WO2019193626A1 - Refrigeration appliance - Google Patents

Refrigeration appliance Download PDF

Info

Publication number
WO2019193626A1
WO2019193626A1 PCT/JP2018/014104 JP2018014104W WO2019193626A1 WO 2019193626 A1 WO2019193626 A1 WO 2019193626A1 JP 2018014104 W JP2018014104 W JP 2018014104W WO 2019193626 A1 WO2019193626 A1 WO 2019193626A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
refrigerator
heater
energization
outside air
Prior art date
Application number
PCT/JP2018/014104
Other languages
French (fr)
Japanese (ja)
Inventor
荒木 正雄
康成 大和
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/014104 priority Critical patent/WO2019193626A1/en
Priority to JP2020512114A priority patent/JP6972310B2/en
Publication of WO2019193626A1 publication Critical patent/WO2019193626A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers

Definitions

  • the present invention relates to a refrigerator with a double door.
  • a work top type refrigerator having a refrigerator compartment at the top is known.
  • Some refrigerators are provided with double doors in the refrigerator compartment and provided with a partition plate that prevents outside air from entering the refrigerator compartment through a gap between the left door and the right door.
  • the partition plate In the state that the door of the refrigerator compartment is closed, the partition plate is in close contact with the gasket of the door of the refrigerator compartment to block the refrigerator compartment from the outside air. Since a partition plate is cooled from the surface inside a store
  • the heater heats the partition plate, if the amount of power supplied to the heater is increased only for dew condensation measures, the power consumption of the refrigerator increases and the electricity cost increases. In addition, qualitatively, the heat that moves from the partition plate to the refrigerator compartment increases, which may interfere with cooling of the refrigerator compartment.
  • the refrigerator to control is known (for example, refer to patent documents 1).
  • Patent Document 2 An example of a refrigerator that performs another heater energization control is disclosed in Patent Document 2.
  • the heater energization rate is set higher than the reference energization rate.
  • the heater energization rate is set lower than the reference energization rate.
  • the refrigerator disclosed in Patent Document 1 is based on the premise that the temperature of the refrigerator compartment is stable at the set temperature, and if the temperature of the refrigerator compartment is close to the outside air temperature, there is a risk of consuming power wastefully. There is. Examples of cases where the temperature of the refrigerator compartment becomes higher as the outside air temperature is higher are, for example, when the power is turned on after the refrigerator is installed, when the power is restored from a long power failure, or when the door is opened for a long time. .
  • the refrigerator disclosed in Patent Document 2 also does not consider whether or not the temperature of the refrigerator compartment is close to the set temperature, and when the temperature of the refrigerator compartment is higher as it is closer to the outside air temperature, the refrigerator compartment is cooled to the preset temperature. In the transition period until it is done, there is a risk of consuming power wastefully.
  • the present invention has been made to solve the above-described problems, and provides a refrigerator-freezer capable of reducing power consumption.
  • the refrigerator-freezer includes a box having a storage room, a double door that covers the opening of the box, and a partition plate that prevents the outside air from entering the storage room in a state where the double door is closed,
  • An outside air temperature sensor for detecting outside air temperature
  • an outside air humidity sensor for detecting outside air humidity
  • a refrigerating room temperature sensor for detecting a temperature in the storage room as a refrigerating room temperature
  • a heater for preventing dew condensation on the partition plate
  • Heater control means for controlling energization to the heater based on a reference energization ratio calculated from the outside air temperature and the outside air humidity
  • the heater control means includes the outside air temperature, the refrigerating room temperature, and the refrigerating room.
  • An energization coefficient is calculated from a target temperature
  • the heater is controlled using a corrected energization rate obtained by multiplying the calculated energization coefficient by the reference energization rate.
  • the surface temperature of the partition plate may be larger than necessary than the dew condensation prevention temperature. It is suppressed. Therefore, useless power consumption of the heater is suppressed, and the power consumption of the refrigerator-freezer can be reduced.
  • FIG. 2 is a cross-sectional view taken along line AA shown in FIG.
  • FIG. 3 is a functional block diagram of a control unit shown in FIG. 2.
  • heater energization control of a comparative example it is a graph which shows the temperature change from power-on start, when outside temperature is 30 degreeC and relative humidity is 75% RH.
