JP2018055882A - Method for manufacturing electrolyte material containing alkali metal salt of bis(fluorosulfonyl)imide and organic solvent, and electrolyte material containing alkali metal salt of bis(fluorosulfonyl)imide and organic solvent - Google Patents

Method for manufacturing electrolyte material containing alkali metal salt of bis(fluorosulfonyl)imide and organic solvent, and electrolyte material containing alkali metal salt of bis(fluorosulfonyl)imide and organic solvent Download PDF

Info

Publication number
JP2018055882A
JP2018055882A JP2016188343A JP2016188343A JP2018055882A JP 2018055882 A JP2018055882 A JP 2018055882A JP 2016188343 A JP2016188343 A JP 2016188343A JP 2016188343 A JP2016188343 A JP 2016188343A JP 2018055882 A JP2018055882 A JP 2018055882A
Authority
JP
Japan
Prior art keywords
organic solvent
imide
fluorosulfonyl
bis
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016188343A
Other languages
Japanese (ja)
Other versions
JP6792394B2 (en
Inventor
弘行 水野
Hiroyuki Mizuno
弘行 水野
裕大 勝山
Yuudai Katsuyama
裕大 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2016188343A priority Critical patent/JP6792394B2/en
Publication of JP2018055882A publication Critical patent/JP2018055882A/en
Application granted granted Critical
Publication of JP6792394B2 publication Critical patent/JP6792394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method which can reduce impurities produced in a process of manufacturing an alkali metal salt of bis(fluorosulfonyl)imide.SOLUTION: A manufacturing method of the present invention is a method for manufacturing an electrolyte material including an alkali metal salt of bis(fluorosulfonyl)imide and an organic solvent (A). The method comprises: a cation exchange step of obtaining an alkali metal salt of bis(fluorosulfonyl)imide by cation exchange in a solution containing an organic solvent (B) different from the organic solvent (A), an ammonium salt of bis(fluorosulfonyl)imide, and an alkali metal compound; a step of depressurizing and/or heating a resultant reaction solution in the presence of the organic solvent (B), thereby removing ammonia from the reaction solution; a step of performing alkali cleaning and/or aqueous cleaning of the reaction solution with the ammonia removed therefrom; and a step of removing the organic solvent (B) and water from the resultant solution by depressurizing and/or heating it in the presence of the organic solvent (A) after the cleaning.SELECTED DRAWING: None

Description

本発明はビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料の製造方法、及び電解液材料に関し、詳細には不純物を低減させたフルオロスルホニルイミドのアルカリ金属塩とリチウムイオン二次電池用有機溶媒とを含む電解液材料の製造方法、及びアンモニウムイオン量を低減された電解液材料に関する。   The present invention relates to a method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent, and an electrolytic solution material, and more specifically, an alkali metal salt of fluorosulfonylimide and lithium ions with reduced impurities The present invention relates to a method for producing an electrolyte material containing an organic solvent for a secondary battery, and an electrolyte material with a reduced amount of ammonium ions.

フルオロスルホニルイミドのアルカリ金属塩は、電解質や燃料電池の電解液への添加物として有用な化合物として注目されており、様々な製造方法が提案されている。   The alkali metal salt of fluorosulfonylimide has attracted attention as a compound useful as an additive to electrolytes and electrolytes of fuel cells, and various production methods have been proposed.

フルオロスルホニルイミドのアルカリ金属塩の製造方法については改良が重ねられ、その収率を改善する技術が提案されている。例えば特許文献1には、フッ素含有スルホニルイミドアルカリ金属塩またはフッ素含有スルホニルイミドアンモニウム塩の製造方法におけるカチオン交換反応効率を向上させる技術が開示されている。   The process for producing an alkali metal salt of fluorosulfonylimide has been repeatedly improved, and a technique for improving the yield has been proposed. For example, Patent Document 1 discloses a technique for improving the cation exchange reaction efficiency in a method for producing a fluorine-containing sulfonylimide alkali metal salt or a fluorine-containing sulfonylimide ammonium salt.

また特許文献2には、フルオロスルホニルイミドのアルカリ金属塩の製造方法における反応溶液から溶媒を容易に除去する技術が開示されている。   Patent Document 2 discloses a technique for easily removing a solvent from a reaction solution in a method for producing an alkali metal salt of fluorosulfonylimide.

国際公開第2012/118063号パンフレットInternational Publication No. 2012/118063 Pamphlet 特開2014−201453号公報JP 2014-201453 A

本発明者らはビス(フルオロスルホニル)イミドのアルカリ金属塩の品質を検討する中で、ビス(フルオロスルホニル)イミドのアルカリ金属塩の製造工程に由来する不純物が使用時に要求される製品の特性、例えばリチウムイオン二次電池の電池特性など劣化させる原因であることがわかった。   In examining the quality of the alkali metal salt of bis (fluorosulfonyl) imide, the inventors of the present invention have characteristics of products that require impurities from the production process of the alkali metal salt of bis (fluorosulfonyl) imide, For example, it has been found that this is a cause of deterioration of battery characteristics of a lithium ion secondary battery.

本発明は上記の様な事情に着目してなされたものであって、その目的は、ビス(フルオロスルホニル)イミドのアルカリ金属塩の製造過程で生成する不純物を低減できる製造方法を提供することにある。   The present invention has been made paying attention to the above-described circumstances, and an object of the present invention is to provide a production method capable of reducing impurities generated in the production process of an alkali metal salt of bis (fluorosulfonyl) imide. is there.

上記課題を解決した本発明は、ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解液材料の製造方法であって、前記有機溶媒(A)とは異なる有機溶媒(B)、ビス(フルオロスルホニル)イミドのアンモニウム塩、及びアルカリ金属化合物とを含む溶液中でカチオン交換することにより、ビス(フルオロスルホニル)イミドのアルカリ金属塩を得るカチオン交換工程、得られた反応溶液を有機溶媒(B)存在下で減圧及び/又は加熱して前記反応溶液からアンモニアを留去する工程、前記アンモニア留去後の反応溶液をアルカリ洗浄及び/又は水洗浄する工程、及び前記洗浄後、前記有機溶媒(A)存在下で減圧及び/又は加熱して前記有機溶媒(B)、及び水を留去する工程を含むことに要旨を有する。   This invention which solved the said subject is a manufacturing method of the electrolyte material containing the alkali metal salt of bis (fluoro sulfonyl) imide, and the organic solvent (A), Comprising: The organic solvent (B) different from the said organic solvent (A) ), A cation exchange step in which an alkali metal salt of bis (fluorosulfonyl) imide is obtained by cation exchange in a solution containing an ammonium salt of bis (fluorosulfonyl) imide, and an alkali metal compound. A step of distilling ammonia from the reaction solution under reduced pressure and / or heating in the presence of an organic solvent (B), a step of washing the reaction solution after distilling off the ammonia with alkali and / or water, and after the washing, The present invention includes a step of distilling off the organic solvent (B) and water by reducing pressure and / or heating in the presence of the organic solvent (A).

本発明の製造方法では、前記カチオン交換工程の前記溶液の温度は60℃以下であること、前記アンモニア留去工程を60℃以下で行うこと、前記有機溶媒(B)は、エステル系溶媒であること、前記有機溶媒(A)は、カーボネート系溶媒であることは、いずれも好ましい実施態様である。   In the production method of the present invention, the temperature of the solution in the cation exchange step is 60 ° C. or lower, the ammonia distillation step is performed at 60 ° C. or lower, and the organic solvent (B) is an ester solvent. It is a preferred embodiment that the organic solvent (A) is a carbonate solvent.

また本発明はビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒を含む電解液材料であって、前記電解液材料に含まれるアンモニウムイオンが500質量ppm以下であることも好ましい実施態様である。   Moreover, the present invention is an electrolyte material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent, and the ammonium ion contained in the electrolyte material is also preferably 500 ppm by mass or less.

本発明の製造方法によれば、ビス(フルオロスルホニル)イミドのアルカリ金属塩の製造過程で生成する不純物、具体的にはアセトアミド、アンモニウム、及び酢酸を低減できる。したがって本願発明の製造方法で得られたビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料を用いると不純物に起因する電池特性の劣化を抑制でき、従来よりも優れた電池特性が得られる。   According to the production method of the present invention, impurities generated in the production process of an alkali metal salt of bis (fluorosulfonyl) imide, specifically, acetamide, ammonium, and acetic acid can be reduced. Therefore, when an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide obtained by the production method of the present invention and an organic solvent is used, deterioration of battery characteristics due to impurities can be suppressed, and the battery is superior to conventional batteries. Characteristics are obtained.

本発明者らがリチウムイオン二次電池の特性向上について検討した結果、ビス(フルオロスルホニル)イミドのアルカリ金属塩の製造過程で生成する不純物、具体的にはアセトアミド、アンモニウム、及び酢酸に起因して初期充放電効率、初期レート特性、及びサイクル容量維持率(以下、これらをまとめて「電池特性」ということがある)が阻害されることがわかった。そしてビス(フルオロスルホニル)イミドのアルカリ金属塩の製造工程の初期段階、具体的にはカチオン交換した後、(A)アンモニアをできるだけ低減させることによって酢酸とアンモニアの脱水縮合物であるアセトアミドの生成を抑制できると共に、(B)アンモニアを低減させた後に洗浄をすることで酢酸やアセトアミドを低減しつつ、LiFSIからNH4FSIへの逆反応(例えばLiFSI+NH3+H2O→NH4FSI+LiOH)を抑制してアンモニウムの生成を低減できるため、不純物含有量が極めて少ない電解質材料が得られることを見出し、本発明に至った。 As a result of the study by the present inventors on the improvement of the characteristics of the lithium ion secondary battery, it was caused by impurities generated in the production process of the alkali metal salt of bis (fluorosulfonyl) imide, specifically, acetamide, ammonium, and acetic acid. It was found that the initial charge / discharge efficiency, the initial rate characteristics, and the cycle capacity retention ratio (hereinafter, these may be collectively referred to as “battery characteristics”) are hindered. And after the initial stage of the production process of the alkali metal salt of bis (fluorosulfonyl) imide, specifically, cation exchange, (A) Acetamide, which is a dehydration condensate of acetic acid and ammonia, is reduced by reducing ammonia as much as possible. (B) While reducing acetic acid and acetamide by washing after reducing ammonia, the reverse reaction from LiFSI to NH 4 FSI (for example, LiFSI + NH 3 + H 2 O → NH 4 FSI + LiOH) is suppressed. As a result, it was found that an electrolyte material having an extremely low impurity content can be obtained because the production of ammonium can be reduced, and the present invention has been achieved.

