JP2013072595A - Refrigerator and freezer - Google Patents

Refrigerator and freezer Download PDF

Info

Publication number
JP2013072595A
JP2013072595A JP2011211947A JP2011211947A JP2013072595A JP 2013072595 A JP2013072595 A JP 2013072595A JP 2011211947 A JP2011211947 A JP 2011211947A JP 2011211947 A JP2011211947 A JP 2011211947A JP 2013072595 A JP2013072595 A JP 2013072595A
Authority
JP
Japan
Prior art keywords
humidity
temperature
refrigerator
outside air
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011211947A
Other languages
Japanese (ja)
Other versions
JP5391250B2 (en
Inventor
Masanobu Ishizuka
正展 石塚
Kazufumi Sasamura
和文 笹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011211947A priority Critical patent/JP5391250B2/en
Priority to CN201210305767.6A priority patent/CN103033013B/en
Publication of JP2013072595A publication Critical patent/JP2013072595A/en
Application granted granted Critical
Publication of JP5391250B2 publication Critical patent/JP5391250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator and a freezer, wherein stable quality is ensured by accurately detecting the humidity of outside air and power saving is achieved by suppressing dew condensation.SOLUTION: A refrigerator 1 includes storage compartments 2, 3, 4, 5, and 6 for storing food and a freezing cycle 1S in which a coolant circulates for cooling the storage compartments 2, 3, 4, 5, and 6. In addition, the refrigerator 1 includes a humidity measurement means 22 for measuring humidity outside the warehouse of the refrigerator 1, a temperature measurement means 21 for measuring a temperature outside the warehouse of the refrigerator 1, dew condensation suppression means 33 and 24 for suppressing dew condensation on the refrigerator 1, and a control means 40 for controlling the dew condensation suppression means 33 and 24 in accordance with a humidity measured by the humidity measurement means 22 during the stop of a compressor 16 of the freezing cycle 1S and a temperature measured by the temperature measurement means 21.

Description

本発明は、露付きを抑制した冷蔵庫および冷凍庫に関する。   The present invention relates to a refrigerator and a freezer in which dew is suppressed.

本発明の背景技術として、特許第3942688号公報(特許文献1)がある。
特許文献1の構成は、本体上部の扉ヒンジカバー部、または基板収納部の近傍に配置された外気温度センサおよび外気湿度センサと、扉と扉の仕切り部分に設けた少なくとも1つ以上の結露防止ヒータと、通常は外気温度と外気湿度に応じて結露防止ヒータへの通電を制御し、外気湿度センサの出力が、あらかじめ設定された上限値以上、または下限値以下になった場合は、外気温度センサのみにより結露防止ヒータへの通電を制御する制御手段とを具備している。
As a background art of the present invention, there is Japanese Patent No. 3926688 (Patent Document 1).
The configuration of Patent Document 1 includes an outside air temperature sensor and an outside air humidity sensor disposed in the vicinity of the door hinge cover portion or the substrate storage portion at the upper part of the main body, and at least one or more dew condensation prevention provided in the partition portion between the door and the door. Controls energization of the heater and the anti-condensation heater according to the outside air temperature and outside air humidity, and if the outside air humidity sensor output exceeds the preset upper limit value or below the lower limit value, the outside air temperature And a control means for controlling energization to the dew condensation prevention heater only by the sensor.

この手段により、外気の湿度を精度よく検知して、外気温度と外気湿度からあらかじめ算定された結露防止ヒータ通電量で加温制御し、かつ外気湿度センサおよび湿度制御の誤動作等による冷蔵庫本体表面の異常結露を未然に防ぎながら、少ないエネルギ消費で露付き防止が可能となることが記載されている。   By this means, the humidity of the outside air is accurately detected, and the heating control is performed with the amount of dew condensation prevention heater energization calculated in advance from the outside air temperature and the outside air humidity. It is described that dew condensation can be prevented with low energy consumption while preventing abnormal dew condensation.

特許第3942688号公報Japanese Patent No. 3926688

しかしながら、従来の構成では、特許文献1の図4に示すように、ある一定時間T毎に冷蔵庫の外気温度、および外気湿度を測定し、あらかじめ冷蔵庫本体の横仕切り板の構造、横仕切り板の上部、そして下部の冷蔵庫内温度設定値により算出された外気温度と外気湿度に応じた横仕切り板が結露しない各結露防止ヒータの通電量の算出式により、各結露防止ヒータの通電量を算出し、各結露防止ヒータの通電量の変更を行うといった方法が考えられている。 However, in the conventional configuration, as shown in FIG. 4 of Patent Document 1, the outside air temperature and outside air humidity of the refrigerator are measured every certain time T 0 , and the structure of the horizontal partition plate of the refrigerator main body, the horizontal partition plate in advance Calculate the energization amount of each anti-condensation heater by the calculation formula of the energization amount of each anti-condensation heater that does not condense the horizontal partition plate according to the outside air temperature and the outside air humidity calculated by the upper and lower refrigerator temperature setting values. And the method of changing the electricity supply amount of each dew condensation prevention heater is considered.

しかし、本体上部の扉ヒンジカバー部、または基板収納部の近傍に配置された外気温度センサおよび外気湿度センサは、周囲からの水浸入の防止のために、半密閉構造としている。すると、特許文献1の図8に示すように、冷蔵庫内の冷却の影響を受けて温度変化が生じ、一定時間T毎の測定では外気温度センサの測定への影響は少ないが、外気湿度センサの湿度測定では湿度測定値への影響が大きくなる。例えば湿球温度一定で乾球温度が0.5℃変動すると相対湿度は3%影響を受けることとなる。
したがって、冷蔵庫本体表面の結露を防ぐためには通電量を多めに設定する必要があり、消費電力が増加する傾向にある。
However, the outside air temperature sensor and the outside air humidity sensor arranged in the vicinity of the door hinge cover part at the upper part of the main body or the board housing part have a semi-hermetic structure in order to prevent water from entering from the surroundings. Then, as shown in FIG. 8 of Patent Document 1, a temperature change occurs due to the effect of cooling in the refrigerator, and the measurement at the constant time T 0 has little influence on the measurement of the outside air temperature sensor, but the outside air humidity sensor In the humidity measurement, the influence on the humidity measurement value becomes large. For example, if the wet bulb temperature is constant and the dry bulb temperature varies by 0.5 ° C., the relative humidity will be affected by 3%.
Therefore, in order to prevent condensation on the surface of the refrigerator main body, it is necessary to set a large amount of energization, and power consumption tends to increase.

本発明は上記実状に鑑み、外気の湿度を精度よく検知して品質的に安定し、結露が抑制され省電力化を図れる冷蔵庫および冷凍庫の提供を目的とする。   In view of the above circumstances, an object of the present invention is to provide a refrigerator and a freezer that can accurately detect the humidity of the outside air, stabilize the quality, suppress condensation, and save power.

上記目的を達成すべく、第1の本発明に関わる冷蔵庫は、食品を貯蔵する貯蔵室と、冷媒が循環するとともに前記貯蔵室を冷却する冷凍サイクルとを具備する冷蔵庫であって、前記冷蔵庫の庫外の湿度を測定する湿度測定手段と、前記冷蔵庫の庫外の温度を測定する温度測定手段と、前記冷蔵庫への露付きを抑制する露付き抑制手段と、前記冷凍サイクルの圧縮機の停止中に前記湿度測定手段で測定された湿度と、前記温度測定手段で測定された温度とに応じて、前記露付き抑制手段を制御する制御手段とを備えている。   In order to achieve the above object, a refrigerator according to the first aspect of the present invention is a refrigerator comprising a storage room for storing food, and a refrigeration cycle in which a refrigerant circulates and cools the storage room. Humidity measuring means for measuring the humidity outside the refrigerator, temperature measuring means for measuring the temperature outside the refrigerator, dew suppression means for suppressing dew condensation on the refrigerator, and stopping the compressor of the refrigeration cycle Control means for controlling the dew condensation suppression means according to the humidity measured by the humidity measurement means and the temperature measured by the temperature measurement means.

第2の本発明に関わる冷凍蔵庫は、第1の本発明の冷蔵庫を冷凍庫に適用したものである。   The freezer storage concerning the 2nd present invention applies the refrigerator of the 1st present invention to a freezer.

本発明によれば、外気の湿度を精度よく検知して品質的に安定し、結露が抑制され省電力化を図れる冷蔵庫および冷凍庫を実現できる。   According to the present invention, it is possible to realize a refrigerator and a freezer that can accurately detect the humidity of the outside air, stabilize the quality, suppress condensation, and save power.

本発明に関わる実施形態1の冷蔵庫を示す正面図である。It is a front view which shows the refrigerator of Embodiment 1 in connection with this invention. 実施形態1の冷蔵庫の庫内の構成を表す図1のX−X線断面図である。It is the XX sectional view taken on the line of FIG. 1 showing the structure in the refrigerator of Embodiment 1. FIG. 実施形態1の冷蔵庫の外気センサカバーを外した状態の外気温度センサと外気湿度センサとを示す斜視図である。It is a perspective view which shows the outside temperature sensor and the outside humidity sensor of the state which removed the outside air sensor cover of the refrigerator of Embodiment 1. FIG. 実施形態1の冷蔵庫の冷凍サイクルの構成を表す図である。It is a figure showing the structure of the refrigerating cycle of the refrigerator of Embodiment 1. 実施形態1の冷蔵庫における放熱パイプの配置位置を示す斜視図である。It is a perspective view which shows the arrangement position of the heat radiating pipe in the refrigerator of Embodiment 1. 実施形態1の冷蔵庫の他例の冷凍サイクルの構成を表す図である。It is a figure showing the structure of the refrigerating cycle of the other examples of the refrigerator of Embodiment 1. FIG. 圧縮機がON時、三方弁をA側(出口34b側)またはB側(出口34c側)に切り替える時間の長さを複数の領域に分けて求める図である。It is a figure which calculates | requires the length of the time which switches a three-way valve to A side (outlet 34b side) or B side (outlet 34c side) into a several area | region when a compressor is ON. 外気温30℃、外気の湿度70%の環境下での冷蔵庫の運転中の冷蔵室温度と(外気)湿度センサで測定した湿度測定値の関係を示す図である。It is a figure which shows the relationship between the refrigerator temperature in the driving | running | working of the refrigerator in the environment of the external temperature of 30 degreeC, and the external air humidity of 70%, and the humidity measured value measured with the (external air) humidity sensor. 圧縮機の運転ON/OFFと三方弁の動作制御を示すタイムチャートである。It is a time chart which shows operation ON / OFF of a compressor and operation control of a three-way valve. 実施形態2の外気温度に対する回転シキリヒータの通電率(duty)の関係を示す図である。It is a figure which shows the relationship of the energization rate (duty) of the rotation threshold heater with respect to the external temperature of Embodiment 2. 図10に示す通電率(duty)をシフトする制御を示す図である。It is a figure which shows the control which shifts the electricity supply rate (duty) shown in FIG. 図10に示す通電率(duty)をシフトする制御の他例を示す図である。It is a figure which shows the other example of the control which shifts the electricity supply rate (duty) shown in FIG.

以下、本発明の実施形態について添付図面を参照して説明する。
<<実施形態1>>
図1は、本発明に関わる実施形態1の冷蔵庫を示す正面図であり、図2は、冷蔵庫の庫内の構成を表す図1のX−X線断面図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
<< Embodiment 1 >>
FIG. 1 is a front view showing a refrigerator according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line XX of FIG. 1 showing a configuration inside the refrigerator.

実施形態1の冷蔵庫1は、その本体部を成す冷蔵庫本体1Hに、上方から、冷蔵室2、製氷室3及び上段冷凍室4、下段冷凍室5、および野菜室6を備えている。なお、製氷室3と上段冷凍室4は、冷蔵室2と下段冷凍室5との間に左右に並設されている。
冷蔵室2及び野菜室6は、約3〜5℃の冷蔵温度帯の貯蔵室である。一方、製氷室3,上段冷凍室4及び下段冷凍室5は、約−18℃の冷凍温度帯の貯蔵室である。
The refrigerator 1 of Embodiment 1 is provided with a refrigerator body 1, an ice making room 3, an upper freezer room 4, a lower freezer room 5, and a vegetable room 6 from above in a refrigerator main body 1 </ b> H constituting the main body. The ice making chamber 3 and the upper freezing chamber 4 are arranged side by side between the refrigerator compartment 2 and the lower freezing chamber 5.
The refrigerator compartment 2 and the vegetable compartment 6 are storage rooms in a refrigerator temperature zone of about 3 to 5 ° C. On the other hand, the ice making room 3, the upper freezing room 4 and the lower freezing room 5 are storage rooms in a freezing temperature zone of about −18 ° C.

冷蔵室2は、前方側に左右に分割された観音開き(いわゆるフレンチ型)の冷蔵室扉2a,2bを備えている。冷蔵室扉2a,2bは冷蔵庫本体1Hの左右前端縁部に枢設されている。
冷蔵室扉2a,2bの内側には、図2に示すように、複数の扉ポケット2eが備えられている。
The refrigerating room 2 is provided with refrigerating room doors 2a and 2b having a double door (so-called French type) divided into left and right sides on the front side. The refrigerator compartment doors 2a and 2b are pivotally provided at the left and right front end edges of the refrigerator main body 1H.
As shown in FIG. 2, a plurality of door pockets 2e are provided inside the refrigerator compartment doors 2a and 2b.

冷蔵室扉2a,2bの間には、各冷蔵室扉2a,2bの内側に突設される収納スペースを形成する樹脂の内箱が互いに対向する回転シキリ23が形成される。
回転シキリ23の近傍は、ユーザによる冷蔵室扉2a,2bの開閉により、外気に晒される機会が多い。そのため、冷蔵室2内が冷蔵温度帯の低温であることから、回転シキリ23近傍が外気の露点温度以下となり外気中の水分が露付きする可能性がある。
Between the refrigerating compartment doors 2a and 2b, there is formed a rotating slot 23 in which resin inner boxes forming storage spaces projecting inside the refrigerating compartment doors 2a and 2b face each other.
The vicinity of the rotation threshold 23 is often exposed to the outside air by the user opening and closing the refrigerator compartment doors 2a and 2b. For this reason, since the inside of the refrigerating chamber 2 is at a low temperature in the refrigerating temperature zone, there is a possibility that the vicinity of the rotation threshold 23 becomes below the dew point temperature of the outside air and moisture in the outside air is exposed.

そこで、冷蔵室扉2aの収納空間を形成する中央側の内側壁2kに、回転シキリヒータ24が配設されている。回転シキリヒータ24は、通電されることにより発生するジュール熱を用いて回転シキリ23近傍の温度を、外気の露点温度より高く上昇させる。これにより、回転シキリ23近傍の露付きを抑制している。   In view of this, the rotary threshold heater 24 is disposed on the inner side wall 2k on the center side that forms the storage space for the refrigerator compartment door 2a. The rotation threshold heater 24 raises the temperature in the vicinity of the rotation threshold 23 to be higher than the dew point temperature of the outside air by using Joule heat generated by being energized. As a result, dew condensation near the rotation threshold 23 is suppressed.

回転シキリヒータ24は冷蔵室扉2aの鉛直方向の長さ(図1の上下方向長さ)にほぼ近い寸法を有して配設されている。
図2に示すように、冷蔵室2は複数の棚2dが設けられており、棚2dにより冷蔵室2は縦方向に複数の貯蔵スペースに区画されている。
The rotary threshold heater 24 is disposed with a size substantially close to the vertical length of the refrigerator compartment door 2a (the vertical length in FIG. 1).
As shown in FIG. 2, the refrigerator compartment 2 is provided with a plurality of shelves 2d, and the refrigerator compartment 2 is partitioned into a plurality of storage spaces in the vertical direction by the shelf 2d.

製氷室3,上段冷凍室4,下段冷凍室5,および野菜室6は、それぞれ引き出し式の製氷室扉3a,上段冷凍室扉4a,下段冷凍室扉5a,および野菜室扉6aを備えている。
また、各扉(2a,2b,3a,4a,5a,6a)における貯蔵室(2、3、4、5、6)側の面には、各扉の外縁に沿った態様でシール部材(図示せず)を設けており、各扉の閉鎖時、貯蔵室内への温かい外気の侵入、及び貯蔵室からの冷気の漏出を抑制する。
The ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are each provided with a drawer type ice making room door 3a, an upper freezing room door 4a, a lower freezing room door 5a, and a vegetable room door 6a. .
In addition, the surface on the storage chamber (2, 3, 4, 5, 6) side of each door (2a, 2b, 3a, 4a, 5a, 6a) has a sealing member (see FIG. (Not shown), and when each door is closed, intrusion of warm outside air into the storage room and leakage of cold air from the storage room are suppressed.

