JP6097708B2 - Electrolyte and secondary battery using the same - Google Patents

Electrolyte and secondary battery using the same Download PDF

Info

Publication number
JP6097708B2
JP6097708B2 JP2014024748A JP2014024748A JP6097708B2 JP 6097708 B2 JP6097708 B2 JP 6097708B2 JP 2014024748 A JP2014024748 A JP 2014024748A JP 2014024748 A JP2014024748 A JP 2014024748A JP 6097708 B2 JP6097708 B2 JP 6097708B2
Authority
JP
Japan
Prior art keywords
electrolyte
chemical formula
group
lithium salt
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014024748A
Other languages
Japanese (ja)
Other versions
JP2015153525A (en
Inventor
水 竜 一 清
水 竜 一 清
Original Assignee
エルジー・ケム・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー・ケム・リミテッド filed Critical エルジー・ケム・リミテッド
Priority to JP2014024748A priority Critical patent/JP6097708B2/en
Publication of JP2015153525A publication Critical patent/JP2015153525A/en
Application granted granted Critical
Publication of JP6097708B2 publication Critical patent/JP6097708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

発明の詳細な説明Detailed Description of the Invention

〔発明の分野〕
本発明は、水電解質及びそれを用いた二次電池に関する。
(Field of the Invention)
The present invention relates to a water electrolyte and a secondary battery using the same.

〔背景技術〕
近年、モバイルツール、電気モーターの開発及び普及に伴って、高容量のエネルギー源が求められており、その代表的な例として、(リチウム)二次電池が挙げられる。現在、リチウム二次電池の電解質の支持塩として、LiPF等のリチウム塩が用いられている。
[Background Technology]
In recent years, with the development and popularization of mobile tools and electric motors, a high-capacity energy source has been demanded, and a typical example thereof is a (lithium) secondary battery. Currently, a lithium salt such as LiPF 6 is used as a supporting salt for an electrolyte of a lithium secondary battery.

電解液の支持塩として、LiPFを主成分として含むことは従来技術においてよく知られている。また、非特許文献1(Journal of Power Sources, Volume 196, Issue 7, 2011, Pages 3623-3632)によれば、LiFSI〔リチウム ビス(フルオロスルホニル)イミド〕を電解液の支持塩の主成分とする場合は、一定以上の比率でLiPFを含む必要があると指摘されている。 It is well known in the prior art that LiPF 6 is contained as a main component as a supporting salt of the electrolytic solution. Further, according to Non-Patent Document 1 (Journal of Power Sources, Volume 196, Issue 7, 2011, Pages 3623-3632), LiFSI [lithium bis (fluorosulfonyl) imide] is the main component of the electrolyte supporting salt. In some cases, it is pointed out that it is necessary to contain LiPF 6 at a certain ratio or more.

他方、非水電解液中のリチウムイオン量を増加させると、即ち、リチウム塩の濃度を増加させると、非水電解液の粘性のため直流内部抵抗が大きくなり、非水電解液二次電池の出力や寿命が低下することが指摘されている(特許文献1:特許公開2003−243029)。   On the other hand, when the amount of lithium ions in the non-aqueous electrolyte is increased, that is, when the concentration of the lithium salt is increased, the DC internal resistance increases due to the viscosity of the non-aqueous electrolyte, and the non-aqueous electrolyte secondary battery It has been pointed out that the output and the life are reduced (Patent Document 1: Patent Publication No. 2003-243029).

また、本発明者は、LiFSIを電解液の支持塩の主成分とする場合、アルミニウムよりなる正極集電体が腐食し、電池の特性及び寿命に悪影響を与えることを確認した。   Moreover, when this inventor made LiFSI the main component of the support salt of electrolyte solution, it confirmed that the positive electrode electrical power collector which consists of aluminum corroded and had a bad influence on the characteristic and lifetime of a battery.

このため、電解液の粘度を上昇させることなく、リチウム塩、取り分け、イミド系のリチウム塩、例えばLiFSIを電解液の支持塩の主成分として使用すると倶に、正極集電体を腐食することがない電解質の開発が急務となっている。   For this reason, without increasing the viscosity of the electrolytic solution, lithium salt, especially, imide-based lithium salt such as LiFSI may be used as the main component of the supporting salt of the electrolytic solution, and the positive electrode current collector may be corroded. There is no urgent need to develop electrolytes.

特許公開2003−243029Patent Publication 2003-243029

Journal of Power Sources, Volume 196, Issue 7, 2011, Pages 3623-3632)Journal of Power Sources, Volume 196, Issue 7, 2011, Pages 3623-3632)

本発明者等は、リチウム塩(取り分け、イミド塩)に、特定の低分子フッ素原子含有有機化合物を添加することにより、アルミニウム集電体の表面を安定化させ、電解液の粘性上昇を抑制すると倶に、二次電池の高容量化、高出力化及び高安定化を実現することができるとの知見を得た。本発明は係る知見に基づいてなされたものである。   The inventors of the present invention stabilize the surface of the aluminum current collector by adding a specific low molecular fluorine atom-containing organic compound to the lithium salt (particularly, an imide salt), and suppress the increase in the viscosity of the electrolytic solution. In addition, the inventors obtained knowledge that the secondary battery can be increased in capacity, output, and stability. The present invention has been made based on such knowledge.

従って、本発明が提案する非水電解質は、
リチウム塩と、電解質添加剤とを含んでなり、
前記電解質添加剤が、前記リチウム塩を溶解可能なものであり、かつ、フッ素基を有し、HF又はFを遊離する構造を有するものであり、下記化学式1で表される化合物又はその平衡生成物である、非水電解質。
CHCF−Y (式1)
〔上記式1中、
Xは電子吸引基を表し、
Yは電子供与基を表す。〕
Therefore, the non-aqueous electrolyte proposed by the present invention is
Comprising a lithium salt and an electrolyte additive,
Wherein the electrolyte additive, are those capable of dissolving the lithium salt, and has a fluorine group, are those having a structure that liberates HF or F 2, a compound or its equilibrium following Formula 1 The product is a non-aqueous electrolyte.
X 2 CHCF 2 -Y (Equation 1)
[In the above formula 1,
X represents an electron withdrawing group,
Y represents an electron donating group. ]

発明を実施する為の態様Mode for carrying out the invention

〔電解質/非水電解液〕
(電解質添加剤)
本発明にあっては、非水電解質に添加される電解質添加剤は、リチウム塩を溶解可能なものであり、かつ、フッ素基を有し、HF又はFを遊離する構造を有するものであり、下記化学式1で表される化合物又はその平衡生成物である。
CHCF−Y (化学式1)
〔上記式1中、
Xは電子吸引基を表し、
Yは電子供与基を表す。〕
[Electrolyte / Non-aqueous electrolyte]
(Electrolyte additive)
In the present invention, the electrolyte additive added to the non-aqueous electrolyte is one that can dissolve a lithium salt, has a fluorine group, and has a structure that liberates HF or F 2 . A compound represented by the following chemical formula 1 or an equilibrium product thereof.
X 2 CHCF 2 -Y (formula 1)
[In the above formula 1,
X represents an electron withdrawing group,
Y represents an electron donating group. ]

本発明にあって、「HF又はFを遊離する構造を有する」とは、以下のように説明することができる。

(CFCHCF−O−R → (CFC=CF−O−R
(塩基条件下で、「HF基」離脱)
(CFCHCF−O−R → (CFCH−C(O)−O−R
(酸条件下で、「F基」離脱)

これら化学反応式は、化学平衡〔可逆変化:(→)及び(←)〕をなすものである。
In the present invention, “having a structure that liberates HF or F 2 ” can be explained as follows.