  • heater energization control concerning Embodiment 1 of the present invention it is a figure showing time change of refrigerator temperature, energization coefficient, standard energization rate, and correction energization rate.
  • heater energization control concerning Embodiment 1 of the present invention when outside temperature is 30 ° C and relative humidity is 55% RH, it is a graph which shows a temperature change from power-on start.
  • heater energization control of a comparative example it is a figure which shows each temperature waveform at the time of power activation in the case of 30 degreeC outside temperature and 55% RH outside temperature. It is a functional block diagram which shows the structural example of the control part of the refrigerator-freezer which concerns on Embodiment 3 of this invention. In the refrigerator-freezer which concerns on Embodiment 3 of this invention, it is a figure which shows the time transition of the electricity supply rate of a heater.
  • FIG. 1 is an external front view showing a configuration example of a refrigerator-freezer according to Embodiment 1 of the present invention.
  • FIG. 2 is a refrigerant circuit diagram of the refrigerator-freezer shown in FIG.
  • the refrigerator-freezer 100 includes a box 100A, and has a refrigerator room 1, an ice making room 2, a small freezer room 3, a freezer room 4, and a vegetable room 5 as storage rooms.
  • the refrigerator compartment 1 is provided at the top of the main body of the refrigerator 100, and the ice making chamber 2 and the small refrigerator compartment 3 are provided in parallel below the refrigerator compartment 1 (in the direction opposite to the Z-axis arrow). It has been.
  • a freezer room 4 is arranged under the ice making room 2 and the small freezer room 3, and a vegetable room 5 is arranged under the freezer room 4.
  • a storage room is the refrigerator compartment 1 among the boxes 100A which have a some storage room is demonstrated.
  • the refrigerator-freezer 100 has a double door that covers the opening of the refrigerator compartment 1.
  • the double door is composed of a left door 7 and a right door 8 that open and close the opening of the refrigerator compartment 1.
  • the refrigerator compartment 1 is provided with a partition plate 9 that prevents intrusion of outside air when the double door is closed.
  • the length in the vertical direction (Z-axis arrow direction) of the partition plate 9 is equal to the length in the vertical direction of the refrigerator compartment 1 shown in FIG.
  • the refrigerator-freezer 100 should just have a double door, and arrangement
  • the refrigerator-freezer 100 includes a heater 18, a compressor 51, a condenser 52, a decompression device 53, an evaporator 54, a fan 55, a damper device 56, and a control unit 60.
  • the compressor 51, the condenser 52, the decompression device 53, and the evaporator 54 are connected by refrigerant piping, and the refrigerant circuit 57 in which a refrigerant circulates is comprised.
  • the compressor 51 compresses and discharges the refrigerant, and circulates the refrigerant in the refrigerant circuit 57.
  • the compressor 51 is, for example, an inverter type compressor whose capacity can be varied.
  • the condenser 52 is a heat exchanger that causes the refrigerant to exchange heat with the outside air.
  • the condenser 52 is, for example, a condensing pipe that takes heat from the refrigerant and releases it to the outside of the refrigerator-freezer 100.
  • the condensation pipe is provided on the side surface of the refrigerator refrigerator 100.
  • the decompression device 53 decompresses and expands the refrigerant.
  • the decompression device 53 is, for example, a capillary tube.
  • the evaporator 54 is a heat exchanger that causes the refrigerant to exchange heat with the air in the warehouse.
  • the fan 55 supplies air cooled by exchanging heat with the refrigerant in the evaporator 54 to the refrigerator compartment 1 and the freezer compartment 4.
  • the fan 55 is, for example, a propeller fan.
  • the damper device 56 adjusts the amount of cold air supplied to the refrigerator compartment 1 and the freezer compartment 4 by changing the opening of the baffle.
  • the heater 18 is provided on the partition plate 9 shown in FIG. 1 and prevents the surface of the partition plate 9 from condensing.
  • the refrigerator-freezer 100 has a plurality of sensors for temperature control of the refrigerator compartment 1 and the freezer compartment 4 and the like and for energization control of the heater 18.
  • the refrigerator-freezer 100 includes a freezer temperature sensor 71, a refrigerator temperature sensor 72, an outside air temperature sensor 73, and an outside air humidity sensor 74.
