればよく、例えば反応溶液をアルカリ水溶液に添加して接触させる態様、反応溶液とアルカリ水溶液とを、それぞれ反応溶液に同時に反応器に添加して接触させる態様などでもよい。アルカリ水溶液としては、塩基性物質の水溶液を使用すればよく、塩基性物質として好ましくは上記カチオン交換工程で使用したアルカリ金属化合物と同じアルカリ金属化合物である。
(II-1) Alkaline cleaning step By performing the alkaline cleaning step, impurities such as water-soluble impurities contained in compound (1) and water-soluble by-products during cation exchange can be reduced from the reaction solution. The alkaline washing step may be such that the reaction solution and the alkaline aqueous solution come into contact with each other. For example, the reaction solution is added to the alkaline aqueous solution and brought into contact with each other, and the reaction solution and the alkaline aqueous solution are added to the reaction solution at the same time. It may be in a mode of contacting with each other. As the alkaline aqueous solution, an aqueous solution of a basic substance may be used, and the basic substance is preferably the same alkali metal compound as the alkali metal compound used in the above-mentioned cation exchange step.

アルカリ水溶液は、酢酸やアセトアミドの発生を抑制しつつ、不純物を十分に除去するためには、前記アルカリ洗浄工程は、前記ビス(フルオロスルホニル)イミドのアルカリ金属塩1モルに対して、アルカリ金属の量が、好ましくは0.05当量以上、より好ましくは0.1当量以上であって、好ましくは1当量以下、より好ましくは0.6当量以下となるように調整したアルカリ金属水溶液を接触させることが望ましい。アルカリ度が強くなると有機溶媒(B)が分解し、アセトアミド、酢酸等の不純物が増加することがある。アルカリ金属の量が少なすぎるとビス(フルオロスルホニル)イミドのアルカリ金属塩の収率が低下することがある。 In order to sufficiently remove impurities while suppressing the generation of acetic acid and acetamide in the alkaline aqueous solution, the alkali washing step is carried out in accordance with 1 mol of the alkali metal salt of the bis (fluorosulfonyl) imide. Contacting the alkali metal aqueous solution adjusted so that the amount is preferably 0.05 equivalents or more, more preferably 0.1 equivalents or more, preferably 1 equivalent or less, more preferably 0.6 equivalents or less. Is desirable. When the alkalinity becomes strong, the organic solvent (B) may be decomposed and impurities such as acetamide and acetic acid may increase. If the amount of alkali metal is too small, the yield of alkali metal salt of bis (fluorosulfonyl) imide may decrease.

アルカリ水溶液と接触させる際の反応溶液の温度は特に限定されないが、酢酸、アセトアミドの発生を抑制するため、好ましくは25℃以下、より好ましくは5℃以下であって、好ましくは0℃以上である。 The temperature of the reaction solution when brought into contact with the alkaline aqueous solution is not particularly limited, but is preferably 25 ° C. or lower, more preferably 5 ° C. or lower, and preferably 0 ° C. or higher in order to suppress the generation of acetic acid and acetamide. ..

反応溶液とアルカリ水溶液との接触時間は、反応溶液とアルカリ水溶液との接触が充分なものであれば特に限定されないが、例えば、反応溶液の添加終了から好ましくは1分程度、より好ましくは3分程度、攪拌しながら、反応溶液とアルカリ水溶液とを接触させるのが好ましい。接触時間が短すぎると不純物が残留することがある。 The contact time between the reaction solution and the alkaline aqueous solution is not particularly limited as long as the contact between the reaction solution and the alkaline aqueous solution is sufficient, but for example, it is preferably about 1 minute, more preferably 3 minutes after the addition of the reaction solution is completed. It is preferable to bring the reaction solution into contact with the alkaline aqueous solution while stirring to some extent. Impurities may remain if the contact time is too short.

(II−2)水洗浄工程
反応溶液中には例えば有機溶媒(B)の分解生成物である酢酸、アンモニア、アセトアミドなどの不純物が含まれているため、水洗して酢酸やアセトアミドの含有量を低減する。本発明では、上記カチオン交換工程でアンモニアを低減しているため、逆反応が抑制され、該逆反応によるアンモニウムイオンの発生も抑えることができる。また逆反応によって生成するビス(フルオロスルホニル)イミドのアンモニウム塩も抑制できる。
(II-2) Water washing step Since the reaction solution contains impurities such as acetic acid, ammonia, and acetamide, which are decomposition products of the organic solvent (B), wash with water to reduce the content of acetic acid and acetamide. Reduce. In the present invention, since ammonia is reduced in the cation exchange step, the reverse reaction can be suppressed, and the generation of ammonium ions due to the reverse reaction can also be suppressed. In addition, the ammonium salt of bis (fluorosulfonyl) imide produced by the reverse reaction can also be suppressed.

水洗する際の水の量は特に限定されないが、ビス(フルオロスルホニル)イミドのアルカリ金属塩の質量に対して好ましくは1倍以上、より好ましくは1.3倍以上であって好ましくは2倍以下、より好ましくは1.5倍以下である。水の量が少なすぎると洗浄効果が低下し、不純物の除去が不十分になる。一方、多すぎると過剰に洗浄することになりビス(フルオロスルホニル)イミドのアルカリ金属塩の収率が低くなる。 The amount of water for washing with water is not particularly limited, but is preferably 1 time or more, more preferably 1.3 times or more, and preferably 2 times or less the mass of the alkali metal salt of bis (fluorosulfonyl) imide. , More preferably 1.5 times or less. If the amount of water is too small, the cleaning effect will be reduced and impurities will be removed insufficiently. On the other hand, if it is too much, it will be washed excessively and the yield of the alkali metal salt of bis (fluorosulfonyl) imide will be low.

水洗時の水の温度は特に限定されないが、温度が低すぎると水の取り扱いがし難くなり、一方、温度が高すぎるとビス(フルオロスルホニル)イミドのアルカリ金属塩が分解するおそれがある。したがって水の温度は、好ましくは0℃以上であって、好ましくは45℃以下、より好ましくは25℃以下である。 The temperature of water at the time of washing with water is not particularly limited, but if the temperature is too low, it becomes difficult to handle the water, while if the temperature is too high, the alkali metal salt of bis (fluorosulfonyl) imide may be decomposed. Therefore, the temperature of water is preferably 0 ° C. or higher, preferably 45 ° C. or lower, and more preferably 25 ° C. or lower.

水洗時間は特に限定されないが、好ましくは1分以上、より好ましくは3分以上であって、好ましくは10分以下、より好ましくは5分以下である。 The washing time is not particularly limited, but is preferably 1 minute or more, more preferably 3 minutes or more, preferably 10 minutes or less, and more preferably 5 minutes or less.

アセトアミド含有量が好ましくは300質量ppm以下、より好ましくは100質量ppm以下、酢酸含有量は500質量ppm以下が好ましい。 The acetamide content is preferably 300 mass ppm or less, more preferably 100 mass ppm or less, and the acetic acid content is preferably 500 mass ppm or less.