(CF 3) 2 CHCF 2 -O -R → (CF 3) 2 C = CF-O-R
("HF group" withdrawal under basic conditions)
(CF 3 ) 2 CHCF 2 —O—R → (CF 3 ) 2 CH—C (O) —O—R
("F 2 group" leaving under acid conditions)

These chemical reaction formulas form a chemical equilibrium [reversible change: (→) and (←)].

そして、上記化学式1で表される化合物又はその平衡生成物において、Xが電子吸引基であることにより、塩基条件下ではXの結合している炭素からプロトンが脱離しやすくなっている。また、Yが電子供与基であることにより、プロトンが脱離した中間体は不安定となり、Fが脱離しやすくなる。その結果、段階的にHFとビニルエーテルを生ずるものと思われる。
Yが電子供与基であることにより、酸条件下ではYの結合している炭素からFが脱離しやすくなる。また、Xが電子吸引基であることにより、Fが脱離した中間体は不安定となり、その結果、系に酸化物が存在する場合は、酸素が引き抜かれてエステルとフッ化物を生じる。
In the compound represented by the above chemical formula 1 or an equilibrium product thereof, when X is an electron withdrawing group, protons are easily released from the carbon to which X is bonded under basic conditions. Moreover, when Y is an electron donating group, the intermediate from which the proton is eliminated becomes unstable and F is easily eliminated. As a result, it appears that HF and vinyl ether are produced step by step.
When Y is an electron donating group, F is easily detached from carbon to which Y is bonded under acid conditions. Further, when X is an electron-withdrawing group, the intermediate from which F is eliminated becomes unstable, and as a result, when an oxide is present in the system, oxygen is withdrawn to produce an ester and a fluoride.

リチウムイオン電池中では、アルミ箔表面がフッ素化されることによって、通常の酸化膜より強い保護層を形成してアルミ箔の腐食を防ぐと考えられている。このようなフッ素化膜の形成は通常はPF によって起こるが、電解液中に強いフッ素化剤が存在すれば、同様に保護層の形成が起こると考えられる。また、PF によるフッ素化膜形成した後に生じるPOF のようなフッ素化リン酸化合物が強いフッ素化剤と反応すればPF に戻るので、間接的にアルミ箔表面のフッ素化膜の形成のためのFが供給されることになる。これらの反応は酸条件下で行われるので、Fを供給しながら安定なエステルが電解液中に増加していくことになる。
また、負極表面や塩基性の強い正極活物質の表面では、塩基条件下の反応が起こる可能性があるが、形成されたHFとビニルエーテルは更に反応してSEIと呼ばれる電極表面の固体電解質層となって電極表面を安定化し、電池特性の低下を防ぐと考えられる。
In lithium ion batteries, it is considered that the aluminum foil surface is fluorinated to form a protective layer stronger than a normal oxide film to prevent corrosion of the aluminum foil. The formation of such a fluorinated film is usually caused by PF 6 , but if a strong fluorinating agent is present in the electrolytic solution, it is considered that a protective layer is similarly formed. Further, PF 6 - occurring after fluorinated membranes formed by POF 4 - Fluorinated be reacted phosphoric acid compound with a strong fluorinating agents PF 6 such as - because the return indirectly fluorinated membranes of the aluminum foil surface F 2 for the formation of will be supplied. Since these reactions are performed under acid conditions, stable esters increase in the electrolyte while supplying F 2 .
In addition, a reaction under basic conditions may occur on the negative electrode surface or the surface of a strongly basic positive electrode active material, but the formed HF and vinyl ether further react to form a solid electrolyte layer on the electrode surface called SEI. This is considered to stabilize the electrode surface and prevent deterioration of battery characteristics.

本発明にあっては、上記化学式(1)において、好ましくは、Xがフルオロアルキル基である化合物であり、より好ましくは、炭素数1〜10程度であり、より好ましくは炭素数1〜6程度(さらに好ましくは炭素数1〜4)である、直鎖又は分岐鎖を有し、水素原子がフッ素原子により全て又は一部置換された、フルオロアルキル基である化合物が挙げられる。
また、上記化学式(1)において、好ましくは、Yがアルコキシ基である化合物であり、より好ましくは、炭素数1〜10程度であり、より好ましくは炭素数1〜6程度(さらに好ましくは炭素数1〜4)である、直鎖又は分岐鎖を有し、好ましくは、水素原子がハロゲン原子(好ましくは、フッ素原子)等により全て又は大部分置換されていない(1〜3程度の置換は許容範囲)、アルコキシ基である化合物が挙げられる。
In the present invention, in the chemical formula (1), preferably, X is a compound having a fluoroalkyl group, more preferably about 1 to 10 carbon atoms, more preferably about 1 to 6 carbon atoms. A compound having a linear or branched chain (more preferably having 1 to 4 carbon atoms) and having a fluoroalkyl group in which all or part of the hydrogen atoms are substituted with fluorine atoms is exemplified.
In the chemical formula (1), Y is preferably an alkoxy group, more preferably about 1 to 10 carbon atoms, more preferably about 1 to 6 carbon atoms (more preferably carbon numbers). 1 to 4), preferably a straight or branched chain, and preferably all or most of the hydrogen atoms are not substituted by halogen atoms (preferably fluorine atoms) (substitution of about 1 to 3 is allowed) Range), compounds that are alkoxy groups.

電子吸引性と電子供与性はアルキル基またはアルコキシ基のフッ素の置換率によって決定することが可能である。フッ素の置換率が高いほど電子吸引性は強く、電子供与性は弱くなる。したがって、HF又はFの遊離を多くするためには、Xにおいては全て又は大部分の水素原子がフッ素原子で置換されていることが望ましく、Yにおいては全て又は大部分の水素原子がフッ素原子で置換されていないことが望ましい。また、HF又はFの遊離が多すぎて、かえって電池特性に悪影響を及ぼす場合には、フッ素の置換率を調整することによって、HF又はFの遊離性を制御することができる。 The electron withdrawing property and electron donating property can be determined by the fluorine substitution rate of the alkyl group or alkoxy group. The higher the fluorine substitution rate, the stronger the electron withdrawing property and the weaker the electron donating property. Therefore, in order to increase the liberation of HF or F 2 , it is desirable that all or most of hydrogen atoms in X are substituted with fluorine atoms, and in Y, all or most of the hydrogen atoms are fluorine atoms. It is desirable that it is not substituted with. Moreover, when there is too much liberation of HF or F 2 which adversely affects the battery characteristics, the liberation of HF or F 2 can be controlled by adjusting the fluorine substitution rate.

本発明の好ましい態様によれば、Xにおけるフッ素原子への置換率は、50%以上100%以下であり、好ましくは下限値が70%以上であり、より好ましくは下限値が80%以上であり、Yにおけるフッ素原子への置換率は、0%以上80%以下であり、好ましくは上限値が30%以下であり、より好ましくは上限値が20%以下である。   According to a preferred embodiment of the present invention, the substitution rate to the fluorine atom in X is 50% or more and 100% or less, preferably the lower limit is 70% or more, more preferably the lower limit is 80% or more. The substitution rate of fluorine atoms in Y and Y is 0% or more and 80% or less, preferably the upper limit is 30% or less, and more preferably the upper limit is 20% or less.