以下、ビス(フルオロスルホニル)イミドのアルカリ金属塩の合成方法について説明する。   Hereinafter, a method for synthesizing an alkali metal salt of bis (fluorosulfonyl) imide will be described.

本発明の合成方法には以下の工程を含む。
(I)有機溶媒(B)、ビス(フルオロスルホニル)イミドのアンモニウム塩、及びアルカリ金属化合物とを含む溶液中でカチオン交換することにより、ビス(フルオロスルホニル)イミドのアルカリ金属塩を得る工程(以下、「カチオン交換工程」という)、
(II)得られた反応溶液を有機溶媒(B)存在下で減圧及び/又は加熱して前記反応溶液からアンモニアを留去する工程(以下、「アンモニア留去工程」という)、
(III)アンモニア留去後の反応溶液をアルカリ洗浄する工程(以下、「アルカリ洗浄工程」という)及び/又は、水洗浄する工程(以下、「水洗浄工程」)(少なくとも一方を行う場合を「洗浄工程」ということがある)。
The synthesis method of the present invention includes the following steps.
(I) A step of obtaining an alkali metal salt of bis (fluorosulfonyl) imide by cation exchange in a solution containing an organic solvent (B), an ammonium salt of bis (fluorosulfonyl) imide, and an alkali metal compound (hereinafter referred to as “a”). , "Cation exchange process")
(II) A step of distilling off ammonia from the reaction solution by reducing pressure and / or heating the obtained reaction solution in the presence of the organic solvent (B) (hereinafter referred to as “ammonia distilling step”),
(III) A step of alkali-washing the reaction solution after distilling off ammonia (hereinafter referred to as “alkali washing step”) and / or a step of washing with water (hereinafter referred to as “water washing step”) Sometimes referred to as “cleaning step”).

更に本発明では、ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解液材料の製造方法として、(IV)上記工程を経て得られたビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(B)とを含む反応溶液を、有機溶媒(A)の存在下で減圧及び/又は加熱して有機溶媒(B)、及び水を留去する工程(以下、「濃縮工程」という)が含まれる。   Furthermore, in the present invention, as a method for producing an electrolyte material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent (A), (IV) an alkali metal of bis (fluorosulfonyl) imide obtained through the above steps A step of distilling off the organic solvent (B) and water by reducing and / or heating the reaction solution containing the salt and the organic solvent (B) in the presence of the organic solvent (A) (hereinafter, “concentration step”) Is included).

(I)カチオン交換工程
本発明では、ビス(フルオロスルホニル)イミドのアンモニウム塩((FSO22N・NH4)を出発原料として用いる(以下、化合物(1)という場合がある)。化合物(1)は例えばビス(クロロスルホニル)イミドにNH4F、NH4F・HF、NH4F・2HFなどのフッ化物を加えてフッ素化反応させることによって合成できるが、これに限定されず、各種公知の製造方法で得られたものでよい。例えば化合物(1)は特許文献1や特許文献2に記載された製造方法で得られたものでもよいし、あるいは市販品でもよい。
(I) Cation Exchange Step In the present invention, an ammonium salt of bis (fluorosulfonyl) imide ((FSO 2 ) 2 N · NH 4 ) is used as a starting material (hereinafter sometimes referred to as compound (1)). Compound (1) can be synthesized, for example, by adding a fluoride such as NH 4 F, NH 4 F · HF, NH 4 F · 2HF to bis (chlorosulfonyl) imide, but is not limited thereto. Those obtained by various known production methods may be used. For example, the compound (1) may be obtained by the production method described in Patent Document 1 or Patent Document 2, or may be a commercially available product.

化合物(1)を所望のカチオン(Li,Na,K,Rb,Cs)を含むアルカリ金属化合物と反応させることで、カチオン交換することができる。反応させるアルカリ金属化合物としては、LiOH、NaOH、KOH、RbOH、CsOH等の水酸化物;Li2CO3、Na2CO3、K2CO3、Rb2CO3、Cs2CO3等の炭酸塩;LiHCO3、NaHCO3、KHCO3、RbHCO3、CsHCO3等の炭酸水素化物;LiCl、NaCl、KCl、RbCl、CsCl等の塩化物;LiF、NaF、KF、RbF、CsF等のフッ化物;CH3OLi、EtOLi等のアルコキシド化合物;EtLi、BuLi、t−BuLi等のアルキルリチウム化合物;等が挙げられる(Etはエチル基、Buはブチル基を示す)。これらの中でもアルカリ金属としてリチウム、ナトリウム又はカリウムを含有する化合物が好ましく、より具体的にはLiOH、NaOH、KOH、Li2CO3、Na2CO3、K2CO3、LiCl、NaCl、KCl、LiF、NaF、KFが好ましく、より好ましくはLiOH、NaOH、KOH、Li2CO3、Na2CO3、K2CO3であり、さらに好ましくはLiOH、NaOH、KOHであり、これら化合物は水酸化物であることが好ましい。 Cation exchange can be performed by reacting compound (1) with an alkali metal compound containing a desired cation (Li, Na, K, Rb, Cs). Examples of the alkali metal compound to be reacted include hydroxides such as LiOH, NaOH, KOH, RbOH, and CsOH; carbonic acid such as Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 , and Cs 2 CO 3. Salts; carbonates such as LiHCO 3 , NaHCO 3 , KHCO 3 , RbHCO 3 , CsHCO 3 ; chlorides such as LiCl, NaCl, KCl, RbCl, CsCl; fluorides such as LiF, NaF, KF, RbF, CsF; Alkoxide compounds such as CH 3 OLi and EtOLi; alkyllithium compounds such as EtLi, BuLi, and t-BuLi; and the like (Et represents an ethyl group and Bu represents a butyl group). Among these, a compound containing lithium, sodium or potassium as an alkali metal is preferable, and more specifically, LiOH, NaOH, KOH, Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , LiCl, NaCl, KCl, LiF, NaF, and KF are preferable, LiOH, NaOH, KOH, Li 2 CO 3 , Na 2 CO 3 , and K 2 CO 3 are more preferable, and LiOH, NaOH, and KOH are more preferable. These compounds are hydroxylated. It is preferable that it is a thing.

アルカリ金属化合物は、化合物(1)1molに対して、アルカリ金属の量が化学量論量で好ましくは1.05当量以上、より好ましくは1.1当量以上であって、好ましくは3当量以下、より好ましくは1.5当量以下となるように使用量を調整することが望ましい。アルカリ金属化合物の使用量が多すぎると有機溶媒Bの分解が起こりやすく、酢酸、アセトアミドが増加する。一方、少なすぎるとビス(フルオロスルホニル)イミドのアンモニウム塩が残存することがある。   The alkali metal compound is preferably in a stoichiometric amount of 1.05 equivalents or more, more preferably 1.1 equivalents or more, preferably 3 equivalents or less, relative to 1 mol of the compound (1). More preferably, the amount used is adjusted so as to be 1.5 equivalents or less. If the amount of the alkali metal compound used is too large, the organic solvent B tends to be decomposed and acetic acid and acetamide increase. On the other hand, if the amount is too small, an ammonium salt of bis (fluorosulfonyl) imide may remain.

化合物(1)とアルカリ金属化合物は有機溶媒(B)(有機溶媒(A)とは異なる有機溶媒)を含む溶液中でカチオン交換反応させる。カチオン交換工程で使用可能な有機溶媒(B)としては非プロトン性溶媒を用いるのが好ましい。非プロトン性溶媒としては、具体的には、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒が挙げられる。これらの溶媒は単独で用いてもよく、また2種以上を混合して用いてもよい。カチオン交換反応を円滑に進行させる観点からは特に、酢酸エチル、酢酸イソプロピル及び酢酸ブチルが好ましい。   The compound (1) and the alkali metal compound are subjected to a cation exchange reaction in a solution containing an organic solvent (B) (an organic solvent different from the organic solvent (A)). As the organic solvent (B) that can be used in the cation exchange step, an aprotic solvent is preferably used. Specific examples of the aprotic solvent include ester solvents such as methyl acetate, ethyl acetate, isopropyl acetate, and butyl acetate. These solvents may be used alone or in combination of two or more. In particular, ethyl acetate, isopropyl acetate, and butyl acetate are preferable from the viewpoint of allowing the cation exchange reaction to proceed smoothly.