(III)濃縮工程
濃縮工程は、洗浄後の反応溶液から有機溶媒(B)と水とを分離し、ジ(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解液材料を得る工程である。具体的に濃縮工程では水分を除去して濃縮すると共に、反応溶媒として使用した有機溶媒(B)を、該有機溶媒(B)とは異なる有機溶媒(A)と交換する。有機溶媒(A)としては非水溶媒が好ましく、一般に非水電解質電池用電解液に使用される有機溶媒であればよく、誘電率が大きく、電解質の溶解性が高く、沸点が60℃以上であり、且つ、電気化学的安定範囲が広い有機溶媒がより好ましく、特に好ましくはカーボネート系溶媒である。カーボネート系溶媒としては、炭酸ジメチル、炭酸エチルメチル(エチルメチルカーボネート)、炭酸ジエチル(ジエチルカーボネート)、炭酸ジフェニル、炭酸メチルフェニル等の鎖状炭酸エステル類;炭酸エチレン(エチレンカーボネート)、炭酸プロピレン(プロピレンカーボネート)、2,3−ジメチル炭酸エチレン(炭酸2,3−ブタンジイル)、炭酸1,2−ブチレン及びエリスリタンカーボネート等の飽和環状炭酸エステル類;炭酸ビニレン、メチルビニレンカーボネート(MVC;4−メチル−1,3−ジオキソール−2−オン)、エチルビニレンカーボネート(EVC;4−エチル−1,3−ジオキソール−2−オン)、2−ビニル炭酸エチレン(4−ビニル−1,3−ジオキソラン−2−オン)及びフェニルエチレンカーボネート(4−フェニル−1,3−ジオキソラン−2−オン)等の不飽和結合を有する環状炭酸エステル類;フルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート及びトリフルオロプロピレンカーボネート等のフッ素含有環状炭酸エステル類が挙げられ、これらのうち、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、エチレンカーボネート、プロピレンカーボネートが好ましい。これらは1種又は2種以上を使用することができる。
(III) Concentration Step In the concentration step, the organic solvent (B) and water are separated from the reaction solution after washing to obtain an electrolytic solution material containing an alkali metal salt of di (fluorosulfonyl) imide and the organic solvent (A). It is a process. Specifically, in the concentration step, water is removed and concentrated, and the organic solvent (B) used as the reaction solvent is replaced with an organic solvent (A) different from the organic solvent (B). As the organic solvent (A), a non-aqueous solvent is preferable, and any organic solvent generally used for an electrolytic solution for a non-aqueous electrolyte battery may be used, and has a large dielectric constant, high solubility of the electrolyte, and a boiling point of 60 ° C. or higher. An organic solvent having a wide electrochemically stable range is more preferable, and a carbonate-based solvent is particularly preferable. Examples of the carbonate solvent include chain carbonate esters such as dimethyl carbonate, ethyl methyl carbonate (ethyl methyl carbonate), diethyl carbonate (diethyl carbonate), diphenyl carbonate and methyl phenyl carbonate; ethylene carbonate (ethylene carbonate) and propylene carbonate (propylene carbonate). Saturated cyclic carbonates such as carbonate), 2,3-dimethylethylene carbonate (2,3-butanjiyl carbonate), 1,2-butylene carbonate and erythritan carbonate; vinylene carbonate, methylvinylene carbonate (MVC; 4-methyl- 1,3-Dioxol-2-one), ethyl vinylene carbonate (EVC; 4-ethyl-1,3-dioxol-2-one), 2-vinyl ethylene carbonate (4-vinyl-1,3-dioxolan-2-one) Cyclic carbonates having unsaturated bonds such as on) and phenylethylene carbonate (4-phenyl-1,3-dioxolan-2-one); fluoroethylene carbonate, 4,5-difluoroethylene carbonate, trifluoropropylene carbonate, etc. Fluorine-containing cyclic carbonates are mentioned, and among these, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethylene carbonate, and propylene carbonate are preferable. These can be used alone or in combination of two or more.

例えば、沸点の異なる複数の有機溶媒(A)を用いる場合、沸点が100℃程度の有機溶媒(A−1)と、沸点が200℃を超えるエチルメチルカーボネート、エチレンカーボネート、ポリカーボネートなどの有機溶媒(B)と共沸しない有機溶媒(A−2)とを用いることで、効率的に有機溶媒(B)を除去できる。 For example, when a plurality of organic solvents (A) having different boiling points are used, an organic solvent (A-1) having a boiling point of about 100 ° C. and an organic solvent such as ethyl methyl carbonate, ethylene carbonate, or polycarbonate having a boiling point of more than 200 ° C. ( By using the organic solvent (A-2) that does not azeotrope with B), the organic solvent (B) can be efficiently removed.

濃縮工程に使用できる反応装置は特に限定されず、例えば、ロータリーエバポレーター、フラスコ、槽型反応器又は減圧可能な槽型反応器等が挙げられる。 The reactor that can be used in the concentration step is not particularly limited, and examples thereof include a rotary evaporator, a flask, a tank reactor, a tank reactor capable of depressurizing, and the like.

有機溶媒(A)の使用量は、反応溶液中のビス(フルオロスルホニル)イミドのアルカリ金属塩の濃度に応じて適宜決定すればよいが、例えば、ビス(フルオロスルホニル)イミドのアルカリ金属塩の質量に対して、好ましくは0.8倍以上、より好ましくは1.0倍以上であって、好ましくは1.5倍以下、より好ましくは1.2倍以下である。有機溶媒(A)が少なすぎるとアルカリ金属塩が析出することがある。一方、多すぎると、電解液への希釈化の組成範囲が狭くなる。 The amount of the organic solvent (A) to be used may be appropriately determined according to the concentration of the alkali metal salt of bis (fluorosulfonyl) imide in the reaction solution. For example, the mass of the alkali metal salt of bis (fluorosulfonyl) imide may be determined. On the other hand, it is preferably 0.8 times or more, more preferably 1.0 times or more, preferably 1.5 times or less, and more preferably 1.2 times or less. If the amount of the organic solvent (A) is too small, an alkali metal salt may be precipitated. On the other hand, if it is too much, the composition range of dilution into the electrolytic solution becomes narrow.

またビス(フルオロスルホニル)イミドのアルカリ金属塩の濃縮効率を一層高めるため反応溶液を加熱しながら濃縮工程を行ってもよい。加熱温度は使用する有機溶媒(B)に応じて適宜設定すればよいが、有機溶媒(B)の除去効率を向上させるためには、好ましくは45℃以上、より好ましくは50℃以上である。一方、ビス(フルオロスルホニル)イミドのアルカリ金属塩の分解を抑制する観点からは、好ましくは70℃以下、より好ましくは60℃以下である。 Further, in order to further increase the concentration efficiency of the alkali metal salt of bis (fluorosulfonyl) imide, the concentration step may be performed while heating the reaction solution. The heating temperature may be appropriately set according to the organic solvent (B) to be used, but in order to improve the removal efficiency of the organic solvent (B), it is preferably 45 ° C. or higher, more preferably 50 ° C. or higher. On the other hand, from the viewpoint of suppressing the decomposition of the alkali metal salt of bis (fluorosulfonyl) imide, the temperature is preferably 70 ° C. or lower, more preferably 60 ° C. or lower.

また濃縮工程は減圧下で実施してもよい。減圧度をコントロールすることによって、低温であっても効率よく有機溶媒(B)を除去でき、また、熱によるビス(フルオロスルホニル)イミドのアルカリ金属塩の分解も防ぐことができる。減圧度は有機溶媒(B)の種類に応じて適宜調整すればよく特に限定はされないが、好ましくは3hPa以上、より好ましくは5hPa以上であって、好ましくは50hPa以下、より好ましくは20hPa以下である。 Further, the concentration step may be carried out under reduced pressure. By controlling the degree of reduced pressure, the organic solvent (B) can be efficiently removed even at a low temperature, and the decomposition of the alkali metal salt of bis (fluorosulfonyl) imide by heat can be prevented. The degree of reduced pressure may be appropriately adjusted according to the type of the organic solvent (B) and is not particularly limited, but is preferably 3 hPa or more, more preferably 5 hPa or more, preferably 50 hPa or less, and more preferably 20 hPa or less. ..