  • the freezer compartment temperature sensor 71 is provided in the freezer compartment 4 and detects the freezer compartment temperature Tf.
  • the refrigerator compartment temperature sensor 72 is provided in the refrigerator compartment 1 and detects the refrigerator compartment temperature Ti.
  • the outside air temperature sensor 73 detects the outside air temperature To as the surrounding environment of the refrigerator-freezer 100.
  • the outside air humidity sensor 74 detects the outside air humidity Mo as the surrounding environment of the refrigerator-freezer 100.
  • the outside air temperature sensor 73 and the outside air humidity sensor 74 are provided, for example, in an upper hinge portion (not shown) of the left door 7.
  • the refrigerator compartment temperature sensor 72 serves not only for temperature management of the refrigerator compartment 1 but also for temperature compensation of the surface of the partition plate 9 for optimally energizing the heater 18.
  • the freezer temperature sensor 71 is not limited as long as it is a position that can detect the temperature of the frozen storage room.
  • the refrigerating room temperature sensor 72 may be a position where the temperature of the refrigerating object can be detected, and the installation position is not limited.
  • the outside air temperature sensor 73 can detect the outside air temperature To as an ambient environment
  • the installation location is not limited.
  • the outside air humidity sensor 74 can detect the outside air humidity Mo as an ambient environment, the installation location is not limited.
  • the installation location of the outside air temperature sensor 73 and the outside air humidity sensor 74 is preferably a place that is not affected by the operation of the refrigerator-freezer 100.
  • the outside air temperature sensor 73 and the outside air humidity sensor 74 are not affected by the heat radiation from the condensation pipe. It is desirable to install in the position. For example, when the installation location of the outside air temperature sensor 73 and the outside air humidity sensor 74 is the upper hinge portion of the left door 7 or the right door 8, it is not affected by the heat of the condensation pipe (not shown).
  • FIG. 3 is a cross-sectional view taken along line AA shown in FIG. With the partition plate 9 as a boundary, the upper side (in the direction of the Y-axis arrow) in FIG. 3 is the inside of the cabinet, and the lower side in FIG. 3 (the direction opposite to the Y-axis arrow) is the outside of the cabinet.
  • the partition plate 9 is a rectangular parallelepiped having a rectangular horizontal plane (XY plane).
  • a left door inner plate 10 is provided on the inner side of the left door 7 shown in FIG. 1, and a right door inner plate 11 is provided on the inner side of the right door 8.
  • the left door inner plate 10 is provided with a standing wall 15 on the inner side.
  • the right door inner plate 11 is provided with a standing wall 16 on the inner side.
  • the partition plate 9 When the double door of the refrigerator compartment 1 is in a closed state, the partition plate 9 is located between the standing wall 15 and the standing wall 16 as shown in FIG.
  • the partition plate 9 is attached to the left door 7 by a hinge mechanism (not shown).
  • the partition plate 9 is configured to be rotatable with respect to the axis of the hinge mechanism (parallel to the Z-axis arrow direction).
  • the partition plate 9 includes a sheet metal member 17, a heater 18, and a heat insulating material 19. As shown in FIG. 3, a sheet metal member 17 having both ends bent to the inner side is attached to the outer surface of the partition plate 9. A heater 18 is disposed inside the sheet metal member 17. Since the aluminum foil 14 covers the heater 18 and is glued or attached to the sheet metal member 17 with double-sided tape, the heater 18 is fixed to the sheet metal member 17.
  • a heat insulating material 19 is arranged on the inner side than the sheet metal member 17 and the heater 18.
  • the heat insulating material 19 suppresses the heat of the heater 18 from being conducted to the inside of the cabinet.
  • the back surface (surface in the direction of the Y-axis arrow) and the side surface (surface in the direction of the X-axis arrow and surface in the direction opposite to the X-axis arrow) of the heat insulating material 19 are covered with the internal resin member 20.
  • the outside resin member 28 fitted between the sheet metal member 17 and the heat insulating material 19 covers a part of the side surface of the inside resin member 20.
  • each of the left door gasket 22 and the right door gasket 23 includes a magnet 25 at a position facing the sheet metal member 17 of the partition plate 9 when the double door of the refrigerator compartment 1 is closed.
