JP2018052760A - Process for producing electrolyte material comprising alkali metal salt of bis(fluorosulfonyl)imide and organic solvent - Google Patents

Process for producing electrolyte material comprising alkali metal salt of bis(fluorosulfonyl)imide and organic solvent Download PDF

Info

Publication number
JP2018052760A
JP2018052760A JP2016188377A JP2016188377A JP2018052760A JP 2018052760 A JP2018052760 A JP 2018052760A JP 2016188377 A JP2016188377 A JP 2016188377A JP 2016188377 A JP2016188377 A JP 2016188377A JP 2018052760 A JP2018052760 A JP 2018052760A
Authority
JP
Japan
Prior art keywords
organic solvent
alkali metal
imide
fluorosulfonyl
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016188377A
Other languages
Japanese (ja)
Other versions
JP6806514B2 (en
Inventor
弘行 水野
Hiroyuki Mizuno
弘行 水野
裕大 勝山
Yuudai Katsuyama
裕大 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2016188377A priority Critical patent/JP6806514B2/en
Publication of JP2018052760A publication Critical patent/JP2018052760A/en
Application granted granted Critical
Publication of JP6806514B2 publication Critical patent/JP6806514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing an alkali metal salt of bis(fluorosulfonyl)imide with decreased impurities generated in the production process.SOLUTION: The present invention provides a process for producing an electrolyte material comprising an alkali metal salt of bis(fluorosulfonyl)imide and an organic solvent (A). The process comprises: a cation exchange step in which cation exchange is performed in a solution containing an organic solvent (B), which differs from the organic solvent (A), an ammonium salt of bis(fluorosulfonyl)imide and an alkali metal compound to obtain an alkali metal salt of bis(fluorosulfonyl)imide; a step of alkali-washing and/or water-washing the obtained reaction solution; and a step that follows the washing step and is performed to distill away the organic solvent (B) and water in the presence of the organic solvent (A) under reduced pressure and/or with heating. The alkali metal compound is added in the cation exchange step in an amount of 0.90 molar equivalent or greater and 1.24 molar equivalent or less with respect to 1 mol of the ammonium salt of the bis(fluorosulfonyl)imide to produce the alkali metal salt of bis(fluorosulfonyl)imide. The alkali metal salt of bis(fluorosulfonyl)imide and the organic solvent (A) constitute the electrolyte material.SELECTED DRAWING: None

Description

本発明はビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料の製造方法に関し、詳細には不純物を低減させたフルオロスルホニルイミドのアルカリ金属塩とリチウムイオン二次電池用有機溶媒とを含む電解液材料の製造方法に関する。   The present invention relates to a method for producing an electrolyte material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent, and more specifically, an alkali metal salt of fluorosulfonylimide having reduced impurities and an organic material for a lithium ion secondary battery. The present invention relates to a method for producing an electrolyte material containing a solvent.

フルオロスルホニルイミドのアルカリ金属塩は、電解質や燃料電池の電解液への添加物として有用な化合物として注目されており、様々な製造方法が提案されている。   The alkali metal salt of fluorosulfonylimide has attracted attention as a compound useful as an additive to electrolytes and electrolytes of fuel cells, and various production methods have been proposed.

フルオロスルホニルイミドのアルカリ金属塩の製造方法については改良が重ねられ、各種技術が提案されている。例えば特許文献1には、フッ素含有スルホニルイミドアルカリ金属塩またはフッ素含有スルホニルイミドアンモニウム塩の製造方法におけるカチオン交換反応効率を向上させる技術が開示されている。   Improvements have been made in the method for producing an alkali metal salt of fluorosulfonylimide, and various techniques have been proposed. For example, Patent Document 1 discloses a technique for improving the cation exchange reaction efficiency in a method for producing a fluorine-containing sulfonylimide alkali metal salt or a fluorine-containing sulfonylimide ammonium salt.

また特許文献2には、高純度のジスルホニルアミンアルカリ金属塩を低い温度履歴で且つ低コストで製造する方法が開示されている。   Patent Document 2 discloses a method for producing a high-purity disulfonylamine alkali metal salt with a low temperature history and at a low cost.

また特許文献3には、反応溶液から反応溶媒を容易に除去することができるフルオロスルホニルイミドのアルカリ金属塩の製造方法が開示されている。   Patent Document 3 discloses a method for producing an alkali metal salt of fluorosulfonylimide that can easily remove a reaction solvent from a reaction solution.

国際公開第2012/118063号パンフレットInternational Publication No. 2012/118063 Pamphlet 国際公開第2014/148258号パンフレットInternational Publication No. 2014/148258 Pamphlet 特開2014−201453号公報JP 2014-201453 A

本発明者らはビス(フルオロスルホニル)イミドのアルカリ金属塩の品質を検討する中で、ビス(フルオロスルホニル)イミドのアルカリ金属塩の製造工程に由来する不純物が使用時に要求される製品の特性、例えばリチウムイオン二次電池の電池特性などを劣化させる原因であることがわかった。   In examining the quality of the alkali metal salt of bis (fluorosulfonyl) imide, the inventors of the present invention have characteristics of products that require impurities from the production process of the alkali metal salt of bis (fluorosulfonyl) imide, For example, it has been found that this is a cause of deterioration of battery characteristics of a lithium ion secondary battery.

本発明は上記の様な事情に着目してなされたものであって、その目的は、ビス(フルオロスルホニル)イミドのアルカリ金属塩の製造過程で生成する不純物を低減できる製造方法を提供することにある。   The present invention has been made paying attention to the above-described circumstances, and an object of the present invention is to provide a production method capable of reducing impurities generated in the production process of an alkali metal salt of bis (fluorosulfonyl) imide. is there.

上記課題を解決した本発明の製造方法は、ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解液材料の製造方法であって、前記有機溶媒(A)とは異なる有機溶媒(B)、ビス(フルオロスルホニル)イミドのアンモニウム塩、及びアルカリ金属化合物とを含む溶液中でカチオン交換することにより、ビス(フルオロスルホニル)イミドのアルカリ金属塩を得るカチオン交換工程、得られた反応溶液をアルカリ洗浄及び/又は水洗浄する工程、及び前記洗浄後、前記有機溶媒(A)存在下で減圧及び/又は加熱して前記有機溶媒(B)、及び水を留去する工程を含み、前記カチオン交換工程における前記アルカリ金属化合物の添加量は、前記ビス(フルオロスルホニル)イミドのアンモニウム塩1モルに対して0.90モル当量以上、1.24モル当量以下であるビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含むことに要旨を有する。   The production method of the present invention that has solved the above problems is a method for producing an electrolyte material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent (A), and is an organic material different from the organic solvent (A). A cation exchange step for obtaining an alkali metal salt of bis (fluorosulfonyl) imide by cation exchange in a solution containing a solvent (B), an ammonium salt of bis (fluorosulfonyl) imide, and an alkali metal compound was obtained. A step of washing the reaction solution with alkali and / or water, and a step of distilling off the organic solvent (B) and water by washing under reduced pressure and / or heating in the presence of the organic solvent (A) after the washing. The amount of the alkali metal compound added in the cation exchange step is 1 mol of the ammonium salt of the bis (fluorosulfonyl) imide. .90 molar equivalent or more, has the gist to containing 1.24 molar equivalent or less is bis alkali metal salt of (fluorosulfonyl) imide and an organic solvent (A).

本発明の製造方法では、前記アルカリ金属化合物を固体で添加すること、前記カチオン交換工程後の反応溶液の含有水分量は、4.5質量%以下であること、前記カチオン交換工程後の反応溶液を、前記有機溶媒(B)の存在下で減圧及び/又は加熱して前記反応溶液からアンモニアを留去する工程を行ってから前記アルカリ洗浄及び/又は前記水洗浄するものであること、前記有機溶媒(B)は、エステル系溶媒であること、前記有機溶媒(A)は、カーボネート系溶媒であることは、いずれも好ましい実施態様である。   In the production method of the present invention, the alkali metal compound is added as a solid, the water content of the reaction solution after the cation exchange step is 4.5% by mass or less, the reaction solution after the cation exchange step Is subjected to a step of distilling ammonia from the reaction solution under reduced pressure and / or heating in the presence of the organic solvent (B), and then the alkali washing and / or the water washing, It is a preferred embodiment that the solvent (B) is an ester solvent and that the organic solvent (A) is a carbonate solvent.

本発明の製造方法によれば、ビス(フルオロスルホニル)イミドのアルカリ金属塩の製造過程で生成する不純物、具体的にはアセトアミド、アンモニウム、及び酢酸(以下、これらをまとめて「不純物」ということがある)を低減できる。したがって本発明の製造方法で得られたビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料を用いると不純物に起因する電池特性の劣化を抑制でき、従来よりも優れた電池特性が得られる。   According to the production method of the present invention, impurities generated during the production of the alkali metal salt of bis (fluorosulfonyl) imide, specifically acetamide, ammonium, and acetic acid (hereinafter collectively referred to as “impurities”). Can be reduced). Therefore, when an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide obtained by the production method of the present invention and an organic solvent is used, deterioration of battery characteristics due to impurities can be suppressed, and the battery is superior to conventional batteries. Characteristics are obtained.

本発明者らがリチウムイオン二次電池の特性向上について検討した結果、ビス(フルオロスルホニル)イミドのアルカリ金属塩の製造過程で生成する不純物に起因して初回充放電効率、初期レート特性、及びサイクル容量維持率(以下、これらをまとめて「電池特性」ということがある)が阻害されることがわかった。そしてビス(フルオロスルホニル)イミドのアルカリ金属塩の製造工程の初期段階、具体的にはカチオン交換工程において、アルカリ金属化合物の添加量を従来よりも低減すると、アルカリ度が低いためエステル溶媒の分解による酢酸の生成や、酢酸とアンモニアの脱水縮合物であるアセトアミドの生成など、電池特性を悪化させる上記不純物の生成を抑制できることを見出し、本発明に至った。   As a result of the inventors' study on the improvement of the characteristics of the lithium ion secondary battery, the initial charge / discharge efficiency, the initial rate characteristics, and the cycle are attributed to impurities generated in the production process of the alkali metal salt of bis (fluorosulfonyl) imide. It was found that the capacity maintenance ratio (hereinafter, these may be collectively referred to as “battery characteristics”) is inhibited. And in the initial stage of the production process of the alkali metal salt of bis (fluorosulfonyl) imide, specifically, in the cation exchange process, if the amount of the alkali metal compound added is reduced as compared with the prior art, the alkalinity is low, so the decomposition of the ester solvent The present inventors have found that the production of the above-described impurities that deteriorate battery characteristics, such as the production of acetic acid and the production of acetamide, which is a dehydration condensate of acetic acid and ammonia, can be suppressed.

以下、ビス(フルオロスルホニル)イミドのアルカリ金属塩の合成方法について説明する。   Hereinafter, a method for synthesizing an alkali metal salt of bis (fluorosulfonyl) imide will be described.