濃縮工程の時間は特に限定されないが、好ましくは8分以上、より好ましくは10分以上であって、好ましくは5時間以下、より好ましくは3時間以下である。 The time of the concentration step is not particularly limited, but is preferably 8 minutes or more, more preferably 10 minutes or more, preferably 5 hours or less, and more preferably 3 hours or less.

濃縮工程では水分量が好ましくは100質量ppm以下、より好ましくは50質量ppm以下、有機溶媒(B)含有量が好ましくは3000質量ppm以下、より好ましくは1000質量ppm以下となるまで濃縮を行うことが好ましい。濃縮工程は複数回繰り返してもよいし、有機溶媒(A−2)を順次添加して濃縮工程を行ってもよい。 In the concentration step, concentration is carried out until the water content is preferably 100 mass ppm or less, more preferably 50 mass ppm or less, and the organic solvent (B) content is preferably 3000 mass ppm or less, more preferably 1000 mass ppm or less. Is preferable. The concentration step may be repeated a plurality of times, or the concentration step may be performed by sequentially adding the organic solvent (A-2).

濃縮工程によって有機溶媒(B)と水分が留去されると共に、ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解質材料が得られる。 The concentration step distills off the organic solvent (B) and water, and an electrolyte material containing an alkali metal salt of bis (fluorosulfonyl) imide and the organic solvent (A) is obtained.

上記得られた電解質材料は実質的にビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含み、残部は不純物である。本発明では不純物としてアセトアミド、アンモニウム、及び酢酸が微量に含まれていてもよい。具体的にはアセトアミドの含有量は好ましくは1000質量ppm以下(質量基準、以下同じ)、より好ましくは500質量ppm以下、更に好ましくは200質量ppm以下である。アンモニウムの含有量は好ましくは300質量ppm以下、より好ましくは100質量ppm以下、更に好ましくは80質量ppm以下である。酢酸の含有量は好ましくは750質量ppm以下、より好ましくは500質量ppm以下である。これら不純物の含有量は低いほどより一層すぐれた電池特性が得られる。 The obtained electrolyte material substantially contains an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent (A), and the balance is an impurity. In the present invention, acetamide, ammonium, and acetic acid may be contained in trace amounts as impurities. Specifically, the content of acetamide is preferably 1000 mass ppm or less (mass basis, the same applies hereinafter), more preferably 500 mass ppm or less, still more preferably 200 mass ppm or less. The ammonium content is preferably 300 mass ppm or less, more preferably 100 mass ppm or less, still more preferably 80 mass ppm or less. The content of acetic acid is preferably 750 mass ppm or less, more preferably 500 mass ppm or less. The lower the content of these impurities, the better the battery characteristics can be obtained.

本発明の製法により得られるジ(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解液材料は、一次電池、リチウム(イオン)二次電池や燃料電池等の充電/放電機構を有する電池、電解コンデンサ、電気二重層キャパシタ、太陽電池・エレクトロクロミック表示素子等の電気化学デバイスを構成するイオン伝導体の材料として好適に用いられる。 The electrolytic solution material containing the alkali metal salt of di (fluorosulfonyl) imide and the organic solvent (A) obtained by the production method of the present invention provides a charging / discharging mechanism for a primary battery, a lithium (ion) secondary battery, a fuel cell, or the like. It is suitably used as a material for an ionic conductor constituting an electrochemical device such as a battery, an electrolytic capacitor, an electric double layer capacitor, a solar cell, or an electrochromic display element.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples as well as the present invention, and appropriate modifications are made to the extent that it can be adapted to the gist of the above and the following. Of course, it is possible to carry out, and all of them are included in the technical scope of the present invention.

実施例1
以下の手順で電解液材料No.1〜3を作製した。
Example 1
Follow the procedure below to set the electrolyte material No. 1 to 3 were prepared.

実施例1−1
酢酸ブチル41.41g中にアンモニウムビス(フルオロスルホニル)イミド(NH4FSI)を10.63g投入しNH4FSI20.4質量%の酢酸ブチル溶液を作製した。
Example 1-1
Ammonium in butyl acetate 41.41g bis (fluorosulfonyl) imide (NH 4 FSI) was prepared 10.63g charged with NH 4 FSI20.4 wt% butyl acetate solution.

[カチオン交換工程]
得られたNH4FSI20.4質量%の酢酸ブチル溶液に対して、ビス(フルオロスルホニル)イミドのアンモニウム塩比1.05当量の水酸化リチウム・1水和物(LiOH・H2O)の粉体2.36gを加え、室温で15分間攪拌すると共に、撹拌中発生したアンモニアガスを反応溶液から留去させた。リチウム化して得られたリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液(反応溶液)は51.15gであった。得られた反応溶液の含有水分量、酢酸ブチル量、リチウムビス(フルオロスルホニル)イミド(LiFSI)量、アンモニウム量をそれぞれ下記測定方法に基づいて測定した結果、水分:4.00質量%(2.05g)、酢酸ブチル:73.32質量%(37.50g)、LiFSI:22.02質量%(収量:11.26g)、アンモニウムは2370質量ppmであった。
[Cation exchange process]
Lithium hydroxide monohydrate (LiOH · H 2 O) powder having an ammonium salt ratio of 1.05 equivalent of bis (fluorosulfonyl) imide to the obtained NH 4 FSI 20.4 mass% butyl acetate solution. 2.36 g of the body was added, and the mixture was stirred at room temperature for 15 minutes, and the ammonia gas generated during the stirring was distilled off from the reaction solution. The butyl acetate solution (reaction solution) of lithium bis (fluorosulfonyl) imide obtained by lithium conversion was 51.15 g. As a result of measuring the water content, the butyl acetate amount, the lithium bis (fluorosulfonyl) imide (LiFSI) amount, and the ammonium amount of the obtained reaction solution based on the following measuring methods, the water content was 4.00% by mass (2. 05 g), butyl acetate: 73.32% by mass (37.50 g), LiFSI: 22.02% by mass (yield: 11.26 g), and ammonium was 2370% by mass.

[アンモニア留去工程]
カチオン交換して得られた反応溶液を減圧下(20hPa)、室温(25℃)で15分間の減圧蒸留を行ってアンモニアを更に留去した。この際、アンモニア留去と共に、水と酢酸ブチルも同時に留去させた。アンモニア留去工程後の反応溶液の質量は45.52gであった。またアンモニア留去工程後の反応溶液の含有水分量、酢酸ブチル量をそれぞれ下記測定方法に基づいて測定した結果、水分:2.30質量%(1.05g)、酢酸ブチル:73.84質量%(33.61g)であった。
[Ammonia distillation process]
The reaction solution obtained by cation exchange was distilled under reduced pressure (20 hPa) at room temperature (25 ° C.) for 15 minutes to further distill off ammonia. At this time, water and butyl acetate were distilled off at the same time as ammonia was distilled off. The mass of the reaction solution after the ammonia distillation step was 45.52 g. Further, as a result of measuring the water content and the butyl acetate amount of the reaction solution after the ammonia distillation step based on the following measurement methods, the water content was 2.30% by mass (1.05 g) and the butyl acetate: 73.84% by mass. It was (33.61 g).