カチオン交換する際の溶液の温度を低くすることで酢酸ブチルなどの有機溶媒(B)の分解による酢酸の生成を抑制できると共に、脱水縮合によるアセトアミドの生成も抑制できる。一方、反応溶液の温度が低すぎると反応溶液の粘度が上昇し、取り扱いが煩雑になることがある。したがって反応溶液の温度は、好ましくは40℃以下、より好ましくは常温(25℃)以下であって、好ましくは−2℃以上、より好ましくは0℃以上である。   By lowering the temperature of the solution at the time of cation exchange, it is possible to suppress the formation of acetic acid due to the decomposition of the organic solvent (B) such as butyl acetate, and it is possible to suppress the formation of acetamide due to dehydration condensation. On the other hand, when the temperature of the reaction solution is too low, the viscosity of the reaction solution increases and handling may be complicated. Therefore, the temperature of the reaction solution is preferably 40 ° C. or lower, more preferably normal temperature (25 ° C.) or lower, preferably −2 ° C. or higher, more preferably 0 ° C. or higher.

(II)アンモニア留去工程
上記カチオン交換反応後の反応溶液には生成したビス(フルオロスルホニル)イミドのアルカリ金属塩と使用した有機溶媒(B)だけでなく、副生したアンモニアが含まれている。本発明ではカチオン交換工程後、洗浄工程前に反応溶液からアンモニアを留去する。
(II) Ammonia distillation step The reaction solution after the cation exchange reaction contains not only the produced alkali metal salt of bis (fluorosulfonyl) imide and the organic solvent (B) used, but also by-produced ammonia. . In the present invention, ammonia is distilled off from the reaction solution after the cation exchange step and before the washing step.

アンモニアの留去方法は特に限定されないが、減圧下で反応溶液からアンモニアの留去に適した温度に制御することが好ましい。反応溶液の温度を高くすると脱水縮合反応によるアセトアミドの生成量も増える傾向にあるため、温度は60℃以下、より好ましくは55℃以下、更に好ましくは45℃以下である。下限は特に限定されず、常温(25℃)でもよい。また減圧下で行うことによって、低い温度でもアンモニアを留去できるため、好ましくは50hPa以下、より好ましくは20hPa以下であって、好ましくは3hPa以上、より好ましくは5hPa以上である。   The method for distilling off ammonia is not particularly limited, but it is preferable to control the temperature to be suitable for distilling off ammonia from the reaction solution under reduced pressure. When the temperature of the reaction solution is increased, the amount of acetamide produced by the dehydration condensation reaction tends to increase. Therefore, the temperature is 60 ° C. or less, more preferably 55 ° C. or less, and further preferably 45 ° C. or less. The lower limit is not particularly limited, and may be room temperature (25 ° C.). Moreover, since ammonia can be distilled off at a low temperature by carrying out under reduced pressure, it is preferably 50 hPa or less, more preferably 20 hPa or less, preferably 3 hPa or more, more preferably 5 hPa or more.

アンモニアを留去することで電解質材料に含まれるアセトアミドやアンモニウムイオンなどの不純物量を低減できる。したがってアンモニア留去工程を複数回行ってアンモニア量を低減させてもよい。留去後の反応溶液に含まれるアンモニア含有量は、総質量に対して好ましくは500質量ppm以下、より好ましくは300質量ppm以下、更に好ましくは200質量ppm以下である。なお、アンモニア含有量は実施例に記載のイオンクロマトグラフで測定した量である。   By distilling off ammonia, the amount of impurities such as acetamide and ammonium ions contained in the electrolyte material can be reduced. Accordingly, the ammonia amount may be reduced by performing the ammonia distillation step a plurality of times. The ammonia content contained in the reaction solution after the distillation is preferably 500 ppm by mass or less, more preferably 300 ppm by mass or less, still more preferably 200 ppm by mass or less based on the total mass. In addition, ammonia content is the quantity measured with the ion chromatograph as described in an Example.

本発明ではアンモニア留去工程後、(III−1)アルカリ洗浄工程、(III−2)水洗浄工程の少なくともいずれかの工程を行う。なお、両方行う場合は、アルカリ洗浄工程、水洗浄工程の順である。   In the present invention, after the ammonia distillation step, at least one of (III-1) alkali washing step and (III-2) water washing step is performed. In addition, when performing both, it is an order of an alkali washing process and a water washing process.

(III−1)アルカリ洗浄工程
アンモニアを留去した後の反応溶液を必要に応じてアルカリ洗浄(以下、「アルカリ洗浄工程」ということがある)してから水洗浄工程を行ってもよい。アルカリ水溶液と接触させることでビス(フルオロスルホニル)イミドのアンモニウム塩中の水溶性不純物やカチオン交換時の水溶性副生成物などの不純物を除去する。アルカリ洗浄工程は反応溶液とアルカリ水溶液とが接触するものであればよく、例えば反応溶液をアルカリ水溶液に添加して接触させる態様、反応溶液とアルカリ水溶液とを、それぞれ反応溶液に同時に反応器に添加して接触させる態様などでもよい。アルカリ水溶液としては、塩基性物質の水溶液を使用すればよく、塩基性物質として好ましくは上記カチオン交換工程で選択したアルカリ金属化合物と同じアルカリ金属化合物を用いることである。
(III-1) Alkali washing step The reaction solution after the ammonia has been distilled off may be subjected to an alkali washing (hereinafter sometimes referred to as an "alkali washing step") as necessary, followed by a water washing step. By contacting with an aqueous alkaline solution, impurities such as water-soluble impurities in the ammonium salt of bis (fluorosulfonyl) imide and water-soluble by-products during cation exchange are removed. The alkali cleaning step is not limited as long as the reaction solution and the alkaline aqueous solution are in contact with each other. For example, an aspect in which the reaction solution is added to the alkaline aqueous solution and brought into contact with each other, and the reaction solution and the alkaline aqueous solution are simultaneously added to the reaction solution. For example, the contact may be made. As the alkaline aqueous solution, an aqueous solution of a basic substance may be used, and preferably the same alkali metal compound as the alkali metal compound selected in the cation exchange step is used as the basic substance.

アルカリ水溶液は、酢酸やアセトアミドの発生を抑制しつつ、不純物を十分に除去するためには、前記アルカリ洗浄工程は、前記ビス(フルオロスルホニル)イミドのアルカリ金属塩1molに対して、アルカリ金属の量が、好ましくは0.05当量以上、より好ましくは0.1当量以上であって、好ましくは1当量以下、より好ましくは0.6当量以下となるように調整したアルカリ金属水溶液を接触させることが望ましい。アルカリ度が強くなると有機溶媒(B)が分解し、アセトアミド、酢酸が増加することがある。アルカリ金属の量が少なすぎるとビス(フルオロスルホニル)イミドのアルカリ金属塩の収率が低下することがある。   In order to sufficiently remove impurities while suppressing the generation of acetic acid and acetamide, the alkaline aqueous solution requires an amount of alkali metal relative to 1 mol of the alkali metal salt of bis (fluorosulfonyl) imide. Is preferably 0.05 equivalents or more, more preferably 0.1 equivalents or more, preferably 1 equivalent or less, more preferably 0.6 equivalents or less. desirable. When the alkalinity increases, the organic solvent (B) may be decomposed to increase acetamide and acetic acid. If the amount of the alkali metal is too small, the yield of the alkali metal salt of bis (fluorosulfonyl) imide may be lowered.

アルカリ水溶液と接触させる際の反応溶液の温度は特に限定されないが、酢酸、アセトアミドの発生を抑制するため、好ましくは25℃以下、より好ましくは5℃以下であって、好ましくは0℃以上である。   The temperature of the reaction solution when contacting with the alkaline aqueous solution is not particularly limited, but is preferably 25 ° C. or less, more preferably 5 ° C. or less, and preferably 0 ° C. or more in order to suppress the generation of acetic acid and acetamide. .

反応溶液とアルカリ水溶液との接触時間は、反応溶液とアルカリ水溶液との接触が充分なものであれば特に限定されないが、例えば、反応溶液の添加終了から好ましくは1分程度、より好ましくは3分程度、攪拌しながら、反応溶液とアルカリ水溶液とを接触させるのが好ましい。接触時間が短すぎると不純物が残留することがある。   The contact time between the reaction solution and the alkaline aqueous solution is not particularly limited as long as the contact between the reaction solution and the alkaline aqueous solution is sufficient, but for example, preferably about 1 minute, more preferably 3 minutes from the end of the addition of the reaction solution. It is preferable to bring the reaction solution and the aqueous alkali solution into contact with each other while stirring. If the contact time is too short, impurities may remain.

(III−2)水洗浄工程
アンモニア留去工程後、あるいは上記アルカリ洗浄工程後、反応溶液中には例えば有機溶媒(B)の分解生成物である酢酸、アンモニア、アセトアミドなどの不純物が含まれているため、水洗して酢酸やアセトアミドの含有量を低減する。本発明では、上記アンモニア留去工程でアンモニアを低減しているため、逆反応が抑制され、該逆反応によるアンモニウムイオンの発生も抑えることができる。また逆反応によって生成するビスフルオロスルホニルイミドのアンモニウム塩も抑制できる。
(III-2) Water washing step After the ammonia distilling step or after the alkali washing step, the reaction solution contains impurities such as acetic acid, ammonia, and acetamide that are decomposition products of the organic solvent (B). Therefore, the content of acetic acid and acetamide is reduced by washing with water. In the present invention, since ammonia is reduced in the ammonia distillation step, the reverse reaction is suppressed, and the generation of ammonium ions due to the reverse reaction can also be suppressed. Moreover, the ammonium salt of bisfluorosulfonylimide produced | generated by a reverse reaction can also be suppressed.