本発明の合成方法には以下の工程を含む。
(I)有機溶媒(B)、ビス(フルオロスルホニル)イミドのアンモニウム塩、及びアルカリ金属化合物とを含む溶液中でカチオン交換することにより、ビス(フルオロスルホニル)イミドのアルカリ金属塩を得る工程(以下、「カチオン交換工程」という)、
(II)得られた反応溶液をアルカリ洗浄及び/又は水洗浄する工程(以下、「洗浄工程」)
The synthesis method of the present invention includes the following steps.
(I) A step of obtaining an alkali metal salt of bis (fluorosulfonyl) imide by cation exchange in a solution containing an organic solvent (B), an ammonium salt of bis (fluorosulfonyl) imide, and an alkali metal compound (hereinafter referred to as “a”). , "Cation exchange process")
(II) A step of washing the obtained reaction solution with alkali and / or water (hereinafter, “washing step”)

本発明では必要に応じて、(i)カチオン交換工程で得られた反応溶液を有機溶媒(B)存在下で減圧及び/又は加熱して前記反応溶液からアンモニアを留去する工程(以下、「アンモニア留去工程」という)を行ってから洗浄工程を行ってもよい。   In the present invention, as required, (i) a step of distilling ammonia from the reaction solution by reducing pressure and / or heating the reaction solution obtained in the cation exchange step in the presence of the organic solvent (B) (hereinafter referred to as “ The cleaning step may be performed after performing the “ammonia distillation step”.

更に本発明では、ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解液材料の製造方法として、(III)上記工程を経て得られたビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(B)とを含む反応溶液を、有機溶媒(A)の存在下で減圧及び/又は加熱して有機溶媒(B)、及び水を留去する工程(以下、「濃縮工程」という)が含まれる。   Furthermore, in the present invention, as a method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent (A), (III) an alkali metal of bis (fluorosulfonyl) imide obtained through the above steps A step of distilling off the organic solvent (B) and water by reducing and / or heating the reaction solution containing the salt and the organic solvent (B) in the presence of the organic solvent (A) (hereinafter, “concentration step”) Is included).

(I)カチオン交換工程
本発明では、ビス(フルオロスルホニル)イミドのアンモニウム塩((FSO22N・NH4)を出発原料として用いる(以下、「化合物(1)」という場合がある)。化合物(1)は例えばビス(クロロスルホニル)イミドにNH4F、NH4F・HF、NH4F・2HFなどのフッ化物を加えてフッ素化反応させることによって合成できるが、これに限定されず、各種公知の製造方法で得られたものでよいし、あるいは市販品でもよい。
(I) Cation Exchange Step In the present invention, an ammonium salt of bis (fluorosulfonyl) imide ((FSO 2 ) 2 N · NH 4 ) is used as a starting material (hereinafter sometimes referred to as “compound (1)”). Compound (1) can be synthesized, for example, by adding a fluoride such as NH 4 F, NH 4 F · HF, NH 4 F · 2HF to bis (chlorosulfonyl) imide, but is not limited thereto. These may be obtained by various known production methods, or may be commercially available products.

化合物(1)を所望のカチオン(Li,Na,K,Rb,Cs)を含むアルカリ金属化合物と反応させることで、カチオン交換できる。反応させるアルカリ金属化合物としては、LiOH、NaOH、KOH、RbOH、CsOH等の水酸化物;Li2CO3、Na2CO3、K2CO3、Rb2CO3、Cs2CO3等の炭酸塩;LiHCO3、NaHCO3、KHCO3、RbHCO3、CsHCO3等の炭酸水素化物;LiCl、NaCl、KCl、RbCl、CsCl等の塩化物;LiF、NaF、KF、RbF、CsF等のフッ化物;CH3OLi、EtOLi等のアルコキシド化合物;EtLi、BuLi、t−BuLi等のアルキルリチウム化合物;等が挙げられる(Etはエチル基、Buはブチル基を示す)。これらの中でもアルカリ金属としてリチウム、ナトリウム又はカリウムを含有する化合物が好ましく、具体的にはLiOH、NaOH、KOH、Li2CO3、Na2CO3、K2CO3、LiCl、NaCl、KCl、LiF、NaF、KFが好ましく、より好ましくはLiOH、NaOH、KOH、Li2CO3、Na2CO3、K2CO3であり、さらに好ましくはLiOH、NaOH、KOHであり、これら化合物は水酸化物であることが好ましい。 Cation exchange can be performed by reacting compound (1) with an alkali metal compound containing a desired cation (Li, Na, K, Rb, Cs). Examples of the alkali metal compound to be reacted include hydroxides such as LiOH, NaOH, KOH, RbOH, and CsOH; carbonic acid such as Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 , and Cs 2 CO 3. Salts; carbonates such as LiHCO 3 , NaHCO 3 , KHCO 3 , RbHCO 3 , CsHCO 3 ; chlorides such as LiCl, NaCl, KCl, RbCl, CsCl; fluorides such as LiF, NaF, KF, RbF, CsF; Alkoxide compounds such as CH 3 OLi and EtOLi; alkyllithium compounds such as EtLi, BuLi, and t-BuLi; and the like (Et represents an ethyl group and Bu represents a butyl group). Among these, a compound containing lithium, sodium or potassium as an alkali metal is preferable. Specifically, LiOH, NaOH, KOH, Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , LiCl, NaCl, KCl, LiF NaF and KF are preferable, more preferably LiOH, NaOH, KOH, Li 2 CO 3 , Na 2 CO 3 and K 2 CO 3 , still more preferably LiOH, NaOH and KOH, and these compounds are hydroxides. It is preferable that

本発明においてアルカリ金属化合物の添加方法はアルカリ金属化合物水溶液、固体のアルカリ金属化合物のいずれでもよいが、固体のアルカリ金属化合物を用いると、カチオン交換工程後の反応溶液の含有水分量を低減できると共に、水溶液で添加する場合と比べてビス(フルオロスルホニル)イミドのアルカリ金属塩の収率を向上できる。特に反応溶液の含有水分量を低減することで反応溶液に溶解するアンモニア量を減少できるため望ましい。固体のアルカリ金属化合物は上記アルカリ金属化合物の水和物が好ましい。また固体の形状はフレーク状、粉状、ビーズ状など特に限定されない。   In the present invention, the addition method of the alkali metal compound may be either an alkali metal compound aqueous solution or a solid alkali metal compound, but if a solid alkali metal compound is used, the water content in the reaction solution after the cation exchange step can be reduced. The yield of alkali metal salt of bis (fluorosulfonyl) imide can be improved as compared with the case where it is added as an aqueous solution. This is particularly desirable because the amount of ammonia dissolved in the reaction solution can be reduced by reducing the water content of the reaction solution. The solid alkali metal compound is preferably a hydrate of the above alkali metal compound. The solid shape is not particularly limited, such as flakes, powders, and beads.

本発明ではアルカリ金属化合物の添加量を所定の範囲内にすることで、リチウム交換工程後の反応溶液のアルカリ度を低く抑えて有機溶媒(B)の分解を抑制できる。その結果、有機溶媒(B)の分解生成物である酢酸の生成を抑えることができると共に、酢酸とアンモニアの脱水縮合物であるアセトアミドの生成も抑えることができる。また固体のアルカリ金属化合物の添加量を少なくするほど、例えば従来の添加量である1.3当量を用いた場合と比べてカチオン交換工程後の反応溶液の含有水分量が少なく、またアルカリ度も小さいため、逆反応等が抑制されて電池特性を低下させる不純物の発生を抑えることができる。したがって本発明の電解液材料を用いることで、リチウムイオン二次電池などに使用する非水電解液中の不純物量を低減できるため、電池特性の悪化を従来よりも抑制できる。アルカリ金属化合物の添加量は、ビス(フルオロスルホニル)イミドのアンモニウム塩1モルに対して、好ましくは0.90モル当量以上、より好ましくは1.00モル当量以上、更に好ましくは1.01モル当量以上であって、好ましくは1.24モル当量以下、より好ましくは1.20モル当量以下、更に好ましくは1.15モル当量以下である。アルカリ金属化合物の使用量が多すぎると有機溶媒(B)の分解が起こりやすくなる。また固体のアルカリ金属を用いた場合でも使用量が多いと反応溶液の含有水分量が多くなって逆反応などが起こりやすくなる。一方、アルカリ金属化合物の使用量が少なすぎるとビス(フルオロスルホニル)イミドのアンモニウム塩が残存することがある。なお、本発明において「当量」は全て化学量論量である。   In this invention, by making the addition amount of an alkali metal compound into a predetermined range, the alkalinity of the reaction solution after a lithium exchange process can be suppressed low, and decomposition | disassembly of an organic solvent (B) can be suppressed. As a result, the formation of acetic acid, which is a decomposition product of the organic solvent (B), can be suppressed, and the formation of acetamide, which is a dehydration condensate of acetic acid and ammonia, can also be suppressed. Also, the smaller the amount of solid alkali metal compound added, the smaller the amount of water contained in the reaction solution after the cation exchange step compared to, for example, the conventional amount of 1.3 equivalents, and the alkalinity is also low. Since it is small, reverse reaction etc. are suppressed and generation | occurrence | production of the impurity which reduces battery characteristics can be suppressed. Therefore, by using the electrolytic solution material of the present invention, the amount of impurities in the non-aqueous electrolytic solution used for a lithium ion secondary battery or the like can be reduced, so that deterioration of battery characteristics can be suppressed as compared with the conventional case. The addition amount of the alkali metal compound is preferably 0.90 molar equivalent or more, more preferably 1.00 molar equivalent or more, and further preferably 1.01 molar equivalent, relative to 1 mole of the ammonium salt of bis (fluorosulfonyl) imide. It is above, Preferably it is 1.24 molar equivalent or less, More preferably, it is 1.20 molar equivalent or less, More preferably, it is 1.15 molar equivalent or less. When there is too much usage-amount of an alkali metal compound, decomposition | disassembly of an organic solvent (B) will occur easily. Even when a solid alkali metal is used, if the amount used is large, the amount of water contained in the reaction solution increases, and reverse reactions and the like are likely to occur. On the other hand, if the amount of alkali metal compound used is too small, an ammonium salt of bis (fluorosulfonyl) imide may remain. In the present invention, “equivalents” are all stoichiometric amounts.

化合物(1)とアルカリ金属化合物は有機溶媒(B)(有機溶媒(A)とは異なる有機溶媒)を含む溶液中でカチオン交換反応させる。カチオン交換工程で使用可能な有機溶媒(B)としては非プロトン性溶媒を用いるのが好ましい。非プロトン性溶媒としては、具体的には、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒が挙げられる。これらの溶媒は単独で用いてもよく、また2種以上を混合して用いてもよい。カチオン交換反応を円滑に進行させる観点からは特に、酢酸エチル、酢酸イソプロピル及び酢酸ブチルが好ましい。   The compound (1) and the alkali metal compound are subjected to a cation exchange reaction in a solution containing an organic solvent (B) (an organic solvent different from the organic solvent (A)). As the organic solvent (B) that can be used in the cation exchange step, an aprotic solvent is preferably used. Specific examples of the aprotic solvent include ester solvents such as methyl acetate, ethyl acetate, isopropyl acetate, and butyl acetate. These solvents may be used alone or in combination of two or more. In particular, ethyl acetate, isopropyl acetate, and butyl acetate are preferable from the viewpoint of allowing the cation exchange reaction to proceed smoothly.

カチオン交換する際の溶液の温度は特に限定されないが、高温になり過ぎると有機溶媒(B)が分解して酢酸等の不純物が生成することがあり、一方、低温になりすぎると反応溶液の粘度が上昇し、取り扱いが煩雑になることがある。したがって溶液の温度は、好ましくは40℃以下、より好ましくは常温(25℃)以下であって、好ましくは−2℃以上、より好ましくは0℃以上に制御することが望ましい。   The temperature of the solution at the time of cation exchange is not particularly limited, but if the temperature is too high, the organic solvent (B) may decompose to produce impurities such as acetic acid, while if the temperature is too low, the viscosity of the reaction solution May increase and handling may be complicated. Therefore, the temperature of the solution is preferably 40 ° C. or lower, more preferably normal temperature (25 ° C.) or lower, preferably −2 ° C. or higher, more preferably 0 ° C. or higher.