化学式1で表される化合物又はその平衡生成物は、好ましくは、下記化学式2乃至化学式4で表される何れかのものである。
(CFCHCF−O−R (化学式2)
(CFC=CF−O−R (化学式3)
(CFCHCO−O−R (化学式4)
〔上記式中、
O−Rは上記で定義したYと同一であり、好ましくはO−CHである。〕
The compound represented by the chemical formula 1 or the equilibrium product thereof is preferably any one represented by the following chemical formulas 2 to 4.
(CF 3 ) 2 CHCF 2 —O—R (Chemical Formula 2)
(CF 3 ) 2 C═CF—O—R (Chemical Formula 3)
(CF 3 ) 2 CHCO—O—R (Chemical Formula 4)
[In the above formula,
O—R is the same as Y defined above, preferably O—CH 3 . ]

(リチウム塩)
電解質塩としてリチウム塩を使用することができ、また、様々なタイプの塩を使用することができる。例えば、イミド系リチウム塩を使用することができ、LiN(RSO)(RSO):(化学式5)で表される化合物が例示される。
上記式5中、R,Rは、独立して、フッ素原子又は炭素数1〜6のフルオロアルキル基を表す。上記フルオロアルキル基としては、直鎖状、分岐鎖状、環状、又は、これらの組合せからなるものであってもよく、また、炭素原子に結合する水素原子の一部がフッ素原子に置換されたものであればよい。具体的なフルオロアルキル基としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、ペンタフルオロエチル基、フルオロプロピル基、フルオロペンチル基、フルオロヘキシル基等が挙げられる。R,Rとしては、フッ素原子、トリフルオロメチル基、ペンタフルオロエチル基が好ましい。R,Rの一方がフルオロアルキル基である場合、他方は、フッ素原子(F)であるのが望ましい。
(Lithium salt)
Lithium salts can be used as electrolyte salts, and various types of salts can be used. For example, an imide-based lithium salt can be used, and a compound represented by LiN (R 1 SO 2 ) (R 2 SO 2 ): (Chemical Formula 5) is exemplified.
In the above formula 5, R 1 and R 2 independently represent a fluorine atom or a fluoroalkyl group having 1 to 6 carbon atoms. The fluoroalkyl group may be linear, branched, cyclic, or a combination thereof, and a part of hydrogen atoms bonded to a carbon atom is substituted with a fluorine atom. Anything is acceptable. Specific examples of the fluoroalkyl group include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a difluoroethyl group, a trifluoroethyl group, a pentafluoroethyl group, a fluoropropyl group, a fluoropentyl group, and a fluorohexyl group. Groups and the like. R 1 and R 2 are preferably a fluorine atom, a trifluoromethyl group, or a pentafluoroethyl group. When one of R 1 and R 2 is a fluoroalkyl group, the other is preferably a fluorine atom (F).

イミド系リチウム塩としては、リチウムビス(フルオロスルホニル)イミド、リチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド、リチウム(フルオロスルホニル)(ペンタフルオロエチルスルホニル)イミドが挙げられ、好ましいものとして、リチウムビス(フルオロスルホニル)イミド(LiFSI)である。
イミド系リチウム塩は、電解液において適正な量(濃度)として添加されてよい。
Examples of the imide-based lithium salt include lithium bis (fluorosulfonyl) imide, lithium (fluorosulfonyl) (trifluoromethylsulfonyl) imide, and lithium (fluorosulfonyl) (pentafluoroethylsulfonyl) imide. (Fluorosulfonyl) imide (LiFSI).
The imide-based lithium salt may be added as an appropriate amount (concentration) in the electrolytic solution.

(その他のリチウム塩)
本発明にあっては、イミド系リチウム塩以外に、他のリチウム塩を包含するものであってよく、例えば、フッ素含有リチウム塩をさらに添加してもよい。
(Other lithium salts)
In the present invention, in addition to the imide-based lithium salt, other lithium salts may be included. For example, a fluorine-containing lithium salt may be further added.

他のリチウム塩としては、
LiPF(C2m+16−a(0≦a≦6、1≦m≦2) (化学式6)
LiBF(C2n+14−b(0≦b≦4、1≦n≦2) (化学式7)
LiAsF (化学式8)
LiSbF(化学式9)
で表される化合物よりなる群から選択される一種又は二種以上の混合物であってよい。
Other lithium salts include
LiPF a (C m F 2m + 1 ) 6-a (0 ≦ a ≦ 6, 1 ≦ m ≦ 2) (Chemical formula 6)
LiBF b (C n F 2n + 1 ) 4-b (0 ≦ b ≦ 4, 1 ≦ n ≦ 2) (Chemical formula 7)
LiAsF 6 (Formula 8)
LiSbF 6 (Formula 9)
It may be one or a mixture of two or more selected from the group consisting of compounds represented by:

より具体的には、LiPF、LiPF(C、LiBF、LiBF(CF、LiAsF、LiSbFが好ましく、LiPF、LiBF、LiAsFがより好ましく、LiPF、LiBFがさらに好ましい。 More specifically, LiPF 6, LiPF 3 (C 2 F 5) 3, LiBF 4, LiBF (CF 3) 3, LiAsF 6, LiSbF 6 are preferred, LiPF 6, LiBF 4, LiAsF 6 , more preferably, LiPF 6 and LiBF 4 are more preferable.

これらフッ素含有リチウム塩を添加することで、イミド系リチウム塩を単独で使用する場合に比べて、正極集電体の腐食抑制効果が向上し、また、非水電解質の安定性、イオン伝導度、移動度を向上させることができるので好ましい。   By adding these fluorine-containing lithium salts, the corrosion inhibitory effect of the positive electrode current collector is improved compared to the case where the imide-based lithium salt is used alone, and the stability of the nonaqueous electrolyte, ionic conductivity, Since mobility can be improved, it is preferable.

(添加剤)
本発明にあっては、スルホン酸エステル及び/又はスルホン化合物の一種又は二種以上の混合物を添加剤として含有してよい。スルホン酸エステル及び/又はスルホン化合物は、電池作動時に集電体表面に形成された酸化皮膜と反応して、正極にスルホン酸エステル及び/又はスルホン化合物に由来する皮膜が形成されることにより、高電圧下(例えば4V以上)での作動時にも電極の腐食を十分に抑制することが可能となる。
(Additive)
In the present invention, one or a mixture of two or more sulfonic acid esters and / or sulfone compounds may be contained as an additive. The sulfonic acid ester and / or sulfone compound reacts with the oxide film formed on the surface of the current collector during battery operation, and a film derived from the sulfonic acid ester and / or sulfone compound is formed on the positive electrode. It is possible to sufficiently suppress the corrosion of the electrode even when operating under a voltage (for example, 4 V or more).

スルホン酸エステルは、R−S(O)−O−Rで表される化合物であり、R、Rは、炭素数1〜5の炭化水素基を表す。当該炭化水素基は、鎖状、分岐鎖状、環状、又は、これらの内2以上の構造を併せ持っていてもよく、また、炭化水素基を構成する炭素に結合する一部又は全部の水素原子は、ハロゲンで置換されていてもよい。具体的には、アルキル基、アリール基、フルオロアルキル基、フルオロアリール基等が挙げられる。上記RとRとは、同一若しくは異なっていてもよく、またRとRとは結合して環を形成していてもよい。 The sulfonic acid ester is a compound represented by R 3 —S (O) 2 —O—R 4 , and R 3 and R 4 represent a hydrocarbon group having 1 to 5 carbon atoms. The hydrocarbon group may be a chain, a branched chain, a ring, or may have two or more of these structures, and a part or all of the hydrogen atoms bonded to the carbon constituting the hydrocarbon group. May be substituted with halogen. Specific examples include an alkyl group, an aryl group, a fluoroalkyl group, and a fluoroaryl group. R 3 and R 4 may be the same or different, and R 3 and R 4 may be bonded to form a ring.

スルホン酸エステルの具体例としては、1,3−プロパンサルトン、1,3−ブタンサルトン、1,4−ブタンサルトン、2,4−ブタンサルトン、1,5−ペンタンサルトン、2,4−ペンタンサルトン、1,4−へキサンサルトン、4,6−ヘプタンサルトン等の環状スルホン酸エステル、メタンスルホン酸メチル、ベンゼンスルホン酸メチル、トリフルオロメタンスルホン酸メチル等の鎖状スルホン酸エステルが挙げられる。
この中でも1,3−プロパンサルトン、1,4−ブタンサルトン、2,4−ブタンサルトンが好ましく、より好ましくは1,3−プロパンサルトン、1,4−ブタンサルトンであり、さらに好ましくは1,3−プロパンサルトンである。
Specific examples of sulfonic acid esters include 1,3-propane sultone, 1,3-butane sultone, 1,4-butane sultone, 2,4-butane sultone, 1,5-pentane sultone, 2,4-pentane sultone And cyclic sulfonic acid esters such as 1,4-hexane sultone and 4,6-heptane sultone, and chain sulfonic acid esters such as methyl methanesulfonate, methyl benzenesulfonate and methyl trifluoromethanesulfonate.
Among these, 1,3-propane sultone, 1,4-butane sultone, and 2,4-butane sultone are preferable, 1,3-propane sultone and 1,4-butane sultone are more preferable, and 1,3-butane sultone is more preferable. Propane sultone.