冷蔵庫本体1Hは、各貯蔵室(2、3、4、5、6)に設けた扉(2a,2b,3a,4a,5a,6a)の開閉状態をそれぞれ検知する扉センサ(図示せず)と、各扉が開放していると判定された状態が所定時間、例えば1分間以上継続された場合、ユーザに報知するアラーム(図示せず)とを備えている。   The refrigerator main body 1H has door sensors (not shown) for detecting the open / closed state of the doors (2a, 2b, 3a, 4a, 5a, 6a) provided in the respective storage rooms (2, 3, 4, 5, 6). And an alarm (not shown) for notifying the user when the state in which each door is open is continued for a predetermined time, for example, 1 minute or longer.

また、冷蔵庫本体1Hは、ユーザが、冷蔵室2の温度設定や、上段冷凍室4、下段冷凍室5などの温度設定をするための温度設定器(図示せず)を備えている。冷蔵室扉2aには、各種設定を行うための操作パネル2sが具わっており、ユーザは操作パネル2sで温度設定器により各貯蔵室の温度を設定する。   In addition, the refrigerator main body 1H includes a temperature setting device (not shown) for the user to set the temperature of the refrigerator compartment 2 and the temperature of the upper freezer compartment 4, the lower freezer compartment 5, and the like. The refrigerator compartment door 2a is provided with an operation panel 2s for performing various settings, and the user sets the temperature of each storage room on the operation panel 2s with a temperature setting device.

図2に示すように、冷蔵庫本体1Hの庫内と庫外とは、冷蔵庫1の外郭を形成する外箱1aと貯蔵室(2〜6)を形成する内箱1bとの間に発泡断熱材(発泡ポリウレタン)10aを充填して形成される断熱箱体10により隔てられている。断熱箱体10は、充填される発泡断熱材10aの他に、複数の断熱性が高い真空断熱材10bを実装している。   As shown in FIG. 2, the inside and outside of the refrigerator body 1 </ b> H are a foam heat insulating material between an outer box 1 a that forms the outer shell of the refrigerator 1 and an inner box 1 b that forms a storage room (2 to 6). It is separated by a heat insulating box 10 formed by filling (foamed polyurethane) 10a. The heat insulating box 10 is mounted with a plurality of vacuum heat insulating materials 10b having high heat insulating properties in addition to the foamed heat insulating material 10a to be filled.

冷蔵庫本体1Hは、冷蔵温度帯の冷蔵室2と、冷凍温度帯の上段冷凍室4及び製氷室3(図1参照)とが、上側断熱仕切壁25により断熱的に区画されている。
また、冷凍温度帯の下段冷凍室5と冷蔵温度帯の野菜室6とが、下側断熱仕切壁26により断熱的に区画されている。
図1の破線で示すように、下段冷凍室5の上部には、下段冷凍室5と製氷室3及び上段冷凍室4とを、上下方向に仕切る横仕切部27を設けている。
In the refrigerator main body 1H, the refrigerator compartment 2 in the refrigeration temperature zone, the upper freezer compartment 4 and the ice making chamber 3 (see FIG. 1) in the refrigeration temperature zone are adiabatically partitioned by the upper heat insulating partition wall 25.
In addition, the lower freezer compartment 5 in the freezing temperature zone and the vegetable compartment 6 in the refrigerated temperature zone are partitioned adiabatically by the lower heat insulating partition wall 26.
As shown by a broken line in FIG. 1, a horizontal partition 27 that partitions the lower freezing chamber 5, the ice making chamber 3, and the upper freezing chamber 4 in the vertical direction is provided in the upper portion of the lower freezing chamber 5.

図1に示すように、横仕切部27の上部には、製氷室3と上段冷凍室4との間を左右方向に仕切る縦仕切部28を設けている。なお、図2では、縦仕切部28は省略している。
製氷室3、上段冷凍室4,下段冷凍室5及び野菜室6は、図2に示すように、収納容器3b,4b,5b,6bがそれぞれ設けられており、それぞれの貯蔵室(3、4、5、6)の前方に備えられた扉(3a,4a,5a、6a)と一体に前後方向に移動する(出し入れされる)。
As shown in FIG. 1, a vertical partition 28 that partitions the ice making chamber 3 and the upper freezing chamber 4 in the left-right direction is provided on the upper side of the horizontal partition 27. In FIG. 2, the vertical partition 28 is omitted.
As shown in FIG. 2, the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are provided with storage containers 3b, 4b, 5b, and 6b, respectively. 5, 6) moves in the front-rear direction together with the doors (3a, 4a, 5a, 6a) provided in front of (6, 6).

図3は、実施形態1の冷蔵庫の外気センサカバーを外した状態の外気温度センサと外気湿度センサとを示す斜視図である。
冷蔵庫1では、外気の湿度を測定する外気湿度センサ22を、冷蔵庫本体1Hの上部の扉ヒンジカバー部(外気センサカバー41)、または、制御基板40(図2参照)の収納部の近傍に配置している。これにより、外気湿度センサ22が、扉(2a、2b)の開閉による冷気の流出の冷蔵室2の温度や湿度変化の影響、機械室15の周辺の庫外送風機42(図4参照)による放熱、ほこりの影響が少なく露付きが生じにくいようにしている。
FIG. 3 is a perspective view illustrating an outside air temperature sensor and an outside air humidity sensor in a state where the outside air sensor cover of the refrigerator according to the first embodiment is removed.
In the refrigerator 1, the outside air humidity sensor 22 that measures the humidity of the outside air is disposed in the vicinity of the door hinge cover part (the outside air sensor cover 41) on the top of the refrigerator body 1 </ b> H or the storage part of the control board 40 (see FIG. 2). doing. As a result, the outside air humidity sensor 22 radiates heat by the outside air blower 42 (see FIG. 4) around the machine room 15 due to the influence of temperature and humidity changes in the cold room 2 due to the outflow of cold air due to opening and closing of the doors (2a, 2b). It is designed to reduce the influence of dust and prevent dew formation.

冷蔵庫1の天面10tには、冷蔵室扉2aを冷蔵庫本体1Hに枢設するヒンジ41hが雄ネジ(ボルトなど)で螺着されている。
ヒンジ41hの後方には、冷蔵庫本体1Hの天井壁1H0に凹形状の凹設部1H5が形成され、凹設部1H5内に外気の温度を測定する外気温度センサ21と、外気の湿度を測定する外気湿度センサ22とが配設されている。
A hinge 41h that pivots the refrigerator compartment door 2a to the refrigerator main body 1H is screwed to the top surface 10t of the refrigerator 1 with a male screw (bolt or the like).
Behind the hinge 41h, a recessed portion 1H5 having a concave shape is formed on the ceiling wall 1H0 of the refrigerator body 1H, and an outside air temperature sensor 21 that measures the temperature of the outside air in the recessed portion 1H5 and the humidity of the outside air are measured. An outside humidity sensor 22 is provided.

外気温度センサ21、外気湿度センサ22は、冷蔵庫本体1Hの上部で、冷蔵庫本体1Hの外に設けた場合、冷蔵庫1の高さ寸法が増加する。そのため、天井壁1H0に凹設した凹設部1H5に配置することとしている。
ここで、外気温度センサ21と外気湿度センサ22とは近くに配置した方が、外気温度センサ21で測定される外気温度と外気湿度センサ22で測定される外気の湿度との相関が取り易いため、天井壁1H0に凹設される凹設部1H5に一緒に配置している。
When the outside air temperature sensor 21 and the outside air humidity sensor 22 are provided outside the refrigerator body 1H above the refrigerator body 1H, the height of the refrigerator 1 increases. For this reason, it is arranged in the recessed portion 1H5 that is recessed in the ceiling wall 1H0.
Here, when the outside air temperature sensor 21 and the outside air humidity sensor 22 are arranged close to each other, the outside air temperature measured by the outside air temperature sensor 21 and the humidity of the outside air measured by the outside air humidity sensor 22 can be easily correlated. Are arranged together in a recessed portion 1H5 that is recessed in the ceiling wall 1H0.

ヒンジ41hおよび外気温度センサ21、外気湿度センサ22には、外気センサカバー41が図3の矢印α1のように覆設される。外気センサカバー41には、通気を図るために不図示の通気孔が穿設されている。
そのため、外気センサカバー41内の外気温度センサ21、外気湿度センサ22の配置空間は半密閉構造となるが、外気センサカバー41外部の外気が、通気孔を通過して外気温度・外気湿度センサ21、22廻りに流れ、外気の温度および湿度が外気温度・外気湿度センサ21、22によりそれぞれ精確に測定される。
The hinge 41h, the outside air temperature sensor 21, and the outside air humidity sensor 22 are covered with an outside air sensor cover 41 as shown by an arrow α1 in FIG. The outside air sensor cover 41 has a vent hole (not shown) for ventilation.
Therefore, the arrangement space of the outside air temperature sensor 21 and the outside air humidity sensor 22 in the outside air sensor cover 41 has a semi-enclosed structure, but outside air outside the outside air sensor cover 41 passes through the vent hole and is outside air temperature and outside air humidity sensor 21. , Around 22 and the temperature and humidity of the outside air are accurately measured by the outside air temperature and outside air humidity sensors 21 and 22, respectively.

図2に示すように、冷蔵庫1は、庫内を冷却する冷却手段として、蒸発器7が下段冷凍室5の略背部に備えられた蒸発器収納室8内に設けられている。蒸発器7の一例として、フィンチューブ型熱交換器がある。
蒸発器収納室8内の蒸発器7の上方には、蒸発器7で冷却された空気(以下、蒸発器7で熱交換した低温の空気を「冷気」と称す)を庫内に循環させる送風手段として、庫内送風機9が設けられている。庫内送風機9の一例として、プロペラファンが挙げられる。
As shown in FIG. 2, the refrigerator 1 is provided with an evaporator 7 in an evaporator storage chamber 8 provided substantially at the back of the lower freezing chamber 5 as a cooling means for cooling the inside of the refrigerator. An example of the evaporator 7 is a fin tube type heat exchanger.
Above the evaporator 7 in the evaporator storage chamber 8, air that circulates air cooled by the evaporator 7 (hereinafter referred to as “cold air”). As a means, an internal fan 9 is provided. An example of the internal fan 9 is a propeller fan.

蒸発器7を流れる冷媒と熱交換して冷却された冷気は、庫内送風機9によって、各貯蔵室(2,6,3,4,5)の後方側に配置される冷蔵室送風ダクト11,野菜室送風ダクト(図示せず)、冷凍室送風ダクト12を介して、それぞれ冷蔵室2,野菜室6,製氷室3,上段冷凍室4,下段冷凍室5の各貯蔵室へ送られる。   The cold air cooled by exchanging heat with the refrigerant flowing through the evaporator 7 is cooled by the internal fan 9 in the refrigerator compartment air duct 11 disposed on the rear side of each storage room (2, 6, 3, 4, 5). It is sent to the respective storage rooms of the refrigerator compartment 2, vegetable compartment 6, ice making room 3, upper freezer compartment 4, and lower freezer compartment 5 through a vegetable compartment air duct (not shown) and a freezer compartment air duct 12.

各貯蔵室(2,6,3,4,5)への送風は、冷蔵室2への送風量を制御する冷蔵室ダンパ38と、野菜室6への送風量を制御する野菜室ダンパ(図示せず)と,冷凍温度帯の製氷室3及び上段冷凍室4、下段冷凍室5への送風量を制御する冷凍室ダンパ39とにより、送風路が開閉制御される。   The ventilation to each storage room (2, 6, 3, 4, 5) is a refrigerator compartment damper 38 that controls the amount of ventilation to the refrigerator compartment 2, and a vegetable compartment damper that controls the amount of ventilation to the vegetable compartment 6 (see FIG. The air passage is controlled to open and close by an ice making chamber 3 in the freezing temperature zone, the freezer compartment 4 and the freezer compartment damper 39 for controlling the amount of air sent to the lower freezer compartment 5.

冷蔵室ダンパ38が開状態で冷蔵室2への送風が行われる場合,冷気は,冷蔵室2の後方の冷蔵室送風ダクト11を経て多段に開口された吹き出し口2c(図2では吹き出し口2cが3つの場合を示す)から冷蔵室2に送られる。冷蔵室2を冷却した冷気は、冷蔵室2の下部に設けられた冷蔵室戻り口(図示せず)から蒸発器収納室8の側方に配設された冷蔵室戻りダクト(図示せず)を経て、蒸発器収納室8の下部に戻る。   When the refrigerating room damper 38 is opened and air is blown to the refrigerating room 2, the cold air is blown out through the refrigerating room air duct 11 at the rear of the refrigerating room 2, and the blowout openings 2 c opened in multiple stages (in FIG. 2, the blowing openings 2 c Is sent to the refrigerator compartment 2. The cold air that has cooled the refrigerator compartment 2 is supplied from a refrigerator compartment return port (not shown) provided in the lower part of the refrigerator compartment 2 to a refrigerator compartment return duct (not shown) disposed on the side of the evaporator storage chamber 8. After that, it returns to the lower part of the evaporator storage chamber 8.

不図示の野菜室ダンパが開状態で、冷蔵庫1の最下部の野菜室6への送風が行われる場合、冷気は、野菜室送風ダクトを通過して野菜室吹き出し口(図示せず)から野菜室6に送風される。野菜室6を冷却した冷気は、下側断熱仕切壁26の下部前方に設けられた野菜室戻りダクト入口14bから野菜室戻りダクト14を通過して、野菜室戻りダクト出口14aから蒸発器収納室8の下部に戻る。   When an unillustrated vegetable room damper is open and air is sent to the lowermost vegetable room 6 of the refrigerator 1, the cold air passes through the vegetable room air duct and is fed from the vegetable room outlet (not shown) to the vegetables. Air is blown into the chamber 6. The cold air that has cooled the vegetable compartment 6 passes through the vegetable compartment return duct 14 from the vegetable compartment return duct inlet 14b provided in front of the lower part of the lower heat insulating partition wall 26, and passes through the vegetable compartment return duct outlet 14a to the evaporator storage chamber. Return to the bottom of 8.

蒸発器収納室8の前方には、冷凍温度帯室の製氷室3、上段冷凍室4,下段冷凍室5と蒸発器収納室8との間を仕切る仕切部材13が設けられている。仕切部材13には、吹き出し口3c,4c,5cが形成されている。
冷凍室ダンパ39が開状態の場合、冷気は、上段冷凍室4後方の冷凍室送風ダクト12を流れて、吹き出し口3c,4c,5cから、それぞれ製氷室3,上段冷凍室4,下段冷凍室5へ送風される。
In front of the evaporator storage chamber 8, a partition member 13 that partitions the ice making chamber 3, the upper freezing chamber 4, the lower freezing chamber 5, and the evaporator storage chamber 8 in the freezing temperature zone is provided. The partition member 13 is formed with blowout ports 3c, 4c, and 5c.
When the freezer damper 39 is in the open state, the cold air flows through the freezer compartment air duct 12 behind the upper freezer compartment 4 and from the blowout ports 3c, 4c, and 5c, respectively, the ice making chamber 3, the upper freezer compartment 4, and the lower freezer compartment. 5 is blown.

仕切部材13には、下段冷凍室5の奥下部の位置に冷凍室戻り口13iが設けられており、冷凍温度帯室の製氷室3,上段冷凍室4,下段冷凍室5を冷却した冷気は、冷凍室戻り口13iを介して蒸発器収納室8に流入する。なお、冷凍室戻り口13iは蒸発器7の幅(図2の紙面上下方向)とほぼ等しい幅寸法をもつ。   The partition member 13 is provided with a freezer return port 13i at a position in the lower part of the lower freezer compartment 5, and the cold air that has cooled the ice making room 3, the upper freezer room 4, and the lower freezer room 5 in the freezing temperature zone is And flows into the evaporator storage chamber 8 through the freezer return port 13i. The freezer return port 13i has a width dimension substantially equal to the width of the evaporator 7 (the vertical direction in FIG. 2).

<冷凍サイクル1S>
次に、冷蔵庫1の冷凍サイクル1Sについて説明する。
図4は、実施形態1の冷蔵庫の冷凍サイクルの構成を表す図である。
冷蔵庫1は、貯蔵室(2、3、4、5、6)(図1参照)を冷却するために、冷媒が流れる冷凍サイクル1Sを具備している。
<Refrigeration cycle 1S>
Next, the refrigeration cycle 1S of the refrigerator 1 will be described.
FIG. 4 is a diagram illustrating the configuration of the refrigeration cycle of the refrigerator according to the first embodiment.
The refrigerator 1 includes a refrigeration cycle 1S through which a refrigerant flows in order to cool the storage chambers (2, 3, 4, 5, 6) (see FIG. 1).