  • the sheet metal member 17 is attracted to the magnet 25 by magnetic force, so that the left door gasket 22 and the right door gasket 23 are in close contact with the sheet metal member 17 of the partition plate 9, and refrigeration is performed from outside the refrigerator. Block the outside air from entering the chamber 1.
  • a packing 29 is provided on the partition plate 9 side of the left door inner plate 10.
  • a part of the right door gasket 23 protrudes inside the cabinet so as to follow the standing wall 16. The protruding portions of the packing 29 and the right door gasket 23 suppress heat leakage from the heater 18 to the periphery of the partition plate 9.
  • the partition plate 9 rotates counterclockwise around the axis of the hinge mechanism (not shown) of the left door 7 and is integrated with the standing wall 15 along the standing wall 15.
  • the partition plate 9 rotates clockwise about the axis of the hinge mechanism (not shown) of the left door 7 so as to be separated from the standing wall 15.
  • the partition plate 9, the left door inner plate 10, and the right door inner plate 11 are in the state shown in FIG.
  • the partition plate 9 serves to prevent outside air from entering the refrigerator compartment 1 from between the left door 7 and the right door 8 of the refrigerator compartment 1 when the double doors are closed.
  • FIG. 4 is a functional block diagram of the control unit shown in FIG.
  • the control unit 60 is, for example, a microcomputer.
  • the control unit 60 includes a memory 61 that stores a program, and a CPU (Central Processing Unit) 62 that executes processing according to the program.
  • the control unit 60 includes a refrigeration cycle control means 65 and a heater control means 66.
  • the refrigeration cycle control means 65 and the heater control means 66 are configured in the refrigeration refrigerator 100.
  • the refrigeration cycle control means 65 controls the refrigeration cycle of the refrigerant circuit 57 based on the freezer compartment temperature Tf, the refrigerator compartment temperature Ti, the freezer compartment target temperature, and the refrigerator compartment target temperature Ts. Specifically, the refrigeration cycle control means 65 controls the rotation speed of the compressor 51 so that the freezer compartment temperature Tf matches the freezer compartment target temperature. The refrigeration cycle control means 65 controls the rotation speed of the fan 55 and the opening degree of the baffle of the damper device 56 so that the refrigerator compartment temperature Ti matches the refrigerator compartment target temperature Ts.
  • the refrigerator compartment target temperature Ts is stored in the memory 61.
  • the heater control means 66 controls the energization rate to the heater 18 based on the reference energization rate DRref calculated from the outside air temperature To and the outside air humidity Mo.
  • the reference energization rate DRref is an energization rate at which the surface of the partition plate 9 is not dewed.
  • the reference energization rate DRref is calculated from the outside air temperature To and the outside air relative humidity Mrh using a calculation formula described later.
  • the relative humidity Mrh is obtained from the outside air temperature To and the outside air humidity Mo based on the determined air diagram.
  • An equation for calculating the relative humidity Mrh from the outside air temperature To and the outside air humidity Mo is registered in a program
  • the reference energization rate DRref will be described. 5 and 6 are graphs showing calculation formulas for obtaining the reference energization rate from the outside air temperature and the relative humidity. For example, as shown in FIG. 5, calculation formulas PF1 to PF3 using the outside air temperature To as a parameter are set for the reference energization rate DRref.
  • the example shown in FIG. 5 shows the case of three temperature zones where the outside air temperature To ⁇ 20 ° C. or less, 20 ° C. ⁇ outside air temperature To ⁇ 30 ° C., and 30 ⁇ outside air temperature To ⁇ 40 ° C.
  • the reference energization rate DRref increases linearly as the relative humidity Mrh increases according to the calculation formulas PF1 to PF3.
  • FIG. 6 is a graph showing another calculation formula for the reference energization rate DRref. As shown in FIG. 6, the calculation ratios LF1 to LF3 using the outside air temperature To as a parameter are set for the reference energization rate DRref. FIG. 6 also shows a case where there are three temperature zones, as in FIG. The reference energization rate DRref increases logarithmically as the relative humidity Mrh increases according to the calculation formulas LF1 to LF3.
  • the calculation formulas PF1 to PF3 shown in FIG. 5 and LF1 to LF3 shown in FIG. 6 are examples.