スルホン化合物とは、分子内にスルホン結合(R−SO−R)を有する化合物である(R、Rは、スルホン酸エステルと同様)。具体的なスルホン化合物としては、スルホラン、3−メチルスルホラン等の環状スルホン化合物、エチルメチルスルホン、ジフェニルスルホン、ビス(4−フルオロフェニル)スルホン等の鎖状スルホン化合物が挙げられる。上記スルホニル基を有する化合物の中でも、スルホラン、3−メチルスルホラン、エチルメチルスルホンが好ましく、スルホランがより好ましい。 The sulfone compound is a compound having a sulfone bond (R 3 —SO 2 —R 4 ) in the molecule (R 3 and R 4 are the same as the sulfonate ester). Specific examples of the sulfone compound include cyclic sulfone compounds such as sulfolane and 3-methylsulfolane, and chain sulfone compounds such as ethyl methyl sulfone, diphenyl sulfone, and bis (4-fluorophenyl) sulfone. Among the compounds having a sulfonyl group, sulfolane, 3-methylsulfolane, and ethylmethylsulfone are preferable, and sulfolane is more preferable.

(溶媒)
非水電解液とする場合、溶媒としては、鎖状又は環状カーボネートを含むものであれば特に限定されない。鎖状カーボネートとしては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等が、環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート等が挙げられる。これらの中でも、ジメチルカーボネート、エチルメチルカーボネートが好ましい。
(solvent)
When the non-aqueous electrolyte is used, the solvent is not particularly limited as long as it contains a chain or cyclic carbonate. Examples of chain carbonates include dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate. Examples of cyclic carbonates include ethylene carbonate, propylene carbonate, butylene carbonate, and chloroethylene carbonate. Among these, dimethyl carbonate and ethyl methyl carbonate are preferable.

本発明にあっては、他の非水溶媒をも使用することができる。例えば、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,1−ジメトキシエタン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタン等のエーテル類;γ−ブチロラクトン、γ−バレロラクトン、α−メチル−γ−ブチロラクトン等のラクトン類;プロピオン酸メチルや酪酸メチル等の鎖状カルボン酸エステル類;等の非水溶媒が挙げられる。   In the present invention, other non-aqueous solvents can also be used. For example, ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,1-dimethoxyethane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane; Non-aqueous solvents such as lactones such as -butyrolactone, γ-valerolactone, α-methyl-γ-butyrolactone; chain carboxylic acid esters such as methyl propionate and methyl butyrate;

(その他の添加剤)
本発明にあっては、サイクル特性の改善及び安全性の向上を目的とする他の添加剤を含有していてもよい。
(Other additives)
In the present invention, other additives for the purpose of improving cycle characteristics and safety may be contained.

他の添加剤としては、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、メチルビニレンカーボネート(MVC)、エチルビニレンカーボネート(EVC)等の不飽和結合を有する環状カーボネート;フルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、フェニルエチレンカーボネート及びエリスリタンカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物等のカルボン酸無水物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン、N−メチルスクシイミド等の含窒素化合物;モノフルオロリン酸塩、ジフルオロリン酸塩などのリン酸塩;ヘプタン、オクタン、シクロヘプタン等の炭化水素化合物;等が挙げられる。   Other additives include cyclic carbonates having unsaturated bonds such as vinylene carbonate (VC), vinyl ethylene carbonate (VEC), methyl vinylene carbonate (MVC), ethyl vinylene carbonate (EVC); fluoroethylene carbonate, trifluoropropylene Carbonate compounds such as carbonate, phenylethylene carbonate and erythritan carbonate; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclohexane Carboxylic anhydrides such as pentanetetracarboxylic dianhydride and phenylsuccinic anhydride; 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazo Nitrogen compounds such as dinone, 1,3-dimethyl-2-imidazolidinone, N-methylsuccinimide; phosphates such as monofluorophosphate and difluorophosphate; heptane, octane, cycloheptane, etc. Hydrocarbon compounds; and the like.

〔二次電池〕
本発明にあっては、二次電池、好ましくはリチウム二次電池であって、
正極と、負極と、非水電解液と、セパレータとを備えてなり、
前記非水電解液が本発明による電解質を含んでなる、二次電池を提案する。
[Secondary battery]
In the present invention, a secondary battery, preferably a lithium secondary battery,
Comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator;
A secondary battery is proposed in which the non-aqueous electrolyte comprises the electrolyte according to the present invention.

一般に、リチウム二次電池は、正極活性物質及び正極集電体からなる正極と、負極活性物質及び負極集電体からなる負極と、正極及び負極間で電子伝導を遮断してリチウムイオンを伝導できるセパレータとからなり、電極及びセパレータ材料の隙間には、リチウムイオンを伝導するためのリチウム塩含有の非水電解液が注入される。   Generally, a lithium secondary battery can conduct lithium ions by blocking electron conduction between a positive electrode made of a positive electrode active material and a positive electrode current collector, a negative electrode made of a negative electrode active material and a negative electrode current collector, and the positive electrode and the negative electrode. A non-aqueous electrolyte containing a lithium salt for conducting lithium ions is injected into the gap between the electrode and the separator material.

(正極)
正極は、例えば、正極集電体上に正極活性物質、導電剤及びバインダーの混合物を塗布した後、乾燥して製造される。必要に応じては前記混合物に充填剤をさらに添加できる。
(Positive electrode)
The positive electrode is produced, for example, by applying a mixture of a positive electrode active material, a conductive agent and a binder on a positive electrode current collector and then drying. If necessary, a filler can be further added to the mixture.