冷凍サイクル1Sは、冷媒を圧縮する圧縮機16と、圧縮機16から送られた冷媒の熱を放熱する放熱手段29(30、31、33)と、放熱手段29から送られた冷媒を減圧する減圧手段のキャピラリチューブ44と、キャピラリチューブ44から送られた冷媒で空気を冷却する蒸発器7とが管37で順次接続されている。この圧縮機16、放熱手段29、キャピラリチューブ44、および蒸発器7が接続された管37には熱媒体の冷媒が流れる(循環する)。   The refrigeration cycle 1 </ b> S decompresses the refrigerant sent from the heat radiation means 29, the compressor 16 that compresses the refrigerant, the heat radiation means 29 (30, 31, 33) that radiates the heat of the refrigerant sent from the compressor 16. A capillary tube 44 serving as a decompression unit and an evaporator 7 that cools air with a refrigerant sent from the capillary tube 44 are sequentially connected by a tube 37. The refrigerant of the heat medium flows (circulates) through the pipe 37 to which the compressor 16, the heat radiating means 29, the capillary tube 44, and the evaporator 7 are connected.

圧縮機16は、低温、低圧の冷媒を高温、高圧に圧縮する。圧縮機16は、図2に示すように、冷蔵庫本体1Hの下部後方に設けた機械室15に設置されている。
蒸発器7は、キャピラリチューブ44から送られた気液混合の冷媒が蒸発して、蒸発時の冷媒の潜熱で蒸発器収納室8内に流れる空気を冷却し(空気から気化熱を奪い)、貯蔵室(2、3、4、5、6)へ冷気を供給する。
The compressor 16 compresses a low-temperature and low-pressure refrigerant to a high temperature and a high pressure. As shown in FIG. 2, the compressor 16 is installed in a machine room 15 provided at the lower rear of the refrigerator main body 1H.
The evaporator 7 evaporates the gas-liquid mixed refrigerant sent from the capillary tube 44, cools the air flowing into the evaporator storage chamber 8 by the latent heat of the refrigerant at the time of evaporation (takes heat of vaporization from the air), Cool air is supplied to the storage chambers (2, 3, 4, 5, 6).

図4に示す放熱手段29は、冷蔵庫1の後方下部に配置された機械室15(図2参照)内に配設された凝縮器30(図2では図示せず)と,放熱パイプ31、33とを有する。
凝縮器30の一例としてフィンチューブ型熱交換器がある。機械室15内には庫外送風機42(図4参照、図2では図示せず)が配設されており、庫外送風機42を稼働させることで、凝縮器30の放熱を促進している。
The heat radiating means 29 shown in FIG. 4 includes a condenser 30 (not shown in FIG. 2) disposed in a machine room 15 (see FIG. 2) disposed in the lower rear portion of the refrigerator 1, and heat radiating pipes 31, 33. And have.
An example of the condenser 30 is a finned tube heat exchanger. An external fan 42 (see FIG. 4, not shown in FIG. 2) is disposed in the machine room 15, and the heat release from the condenser 30 is promoted by operating the external fan 42.

図5は、冷蔵庫における放熱パイプの配置位置を示す斜視図である。
図5に破線で示す放熱パイプ31は、図2に示す外箱1aと内箱1b間の断熱箱体10(図5参照)の外箱1aの面に接するように配置している。すなわち、機械室15内の凝縮器30(図4参照)に接続される放熱パイプ31(図5中に太破線で示す)は、機械室15内から出て、外箱1a面に接する態様で、断熱箱体10の左側面10hを上下に配置され天面10tの前部を亘って右側面10mを上下に配置されるとともに、その背面10s(図5中に細破線で示す)に配置され、再び機械室15に入り、機械室15内の三方弁34(図4参照)に接続される。
FIG. 5 is a perspective view showing an arrangement position of the heat radiating pipe in the refrigerator.
The heat dissipating pipe 31 indicated by a broken line in FIG. 5 is disposed so as to contact the surface of the outer box 1a of the heat insulating box 10 (see FIG. 5) between the outer box 1a and the inner box 1b shown in FIG. That is, the heat radiating pipe 31 (shown by a thick broken line in FIG. 5) connected to the condenser 30 (see FIG. 4) in the machine room 15 comes out of the machine room 15 and touches the surface of the outer box 1a. The left side surface 10h of the heat insulation box 10 is arranged up and down, the right side surface 10m is arranged up and down across the front part of the top surface 10t, and the rear surface 10s (shown by a thin broken line in FIG. 5). Then, the machine room 15 is entered again and connected to the three-way valve 34 (see FIG. 4) in the machine room 15.

なお、図5においては、断熱箱体10の左・右側面10h、10mに配置される放熱パイプ31と背面10sに配置される放熱パイプ31とは同じものであるが、太破線と細破線とを用いて区別することで、図を見易くしている。よって、本来は同一径の同一のパイプの放熱パイプ31である。
外箱1a(図2参照)は鋼板製であり、放熱パイプ31(図5中破線で示す)は、外箱1aの内面に接して配置されることで、放熱パイプ31の熱が外箱1aを伝導し、外箱1aの外面から庫外の空気に良好に放熱される。
In FIG. 5, the heat radiating pipe 31 disposed on the left and right side surfaces 10h and 10m of the heat insulating box 10 and the heat radiating pipe 31 disposed on the back surface 10s are the same, but It is easy to see the figure by distinguishing using. Therefore, the heat dissipating pipe 31 is essentially the same pipe having the same diameter.
The outer box 1a (refer to FIG. 2) is made of a steel plate, and the heat radiating pipe 31 (shown by a broken line in FIG. 5) is disposed in contact with the inner surface of the outer box 1a, so that the heat of the heat radiating pipe 31 can be increased. And is well radiated from the outer surface of the outer box 1a to the air outside the box.

図4に示す放熱パイプ31に三方弁34を介して接続される放熱パイプ33(図5中、太線で示す)は、断熱箱体10の図5中二点鎖線で示す上側断熱仕切壁25,下側断熱仕切壁26,横仕切部27及び縦仕切部28のそれぞれの内部前方縁部(前方開口縁部)に配置されている。   A heat radiating pipe 33 (shown by a thick line in FIG. 5) connected to the heat radiating pipe 31 shown in FIG. 4 via a three-way valve 34 is an upper heat insulating partition wall 25 indicated by a two-dot chain line in FIG. The lower heat insulating partition wall 26, the horizontal partition portion 27, and the vertical partition portion 28 are disposed at the respective inner front edge portions (front opening edge portions).

これらの仕切壁(仕切部)(25、26、27、28)は、貯蔵室(2、3、4、5、6)に接しているため低温であるが、仕切壁(25、26、27、28)の前方部は各貯蔵室(2、3、4、5、6)の開口縁部に配置されるため、ユーザによる扉(2a、2b、3a,4a,5a、6a)の開閉で外気に接触し易い。そのため、仕切壁(25、26、27、28)の前方開口縁表面温度が外気の露点温度以下になると結露が生じるおそれがある。   Since these partition walls (partition portions) (25, 26, 27, 28) are in contact with the storage chambers (2, 3, 4, 5, 6), they are at a low temperature, but the partition walls (25, 26, 27). 28) is disposed at the opening edge of each storage chamber (2, 3, 4, 5, 6), so that the user can open and close the doors (2a, 2b, 3a, 4a, 5a, 6a). Easy to contact outside air. Therefore, if the front opening edge surface temperature of the partition walls (25, 26, 27, 28) is equal to or lower than the dew point temperature of the outside air, condensation may occur.

そこで、冷蔵庫本体1Hの前方開口縁(特に、上側断熱仕切壁25,下側断熱仕切壁26,横仕切部27及び縦仕切部28の前方部)への結露防止のために、放熱パイプ33を配置する。これにより、放熱パイプ33を流れる高温の冷媒の熱を冷蔵庫本体1Hの前方開口縁に放熱し、当該前方開口縁が外気の露点温度以下になるのを抑制している。
機械室15の内部には、放熱性能制御手段として三方弁34(図4参照)が配設されている。放熱パイプ31の出口部31o(図5参照)は機械室15に入り,三方弁34の入口34a(図4参照)に接続されている。
Therefore, in order to prevent condensation on the front opening edge of the refrigerator main body 1H (particularly, the front side of the upper heat insulating partition wall 25, the lower heat insulating partition wall 26, the horizontal partition portion 27, and the vertical partition portion 28), the heat radiating pipe 33 is provided. Deploy. Thereby, the heat of the high-temperature refrigerant flowing through the heat radiating pipe 33 is radiated to the front opening edge of the refrigerator main body 1H, and the front opening edge is suppressed from being below the dew point temperature of the outside air.
A three-way valve 34 (see FIG. 4) is disposed inside the machine room 15 as a heat dissipation performance control means. The outlet 31o (see FIG. 5) of the heat radiating pipe 31 enters the machine room 15 and is connected to the inlet 34a (see FIG. 4) of the three-way valve 34.

三方弁34は,1つの入口34aと2つの出口34b,34cを有して構成されている。
三方弁34は、入口34aから流入する冷媒を、(1)出口34bから放熱パイプ33に流す状態(入口34a開状態、出口34b開状態、出口34c閉状態)、(2)出口34cからバイパスパイプ32に流す状態(入口34a開状態、出口34b閉状態、出口34c開状態)、(3)出口34b、34cから放熱パイプ33、バイパスパイプ32の両方に流さない状態(入口34a開状態、出口34b閉状態、出口34c閉状態)、(4)出口34b、34cの両方からそれぞれ放熱パイプ33、バイパスパイプ32に流す状態(入口34a開状態、出口34b開状態、出口34c開状態)とする4つのモードが可能な電動弁である。
The three-way valve 34 has one inlet 34a and two outlets 34b and 34c.
The three-way valve 34 is configured such that (1) the refrigerant flowing from the inlet 34a flows from the outlet 34b to the heat radiating pipe 33 (inlet 34a open state, outlet 34b open state, outlet 34c closed state), and (2) the bypass pipe from the outlet 34c. (3) The state where the outlets 34b and 34c do not flow to both the heat radiating pipe 33 and the bypass pipe 32 (the state where the inlet 34a is open and the outlet 34b) Closed state, outlet 34c closed state), and (4) four states of flowing from both outlets 34b and 34c to the heat radiating pipe 33 and bypass pipe 32 (inlet 34a open state, outlet 34b open state, outlet 34c open state), respectively. It is a motorized valve capable of mode.

三方弁34の基本動作は、圧縮機16がON時には放熱パイプ33とバイパスパイプ32とを切り換えて放熱パイプ33に高温の冷媒を流すことで、冷蔵庫本体1Hの前方開口縁(特に、図5に示す上側断熱仕切壁25,下側断熱仕切壁26,横仕切部27及び縦仕切部28の前方部)への結露を防止する。三方弁34の切り替えにより、高温の冷媒をバイパスパイプ32に流すことで、放熱パイプ33を流れる高温の冷媒に起因する庫内への熱流入を可及的に抑制し、省電力化を図っている。   The basic operation of the three-way valve 34 is to switch between the heat radiating pipe 33 and the bypass pipe 32 when the compressor 16 is ON, and to flow a high-temperature refrigerant through the heat radiating pipe 33, so that the front opening edge of the refrigerator main body 1H (particularly in FIG. Condensation on the upper heat insulating partition wall 25, the lower heat insulating partition wall 26, the front partitioning portion 27, and the vertical partitioning portion 28) is prevented. By switching the three-way valve 34, a high-temperature refrigerant is caused to flow through the bypass pipe 32, thereby suppressing heat inflow into the cabinet caused by the high-temperature refrigerant flowing through the heat radiating pipe 33 as much as possible to save power. Yes.

一方、圧縮機16がOFF時には、放熱パイプ33側に切り換え、高温の冷媒を放熱パイプ33に流し、冷蔵庫本体1Hの前方開口縁への結露を防止する。
図4に示すように、三方弁34の出口34bは、放熱パイプ33に接続されるとともに,三方弁34の出口34cはバイパスパイプ32に接続される。
放熱パイプ33の出口部33oの管37には、逆止弁36が配設されており、ドライヤ43とバイパスパイプ32の出口部32oから放熱パイプ33への逆流が阻止される。
On the other hand, when the compressor 16 is OFF, switching to the heat radiating pipe 33 is performed, and a high-temperature refrigerant is caused to flow through the heat radiating pipe 33 to prevent condensation on the front opening edge of the refrigerator main body 1H.
As shown in FIG. 4, the outlet 34 b of the three-way valve 34 is connected to the heat radiating pipe 33, and the outlet 34 c of the three-way valve 34 is connected to the bypass pipe 32.
A check valve 36 is provided in the pipe 37 of the outlet portion 33o of the heat radiating pipe 33, and the reverse flow from the dryer 43 and the outlet portion 32o of the bypass pipe 32 to the heat radiating pipe 33 is prevented.

機械室15内において、逆止弁36の下流にて管37がバイパスパイプ32の下流側と合流して、ドライヤ43に接続される。ドライヤ43は、冷媒中の水分を乾燥吸湿するためのものであり、管37の内部の冷媒が凍結して詰まり、冷媒が循環しなくなることを防ぐ。
ドライヤ43は、二方弁35を介して、キャピラリチューブ44に接続されている。
In the machine room 15, the pipe 37 joins the downstream side of the bypass pipe 32 downstream of the check valve 36 and is connected to the dryer 43. The dryer 43 is for drying and absorbing moisture in the refrigerant, and prevents the refrigerant inside the pipe 37 from freezing and clogging, so that the refrigerant does not circulate.
The dryer 43 is connected to the capillary tube 44 via the two-way valve 35.

二方弁35の基本動作は、圧縮機16がON時には「開弁」する一方、圧縮機16がOFF時には「閉弁」する。圧縮機16がOFF前に「閉弁」し、二方弁35の下流から蒸発器7までに在る高温の冷媒の回収を行う。   The basic operation of the two-way valve 35 is “open” when the compressor 16 is ON, and “closes” when the compressor 16 is OFF. The compressor 16 is “closed” before being turned off, and the high-temperature refrigerant existing from the downstream of the two-way valve 35 to the evaporator 7 is recovered.

詳細には、圧縮機16がOFF時には、霜冷却を実施する(蒸発器7の廻りの霜で冷却を行う)ため、二方弁35を「閉弁」することにより、高温の冷媒が蒸発器7に流入することを抑制し、省電力化を図っている。   More specifically, when the compressor 16 is OFF, frost cooling is performed (cooling is performed with frost around the evaporator 7). Therefore, by closing the two-way valve 35, the high-temperature refrigerant is removed from the evaporator. 7 is suppressed to save power.

なお、蒸発器7から圧縮機16に向かう管37の一部である管37aは、キャピラリチューブ44と近接又は接触させており、蒸発器7に向かうキャピラリチューブ44内の冷媒の熱が、管37a内の冷媒に移動(伝達)するようにしている。   Note that the tube 37a, which is a part of the tube 37 from the evaporator 7 to the compressor 16, is in proximity to or in contact with the capillary tube 44, and the heat of the refrigerant in the capillary tube 44 toward the evaporator 7 is reduced by the tube 37a. It moves (transmits) to the refrigerant inside.

図2に示すように、蒸発器7の上部には、蒸発器7に取着された蒸発器温度センサ20、冷蔵室2には冷蔵室温度センサ17が、下段冷凍室5には冷凍室温度センサ19がそれぞれ備えられており、それぞれ蒸発器7の温度、冷蔵室2の温度、下段冷凍室5の温度を検知する。野菜室6には、野菜室温度センサ18が配置されている。   As shown in FIG. 2, an evaporator temperature sensor 20 attached to the evaporator 7 is disposed above the evaporator 7, a refrigerator temperature sensor 17 is disposed in the refrigerator compartment 2, and a freezer compartment temperature is disposed in the lower freezer compartment 5. Sensors 19 are provided to detect the temperature of the evaporator 7, the temperature of the refrigerator compartment 2, and the temperature of the lower freezer compartment 5, respectively. A vegetable room temperature sensor 18 is disposed in the vegetable room 6.