本発明ではカチオン交換反応で副生するアンモニアの少なくとも一部を留去することが望ましい。アンモニアを留去することでアセトアミド等の不純物の生成を抑制できる。またアンモニアと共に水も留去することでカチオン交換工程後の反応溶液に含まれるアンモニア量と水分量をより一層低減できるため好ましい。アンモニアはアンモニアガスとして生成するため、カチオン交換工程で容易に留去できる。また水はカチオン交換工程では水が環流しない温度、圧力などを採用すればよい。例えば温度は40℃以下、好ましくは常温以下であって、好ましくは−2℃以上、より好ましくは0℃以上とし、この温度範囲内で水が環流しないように圧力を制御(例えば600hPa以上、800hPa以下)することが好ましい。   In the present invention, it is desirable to distill off at least part of the ammonia produced as a by-product in the cation exchange reaction. Generation of impurities such as acetamide can be suppressed by distilling off ammonia. Further, it is preferable to distill off water together with ammonia because the amount of ammonia and the amount of water contained in the reaction solution after the cation exchange step can be further reduced. Since ammonia is produced as ammonia gas, it can be easily distilled off in the cation exchange step. Moreover, the temperature, pressure, etc. which water does not circulate in a cation exchange process may be employ | adopted for water. For example, the temperature is 40 ° C. or lower, preferably normal temperature or lower, preferably −2 ° C. or higher, more preferably 0 ° C. or higher, and the pressure is controlled so that water does not circulate within this temperature range (for example, 600 hPa or higher, 800 hPa or higher). The following is preferable.

カチオン交換工程後の反応溶液の含有水分量を低減させると、水とアンモニアによる逆反応(例えばLiFSI+NH3+H2O→NH4FSI+LiOH)を抑えて生成するアンモニウムを低減できると共に、反応溶液に取り込まれるアンモニア量を低減できる。カチオン交換工程後の反応溶液の含有水分量は、総質量に対して好ましくは4.5質量%以下、より好ましくは4.3質量%以下、更に好ましくは4.0質量%以下である。水分を低減させる観点からは、カチオン交換工程は例えば露点−40℃以下のドライルーム(温度25℃)など低湿環境下で行うことが望ましい。 Reducing the water content of the reaction solution after the cation exchange step can reduce the ammonium produced by suppressing the reverse reaction of water and ammonia (for example, LiFSI + NH 3 + H 2 O → NH 4 FSI + LiOH) and is incorporated into the reaction solution. The amount of ammonia can be reduced. The water content of the reaction solution after the cation exchange step is preferably 4.5% by mass or less, more preferably 4.3% by mass or less, and still more preferably 4.0% by mass or less with respect to the total mass. From the viewpoint of reducing moisture, the cation exchange step is desirably performed in a low-humidity environment such as a dry room (temperature 25 ° C.) having a dew point of −40 ° C. or lower.

またカチオン交換工程後の反応溶液の含有アンモニア量は、総質量に対して好ましくは3000質量ppm以下、より好ましくは2500質量ppm以下、更に好ましくは2000質量ppm以下である。なお、本発明における水分量、不純物量、ビス(フルオロスルホニル)イミドのアルカリ金属塩量などの各種測定方法は実施例記載の方法によるものである(以下、同じ)。   The ammonia content in the reaction solution after the cation exchange step is preferably 3000 ppm by mass or less, more preferably 2500 ppm by mass or less, and still more preferably 2000 ppm by mass or less with respect to the total mass. In the present invention, various measuring methods such as the amount of water, the amount of impurities, the amount of alkali metal salt of bis (fluorosulfonyl) imide are based on the methods described in the examples (hereinafter the same).

本発明ではカチオン交換工程後、洗浄工程前に必要に応じて(i)アンモニア留去工程を行ってもよい。   In the present invention, after the cation exchange step and before the washing step, (i) an ammonia distilling step may be performed as necessary.

(i)アンモニア留去工程
アンモニア留去工程を行うことで、反応溶液からアンモニア含有量を更に低減できる。またアンモニアと共に水や有機溶媒(B)の少なくとも一部を留去することで逆反応などによる不純物の生成抑制に有効であるため望ましい。
(I) Ammonia distillation step By performing the ammonia distillation step, the ammonia content can be further reduced from the reaction solution. In addition, it is preferable to distill off at least a part of water and the organic solvent (B) together with ammonia because it is effective in suppressing the generation of impurities due to reverse reaction.

アンモニアの留去方法は特に限定されないが、減圧下で反応溶液からアンモニアの留去に適した温度に制御することが好ましい。減圧下で行うことによって、低い温度でもアンモニアを留去できるため、好ましくは50hPa以下、より好ましくは20hPa以下であって、好ましくは3hPa以上、より好ましくは5hPa以上である。反応溶液の温度が高くなりすぎると脱水縮合反応によるアセトアミドが増加することがあるため、反応溶液の温度は好ましくは60℃以下、より好ましくは55℃以下、更に好ましくは45℃以下である。下限は特に限定されず、常温(25℃)でもよい。   The method for distilling off ammonia is not particularly limited, but it is preferable to control the temperature to be suitable for distilling off ammonia from the reaction solution under reduced pressure. By carrying out under reduced pressure, ammonia can be distilled off even at a low temperature. Therefore, it is preferably 50 hPa or less, more preferably 20 hPa or less, preferably 3 hPa or more, more preferably 5 hPa or more. If the temperature of the reaction solution becomes too high, acetamide due to the dehydration condensation reaction may increase. Therefore, the temperature of the reaction solution is preferably 60 ° C. or less, more preferably 55 ° C. or less, and further preferably 45 ° C. or less. The lower limit is not particularly limited, and may be room temperature (25 ° C.).

アンモニアを留去することで電解質材料に含まれるアセトアミドやアンモニウムなどの不純物量を低減できる。したがってアンモニア留去工程を複数回行ってアンモニア量を低減させてもよい。留去後の反応溶液に含まれるアンモニア含有量は、総質量に対して好ましくは500質量ppm以下、より好ましくは300質量ppm以下、更に好ましくは200質量ppm以下である。   By distilling off ammonia, the amount of impurities such as acetamide and ammonium contained in the electrolyte material can be reduced. Accordingly, the ammonia amount may be reduced by performing the ammonia distillation step a plurality of times. The ammonia content contained in the reaction solution after the distillation is preferably 500 ppm by mass or less, more preferably 300 ppm by mass or less, still more preferably 200 ppm by mass or less based on the total mass.

本発明ではカチオン交換工程後、あるいはアンモニア留去工程後、(II−1)アルカリ洗浄工程、(II−2)水洗浄工程の少なくともいずれかの工程を行う。なお、両方行う場合は、アルカリ洗浄工程、水洗浄工程の順である。   In the present invention, after the cation exchange step or after the ammonia distilling step, at least one of (II-1) alkali washing step and (II-2) water washing step is performed. In addition, when performing both, it is an order of an alkali washing process and a water washing process.

(II−1)アルカリ洗浄工程
アルカリ洗浄工程を行うことによって、反応溶液から化合物(1)に含まれていた水溶性不純物やカチオン交換時の水溶性副生成物などの不純物を低減できる。アルカリ洗浄工程は反応溶液とアルカリ水溶液とが接触するものであればよく、例えば反応溶液をアルカリ水溶液に添加して接触させる態様、反応溶液とアルカリ水溶液とを、それぞれ反応溶液に同時に反応器に添加して接触させる態様などでもよい。アルカリ水溶液としては、塩基性物質の水溶液を使用すればよく、塩基性物質として好ましくは上記カチオン交換工程で使用したアルカリ金属化合物と同じアルカリ金属化合物である。
(II-1) Alkali washing step By performing the alkali washing step, impurities such as water-soluble impurities contained in the compound (1) from the reaction solution and water-soluble by-products during cation exchange can be reduced. The alkali cleaning step is not limited as long as the reaction solution and the alkaline aqueous solution are in contact with each other. For example, an aspect in which the reaction solution is added to the alkaline aqueous solution and brought into contact with each other, and the reaction solution and the alkaline aqueous solution are simultaneously added to the reaction solution. For example, the contact may be made. As the alkaline aqueous solution, an aqueous solution of a basic substance may be used, and the basic substance is preferably the same alkali metal compound as the alkali metal compound used in the cation exchange step.

アルカリ水溶液は、酢酸やアセトアミドの発生を抑制しつつ、不純物を十分に除去するためには、前記アルカリ洗浄工程は、前記ビス(フルオロスルホニル)イミドのアルカリ金属塩1モルに対して、アルカリ金属の量が、好ましくは0.05当量以上、より好ましくは0.1当量以上であって、好ましくは1当量以下、より好ましくは0.6当量以下となるように調整したアルカリ金属水溶液を接触させることが望ましい。アルカリ度が強くなると有機溶媒(B)が分解し、アセトアミド、酢酸等の不純物が増加することがある。アルカリ金属の量が少なすぎるとビス(フルオロスルホニル)イミドのアルカリ金属塩の収率が低下することがある。   In order to sufficiently remove impurities while suppressing the generation of acetic acid and acetamide, the alkaline aqueous solution is carried out in such a manner that the alkali washing step is performed with respect to 1 mol of the alkali metal salt of bis (fluorosulfonyl) imide. Contact with an alkali metal aqueous solution adjusted so that the amount is preferably 0.05 equivalents or more, more preferably 0.1 equivalents or more, preferably 1 equivalent or less, more preferably 0.6 equivalents or less. Is desirable. When the alkalinity increases, the organic solvent (B) may be decomposed to increase impurities such as acetamide and acetic acid. If the amount of the alkali metal is too small, the yield of the alkali metal salt of bis (fluorosulfonyl) imide may be lowered.

アルカリ水溶液と接触させる際の反応溶液の温度は特に限定されないが、酢酸、アセトアミドの発生を抑制するため、好ましくは25℃以下、より好ましくは5℃以下であって、好ましくは0℃以上である。   The temperature of the reaction solution when contacting with the alkaline aqueous solution is not particularly limited, but is preferably 25 ° C. or less, more preferably 5 ° C. or less, and preferably 0 ° C. or more in order to suppress the generation of acetic acid and acetamide. .

反応溶液とアルカリ水溶液との接触時間は、反応溶液とアルカリ水溶液との接触が充分なものであれば特に限定されないが、例えば、反応溶液の添加終了から好ましくは1分程度、より好ましくは3分程度、攪拌しながら、反応溶液とアルカリ水溶液とを接触させるのが好ましい。接触時間が短すぎると不純物が残留することがある。   The contact time between the reaction solution and the alkaline aqueous solution is not particularly limited as long as the contact between the reaction solution and the alkaline aqueous solution is sufficient, but for example, preferably about 1 minute, more preferably 3 minutes from the end of the addition of the reaction solution. It is preferable to bring the reaction solution and the aqueous alkali solution into contact with each other while stirring. If the contact time is too short, impurities may remain.

(II−2)水洗浄工程
反応溶液中には例えば有機溶媒(B)の分解生成物である酢酸、アンモニア、アセトアミドなどの不純物が含まれているため、水洗して酢酸やアセトアミドの含有量を低減する。本発明では、上記カチオン交換工程でアンモニアを低減しているため、逆反応が抑制され、該逆反応によるアンモニウムイオンの発生も抑えることができる。また逆反応によって生成するビス(フルオロスルホニル)イミドのアンモニウム塩も抑制できる。
(II-2) Water washing step Since the reaction solution contains impurities such as acetic acid, ammonia and acetamide, which are decomposition products of the organic solvent (B), the content of acetic acid and acetamide is reduced by washing with water. To reduce. In the present invention, since ammonia is reduced in the cation exchange step, the reverse reaction is suppressed, and the generation of ammonium ions due to the reverse reaction can also be suppressed. Moreover, the ammonium salt of bis (fluorosulfonyl) imide produced | generated by a reverse reaction can also be suppressed.