正極活性物質としてはリチウム含有遷移金属酸化物を望ましく使用でき、例えばLiCoO(0.5<x<1.3)、LiNiO(0.5<x<1.3)、LiMnO(0.5<x<1.3)、LiMn(0.5<x<1.3)、Li(NiCoMn)O(0.5<x<1.3、0<a<1、0<b<1、0<c<1、a+b+c=1)、LiNi1−yCo(0.5<x<1.3、0<y<1)、LiCo1−yMn(0.5<x<1.3、0≦y<1)、LiNi1−yMn(0.5<x<1.3、0≦y<1)、Li(NiCoMn)O(0.5<x<1.3、0<a<2、0<b<2、0<c<2、a+b+c=2)、LiMn2−zNi(0.5<x<1.3、0<z<2)、LiMn2−zCo(0.5<x<1.3、0<z<2)、LiCoPO(0.5<x<1.3)、及びLiFePO(0.5<x<1.3)からなる群より選択されるいずれか一種又は二種以上の混合物を使用することができる。また、前記リチウム含有遷移金属酸化物の外に硫化物、セレン化物、及びハロゲン化物なども使用することができる。
好ましくは、LiCoO(0.5<x<1.3)とLi(NiCoMn)O(0.5<x<1.3、0<a<1、0<b<1、0<c<1、a+b+c=1)との混合物を正極活性物質として使用することができる。特に、Li(NiCoMn)O(0.5<x<1.3、0<a<1、0<b<1、0<c<1、a+b+c=1)は高電圧条件で高い出力特性を発揮できるという点で望ましい。
As the positive electrode active material, a lithium-containing transition metal oxide can be desirably used. For example, Li x CoO 2 (0.5 <x <1.3), Li x NiO 2 (0.5 <x <1.3), Li x MnO 2 (0.5 <x <1.3), Li x Mn 2 O 4 (0.5 <x <1.3), Li x (Ni a Co b Mn c ) O 2 (0.5 < x <1.3, 0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1), Li x Ni 1-y Co y O 2 (0.5 <x <1.3, 0 <y <1), Li x Co 1-y Mn y O 2 (0.5 <x <1.3, 0 ≦ y <1), Li x Ni 1-y Mn y O 2 (0.5 < x <1.3, 0 ≦ y <1), Li x (Ni a Co b Mn c ) O 4 (0.5 <x <1.3, 0 <a <2, 0 <b <2, 0 < c <2, a + b + c = 2 , Li x Mn 2-z Ni z O 4 (0.5 <x <1.3,0 <z <2), Li x Mn 2-z Co z O 4 (0.5 <x <1.3, Any one selected from the group consisting of 0 <z <2), Li x CoPO 4 (0.5 <x <1.3), and Li x FePO 4 (0.5 <x <1.3) Two or more mixtures can be used. In addition to the lithium-containing transition metal oxide, sulfides, selenides, halides, and the like can also be used.
Preferably, Li x CoO 2 (0.5 <x <1.3) and Li x (Ni a Co b Mn c ) O 2 (0.5 <x <1.3, 0 <a <1, 0 < A mixture with b <1, 0 <c <1, a + b + c = 1) can be used as the positive electrode active material. In particular, Li x (Ni a Co b Mn c ) O 2 (0.5 <x <1.3, 0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1) is a high voltage. It is desirable in that high output characteristics can be exhibited under certain conditions.

正極集電体は3〜500μmの厚さで製造される。このような正極集電体は、当該電池に化学的変化を誘発せず、高い導電性を持つものであればよい。例えば、ステンレススチール、アルミニウム、ニッケル、チタン、焼結炭素、又は、アルミニウムやステンレススチールの表面にカーボン、ニッケル、チタン、銀などで表面処理したもの等が用いられる。正極集電体は、表面に微細な凹凸を形成して正極活性物質の接着力を高めることができ、フィルム、シート、ホイール、ネット、多孔質体、発泡体、不織布体等の多様な形態が可能である。   The positive electrode current collector is manufactured with a thickness of 3 to 500 μm. Such a positive electrode current collector is not particularly limited as long as it does not induce a chemical change in the battery and has high conductivity. For example, stainless steel, aluminum, nickel, titanium, sintered carbon, or a surface of aluminum or stainless steel that has been surface-treated with carbon, nickel, titanium, silver, or the like is used. The positive electrode current collector can form fine irregularities on the surface to increase the adhesive strength of the positive electrode active material, and has various forms such as a film, a sheet, a wheel, a net, a porous body, a foam, and a non-woven body. Is possible.

導電剤は、通常、正極活性物質を含む混合物の全体重量に基づいて1〜50重量%で添加される。このような導電剤は、当該電池に化学的変化を誘発せず、導電性を持つものであればよい。例えば、天然黒鉛や人造黒鉛などの黒鉛;カーボンブラック、アセチレンブラック、ケッチェンブラック(商品名)、カーボンナノチューブ、カーボンナノファイバー、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック;炭素繊維や金属繊維などの導電性繊維;フロロカーボン、アルミニウム、ニッケル粉末などの金属粉末;酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの導電性素材などが用いられる。   The conductive agent is usually added at 1 to 50% by weight based on the total weight of the mixture containing the positive electrode active material. Such a conductive agent only needs to have conductivity without inducing a chemical change in the battery. For example, graphite such as natural graphite and artificial graphite; carbon black such as carbon black, acetylene black, ketjen black (trade name), carbon nanotube, carbon nanofiber, channel black, furnace black, lamp black, and thermal black; carbon fiber Conductive fibers such as metal fibers, metal powders such as fluorocarbon, aluminum, and nickel powders; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; and conductive materials such as polyphenylene derivatives Is used.

バインダーは、活性物質及び導電剤などの結合や、活性物質の集電体に対する結合を促進させる成分である。通常、バインダーは正極活性物質を含む混合物の全体重量に基づいて1〜50重量%で添加される。例えば、ポリフッ化ビニリデン、ポリビニルアルコール、ポリイミド、カルボキシメチルセルロース(CMC)、澱粉、ヒドロキシプロピルセルロース、再生セルロース、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエン共重合体(EPDM)、スルフォン化EPDM、スチレンブチレンゴム、フッ素ゴム、多様な共重合体などが挙げられる。   The binder is a component that promotes the binding of the active substance and the conductive agent, and the binding of the active substance to the current collector. Usually, the binder is added at 1 to 50% by weight based on the total weight of the mixture containing the positive electrode active material. For example, polyvinylidene fluoride, polyvinyl alcohol, polyimide, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene copolymer (EPDM), sulfone EPDM, styrene butylene rubber, fluororubber, various copolymers and the like.

充填剤は、正極の膨脹を抑制する成分であり、選択的に使用され、当該電池に化学的変化を誘発せず、繊維状の材料であればよい。例えば、ポリエチレン、ポリプロピレンなどのオレフィン系重合体;ガラス繊維、炭素繊維などの繊維状の物質が挙げられる。   The filler is a component that suppresses expansion of the positive electrode, may be selectively used, and may be a fibrous material that does not induce a chemical change in the battery. Examples thereof include olefin polymers such as polyethylene and polypropylene; and fibrous substances such as glass fiber and carbon fiber.

(負極)
負極は、例えば、負極集電体上に負極活性物質、導電剤及びバインダーの混合物を塗布した後、乾燥して製造される。必要に応じては前記混合物に充填剤をさらに添加できる。
(Negative electrode)
The negative electrode is produced, for example, by applying a mixture of a negative electrode active material, a conductive agent and a binder on a negative electrode current collector and then drying. If necessary, a filler can be further added to the mixture.

負極活物質は、例えば、天然黒鉛、人造黒鉛、膨張黒鉛、炭素繊維、難黒鉛化性炭素、カーボンブラック、カーボンナノチューブ、フラーレン、活性炭などの炭素及び黒鉛材料;リチウムと合金が可能なAl、Si、Sn、Ag、Bi、Mg、Zn、In、Ge、Pb、Pd、Pt、Tiなどの金属及びこのような元素を含む化合物;金属またはその化合物と、炭素及び黒鉛材料との複合材料;リチウム含有窒化物などが挙げられるが、これらに限定されない。望ましくは、結晶性炭素、非晶質炭素、シリコン系活物質、スズ系活物質、及びシリコン‐炭素系活物質からなる群より選択される一種又は二種以上の組合せであり得る。その他にも負極に含まれる通常のバインダー、導電材、及びその他の添加剤を含むことができ、これらの具体例や含量などは通常添加される程度であればよい。   Examples of the negative electrode active material include carbon and graphite materials such as natural graphite, artificial graphite, expanded graphite, carbon fiber, non-graphitizable carbon, carbon black, carbon nanotube, fullerene, and activated carbon; Al and Si capable of alloying with lithium , Sn, Ag, Bi, Mg, Zn, In, Ge, Pb, Pd, Pt, Ti, and the like, and compounds containing such elements; a composite material of a metal or a compound thereof and carbon and graphite materials; lithium Examples thereof include, but are not limited to, containing nitrides. Desirably, it may be one or a combination of two or more selected from the group consisting of crystalline carbon, amorphous carbon, silicon-based active material, tin-based active material, and silicon-carbon-based active material. In addition, a normal binder, a conductive material, and other additives contained in the negative electrode can be included, and specific examples and contents thereof may be added as long as they are normally added.