冷蔵室温度センサ17,野菜室温度センサ18,冷凍室温度センサ19は、各貯蔵室(2、6、3、4)への吹き出し冷気が直接当たらない場所に設置することで、検知精度を高めている。
さらに、冷蔵庫本体1Hは、前記した如く、冷蔵庫1が設置された周囲の温湿度環境(外気温度,外気湿度)を検知する図3に示す外気温度センサ21と外気湿度センサ22を備えている。
なお、前記の説明では、図4の冷凍サイクル1Sを例示したが、二方弁35を備えない図6に示す冷凍サイクル2Sを適用してもよい。
The cold room temperature sensor 17, the vegetable room temperature sensor 18, and the freezer temperature sensor 19 are installed in a place where the cold air blown into each storage room (2, 6, 3, 4) is not directly applied to improve detection accuracy. ing.
Further, as described above, the refrigerator main body 1H includes the outside air temperature sensor 21 and the outside air humidity sensor 22 shown in FIG. 3 that detect the surrounding temperature and humidity environment (outside air temperature, outside air humidity) where the refrigerator 1 is installed.
In the above description, the refrigeration cycle 1S of FIG. 4 is illustrated, but the refrigeration cycle 2S shown in FIG. 6 without the two-way valve 35 may be applied.

図6は、実施形態1の冷蔵庫の他例の冷凍サイクルの構成を表す図である。
この場合、三方弁34で二方弁35の役割を担うことになる。すなわち、圧縮機16を停止する前に、三方弁34の出口34b,34cを閉じ、放熱パイプ33、バイパスパイプ32の下流の蒸発器7までの高温の冷媒回収を行う(高温の冷媒を蒸発器7の下流の圧縮機16側に流す)。これにより、冷却運転開始時に蒸発器7に放熱パイプ33、バイパスパイプ32の下流の高温の冷媒が流入することを抑制し、過負荷運転を防いで省電力化を図る。
FIG. 6 is a diagram illustrating a configuration of a refrigeration cycle of another example of the refrigerator according to the first embodiment.
In this case, the three-way valve 34 plays the role of the two-way valve 35. That is, before stopping the compressor 16, the outlets 34b and 34c of the three-way valve 34 are closed, and the high-temperature refrigerant is recovered to the evaporator 7 downstream of the heat radiating pipe 33 and the bypass pipe 32 (the high-temperature refrigerant is removed from the evaporator 16). 7 to the compressor 16 side downstream). As a result, the high temperature refrigerant downstream of the heat radiating pipe 33 and the bypass pipe 32 is prevented from flowing into the evaporator 7 at the start of the cooling operation, thereby preventing overload operation and saving power.

<制御部>
図2に示す冷蔵庫本体1Hの天面10tの後部にはCPU(Central Processing Unit),ROM(Read Only Memory)やRAM(Random Access Memory)などのメモリ,タイマ、インターフェース回路などを搭載した制御基板40が配設されている。制御基板40のインターフェース回路は、前記した外気温度センサ21,外気湿度センサ22,蒸発器温度センサ20,冷凍室温度センサ19、冷蔵室温度センサ17,野菜室温度センサ18,各貯蔵室扉(3a,4a,5a、6a)(図1参照)の開閉状態をそれぞれ検知する扉センサ、冷蔵室扉2aに設けられた操作パネル2sなどと接続されている。インターフェース回路は、A/D・D/A変換器、センサ(増幅)回路、圧縮機16など各種アクチュエータの制御回路などを含む。
<Control unit>
A control board 40 having a CPU (Central Processing Unit), a memory such as a ROM (Read Only Memory) and a RAM (Random Access Memory), a timer, an interface circuit and the like mounted on the rear surface 10t of the refrigerator main body 1H shown in FIG. Is arranged. The interface circuit of the control board 40 includes the outside air temperature sensor 21, the outside air humidity sensor 22, the evaporator temperature sensor 20, the freezer compartment temperature sensor 19, the refrigerator compartment temperature sensor 17, the vegetable compartment temperature sensor 18, and each storage compartment door (3a). , 4a, 5a, 6a) (refer to FIG. 1) are connected to a door sensor for detecting the open / closed state of each, an operation panel 2s provided in the refrigerator compartment door 2a, and the like. The interface circuit includes an A / D / D / A converter, a sensor (amplification) circuit, and control circuits for various actuators such as the compressor 16.

冷蔵庫1の以下の制御は、ROMに予め格納された制御プログラムを実行することにより行われる。
すなわち、圧縮機16のON/OFFや、三方弁34,二方弁35,冷蔵室ダンパ38,野菜室ダンパ及び冷凍室ダンパ39を個別に稼動する不図示の各アクチュエータの制御、蒸発器収納室8内の庫内送風機9(図2参照)及び機械室15内の庫外送風機42(図4参照)のON/OFF制御や回転速度制御、前記した扉(2a、2b、3a,4a,5a、6a)(図1参照)開放状態を報知するアラームのON/OFFの制御などが行われる。
The following control of the refrigerator 1 is performed by executing a control program stored in advance in the ROM.
That is, ON / OFF of the compressor 16, control of each actuator (not shown) that individually operates the three-way valve 34, the two-way valve 35, the refrigerator compartment damper 38, the vegetable compartment damper and the freezer compartment damper 39, the evaporator storage chamber ON / OFF control and rotational speed control of the internal fan 9 (see FIG. 2) in the machine 8 and the external fan 42 (see FIG. 4) in the machine room 15, the doors (2a, 2b, 3a, 4a, 5a) described above. 6a) (refer to FIG. 1) ON / OFF control of an alarm for notifying the open state is performed.

<三方弁34の切り替え制御の方法>
次に、三方弁34の切り替え制御の方法について説明する。
三方弁34は、圧縮機16の運転ON/OFFに対応して、出口34bを開いて放熱パイプ33へ高温の冷媒を流す場合(A側と称す)と、出口34cを開いてバイパスパイプ32へ高温の冷媒を流す場合(B側と称す)とに切り替えられる。
<Method of switching control of the three-way valve 34>
Next, a method for switching control of the three-way valve 34 will be described.
The three-way valve 34 opens the outlet 34 c and opens the outlet 34 c to the bypass pipe 32 when the outlet 34 b is opened and a high-temperature refrigerant flows through the heat radiating pipe 33 in response to the ON / OFF operation of the compressor 16. It is switched to the case of flowing a high-temperature refrigerant (referred to as B side).

三方弁34の切り替え制御として、基本的に以下の(1)、(2)の制御を行う。
(1)圧縮機16のOFF中は、三方弁34をA側(出口34bを開いて放熱パイプ33へ高温の冷媒を流す)とする。これにより、仕切壁(25、26、27、28)の前方開口縁(図5参照)の温度を上げることで露付きを抑制する。
(2)圧縮機16がONした場合にはOFFに至るまで、三方弁34をA側(仕切壁の前方開口縁に配された放熱パイプ33側)とB側(バイパスパイプ32側)とに切り替える「三方弁切り替え制御」を行う。前記したように、放熱パイプ33へ高温の冷媒を流すことで、仕切壁(25、26、27、28)の前方開口縁(図5参照)の温度を上げ、露付きを抑制する。
As the switching control of the three-way valve 34, the following controls (1) and (2) are basically performed.
(1) While the compressor 16 is OFF, the three-way valve 34 is set to the A side (opening the outlet 34b and allowing a high-temperature refrigerant to flow through the heat radiating pipe 33). Thereby, dew condensation is suppressed by raising the temperature of the front opening edge (see FIG. 5) of the partition walls (25, 26, 27, 28).
(2) When the compressor 16 is turned on, the three-way valve 34 is moved to the A side (the heat radiating pipe 33 side arranged on the front opening edge of the partition wall) and the B side (the bypass pipe 32 side) until it is turned off. Performs “three-way valve switching control” for switching. As described above, by flowing a high-temperature refrigerant through the heat radiating pipe 33, the temperature of the front opening edge (see FIG. 5) of the partition walls (25, 26, 27, 28) is increased, and dew condensation is suppressed.

ここで、仕切壁(25、26、27、28)の前方開口縁の温度を上げる時間が長いほど(露付きを抑制する制御を行うほど)庫内の冷却運転が必要になるという二律背反の関係(矛盾する関係)にある。
そのため、(2)のように、高温の冷媒を放熱パイプ33側に常時でなく間欠的に流すことで、冷却運転に負荷がかかる時間(露付きを抑制する制御の時間)を短くし、消費電力の増加を抑制している。つまり、省電力を図るため、仕切壁(25、26、27、28)の前方開口縁に露が付かない範囲で、高温の冷媒をバイパスパイプ32に流すこととしている。
Here, the contradictory relationship that the longer the time for raising the temperature of the front opening edge of the partition walls (25, 26, 27, 28), the longer the time required to cool the inside of the cabinet (the more control is performed to suppress dew condensation). (Contradictory relationship).
For this reason, as shown in (2), by passing a high-temperature refrigerant to the heat radiating pipe 33 side intermittently instead of constantly, the time required for the cooling operation (control time to suppress dew) is shortened and consumed. The increase in power is suppressed. In other words, in order to save power, high-temperature refrigerant is allowed to flow through the bypass pipe 32 in a range where no dew is formed on the front opening edge of the partition walls (25, 26, 27, 28).

そこで、以下のようにして、高温の冷媒を放熱パイプ33に流す時間(三方弁34をA側に切り換える時間)およびバイパスパイプ32に流す時間(三方弁34をB側に切り換える時間)を求める。なお、放熱パイプ33に高温の冷媒を流す場合、図4に示すように、三方弁34がA側(出口34b側)に切り替わっているので、バイパスパイプ32には高温の冷媒を流さない。一方、放熱パイプ33に高温の冷媒を流さない時間は、三方弁34がB側(出口34c側)に切り替わっているので、バイパスパイプ32に高温の冷媒が流れる。   Therefore, as described below, the time for flowing the high-temperature refrigerant through the heat radiating pipe 33 (time for switching the three-way valve 34 to the A side) and the time for flowing the high-temperature refrigerant to the bypass pipe 32 (time for switching the three-way valve 34 to the B side) are obtained. In addition, when flowing a high temperature refrigerant | coolant to the heat radiating pipe 33, as shown in FIG. 4, since the three-way valve 34 has switched to the A side (outlet 34b side), a high temperature refrigerant | coolant does not flow into the bypass pipe 32. FIG. On the other hand, when the high temperature refrigerant does not flow through the heat radiating pipe 33, the high temperature refrigerant flows through the bypass pipe 32 because the three-way valve 34 is switched to the B side (exit 34 c side).

図7は、圧縮機がON時、三方弁をA側(出口34b側)またはB側(出口34c側)に切り替える時間の長さを複数の領域に分けて求める図である。
図7の横軸は外気温度センサ21で測定する外気温度であり、図7の縦軸は、外気湿度センサ22で測定する外気の湿度である。
外気温度が高温の場合には、飽和水蒸気量が大きく外気に含まれる水蒸気量が多く、かつ、冷蔵庫1の冷蔵温度(例えば、1℃〜3℃)との差が大きい。そのため、仕切壁(25、26、27、28)の前方開口縁に露が付き易い傾向にある。
FIG. 7 is a diagram for determining the length of time for switching the three-way valve to the A side (outlet 34b side) or the B side (outlet 34c side) while dividing the compressor into a plurality of regions.
The horizontal axis in FIG. 7 is the outside air temperature measured by the outside air temperature sensor 21, and the vertical axis in FIG. 7 is the outside air humidity measured by the outside air humidity sensor 22.
When the outside air temperature is high, the saturated water vapor amount is large and the amount of water vapor contained in the outside air is large, and the difference from the refrigeration temperature of the refrigerator 1 (for example, 1 ° C. to 3 ° C.) is large. Therefore, there is a tendency that dew is likely to be formed on the front opening edge of the partition walls (25, 26, 27, 28).

外気温度が低温の場合には、飽和水蒸気量が少ないので外気に含まれる水蒸気量が少なく、かつ、冷蔵庫1の冷蔵温度(例えば、1℃〜3℃)との差が小さい。そのため、仕切壁(25、26、27、28)の前方開口縁に露が付きにくい傾向がある。
一方、外気の湿度が高い場合には、外気に多量の水蒸気が含まれるので、仕切壁(25、26、27、28)の前方開口縁に露が付き易い傾向がある。
When the outside air temperature is low, the amount of water vapor contained in the outside air is small because the amount of saturated water vapor is small, and the difference from the refrigeration temperature of the refrigerator 1 (for example, 1 ° C. to 3 ° C.) is small. Therefore, there is a tendency that the front opening edge of the partition wall (25, 26, 27, 28) is not easily dewed.
On the other hand, when the humidity of the outside air is high, since a large amount of water vapor is contained in the outside air, there is a tendency that dew is likely to be formed on the front opening edge of the partition walls (25, 26, 27, 28).

外気の湿度が低い場合には、外気に含まれる水蒸気が少量なので、仕切壁(25、26、27、28)の前方開口縁に露が付きにくい傾向がある。
そのため、仕切壁(25、26、27、28)の前方開口縁に露が付かないで、三方弁34をB側に切り替える時間(バイパスパイプ32に高温の冷媒を流せる時間)を、外気温度と外気の湿度とで、図7に示すように、領域分けをして求めることとした。なお、領域の詳細は後記する。
When the humidity of the outside air is low, since the amount of water vapor contained in the outside air is small, there is a tendency that dew does not easily adhere to the front opening edge of the partition walls (25, 26, 27, 28).
For this reason, the time for switching the three-way valve 34 to the B side (time for allowing a high-temperature refrigerant to flow through the bypass pipe 32) without dew on the front opening edge of the partition wall (25, 26, 27, 28) is referred to as the outside air temperature. As shown in FIG. 7, it was decided to divide into regions by the humidity of outside air. Details of the area will be described later.

図8は、外気温30℃、外気の湿度70%の環境下での冷蔵庫の運転中の冷蔵室温度と(外気)湿度センサで測定した湿度測定値の関係を示す図である。
図8の横軸は経過時間(分)であり、図8の縦軸は、冷蔵室温度センサ17(図2参照)で測定した冷蔵室2の温度(図8中、一点鎖線で示す)、外気湿度センサ22で測定した湿度(図8中、破線で示す)、冷蔵庫1から離隔した位置で測定した外気の湿度(図8中、実線で示す周囲湿度)である。
FIG. 8 is a diagram showing the relationship between the refrigerator temperature during operation of the refrigerator in an environment where the outside air temperature is 30 ° C. and the outside air humidity is 70% and the humidity measurement value measured by the (outside air) humidity sensor.
The horizontal axis of FIG. 8 is the elapsed time (minutes), and the vertical axis of FIG. 8 is the temperature of the refrigerator compartment 2 measured by the refrigerator compartment temperature sensor 17 (see FIG. 2) (indicated by a one-dot chain line in FIG. 8). The humidity measured by the outside air humidity sensor 22 (shown by a broken line in FIG. 8) and the humidity of the outside air measured at a position away from the refrigerator 1 (ambient humidity shown by a solid line in FIG. 8).

図8に示す符号T0は、圧縮機16を稼働する冷却運転の停止中、すなわち圧縮機16を停止している時間帯である。符号T1は、冷蔵室2を冷却する運転をしている時間帯であり、すなわち圧縮機16を運転するとともに冷蔵室ダンパ38(図2参照)を開放している時間帯である。符号T2は、冷凍室(3、4、5)を冷却する運転をしている時間帯であり、すなわち圧縮機16を運転するとともに冷凍室ダンパ39(図2参照)を開放している時間帯である。   A symbol T0 shown in FIG. 8 is a time period during which the cooling operation for operating the compressor 16 is stopped, that is, the compressor 16 is stopped. Reference symbol T1 is a time zone in which the refrigerator compartment 2 is operated to be cooled, that is, a time zone in which the compressor 16 is operated and the refrigerator compartment damper 38 (see FIG. 2) is opened. Reference symbol T2 is a time zone in which the operation of cooling the freezer compartment (3, 4, 5) is performed, that is, a time zone in which the compressor 16 is operated and the freezer compartment damper 39 (see FIG. 2) is opened. It is.