水洗する際の水の量は特に限定されないが、ビス(フルオロスルホニル)イミドのアルカリ金属塩の質量に対して好ましくは1倍以上、より好ましくは1.3倍以上であって好ましくは2倍以下、より好ましくは1.5倍以下である。水の量が少なすぎると洗浄効果が低下し、不純物の除去が不十分になる。一方、多すぎると過剰に洗浄することになりビス(フルオロスルホニル)イミドのアルカリ金属塩の収率が低くなる。   The amount of water when washing with water is not particularly limited, but is preferably at least 1 time, more preferably at least 1.3 times and preferably at most 2 times the mass of the alkali metal salt of bis (fluorosulfonyl) imide. More preferably, it is 1.5 times or less. If the amount of water is too small, the cleaning effect is lowered and the removal of impurities becomes insufficient. On the other hand, if it is too much, it will be washed excessively and the yield of the alkali metal salt of bis (fluorosulfonyl) imide will be low.

水洗時の水の温度は特に限定されないが、温度が低すぎると水の取り扱いがし難くなり、一方、温度が高すぎるとビス(フルオロスルホニル)イミドのアルカリ金属塩が分解するおそれがある。したがって水の温度は、好ましくは0℃以上であって、好ましくは45℃以下、より好ましくは25℃以下である。   The temperature of water during washing is not particularly limited, but if the temperature is too low, it becomes difficult to handle the water, while if the temperature is too high, the alkali metal salt of bis (fluorosulfonyl) imide may be decomposed. Therefore, the temperature of water is preferably 0 ° C. or higher, preferably 45 ° C. or lower, more preferably 25 ° C. or lower.

水洗時間は特に限定されないが、好ましくは1分以上、より好ましくは3分以上であって、好ましくは10分以下、より好ましくは5分以下である。   The washing time is not particularly limited, but is preferably 1 minute or more, more preferably 3 minutes or more, preferably 10 minutes or less, more preferably 5 minutes or less.

アセトアミド含有量が好ましくは300質量ppm以下、より好ましくは100質量ppm以下、酢酸含有量は500質量ppm以下が好ましい。   The acetamide content is preferably 300 ppm by mass or less, more preferably 100 ppm by mass or less, and the acetic acid content is preferably 500 ppm by mass or less.

(III)濃縮工程
濃縮工程は、洗浄後の反応溶液から有機溶媒(B)と水とを分離し、ジ(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解液材料を得る工程である。具体的に濃縮工程では水分を除去して濃縮すると共に、反応溶媒として使用した有機溶媒(B)を、該有機溶媒(B)とは異なる有機溶媒(A)と交換する。有機溶媒(A)としては非水溶媒が好ましく、一般に非水電解質電池用電解液に使用される有機溶媒であればよく、誘電率が大きく、電解質の溶解性が高く、沸点が60℃以上であり、且つ、電気化学的安定範囲が広い有機溶媒がより好ましく、特に好ましくはカーボネート系溶媒である。カーボネート系溶媒としては、炭酸ジメチル、炭酸エチルメチル(エチルメチルカーボネート)、炭酸ジエチル(ジエチルカーボネート)、炭酸ジフェニル、炭酸メチルフェニル等の鎖状炭酸エステル類;炭酸エチレン(エチレンカーボネート)、炭酸プロピレン(プロピレンカーボネート)、2,3−ジメチル炭酸エチレン(炭酸2,3−ブタンジイル)、炭酸1,2−ブチレン及びエリスリタンカーボネート等の飽和環状炭酸エステル類;炭酸ビニレン、メチルビニレンカーボネート(MVC;4−メチル−1,3−ジオキソール−2−オン)、エチルビニレンカーボネート(EVC;4−エチル−1,3−ジオキソール−2−オン)、2−ビニル炭酸エチレン(4−ビニル−1,3−ジオキソラン−2−オン)及びフェニルエチレンカーボネート(4−フェニル−1,3−ジオキソラン−2−オン)等の不飽和結合を有する環状炭酸エステル類;フルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート及びトリフルオロプロピレンカーボネート等のフッ素含有環状炭酸エステル類が挙げられ、これらのうち、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、エチレンカーボネート、プロピレンカーボネートが好ましい。これらは1種又は2種以上を使用することができる。
(III) Concentration step In the concentration step, the organic solvent (B) and water are separated from the washed reaction solution to obtain an electrolytic solution material containing an alkali metal salt of di (fluorosulfonyl) imide and the organic solvent (A). It is a process. Specifically, in the concentration step, water is removed for concentration, and the organic solvent (B) used as the reaction solvent is exchanged with an organic solvent (A) different from the organic solvent (B). As the organic solvent (A), a non-aqueous solvent is preferable, and any organic solvent generally used for an electrolyte solution for a non-aqueous electrolyte battery may be used. The dielectric constant is large, the solubility of the electrolyte is high, and the boiling point is 60 ° C. or higher. An organic solvent having a wide electrochemical stability range is more preferable, and a carbonate solvent is particularly preferable. Examples of carbonate solvents include chain carbonates such as dimethyl carbonate, ethyl methyl carbonate (ethyl methyl carbonate), diethyl carbonate (diethyl carbonate), diphenyl carbonate, and methyl phenyl carbonate; ethylene carbonate (ethylene carbonate), propylene carbonate (propylene Carbonates), saturated cyclic carbonates such as 2,3-dimethylethylene carbonate (2,3-butanediyl carbonate), 1,2-butylene carbonate, and erythritan carbonate; vinylene carbonate, methyl vinylene carbonate (MVC; 4-methyl- 1,3-dioxol-2-one), ethyl vinylene carbonate (EVC; 4-ethyl-1,3-dioxol-2-one), 2-vinylethylene carbonate (4-vinyl-1,3-dioxolane-2- ON) and phenylethylene carbonate Cyclic carbonates having an unsaturated bond such as Bonate (4-phenyl-1,3-dioxolan-2-one); Fluorine-containing cyclic carbonates such as fluoroethylene carbonate, 4,5-difluoroethylene carbonate and trifluoropropylene carbonate Examples thereof include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethylene carbonate, and propylene carbonate. These can use 1 type (s) or 2 or more types.

例えば、沸点の異なる複数の有機溶媒(A)を用いる場合、沸点が100℃程度の有機溶媒(A−1)と、沸点が200℃を超えるエチルメチルカーボネート、エチレンカーボネート、ポリカーボネートなどの有機溶媒(B)と共沸しない有機溶媒(A−2)とを用いることで、効率的に有機溶媒(B)を除去できる。   For example, when a plurality of organic solvents (A) having different boiling points are used, an organic solvent (A-1) having a boiling point of about 100 ° C. and an organic solvent (such as ethyl methyl carbonate, ethylene carbonate, polycarbonate, etc.) having a boiling point exceeding 200 ° C. By using the organic solvent (A-2) that does not azeotrope with B), the organic solvent (B) can be efficiently removed.

濃縮工程に使用できる反応装置は特に限定されず、例えば、ロータリーエバポレーター、フラスコ、槽型反応器又は減圧可能な槽型反応器等が挙げられる。   The reaction apparatus that can be used in the concentration step is not particularly limited, and examples thereof include a rotary evaporator, a flask, a tank reactor, or a tank reactor that can be depressurized.

有機溶媒(A)の使用量は、反応溶液中のビス(フルオロスルホニル)イミドのアルカリ金属塩の濃度に応じて適宜決定すればよいが、例えば、ビス(フルオロスルホニル)イミドのアルカリ金属塩の質量に対して、好ましくは0.8倍以上、より好ましくは1.0倍以上であって、好ましくは1.5倍以下、より好ましくは1.2倍以下である。有機溶媒(A)が少なすぎるとアルカリ金属塩が析出することがある。一方、多すぎると、電解液への希釈化の組成範囲が狭くなる。   The amount of the organic solvent (A) used may be appropriately determined according to the concentration of the alkali metal salt of bis (fluorosulfonyl) imide in the reaction solution. For example, the mass of the alkali metal salt of bis (fluorosulfonyl) imide On the other hand, it is preferably 0.8 times or more, more preferably 1.0 times or more, preferably 1.5 times or less, more preferably 1.2 times or less. When there is too little organic solvent (A), an alkali metal salt may precipitate. On the other hand, if the amount is too large, the composition range for dilution into the electrolyte solution becomes narrow.

またビス(フルオロスルホニル)イミドのアルカリ金属塩の濃縮効率を一層高めるため反応溶液を加熱しながら濃縮工程を行ってもよい。加熱温度は使用する有機溶媒(B)に応じて適宜設定すればよいが、有機溶媒(B)の除去効率を向上させるためには、好ましくは45℃以上、より好ましくは50℃以上である。一方、ビス(フルオロスルホニル)イミドのアルカリ金属塩の分解を抑制する観点からは、好ましくは70℃以下、より好ましくは60℃以下である。   Further, in order to further increase the concentration efficiency of the alkali metal salt of bis (fluorosulfonyl) imide, the concentration step may be performed while heating the reaction solution. The heating temperature may be appropriately set according to the organic solvent (B) to be used, but in order to improve the removal efficiency of the organic solvent (B), it is preferably 45 ° C. or higher, more preferably 50 ° C. or higher. On the other hand, from the viewpoint of suppressing the decomposition of the alkali metal salt of bis (fluorosulfonyl) imide, it is preferably 70 ° C or lower, more preferably 60 ° C or lower.

また濃縮工程は減圧下で実施してもよい。減圧度をコントロールすることによって、低温であっても効率よく有機溶媒(B)を除去でき、また、熱によるビス(フルオロスルホニル)イミドのアルカリ金属塩の分解も防ぐことができる。減圧度は有機溶媒(B)の種類に応じて適宜調整すればよく特に限定はされないが、好ましくは3hPa以上、より好ましくは5hPa以上であって、好ましくは50hPa以下、より好ましくは20hPa以下である。   The concentration step may be performed under reduced pressure. By controlling the degree of vacuum, the organic solvent (B) can be efficiently removed even at a low temperature, and decomposition of the alkali metal salt of bis (fluorosulfonyl) imide by heat can also be prevented. The degree of vacuum may be appropriately adjusted according to the type of the organic solvent (B) and is not particularly limited, but is preferably 3 hPa or more, more preferably 5 hPa or more, preferably 50 hPa or less, more preferably 20 hPa or less. .

濃縮工程の時間は特に限定されないが、好ましくは8分以上、より好ましくは10分以上であって、好ましくは5時間以下、より好ましくは3時間以下である。   Although the time of a concentration process is not specifically limited, Preferably it is 8 minutes or more, More preferably, it is 10 minutes or more, Preferably it is 5 hours or less, More preferably, it is 3 hours or less.

濃縮工程では水分量が好ましくは100質量ppm以下、より好ましくは50質量ppm以下、有機溶媒(B)含有量が好ましくは3000質量ppm以下、より好ましくは1000質量ppm以下となるまで濃縮を行うことが好ましい。濃縮工程は複数回繰り返してもよいし、有機溶媒(A−2)を順次添加して濃縮工程を行ってもよい。   In the concentration step, the water content is preferably 100 ppm by mass or less, more preferably 50 ppm by mass or less, and the organic solvent (B) content is preferably 3000 ppm by mass or less, more preferably 1000 ppm by mass or less. Is preferred. The concentration step may be repeated a plurality of times, or the organic solvent (A-2) may be sequentially added to perform the concentration step.