[水洗浄工程]
アンモニア留去工程後、リチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液(反応溶液)は、リチウムビス(フルオロスルホニル)イミド(LiFSI)質量の1.3倍の純水(14.64g)で水洗した。水洗後、分液して水層を除去し、得られた油層(44.44g)を温度(55℃)及び圧力(20hPa)の制御下で10分間の減圧蒸留を行った。
[Water washing process]
After the ammonia distillation step, the butyl acetate solution (reaction solution) of lithium bis (fluorosulfonyl) imide was washed with pure water (14.64 g) 1.3 times the mass of lithium bis (fluorosulfonyl) imide (LiFSI). .. After washing with water, the liquid was separated to remove the aqueous layer, and the obtained oil layer (44.44 g) was subjected to vacuum distillation for 10 minutes under the control of temperature (55 ° C.) and pressure (20 hPa).

[濃縮工程]
ロータリーエバポレーター(「REN−1000」、IWAKI社製)を使用して、減圧下で、水洗浄工程後のリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液から反応溶媒である酢酸ブチル溶液、水を留去した。具体的にはリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液に対して、リチウムビス(フルオロスルホニル)イミドの質量の1倍量のエチレンカーボネート(EC)、2倍質量のメチルエチルカーボネート(MEC)を加え、減圧下(20hPa)、55℃で10分加温し、減圧蒸留を行った。続いて2倍質量のメチルエチルカーボネートを加えて同様の減圧蒸留を行った。水分量が50質量ppmとなるまで同様の操作を繰り返し、合計で10質量倍のメチルエチルカーボネートを使用した。減圧蒸留することで酢酸ブチルと共に水、エチレンカーボネートも留去させ、LiFSI/EC/MEC溶液15.35gを得た。この溶液のLiFSI量は53.74質量%(8.25g)であった。また最終的なLiFSIの収率(溶液中のLiFSI質量/NH4FSIの投入質量)は77.61質量%であった。得られたリチウムビス(フルオロスルホニル)イミドのエチレンカーボネート溶液を電解液材料No.1とした。
[Concentration process]
Using a rotary evaporator (“REN-1000”, manufactured by IWAKI), a butyl acetate solution as a reaction solvent and water were distilled from the butyl acetate solution of lithium bis (fluorosulfonyl) imide after the water washing step under reduced pressure. I left. Specifically, for a butyl acetate solution of lithium bis (fluorosulfonyl) imide, 1 times the mass of ethylene carbonate (EC) and 2 times the mass of methyl ethyl carbonate (MEC) of lithium bis (fluorosulfonyl) imide In addition, under reduced pressure (20 hPa), the mixture was heated at 55 ° C. for 10 minutes and subjected to vacuum distillation. Subsequently, twice the mass of methyl ethyl carbonate was added, and the same vacuum distillation was performed. The same operation was repeated until the water content reached 50 mass ppm, and a total of 10 times by mass of methyl ethyl carbonate was used. Water and ethylene carbonate were distilled off together with butyl acetate by distillation under reduced pressure to obtain 15.35 g of a LiFSI / EC / MEC solution. The amount of LiFSI in this solution was 53.74% by mass (8.25 g). The final yield of LiFSI (mass of LiFSI in solution / mass of NH 4 FSI) was 77.61% by mass. The obtained ethylene carbonate solution of lithium bis (fluorosulfonyl) imide was used as an electrolytic solution material No. It was set to 1.

実施例1−2
[カチオン交換工程]
実施例1−1と同様にして作製したNH4FSI20.4質量%の酢酸ブチル溶液に対して、ビス(フルオロスルホニル)イミドのアンモニウム塩比1.15当量のLiOH・H2Oの粉体2.59gを加え、室温で15分間攪拌すると共に、撹拌中発生したアンモニアガスを反応溶液から留去させた。得られたリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液(反応溶液)は50.94gであった。得られた反応溶液の含有水分量、酢酸ブチル量、LiFSI量、アンモニウム量をそれぞれ下記測定方法に基づいて測定した結果、水:4.24質量%(2.16g)、酢酸ブチル:73.38質量%(37.38g)、LiFSI:22.06質量%(11.24g)、アンモニウムは2420質量ppmであった。
Example 1-2
[Cation exchange process]
LiOH · H 2 O powder 2 having an ammonium salt ratio of 1.15 equivalents of bis (fluorosulfonyl) imide to a 20.4 mass% butyl acetate solution of NH 4 FSI prepared in the same manner as in Example 1-1. .59 g was added, and the mixture was stirred at room temperature for 15 minutes, and the ammonia gas generated during the stirring was distilled off from the reaction solution. The obtained butyl acetate solution (reaction solution) of lithium bis (fluorosulfonyl) imide was 50.94 g. As a result of measuring the water content, butyl acetate amount, LiFSI amount, and ammonium amount of the obtained reaction solution based on the following measurement methods, water: 4.24% by mass (2.16 g), butyl acetate: 73.38. The mass% (37.38 g), LiFSI: 22.06 mass% (11.24 g), and ammonium were 2420 mass ppm.

[アンモニア留去工程]
カチオン交換して得られた反応溶液を実施例1−1と同様にしてアンモニア留去工程を行った。アンモニア留去工程後の反応溶液の質量は45.72gであった。またアンモニア留去工程後の反応溶液の含有水分量、酢酸ブチル量をそれぞれ下記測定方法に基づいて測定した結果、水:2.56質量%(1.17g)、酢酸ブチル:73.60質量%(33.65g)であった。
[Ammonia distillation process]
The reaction solution obtained by cation exchange was subjected to an ammonia distillation step in the same manner as in Example 1-1. The mass of the reaction solution after the ammonia distillation step was 45.72 g. Further, as a result of measuring the water content and the butyl acetate content of the reaction solution after the ammonia distillation step based on the following measurement methods, water: 2.56% by mass (1.17 g) and butyl acetate: 73.60% by mass, respectively. It was (33.65 g).

[水洗浄工程]
アンモニア留去工程後、得られた反応溶液を実施例1−1と同様にして水洗浄工程を行った。水洗後、分液して水層を除去し、得られた油層(44.52g)を温度(55℃)及び圧力(20hPa)の制御下で10分間の減圧蒸留を行った。
[Water washing process]
After the ammonia distillation step, the obtained reaction solution was subjected to a water washing step in the same manner as in Example 1-1. After washing with water, the liquid was separated to remove the aqueous layer, and the obtained oil layer (44.52 g) was subjected to vacuum distillation for 10 minutes under the control of temperature (55 ° C.) and pressure (20 hPa).

[濃縮工程]
上記No.1と同様にして濃縮工程を行って、LiFSI/EC/MEC溶液15.41gを得た。この溶液のLiFSI量は53.60質量%(8.26g)であった。また最終的なLiFSIの収率は77.70質量%であった。得られたリチウムビス(フルオロスルホニル)イミドのエチレンカーボネート溶液を電解液材料No.2とした。
[Concentration process]
The above No. The concentration step was carried out in the same manner as in No. 1 to obtain 15.41 g of LiFSI / EC / MEC solution. The amount of LiFSI in this solution was 53.60% by mass (8.26 g). The final yield of LiFSI was 77.70% by mass. The obtained ethylene carbonate solution of lithium bis (fluorosulfonyl) imide was used as an electrolytic solution material No. It was set to 2.