一般に、圧縮機16がON時は、短いOFF時間の霜冷却(蒸発器7に付着する霜による冷却)などにより冷蔵室2の温度変化が大きい。
圧縮機16がOFF時は、冷凍室(3、4、5)の冷却運転(圧縮機16がON、冷凍室ダンパ39(図2参照)が開、冷蔵室ダンパ38(図2参照)が閉)で終了することが多いため、冷蔵室2の温度変化が比較的少ない場合が多い。
図8より、外気湿度センサ22で測定する外気の湿度(図8中の破線)は、冷蔵室2の温度の上下の変動に伴って上下しており、冷蔵室2の温度の影響を大きく受けることが分る。これは、外気湿度センサ22が冷蔵庫本体1Hの天井壁1H0に凹状に形成された凹設部1H5に配置されているため、冷蔵室2の温度の影響を受け易いものと推測される。
In general, when the compressor 16 is ON, the temperature change in the refrigerator compartment 2 is large due to frost cooling in a short OFF time (cooling due to frost adhering to the evaporator 7) or the like.
When the compressor 16 is OFF, the cooling operation of the freezer compartments (3, 4, 5) (the compressor 16 is ON, the freezer damper 39 (see FIG. 2) is opened, and the refrigerator compartment damper 38 (see FIG. 2) is closed. ), The temperature change in the refrigerator compartment 2 is often relatively small.
From FIG. 8, the humidity of the outside air measured by the outside air humidity sensor 22 (broken line in FIG. 8) rises and falls as the temperature of the refrigerator compartment 2 changes up and down, and is greatly affected by the temperature of the refrigerator compartment 2. I understand that. This is presumed that the outside air humidity sensor 22 is easily affected by the temperature of the refrigerator compartment 2 because it is disposed in the recessed portion 1H5 formed in a concave shape on the ceiling wall 1H0 of the refrigerator body 1H.

一方、冷却運転停止中の時間帯T0では、外気湿度センサ22の測定値(図8中の破線)が安定している。冷却運転停止中、外気湿度センサ22は、冷蔵庫1の冷却運転の影響を受けないため、外気の湿度の測定値が安定するものと考えられる。
そこで、外気湿度センサ22で測定する測定値は、冷却運転停止中の時間帯T0でのものを用い、次の冷却運転に際して使用する外気の湿度とすることとした。
On the other hand, in the time zone T0 when the cooling operation is stopped, the measured value of the outside air humidity sensor 22 (broken line in FIG. 8) is stable. Since the outside air humidity sensor 22 is not affected by the cooling operation of the refrigerator 1 during the cooling operation stop, it is considered that the measured value of the outside air humidity is stabilized.
Therefore, the measurement value measured by the outside air humidity sensor 22 is the value in the time zone T0 during which the cooling operation is stopped, and is the humidity of the outside air used in the next cooling operation.

ここで、使用する外気湿度センサ22の測定値は、圧縮機16停止中の時間帯T0での次の冷却運転の直前の測定値でもよいし、時間帯T0での平均値でもよいし、時間帯T0での中央値でもよいし、特に限定されない。しかしながら、次の冷却運転中の外気の湿度を反映するような値を用いることに留意する。   Here, the measured value of the outside humidity sensor 22 to be used may be a measured value immediately before the next cooling operation in the time zone T0 when the compressor 16 is stopped, an average value in the time zone T0, or a time The median value in the band T0 may be used and is not particularly limited. However, it should be noted that a value that reflects the humidity of the outside air during the next cooling operation is used.

次に、図7に示す領域0〜3に、JISの消費電力の試験条件を用いて分ける例について説明する。
外気温度、外気の湿度で領域を区分けするに際し、JISの消費電力の試験条件の冬の温度15℃、湿度55%と、夏の温度30℃、湿度70%を基準として採用した。
三方弁34をB側(34c側)に切り替える時間(バイパスパイプ32に高温の冷媒を流せる時間)および三方弁34をA側(34b側)に切り替える時間(放熱パイプ33に高温の冷媒を流す時間)を求める。
Next, an example will be described in which the areas 0 to 3 shown in FIG. 7 are divided using JIS power consumption test conditions.
When classifying the areas by the outside air temperature and the outside air humidity, the winter temperature of 15 ° C. and the humidity of 55%, and the summer temperature of 30 ° C. and the humidity of 70%, which are JIS power consumption test conditions, were adopted as standards.
Time for switching the three-way valve 34 to the B side (34c side) (time for allowing high-temperature refrigerant to flow through the bypass pipe 32) and time for switching the three-way valve 34 to the A side (34b side) (time for flowing high-temperature refrigerant to the heat radiating pipe 33) )

そのため、外気温度に関しては、JISの冬の試験条件である温度15℃がカバーされるように15℃より低い外気温度13℃から、夏の試験条件である温度30℃がカバーされるように30℃より高い外気温度33℃までを、三等分して、19℃、26℃を領域の境界の外気温度に設定した。
外気の湿度に関しては、JISの冬の試験条件である湿度55%がカバーされるように55%より5%高い外気の湿度60%から、夏の試験条件である湿度70%がカバーされるように70%より5%高い外気の湿度75%までの間を2分割し、便宜的に65%を設定し、3つの領域に分ける外気の湿度の境界とした。
Therefore, with respect to the outside air temperature, the temperature of 30 ° C., which is the summer test condition, is covered from the outside air temperature of 13 ° C., which is lower than 15 ° C., so that the temperature of 15 ° C., which is the JIS winter test condition, is covered. The outside air temperature higher than 33 ° C. was divided into three equal parts, and 19 ° C. and 26 ° C. were set as the outside air temperature at the boundary of the region.
As for the humidity of the outside air, the humidity of 55%, which is JIS winter test conditions, is covered so that the humidity of the outside air is 60%, which is 5% higher than 55%. The outside air humidity of 75%, which is 5% higher than 70%, was divided into two, and for convenience, 65% was set as the boundary of the outside air humidity divided into three regions.

なお、三方弁34をB側切り替える(バイパスパイプ32に高温の冷媒を流す)時間を求める場合、境界の湿度を65%より高く設定すれば、三方弁34をB側に切り替える時間が短くなり(三方弁34をA側に切り替える時間が長くなり)、境界の湿度を65%より低く設定すれば、三方弁34をB側に切り替える時間が長くなる(三方弁34をA側に切り替える時間が短くなる)。この関係より、設定した湿度65%は1つのメドとして設定したものである。   When obtaining the time for switching the three-way valve 34 to the B side (flowing a high-temperature refrigerant through the bypass pipe 32), setting the boundary humidity higher than 65% shortens the time for switching the three-way valve 34 to the B side ( If the boundary humidity is set lower than 65%, the time for switching the three-way valve 34 to the B side becomes longer (the time for switching the three-way valve 34 to the A side becomes shorter). Become). From this relationship, the set humidity of 65% is set as one med.

これにより、領域1として、外気温度26℃〜33℃および外気の湿度0〜75%とする。
領域2として、外気温度19℃〜26℃および外気の湿度0〜65%とする。
領域3として、外気温度13℃〜19℃および外気の湿度0〜60%とする。
領域0は、領域1、2、3以外の領域とする。領域0では、三方弁34をA側に切り替える(高温の冷媒を放熱パイプ33に流す)固定制御としたので、仕切壁(25、26、27、28)の前方開口縁(図5参照)に露が付くことはない。
Thus, the region 1 is set to an outside air temperature of 26 ° C. to 33 ° C. and an outside air humidity of 0 to 75%.
As the region 2, the outside air temperature is 19 ° C. to 26 ° C. and the outside air humidity is 0 to 65%.
As the region 3, the outside air temperature is 13 ° C. to 19 ° C. and the outside air humidity is 0 to 60%.
Region 0 is a region other than regions 1, 2, and 3. In the area 0, the three-way valve 34 is switched to the A side (high-temperature refrigerant is allowed to flow through the heat radiating pipe 33) and fixed control is performed. Therefore, the front opening edge (see FIG. 5) of the partition walls (25, 26, 27, 28) is used. There is no dew.

各領域1〜3で、仕切壁(25、26、27、28)の前方開口縁(図5参照)に露が付かないことを条件に、ある(一定)時間のうちで、三方弁34をA側に切り替え、高温の冷媒を放熱パイプ33に流す時間、および、三方弁34をB側に切り替え、高温の冷媒をバイパスパイプ32に流す時間を決定する。   In each region 1 to 3, within a certain (constant) time, the three-way valve 34 is turned on, provided that there is no dew on the front opening edge (see FIG. 5) of the partition walls (25, 26, 27, 28). The time is switched to the A side, and the time for flowing the high-temperature refrigerant to the heat radiating pipe 33 and the time for switching the three-way valve 34 to the B side and flowing the high-temperature refrigerant to the bypass pipe 32 are determined.

つまり、ある(一定)時間のうちどの位の時間、三方弁34をA側からB側に切り替え、高温の冷媒をバイパスパイプ32に流しても仕切壁(25、26、27、28)の前方開口縁(図5参照)に露が付かないかを見極めることを繰り返し、当該ある(一定)時間内における三方弁34をB側に切り替える時間と三方弁34をA側に切り替える時間との組み合わせを決定する。   That is, even if the three-way valve 34 is switched from the A side to the B side for a certain (constant) time, and the high-temperature refrigerant flows through the bypass pipe 32, the front of the partition walls (25, 26, 27, 28) It is repeatedly determined whether or not dew is formed on the opening edge (see FIG. 5), and a combination of a time for switching the three-way valve 34 to the B side and a time for switching the three-way valve 34 to the A side within the certain (constant) time. decide.

ここで、三方弁34をB側に切り替える(高温の冷媒をバイパスパイプ32に流す)時間の割合が最も大きくなるように、組み合わせを決定することが望ましい。庫内への放熱パイプ33の高温の冷媒の熱侵入が抑制され、省電力化に資するからである。
なお、図7の斜線の領域0は、前記したように、三方弁34をA側に固定する制御、すなわち、高温の冷媒を放熱パイプ33へ流すことを継続する領域である。
Here, it is desirable to determine the combination so that the ratio of the time for switching the three-way valve 34 to the B side (flowing high-temperature refrigerant to the bypass pipe 32) becomes the largest. This is because heat penetration of the high-temperature refrigerant in the heat radiating pipe 33 into the cabinet is suppressed, which contributes to power saving.
In addition, the hatched area 0 in FIG. 7 is an area in which the control for fixing the three-way valve 34 to the A side, that is, the flow of high-temperature refrigerant to the heat radiating pipe 33 is continued as described above.

三方弁34のB側への切り替え時間(後記の図9の時間帯Bt)、すなわち高温の冷媒をバイパスパイプ32に流す時間は、次の関係であることが確認された。
すなわち、領域1のB側切り替え時間<領域2のB側切り替え時間<領域3のB側切り替え時間 である。
It was confirmed that the switching time of the three-way valve 34 to the B side (time zone Bt in FIG. 9 to be described later), that is, the time for flowing the high-temperature refrigerant to the bypass pipe 32 is as follows.
That is, B-side switching time of region 1 <B-side switching time of region 2 <B-side switching time of region 3.

例えば、領域1(外気温度26℃〜33℃、外気の湿度0〜75%)で10分、領域2(外気温度19℃〜26℃、外気の湿度0〜65%)で15分、領域3(外気温度13℃〜19℃、外気の湿度0〜60%)で20分、三方弁34をB側に切り替え高温の冷媒をバイパスパイプ32に流しても、仕切壁(25、26、27、28)の前方開口縁(図5参照)に露が付かないことが確認された。
一方、決定される三方弁34のA側への切り替え時間(後記の図9の時間帯At)、すなわち高温の冷媒を放熱パイプ33に流す時間は、次の関係にある。
領域1のA側切り替え時間>領域2のA側切り替え時間>領域3のA側切り替え時間
図7に示す領域0〜3と各領域0〜3に対応するA側/B側切り替え時間およびA側への固定は、予め決定され、テーブル、マップ、プログラムソースなどによりメモリ(ROM)に記憶されている。
For example, region 1 (outside air temperature 26 ° C. to 33 ° C., outside air humidity 0 to 75%) 10 minutes, region 2 (outside air temperature 19 ° C. to 26 ° C., outside air humidity 0 to 65%) 15 minutes, region 3 Even if the three-way valve 34 is switched to the B side for 20 minutes at an outside air temperature of 13 ° C. to 19 ° C. and an outside air humidity of 0 to 60%, the partition walls (25, 26, 27, 28) It was confirmed that no dew is formed on the front opening edge (see FIG. 5).
On the other hand, the determined switching time of the three-way valve 34 to the A side (time zone At in FIG. 9 to be described later), that is, the time during which the high-temperature refrigerant flows through the heat radiating pipe 33 has the following relationship.
A side switching time of area 1> A side switching time of area 2> A side switching time of area 3 A side / B side switching time and A side corresponding to areas 0 to 3 and areas 0 to 3 shown in FIG. The fixed value is determined in advance and stored in a memory (ROM) by a table, a map, a program source, or the like.

<三方弁34の切り替え制御の例>
次に、図8を用いた三方弁34の切り替え制御の例について説明する。
説明した方法を冷蔵庫1の運転の制御に適用した例を図9に示す。
図9は、圧縮機の運転ON/OFFと三方弁の動作制御を示すタイムチャートである。図9の横軸は時間であり、図9の縦軸は三方弁のA開(出口34bが開で放熱パイプ33へ冷媒流す)/全開/B開(出口34cが開でバイパスパイプ32へ冷媒流す)/全閉の動作、三方弁のA側固定条件成立(図7の領域0)/不成立、圧縮機ON/OFFをとっている。
<Example of switching control of the three-way valve 34>
Next, an example of switching control of the three-way valve 34 using FIG. 8 will be described.
An example in which the described method is applied to control of the operation of the refrigerator 1 is shown in FIG.
FIG. 9 is a time chart showing compressor ON / OFF operation and three-way valve operation control. The horizontal axis in FIG. 9 is the time, and the vertical axis in FIG. 9 is the three-way valve A open (the outlet 34b is open and the refrigerant flows to the heat radiating pipe 33) / full open / B open (the outlet 34c is open and the refrigerant flows to the bypass pipe 32) Flow) / full-closed operation, A-side fixed condition of the three-way valve is satisfied (area 0 in FIG. 7) / not satisfied, and the compressor is ON / OFF.

図9の時刻t1まで圧縮機16はOFF中である。
図9の時刻t1までの圧縮機16がOFF中(冷却運転停止中)に、外気湿度センサ22で測定した湿度を、図7を用いて次の時刻t1〜t8の圧縮機16がON中の冷却運転における三方弁34のA側/B側の切り替え時間を決定する際に使用する。これは、前記したように、冷蔵庫1の運転中(圧縮機16がON時)は外気湿度センサ22の測定値の変動が大きく正確な外気の湿度が測定できないからである。
The compressor 16 is OFF until time t1 in FIG.
While the compressor 16 until time t1 in FIG. 9 is OFF (cooling operation is stopped), the humidity measured by the outside air humidity sensor 22 is used to determine whether the compressor 16 at the next time t1 to t8 is ON using FIG. This is used when determining the switching time of the A side / B side of the three-way valve 34 in the cooling operation. This is because, as described above, during the operation of the refrigerator 1 (when the compressor 16 is ON), the measured value of the outside air humidity sensor 22 varies greatly and the accurate outside air humidity cannot be measured.

そして、この外気湿度センサ22で測定した湿度とt1前の現時点の外気温度センサ21で測定した外気温とを使用して、メモリ(ROM)に記憶された図7の情報および領域0〜3にそれぞれ対応するB側/A側の切り替え時間またはA側に固定であるかの情報を用いて、領域0〜3の何れの領域にあるか決定し、対応するB側/A側の切り替え時間またはA側に固定であるか求める。
これにより、三方弁34をB側に切り替える時間、すなわち高温の冷媒をバイパスパイプ32に流す時間(図9の時間Bt)および三方弁34をA側に切り替える時間、すなわち高温の冷媒を放熱パイプ33に流す時間(図9の時間At)またはA側に固定であるかが決定される。以下、このような手順で、外気湿度センサ22で測定した湿度と外気温度センサ21で測定した外気温とを使用して、三方弁34のB側/A側の切り替えまたはA側に固定するかの制御が行われる。
Then, using the humidity measured by the outside air humidity sensor 22 and the outside air temperature measured by the outside air temperature sensor 21 at the present time before t1, the information shown in FIG. 7 and the areas 0 to 3 stored in the memory (ROM) are stored. Using information on whether the corresponding B side / A side switching time or A side is fixed, it is determined which of the areas 0 to 3 is present, and the corresponding B side / A side switching time or Determine whether it is fixed on the A side.
Thus, the time for switching the three-way valve 34 to the B side, that is, the time for flowing the high-temperature refrigerant to the bypass pipe 32 (time Bt in FIG. 9) and the time for switching the three-way valve 34 to the A side, that is, the high-temperature refrigerant for the heat radiating pipe 33 It is determined whether it is fixed on the A side (time At in FIG. 9) or on the A side. In the following procedure, whether the three-way valve 34 is switched to the B side / A side or fixed to the A side using the humidity measured by the outside air humidity sensor 22 and the outside air temperature measured by the outside air temperature sensor 21. Is controlled.