濃縮工程によって有機溶媒(B)と水分が留去されると共に、ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解質材料が得られる。   The organic solvent (B) and water are distilled off by the concentration step, and an electrolyte material containing an alkali metal salt of bis (fluorosulfonyl) imide and the organic solvent (A) is obtained.

上記得られた電解質材料は実質的にビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含み、残部は不純物である。本発明では不純物としてアセトアミド、アンモニウム、及び酢酸が微量に含まれていてもよい。具体的にはアセトアミドの含有量は好ましくは1000質量ppm以下(質量基準、以下同じ)、より好ましくは500質量ppm以下、更に好ましくは200質量ppm以下である。アンモニウムの含有量は好ましくは300質量ppm以下、より好ましくは100質量ppm以下、更に好ましくは80質量ppm以下である。酢酸の含有量は好ましくは750質量ppm以下、より好ましくは500質量ppm以下である。これら不純物の含有量は低いほどより一層すぐれた電池特性が得られる。   The obtained electrolyte material substantially contains an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent (A), and the balance is impurities. In the present invention, trace amounts of acetamide, ammonium, and acetic acid may be contained as impurities. Specifically, the content of acetamide is preferably 1000 ppm by mass or less (mass standard, the same applies hereinafter), more preferably 500 ppm by mass or less, and still more preferably 200 ppm by mass or less. The ammonium content is preferably 300 ppm by mass or less, more preferably 100 ppm by mass or less, and still more preferably 80 ppm by mass or less. The acetic acid content is preferably 750 mass ppm or less, more preferably 500 mass ppm or less. The lower the content of these impurities, the better the battery characteristics.

本発明の製法により得られるジ(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解液材料は、一次電池、リチウム(イオン)二次電池や燃料電池等の充電/放電機構を有する電池、電解コンデンサ、電気二重層キャパシタ、太陽電池・エレクトロクロミック表示素子等の電気化学デバイスを構成するイオン伝導体の材料として好適に用いられる。   An electrolyte material containing an alkali metal salt of di (fluorosulfonyl) imide obtained by the production method of the present invention and an organic solvent (A) has a charging / discharging mechanism such as a primary battery, a lithium (ion) secondary battery, or a fuel cell. It is suitably used as a material for ion conductors constituting electrochemical devices such as batteries, electrolytic capacitors, electric double layer capacitors, solar cells and electrochromic display elements.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例1
以下の手順で電解液材料No.1〜3を作製した。
Example 1
In the following procedure, the electrolyte material No. 1-3 were produced.

実施例1−1
酢酸ブチル41.41g中にアンモニウムビス(フルオロスルホニル)イミド(NH4FSI)を10.63g投入しNH4FSI20.4質量%の酢酸ブチル溶液を作製した。
Example 1-1
Ammonium in butyl acetate 41.41g bis (fluorosulfonyl) imide (NH 4 FSI) was prepared 10.63g charged with NH 4 FSI20.4 wt% butyl acetate solution.

[カチオン交換工程]
得られたNH4FSI20.4質量%の酢酸ブチル溶液に対して、ビス(フルオロスルホニル)イミドのアンモニウム塩比1.05当量の水酸化リチウム・1水和物(LiOH・H2O)の粉体2.36gを加え、室温で15分間攪拌すると共に、撹拌中発生したアンモニアガスを反応溶液から留去させた。リチウム化して得られたリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液(反応溶液)は51.15gであった。得られた反応溶液の含有水分量、酢酸ブチル量、リチウムビス(フルオロスルホニル)イミド(LiFSI)量、アンモニウム量をそれぞれ下記測定方法に基づいて測定した結果、水分:4.00質量%(2.05g)、酢酸ブチル:73.32質量%(37.50g)、LiFSI:22.02質量%(収量:11.26g)、アンモニウムは2370質量ppmであった。
[Cation exchange process]
Lithium hydroxide monohydrate (LiOH · H 2 O) powder having an ammonium salt ratio of 1.05 equivalents of bis (fluorosulfonyl) imide to the NH 4 FSI 20.4% by mass butyl acetate solution obtained 2.36 g of the product was added, and the mixture was stirred at room temperature for 15 minutes, and ammonia gas generated during the stirring was distilled off from the reaction solution. The butyl acetate solution (reaction solution) of lithium bis (fluorosulfonyl) imide obtained by lithiation was 51.15 g. As a result of measuring the water content, butyl acetate content, lithium bis (fluorosulfonyl) imide (LiFSI) content, and ammonium content in the obtained reaction solution based on the following measurement methods, the water content was 4.00% by mass (2. 05 g), butyl acetate: 73.32 mass% (37.50 g), LiFSI: 22.02 mass% (yield: 11.26 g), and ammonium was 2370 mass ppm.

[アンモニア留去工程]
カチオン交換して得られた反応溶液を減圧下(20hPa)、室温(25℃)で15分間の減圧蒸留を行ってアンモニアを更に留去した。この際、アンモニア留去と共に、水と酢酸ブチルも同時に留去させた。アンモニア留去工程後の反応溶液の質量は45.52gであった。またアンモニア留去工程後の反応溶液の含有水分量、酢酸ブチル量をそれぞれ下記測定方法に基づいて測定した結果、水分:2.30質量%(1.05g)、酢酸ブチル:73.84質量%(33.61g)であった。
[Ammonia distillation step]
The reaction solution obtained by cation exchange was distilled under reduced pressure (20 hPa) at room temperature (25 ° C.) for 15 minutes to further distill off ammonia. At this time, water and butyl acetate were simultaneously distilled off together with the ammonia distillation. The mass of the reaction solution after the ammonia distillation step was 45.52 g. Further, the water content and the butyl acetate content in the reaction solution after the ammonia distillation step were measured based on the following measuring methods, respectively, and the water content was 2.30% by mass (1.05 g) and the butyl acetate was 73.84% by mass. (33.61 g).

[水洗浄工程]
アンモニア留去工程後、リチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液(反応溶液)は、リチウムビス(フルオロスルホニル)イミド(LiFSI)質量の1.3倍の純水(14.64g)で水洗した。水洗後、分液して水層を除去し、得られた油層(44.44g)を温度(55℃)及び圧力(20hPa)の制御下で10分間の減圧蒸留を行った。
[Water washing process]
After the ammonia distillation step, the butyl acetate solution (reaction solution) of lithium bis (fluorosulfonyl) imide was washed with pure water (14.64 g) 1.3 times the mass of lithium bis (fluorosulfonyl) imide (LiFSI). . After water washing, liquid separation was performed to remove the aqueous layer, and the obtained oil layer (44.44 g) was subjected to vacuum distillation for 10 minutes under the control of temperature (55 ° C.) and pressure (20 hPa).

[濃縮工程]
ロータリーエバポレーター(「REN−1000」、IWAKI社製)を使用して、減圧下で、水洗浄工程後のリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液から反応溶媒である酢酸ブチル溶液、水を留去した。具体的にはリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液に対して、リチウムビス(フルオロスルホニル)イミドの質量の1倍量のエチレンカーボネート(EC)、2倍質量のメチルエチルカーボネート(MEC)を加え、減圧下(20hPa)、55℃で10分加温し、減圧蒸留を行った。続いて2倍質量のメチルエチルカーボネートを加えて同様の減圧蒸留を行った。水分量が50質量ppmとなるまで同様の操作を繰り返し、合計で10質量倍のメチルエチルカーボネートを使用した。減圧蒸留することで酢酸ブチルと共に水、エチレンカーボネートも留去させ、LiFSI/EC/MEC溶液15.35gを得た。この溶液のLiFSI量は53.74質量%(8.25g)であった。また最終的なLiFSIの収率(溶液中のLiFSI質量/NH4FSIの投入質量)は77.61質量%であった。得られたリチウムビス(フルオロスルホニル)イミドのエチレンカーボネート溶液を電解液材料No.1とした。
[Concentration process]
Using a rotary evaporator ("REN-1000", manufactured by IWAKI), a butyl acetate solution as a reaction solvent and water were distilled from a butyl acetate solution of lithium bis (fluorosulfonyl) imide after the water washing step under reduced pressure. Left. Specifically, with respect to a butyl acetate solution of lithium bis (fluorosulfonyl) imide, ethylene carbonate (EC) of twice the mass of lithium bis (fluorosulfonyl) imide, and methyl ethyl carbonate (MEC) of 2 times the mass. In addition, the mixture was heated at 55 ° C. for 10 minutes under reduced pressure (20 hPa) and distilled under reduced pressure. Subsequently, twice the mass of methyl ethyl carbonate was added and the same vacuum distillation was performed. The same operation was repeated until the water content reached 50 mass ppm, and a total of 10 mass times of methyl ethyl carbonate was used. By distilling under reduced pressure, water and ethylene carbonate were distilled off together with butyl acetate to obtain 15.35 g of LiFSI / EC / MEC solution. The LiFSI amount of this solution was 53.74% by mass (8.25 g). The final yield of LiFSI (the mass of LiFSI in the solution / the amount of NH 4 FSI input) was 77.61% by mass. The obtained lithium carbonate solution of lithium bis (fluorosulfonyl) imide was used as electrolyte material No. It was set to 1.

実施例1−2
[カチオン交換工程]
実施例1−1と同様にして作製したNH4FSI20.4質量%の酢酸ブチル溶液に対して、ビス(フルオロスルホニル)イミドのアンモニウム塩比1.15当量のLiOH・H2Oの粉体2.59gを加え、室温で15分間攪拌すると共に、撹拌中発生したアンモニアガスを反応溶液から留去させた。得られたリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液(反応溶液)は50.94gであった。得られた反応溶液の含有水分量、酢酸ブチル量、LiFSI量、アンモニウム量をそれぞれ下記測定方法に基づいて測定した結果、水:4.24質量%(2.16g)、酢酸ブチル:73.38質量%(37.38g)、LiFSI:22.06質量%(11.24g)、アンモニウムは2420質量ppmであった。
Example 1-2
[Cation exchange process]
LiOH · H 2 O powder 2 having an ammonium salt ratio of 1.15 equivalents of bis (fluorosulfonyl) imide to a butyl acetate solution containing 20.4% by mass of NH 4 FSI produced in the same manner as in Example 1-1 .59 g was added, and the mixture was stirred at room temperature for 15 minutes, and ammonia gas generated during the stirring was distilled off from the reaction solution. The obtained lithium bis (fluorosulfonyl) imide in butyl acetate (reaction solution) was 50.94 g. As a result of measuring the water content, butyl acetate content, LiFSI content, and ammonium content of the obtained reaction solution based on the following measurement methods, water: 4.24% by mass (2.16 g), butyl acetate: 73.38 Mass% (37.38 g), LiFSI: 22.06 mass% (11.24 g), and ammonium were 2420 mass ppm.

[アンモニア留去工程]
カチオン交換して得られた反応溶液を実施例1−1と同様にしてアンモニア留去工程を行った。アンモニア留去工程後の反応溶液の質量は45.72gであった。またアンモニア留去工程後の反応溶液の含有水分量、酢酸ブチル量をそれぞれ下記測定方法に基づいて測定した結果、水:2.56質量%(1.17g)、酢酸ブチル:73.60質量%(33.65g)であった。
[Ammonia distillation step]
The ammonia solution was removed from the reaction solution obtained by cation exchange in the same manner as in Example 1-1. The mass of the reaction solution after the ammonia distillation step was 45.72 g. Further, the water content and the butyl acetate content in the reaction solution after the ammonia distillation step were measured based on the following measuring methods, respectively, water: 2.56% by mass (1.17 g), butyl acetate: 73.60% by mass. (33.65 g).