実施例1−3(比較例)
[カチオン交換工程]
実施例1−1と同様にして作製したNH4FSI20.4質量%の酢酸ブチル溶液に対して、ビス(フルオロスルホニル)イミドのアンモニウム塩比1.3当量のLiOH・H2Oの粉体2.92gを加え、室温で15分間攪拌すると共に、撹拌中発生したアンモニアガスを反応溶液から留去させた。得られたリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液(反応溶液)は50.89gであった。得られた反応溶液の含有水分量、酢酸ブチル量、LiFSI量、アンモニウム量をそれぞれ下記測定方法に基づいて測定した結果、水:5.01質量%(2.55g)、酢酸ブチルは72.44質量%(36.86g)、LiFSIは22.11質量%(11.25g)、アンモニウムは2530質量ppmであった。
Example 1-3 (Comparative Example)
[Cation exchange process]
LiOH · H 2 O powder 2 having an ammonium salt ratio of bis (fluorosulfonyl) imide of 1.3 equivalents with respect to a 20.4 mass% butyl acetate solution of NH 4 FSI prepared in the same manner as in Example 1-1. .92 g was added and stirred at room temperature for 15 minutes, and the ammonia gas generated during stirring was distilled off from the reaction solution. The obtained butyl acetate solution (reaction solution) of lithium bis (fluorosulfonyl) imide was 50.89 g. As a result of measuring the water content, butyl acetate amount, LiFSI amount, and ammonium amount of the obtained reaction solution based on the following measurement methods, water: 5.01% by mass (2.55 g) and butyl acetate were 72.44. The mass% (36.86 g), LiFSI was 22.11 mass% (11.25 g), and ammonium was 2530 mass ppm.

[アンモニア留去工程]
カチオン交換して得られた反応溶液を実施例1−1と同様にしてアンモニア留去工程を行った。アンモニア留去工程後の反応溶液の質量は44.65gであった。またアンモニア留去工程後の反応溶液の含有水分量、酢酸ブチル量をそれぞれ下記測定方法に基づいて測定した結果、水:2.98質量%(1.33g)、酢酸ブチル:73.06質量%(32.62g)であった。
[Ammonia distillation process]
The reaction solution obtained by cation exchange was subjected to an ammonia distillation step in the same manner as in Example 1-1. The mass of the reaction solution after the ammonia distillation step was 44.65 g. Further, as a result of measuring the water content and the butyl acetate content of the reaction solution after the ammonia distillation step based on the following measurement methods, water: 2.98% by mass (1.33 g) and butyl acetate: 73.06% by mass, respectively. It was (32.62 g).

[水洗浄工程]
アンモニア留去工程後、得られた反応溶液を実施例1−1と同様にして水洗浄工程を行った。水洗後、分液して水層を除去し、得られた油層(42.87g)を温度(55℃)及び圧力(20hPa)の制御下で10分間の減圧蒸留を行った。
[Water washing process]
After the ammonia distillation step, the obtained reaction solution was subjected to a water washing step in the same manner as in Example 1-1. After washing with water, the liquid was separated to remove the aqueous layer, and the obtained oil layer (42.87 g) was subjected to vacuum distillation for 10 minutes under the control of temperature (55 ° C.) and pressure (20 hPa).

[濃縮工程]
上記No.1と同様にして濃縮工程を行って、LiSFI/EC/MEC溶液15.31gを得た。この溶液のLiFSI量は53.81%(8.24g)であった。また最終的なLiFSIの収率は77.52%であった。得られたリチウムビス(フルオロスルホニル)イミドのエチレンカーボネート溶液を電解液材料No.3とした。
[Concentration process]
The above No. The concentration step was carried out in the same manner as in No. 1 to obtain 15.31 g of LiSFI / EC / MEC solution. The amount of LiFSI in this solution was 53.81% (8.24 g). The final LiFSI yield was 77.52%. The obtained ethylene carbonate solution of lithium bis (fluorosulfonyl) imide was used as an electrolytic solution material No. It was set to 3.

得られた各電解液材料に含まれるアセトアミド量、アンモニウム量、及び酢酸量をそれぞれ下記測定方法に基づいて測定した。結果を表1に示す。 The amount of acetamide, the amount of ammonium, and the amount of acetic acid contained in each of the obtained electrolytic solution materials were measured based on the following measuring methods. The results are shown in Table 1.

[測定方法]
(水分量の測定)
各反応溶液の含有水分量はカールフィッシャー水分測定装置(平沼産業製AQ−2100)で測定した。測定試料はカチオン交換後、またはアンモニア留去後の反応溶液0.2gをメタノールで10倍に希釈して調整した。なお、試料の調製及び測定などの一連の操作はドライルーム(温度25℃、露点−70℃〜−50℃)で行った。試料注入量は試料の水分含有量に応じて0.1ml〜3mlとし、発生液には「ハイドラナール(登録商標)クローマットAK」(Siguma Aldrich社製)を使用し、対極液には「ハイドラナール(登録商標)クローマットCG−K」(Sigma Aldrich社製)を使用した。試料は外気に触れないよう注射器を用いて試料注入口より注入した。同様にして、希釈に使用したメタノールの水分含有量を測定し、試料溶液の水分含有量(測定値)からメタノールの水分含有量を差し引く事で、反応溶液の水分含有量を求めた。
[Measuring method]
(Measurement of water content)
The water content of each reaction solution was measured with a Karl Fischer water content measuring device (AQ-2100 manufactured by Hiranuma Sangyo Co., Ltd.). The measurement sample was prepared by diluting 0.2 g of the reaction solution after cation exchange or ammonia distillation with methanol 10-fold. A series of operations such as sample preparation and measurement were performed in a dry room (temperature 25 ° C., dew point −70 ° C. to −50 ° C.). The amount of sample injected should be 0.1 ml to 3 ml depending on the water content of the sample, "Hydranal (registered trademark) Cromat AK" (manufactured by Sigma-Aldrich) is used as the generated liquid, and "Hydra" is used as the counter electrode liquid. Nar (registered trademark) Clawmat CG-K ”(manufactured by Sigma-Aldrich) was used. The sample was injected from the sample injection port using a syringe so as not to come into contact with the outside air. Similarly, the water content of the methanol used for dilution was measured, and the water content of the reaction solution was determined by subtracting the water content of methanol from the water content (measured value) of the sample solution.

(LiFSI量の測定)
カチオン交換工程後、及び濃縮工程後の各反応溶液の含有LiFSI量を19F−NMRで分析した。LiFSIの濃度は各反応溶液から得られた有機層を試料として、19F−NMR(溶媒:重アセトニトリル)測定を行い、測定結果のチャートにおいて内部標準物質として加えたトリフルオロメチルベンゼンの量、及び、これに由来するピークの積分値と、目的生成物に由来するピークの積分値との比較から求めた。
(Measurement of LiFSI amount)
The amount of LiFSI contained in each reaction solution after the cation exchange step and the concentration step was analyzed by 19 F-NMR. The concentration of LiFSI was measured by 19 F-NMR (solvent: deuterated acetonitrile) using the organic layer obtained from each reaction solution as a sample, and the amount of trifluoromethylbenzene added as an internal standard substance in the chart of the measurement results, and , It was obtained from the comparison between the integrated value of the peak derived from this and the integrated value of the peak derived from the target product.