図9の時刻t1に至ると、圧縮機16がONする。時刻t1前の現時点の外気温度センサ21で測定した外気温と予め圧縮機16がOFF中(冷却運転停止中)に外気湿度センサ22で測定した湿度とから、メモリ(ROM)の図7などの情報を用いて、領域0〜3の何れかおよび対応するA側の切り替え時間(At1)(この場合、領域1〜3の何れかである)を決定する。そして、図7を用いて決定された切り替え時間At1(時刻t1〜t2まで)の間、三方弁34はA側に切り替えられ、高温の冷媒が放熱パイプ33(図4参照)に流される。
時刻t2に至ると、時刻t2前の現時点の外気温度センサ21で測定した外気温と予め圧縮機16がOFF中(冷却運転停止中)に外気湿度センサ22で測定した湿度とから、メモリ(ROM)の図7などの情報を用いて、領域0〜3の何れかおよび対応するB側の切り替え時間(Bt1)(この場合、領域1〜3の何れかである)を決定し、求めた切り替え時間Bt1(時刻t2〜t3まで)の間、三方弁34はB側に切り替えられ、高温の冷媒がバイパスパイプ32(図4参照)に流される。
When time t1 in FIG. 9 is reached, the compressor 16 is turned on. From the outside air temperature measured by the outside air temperature sensor 21 at the present time before time t1 and the humidity measured by the outside air humidity sensor 22 in advance while the compressor 16 is OFF (cooling operation is stopped), the memory (ROM) such as FIG. Using the information, any one of the areas 0 to 3 and the corresponding A-side switching time (At1) (in this case, any of the areas 1 to 3) are determined. Then, during the switching time At1 (from time t1 to t2) determined using FIG. 7, the three-way valve 34 is switched to the A side, and the high-temperature refrigerant is caused to flow through the heat radiating pipe 33 (see FIG. 4).
When the time t2 is reached, the memory (ROM) is obtained from the outside air temperature measured by the current outside air temperature sensor 21 before the time t2 and the humidity previously measured by the outside air humidity sensor 22 while the compressor 16 is OFF (cooling operation is stopped). 7 is used to determine any one of the areas 0 to 3 and the corresponding B side switching time (Bt1) (in this case, any one of the areas 1 to 3), and the obtained switching. During time Bt1 (from time t2 to t3), the three-way valve 34 is switched to the B side, and a high-temperature refrigerant is caused to flow through the bypass pipe 32 (see FIG. 4).

時刻t3に至ると、時刻t3前の現時点の外気温度センサ21で測定した外気温と予め圧縮機16がOFF中(冷却運転停止中)に外気湿度センサ22で測定した湿度とから、メモリ(ROM)の図7などの情報を用いて、領域0〜3の何れかおよび対応するA側の切り替え時間(At2)(この場合、領域1〜3の何れかである)を決定する。そして、求めた切り替え時間At2(時刻t3〜t4まで)の間、三方弁34はA側に切り替えられ、高温の冷媒が放熱パイプ33(図4参照)に流される。   When time t3 is reached, a memory (ROM) is obtained from the outside air temperature measured by the current outside air temperature sensor 21 before time t3 and the humidity previously measured by the outside air humidity sensor 22 while the compressor 16 is OFF (cooling operation is stopped). 7) or the like and the corresponding A-side switching time (At2) (in this case, any one of the regions 1 to 3) is determined. Then, during the obtained switching time At2 (from time t3 to t4), the three-way valve 34 is switched to the A side, and the high-temperature refrigerant is caused to flow through the heat radiating pipe 33 (see FIG. 4).

時刻t4に至ると、時刻t4前の現時点の外気温度センサ21で測定した外気温と予め圧縮機16がOFF中(冷却運転停止中)に外気湿度センサ22で測定した湿度とから、メモリ(ROM)の図7などの情報を用いて、領域0〜3の何れかおよび対応するB側の切り替え時間(Bt2)(この場合、領域1〜3の何れかである)を決定する。そして、求めた切り替え時間Bt2(時刻t4〜t5まで)の間、三方弁34はB側に切り替えられ、高温の冷媒がバイパスパイプ32(図4参照)に流される。   When time t4 is reached, a memory (ROM) is obtained from the outside air temperature measured by the outside air temperature sensor 21 at the present time before time t4 and the humidity measured by the outside air humidity sensor 22 while the compressor 16 is turned off (cooling operation is stopped) in advance. 7) or the like and the corresponding B-side switching time (Bt2) (in this case, any one of the regions 1 to 3) is determined. Then, during the obtained switching time Bt2 (from time t4 to t5), the three-way valve 34 is switched to the B side, and a high-temperature refrigerant is caused to flow through the bypass pipe 32 (see FIG. 4).

時刻t5に至ると、時刻t5前の現時点の外気温度センサ21で測定した外気温と予め圧縮機16がOFF中(冷却運転停止中)に外気湿度センサ22で測定した湿度とから、同様にして、領域0〜3の何れかおよび切り替え時間At3(この場合、領域1〜3の何れかである)を決定する。そして、求めた切り替え時間At3の間、三方弁34はA側に切り替えられ、高温の冷媒が放熱パイプ33(図4参照)に流される。   When time t5 is reached, similarly, from the outside air temperature measured by the current outside air temperature sensor 21 before time t5 and the humidity previously measured by the outside air humidity sensor 22 while the compressor 16 is OFF (cooling operation is stopped). Any one of the areas 0 to 3 and the switching time At3 (in this case, any one of the areas 1 to 3) are determined. Then, during the obtained switching time At3, the three-way valve 34 is switched to the A side, and a high-temperature refrigerant is caused to flow through the heat radiating pipe 33 (see FIG. 4).

ところで、外気温度センサ21を随時測定値がサンプリングされるが、図9の時刻t6で、外気温度センサ21で測定した外気温と予め圧縮機16がOFF中(冷却運転停止中)に外気湿度センサ22で測定した湿度とが、図7の領域0にあることが判定されたので、三方弁34をA側に固定とする(図9の時刻t6〜t10)。   By the way, the measured values of the outside air temperature sensor 21 are sampled at any time. At time t6 in FIG. 9, the outside air humidity sensor is measured while the outside air temperature measured by the outside air temperature sensor 21 and the compressor 16 are turned off in advance (the cooling operation is stopped). Since it is determined that the humidity measured at 22 is in the region 0 of FIG. 7, the three-way valve 34 is fixed to the A side (time t6 to t10 of FIG. 9).

一方、図9の時刻t6で領域0にあると判定されない場合、前記したように、図7を用いて、領域0〜3の何れかおよび切り替え時間At3(この場合、領域1〜3の何れかである)が決定され、求めた切り替え時間At3(時刻t5〜t7まで)の間、三方弁34はA側に切り替えられ、高温の冷媒が放熱パイプ33(図4参照)に流される。   On the other hand, if it is not determined that it is in region 0 at time t6 in FIG. 9, as described above, any of regions 0 to 3 and switching time At3 (in this case, any of regions 1 to 3) are used. The three-way valve 34 is switched to the A side during the obtained switching time At3 (from time t5 to t7), and the high-temperature refrigerant is caused to flow through the heat radiating pipe 33 (see FIG. 4).

時刻t7に至ると、同様にして、三方弁34はB側に切り替えられ、高温の冷媒がバイパスパイプ32(図4参照)に流されるが、圧縮機16がONからOFFになる(時刻t8)ので、圧縮機16がOFFの間、三方弁34はA側に切り替えられ、高温の冷媒が放熱パイプ33(図4)に流される。圧縮機16が停止中(OFF中)(時刻t8〜t9)であるので、外気湿度センサ22で外気の湿度が測定される。   At time t7, similarly, the three-way valve 34 is switched to the B side, and the high-temperature refrigerant flows through the bypass pipe 32 (see FIG. 4), but the compressor 16 is turned from ON to OFF (time t8). Therefore, while the compressor 16 is OFF, the three-way valve 34 is switched to the A side, and a high-temperature refrigerant flows through the heat radiating pipe 33 (FIG. 4). Since the compressor 16 is stopped (OFF) (time t8 to t9), the outside air humidity sensor 22 measures the outside air humidity.

図9の時刻t9に至ると、時刻t8〜t9の圧縮機16がOFF中の外気の湿度と、時刻t9前の現時点の外気温度センサ21で測定した外気温とでメモリ(ROM)の図7などの情報を用いて、領域0〜3の何れかおよび対応するB側の切り替え時間(At4)(この場合、領域1〜3の何れかである)を決定する。そして、求めた切り替え時間At4(図9の時刻t9〜t11まで)の間、三方弁34はA側に切り替えられ、高温の冷媒が放熱パイプ33(図4参照)に流される。   When time t9 in FIG. 9 is reached, the humidity of the outside air during which the compressor 16 from time t8 to t9 is OFF and the outside air temperature measured by the current outside air temperature sensor 21 before time t9 are shown in FIG. Is used to determine any of the areas 0 to 3 and the corresponding B side switching time (At4) (in this case, any of the areas 1 to 3). Then, during the obtained switching time At4 (from time t9 to t11 in FIG. 9), the three-way valve 34 is switched to the A side, and a high-temperature refrigerant is caused to flow through the heat radiating pipe 33 (see FIG. 4).

図9の時刻t11に至ると、時刻t11前の現時点の外気温度センサ21で測定した外気温と予め圧縮機16がOFF中(冷却運転停止中)(図9の時刻t8〜t9)に外気湿度センサ22で測定した湿度とから、同様にして、領域0〜3および対応するB側の切り替え時間(Bt4)を決定する。そして、求めた切り替え時間Bt4、三方弁34はB側に切り替えられ、高温の冷媒がバイパスパイプ32(図4参照)に流される。
以後、同様な制御が行われる。
When time t11 in FIG. 9 is reached, the outside air temperature measured by the current outside air temperature sensor 21 before time t11 and the outside air humidity when the compressor 16 is OFF (cooling operation is stopped) in advance (time t8 to t9 in FIG. 9). Similarly, from the humidity measured by the sensor 22, the switching times (Bt4) on the areas 0 to 3 and the corresponding B side are determined. Then, the obtained switching time Bt4, the three-way valve 34 is switched to the B side, and a high-temperature refrigerant is caused to flow through the bypass pipe 32 (see FIG. 4).
Thereafter, similar control is performed.

なお、実施形態1では、外気温度センサ21での外気温の測定を、随時、現時点での測定値を用いる場合を例示したが、冷蔵庫1の冷却運転の影響を受けないように、圧縮機16の停止中に行うようにしてもよい。
この場合、図9に示す圧縮機16の稼働中の時刻t1〜t8までの外気温度センサ21での測定値は、時刻t1までの圧縮機16の停止中に測定したものを用い、三方弁34の切り替え時間は、時刻t1までの圧縮機16の停止中の外気温度センサ21の測定値および外気湿度センサ22の測定値を用いて、メモリ(ROM)の図7などの情報を用いて、領域0〜3の何れかおよび対応するA側/B側の切り替え時間またはA側に固定かを決定する。そして、三方弁34の制御を行う。
In the first embodiment, the case where the measured value at the present time is used as needed for the measurement of the outside air temperature by the outside temperature sensor 21 is exemplified. However, the compressor 16 is not affected by the cooling operation of the refrigerator 1. You may make it carry out during the stop of.
In this case, the measured value at the outside air temperature sensor 21 from the time t1 to the time t8 during operation of the compressor 16 shown in FIG. 9 is the one measured while the compressor 16 is stopped until the time t1, and the three-way valve 34 is used. The switching time of the region is determined by using the measured value of the outside air temperature sensor 21 and the measured value of the outside air humidity sensor 22 during the stop of the compressor 16 until time t1, and using information such as FIG. 7 in the memory (ROM). It is determined whether any of 0 to 3 and the corresponding A side / B side switching time or A side fixed. Then, the three-way valve 34 is controlled.

同様に、圧縮機16の稼働中の時刻t9〜の外気温度センサ21での測定値は、時刻t8からt9までの圧縮機16の停止中に測定したものを用い、三方弁34の切り替え時間は、時刻t8からt9までの圧縮機16の停止中の外気温度センサ21の測定値および外気湿度センサ22の測定値を用いて、メモリ(ROM)の図7などの情報を用いて、領域0〜3の何れかおよび対応するA側/B側の切り替え時間またはA側に固定かを決定し、三方弁34の制御を行う。   Similarly, the measured value at the outside air temperature sensor 21 from time t9 to time t9 when the compressor 16 is in operation is measured while the compressor 16 is stopped from time t8 to t9, and the switching time of the three-way valve 34 is From the time t8 to the time t9, the measured value of the outside air temperature sensor 21 and the measured value of the outside air humidity sensor 22 during the stop of the compressor 16 are used, and the information in the area 0 to 3 and the corresponding A-side / B-side switching time or A-side fixed time is determined, and the three-way valve 34 is controlled.

実施形態1によれば、外気の湿度を測定する外気湿度センサ22を、扉(2a、2b)開閉による冷気の流出による冷蔵室温度や湿度変化の影響、機械室15の周辺の庫外送風機42による放熱、ほこりの影響が少なく露付きの生じにくい冷蔵庫本体1Hの上部の外気センサカバー41内、または、制御基板40の収納部の近傍に配置している。外気湿度センサ22は水浸入防止のために半密閉構造としているが、冷蔵庫1の冷却運転停止中に外気の湿度の測定を行うため、冷却運転の影響を受けることが抑制される。   According to the first embodiment, the outside air humidity sensor 22 that measures the humidity of the outside air is connected to the outside fan 42 around the machine room 15 by the influence of a change in the temperature and humidity of the refrigerator due to the outflow of cold air by opening and closing the doors (2a, 2b). It is arranged in the outside air sensor cover 41 at the upper part of the refrigerator main body 1H, which is less affected by heat radiation and dust and hardly causes dew formation, or in the vicinity of the storage portion of the control board 40. Although the outside air humidity sensor 22 has a semi-hermetic structure for preventing water intrusion, since the outside air humidity is measured while the cooling operation of the refrigerator 1 is stopped, the influence of the cooling operation is suppressed.

従って、外気の湿度が精度よく検知され、外気温度と外気湿度の領域にあらかじめ算定された切り替え時間で、三方弁34を切り替え制御する。これにより、仕切壁(25、26、27、28)の前方開口縁の放熱パイプ33に高温の冷媒を必要以上に流さずに済み、より少ないエネルギ消費で防露を行う(結露を抑制する)ことができる。   Accordingly, the humidity of the outside air is detected with high accuracy, and the three-way valve 34 is switched and controlled in a switching time calculated in advance in the region of the outside air temperature and the outside air humidity. Thereby, it is not necessary to flow a high-temperature refrigerant more than necessary to the heat radiating pipe 33 at the front opening edge of the partition walls (25, 26, 27, 28), and dew prevention is performed with less energy consumption (dew condensation is suppressed). be able to.

なお、実施形態1で説明した図7の三方弁34の切り替え時間を求める方法は、あくまでも一例であり、三方弁34をB側に切り替える時間(バイパスパイプ32に高温の冷媒を流す時間)およびA側に切り替える時間(放熱パイプ33に高温の冷媒を流す時間)は、さらに詳細に領域を区分けして切り替え時間を求めてもよい。これにより、更なる省電力化が可能である。
このように、他の外気温度の条件、外気の湿度の条件を設定して、三方弁34の切り替え時間を求めてもよく、限定されない。
The method for obtaining the switching time of the three-way valve 34 in FIG. 7 described in the first embodiment is merely an example, and the time for switching the three-way valve 34 to the B side (the time for flowing a high-temperature refrigerant through the bypass pipe 32) and A The time for switching to the side (the time for flowing the high-temperature refrigerant through the heat radiating pipe 33) may be determined by dividing the region in more detail. Thereby, further power saving is possible.
As described above, the switching time of the three-way valve 34 may be obtained by setting other outdoor temperature conditions and outdoor humidity conditions, and is not limited.