水洗する際の水の量は特に限定されないが、ビス(フルオロスルホニル)イミドのアルカリ金属塩の質量に対して好ましくは1倍以上、より好ましくは1.3倍以上であって好ましくは2倍以下、より好ましくは1.5倍以下である。水の量が少なすぎると洗浄効果が低下し、不純物の除去が不十分になる。一方、多すぎると過剰に洗浄することになりビス(フルオロスルホニル)イミドのアルカリ金属塩の収率が低くなる。   The amount of water when washing with water is not particularly limited, but is preferably at least 1 time, more preferably at least 1.3 times and preferably at most 2 times the mass of the alkali metal salt of bis (fluorosulfonyl) imide. More preferably, it is 1.5 times or less. If the amount of water is too small, the cleaning effect is lowered and the removal of impurities becomes insufficient. On the other hand, if it is too much, it will be washed excessively and the yield of the alkali metal salt of bis (fluorosulfonyl) imide will be low.

水洗時の水の温度は特に限定されないが、好ましくは0℃以上、45℃以下、より好ましくは0℃以上、25℃以下である。温度が低すぎると水の取り扱いがし難くなり、一方、温度が高すぎるとビス(フルオロスルホニル)イミドのアルカリ金属塩が分解するおそれがある。   Although the temperature of the water at the time of water washing is not specifically limited, Preferably it is 0 degreeC or more and 45 degrees C or less, More preferably, it is 0 degreeC or more and 25 degrees C or less. If the temperature is too low, it becomes difficult to handle water, while if the temperature is too high, the alkali metal salt of bis (fluorosulfonyl) imide may be decomposed.

水洗時間は特に限定されないが、好ましくは1分以上、より好ましくは3分以上であって、好ましくは10分以下、より好ましくは5分以下である。   The washing time is not particularly limited, but is preferably 1 minute or more, more preferably 3 minutes or more, preferably 10 minutes or less, more preferably 5 minutes or less.

アセトアミド含有量が好ましくは300質量ppm以下、より好ましくは100質量ppm以下、酢酸含有量は500質量ppm以下が好ましい。   The acetamide content is preferably 300 ppm by mass or less, more preferably 100 ppm by mass or less, and the acetic acid content is preferably 500 ppm by mass or less.

(IV)濃縮工程
濃縮工程は、洗浄後の反応溶液から有機溶媒(B)と水とを分離し、ジ(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解液材料を得る工程である。具体的に濃縮工程では水分を除去して濃縮すると共に、反応溶媒として使用した有機溶媒(B)を、該有機溶媒(B)とは異なる有機溶媒(A)と交換する。有機溶媒(A)としては非水溶媒が好ましく、一般に非水電解質電池用電解液に使用される有機溶媒であればよく、誘電率が大きく、電解質の溶解性が高く、沸点が60℃以上であり、且つ、電気化学的安定範囲が広い有機溶媒がより好ましく、特に好ましくはカーボネート系溶媒である。カーボネート系溶媒としては、炭酸ジメチル、炭酸エチルメチル(エチルメチルカーボネート)、炭酸ジエチル(ジエチルカーボネート)、炭酸ジフェニル、炭酸メチルフェニル等の鎖状炭酸エステル類;炭酸エチレン(エチレンカーボネート)、炭酸プロピレン(プロピレンカーボネート)、2,3−ジメチル炭酸エチレン(炭酸2,3−ブタンジイル)、炭酸1,2−ブチレン及びエリスリタンカーボネート等の飽和環状炭酸エステル類;炭酸ビニレン、メチルビニレンカーボネート(MVC;4−メチル−1,3−ジオキソール−2−オン)、エチルビニレンカーボネート(EVC;4−エチル−1,3−ジオキソール−2−オン)、2−ビニル炭酸エチレン(4−ビニル−1,3−ジオキソラン−2−オン)及びフェニルエチレンカーボネート(4−フェニル−1,3−ジオキソラン−2−オン)等の不飽和結合を有する環状炭酸エステル類;フルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート及びトリフルオロプロピレンカーボネート等のフッ素含有環状炭酸エステル類が挙げられ、これらのうち、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、エチレンカーボネート、プロピレンカーボネートが好ましいものとして挙げられる。これらは一種又は2種以上を使用することができる。
い。
(IV) Concentration step The concentration step separates the organic solvent (B) and water from the washed reaction solution to obtain an electrolytic solution material containing an alkali metal salt of di (fluorosulfonyl) imide and the organic solvent (A). It is a process. Specifically, in the concentration step, water is removed for concentration, and the organic solvent (B) used as the reaction solvent is exchanged with an organic solvent (A) different from the organic solvent (B). As the organic solvent (A), a non-aqueous solvent is preferable, and any organic solvent generally used for an electrolyte solution for a non-aqueous electrolyte battery may be used. The dielectric constant is large, the solubility of the electrolyte is high, and the boiling point is 60 ° C. or higher. An organic solvent having a wide electrochemical stability range is more preferable, and a carbonate solvent is particularly preferable. Examples of carbonate solvents include chain carbonates such as dimethyl carbonate, ethyl methyl carbonate (ethyl methyl carbonate), diethyl carbonate (diethyl carbonate), diphenyl carbonate, and methyl phenyl carbonate; ethylene carbonate (ethylene carbonate), propylene carbonate (propylene Carbonates), saturated cyclic carbonates such as 2,3-dimethylethylene carbonate (2,3-butanediyl carbonate), 1,2-butylene carbonate, and erythritan carbonate; vinylene carbonate, methyl vinylene carbonate (MVC; 4-methyl- 1,3-dioxol-2-one), ethyl vinylene carbonate (EVC; 4-ethyl-1,3-dioxol-2-one), 2-vinylethylene carbonate (4-vinyl-1,3-dioxolane-2- ON) and phenylethylene carbonate Cyclic carbonates having an unsaturated bond such as Bonate (4-phenyl-1,3-dioxolan-2-one); Fluorine-containing cyclic carbonates such as fluoroethylene carbonate, 4,5-difluoroethylene carbonate and trifluoropropylene carbonate Examples thereof include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethylene carbonate, and propylene carbonate among these. These can use 1 type, or 2 or more types.
Yes.

例えば、沸点の異なる複数の有機溶媒(A)を用いる場合、沸点が100℃程度の有機溶媒(A−1)と沸点が200℃を超えるエチルメチルカーボネート、エチレンカーボネート、ポリカーボネートなど有機溶媒(B)と共沸しない有機溶媒(A−2)とを用いることで、効率的に有機溶媒(B)を除去できる。   For example, when using a plurality of organic solvents (A) having different boiling points, the organic solvent (A-1) having a boiling point of about 100 ° C. and the organic solvent (B) such as ethyl methyl carbonate, ethylene carbonate, polycarbonate having a boiling point exceeding 200 ° C. The organic solvent (B) can be efficiently removed by using the organic solvent (A-2) that does not azeotrope with the solvent.

濃縮工程に使用できる反応装置は特に限定されず、例えば、ロータリーエバポレーター、フラスコ、槽型反応器又は減圧可能な槽型反応器等が挙げられる。   The reaction apparatus that can be used in the concentration step is not particularly limited, and examples thereof include a rotary evaporator, a flask, a tank reactor, or a tank reactor that can be depressurized.

有機溶媒(A)の使用量は、反応溶液中のビス(フルオロスルホニル)イミドのアルカリ金属塩の濃度に応じて適宜決定すればよいが、例えば、ビス(フルオロスルホニル)イミドのアルカリ金属塩の質量に対して、好ましくは0.8倍以上、より好ましくは1.0倍以上であって、好ましくは1.5倍以下、より好ましくは1.2倍以下である。有機溶媒(A)が少なすぎるとアルカリ金属塩が析出することがある。一方、多すぎると、電解液への希釈化の組成範囲が狭くなる。   The amount of the organic solvent (A) used may be appropriately determined according to the concentration of the alkali metal salt of bis (fluorosulfonyl) imide in the reaction solution. For example, the mass of the alkali metal salt of bis (fluorosulfonyl) imide On the other hand, it is preferably 0.8 times or more, more preferably 1.0 times or more, preferably 1.5 times or less, more preferably 1.2 times or less. When there is too little organic solvent (A), an alkali metal salt may precipitate. On the other hand, if the amount is too large, the composition range for dilution into the electrolyte solution becomes narrow.

またビス(フルオロスルホニル)イミドのアルカリ金属塩の濃縮効率を一層高めるため、反応溶液を加熱しながら濃縮工程を行ってもよい。加熱温度は使用する有機溶媒(B)に応じて適宜設定すればよいが、有機溶媒(B)の除去効率を向上させるためには、好ましくは45℃以上、より好ましくは50℃以上である。一方、ビス(フルオロスルホニル)イミドのアルカリ金属塩の分解を抑制する観点からは、好ましくは70℃以下、より好ましくは60℃以下である。   In order to further increase the concentration efficiency of the alkali metal salt of bis (fluorosulfonyl) imide, the concentration step may be performed while heating the reaction solution. The heating temperature may be appropriately set according to the organic solvent (B) to be used, but in order to improve the removal efficiency of the organic solvent (B), it is preferably 45 ° C. or higher, more preferably 50 ° C. or higher. On the other hand, from the viewpoint of suppressing the decomposition of the alkali metal salt of bis (fluorosulfonyl) imide, it is preferably 70 ° C or lower, more preferably 60 ° C or lower.

また、濃縮工程は減圧下で実施してもよい。減圧度をコントロールすることによって、低温であっても効率よく有機溶媒(B)を除去でき、また、熱によるビス(フルオロスルホニル)イミドのアルカリ金属塩の分解も防ぐことができる。減圧度は有機溶媒(B)の種類に応じて適宜調整すればよく特に限定はされないが、好ましくは3hPa以上、より好ましくは5hPa以上であって、好ましくは50hPa以下、より好ましくは20hPa以下である。   The concentration step may be performed under reduced pressure. By controlling the degree of vacuum, the organic solvent (B) can be efficiently removed even at a low temperature, and decomposition of the alkali metal salt of bis (fluorosulfonyl) imide by heat can also be prevented. The degree of vacuum may be appropriately adjusted according to the type of the organic solvent (B) and is not particularly limited, but is preferably 3 hPa or more, more preferably 5 hPa or more, preferably 50 hPa or less, more preferably 20 hPa or less. .