(酢酸量、アセトアミド量、及び酢酸ブチル量の測定)
ガスクロマトグラフ質量分析計(GC−MASS)を使用して、カチオン交換工程後、及びアンモニア留去工程後の各反応溶液の含有酢酸ブチル量、及び電解液材料No.1〜3に含まれるアセトアミド、及び酢酸を測定した。分析結果を表1に示す。
電解液材料を超脱水アセトンで40倍に希釈して想定溶液とした。
装置はサーモクエスト社製PolarisQを用い、イオン化法E/I法で測定した。
ガスクロ条件
恒温層:40℃5分−250℃10分 昇温速度10℃/分
流量:He 1.0mL/分
注入口:260℃、スプリット注入法 1/10
カラム:CP−VOLAMINE(0.25mm内径×30m)
(Measurement of acetic acid amount, acetamide amount, and butyl acetate amount)
Using a gas chromatograph mass spectrometer (GC-MASS), the amount of butyl acetate contained in each reaction solution after the cation exchange step and the ammonia distillation step, and the electrolyte material No. Acetamide and acetic acid contained in 1-3 were measured. The analysis results are shown in Table 1.
The electrolyte material was diluted 40-fold with super-dehydrated acetone to prepare the assumed solution.
The apparatus was PolarisQ manufactured by Thermoquest, and the measurement was performed by the ionization method E / I method.
Gas chromatography conditions Constant temperature layer: 40 ° C. 5 minutes-250 ° C. 10 minutes Temperature rise rate 10 ° C./min Flow rate: He 1.0 mL / min Injection port: 260 ° C., split injection method 1/10
Column: CP-VOLAMINE (0.25 mm inner diameter x 30 m)

(アンモニウム量の測定)
イオンクロマトグラフィーを使用して、電解液材料No.1〜3に含まれるアンモニウムイオンイオン量を測定した。電解液材料を超純水(18.2Ω・cm超)で1000倍に希釈して測定溶液とした。装置は日本ダイオネクス株式会社製ICS−2000を用いて測定溶液中のNH4+を測定した。
分離モード:イオン交換
溶離液:15-30mM KOH水溶液
検出器:電気伝導度検出器
カラム:Ion PAC OG16−CS16
(Measurement of ammonium amount)
Using ion chromatography, the electrolyte material No. The amount of ammonium ion ions contained in 1-3 was measured. The electrolyte material was diluted 1000-fold with ultrapure water (more than 18.2 Ω · cm) to prepare a measurement solution. NH 4+ in the measurement solution was measured using ICS-2000 manufactured by Nippon Dionex Corporation.
Separation mode: Ion exchange eluent: 15-30 mM KOH aqueous solution detector: Electrical conductivity detector Column: Ion PAC OG16-CS16

Figure 0006806514
Figure 0006806514

カチオン交換工程において添加した水酸化リチウム・1水和物量を本発明で規定する範囲で実施した実施例1−1と実施例1−2ではカチオン交換工程後の反応溶液の含有水分量を低減でき、その結果、電解液材料に含まれる不純物量(アセトアミド、アンモニウム、及び酢酸)を低減できた。一方、添加した水酸化リチウム・1水和物量が多かった実施例1−3では反応溶液の含有水分量が多く、その結果、電解液材料に含まれる不純物量が多かった。 In Examples 1-1 and 1-2 in which the amount of lithium hydroxide monohydrate added in the cation exchange step was within the range specified in the present invention, the water content of the reaction solution after the cation exchange step could be reduced. As a result, the amount of impurities (acetamide, ammonium, and acetic acid) contained in the electrolytic solution material could be reduced. On the other hand, in Example 1-3 in which the amount of added lithium hydroxide / monohydrate was large, the amount of water contained in the reaction solution was large, and as a result, the amount of impurities contained in the electrolytic solution material was large.

実施例1−1と実施例1−2ではカチオン交換工程において添加した水酸化リチウム・1水和物量を本発明で規定する範囲で実施したため、添加した水酸化リチウム・1水和物量が多かった実施例1−3と比べてリチウム化後のアルカリ度を低く抑えることができ、酢酸ブチルの分解を抑制できた。その結果、酢酸ブチルの分解生成物である酢酸の生成を抑えることができると共に、酢酸とアンモニアの脱水縮合物であるアセトアミドの生成も抑えることができ、電解液材料に含まれる酢酸やアセトアミドは検出限界未満にまで低減できた。また実施例1−1と実施例1−2ではカチオン交換工程後の反応溶液の含有水分量を低減することで、水とアンモニアによる逆反応を抑えることができ、電解液材料に含まれるアンモニウムを低減できた。 In Examples 1-1 and 1-2, the amount of lithium hydroxide / monohydrate added in the cation exchange step was carried out within the range specified in the present invention, so that the amount of lithium hydroxide / monohydrate added was large. Compared with Examples 1-3, the alkalinity after lithium conversion could be suppressed to be low, and the decomposition of butyl acetate could be suppressed. As a result, the formation of acetic acid, which is a decomposition product of butyl acetate, can be suppressed, and the formation of acetamide, which is a dehydration condensation product of acetic acid and ammonia, can also be suppressed, and acetic acid and acetamide contained in the electrolytic solution material can be detected. It could be reduced to less than the limit. Further, in Examples 1-1 and 1-2, by reducing the water content of the reaction solution after the cation exchange step, the reverse reaction due to water and ammonia can be suppressed, and ammonium contained in the electrolytic solution material can be suppressed. I was able to reduce it.

実施例2
(非水電解液の調製)
電解液材料No.1にEC、EMCを後添加してLiFSI濃度1.2モル/L EC/EMC=3/7(体積比)組成の非水電解液I−1を調整した。
Example 2
(Preparation of non-aqueous electrolyte solution)
Electrolyte material No. EC and EMC were post-added to 1 to prepare a non-aqueous electrolytic solution I-1 having a LiFSI concentration of 1.2 mol / L EC / EMC = 3/7 (volume ratio).

またエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、3:7(体積比)で混合した非水溶媒に六フッ化リン酸リチウム(LiPF6、キシダ化学株式会社製、電解質塩)を溶解させて、LiPF6濃度1.2モル/Lの非水電解液IIを調製した。 In addition, lithium hexafluorophosphate (LiPF 6 , manufactured by Kishida Chemical Co., Ltd., electrolyte salt) was added to a non-aqueous solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a ratio of 3: 7 (volume ratio). The mixture was dissolved to prepare a non-aqueous electrolyte II having a LiPF 6 concentration of 1.2 mol / L.

上記非水電解液I−1と上記非水電解液IIとを混合し、組成がLiFSI濃度0.6モル/L、LiPF6濃度0.6モル/L、EC/EMC体積比=3/7の非水電解液No.1を調製した。 The non-aqueous electrolytic solution I-1 and the non-aqueous electrolytic solution II are mixed, and the composition is LiFSI concentration 0.6 mol / L, LiPF 6 concentration 0.6 mol / L, EC / EMC volume ratio = 3/7. Non-aqueous electrolyte solution No. 1 was prepared.

電解液材料No.1に代えて電解液材料No.2、3を用いて非水電解液I−2、I−3を調製した以外は上記と同様にして非水電解液No.2、3を調製した。 Electrolyte material No. Instead of No. 1, the electrolyte material No. Non-aqueous electrolyte solutions No. 2 and I-3 were prepared in the same manner as above except that the non-aqueous electrolyte solutions I-2 and I-3 were prepared using 2 and 3. A few were prepared.

電池評価
ラミネート型リチウムイオン二次電池の作製
正極活物質(LiCoO2)、導電助剤1(アセチレンブラック、電気化学工業製)、導電助剤2(グラファイト)及び結着剤(PVdF、株式会社クレハ・バッテリー・マテリアルズ・ジャパン製「クレハL#1120」)を93:2:2:3の質量比で混合しN−メチルピロリドンに分散させた正極合剤スラリーをアルミニウム箔(正極集電体)上に両面塗工し、乾燥、圧縮して、正極シートを作製した。
Battery evaluation Fabrication of laminated lithium-ion secondary battery Positive electrode active material (LiCoO 2 ), conductive auxiliary agent 1 (acetylene black, manufactured by Denki Kagaku Kogyo), conductive auxiliary agent 2 (graphite) and binder (PVdF, Kureha Co., Ltd.) -Aluminum foil (positive electrode current collector) is a positive electrode mixture slurry in which "Kureha L # 1120" manufactured by Battery Materials Japan) is mixed at a mass ratio of 93: 2: 2: 3 and dispersed in N-methylpyrrolidone. Both sides were coated on the surface, dried and compressed to prepare a positive electrode sheet.