<<実施形態2>>
実施形態2は、図1に示す冷蔵室扉2a,2b間の回転シキリ23への露付きを抑制する回転シキリヒータ24への通電量を減少させる制御を行うものである。
以下の制御では、図3に示す外気温度センサ21での外気温度の測定値を5秒周期でサンプリングする。なお、外気温度センサ21での外気温度の測定は、圧縮機16がON時および/または圧縮機16がOFF時に行ってもよいが、圧縮機16の停止中(OFF時)(冷却運転の停止中)に測定するのが望ましい。
<< Embodiment 2 >>
In the second embodiment, control is performed to reduce the energization amount to the rotary threshold heater 24 that suppresses dew on the rotary threshold 23 between the refrigerator doors 2a and 2b shown in FIG.
In the following control, the measured value of the outside temperature at the outside temperature sensor 21 shown in FIG. 3 is sampled at a cycle of 5 seconds. The measurement of the outside air temperature by the outside air temperature sensor 21 may be performed when the compressor 16 is ON and / or when the compressor 16 is OFF, but the compressor 16 is stopped (when OFF) (stop of cooling operation). (Medium) is preferable.

これにより、冷却運転の影響を受けない状態で外気温度の測定が行える。この場合、図10中など実施形態2の説明に使用する外気温度とは、圧縮機16の停止中のものとなる。
また、図2に示す冷蔵室2の冷蔵室温度センサ17で測定した温度測定値を5秒周期でサンプリングする。
図3に示す外気湿度センサ22は、圧縮機16の停止中での湿度測定値をサンプリングする。
As a result, the outside air temperature can be measured without being affected by the cooling operation. In this case, the outside air temperature used in the description of the second embodiment such as in FIG. 10 is the one during which the compressor 16 is stopped.
Moreover, the temperature measured value measured with the refrigerator temperature sensor 17 of the refrigerator compartment 2 shown in FIG. 2 is sampled with a period of 5 seconds.
The outside air humidity sensor 22 shown in FIG. 3 samples the humidity measurement value when the compressor 16 is stopped.

図10は、実施形態2の外気温度に対する回転シキリヒータの通電率(duty)の関係を示す図である。図10の横軸は外気温度センサ21で測定した外気温度であり、図10の縦軸は回転シキリヒータ24の通電率(duty)である。
回転シキリヒータ24の通電率(duty)とは、定格電流をある時間のうち何%の時間流すかを表すものである。例えば、10sec(秒)のうち6sec(秒)回転シキリヒータに定格電流を流すと通電率(duty)は、60%である。
FIG. 10 is a diagram illustrating the relationship between the duty ratio of the rotary threshold heater and the outside air temperature according to the second embodiment. The horizontal axis in FIG. 10 is the outside air temperature measured by the outside air temperature sensor 21, and the vertical axis in FIG. 10 is the duty ratio of the rotary threshold heater 24.
The energization rate (duty) of the rotation threshold heater 24 represents how much of the rated current flows for a certain period of time. For example, when a rated current is passed through a rotary heater for 6 seconds (seconds) in 10 seconds (seconds), the duty ratio (duty) is 60%.

図10より、外気温度センサ21で測定した外気温10℃までは、回転シキリヒータ24の通電率(duty)の0%で回転シキリ23への露付きはない。一方、外気温度センサ21で測定した外気温36℃以上では、回転シキリヒータ24の通電率(duty)の100%(基準の通電率)で回転シキリ23への露付きが抑制される。
これらのことから、外気温度センサ21で測定した外気温10℃から36℃までは、外気温10℃、通電率(duty)0%と外気温36℃、通電率(duty)の100%を結ぶことで、外気温10℃から36℃の回転シキリヒータ24への露付きが抑制される回転シキリヒータ24の通電率(duty)(基準の通電率)が決定される。
From FIG. 10, until the outside air temperature measured by the outside air temperature sensor 21 reaches 10 ° C., there is no dew on the rotation roller 23 at 0% of the duty ratio of the rotation roller heater 24. On the other hand, when the outside air temperature measured by the outside air temperature sensor 21 is 36 ° C. or higher, the exposure to the rotation roller 23 is suppressed at 100% of the current supply rate (duty) of the rotation screw heater 24 (reference current supply rate).
Therefore, the outside air temperature measured by the outside air temperature sensor 21 from 10 ° C. to 36 ° C. connects the outside air temperature of 10 ° C., the duty factor (duty) 0%, the outside air temperature 36 ° C., and the duty factor (duty) 100%. Thus, the energization rate (duty) (reference energization rate) of the rotary threshold heater 24 that suppresses the dew on the rotary threshold heater 24 at an outside temperature of 10 ° C. to 36 ° C. is determined.

次に、図2に示す冷蔵室2の冷蔵室温度センサ17で測定した温度で図10に示す通電率(duty)をシフト(増減)する制御を説明する。
図11は、図10に示す通電率(duty)をシフト(増減)する制御を示す図である。図11の下方の数字は、冷蔵室温度センサ17で測定した冷蔵室2の温度である。図11の上方の数字は、冷蔵室2の温度帯での図10に示す通電率(duty)のシフト(増減)値である。このシフト値は回転シキリヒータ24への露付きがないことを条件に設定したものである。
Next, control for shifting (increasing / decreasing) the energization rate (duty) shown in FIG. 10 with the temperature measured by the refrigerator temperature sensor 17 of the refrigerator compartment 2 shown in FIG. 2 will be described.
FIG. 11 is a diagram showing a control for shifting (increasing or decreasing) the power supply rate (duty) shown in FIG. The number in the lower part of FIG. 11 is the temperature of the refrigerator compartment 2 measured by the refrigerator compartment temperature sensor 17. The numbers in the upper part of FIG. 11 are shift (increase / decrease) values of the duty ratio (duty) shown in FIG. 10 in the temperature zone of the refrigerator compartment 2. This shift value is set on the condition that there is no dew on the rotary threshold heater 24.

本制御は、冷蔵室温度センサ17で測定した4点の温度の閾値(1℃、3℃、6℃、18℃)に基づき、図10に示す通電率(duty)をシフトする。
冷蔵室2の温度が1℃未満では、図10に示す通電率(duty)を+5%シフトする。
冷蔵室2の温度が1℃〜3℃では、冷蔵室2の通常運転であるから、図10に示す通電率(duty)のシフトを行わない(±0%)。
This control shifts the duty ratio shown in FIG. 10 based on the four temperature threshold values (1 ° C., 3 ° C., 6 ° C., 18 ° C.) measured by the refrigerator temperature sensor 17.
When the temperature of the refrigerator compartment 2 is less than 1 ° C., the duty ratio (duty) shown in FIG. 10 is shifted by + 5%.
When the temperature of the refrigerator compartment 2 is 1 ° C. to 3 ° C., since the refrigerator compartment 2 is in a normal operation, the duty ratio (duty) shown in FIG. 10 is not shifted (± 0%).

冷蔵室2の温度が3℃〜6℃では、図10に示す通電率(duty)を−2%シフトする。
以下、同様にして、冷蔵室2の温度が18℃以上では、−100%シフトする(回転シキリヒータ24への通電が停止する)。
この回転シキリヒータ24の通電率(duty)の冷蔵室2の温度による回転シキリヒータ24の通電率(duty)のシフト(増減)で、回転シキリ23の露付き防止の制御が適正化され、冷蔵庫1の省電力化を図れる。
When the temperature of the refrigerator compartment 2 is 3 ° C. to 6 ° C., the duty ratio shown in FIG. 10 is shifted by −2%.
Thereafter, similarly, when the temperature of the refrigerator compartment 2 is 18 ° C. or higher, it is shifted by −100% (the energization to the rotary threshold heater 24 is stopped).
The shift (increase / decrease) in the energization rate (duty) of the rotary shike heater 24 depending on the temperature of the refrigerating chamber 2 of the energization rate (duty) of the rotary shike heater 24 makes the control of preventing the dew condensation of the rotary shike 23 appropriate. Power saving can be achieved.

次に、図3に示す外気湿度センサ22で測定した湿度で図10に示す通電率(duty)をシフト(増減)する制御を説明する。
図12は、図10に示す通電率(duty)をシフトする制御の他例を示す図である。図12の下方の数字は、圧縮機16の停止中に外気湿度センサ22で測定した湿度である。図12の上方の数字は、圧縮機16の停止中に外気湿度センサ22で測定した湿度帯での図10の通電率(duty)のシフト(増減)値である。このシフト値は回転シキリヒータ24への露付きがないことを条件に設定される。
Next, control for shifting (increasing / decreasing) the energization rate (duty) shown in FIG. 10 with the humidity measured by the outside air humidity sensor 22 shown in FIG. 3 will be described.
FIG. 12 is a diagram illustrating another example of the control for shifting the duty ratio shown in FIG. The numbers in the lower part of FIG. 12 are the humidity measured by the outside air humidity sensor 22 while the compressor 16 is stopped. The upper numbers in FIG. 12 are shift (increase / decrease) values of the duty ratio (duty) in FIG. 10 in the humidity band measured by the outside air humidity sensor 22 while the compressor 16 is stopped. This shift value is set on the condition that there is no dew on the rotary threshold heater 24.

本制御は、ユーザが、図1に示す操作パネル2sで消費電力を少なくする節電モードを選択した場合、圧縮機16の停止中に外気湿度センサ22で測定した4点の温度の閾値(90%、70%、50%、30%)(基準の湿度)に基づき、図10に示す通電率(duty)をシフト(増減)する。   In this control, when the user selects the power saving mode in which the power consumption is reduced on the operation panel 2s shown in FIG. 1, four temperature thresholds (90%) measured by the outside air humidity sensor 22 while the compressor 16 is stopped. , 70%, 50%, 30%) (reference humidity), the power supply rate (duty) shown in FIG. 10 is shifted (increased or decreased).

圧縮機16の停止中に外気湿度センサ22で測定した湿度70%を標準とした場合、湿度90〜70%、湿度70〜50%では標準湿度70%近くなので通電率(duty)のシフトは行わない(±0%)。つまり、図10の通電率(duty)で回転シキリヒータ24に通電する。
湿度90%以上では、図10に示す通電率(duty)を+6%シフトする。
湿度50%〜30%および湿度が30%より低い場合、図10に示す通電率(duty)を−6%シフトする。
When the humidity 70% measured by the outside air humidity sensor 22 during the stoppage of the compressor 16 is used as a standard, since the standard humidity is close to 70% at a humidity of 90 to 70% and a humidity of 70 to 50%, the duty ratio is shifted. No (± 0%). That is, the rotary threshold heater 24 is energized at the energization rate (duty) in FIG.
When the humidity is 90% or more, the duty ratio (duty) shown in FIG. 10 is shifted by + 6%.
When the humidity is 50% to 30% and the humidity is lower than 30%, the duty ratio shown in FIG. 10 is shifted by −6%.

なお、本例では、ユーザが、節電モードを選択した場合、図12に示す通電率(duty)のシフトを行う場合を例示したが、冷蔵庫1の通常運転時に図12に示す通電率(duty)のシフトを行い、ユーザが、手動で節電モードを選択した場合には外気湿度センサ22での図12に示す通電率(duty)のシフトを行わないように構成してもよい。そして、ユーザが手動で節電モードを選択したとき、湿度が高くなった場合には節電モードを解除する構成としてもよい。
湿度が高い場合とは、例えば、外気温度30℃で湿度75%、外気温度25℃で湿度65%、外気温度20℃で湿度60%などが挙げられる。
In this example, when the user selects the power saving mode, the case where the duty ratio (duty) shown in FIG. 12 is shifted is illustrated. However, the duty ratio (duty) shown in FIG. If the user manually selects the power saving mode, the outside air humidity sensor 22 may be configured not to shift the duty ratio (duty) shown in FIG. When the user manually selects the power saving mode, the power saving mode may be canceled when the humidity increases.
The case where the humidity is high includes, for example, 75% humidity at 30 ° C., 65% humidity at 25 ° C., 60% humidity at 20 ° C.

実施形態2によれば、外気温度と、冷蔵庫1の冷却運転の影響を受けない冷却運転停止中の外気湿度とからあらかじめ算定されたそれぞれの結露防止ヒータの通電量で、各結露防止ヒータを加温制御することで露付き抑制の制御が最適化される。そのため、より少ないエネルギ消費で防露(露付きの抑制)を行うことができる。   According to the second embodiment, each dew condensation prevention heater is added with the energization amount of each dew condensation prevention heater calculated in advance from the outside air temperature and the outside air humidity during the cooling operation stop that is not affected by the cooling operation of the refrigerator 1. Control of dew suppression is optimized by controlling the temperature. Therefore, it is possible to perform dew prevention (suppression of dew) with less energy consumption.

<<その他の実施形態>>
なお、前記実施形態では、外気湿度センサ22を冷蔵庫本体1Hの上部に配置した場合を例示したが、冷却運転の影響を受けないようなその他の冷蔵庫本体1H、冷蔵室扉2a、2bなどに配置してもよい。
<< Other Embodiments >>
In the above embodiment, the case where the outside air humidity sensor 22 is arranged on the upper part of the refrigerator main body 1H is exemplified. However, the external air humidity sensor 22 is arranged on the other refrigerator main body 1H, the refrigerator compartment doors 2a, 2b and the like that are not affected by the cooling operation. May be.

また、前記実施形態では、様々な構成を例示して説明したが、それぞれの構成を適宜組み合わせて構成してもよい。
なお、前記実施形態では、冷蔵室2と冷凍室(3、4、5)とを備える冷蔵庫を例示して説明したが、本発明は、冷蔵室のみを備える冷蔵庫や、冷凍室から成る冷凍庫にも幅広く適用可能である。
Moreover, although the said embodiment demonstrated and demonstrated various structures, you may comprise combining each structure suitably.
In addition, although the said embodiment illustrated and demonstrated the refrigerator provided with the refrigerator compartment 2 and the freezer compartment (3, 4, 5), this invention is a refrigerator provided only with a refrigerator compartment, and the freezer consisting of a freezer compartment. Is also widely applicable.

1 冷蔵庫
1S 冷凍サイクル
2 冷蔵室(貯蔵室)
2a 冷蔵室扉(扉)
2b 冷蔵室扉(扉)
2S 冷凍サイクル
3 製氷室(貯蔵室)
4 上段冷凍室(貯蔵室)
5 下段冷凍室(貯蔵室)
6 野菜室(貯蔵室)
7 蒸発器(冷凍サイクル)
16 圧縮機(冷凍サイクル)
21 外気温度センサ(温度測定手段)
22 外気湿度センサ(湿度測定手段)
23 回転シキリ(仕切り部分)
24 回転シキリヒータ(露付き抑制手段、結露防止用のヒータ)
25 上側断熱仕切壁(仕切壁)
26 下側断熱仕切壁(仕切壁)
27 横仕切部(仕切壁)
28 縦仕切部(仕切壁)
32 バイパスパイプ(冷凍サイクル)
33 放熱パイプ(露付き抑制手段、冷凍サイクル)
34 三方弁(切り替え手段、冷凍サイクル)
40 制御基板(制御手段)
1 Refrigerator 1S Refrigeration cycle 2 Refrigerated room (storage room)
2a Refrigeration room door (door)
2b Cold room door (door)
2S Refrigeration cycle 3 Ice making room (storage room)
4 Upper freezer room (storage room)
5 Lower freezer compartment (storage room)
6 Vegetable room (storage room)
7 Evaporator (refrigeration cycle)
16 Compressor (refrigeration cycle)
21 Outside air temperature sensor (temperature measuring means)
22 Outside air humidity sensor (humidity measurement means)
23 Rotating threshold (partition)
24 Rotating squeeze heater (dew condensation suppression means, heater for preventing condensation)
25 Upper heat insulation partition wall (partition wall)
26 Lower heat insulation partition wall (partition wall)
27 Horizontal partition (partition wall)
28 Vertical partition (partition wall)
32 Bypass pipe (refrigeration cycle)
33 Heat radiation pipe (dew condensation suppression means, refrigeration cycle)
34 Three-way valve (switching means, refrigeration cycle)
40 Control board (control means)

Claims (5)