濃縮工程の時間は特に限定されないが、好ましくは8分以上、より好ましくは10分以上であって、好ましくは5時間以下、より好ましくは3時間以下である。   Although the time of a concentration process is not specifically limited, Preferably it is 8 minutes or more, More preferably, it is 10 minutes or more, Preferably it is 5 hours or less, More preferably, it is 3 hours or less.

濃縮工程では水分量が好ましくは100質量ppm以下、より好ましくは50質量ppm以下、有機溶媒(B)含有量が好ましくは3000質量ppm以下、より好ましくは1000質量ppm以下となるまで濃縮を行うことが好ましい。濃縮工程は複数回繰り返してもよいし、有機溶媒(A−2)を順次添加して濃縮工程を行ってもよい。   In the concentration step, the water content is preferably 100 ppm by mass or less, more preferably 50 ppm by mass or less, and the organic solvent (B) content is preferably 3000 ppm by mass or less, more preferably 1000 ppm by mass or less. Is preferred. The concentration step may be repeated a plurality of times, or the organic solvent (A-2) may be sequentially added to perform the concentration step.

濃縮工程によって有機溶媒(B)と水分が留去されると共に、ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解質材料が得られる。   The organic solvent (B) and water are distilled off by the concentration step, and an electrolyte material containing an alkali metal salt of bis (fluorosulfonyl) imide and the organic solvent (A) is obtained.

上記得られた電解液材料は実質的にビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含み、残部は不純物である。本発明では不純物としてアセトアミド、アンモニウム、及び酢酸が微量に含まれていてもよい。具体的にはアセトアミドの含有量は好ましくは1500質量ppm以下(質量基準、以下同じ)、より好ましくは1000質量ppm以下、更に好ましくは500質量ppm以下である。アンモニウムの含有量は好ましくは500質量ppm以下、より好ましくは300質量ppm以下、更に好ましくは100質量ppm以下であり、好ましくは1質量ppm以上である。酢酸の含有量は好ましくは800質量ppm以下、より好ましくは750質量ppm以下、更に好ましくは500質量ppm以下である。これら不純物の含有量が低いほどより一層すぐれた電池特性が得られる。   The obtained electrolyte material substantially contains an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent (A), and the balance is impurities. In the present invention, trace amounts of acetamide, ammonium, and acetic acid may be contained as impurities. Specifically, the content of acetamide is preferably 1500 ppm by mass or less (mass basis, the same applies hereinafter), more preferably 1000 ppm by mass or less, and still more preferably 500 ppm by mass or less. The ammonium content is preferably 500 ppm by mass or less, more preferably 300 ppm by mass or less, still more preferably 100 ppm by mass or less, and preferably 1 ppm by mass or more. The acetic acid content is preferably 800 ppm by mass or less, more preferably 750 ppm by mass or less, and still more preferably 500 ppm by mass or less. The lower the content of these impurities, the better the battery characteristics.

本発明の製法により得られるジ(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解液材料は、一次電池、リチウム(イオン)二次電池や燃料電池等の充電/放電機構を有する電池、電解コンデンサ、電気二重層キャパシタ、太陽電池・エレクトロクロミック表示素子等の電気化学デバイスを構成するイオン伝導体の材料として好適に用いられる。   An electrolyte material containing an alkali metal salt of di (fluorosulfonyl) imide obtained by the production method of the present invention and an organic solvent (A) has a charging / discharging mechanism such as a primary battery, a lithium (ion) secondary battery, or a fuel cell. It is suitably used as a material for ion conductors constituting electrochemical devices such as batteries, electrolytic capacitors, electric double layer capacitors, solar cells and electrochromic display elements.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例1
No.1
従来公知の方法で作製されたNH4FSIの粉体を用いてNH4FSI 12.5質量%の酢酸ブチル溶液を作製した。
Example 1
No. 1
To prepare a butyl acetate solution of NH4FSI 12.5 wt% with NH 4 FSI powder made by a conventionally known method.

[カチオン交換工程]
得られたアンモニウムビス(フルオロスルホニル)イミド12.5質量%の酢酸ブチル溶液のアンモニウムビス(フルオロスルホニル)イミドに対して、リチウムの量が1.1当量となるように、18質量%の水酸化リチウム水溶液を加え、室温で15分間攪拌した。その後、反応溶液から水層を除去して、リチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液を得た。
[Cation exchange process]
18% by mass of hydroxide so that the amount of lithium is 1.1 equivalents with respect to ammonium bis (fluorosulfonyl) imide in a butyl acetate solution of 12.5% by mass of ammonium bis (fluorosulfonyl) imide obtained. An aqueous lithium solution was added and stirred at room temperature for 15 minutes. Thereafter, the aqueous layer was removed from the reaction solution to obtain a butyl acetate solution of lithium bis (fluorosulfonyl) imide.

[アンモニア留去工程]
分液して得られたリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液を減圧下(20hPa)、55℃に加温し、15分間攪拌してアンモニアを留去した。
[Ammonia distillation step]
A butyl acetate solution of lithium bis (fluorosulfonyl) imide obtained by liquid separation was heated to 55 ° C. under reduced pressure (20 hPa) and stirred for 15 minutes to distill off ammonia.

[アルカリ洗浄工程]
アンモニアを留去した後、リチウムビス(フルオロスルホニル)イミドに対して、リチウム量が0.2当量となるように、0.45質量%の水酸化リチウム水溶液を加え、室温で、3分間攪拌してアルカリ洗浄を行った。アルカリ洗浄後、水層を除去し、得られた有機層を温度(55℃)及び、圧力(20hPa)の制御下で10分間の減圧蒸留を行った。
[Alkali cleaning process]
After the ammonia was distilled off, a 0.45 mass% lithium hydroxide aqueous solution was added to the lithium bis (fluorosulfonyl) imide so that the amount of lithium was 0.2 equivalent, and the mixture was stirred at room temperature for 3 minutes. Then, alkali washing was performed. After alkali washing, the aqueous layer was removed, and the obtained organic layer was subjected to vacuum distillation for 10 minutes under the control of temperature (55 ° C.) and pressure (20 hPa).

[水洗浄工程]
減圧蒸留して得られた有機層に対して、リチウムビス(フルオロスルホニル)イミドの質量の1.3倍量の純水を加え、室温で3分攪拌した。
[Water washing process]
To the organic layer obtained by distillation under reduced pressure, 1.3 times the mass of lithium bis (fluorosulfonyl) imide was added, and the mixture was stirred at room temperature for 3 minutes.

[濃縮工程]
ロータリーエバポレーター(IWAKI社製「REN−1000」)を使用して、減圧下で、水洗浄後のリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液から反応溶媒である酢酸ブチル溶液、水を留去した。具体的にはリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液に対して、リチウムビス(フルオロスルホニル)イミドの質量の1倍量のエチレンカーボネート(EC)、2倍質量のメチルエチルカーボネート(MEC)を加え、減圧下(20hPa)、55℃で10分加温し、水、酢酸ブチル、エチレンカーボネートを留去させた。その後、水分量が50質量ppm以下となるまで2倍質量のメチルエチルカーボネート(MEC)の添加を4回繰り返し、20hPa、55℃で各10分加温し、水、酢酸ブチル、メチルエチルカーボネートを留去させた。得られたリチウムビス(フルオロスルホニル)イミドのエチレンカーボネート溶液を電解液材料No.1とした。
[Concentration process]
Using a rotary evaporator (“REN-1000” manufactured by IWAKI), the butyl acetate solution as a reaction solvent and water were distilled off from the butyl acetate solution of lithium bis (fluorosulfonyl) imide after water washing under reduced pressure. . Specifically, with respect to a butyl acetate solution of lithium bis (fluorosulfonyl) imide, ethylene carbonate (EC) of twice the mass of lithium bis (fluorosulfonyl) imide, and methyl ethyl carbonate (MEC) of 2 times the mass. In addition, the mixture was heated at 55 ° C. for 10 minutes under reduced pressure (20 hPa) to distill off water, butyl acetate, and ethylene carbonate. Thereafter, the addition of twice the mass of methyl ethyl carbonate (MEC) was repeated 4 times until the water content was 50 ppm by mass or less, and the mixture was heated at 20 hPa and 55 ° C. for 10 minutes each, and water, butyl acetate, and methyl ethyl carbonate were Distilled off. The obtained lithium carbonate solution of lithium bis (fluorosulfonyl) imide was used as electrolyte material No. It was set to 1.

No.2
アンモニア留去工程において温度を55℃から25℃に変更したこと以外は、実施例1と同様にして電解液材料No.2を得た。
No. 2
Except that the temperature was changed from 55 ° C. to 25 ° C. in the ammonia distillation step, the electrolytic solution material No. 2 was obtained.

No.3
カチオン交換工程において温度を室温から0℃に変更すると共に、0℃の18質量%の水酸化リチウム水溶液を使用したこと、0℃に冷却した反応溶液中に0℃に冷却したアルカリ洗浄液を投入する事でアルカリ洗浄を行ったこと以外は実施例1と同様にして電解液材料No.3を得た。
No. 3
In the cation exchange step, the temperature was changed from room temperature to 0 ° C., and an 18 mass% lithium hydroxide aqueous solution at 0 ° C. was used, and an alkaline washing liquid cooled to 0 ° C. was put into the reaction solution cooled to 0 ° C. In the same manner as in Example 1 except that the alkaline cleaning was performed, the electrolytic solution material No. 3 was obtained.