バインダーは、活物質と導電材との結合及び集電体に対する結合に助力する成分であって、通常電極合剤の総重量を基準に1から50重量%で添加される。このようなバインダーの例としては、ポリフッ化ビニリデン(PVDF)、ポリビニルアルコール、カルボキシメチルセルロース(CMC)、でんぷん、ヒドロキシプロピルセルロース、再生セルロース、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン‐プロピレン‐ジエンポリマー(EPDM)、スルホン化‐EPDM、スチレン‐ブタジエンゴム、フッ素ゴム、これらの多様な共重合体などが挙げられる。   The binder is a component that assists in bonding of the active material and the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 50% by weight based on the total weight of the electrode mixture. Examples of such binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene. Examples thereof include polymers (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluororubber, and various copolymers thereof.

導電材は、電極活物質の導電性をさらに向上させるための成分であって、電極合剤の総重量を基準に1から20重量%で添加され得る。このような導電材は、当該電池に化学的な変化を引き起こさずに導電性を有するものであれば特に制限されない。例えば、天然黒鉛や人造黒鉛などの黒鉛;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラックなどのカーボンブラック;炭素繊維や金属繊維などの導電性繊維;フッ化カーボン、アルミニウム、ニッケル粉末などの金属粉末;酸化亜鉛、チタン酸カリウム、酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの導電性素材などを使用し得る。   The conductive material is a component for further improving the conductivity of the electrode active material, and may be added at 1 to 20% by weight based on the total weight of the electrode mixture. Such a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery. For example, graphite such as natural graphite and artificial graphite; carbon black such as acetylene black, ketjen black, channel black, furnace black and lamp black; conductive fiber such as carbon fiber and metal fiber; carbon fluoride, aluminum, nickel powder Metal powders such as: conductive metal oxides such as zinc oxide, potassium titanate, and titanium oxide; conductive materials such as polyphenylene derivatives can be used.

充填剤は、負極の膨脹を抑制する成分として選択的に使用され、当該電池に化学的な変化を引き起こさず繊維状の材料であれば特に制限されない。例えば、ポリエチレン、ポリプロピレンなどのオレフィン系重合体;ガラス繊維、炭素繊維などの繊維状物質を使用し得る。   The filler is not particularly limited as long as it is selectively used as a component that suppresses expansion of the negative electrode and does not cause a chemical change in the battery and is a fibrous material. For example, an olefin polymer such as polyethylene or polypropylene; a fibrous material such as glass fiber or carbon fiber can be used.

負極集電体は3〜500μmの厚さで製造される。このような負極集電体は、当該電池に化学的変化を誘発せず、導電性を持つものであればよい。例えば、銅、スチール、ステンレススチール、アルミニウム、ニッケル、チタン、焼結炭素、銅やステンレススチールの表面にカーボン、ニッケル、チタン、銀などで表面処理したもの、アルミニウム−カドミウム合金等が用いられる。負極集電体は、正極集電体と同様に、表面に微細な凹凸を形成して負極活性物質の接着力を高めることができ、フィルム、シート、ホイール、ネット、多孔質体、発泡体、不織布体等の多様な形態が可能である。   The negative electrode current collector is manufactured with a thickness of 3 to 500 μm. Such a negative electrode current collector is not particularly limited as long as it does not induce a chemical change in the battery and has conductivity. For example, copper, steel, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel whose surface is treated with carbon, nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like is used. The negative electrode current collector, like the positive electrode current collector, can form fine irregularities on the surface to increase the adhesion of the negative electrode active material, and can be a film, sheet, wheel, net, porous body, foam, Various forms such as non-woven fabric are possible.

(セパレータ)
セパレータは、正極及び負極間に介在され、高いイオン透過度及び機械的強度を持つ絶縁性の薄膜が用いられる。一般に、セパレータの気孔直径は0.01〜10μmであり、厚さは5〜300μmである。このようなセパレータとしては、例えば、耐化学性及び疎水性のポリプロピレンなどのオレフィン系ポリマー;ガラス繊維又はポリエチレンなどで作られたシートや不織布などが用いられる。電解質としてポリマーなどの固体電解質が用いられる場合には、固体電解質がセパレータを兼ねることができる。
(Separator)
The separator is an insulating thin film that is interposed between the positive electrode and the negative electrode and has high ion permeability and mechanical strength. Generally, the separator has a pore diameter of 0.01 to 10 μm and a thickness of 5 to 300 μm. As such a separator, for example, an olefin polymer such as chemically resistant and hydrophobic polypropylene; a sheet or a nonwoven fabric made of glass fiber or polyethylene is used. When a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte can also serve as a separator.

(非水電解液)
非水電解液は、〔電解質/非水電解液〕の項で述べたものを使用する。
(Nonaqueous electrolyte)
As the non-aqueous electrolyte, those described in the section [Electrolyte / Non-aqueous electrolyte] are used.

(製造)
本発明による二次電池は、通常の方法により正極及び負極間に多孔性のセパレータを挿入し、非水電解液を投入して製造することになる。本発明による二次電池は、円筒型、角型、パウチ型電池など、外形に関係なく用いられる。
(Manufacturing)
The secondary battery according to the present invention is manufactured by inserting a porous separator between a positive electrode and a negative electrode and introducing a nonaqueous electrolytic solution by a usual method. The secondary battery according to the present invention is used regardless of the outer shape, such as a cylindrical type, a square type, or a pouch type battery.

発明の実施態様Embodiment of the Invention

本発明の内容を、下記の実施例等によって詳細に説明するが、本発明の範囲は、これら実施例に限定されるものではなく、また、これら実施例の実施態様によれば、本明細書に開示され事項から本発明が容易に実施できることが当業者であれば当然に理解するであろう。   The contents of the present invention will be described in detail by the following examples and the like, but the scope of the present invention is not limited to these examples, and according to the embodiments of these examples, the present specification Those skilled in the art will understand that the present invention can be easily implemented from the matters disclosed in the above.

化学式1で表されるオクタフルオロイソブチルメチルエーテル(OIME)は下記化学式で表されるものを使用した
OIME1:(CFCHCF−O−CH (化学式2−1)
OIME2:(CFC=CF−O−CH (化学式3−1)
OIME3:(CFCHCO−O−CH (化学式4−1)
The octafluoroisobutyl methyl ether (OIME) represented by the chemical formula 1 is the one represented by the following chemical formula: OIME1: (CF 3 ) 2 CHCF 2 —O—CH 3 (Chemical formula 2-1)
OIME2: (CF 3 ) 2 C═CF—O—CH 3 (Chemical Formula 3-1)
OIME3: (CF 3) 2 CHCO -O-CH 3 ( Formula 4-1)

〔非水電解液性能試験〕
[実施例1]
厚さ20umのアルミ箔を1cm×5cmに切断して、Ar雰囲気下でOIME1中に全体を浸し、60℃で24時間放置した後、エタノールで洗浄乾燥して、表面処理をした。
[Non-aqueous electrolyte performance test]
[Example 1]
A 20 μm thick aluminum foil was cut into 1 cm × 5 cm, immersed in OIME 1 under an Ar atmosphere, allowed to stand at 60 ° C. for 24 hours, washed with ethanol and dried, and surface-treated.

[比較例1]
OIME1による浸漬をしなかった以外は、実施例1と同様にして、OIME表面処理をしなかったアルミ泊を得た。
[Comparative Example 1]
Except not having been immersed in OIME1, it carried out similarly to Example 1, and obtained the aluminum stay which did not carry out OIME surface treatment.

(評価試験1:腐食試験)
実施例1及び比較例1によるアルミ泊に、Ar雰囲気下でエチレンカーボネート:ジエチルカーボネート:エチルメチルカーボネート=3:4:3(重量比)の組成を有する1M LiFSI溶液を電解液として使用し、上記処理をしたアルミ箔の腐食電流を、5Vの定電圧で測定した。
(Evaluation test 1: Corrosion test)
1M LiFSI solution having a composition of ethylene carbonate: diethyl carbonate: ethyl methyl carbonate = 3: 4: 3 (weight ratio) under Ar atmosphere was used as the electrolytic solution for the aluminum stay according to Example 1 and Comparative Example 1, and the above The corrosion current of the treated aluminum foil was measured at a constant voltage of 5V.