食品を貯蔵する貯蔵室と、冷媒が循環するとともに前記貯蔵室を冷却する冷凍サイクルとを具備する冷蔵庫であって、
前記冷蔵庫の庫外の湿度を測定する湿度測定手段と、
前記冷蔵庫の庫外の温度を測定する温度測定手段と、
前記冷蔵庫への露付きを抑制する露付き抑制手段と、
前記冷凍サイクルの圧縮機の停止中に前記湿度測定手段で測定された湿度と、前記温度測定手段で測定された温度とに応じて、前記露付き抑制手段を制御する制御手段とを
備えることを特徴とする冷蔵庫。
A refrigerator comprising a storage room for storing food, and a refrigeration cycle for circulating the refrigerant and cooling the storage room,
Humidity measuring means for measuring the humidity outside the refrigerator;
Temperature measuring means for measuring the temperature outside the refrigerator;
Dew suppression means for suppressing dew condensation on the refrigerator;
Control means for controlling the dew condensation suppression means according to the humidity measured by the humidity measurement means while the compressor of the refrigeration cycle is stopped and the temperature measured by the temperature measurement means. Features a refrigerator.
前記露付き抑制手段は、前記貯蔵室を区分けする仕切壁の前方開口縁に設けられ、前記冷凍サイクルの圧縮機から排出される前記冷媒が流される放熱パイプであり、
前記放熱パイプに流れる冷媒をバイパスさせるバイパスパイプと、
前記圧縮機から排出される冷媒を、前記放熱パイプに流すか、または、前記バイパスパイプに流すか切り替える切り替え手段とを備え、
前記制御手段は、前記切り替え手段による前記切り替えを、前記湿度測定手段で測定された湿度と、前記温度測定手段で測定された温度とで定まる領域に応じて予め設定された切り替え時間を用いて行う
ことを特徴とする請求項1に記載の冷蔵庫。
The dew suppression means is a heat radiating pipe that is provided at a front opening edge of a partition wall that partitions the storage chamber and through which the refrigerant discharged from the compressor of the refrigeration cycle flows.
A bypass pipe for bypassing the refrigerant flowing through the heat radiating pipe;
Switching means for switching whether the refrigerant discharged from the compressor flows through the heat radiating pipe or the bypass pipe;
The control means performs the switching by the switching means using a switching time set in advance according to a region determined by the humidity measured by the humidity measuring means and the temperature measured by the temperature measuring means. The refrigerator according to claim 1.
前記露付き抑制手段は、前記貯蔵室を開閉する扉と扉の仕切り部分に設けられた結露防止用のヒータであり、
前記制御手段は、
前記温度測定手段で測定された温度に応じた前記結露防止用のヒータへの基準の通電率と、基準の湿度とを予め設定し、
前記湿度測定手段で測定された湿度が前記基準の湿度より高い場合には、前記結露防止用のヒータへの通電率を前記基準の通電率の設定値より高く設定する一方、前記湿度測定手段で測定された湿度が前記基準の湿度より低い場合には、前記結露防止用のヒータへの通電率を前記基準の通電率の設定値より低く設定する
ことを特徴とする請求項1または請求項2に記載の冷蔵庫。
The dew suppression means is a heater for preventing condensation provided on a door and a partition part of the door that opens and closes the storage chamber,
The control means includes
A reference energization rate to the heater for preventing condensation according to the temperature measured by the temperature measuring means, and a reference humidity are set in advance.
When the humidity measured by the humidity measuring unit is higher than the reference humidity, the energization rate to the dew condensation prevention heater is set higher than the set value of the reference energization rate, while the humidity measuring unit When the measured humidity is lower than the reference humidity, an energization rate to the dew condensation prevention heater is set lower than a set value of the energization rate of the reference. Refrigerator.
前記温度測定手段は、前記冷凍サイクルの圧縮機の停止中に前記庫外の温度を測定する
ことを特徴とする請求項1から請求項3のうちの何れか一項に記載の冷蔵庫。
The refrigerator according to any one of claims 1 to 3, wherein the temperature measuring unit measures a temperature outside the refrigerator while the compressor of the refrigeration cycle is stopped.
食品を貯蔵する貯蔵室と、冷媒が循環するとともに前記貯蔵室を冷却する冷凍サイクルとを具備する冷凍庫であって、
前記冷凍庫の庫外の湿度を測定する湿度測定手段と、
前記冷凍庫の庫外の温度を測定する温度測定手段と、
前記冷凍庫への露付きを抑制する露付き抑制手段と、
前記冷凍サイクルの圧縮機の停止中に前記湿度測定手段で測定された湿度と、前記温度測定手段で測定された温度とに応じて、前記露付き抑制手段を制御する制御手段とを
備えることを特徴とする冷凍庫。
A freezer comprising a storage room for storing food, and a refrigeration cycle for circulating the refrigerant and cooling the storage room,
Humidity measuring means for measuring the humidity outside the freezer;
Temperature measuring means for measuring the temperature outside the freezer;
Dew suppression means for suppressing dew condensation on the freezer;
Control means for controlling the dew condensation suppression means according to the humidity measured by the humidity measurement means while the compressor of the refrigeration cycle is stopped and the temperature measured by the temperature measurement means. Freezer featured.
JP2011211947A 2011-09-28 2011-09-28 Refrigerator and freezer Active JP5391250B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011211947A JP5391250B2 (en) 2011-09-28 2011-09-28 Refrigerator and freezer
CN201210305767.6A CN103033013B (en) 2011-09-28 2012-08-24 Refrigerator and ice locker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211947A JP5391250B2 (en) 2011-09-28 2011-09-28 Refrigerator and freezer

Publications (2)

Publication Number Publication Date
JP2013072595A true JP2013072595A (en) 2013-04-22
JP5391250B2 JP5391250B2 (en) 2014-01-15

Family

ID=48020169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211947A Active JP5391250B2 (en) 2011-09-28 2011-09-28 Refrigerator and freezer

Country Status (2)

Country Link
JP (1) JP5391250B2 (en)
CN (1) CN103033013B (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240724A (en) * 2013-06-12 2014-12-25 パナソニック株式会社 Refrigerator
JP2015001358A (en) * 2013-06-18 2015-01-05 パナソニック株式会社 Refrigerator
WO2015019740A1 (en) * 2013-08-09 2015-02-12 三菱電機株式会社 Refrigerator
JP2015068510A (en) * 2013-09-26 2015-04-13 株式会社東芝 Refrigerator
JP2015114015A (en) * 2013-12-10 2015-06-22 三菱電機株式会社 Refrigerator
JP2015152191A (en) * 2014-02-12 2015-08-24 株式会社東芝 refrigerator
JP2015190531A (en) * 2014-03-28 2015-11-02 日立アプライアンス株式会社 Refrigerant change-over valve and device with this valve
JP2016020796A (en) * 2014-07-16 2016-02-04 日立アプライアンス株式会社 refrigerator
JP2016044942A (en) * 2014-08-26 2016-04-04 パナソニックIpマネジメント株式会社 refrigerator
WO2016158134A1 (en) * 2015-03-31 2016-10-06 シャープ株式会社 Refrigerator
WO2017029782A1 (en) * 2015-08-20 2017-02-23 パナソニックIpマネジメント株式会社 Refrigerator
JP6096859B1 (en) * 2015-10-20 2017-03-15 三菱電機株式会社 refrigerator
JP2017187233A (en) * 2016-04-06 2017-10-12 東芝ライフスタイル株式会社 refrigerator
JP2018109490A (en) * 2017-01-06 2018-07-12 パナソニックIpマネジメント株式会社 refrigerator
JP2018112398A (en) * 2018-04-11 2018-07-19 東芝ライフスタイル株式会社 refrigerator
CN110044121A (en) * 2019-05-22 2019-07-23 长虹美菱股份有限公司 A kind of refrigerator door seal bar assembly and its control method
WO2019193626A1 (en) * 2018-04-02 2019-10-10 三菱電機株式会社 Refrigeration appliance
JP2021014982A (en) * 2020-11-10 2021-02-12 東芝ライフスタイル株式会社 refrigerator
WO2021186613A1 (en) * 2020-03-18 2021-09-23 三菱電機株式会社 Refrigerator
JP2021177109A (en) * 2020-05-08 2021-11-11 東芝ライフスタイル株式会社 refrigerator
WO2023285259A1 (en) * 2021-07-15 2023-01-19 BSH Hausgeräte GmbH Refrigerator and anti-condensation method therefor
WO2023138312A1 (en) * 2022-01-18 2023-07-27 青岛海尔电冰箱有限公司 Refrigerating and freezing device and control method therefor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6539093B2 (en) * 2015-04-20 2019-07-03 日立グローバルライフソリューションズ株式会社 refrigerator
CN105115221B (en) * 2015-07-23 2018-09-04 合肥美的电冰箱有限公司 Hinged cover and refrigerator
US10323875B2 (en) 2015-07-27 2019-06-18 Illinois Tool Works Inc. System and method of controlling refrigerator and freezer units to reduce consumed energy
CN105004126B (en) * 2015-08-05 2017-12-19 合肥美的电冰箱有限公司 Refrigerator refrigeration system and refrigerator
KR101811321B1 (en) * 2016-04-12 2017-12-29 동부대우전자 주식회사 Refrigerator and cool air flow module thereof
CN106016914B (en) * 2016-05-30 2019-02-22 Tcl家用电器(合肥)有限公司 Anti- dewdrop method for heating and controlling and device
CN106766578B (en) * 2016-12-23 2019-07-02 青岛海尔股份有限公司 The dewing-proof method and device of refrigerating equipment
CN112673223A (en) * 2018-09-11 2021-04-16 普和希控股公司 Cooling device
KR102630194B1 (en) 2019-01-10 2024-01-29 엘지전자 주식회사 Refrigerator
KR102665398B1 (en) 2019-01-10 2024-05-13 엘지전자 주식회사 Refrigerator
KR102679302B1 (en) * 2019-01-10 2024-07-01 엘지전자 주식회사 Refrigerator
US11480382B2 (en) 2019-01-10 2022-10-25 Lg Electronics Inc. Refrigerator
CN112586985A (en) * 2020-12-23 2021-04-02 六安索伊电器制造有限公司 High-efficient freeze-proof prevents beverage machine door that dew seals
JP2022104679A (en) * 2020-12-29 2022-07-11 アクア株式会社 refrigerator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257850A (en) * 1993-03-08 1994-09-16 Janome Sewing Mach Co Ltd Heating device for water in bathtub
JPH08159567A (en) * 1994-11-30 1996-06-21 Sanyo Electric Co Ltd Air conditioner
JP2000329445A (en) * 1999-05-20 2000-11-30 Hoshizaki Electric Co Ltd Low temperature storage chamber
JP2005090887A (en) * 2003-09-18 2005-04-07 Toshiba Corp Storage cabinet
JP3942688B2 (en) * 1997-05-29 2007-07-11 松下冷機株式会社 refrigerator
JP2009275964A (en) * 2008-05-14 2009-11-26 Panasonic Corp Refrigerator
JP2010243058A (en) * 2009-04-06 2010-10-28 Hoshizaki Electric Co Ltd Cooling storage

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04186078A (en) * 1990-11-16 1992-07-02 Sharp Corp Freezer and refrigerator
KR101000975B1 (en) * 2003-11-29 2010-12-13 주식회사 대우일렉트로닉스 Method for controlling cooling system of refrigerator
JP2009019808A (en) * 2007-07-11 2009-01-29 Daiwa Industries Ltd Refrigerator and method for preventing dew condensation in refrigerator
CN201954858U (en) * 2011-02-16 2011-08-31 合肥美的荣事达电冰箱有限公司 Refrigerating system and refrigerator with same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257850A (en) * 1993-03-08 1994-09-16 Janome Sewing Mach Co Ltd Heating device for water in bathtub
JPH08159567A (en) * 1994-11-30 1996-06-21 Sanyo Electric Co Ltd Air conditioner
JP3942688B2 (en) * 1997-05-29 2007-07-11 松下冷機株式会社 refrigerator
JP2000329445A (en) * 1999-05-20 2000-11-30 Hoshizaki Electric Co Ltd Low temperature storage chamber
JP2005090887A (en) * 2003-09-18 2005-04-07 Toshiba Corp Storage cabinet
JP2009275964A (en) * 2008-05-14 2009-11-26 Panasonic Corp Refrigerator
JP2010243058A (en) * 2009-04-06 2010-10-28 Hoshizaki Electric Co Ltd Cooling storage

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240724A (en) * 2013-06-12 2014-12-25 パナソニック株式会社 Refrigerator
JP2015001358A (en) * 2013-06-18 2015-01-05 パナソニック株式会社 Refrigerator
AU2014303819B2 (en) * 2013-08-09 2016-10-13 Mitsubishi Electric Corporation Refrigerator
WO2015019740A1 (en) * 2013-08-09 2015-02-12 三菱電機株式会社 Refrigerator
JP2015034673A (en) * 2013-08-09 2015-02-19 三菱電機株式会社 Refrigerator
JP2015068510A (en) * 2013-09-26 2015-04-13 株式会社東芝 Refrigerator
JP2015114015A (en) * 2013-12-10 2015-06-22 三菱電機株式会社 Refrigerator
JP2015152191A (en) * 2014-02-12 2015-08-24 株式会社東芝 refrigerator
JP2015190531A (en) * 2014-03-28 2015-11-02 日立アプライアンス株式会社 Refrigerant change-over valve and device with this valve
JP2016020796A (en) * 2014-07-16 2016-02-04 日立アプライアンス株式会社 refrigerator
JP2016044942A (en) * 2014-08-26 2016-04-04 パナソニックIpマネジメント株式会社 refrigerator
WO2016158134A1 (en) * 2015-03-31 2016-10-06 シャープ株式会社 Refrigerator
JP2016191497A (en) * 2015-03-31 2016-11-10 シャープ株式会社 refrigerator
WO2017029782A1 (en) * 2015-08-20 2017-02-23 パナソニックIpマネジメント株式会社 Refrigerator
JP2017040432A (en) * 2015-08-20 2017-02-23 パナソニックIpマネジメント株式会社 refrigerator
EP3339775A4 (en) * 2015-08-20 2018-08-22 Panasonic Intellectual Property Management Co., Ltd. Refrigerator
CN107923690A (en) * 2015-08-20 2018-04-17 松下知识产权经营株式会社 Freezer
JP2017078538A (en) * 2015-10-20 2017-04-27 三菱電機株式会社 refrigerator
JP6096859B1 (en) * 2015-10-20 2017-03-15 三菱電機株式会社 refrigerator
JP2017187233A (en) * 2016-04-06 2017-10-12 東芝ライフスタイル株式会社 refrigerator
JP2018109490A (en) * 2017-01-06 2018-07-12 パナソニックIpマネジメント株式会社 refrigerator
WO2019193626A1 (en) * 2018-04-02 2019-10-10 三菱電機株式会社 Refrigeration appliance
JP2018112398A (en) * 2018-04-11 2018-07-19 東芝ライフスタイル株式会社 refrigerator
CN110044121A (en) * 2019-05-22 2019-07-23 长虹美菱股份有限公司 A kind of refrigerator door seal bar assembly and its control method
JP7325609B2 (en) 2020-03-18 2023-08-14 三菱電機株式会社 refrigerator
WO2021186613A1 (en) * 2020-03-18 2021-09-23 三菱電機株式会社 Refrigerator
JPWO2021186613A1 (en) * 2020-03-18 2021-09-23
JP2021177109A (en) * 2020-05-08 2021-11-11 東芝ライフスタイル株式会社 refrigerator
JP7389709B2 (en) 2020-05-08 2023-11-30 東芝ライフスタイル株式会社 refrigerator
JP7133605B2 (en) 2020-11-10 2022-09-08 東芝ライフスタイル株式会社 refrigerator
JP2021014982A (en) * 2020-11-10 2021-02-12 東芝ライフスタイル株式会社 refrigerator
WO2023285259A1 (en) * 2021-07-15 2023-01-19 BSH Hausgeräte GmbH Refrigerator and anti-condensation method therefor
WO2023138312A1 (en) * 2022-01-18 2023-07-27 青岛海尔电冰箱有限公司 Refrigerating and freezing device and control method therefor

Also Published As

Publication number Publication date
CN103033013A (en) 2013-04-10
CN103033013B (en) 2015-04-01
JP5391250B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5391250B2 (en) Refrigerator and freezer
JP5507511B2 (en) refrigerator
JP2013061089A (en) Refrigerator
JP2006250378A (en) Cooling storage
JP2012037073A (en) Refrigerator
JP6307382B2 (en) refrigerator
JPWO2005038365A1 (en) Cooling storage
JP2008249292A (en) Refrigerator
JP5557661B2 (en) refrigerator
JP6309710B2 (en) Freezer refrigerator
KR20120018079A (en) Refrigerator
JP2005172303A (en) Refrigerator
JP2013044438A (en) Refrigerator
JP5838238B2 (en) refrigerator
JP2017026210A (en) refrigerator
JP2005345061A (en) Refrigerator
JP2019132506A (en) refrigerator
JP2004069253A (en) Refrigerator
JP5376796B2 (en) refrigerator
JP6762149B2 (en) refrigerator
JP6533479B2 (en) refrigerator
JP2017040398A (en) refrigerator
JP4286106B2 (en) Freezer refrigerator
JP2000356445A (en) Refrigerator
JP6282255B2 (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Ref document number: 5391250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350