  • the calculation formula for the reference energization rate DRref is a structure such as the thermal conductivity of the material of the partition plate 9 and the thickness of the partition plate 9. It is determined by the rated wattage of the heater 18 and the set temperature in the cabinet.
  • the reference energization rate DRref is calculated by substituting the relative humidity Mrh calculated from the outside air temperature To and the outside air humidity Mo into a calculation formula determined depending on which temperature zone the detected outside air temperature To belongs to. . Which calculation formula is optimal under which condition is determined in advance by a development test or the like, and the calculation formula determination procedure is registered in a program stored in the memory 61.
  • the coefficients A and B are set for each temperature zone of the outside air temperature To.
  • the coefficients of C and D are set for each temperature range of the outside air temperature To. These coefficients are determined in advance by a development test or the like and registered in a program stored in the memory 61.
  • the temperature zone is not limited to three.
  • the case where the temperature zone width is 10 ° C. or more has been described.
  • the temperature zone width is not limited to 10 ° C., and the temperature zone is set to a value such as 5 ° C. smaller than 10 ° C. The width may be subdivided.
  • the heater control means 66 calculates the reference energization rate DRrer as described above, and then calculates the reference energization rate DRa to be output to the heater 18 as shown in Expression (1). Calculated by multiplying DRref by the energization coefficient kt.
  • FIG. 7 is a model diagram showing heat transfer from the outside air into the refrigerator compartment shown in FIG.
  • ⁇ o is the outside heat transfer coefficient [W / (m 2 ⁇ K)]
  • ⁇ i is the inside heat transfer coefficient [W / (m 2 ⁇ K)].
  • is the thermal conductivity [W / (m ⁇ K)] of the partition plate 9
  • d is the thickness [m] of the partition plate 9.
  • the heat input model is simply considered, and the heat transfer amount (heat flux) q [W / m 2 ] per unit area passing through the partition plate 9 is calculated from the heat transfer shown in FIG. Calculated.
  • the unit of the outside air temperature To and the refrigerator compartment temperature Ti is Kelvin [K].
  • the previous term of the (To-Ti) term is called the heat transfer coefficient.
  • the thermal conductivity of the partition plate 9 is originally calculated from the thermal conductivity of the sheet metal member 17 shown in FIG. 3, the thermal conductivity of the heat insulating material 19, and the thermal conductivity of the internal resin member 20.
  • the partition plate 9 is simply treated as one member, and the thermal conductivity of the partition plate 9 is ⁇ .
  • the heat input model is strictly considered three-dimensionally, it is necessary to consider the influence of a heat bridge that goes into the refrigerator compartment 1 from the outside of the side surface of the partition plate 9.
  • the heat input model is simply considered as a two-dimensional heat transfer.
  • the thermal conductivity ⁇ can be regarded as a physical property value determined by the material of each member such as the sheet metal member 17, the heat insulating material 19, and the internal resin member 20. Therefore, the thermal conductivity ⁇ does not change due to the influence of the operation of the refrigerator / freezer 100, for example, the thermal influence due to the condensation pipe and the thermal influence when the heater 18 is energized.
  • the heat transfer coefficient ⁇ o on the outside of the box is assumed to depend on the air flow rate on the surface of the partition plate 9, but it is assumed that the wind speed in the environment where the refrigerator-freezer 100 is installed is small.
  • the partition plate 9 is disposed in the back of the narrow gap between the left door 7 and the right door 8. Less susceptible to ambient wind speeds.
  • the air near the surface of the partition plate 9 is warmed due to the heat generated by the heater 18, a temperature difference occurs between the air near the surface of the partition plate 9 and the outside air, and the air flow due to natural convection caused by the temperature difference is generated. is assumed.
  • the heat transfer coefficient ⁇ o is as small as about 3 to 4 [W / (m 2 ⁇ K)], and the refrigerator / freezer 100 is in operation.
  • the change in the heat transfer coefficient ⁇ o is small, the heat conductivity ⁇ o can be considered as a fixed value.
  • the wind speed in the refrigerator compartment 1 changes depending on the rotation speed of the fan 55.
  • the wind speed at the outlet of the refrigerator compartment 1 is about 3 [m / s] at the maximum, although it depends on the cool air outlet and the shape of the outlet.