(評価結果1)
評価試験の結果は、下記表1に表された通りであり、実施例1(実線)のものは、経時変化によっても腐食は見られなかったが、比較例1(破線)のものは、経時変化によっても腐食が明らかに見られた。
(Evaluation result 1)
The results of the evaluation test are as shown in Table 1 below. In Example 1 (solid line), no corrosion was observed even with aging, but in Comparative Example 1 (dashed line) Corrosion was clearly seen by the change.

〔電池性能試験〕
(電池製造)
[実施例2−1]
(電解液)
Ar雰囲気下でエチレンカーボネート:ジエチルカーボネート:エチルメチルカーボネート=3:4:3(重量比)の組成を有する1M LiFSI溶液を電解液として使用し、前記電解液100重量%に対してOIME1を1重量%添加した。電解液の組成は、表2に記載した通りである。
(正極)
正極活物質としてLiCoO、バインダーとしてポリビニリデンフルオライド(PVdF)、導電材としてカーボンを93:4:4の重量比で混合した後、N‐メチル‐2‐ピロリドンに分散させて正極スラリーを製造した。該スラリーを厚さ15μmのアルミニウムホイルにコーティングした後、乾燥及びプレスして正極を製造した。
(負極)
負極活物質として天然黒鉛、バインダーとしてスチレン‐ブタジエンゴム、増粘剤としてカルボキシメチルセルロースを96:2:2の重量比で混合した後、水に分散させて負極スラリーを製造した。該スラリーを厚さ10μmの銅ホイルにコーティングした後、乾燥及びプレスして負極を製造した。
(二次電池)
上記で製造した正極、負極、及び多孔性セパレータを使用して通常の方法で2016サイズのコイン型二次電池を作製した後、前記電解液を注入して電池を製造した。
[Battery performance test]
(Battery manufacturing)
[Example 2-1]
(Electrolyte)
A 1M LiFSI solution having a composition of ethylene carbonate: diethyl carbonate: ethyl methyl carbonate = 3: 4: 3 (weight ratio) was used as an electrolyte in an Ar atmosphere, and 1 weight of OIME1 was used with respect to 100% by weight of the electrolyte. % Was added. The composition of the electrolytic solution is as described in Table 2.
(Positive electrode)
LiCoO 2 as a positive electrode active material, polyvinylidene fluoride (PVdF) as a binder, and carbon as a conductive material are mixed in a weight ratio of 93: 4: 4, and then dispersed in N-methyl-2-pyrrolidone to produce a positive electrode slurry. did. The slurry was coated on an aluminum foil having a thickness of 15 μm, and then dried and pressed to produce a positive electrode.
(Negative electrode)
Natural graphite as a negative electrode active material, styrene-butadiene rubber as a binder, and carboxymethyl cellulose as a thickener were mixed at a weight ratio of 96: 2: 2, and then dispersed in water to prepare a negative electrode slurry. The slurry was coated on a copper foil having a thickness of 10 μm, and then dried and pressed to produce a negative electrode.
(Secondary battery)
A 2016-size coin-type secondary battery was produced by a normal method using the positive electrode, negative electrode, and porous separator produced above, and then the electrolyte was injected to produce a battery.

[実施例2−1〜2−9及び比較例2−1〜2−4]
これら実施例及び比較例は、実施例2−1と同様にして、表2に記載された組成表に従って、電解液を調製し、かつ、コイン型二次電池を製造した。表2中、Mはモルである。
[Examples 2-1 to 2-9 and Comparative examples 2-1 to 2-4]
In these Examples and Comparative Examples, in the same manner as in Example 2-1, an electrolyte solution was prepared according to the composition table shown in Table 2, and a coin-type secondary battery was manufactured. In Table 2, M is mol.

(評価試験2:電池性能)
実施例及び比較例のコイン型二次電池について、4.20Vに充電した後、0.2Cでの初期容量を測定し、1Cでのレート試験と45℃で1Cでの充放電を繰り返すサイクル試験を行った。100サイクル後と200サイクル後の容量を0.2Cで測定し、初期容量からの容量残存率を算出して比較した。その結果は、表3に示した通りであった。
(Evaluation test 2: Battery performance)
Regarding the coin-type secondary batteries of Examples and Comparative Examples, after charging to 4.20 V, the initial capacity at 0.2 C is measured, and the cycle test is repeated with the rate test at 1 C and the charge and discharge at 1 C at 45 ° C. Went. The capacities after 100 cycles and 200 cycles were measured at 0.2 C, and the capacity remaining rate from the initial capacity was calculated and compared. The results were as shown in Table 3.

(評価結果2)
実施例のコイン型二次電池は、比較例と比較して、初期容量及び放電サイクルにおいて優れた結果を示した。
(Evaluation result 2)
The coin-type secondary battery of the example showed excellent results in the initial capacity and the discharge cycle as compared with the comparative example.

〔総合評価〕
本発明によれば、HF又はFを遊離する構造を有する添加剤を含む電解液を用いることにより、電極集電体金属表面と電極活物質表面が安定化され、リチウム二次電池の寿命特性が向上した。
〔Comprehensive evaluation〕
According to the present invention, by using an electrolytic solution containing an additive having a structure that liberates HF or F 2 , the electrode current collector metal surface and the electrode active material surface are stabilized, and the life characteristics of the lithium secondary battery Improved.

Claims (10)