[水洗浄工程]
アンモニア留去工程後、得られた反応溶液を実施例1−1と同様にして水洗浄工程を行った。水洗後、分液して水層を除去し、得られた油層(44.52g)を温度(55℃)及び圧力(20hPa)の制御下で10分間の減圧蒸留を行った。
[Water washing process]
After the ammonia distillation step, the obtained reaction solution was subjected to a water washing step in the same manner as in Example 1-1. After water washing, liquid separation was performed to remove the aqueous layer, and the resulting oil layer (44.52 g) was subjected to vacuum distillation for 10 minutes under the control of temperature (55 ° C.) and pressure (20 hPa).

[濃縮工程]
上記No.1と同様にして濃縮工程を行って、LiFSI/EC/MEC溶液15.41gを得た。この溶液のLiFSI量は53.60質量%(8.26g)であった。また最終的なLiFSIの収率は77.70質量%であった。得られたリチウムビス(フルオロスルホニル)イミドのエチレンカーボネート溶液を電解液材料No.2とした。
[Concentration process]
No. above. The concentration step was performed in the same manner as in 1 to obtain 15.41 g of LiFSI / EC / MEC solution. The LiFSI amount of this solution was 53.60% by mass (8.26 g). The final yield of LiFSI was 77.70% by mass. The obtained lithium carbonate solution of lithium bis (fluorosulfonyl) imide was used as electrolyte material No. 2.

実施例1−3(比較例)
[カチオン交換工程]
実施例1−1と同様にして作製したNH4FSI20.4質量%の酢酸ブチル溶液に対して、ビス(フルオロスルホニル)イミドのアンモニウム塩比1.3当量のLiOH・H2Oの粉体2.92gを加え、室温で15分間攪拌すると共に、撹拌中発生したアンモニアガスを反応溶液から留去させた。得られたリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液(反応溶液)は50.89gであった。得られた反応溶液の含有水分量、酢酸ブチル量、LiFSI量、アンモニウム量をそれぞれ下記測定方法に基づいて測定した結果、水:5.01質量%(2.55g)、酢酸ブチルは72.44質量%(36.86g)、LiFSIは22.11質量%(11.25g)、アンモニウムは2530質量ppmであった。
Example 1-3 (comparative example)
[Cation exchange process]
Powder 2 of LiOH · H 2 O having an ammonium salt ratio of 1.3 equivalents of bis (fluorosulfonyl) imide to a butyl acetate solution of 20.4% by mass of NH 4 FSI produced in the same manner as in Example 1-1 .92 g was added and stirred at room temperature for 15 minutes, and ammonia gas generated during stirring was distilled off from the reaction solution. The obtained lithium bis (fluorosulfonyl) imide in butyl acetate (reaction solution) was 50.89 g. As a result of measuring the water content, butyl acetate content, LiFSI content, and ammonium content of the obtained reaction solution based on the following measurement methods, water: 5.01% by mass (2.55 g), butyl acetate was 72.44. The mass% (36.86 g), LiFSI was 22.11 mass% (11.25 g), and ammonium was 2530 mass ppm.

[アンモニア留去工程]
カチオン交換して得られた反応溶液を実施例1−1と同様にしてアンモニア留去工程を行った。アンモニア留去工程後の反応溶液の質量は44.65gであった。またアンモニア留去工程後の反応溶液の含有水分量、酢酸ブチル量をそれぞれ下記測定方法に基づいて測定した結果、水:2.98質量%(1.33g)、酢酸ブチル:73.06質量%(32.62g)であった。
[Ammonia distillation step]
The ammonia solution was removed from the reaction solution obtained by cation exchange in the same manner as in Example 1-1. The mass of the reaction solution after the ammonia distillation step was 44.65 g. Further, the water content and the butyl acetate content of the reaction solution after the ammonia distillation step were measured based on the following measuring methods, respectively, water: 2.98% by mass (1.33 g), butyl acetate: 73.06% by mass. (32.62 g).

[水洗浄工程]
アンモニア留去工程後、得られた反応溶液を実施例1−1と同様にして水洗浄工程を行った。水洗後、分液して水層を除去し、得られた油層(42.87g)を温度(55℃)及び圧力(20hPa)の制御下で10分間の減圧蒸留を行った。
[Water washing process]
After the ammonia distillation step, the obtained reaction solution was subjected to a water washing step in the same manner as in Example 1-1. After water washing, liquid separation was performed to remove the aqueous layer, and the obtained oil layer (42.87 g) was subjected to vacuum distillation for 10 minutes under the control of temperature (55 ° C.) and pressure (20 hPa).

[濃縮工程]
上記No.1と同様にして濃縮工程を行って、LiSFI/EC/MEC溶液15.31gを得た。この溶液のLiFSI量は53.81%(8.24g)であった。また最終的なLiFSIの収率は77.52%であった。得られたリチウムビス(フルオロスルホニル)イミドのエチレンカーボネート溶液を電解液材料No.3とした。
[Concentration process]
No. above. The concentration step was performed in the same manner as in 1 to obtain 15.31 g of LiSFI / EC / MEC solution. The LiFSI content of this solution was 53.81% (8.24 g). The final yield of LiFSI was 77.52%. The obtained lithium carbonate solution of lithium bis (fluorosulfonyl) imide was used as electrolyte material No. It was set to 3.

得られた各電解液材料に含まれるアセトアミド量、アンモニウム量、及び酢酸量をそれぞれ下記測定方法に基づいて測定した。結果を表1に示す。   The amount of acetamide, the amount of ammonium, and the amount of acetic acid contained in each obtained electrolyte solution material were measured based on the following measuring methods. The results are shown in Table 1.

[測定方法]
(水分量の測定)
各反応溶液の含有水分量はカールフィッシャー水分測定装置(平沼産業製AQ−2100)で測定した。測定試料はカチオン交換後、またはアンモニア留去後の反応溶液0.2gをメタノールで10倍に希釈して調整した。なお、試料の調製及び測定などの一連の操作はドライルーム(温度25℃、露点−70℃〜−50℃)で行った。試料注入量は試料の水分含有量に応じて0.1ml〜3mlとし、発生液には「ハイドラナール(登録商標)クローマットAK」(Siguma Aldrich社製)を使用し、対極液には「ハイドラナール(登録商標)クローマットCG−K」(Sigma Aldrich社製)を使用した。試料は外気に触れないよう注射器を用いて試料注入口より注入した。同様にして、希釈に使用したメタノールの水分含有量を測定し、試料溶液の水分含有量(測定値)からメタノールの水分含有量を差し引く事で、反応溶液の水分含有量を求めた。
[Measuring method]
(Measurement of water content)
The water content of each reaction solution was measured with a Karl Fischer moisture measuring device (AQ-2100 manufactured by Hiranuma Sangyo). The measurement sample was prepared by diluting 0.2 g of the reaction solution after cation exchange or ammonia distillation 10-fold with methanol. A series of operations such as sample preparation and measurement were performed in a dry room (temperature 25 ° C., dew point −70 ° C. to −50 ° C.). The sample injection amount is 0.1 ml to 3 ml depending on the moisture content of the sample, “Hydranal (registered trademark) Chromat AK” (manufactured by Sigma Aldrich) is used as the generated liquid, and “Hydranal” is used as the counter electrode liquid. "Nar (registered trademark) Chromat CG-K" (manufactured by Sigma Aldrich) was used. The sample was injected from the sample inlet using a syringe so as not to touch the outside air. Similarly, the water content of methanol used for dilution was measured, and the water content of the reaction solution was determined by subtracting the water content of methanol from the water content (measured value) of the sample solution.

(LiFSI量の測定)
カチオン交換工程後、及び濃縮工程後の各反応溶液の含有LiFSI量を19F−NMRで分析した。LiFSIの濃度は各反応溶液から得られた有機層を試料として、19F−NMR(溶媒:重アセトニトリル)測定を行い、測定結果のチャートにおいて内部標準物質として加えたトリフルオロメチルベンゼンの量、及び、これに由来するピークの積分値と、目的生成物に由来するピークの積分値との比較から求めた。
(Measurement of LiFSI amount)
The amount of LiFSI contained in each reaction solution after the cation exchange step and after the concentration step was analyzed by 19 F-NMR. The concentration of LiFSI was measured by 19 F-NMR (solvent: deuterated acetonitrile) using the organic layer obtained from each reaction solution as a sample, and the amount of trifluoromethylbenzene added as an internal standard substance in the measurement result chart, and It was determined by comparing the integrated value of the peak derived therefrom with the integrated value of the peak derived from the target product.

(酢酸量、アセトアミド量、及び酢酸ブチル量の測定)
ガスクロマトグラフ質量分析計(GC−MASS)を使用して、カチオン交換工程後、及びアンモニア留去工程後の各反応溶液の含有酢酸ブチル量、及び電解液材料No.1〜3に含まれるアセトアミド、及び酢酸を測定した。分析結果を表1に示す。
電解液材料を超脱水アセトンで40倍に希釈して想定溶液とした。
装置はサーモクエスト社製PolarisQを用い、イオン化法E/I法で測定した。
ガスクロ条件
恒温層:40℃5分−250℃10分 昇温速度10℃/分
流量:He 1.0mL/分
注入口:260℃、スプリット注入法 1/10
カラム:CP−VOLAMINE(0.25mm内径×30m)
(Measurement of acetic acid amount, acetamide amount, and butyl acetate amount)
Using a gas chromatograph mass spectrometer (GC-MASS), the amount of butyl acetate contained in each reaction solution after the cation exchange step and after the ammonia distilling step, and the electrolyte material No. Acetamide and acetic acid contained in 1 to 3 were measured. The analysis results are shown in Table 1.
The electrolyte material was diluted 40 times with ultra-dehydrated acetone to obtain an assumed solution.
The apparatus used was PolarisQ manufactured by ThermoQuest Co., Ltd., and was measured by the ionization method E / I method.
Gas-cooled condition constant temperature layer: 40 ° C. 5 minutes-250 ° C. 10 minutes Temperature rising rate 10 ° C./minute Flow rate: He 1.0 mL / minute Inlet port: 260 ° C., split injection method 1/10
Column: CP-VOLAMINE (0.25mm inner diameter x 30m)

(アンモニウム量の測定)
イオンクロマトグラフィーを使用して、電解液材料No.1〜3に含まれるアンモニウムイオンイオン量を測定した。電解液材料を超純水(18.2Ω・cm超)で1000倍に希釈して測定溶液とした。装置は日本ダイオネクス株式会社製ICS−2000を用いて測定溶液中のNH4+を測定した。
分離モード:イオン交換
溶離液:15-30mM KOH水溶液
検出器:電気伝導度検出器
カラム:Ion PAC OG16−CS16
(Measurement of ammonium content)
Using ion chromatography, electrolyte material No. The amount of ammonium ion contained in 1 to 3 was measured. The electrolyte solution material was diluted 1000 times with ultrapure water (over 18.2 Ω · cm) to obtain a measurement solution. The apparatus measured NH4 + in a measurement solution using ICS-2000 by Nippon Daionex Corporation.
Separation mode: Ion exchange eluent: 15-30 mM KOH aqueous solution Detector: Conductivity detector Column: Ion PAC OG16-CS16

Figure 2018052760
Figure 2018052760

カチオン交換工程において添加した水酸化リチウム・1水和物量を本発明で規定する範囲で実施した実施例1−1と実施例1−2ではカチオン交換工程後の反応溶液の含有水分量を低減でき、その結果、電解液材料に含まれる不純物量(アセトアミド、アンモニウム、及び酢酸)を低減できた。一方、添加した水酸化リチウム・1水和物量が多かった実施例1−3では反応溶液の含有水分量が多く、その結果、電解液材料に含まれる不純物量が多かった。   In Example 1-1 and Example 1-2, in which the amount of lithium hydroxide monohydrate added in the cation exchange step was within the range specified in the present invention, the water content in the reaction solution after the cation exchange step could be reduced. As a result, the amount of impurities (acetamide, ammonium, and acetic acid) contained in the electrolyte material could be reduced. On the other hand, in Example 1-3 in which the amount of added lithium hydroxide monohydrate was large, the water content of the reaction solution was large, and as a result, the amount of impurities contained in the electrolyte solution material was large.