  • the standing walls 15 and 16 are arranged on the side surface of the partition plate 9 in the refrigerator compartment 1. Therefore, it is assumed that the standing walls 15 and 16 become obstacles to cool air from the outlet, and the wind against the partition plate 9 is weakened.
  • the wind speed to the partition plate 9 inside the warehouse becomes a value approximated to 0 [m / s].
  • FIG. 8 is a diagram showing the flow velocity distribution of the entire cool air inside the refrigerator compartment shown in FIG.
  • FIG. 9 is an enlarged view showing the flow velocity distribution of the cool air in the uppermost shelf in the inside of the refrigerator compartment shown in FIG.
  • the left side of the figure (in the direction opposite to the Y-axis arrow) is the front side of the refrigerator-freezer 100, and the right side of the figure (in the direction of the Y-axis arrow) is the back side of the refrigerator-freezer 100.
  • the left end of the figure is located on the back surface (side surface in the Y-axis arrow direction) of the partition plate 9 shown in FIG. FIG. 8 and FIG. 9 depict the magnitude of the flow velocity as a wind speed contour line as an analysis result of the flow velocity distribution inside the refrigerator compartment 1.
  • the wind speed of the wind speed contour line 35 shown in FIGS. 8 and 9 is 0.1 [m / s].
  • the wind speed of the wind speed contour line 36 is 0.2 [m / s]
  • the wind speed of the wind speed contour line 37 is 0.3 [m / s]
  • the wind speed of the wind speed contour line 38 is 0.4 [m / s]. s].
  • the wind speed contour line 38 shown in FIG. 9 has a portion where the wind speed is larger than 0.4 [m / s].
  • the wind speed contour line larger than 0.4 [m / s] is shown. Omitted.
  • an outlet air passage 39 through which cold air flows, a plurality of outlets 30 to 34 arranged on a plurality of shelves 13 in the refrigerator compartment 1,
  • a return port 40 through which the cold air flowing through the chamber 1 returns to the evaporator 54 is provided.
  • the cold air cooled by the evaporator 54 functioning as a cooler flows from the evaporator 54 through the blowout air passage 39 by the fan 55 and flows into the refrigerator compartment 1 from the blowout ports 30 to 34.
  • Table 1 shows the numerical analysis results of the wind speed at the outlets 30 to 34. In Table 1, the rotation speed of the fan 55 is 2000 rpm.
  • the outlet 30 has the highest wind speed.
  • the reason will be explained.
  • the uppermost shelf 13 of the refrigerator compartment 1 tends to rise in temperature compared to the other shelves 13 due to heat leakage from the uppermost surface of the refrigerator 100.
  • the cross-sectional area of the air outlet 30 is increased so that the air volume at the uppermost shelf 13 is increased. Bigger than.
  • the blowout port 30 is located near the end of the blowout air passage 39, cold air that is folded back at the end of the blowout air passage 39 is also added, and thus the wind speed tends to increase.
  • the thermal conductivity ⁇ i inside the warehouse is considered to be as small as about 3 to 4 [W / (m 2 ⁇ K)], similarly to the thermal conductivity ⁇ o outside the warehouse. Further, it is considered that the thermal conductivity ⁇ i inside the refrigerator hardly changes even when the operation state of the refrigerator-freezer 100, for example, the rotation speed of the fan 55 changes.
  • the heat passage coefficient in the equation (2) is fixed during the operation of the refrigerator 100. It is considered a value or a value that hardly changes.
  • the heat flux q passing through the partition plate 9 is proportional to the temperature difference ⁇ T between the outside air temperature To outside the compartment and the refrigerator compartment temperature Ti inside the compartment.
  • the surface temperature may be set to a dew point or higher. Since the heat flux q passing through the partition plate 9 is proportional to the temperature difference ⁇ T between the outside air temperature To and the refrigerating chamber temperature Ti, if the energization to the heater 18 is controlled in proportion to the temperature difference ⁇ T, the surface of the partition plate 9 It can be seen in principle that the temperature is kept at a temperature that does not condense. That is, the energization coefficient kt in equation (1) may be set to a value proportional to the temperature difference ⁇ T between the outside air temperature To and the refrigerating room temperature Ti. In the first embodiment, the heater control means 66 calculates the energization coefficient kt according to the equation (3).