電解質であって、
リチウム塩と、電解質添加剤とを含んでなり、
前記リチウム塩が、LiFSIであり、
前記電解質添加剤が、電極集電体腐食防止剤、電極集電体金属表面安定化剤、又は電極活物質表面安定化剤であり、前記リチウム塩を溶解可能なものであり、フッ素基を有し、HF又はF2を遊離する構造を有するものであり、下記化学式1で表される化合物又はその平衡生成物である、電解質。
2CHCF2−Y (式1)
〔化学式1中、
Xはフルオロアルキル基であり、
Yはアルコキシ基である。
An electrolyte,
Comprising a lithium salt and an electrolyte additive,
The lithium salt is LiFSI;
The electrolyte additive is an electrode current collector corrosion inhibitor, an electrode current collector metal surface stabilizer, or an electrode active material surface stabilizer, is capable of dissolving the lithium salt, and has a fluorine group. And an electrolyte that has a structure that liberates HF or F 2 and is a compound represented by the following chemical formula 1 or an equilibrium product thereof.
X 2 CHCF 2 -Y (Equation 1)
[In Chemical Formula 1,
X is a fluoroalkyl group;
Y is an alkoxy group. ]
前記フルオロアルキル基が、炭素数1〜10であり、直鎖又は分岐鎖を有し、かつ、水素原子がフッ素原子により全て又は一部置換されたものであり、
前記アルコキシ基が、炭素数1〜10であり、直鎖又は分岐鎖を有するものであり、又は、
前記アルコキシ基が、炭素数1〜10であり、直鎖又は分岐鎖を有するものであり、かつ、水素原子がフッ素原子により一部置換されたものである、請求項1に記載の電解質。
The fluoroalkyl group is a 1 to 10 carbon atoms, having a linear or branched, and are those in which one or more hydrogen atoms are replaced all or in part by fluorine atoms,
The alkoxy group has 1 to 10 carbon atoms and has a linear or branched chain, or
The electrolyte according to claim 1, wherein the alkoxy group has 1 to 10 carbon atoms, has a straight chain or a branched chain, and a hydrogen atom is partially substituted with a fluorine atom .
前記化学式1で表される化合物又はその平衡生成物が、下記化学式2乃至化学式4で表される化合物の一種又は二種以上のものである、請求項1又は2に記載の電解質。
(CF32CHCF2−O−R (化学式2)
(CF32C=CF−O−R (化学式3)
(CF32CHCO−O−R (化学式4)
〔上記式中、
O−Rは、請求項1又は2において定義されたY(アルコキシ基)と同一である。〕
The electrolyte according to claim 1 or 2, wherein the compound represented by the chemical formula 1 or an equilibrium product thereof is one or two or more of the compounds represented by the following chemical formulas 2 to 4.
(CF 3 ) 2 CHCF 2 —O—R (Chemical Formula 2)
(CF 3 ) 2 C═CF—O—R (Chemical Formula 3)
(CF 3 ) 2 CHCO—O—R (Chemical Formula 4)
[In the above formula,
O—R is the same as Y ( alkoxy group) as defined in claim 1 or 2. ]
前記化学式2乃至化学式4における置換基Rが、CH3である、請求項3に記載の電解質。 The electrolyte according to claim 3 , wherein the substituent R in the chemical formulas 2 to 4 is CH 3 . 前記リチウム塩が、電解質中で、HF又はF2を遊離しないことを特徴とする、請求項1〜4の何れか一項に記載の電解質。 The electrolyte according to claim 1, wherein the lithium salt does not liberate HF or F 2 in the electrolyte. フッ素含有リチウム塩をさらに含んでなり、
前記フッ素含有リチウム塩が、下記(化学式6)乃至(化学式9)の何れか一つで表される化合物よりなる群から選択される一種又は二種以上の混合物である、請求項1〜5の何れか一項に記載の電解質。
LiPF a (C m 2m+1 6-a (0≦a≦6、1≦m≦2)(化学式6)
LiBF b (C n 2n+1 4-b (0≦b≦4、1≦n≦2)(化学式7)
LiAsF 6 (化学式8)
LiSbF 6 (化学式9)
Further comprising a fluorine-containing lithium salt,
The fluorine-containing lithium salt is one or a mixture of two or more selected from the group consisting of compounds represented by any one of the following (Chemical Formula 6) to (Chemical Formula 9) . The electrolyte according to any one of the above.
LiPF a (C m F 2m + 1 ) 6-a (0 ≦ a ≦ 6, 1 ≦ m ≦ 2) (Chemical formula 6)
LiBF b (C n F 2n + 1 ) 4-b (0 ≦ b ≦ 4, 1 ≦ n ≦ 2) (Chemical Formula 7)
LiAsF 6 (Formula 8)
LiSbF 6 (Formula 9)
前記フッ素含有リチウム塩が、LiPF 6 、LiPF 3 (C 2 5 3 、LiBF 4 、LiBF(CF 3 3 、LiAsF 6 、又はLiSbF 6 である、請求項6に記載の電解質。 Wherein the fluorine-containing lithium salt, LiPF 6, LiPF 3 (C 2 F 5) 3, LiBF 4, LiBF (CF 3) 3, LiAsF 6, or LiSbF is 6, electrolyte according to claim 6. 正極被膜形成用添加剤をさらに含んでなり、
前記正極被膜形成用添加剤が、スルホン酸エステル及び/又はスルホン化合物の一種又は二種以上の混合物である、請求項1〜7の何れか一項に記載の電解質。
Further comprising an additive for forming a positive electrode film,
The electrolyte according to any one of claims 1 to 7, wherein the additive for forming a positive electrode film is a sulfonate ester and / or a mixture of two or more sulfone compounds .
二次電池であって、
正極と、負極と、非水電解液と、セパレータとを備えてなり、
前記非水電解液が請求項1〜8の何れか一項に記載の電解質を含んでなるものである、二次電池。
A secondary battery,
Comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator;
A secondary battery, wherein the nonaqueous electrolytic solution comprises the electrolyte according to any one of claims 1 to 8.
前記二次電池が、リチウム二次電池である、請求項9に記載の二次電池。   The secondary battery according to claim 9, wherein the secondary battery is a lithium secondary battery.
JP2014024748A 2014-02-12 2014-02-12 Electrolyte and secondary battery using the same Active JP6097708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014024748A JP6097708B2 (en) 2014-02-12 2014-02-12 Electrolyte and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014024748A JP6097708B2 (en) 2014-02-12 2014-02-12 Electrolyte and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2015153525A JP2015153525A (en) 2015-08-24
JP6097708B2 true JP6097708B2 (en) 2017-03-15

Family

ID=53895593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014024748A Active JP6097708B2 (en) 2014-02-12 2014-02-12 Electrolyte and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP6097708B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6697901B2 (en) * 2016-02-26 2020-05-27 セイコーインスツル株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2019146731A1 (en) * 2018-01-25 2019-08-01 三井化学株式会社 Nonaqueous electrolyte solution for batteries, and lithium secondary battery
EP4260398A1 (en) * 2020-12-11 2023-10-18 Mexichem Fluor S.A. de C.V. Composition
KR20230116849A (en) * 2020-12-11 2023-08-04 멕시켐 플루어 소시에다드 아노니마 데 카피탈 바리아블레 composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4269137B2 (en) * 2002-07-19 2009-05-27 ダイキン工業株式会社 Electrode surface film forming agent.
JP4039918B2 (en) * 2002-08-30 2008-01-30 シャープ株式会社 Gel electrolyte secondary battery and manufacturing method thereof
CA2719405A1 (en) * 2008-04-28 2009-11-05 Asahi Glass Company, Limited Nonaqueous electrolyte for secondary cell, and secondary cell
WO2012132060A1 (en) * 2011-03-28 2012-10-04 日本電気株式会社 Secondary battery and electrolyte
CN104364958B (en) * 2012-06-05 2017-10-17 日本电气株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JP2015153525A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
JP6428631B2 (en) Nonaqueous electrolyte for secondary battery and lithium ion secondary battery
EP2833468B1 (en) Non-aqueous electrolyte solution for secondary batteries, and lithium-ion secondary battery
JP5605221B2 (en) Nonaqueous electrolyte for secondary battery and secondary battery
JP5474557B2 (en) Non-aqueous electrolyte and electrochemical device including the same
JP6113496B2 (en) Lithium secondary battery
JP5350243B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP5942849B2 (en) Nonaqueous electrolyte for secondary battery and secondary battery
WO2012037805A1 (en) Nonaqueous electrolyte for improving high-temperature electrochemistry performance of lithium ion battery and use thereof
JP6483943B2 (en) Lithium secondary battery
JP2021524125A (en) Non-aqueous liquid electrolyte composition
JP6018820B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
WO2012086602A1 (en) Nonaqueous electrolyte solution for secondary batteries, and secondary battery
JP2015069704A (en) Nonaqueous electrolytic solution for secondary batteries, and lithium ion secondary battery
WO2015046174A1 (en) Non-aqueous electrolyte secondary battery
WO2015046171A1 (en) Nonaqueous liquid electrolyte for use in secondary battery, and lithium-ion secondary battery
JP6097708B2 (en) Electrolyte and secondary battery using the same
JP6755182B2 (en) Lithium ion secondary battery
JP5816997B2 (en) High-viscosity electrolytic solution containing a salt having alkali metal, alkaline earth metal or aluminum as a cation and an organic solvent having a hetero element
TWI694630B (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
JP2015064990A (en) Nonaqueous electrolytic solution for secondary batteries, and lithium ion secondary battery
JP2013145732A (en) Lithium secondary battery
JP2009187880A (en) Nonaqueous electrolyte secondary battery
JP2015062154A (en) Lithium ion secondary battery
JP2013101766A (en) Nonaqueous electrolytic solution for secondary batteries, and secondary battery
JPWO2012173253A1 (en) Nonaqueous electrolyte for secondary battery and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R150 Certificate of patent or registration of utility model

Ref document number: 6097708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250