実施例1−1と実施例1−2ではカチオン交換工程において添加した水酸化リチウム・1水和物量を本発明で規定する範囲で実施したため、添加した水酸化リチウム・1水和物量が多かった実施例1−3と比べてリチウム化後のアルカリ度を低く抑えることができ、酢酸ブチルの分解を抑制できた。その結果、酢酸ブチルの分解生成物である酢酸の生成を抑えることができると共に、酢酸とアンモニアの脱水縮合物であるアセトアミドの生成も抑えることができ、電解液材料に含まれる酢酸やアセトアミドは検出限界未満にまで低減できた。また実施例1−1と実施例1−2ではカチオン交換工程後の反応溶液の含有水分量を低減することで、水とアンモニアによる逆反応を抑えることができ、電解液材料に含まれるアンモニウムを低減できた。   In Example 1-1 and Example 1-2, since the amount of lithium hydroxide monohydrate added in the cation exchange step was within the range specified in the present invention, the amount of lithium hydroxide monohydrate added was large. Compared with Example 1-3, the alkalinity after lithiation could be suppressed low, and decomposition of butyl acetate could be suppressed. As a result, the production of acetic acid, which is a decomposition product of butyl acetate, can be suppressed, and the formation of acetamide, which is a dehydration condensate of acetic acid and ammonia, can be suppressed. Acetic acid and acetamide contained in the electrolyte material are detected Reduced to below the limit. Moreover, in Example 1-1 and Example 1-2, the reverse reaction by water and ammonia can be suppressed by reducing the water content of the reaction solution after the cation exchange step, and the ammonium contained in the electrolyte material can be reduced. Reduced.

実施例2
(非水電解液の調製)
電解液材料No.1にEC、EMCを後添加してLiFSI濃度1.2モル/L EC/EMC=3/7(体積比)組成の非水電解液I−1を調整した。
Example 2
(Preparation of non-aqueous electrolyte)
Electrolyte material No. EC and EMC were added after 1 to prepare a non-aqueous electrolyte I-1 having a LiFSI concentration of 1.2 mol / L EC / EMC = 3/7 (volume ratio).

またエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、3:7(体積比)で混合した非水溶媒に六フッ化リン酸リチウム(LiPF6、キシダ化学株式会社製、電解質塩)を溶解させて、LiPF6濃度1.2モル/Lの非水電解液IIを調製した。 Moreover, lithium hexafluorophosphate (LiPF 6 , manufactured by Kishida Chemical Co., Ltd., electrolyte salt) is added to a non-aqueous solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 3: 7. By dissolving, a non-aqueous electrolyte solution II having a LiPF 6 concentration of 1.2 mol / L was prepared.

上記非水電解液I−1と上記非水電解液IIとを混合し、組成がLiFSI濃度0.6モル/L、LiPF6濃度0.6モル/L、EC/EMC体積比=3/7の非水電解液No.1を調製した。 The non-aqueous electrolyte solution I-1 and the non-aqueous electrolyte solution II are mixed, and the composition is LiFSI concentration 0.6 mol / L, LiPF 6 concentration 0.6 mol / L, EC / EMC volume ratio = 3/7. Non-aqueous electrolyte No. 1 was prepared.

電解液材料No.1に代えて電解液材料No.2、3を用いて非水電解液I−2、I−3を調製した以外は上記と同様にして非水電解液No.2、3を調製した。   Electrolyte material No. In place of electrolyte material No. 1 2 and 3 except that non-aqueous electrolytes I-2 and I-3 were prepared in the same manner as described above. 2, 3 were prepared.

電池評価
ラミネート型リチウムイオン二次電池の作製
正極活物質(LiCoO2)、導電助剤1(アセチレンブラック、電気化学工業製)、導電助剤2(グラファイト)及び結着剤(PVdF、株式会社クレハ・バッテリー・マテリアルズ・ジャパン製「クレハL#1120」)を93:2:2:3の質量比で混合しN−メチルピロリドンに分散させた正極合剤スラリーをアルミニウム箔(正極集電体)上に両面塗工し、乾燥、圧縮して、正極シートを作製した。
Battery Evaluation Production of Laminate Type Lithium Ion Secondary Battery Positive Electrode Active Material (LiCoO 2 ), Conductive Auxiliary 1 (Acetylene Black, manufactured by Denki Kagaku Kogyo), Conductive Auxiliary 2 (Graphite), and Binder (PVdF, Kureha Corporation・ A positive electrode mixture slurry prepared by mixing “Kureha L # 1120” manufactured by Battery Materials Japan in a mass ratio of 93: 2: 2: 3 and dispersed in N-methylpyrrolidone is an aluminum foil (positive electrode current collector). Both sides were coated on top, dried and compressed to produce a positive electrode sheet.

負極活物質として人造黒鉛、導電助剤(VGCF、昭和電工社製)、及び結着剤(スチレンブタジエンゴム、カルボキシメチルセルロース)を100:0.5:2.6(質量比)の割合で混合し、これをN−メチルピロリドンと混合してスラリー状の溶液を作製した。この負極合剤スラリーを銅箔(負極集電体)上に片面塗工し、乾燥、圧縮して負極シートを作製した。   Artificial graphite, conductive additive (VGCF, manufactured by Showa Denko KK), and binder (styrene butadiene rubber, carboxymethyl cellulose) are mixed as a negative electrode active material in a ratio of 100: 0.5: 2.6 (mass ratio). This was mixed with N-methylpyrrolidone to prepare a slurry solution. This negative electrode mixture slurry was coated on one side on a copper foil (negative electrode current collector), dried and compressed to prepare a negative electrode sheet.

上記正極シート(150μm)の両面に対向する様に負極シート(85μm)を積層し、その間にポリエチレン製のセパレーター(径16μm)各1枚を挟んだ。2枚のアルミニウムラミネートで負極シート、セパレーター、正極シート、セパレーター、負極シートの順に積層された積層体を挟み込みアルミラミネートフィルム内を0.7mLの非水電解液1で満たし、真空状態で密閉し(容量34mAh)、リチウムイオン二次電池No.1を作製した。また非水電解液No.1を非水電解液No.2、3に変更したこと以外は上記と同様にして、リチウムイオン二次電池No.2、3を作製した。   A negative electrode sheet (85 μm) was laminated so as to oppose both surfaces of the positive electrode sheet (150 μm), and a polyethylene separator (diameter 16 μm) was sandwiched between each sheet. The laminated body of the negative electrode sheet, the separator, the positive electrode sheet, the separator, and the negative electrode sheet is sandwiched between two aluminum laminates, and the aluminum laminate film is filled with 0.7 mL of the non-aqueous electrolyte 1 and sealed in a vacuum state ( Capacity 34 mAh), lithium ion secondary battery No. 1 was produced. Non-aqueous electrolyte No. 1 is a non-aqueous electrolyte No. 1 The lithium ion secondary battery No. 2 was changed in the same manner as described above except that it was changed to 2 or 3. 2 and 3 were produced.

リチウムイオン二次電池No.1〜3を用いて下記(1)〜(3)の電池特性を評価した。   Lithium ion secondary battery No. The battery characteristics of (1) to (3) below were evaluated using 1 to 3.

(1)初回充放電効率
リチウムイオン二次電池について、温度25℃の環境下、充放電試験装置(株式会社アスカ電子製ACD−01、以下同じ。)を使用し、所定の充電条件(0.5C(32mA)、4.35V、定電流定電圧モード)で5時間充電を行った。その後、所定の放電条件(0.2C(12.8mA)、放電終止電圧2.75V、定電流放電)で放電を行った。正極活物質1g当たりの初回の充電容量、及び正極活物質1g当たりの初回の放電容量を記録し、得られた値から下記式より、初回充放電効率を算出した。結果を表2に示す。
初回充放電効率(%)=(初回放電容量/初回充電容量)×100
(1) First-time charge / discharge efficiency For a lithium ion secondary battery, a charge / discharge test apparatus (ACD-01 manufactured by Asuka Electronics Co., Ltd., the same shall apply hereinafter) is used in an environment at a temperature of 25 ° C., and predetermined charge conditions (0. 5C (32mA), 4.35V, constant current constant voltage mode) was charged for 5 hours. Thereafter, discharge was performed under predetermined discharge conditions (0.2 C (12.8 mA), discharge end voltage 2.75 V, constant current discharge). The initial charge capacity per gram of the positive electrode active material and the initial discharge capacity per gram of the positive electrode active material were recorded, and the initial charge and discharge efficiency was calculated from the obtained value using the following formula. The results are shown in Table 2.
Initial charge / discharge efficiency (%) = (initial discharge capacity / initial charge capacity) × 100

(2)初期レート特性
充放電試験装置(アスカ電子株式会社製「ACD−01」)を使用して、温度25℃の環境下、リチウムイオン二次電池を、1C(64mA)の電流値、4.35V定電圧で、0.05C(1.28mA)まで電流が垂下するまで充電した後、0.2C(12.8mA)で2.75Vまで定電流放電を行った。この時の正極活物質1g当たりの放電容量を0.2C容量とした。次いで、再び上記条件で充電を行った後、2.0Cで2.75Vまで定電流放電を行った。このときの正極活物質1g当たりの放電容量を2.0C容量とした。得られた放電容量の値から下記式より、初期レートを算出した。結果を表2に示す。
初期レート特性 (%)=(2.0C容量/0.2C容量)×100
(2) Initial rate characteristics Using a charge / discharge test apparatus ("ACD-01" manufactured by Asuka Electronics Co., Ltd.), a lithium ion secondary battery was measured at a current value of 1 C (64 mA) under an environment of a temperature of 25 ° C. The battery was charged at 0.05 V (1.28 mA) at a constant voltage of .35 V until the current dropped, and then discharged at a constant current of 0.2 C (12.8 mA) to 2.75 V. The discharge capacity per gram of the positive electrode active material at this time was 0.2 C capacity. Next, after charging again under the above conditions, constant current discharging was performed at 2.0 C up to 2.75 V. The discharge capacity per 1 g of the positive electrode active material at this time was 2.0 C capacity. The initial rate was calculated from the obtained discharge capacity value by the following formula. The results are shown in Table 2.
Initial rate characteristics (%) = (2.0 C capacity / 0.2 C capacity) × 100

(3)サイクル容量維持率
充放電試験装置(ACD−01、アスカ電子株式会社製)を使用して、温度45℃にて、充電速度1Cでの4.35V定電流定電圧充電を電流量が0.02Cになるまで行い、放電速度1Cで電圧が2.75Vになるまで放電を行い、各充放電時にはそれぞれ10分の充放電休止時間を設けてサイクル特性試験を行い、下記式より、容量維持率を算出した。結果を表2に示す。
サイクル容量維持率(%)=(50サイクル時の放電容量/1サイクル時の放電容量)×100
(3) Cycle capacity maintenance rate Using a charge / discharge test device (ACD-01, manufactured by Asuka Electronics Co., Ltd.), the amount of current is 4.35V constant current constant voltage charge at a charge rate of 1C at a temperature of 45 ° C. Discharge until the voltage reaches 2.75 V at a discharge rate of 1 C, and perform a cycle characteristic test with a 10-minute charge / discharge pause time at each charge / discharge. The maintenance rate was calculated. The results are shown in Table 2.
Cycle capacity retention rate (%) = (discharge capacity at 50 cycles / discharge capacity at one cycle) × 100

Figure 2018052760
Figure 2018052760

本発明の要件を満足する製造方法で得られた電解液材料No.1、2は、上記の通り不純物含有量が電解液材料No.3と比べて低減されていた。そのため、電解液材料No.1、2から作製したリチウムイオン二次電池No.1、2は、電解液材料No.3から作製したリチウムイオン二次電池No.3と比べて初期充放電効率、初期レート特性、及び容量維持率が向上した。   Electrolyte material No. obtained by the manufacturing method which satisfies the requirements of the present invention. 1 and 2, as described above, the impurity content is electrolyte material No. Compared to 3, it was reduced. Therefore, the electrolyte material No. Lithium ion secondary battery No. 1 and 2 are electrolyte material Nos. No. 3 lithium ion secondary battery No. 3 Compared to 3, the initial charge / discharge efficiency, the initial rate characteristics, and the capacity retention rate were improved.