負極活物質として人造黒鉛、導電助剤(VGCF、昭和電工社製)、及び結着剤(スチレンブタジエンゴム、カルボキシメチルセルロース)を100:0.5:2.6(質量比)の割合で混合し、これをN−メチルピロリドンと混合してスラリー状の溶液を作製した。この負極合剤スラリーを銅箔(負極集電体)上に片面塗工し、乾燥、圧縮して負極シートを作製した。 As a negative electrode active material, artificial graphite, a conductive auxiliary agent (VGCF, manufactured by Showa Denko Co., Ltd.), and a binder (styrene butadiene rubber, carboxymethyl cellulose) are mixed at a ratio of 100: 0.5: 2.6 (mass ratio). , This was mixed with N-methylpyrrolidone to prepare a slurry-like solution. This negative electrode mixture slurry was coated on one side of a copper foil (negative electrode current collector), dried and compressed to prepare a negative electrode sheet.

上記正極シート(150μm)の両面に対向する様に負極シート(85μm)を積層し、その間にポリエチレン製のセパレーター(径16μm)各1枚を挟んだ。2枚のアルミニウムラミネートで負極シート、セパレーター、正極シート、セパレーター、負極シートの順に積層された積層体を挟み込みアルミラミネートフィルム内を0.7mLの非水電解液1で満たし、真空状態で密閉し(容量34mAh)、リチウムイオン二次電池No.1を作製した。また非水電解液No.1を非水電解液No.2、3に変更したこと以外は上記と同様にして、リチウムイオン二次電池No.2、3を作製した。 The negative electrode sheets (85 μm) were laminated so as to face both sides of the positive electrode sheet (150 μm), and one polyethylene separator (diameter 16 μm) was sandwiched between them. A laminate in which the negative electrode sheet, the separator, the positive electrode sheet, the separator, and the negative electrode sheet are laminated in this order is sandwiched between two aluminum laminates, the inside of the aluminum laminate film is filled with 0.7 mL of non-aqueous electrolytic solution 1, and the mixture is sealed in a vacuum state ( Capacity 34mAh), Lithium-ion secondary battery No. 1 was produced. In addition, the non-aqueous electrolyte solution No. No. 1 is a non-aqueous electrolyte solution No. Lithium ion secondary battery No. 2 in the same manner as above except that it was changed to 2 and 3. A few were made.

リチウムイオン二次電池No.1〜3を用いて下記(1)〜(3)の電池特性を評価した。 Lithium ion secondary battery No. The following battery characteristics (1) to (3) were evaluated using 1 to 3.

(1)初回充放電効率
リチウムイオン二次電池について、温度25℃の環境下、充放電試験装置(株式会社アスカ電子製ACD−01、以下同じ。)を使用し、所定の充電条件(0.5C(32mA)、4.35V、定電流定電圧モード)で5時間充電を行った。その後、所定の放電条件(0.2C(12.8mA)、放電終止電圧2.75V、定電流放電)で放電を行った。正極活物質1g当たりの初回の充電容量、及び正極活物質1g当たりの初回の放電容量を記録し、得られた値から下記式より、初回充放電効率を算出した。結果を表2に示す。
初回充放電効率(%)=(初回放電容量/初回充電容量)×100
(1) Initial charge / discharge efficiency For a lithium ion secondary battery, a charge / discharge test device (ACD-01 manufactured by Asuka Electronics Co., Ltd., the same shall apply hereinafter) is used in an environment of a temperature of 25 ° C., and predetermined charging conditions (0. Charging was performed at 5C (32mA), 4.35V, constant current constant voltage mode) for 5 hours. Then, the discharge was performed under predetermined discharge conditions (0.2 C (12.8 mA), discharge end voltage 2.75 V, constant current discharge). The initial charge capacity per 1 g of the positive electrode active material and the initial discharge capacity per 1 g of the positive electrode active material were recorded, and the initial charge / discharge efficiency was calculated from the obtained values by the following formula. The results are shown in Table 2.
Initial charge / discharge efficiency (%) = (Initial discharge capacity / Initial charge capacity) x 100

(2)初期レート特性
充放電試験装置(アスカ電子株式会社製「ACD−01」)を使用して、温度25℃の環境下、リチウムイオン二次電池を、1C(64mA)の電流値、4.35V定電圧で、0.05C(1.28mA)まで電流が垂下するまで充電した後、0.2C(12.8mA)で2.75Vまで定電流放電を行った。この時の正極活物質1g当たりの放電容量を0.2C容量とした。次いで、再び上記条件で充電を行った後、2.0Cで2.75Vまで定電流放電を行った。このときの正極活物質1g当たりの放電容量を2.0C容量とした。得られた放電容量の値から下記式より、初期レートを算出した。結果を表2に示す。
初期レート特性 (%)=(2.0C容量/0.2C容量)×100
(2) Initial rate characteristics Using a charge / discharge test device (“ACD-01” manufactured by Asuka Electronics Co., Ltd.), a lithium ion secondary battery with a current value of 1C (64mA), 4 After charging at a constant voltage of .35 V until the current dropped to 0.05 C (1.28 mA), constant current discharge was performed at 0.2 C (12.8 mA) to 2.75 V. The discharge capacity per 1 g of the positive electrode active material at this time was set to 0.2 C capacity. Then, after charging again under the above conditions, constant current discharge was performed at 2.0 C to 2.75 V. The discharge capacity per 1 g of the positive electrode active material at this time was set to 2.0 C capacity. The initial rate was calculated from the obtained discharge capacity value from the following formula. The results are shown in Table 2.
Initial rate characteristics (%) = (2.0C capacity / 0.2C capacity) x 100

(3)サイクル容量維持率
充放電試験装置(ACD−01、アスカ電子株式会社製)を使用して、温度45℃にて、充電速度1Cでの4.35V定電流定電圧充電を電流量が0.02Cになるまで行い、放電速度1Cで電圧が2.75Vになるまで放電を行い、各充放電時にはそれぞれ10分の充放電休止時間を設けてサイクル特性試験を行い、下記式より、容量維持率を算出した。結果を表2に示す。
サイクル容量維持率(%)=(50サイクル時の放電容量/1サイクル時の放電容量)×100
(3) Cycle capacity retention rate Using a charge / discharge test device (ACD-01, manufactured by Asuka Electronics Co., Ltd.), the current amount is 4.35 V constant current constant voltage charging at a charging speed of 1 C at a temperature of 45 ° C. Perform until 0.02C, discharge until the voltage reaches 2.75V at a discharge rate of 1C, and perform a cycle characteristic test with a charge / discharge pause time of 10 minutes at each charge / discharge. The maintenance rate was calculated. The results are shown in Table 2.
Cycle capacity retention rate (%) = (Discharge capacity at 50 cycles / Discharge capacity at 1 cycle) x 100

Figure 0006806514
Figure 0006806514

本発明の要件を満足する製造方法で得られた電解液材料No.1、2は、上記の通り不純物含有量が電解液材料No.3と比べて低減されていた。そのため、電解液材料No.1、2から作製したリチウムイオン二次電池No.1、2は、電解液材料No.3から作製したリチウムイオン二次電池No.3と比べて初期充放電効率、初期レート特性、及び容量維持率が向上した。 Electrolyte material No. obtained by a production method satisfying the requirements of the present invention. As described above, 1 and 2 have an impurity content of the electrolytic solution material No. It was reduced as compared with 3. Therefore, the electrolyte material No. Lithium ion secondary battery No. 1 and 2 prepared from 1 and 2 are electrolyte material Nos. Lithium ion secondary battery No. 3 prepared from No. The initial charge / discharge efficiency, initial rate characteristics, and capacity retention rate were improved as compared with 3.