No.4
カチオン交換工程においてリチウム量を1.0当量とすると共に、13質量%の水酸化リチウム水溶液を使用した以外は、実施例1と同様にして、リチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液を得た。得られたリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液は、アンモニア留去工程を行わずに、アルカリ洗浄を行った。その際、リチウム量を0.6当量とすると共に、13質量%の水酸化リチウム水溶液を使用した以外は、実施例1と同様にしてアルカリ洗浄工程を行った。アルカリ洗浄後、水洗工程を行わずに、実施例1と同一条件で濃縮工程を行って電解液材料No.4を得た。
No. 4
A butyl acetate solution of lithium bis (fluorosulfonyl) imide was obtained in the same manner as in Example 1 except that the amount of lithium was 1.0 equivalent in the cation exchange step and a 13 mass% lithium hydroxide aqueous solution was used. It was. The obtained butyl acetate solution of lithium bis (fluorosulfonyl) imide was subjected to alkali cleaning without performing the ammonia distillation step. At that time, the alkali cleaning step was performed in the same manner as in Example 1 except that the amount of lithium was 0.6 equivalent and a 13 mass% lithium hydroxide aqueous solution was used. After the alkali cleaning, without performing the water washing step, the concentration step was performed under the same conditions as in Example 1, and the electrolyte material No. 4 was obtained.

No.5
カチオン交換工程においてリチウム量を1.0当量とすると共に、13質量%の水酸化リチウム水溶液を使用した以外は、実施例1と同様にして、リチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液を得た。得られたリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液は、アンモニア留去工程を行わずに、アルカリ洗浄を行った。その際、リチウム量を0.6当量とすると共に、13質量%の水酸化リチウム水溶液を使用した以外は、実施例1と同様にしてアルカリ洗浄工程を行った。アルカリ洗浄後、実施例1と同一条件で水洗工程、濃縮工程を行って電解液材料No.5を得た。
No. 5
A butyl acetate solution of lithium bis (fluorosulfonyl) imide was obtained in the same manner as in Example 1 except that the amount of lithium was 1.0 equivalent in the cation exchange step and a 13 mass% lithium hydroxide aqueous solution was used. It was. The obtained butyl acetate solution of lithium bis (fluorosulfonyl) imide was subjected to alkali cleaning without performing the ammonia distillation step. At that time, the alkali cleaning step was performed in the same manner as in Example 1 except that the amount of lithium was 0.6 equivalent and a 13 mass% lithium hydroxide aqueous solution was used. After the alkali cleaning, the water washing step and the concentration step were performed under the same conditions as in Example 1 to obtain the electrolyte material No. 5 was obtained.

[GC−MASSによる分析]
ガスクロマトグラフ質量分析計を使用して、電解液材料No.1〜5に含まれるアセトアミド、及び酢酸を測定した。分析結果を表1に示す。
電解液材料を超脱水アセトンで40倍に希釈して測定溶液とした。
装置はサーモクエスト社製PolarisQを用い、イオン化法E/I法で測定した。
ガスクロ条件
恒温層:40℃5分−250℃10分 昇温速度10℃/分
流量:He 1.0mL/分
注入口:260℃、スプリット注入法 1/10
カラム:CP−VOLAMINE(0.25mm内径×30m)
[Analysis by GC-MASS]
Using a gas chromatograph mass spectrometer, the electrolyte material No. Acetamide and acetic acid contained in 1 to 5 were measured. The analysis results are shown in Table 1.
The electrolyte material was diluted 40 times with ultra-dehydrated acetone to obtain a measurement solution.
The apparatus used was PolarisQ manufactured by ThermoQuest Co., Ltd., and was measured by the ionization method E / I method.
Gas-cooled condition constant temperature layer: 40 ° C. 5 minutes-250 ° C. 10 minutes Temperature rising rate 10 ° C./minute Flow rate: He 1.0 mL / minute Inlet port: 260 ° C., split injection method 1/10
Column: CP-VOLAMINE (0.25mm inner diameter x 30m)

[イオンクロマトグラフによる分析]
イオンクロマトグラフィーを使用して、電解液電解液材料No.1〜5に含まれるアンモニウムイオンの量を測定した。
電解液材料を超純水(18.2Ω・cm超)で1000倍に希釈して測定溶液とした。
装置は日本ダイオネクス株式会社製ICS−2000を用いて測定溶液中のNH4+を測定した。
分離モード:イオン交換
溶離液:15-30mM KOH水溶液
検出器:電気伝導度検出器
カラム:Ion PAC OG16−CS16
[Analysis by ion chromatography]
Using ion chromatography, electrolytic solution material No. The amount of ammonium ions contained in 1 to 5 was measured.
The electrolyte solution material was diluted 1000 times with ultrapure water (over 18.2 Ω · cm) to obtain a measurement solution.
The apparatus measured NH4 + in a measurement solution using ICS-2000 by Nippon Daionex Corporation.
Separation mode: Ion exchange eluent: 15-30 mM KOH aqueous solution Detector: Conductivity detector Column: Ion PAC OG16-CS16

Figure 2018055882
Figure 2018055882

表1から以下のことがわかる。カチオン交換後、アルカリ洗浄前にアンモニアの留去を行ったNo.1−1〜1−3では、アンモニアの留去を行わなかったNo.1−4、1−5と比べてアセトアミド、アンモニウム、及び酢酸含有量を低減することができた。No.1−1〜1−3ではアルカリ洗浄前にアンモニアを留去しているため、アセトアミドの発生が抑制されると共に、水洗浄時の逆反応が抑制されてアンモニウムの生成量が低減した。   Table 1 shows the following. After cation exchange, ammonia was distilled off before washing with alkali. In 1-1 to 1-3, no ammonia was distilled off. Compared with 1-4 and 1-5, acetamide, ammonium, and acetic acid content could be reduced. No. In 1-1 to 1-3, since ammonia was distilled off before alkali washing, the generation of acetamide was suppressed, and the reverse reaction during water washing was suppressed to reduce the amount of ammonium produced.

またNo.1−1〜1−3を比べると、アンモニア留去工程を加熱せずに常温で行ったNo.1−2と、カチオン交換工程を常温よりも低い温度で行ったNo.1−3は、カチオン交換工程を常温で行うと共にアンモニア留去工程を加熱して常温よりも高温で行ったNo.1−1と比べてアセトアミド、及び酢酸の発生を抑えることができた。このことから少なくともカチオン交換工程とアンモニア留去工程のいずれか一方の温度を低く制御することで、アセトアミド、及び酢酸量をより一層低減することができることがわかる。   No. When comparing 1-1 to 1-3, the ammonia distillation step was carried out at room temperature without heating. 1-2 and No. 1 in which the cation exchange step was performed at a temperature lower than room temperature. No. 1-3 is a No. 1-3 sample that was subjected to the cation exchange step at room temperature and the ammonia distillation step was heated to a temperature higher than room temperature. The generation of acetamide and acetic acid could be suppressed compared to 1-1. This shows that the amount of acetamide and acetic acid can be further reduced by controlling at least the temperature of at least one of the cation exchange step and the ammonia distillation step.

従来の製造方法で得られたNo.1−4(水洗浄工程なし)と、No.1−5(水洗浄工程有り)とを対比すると、水洗浄工程を行ったNo.1−5ではアセトアミド、酢酸含有量が減少したが、アンモニウム含有量が増加した。これは水洗浄時にLiFSIからNH4FSIへの逆反応がおこってアンモニウムが生成したためである。 No. obtained by the conventional manufacturing method. 1-4 (no water washing step), No. No. 1-5 (with water washing step) was compared with No. 1 in which the water washing step was performed. In 1-5, the acetamide and acetic acid contents decreased, but the ammonium content increased. This is because ammonium was generated by reverse reaction from LiFSI to NH 4 FSI during water washing.

一方、No.1−4では水洗浄工程を行わなかったため、逆反応に起因するアンモニウムの生成がないため、アンモニウム含有量は少ないが、アセトアミドや酢酸含有量が多かった。   On the other hand, no. In 1-4, since the water washing process was not performed, there was no production of ammonium due to the reverse reaction, so the ammonium content was small, but the acetamide and acetic acid contents were large.

以上のように、従来の製法では水洗浄工程でアンモニア量を増加させることなく、アセトアミド、酢酸含有量を低減させることは難しかったが、アンモニア留去工程を行うことで、アセトアミド、酢酸、及びアンモニア含有量を低減できる。   As described above, it was difficult to reduce the content of acetamide and acetic acid without increasing the ammonia amount in the water washing step in the conventional manufacturing method, but by performing the ammonia distillation step, acetamide, acetic acid and ammonia The content can be reduced.

実施例2
(非水電解液の調製)
電解液材料No.1にEC、EMCを後添加して1.2M/L LiFSI EC/EMC=3/7組成の非水電解液Iを調整した。
Example 2
(Preparation of non-aqueous electrolyte)
Electrolyte material No. EC and EMC were added to 1 to prepare a non-aqueous electrolyte I having a composition of 1.2 M / L LiFSI EC / EMC = 3/7.

またエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、3:7(体積比)で混合した非水溶媒に六フッ化リン酸リチウム(LiPF6、キシダ化学株式会社製、電解質塩)を溶解させて、LiPF6濃度1.2mol/Lの非水電解液IIを調製した。 Moreover, lithium hexafluorophosphate (LiPF 6 , manufactured by Kishida Chemical Co., Ltd., electrolyte salt) is added to a non-aqueous solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 3: 7. By dissolving, a non-aqueous electrolyte solution II having a LiPF 6 concentration of 1.2 mol / L was prepared.