このことから、アセトアミド、アンモニウム、酢酸の含有量を低減することで、電池特性を向上できることがわかる。   This shows that the battery characteristics can be improved by reducing the contents of acetamide, ammonium and acetic acid.

Claims (6)

ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解液材料の製造方法であって、
前記有機溶媒(A)とは異なる有機溶媒(B)、ビス(フルオロスルホニル)イミドのアンモニウム塩、及びアルカリ金属化合物とを含む溶液中でカチオン交換することにより、ビス(フルオロスルホニル)イミドのアルカリ金属塩を得るカチオン交換工程、
得られた反応溶液をアルカリ洗浄及び/又は水洗浄する工程、及び
前記洗浄後、前記有機溶媒(A)存在下で減圧及び/又は加熱して前記有機溶媒(B)、及び水を留去する工程を含み、
前記カチオン交換工程における前記アルカリ金属化合物の添加量は、前記ビス(フルオロスルホニル)イミドのアンモニウム塩1モルに対して0.90モル当量以上、1.24モル当量以下であるビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解液材料の製造方法。
A method for producing an electrolyte material comprising an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent (A),
Alkali metal of bis (fluorosulfonyl) imide by cation exchange in a solution containing an organic solvent (B) different from the organic solvent (A), an ammonium salt of bis (fluorosulfonyl) imide, and an alkali metal compound A cation exchange step to obtain a salt,
A step of washing the obtained reaction solution with alkali and / or water, and after the washing, the organic solvent (B) and water are distilled off by reducing pressure and / or heating in the presence of the organic solvent (A). Including steps,
The addition amount of the alkali metal compound in the cation exchange step is 0.90 mole equivalent or more and 1.24 mole equivalent or less with respect to 1 mole of the ammonium salt of the bis (fluorosulfonyl) imide. A method for producing an electrolyte material comprising an alkali metal salt of the organic solvent (A) and an organic solvent (A).
前記アルカリ金属化合物は固体で添加するものである請求項1に記載の電解液材料の製造方法。   The method for producing an electrolyte material according to claim 1, wherein the alkali metal compound is added as a solid. 前記カチオン交換工程後の反応溶液の含有水分量は、4.5質量%以下である請求項1または2に記載の電解液材料の製造方法。   The method for producing an electrolyte material according to claim 1 or 2, wherein the water content of the reaction solution after the cation exchange step is 4.5 mass% or less. 前記カチオン交換工程後の反応溶液を、前記有機溶媒(B)の存在下で減圧及び/又は加熱して前記反応溶液からアンモニアを留去する工程を行ってから前記アルカリ洗浄及び/又は前記水洗浄するものである請求項1〜3のいずれかに記載の電解液材料の製造方法。   The alkali solution and / or the water washing is performed after the reaction solution after the cation exchange step is subjected to a step of distilling off ammonia from the reaction solution by reducing pressure and / or heating in the presence of the organic solvent (B). The manufacturing method of the electrolyte material in any one of Claims 1-3. 前記有機溶媒(B)は、エステル系溶媒である請求項1〜4のいずれかに記載の電解液材料の製造方法。   The said organic solvent (B) is an ester solvent, The manufacturing method of the electrolyte material in any one of Claims 1-4. 前記有機溶媒(A)は、カーボネート系溶媒である請求項1〜5のいずれかに記載の電解液材料の製造方法。   The said organic solvent (A) is a carbonate type solvent, The manufacturing method of the electrolyte material in any one of Claims 1-5.
JP2016188377A 2016-09-27 2016-09-27 A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent. Active JP6806514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016188377A JP6806514B2 (en) 2016-09-27 2016-09-27 A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016188377A JP6806514B2 (en) 2016-09-27 2016-09-27 A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent.

Publications (2)

Publication Number Publication Date
JP2018052760A true JP2018052760A (en) 2018-04-05
JP6806514B2 JP6806514B2 (en) 2021-01-06

Family

ID=61833496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016188377A Active JP6806514B2 (en) 2016-09-27 2016-09-27 A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent.

Country Status (1)

Country Link
JP (1) JP6806514B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500132A (en) * 2016-12-08 2020-01-09 アルケマ フランス Method for drying and purifying LiFSI
US11316200B2 (en) 2016-12-08 2022-04-26 Arkema France Method for drying and purifying lithium bis(fluorosulfonyl)imide salt
CN115448267A (en) * 2022-09-19 2022-12-09 安徽新宸新材料有限公司 Method for preparing lithium bis (fluorosulfonyl) imide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108284A1 (en) * 2011-02-10 2012-08-16 日本曹達株式会社 Process for production of fluorosulfonylimide ammonium salt
WO2014148258A1 (en) * 2013-03-18 2014-09-25 日本曹達株式会社 Method for producing disulfonylamine alkali metal salt
JP2014201453A (en) * 2013-04-01 2014-10-27 株式会社日本触媒 Method for producing alkali metal salt of fluorosulfonyl imide
WO2016052752A1 (en) * 2014-10-03 2016-04-07 株式会社日本触媒 Method for manufacturing electrolyte material
JP2016088809A (en) * 2014-11-05 2016-05-23 株式会社日本触媒 Method for producing fluorosulfonylimide salt
JP2016145147A (en) * 2015-02-03 2016-08-12 株式会社日本触媒 Manufacturing method of fluorosulfonylimide compound
WO2017090877A1 (en) * 2015-11-26 2017-06-01 임광민 Novel method for preparing lithium bis(fluorosulfonyl)imide

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108284A1 (en) * 2011-02-10 2012-08-16 日本曹達株式会社 Process for production of fluorosulfonylimide ammonium salt
US20130323154A1 (en) * 2011-02-10 2013-12-05 Nippon Soda Co., Ltd. Process for production of fluorosulfonylimide ammonium salt
WO2014148258A1 (en) * 2013-03-18 2014-09-25 日本曹達株式会社 Method for producing disulfonylamine alkali metal salt
US20160016797A1 (en) * 2013-03-18 2016-01-21 Nippon Soda Co., Ltd. Method for producing disulfonylamine alkali metal salt
JP2014201453A (en) * 2013-04-01 2014-10-27 株式会社日本触媒 Method for producing alkali metal salt of fluorosulfonyl imide
WO2016052752A1 (en) * 2014-10-03 2016-04-07 株式会社日本触媒 Method for manufacturing electrolyte material
US20170214092A1 (en) * 2014-10-03 2017-07-27 Nippon Shokubai Co., Ltd. Method for manufacturing electrolyte solution material
JP2016088809A (en) * 2014-11-05 2016-05-23 株式会社日本触媒 Method for producing fluorosulfonylimide salt
JP2016145147A (en) * 2015-02-03 2016-08-12 株式会社日本触媒 Manufacturing method of fluorosulfonylimide compound
WO2017090877A1 (en) * 2015-11-26 2017-06-01 임광민 Novel method for preparing lithium bis(fluorosulfonyl)imide
JP2019501858A (en) * 2015-11-26 2019-01-24 シーエルエス インコーポレイテッド Novel process for producing lithium bis (fluorosulfonyl) imide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500132A (en) * 2016-12-08 2020-01-09 アルケマ フランス Method for drying and purifying LiFSI
US11084723B2 (en) 2016-12-08 2021-08-10 Arkema France Method for drying and purifying LiFSI
US11316200B2 (en) 2016-12-08 2022-04-26 Arkema France Method for drying and purifying lithium bis(fluorosulfonyl)imide salt
CN115448267A (en) * 2022-09-19 2022-12-09 安徽新宸新材料有限公司 Method for preparing lithium bis (fluorosulfonyl) imide
CN115448267B (en) * 2022-09-19 2023-04-07 安徽新宸新材料有限公司 Method for preparing lithium bis (fluorosulfonyl) imide

Also Published As

Publication number Publication date
JP6806514B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
JP6792394B2 (en) A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent.
JP6916666B2 (en) Method for producing bis (fluorosulfonyl) imide alkali metal salt and bis (fluorosulfonyl) imide alkali metal salt composition
CN106946925B (en) Lithium fluoroalkoxytrifluoroborate salt, and preparation method and application thereof
JP5300468B2 (en) Non-aqueous electrolyte
JP4876409B2 (en) Secondary battery electrolyte and secondary battery using the same
JP4810867B2 (en) Method for producing electrolyte for lithium ion battery
JP2017117684A (en) Electrolytic solution for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using the same
KR102165700B1 (en) Additives for galvanic cells
KR20140003601A (en) Lithium ion secondary battery and nonaqueous electrolyte for lithium ion secondary battery
JPWO2005057714A1 (en) Secondary battery electrolyte and secondary battery using the same
JP5622424B2 (en) Electrolyte for secondary battery
WO2017204302A1 (en) Method for producing bis(fluorosulfonyl)imide alkali metal salt and method for producing non-aqueous electrolytic solution
JP2011049157A (en) High purity fluorine-containing phosphate for nonaqueous electrolyte
JP6932686B2 (en) Methods for Producing Fluorocyclic Carbonates and Their Use for Lithium Ion Batteries
WO2016024496A1 (en) Non-aqueous electrolyte containing monofluorophosphate ester and non-aqueous electrolyte battery using same
CN106058319A (en) Electrolyte with polyanion functional group and preparation method and application thereof
KR20140017644A (en) Non-aqueous electrolyte solution for secondary cell, and non-aqueous electrolyte secondary cell
JP2017530091A (en) Fluorinated carbonate containing two oxygen-containing functional groups
JP6806514B2 (en) A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent.
JP2012238524A (en) METHOD FOR STABILIZING LiPF6, AND NONAQUEOUS ELECTROLYTIC SOLUTION FOR NONAQUEOUS SECONDARY BATTERY
JP2014072102A (en) Nonaqueous electrolyte, electrochemical device, lithium ion secondary battery, and module
JP6435235B2 (en) Fluorine-containing phosphate ester cyanoalkylamide, nonaqueous electrolyte containing the same, and nonaqueous secondary battery
TWI771515B (en) Additives for non-aqueous electrolytes, non-aqueous electrolytes, and electrical storage devices
JP6792798B2 (en) Manufacturing method of lithium ion secondary battery
JP6143410B2 (en) Electrochemical device and non-aqueous electrolyte for electrochemical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190606

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201204

R150 Certificate of patent or registration of utility model

Ref document number: 6806514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150