このことから、アセトアミド、アンモニウム、酢酸の含有量を低減することで、電池特性を向上できることがわかる。 From this, it can be seen that the battery characteristics can be improved by reducing the contents of acetamide, ammonium, and acetic acid.

Claims (4)

ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解液材料の製造方法であって、
前記有機溶媒(A)とは異なる有機溶媒(B)、ビス(フルオロスルホニル)イミドのアンモニウム塩、及びアルカリ金属化合物とを含む溶液中でカチオン交換することにより、ビス(フルオロスルホニル)イミドのアルカリ金属塩を得るカチオン交換工程、
得られた反応溶液をアルカリ洗浄及び/又は水洗浄する工程、及び
前記洗浄後、前記有機溶媒(A)存在下で減圧及び/又は加熱して前記有機溶媒(B)、及び水を留去する工程を含み、
前記カチオン交換工程における前記アルカリ金属化合物の添加量は、前記ビス(フルオロスルホニル)イミドのアンモニウム塩1モルに対して1.01モル当量以上、1.24モル当量以下であり、
前記アルカリ金属化合物は固体で添加し、
前記カチオン交換工程後の反応溶液の含有水分量は、4.5質量%以下である電解液材料の製造方法。
A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent (A).
Alkali metal of bis (fluorosulfonyl) imide by cation exchange in a solution containing an organic solvent (B) different from the organic solvent (A), an ammonium salt of bis (fluorosulfonyl) imide, and an alkali metal compound. Cation exchange step to obtain salt,
The step of alkaline washing and / or water washing of the obtained reaction solution, and after the washing, the organic solvent (B) and water are distilled off by reducing the pressure and / or heating in the presence of the organic solvent (A). Including the process
The amount of the alkali metal compound in the cation exchange step, the bis (fluorosulfonyl) ammonium imide salt 1 mol per 1.01 mol equivalent or more, Ri 1.24 molar equivalents or less der,
The alkali metal compound is added as a solid,
A method for producing an electrolytic solution material, wherein the water content of the reaction solution after the cation exchange step is 4.5% by mass or less .
前記カチオン交換工程後の反応溶液を、前記有機溶媒(B)の存在下で減圧及び/又は加熱して前記反応溶液からアンモニアを留去する工程を行ってから前記アルカリ洗浄及び/又は前記水洗浄するものである請求項1に記載の電解液材料の製造方法。 The reaction solution after the cation exchange step is depressurized and / or heated in the presence of the organic solvent (B) to distill off ammonia from the reaction solution, and then the alkali washing and / or the water washing. The method for producing an electrolytic solution material according to claim 1 . 前記有機溶媒(B)は、エステル系溶媒である請求項1又は2に記載の電解液材料の製造方法。 The method for producing an electrolytic solution material according to claim 1 or 2 , wherein the organic solvent (B) is an ester solvent. 前記有機溶媒(A)は、カーボネート系溶媒である請求項1〜のいずれかに記載の電解液材料の製造方法。 The method for producing an electrolytic solution material according to any one of claims 1 to 3 , wherein the organic solvent (A) is a carbonate-based solvent.
JP2016188377A 2016-09-27 2016-09-27 A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent. Active JP6806514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016188377A JP6806514B2 (en) 2016-09-27 2016-09-27 A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016188377A JP6806514B2 (en) 2016-09-27 2016-09-27 A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent.

Publications (2)

Publication Number Publication Date
JP2018052760A JP2018052760A (en) 2018-04-05
JP6806514B2 true JP6806514B2 (en) 2021-01-06

Family

ID=61833496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016188377A Active JP6806514B2 (en) 2016-09-27 2016-09-27 A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent.

Country Status (1)

Country Link
JP (1) JP6806514B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3059994B1 (en) * 2016-12-08 2021-03-19 Arkema France LIFSI DRYING AND PURIFICATION PROCESS
FR3059993A1 (en) 2016-12-08 2018-06-15 Arkema France PROCESS FOR DRYING AND PURIFYING BIS (FLUOROSULFONYL) IMIDE LITHIUM SALT
CN115448267B (en) * 2022-09-19 2023-04-07 安徽新宸新材料有限公司 Method for preparing lithium bis (fluorosulfonyl) imide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103347811B (en) * 2011-02-10 2015-08-19 日本曹达株式会社 The manufacture method of fluorine sulfimide ammonium salt
JP6303177B2 (en) * 2013-03-18 2018-04-04 日本曹達株式会社 Method for producing disulfonylamine alkali metal salt
CN113793986A (en) * 2014-10-03 2021-12-14 株式会社日本触媒 Electrolyte material, method for producing same, method for storing same, method for transporting same, nonaqueous electrolyte solution, and electricity storage device

Also Published As

Publication number Publication date
JP2018052760A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6916666B2 (en) Method for producing bis (fluorosulfonyl) imide alkali metal salt and bis (fluorosulfonyl) imide alkali metal salt composition
JP6792394B2 (en) A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent.
JP5300468B2 (en) Non-aqueous electrolyte
JP4449907B2 (en) Secondary battery electrolyte and secondary battery using the same
KR102165700B1 (en) Additives for galvanic cells
WO2018016195A1 (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
KR20140003601A (en) Lithium ion secondary battery and nonaqueous electrolyte for lithium ion secondary battery
JP6932686B2 (en) Methods for Producing Fluorocyclic Carbonates and Their Use for Lithium Ion Batteries
US20140045076A1 (en) Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
JP6806514B2 (en) A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent.
WO2010082261A1 (en) Method for producing positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN106575792A (en) Fluorinated carbonates comprising two oxygen bearing functional groups
JP2012238524A (en) METHOD FOR STABILIZING LiPF6, AND NONAQUEOUS ELECTROLYTIC SOLUTION FOR NONAQUEOUS SECONDARY BATTERY
JP2014072102A (en) Nonaqueous electrolyte, electrochemical device, lithium ion secondary battery, and module
JP7260676B2 (en) Electrolyte additive for secondary battery, method for producing the same, electrolyte composition containing the additive, and secondary battery
JP6435235B2 (en) Fluorine-containing phosphate ester cyanoalkylamide, nonaqueous electrolyte containing the same, and nonaqueous secondary battery
KR102235216B1 (en) Manufacturing method of electrolyte additive for secondary battery
JP2012216387A (en) Electrochemical device and nonaqueous electrolyte for electrochemical device
US20240039048A1 (en) Composition
WO2014042124A1 (en) Electrolytic solution for lithium cell and method for manufacturing same, and lithium cell provided with said electrolytic solution for lithium cell
TW202122378A (en) Composition
TW202234741A (en) Composition
JP2012216389A (en) Electrochemical device and nonaqueous electrolyte for electrochemical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190606

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201204

R150 Certificate of patent or registration of utility model

Ref document number: 6806514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150