上記非水電解液Iと上記非水電解液IIとを、1:1(体積比)で混合して非水電解液No.1を調製した。   The nonaqueous electrolytic solution I and the nonaqueous electrolytic solution II are mixed at a 1: 1 (volume ratio) to prepare a nonaqueous electrolytic solution No. 1 was prepared.

電解液材料No.1に代えて電解液材料No.2〜5を用いて非水電解液Iを調製した以外は上記と同様にして非水電解液No.2〜5を調製した。なお、非水電解液No.1〜5の組成は、LiPF6(濃度0.6mol/L)、LiFSI(濃度0.6mol/L)、及びEC/MEC(体積比3/7)である。 Electrolyte material No. In place of electrolyte material No. 1 Non-aqueous electrolyte No. 2 was prepared in the same manner as described above except that non-aqueous electrolyte I was prepared using 2-5. 2-5 were prepared. In addition, non-aqueous electrolyte No. The compositions of 1 to 5 are LiPF 6 (concentration 0.6 mol / L), LiFSI (concentration 0.6 mol / L), and EC / MEC (volume ratio 3/7).

電池評価
ラミネート型リチウムイオン二次電池の作製
正極活物質(LiCoO2)、導電助剤1(アセチレンブラック、電気化学工業製)、導電助剤2(グラファイト)及び結着剤(PVdF、株式会社クレハ・バッテリー・マテリアルズ・ジャパン製「クレハL#1120」)を93:2:2:3の質量比で混合しN−メチルピロリドンに分散させた正極合剤スラリーをアルミニウム箔(正極集電体)上に両面塗工し、乾燥、圧縮して、正極シートを作製した。
Battery Evaluation Production of Laminate Type Lithium Ion Secondary Battery Positive Electrode Active Material (LiCoO 2 ), Conductive Auxiliary 1 (Acetylene Black, manufactured by Denki Kagaku Kogyo), Conductive Auxiliary 2 (Graphite), and Binder (PVdF, Kureha Corporation・ A positive electrode mixture slurry prepared by mixing “Kureha L # 1120” manufactured by Battery Materials Japan in a mass ratio of 93: 2: 2: 3 and dispersed in N-methylpyrrolidone is an aluminum foil (positive electrode current collector). Both sides were coated on top, dried and compressed to produce a positive electrode sheet.

負極活物質として人造黒鉛、導電助剤(VGCF、昭和電工社製)、及び結着剤(スチレンブタジエンゴム、カルボキシメチルセルロース)を100:0.5:2.6(質量比)の割合で混合し、これをN−メチルピロリドンと混合してスラリー状の溶液を作製した。この負極合剤スラリーを銅箔(負極集電体)上に片面塗工し、乾燥、圧縮して負極シートを作製した。   Artificial graphite, conductive additive (VGCF, manufactured by Showa Denko KK), and binder (styrene butadiene rubber, carboxymethyl cellulose) are mixed as a negative electrode active material in a ratio of 100: 0.5: 2.6 (mass ratio). This was mixed with N-methylpyrrolidone to prepare a slurry solution. This negative electrode mixture slurry was coated on one side on a copper foil (negative electrode current collector), dried and compressed to prepare a negative electrode sheet.

上記正極シート(150μm)の両面に対向する様に負極シート(85μm)を積層し、その間にポリエチレン製のセパレーター(径16μm)各1枚を挟んだ。2枚のアルミニウムラミネートで負極シート、セパレーター、正極シート、セパレーター、負極シートの順に積層された積層体を挟み込みアルミラミネートフィルム内を0.7mLの非水電解液1で満たし、真空状態で密閉し(容量64mAh)、リチウムイオン二次電池No.1を作製した。非水電解液No.2〜5に変更したこと以外は上記と同様にして、リチウムイオン二次電池No.2〜5を作製した。   A negative electrode sheet (85 μm) was laminated so as to oppose both surfaces of the positive electrode sheet (150 μm), and a polyethylene separator (diameter 16 μm) was sandwiched between each sheet. The laminated body of the negative electrode sheet, the separator, the positive electrode sheet, the separator, and the negative electrode sheet is sandwiched between two aluminum laminates, and the aluminum laminate film is filled with 0.7 mL of the non-aqueous electrolyte 1 and sealed in a vacuum state ( Capacity of 64 mAh), lithium ion secondary battery No. 1 was produced. Non-aqueous electrolyte No. The lithium ion secondary battery No. 2 was changed in the same manner as above except that it was changed to 2-5. 2-5 were produced.

リチウムイオン二次電池No.1〜5を用いて下記(1)〜(3)の電池特性を評価した。   Lithium ion secondary battery No. The battery characteristics of the following (1) to (3) were evaluated using 1 to 5.

(1)初回充放電効率
リチウムイオン二次電池について、温度25℃の環境下、充放電試験装置(株式会社アスカ電子製ACD−01、以下同じ。)を使用し、所定の充電条件(0.5C(32mA)、4.35V、定電流定電圧モード)で5時間充電を行った。その後、所定の放電条件(0.2C(12.8mA)、放電終止電圧2.75V、定電流放電)で放電を行った。正極活物質1g当たりの初回の充電容量、及び正極活物質1g当たりの初回の放電容量を記録し、得られた値から下記式より、初期充放電効率を算出した。結果を表2に示す。
初期充放電効率(%)=(初回放電容量/初回充電容量)×100
(1) First-time charge / discharge efficiency For a lithium ion secondary battery, a charge / discharge test apparatus (ACD-01 manufactured by Asuka Electronics Co., Ltd., the same shall apply hereinafter) is used in an environment at a temperature of 25 ° C., and predetermined charge conditions (0. 5C (32mA), 4.35V, constant current constant voltage mode) was charged for 5 hours. Thereafter, discharge was performed under predetermined discharge conditions (0.2 C (12.8 mA), discharge end voltage 2.75 V, constant current discharge). The initial charge capacity per gram of the positive electrode active material and the initial discharge capacity per gram of the positive electrode active material were recorded, and the initial charge / discharge efficiency was calculated from the following formula from the obtained values. The results are shown in Table 2.
Initial charge / discharge efficiency (%) = (initial discharge capacity / initial charge capacity) × 100

(2)初期レート特性
充放電試験装置(アスカ電子株式会社製「ACD−01」)を使用して、温度25℃の環境下、リチウムイオン二次電池を、1C(64mA)の電流値、4.35V定電圧で、0.05C(1.28mA)まで電流が垂下するまで充電した後、0.2C(12.8mA)で2.75Vまで定電流放電を行った。この時の正極活物質1g当たりの放電容量を0.2C容量とした。次いで、再び上記条件で充電を行った後、2.0Cで2.75Vまで定電流放電を行った。このときの正極活物質1g当たりの放電容量を2.0C容量とした。得られた放電容量の値から下記式より、初期レートを算出した。結果を表2に示す。
初期レート特性(%)=(2.0C容量/0.2C容量)×100
(2) Initial rate characteristics Using a charge / discharge test apparatus ("ACD-01" manufactured by Asuka Electronics Co., Ltd.), a lithium ion secondary battery was measured at a current value of 1 C (64 mA) under an environment of a temperature of 25 ° C. The battery was charged at 0.05 V (1.28 mA) at a constant voltage of .35 V until the current dropped, and then discharged at a constant current of 0.2 C (12.8 mA) to 2.75 V. The discharge capacity per gram of the positive electrode active material at this time was 0.2 C capacity. Next, after charging again under the above conditions, constant current discharging was performed at 2.0 C up to 2.75 V. The discharge capacity per 1 g of the positive electrode active material at this time was 2.0 C capacity. The initial rate was calculated from the obtained discharge capacity value by the following formula. The results are shown in Table 2.
Initial rate characteristic (%) = (2.0 C capacity / 0.2 C capacity) × 100

(3)容量維持率
充放電試験装置(ACD−01、アスカ電子株式会社製)を使用して、温度45℃にて、充電速度1Cでの4.35V定電流定電圧充電を電流量が0.02Cになるまで行い、放電速度1Cで電圧が2.75Vになるまで放電を行い、各充放電時にはそれぞれ10分の充放電休止時間を設けてサイクル特性試験を行い、下記式より、容量維持率を算出した。結果を表2に示す。
容量維持率(%)=(50サイクル時の放電容量/1サイクル時の放電容量)×100
(3) Capacity maintenance rate Using a charge / discharge test apparatus (ACD-01, manufactured by Asuka Electronics Co., Ltd.), the current amount is 4.35V constant current constant voltage charging at a charging rate of 1C at a temperature of 45 ° C. The battery is discharged until the voltage reaches 2.75 V at a discharge rate of 1 C, and a cycle characteristic test is performed with a charge / discharge pause time of 10 minutes for each charge / discharge. The rate was calculated. The results are shown in Table 2.
Capacity retention rate (%) = (discharge capacity at 50 cycles / discharge capacity at one cycle) × 100

Figure 2018055882
Figure 2018055882

本発明の要件を満足する製造方法で得られた電解液材料No.1〜3から作製したリチウムイオン二次電池No.1〜3は、従来の製造方法で得られた電解液材料No.4、5から作製したリチウムイオン二次電池No.4、5と比べて、初期充放電効率、初期レート特性、及び容量維持率が向上した。   Electrolyte material No. obtained by the manufacturing method which satisfies the requirements of the present invention. 1 to 3 manufactured from lithium ion secondary battery No. 1-3 are electrolyte material No. obtained by the conventional manufacturing method. Nos. 4 and 5 produced from lithium ion secondary battery No. 4 Compared with 4, 5, the initial charge / discharge efficiency, the initial rate characteristics, and the capacity retention ratio were improved.

このことから、アセトアミド、アンモニウム、酢酸の含有量が低減することで、電池特性が向上することがわかる。   From this, it can be seen that the battery characteristics are improved by reducing the contents of acetamide, ammonium and acetic acid.

Claims (6)

ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解液材料の製造方法であって、
前記有機溶媒(A)とは異なる有機溶媒(B)、ビス(フルオロスルホニル)イミドのアンモニウム塩、及びアルカリ金属化合物とを含む溶液中でカチオン交換することにより、ビス(フルオロスルホニル)イミドのアルカリ金属塩を得るカチオン交換工程、
得られた反応溶液を有機溶媒(B)存在下で減圧及び/又は加熱して前記反応溶液からアンモニアを留去する工程、
前記アンモニア留去後の反応溶液をアルカリ洗浄及び/又は水洗浄する工程、及び
前記洗浄後、前記有機溶媒(A)存在下で減圧及び/又は加熱して前記有機溶媒(B)、及び水を留去する工程を含むものであるビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒(A)を含む電解液材料の製造方法。
A method for producing an electrolyte material comprising an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent (A),
Alkali metal of bis (fluorosulfonyl) imide by cation exchange in a solution containing an organic solvent (B) different from the organic solvent (A), an ammonium salt of bis (fluorosulfonyl) imide, and an alkali metal compound A cation exchange step to obtain a salt,
A step of distilling off ammonia from the reaction solution by reducing the pressure and / or heating the obtained reaction solution in the presence of the organic solvent (B);
A step of washing the reaction solution after evaporation of ammonia with an alkali and / or water, and after the washing, the organic solvent (B) and water are reduced by heating under reduced pressure and / or in the presence of the organic solvent (A). A method for producing an electrolyte material comprising an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent (A), which comprises a step of distilling off.
前記カチオン交換工程の前記溶液の温度は60℃以下である請求項1に記載の電解液材料の製造方法。   The method for producing an electrolyte material according to claim 1, wherein the temperature of the solution in the cation exchange step is 60 ° C. or less. 前記アンモニア留去工程を60℃以下で行う請求項1または2に記載の電解液材料の製造方法。   The manufacturing method of the electrolyte material of Claim 1 or 2 which performs the said ammonia distillation process at 60 degrees C or less. 前記有機溶媒(B)は、エステル系溶媒である請求項1〜3のいずれかに記載の電解液材料の製造方法。   The method for producing an electrolytic solution material according to claim 1, wherein the organic solvent (B) is an ester solvent. 前記有機溶媒(A)は、カーボネート系溶媒である請求項1〜4のいずれかに記載の電解液材料の製造方法。   The said organic solvent (A) is a carbonate type solvent, The manufacturing method of the electrolyte material in any one of Claims 1-4. ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒を含む電解液材料であって、前記電解液材料に含まれるアンモニウムイオンが500質量ppm以下である電解液材料。
An electrolyte material comprising an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent, wherein the electrolyte material contains 500 ppm by mass or less of ammonium ions.
JP2016188343A 2016-09-27 2016-09-27 A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent. Active JP6792394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016188343A JP6792394B2 (en) 2016-09-27 2016-09-27 A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016188343A JP6792394B2 (en) 2016-09-27 2016-09-27 A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent.

Publications (2)

Publication Number Publication Date
JP2018055882A true JP2018055882A (en) 2018-04-05
JP6792394B2 JP6792394B2 (en) 2020-11-25

Family

ID=61836945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016188343A Active JP6792394B2 (en) 2016-09-27 2016-09-27 A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent.

Country Status (1)

Country Link
JP (1) JP6792394B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500132A (en) * 2016-12-08 2020-01-09 アルケマ フランス Method for drying and purifying LiFSI
WO2020260047A1 (en) * 2019-06-26 2020-12-30 Solvay Sa Method for producing alkali salts of bis(fluorosulfonyl)imide
WO2023276561A1 (en) * 2021-06-30 2023-01-05 株式会社日本触媒 Method for producing nonaqueous electrolyte solution
WO2023276812A1 (en) * 2021-06-30 2023-01-05 株式会社日本触媒 Composition production method and non-aqueous electrolyte solution
WO2023174852A1 (en) * 2022-03-18 2023-09-21 Specialty Operations France Process for manufacturing bis(fluorosulfonyl)imide salts

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149095A1 (en) * 2010-05-28 2011-12-01 株式会社日本触媒 Alkali metal salt of fluorosulfonyl imide, and production method therefor
WO2012108284A1 (en) * 2011-02-10 2012-08-16 日本曹達株式会社 Process for production of fluorosulfonylimide ammonium salt
WO2012118063A1 (en) * 2011-03-03 2012-09-07 日本曹達株式会社 Manufacturing method for fluorine-containing sulfonyl imide salt
JP2013084562A (en) * 2011-09-30 2013-05-09 Nippon Shokubai Co Ltd Electrolyte and manufacturing method thereof, and electric storage device using the same
JP2014201453A (en) * 2013-04-01 2014-10-27 株式会社日本触媒 Method for producing alkali metal salt of fluorosulfonyl imide
WO2015072353A1 (en) * 2013-11-18 2015-05-21 日本曹達株式会社 Granules or powder of disulfonylamide salt, and method for producing same
WO2016052752A1 (en) * 2014-10-03 2016-04-07 株式会社日本触媒 Method for manufacturing electrolyte material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149095A1 (en) * 2010-05-28 2011-12-01 株式会社日本触媒 Alkali metal salt of fluorosulfonyl imide, and production method therefor
WO2012108284A1 (en) * 2011-02-10 2012-08-16 日本曹達株式会社 Process for production of fluorosulfonylimide ammonium salt
WO2012118063A1 (en) * 2011-03-03 2012-09-07 日本曹達株式会社 Manufacturing method for fluorine-containing sulfonyl imide salt
JP2013084562A (en) * 2011-09-30 2013-05-09 Nippon Shokubai Co Ltd Electrolyte and manufacturing method thereof, and electric storage device using the same
JP2014201453A (en) * 2013-04-01 2014-10-27 株式会社日本触媒 Method for producing alkali metal salt of fluorosulfonyl imide
WO2015072353A1 (en) * 2013-11-18 2015-05-21 日本曹達株式会社 Granules or powder of disulfonylamide salt, and method for producing same
WO2016052752A1 (en) * 2014-10-03 2016-04-07 株式会社日本触媒 Method for manufacturing electrolyte material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500132A (en) * 2016-12-08 2020-01-09 アルケマ フランス Method for drying and purifying LiFSI
US11084723B2 (en) 2016-12-08 2021-08-10 Arkema France Method for drying and purifying LiFSI
WO2020260047A1 (en) * 2019-06-26 2020-12-30 Solvay Sa Method for producing alkali salts of bis(fluorosulfonyl)imide
CN114040888A (en) * 2019-06-26 2022-02-11 索尔维公司 Method for producing alkali metal salt of bis (fluorosulfonyl) imide
WO2023276561A1 (en) * 2021-06-30 2023-01-05 株式会社日本触媒 Method for producing nonaqueous electrolyte solution
WO2023276812A1 (en) * 2021-06-30 2023-01-05 株式会社日本触媒 Composition production method and non-aqueous electrolyte solution
WO2023174852A1 (en) * 2022-03-18 2023-09-21 Specialty Operations France Process for manufacturing bis(fluorosulfonyl)imide salts

Also Published As

Publication number Publication date
JP6792394B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6916666B2 (en) Method for producing bis (fluorosulfonyl) imide alkali metal salt and bis (fluorosulfonyl) imide alkali metal salt composition
JP6792394B2 (en) A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent.
JP5120513B2 (en) Lithium ion secondary battery and non-aqueous electrolyte for lithium ion secondary battery
JP4449907B2 (en) Secondary battery electrolyte and secondary battery using the same
JP5169400B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP6595104B2 (en) Method for producing non-aqueous electrolyte
JP5679719B2 (en) High purity fluorine-containing phosphate for non-aqueous electrolyte
WO2018016195A1 (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
KR20190027957A (en) Nonaqueous electrolyte compositions comprising sultone and fluorinated solvent
KR102165700B1 (en) Additives for galvanic cells
JP6517069B2 (en) Non-aqueous electrolyte secondary battery
JP2006244776A (en) Electrolyte for secondary battery, and the secondary battery using the same
JP2010157437A (en) Nonaqueous electrolyte solution
CN106946925A (en) Fluoroalkyl trifluoro lithium borate salt and its preparation method and application
JP4909649B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
CN106058319A (en) Electrolyte with polyanion functional group and preparation method and application thereof
WO2016024496A1 (en) Non-aqueous electrolyte containing monofluorophosphate ester and non-aqueous electrolyte battery using same
JP2011222431A (en) Electrolyte for secondary battery
CN106575792A (en) Fluorinated carbonates comprising two oxygen bearing functional groups
JP6806514B2 (en) A method for producing an electrolytic solution material containing an alkali metal salt of bis (fluorosulfonyl) imide and an organic solvent.
JP2014072102A (en) Nonaqueous electrolyte, electrochemical device, lithium ion secondary battery, and module
TWI771515B (en) Additives for non-aqueous electrolytes, non-aqueous electrolytes, and electrical storage devices
JP6143410B2 (en) Electrochemical device and non-aqueous electrolyte for electrochemical device
JP6792798B2 (en) Manufacturing method of lithium ion secondary battery
JP2012216387A (en) Electrochemical device and nonaqueous electrolyte for electrochemical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190606

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190708

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201106

R150 Certificate of patent or registration of utility model

Ref document number: 6792394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150