  • the numerator is the temperature difference ⁇ T between the outside air temperature To and the refrigerator compartment temperature Ti
  • the denominator is the temperature difference between the outside air temperature To and the refrigerator compartment target temperature Ts.
  • the refrigerator compartment target temperature Ts is a fixed value set as 3 ° C., for example.
  • the heater control means 66 sets the energization coefficient kt according to equation (3).
  • the refrigerator compartment temperature Ti is high, for example, immediately after the refrigerator-freezer 100 is installed and immediately after the power is turned on, the refrigerator compartment temperature Ti is the same as the outside air temperature To.
  • the outside air temperature To is detected as 30 ° C.
  • the refrigerating room temperature Ti is also detected as 30 ° C.
  • the heat flux q passing through the partition plate 9 is also 0, so heating of the partition plate 9 by the heater 18 is unnecessary. It becomes.
  • the temperature difference ⁇ T between the outside air temperature To and the refrigerating room temperature Ti is 0, and the heater control unit 66 calculates the energization coefficient kt as 0.
  • the heater control means 66 calculates the corrected energization rate DRa as 0% from the equation (1).
  • the refrigerator temperature 100 gradually decreases as the refrigerator 100 is operated.
  • the refrigerator compartment temperature Ti reaches the refrigerator compartment target temperature Ts
  • the value of the numerator and the value of the denominator on the right side of the equation (3) become the same, and the heater control means 66 calculates the energization coefficient kt as 1.
  • the corrected energization rate DRa becomes the same as the reference energization rate DRref
  • the heater control unit 66 calculates the reference energization rate DRref as the corrected energization rate DRa.
  • the refrigerator compartment temperature Ti may become lower than the refrigerator compartment target temperature Ts.
  • the energization coefficient kt is greater than 1
  • the corrected energization rate DRa is greater than the reference energization rate DRref. Therefore, the reference energization rate DRref is set as the upper limit value of the corrected energization rate DRa. Thereby, it is possible to prevent the heater 18 from being energized more than necessary.
  • the energization coefficient kt is a function of the temperature difference ⁇ T between the outside air temperature To and the refrigerator temperature Ti. Therefore, when the heater control means 66 calculates and updates the temperature difference ⁇ T at a constant cycle, the ambient environment is stabilized, and the refrigerator compartment temperature Ti decreases linearly from the power-on, the linearity is reduced. The corrected energization rate DRa changes. Therefore, the energization rate of the heater 18 can be optimally controlled with respect to the change in the refrigerator compartment temperature Ti.
  • the energization coefficient kt also changes in accordance with the surrounding environment, so that the corrected energization rate DRa also changes corresponding to the change in the energization coefficient kt. Therefore, the energization rate of the heater 18 can be optimally controlled with respect to changes in the surrounding environment.
  • FIG. 10 is a flowchart showing an example of a heater energization control procedure executed by the heater control means shown in FIG.
  • the heater controller 66 determines a calculation formula for calculating the reference energization rate DRref based on the outside air temperature To (step S2).
  • the calculation formulas PF1 to PF3 shown in FIG. 5 are shown as calculation formula options. However, the calculation formula options are not limited to the calculation formulas PF1 to PF3 shown in FIG.
  • the calculation formulas LF1 to LF3 shown in FIG. When the heater control means 66 determines the calculation formula in step S3, the heater control means 66 acquires the outside air humidity Mo from the outside air humidity sensor 74 (step S4). Then, the heater control means 66 calculates the reference energization rate DRref using the calculation formula determined in step S3 and the relative humidity Mrh calculated from the outside air temperature To and the outside air humidity Mo (step S5).
  • the heater control means 66 uses the equation (3) and the outside air temperature To, the refrigeration room temperature Ti, and the refrigeration room target temperature Ts.
  • the energization coefficient kt is calculated (step S7).
  • the heater control means 66 calculates the corrected energization rate DRa by multiplying the energization coefficient kt by the reference energization rate DRref according to the equation (1) (step S8).
  • the heater control means 66 energizes the heater 18 according to the calculated corrected energization rate DRa (step S9).
  • FIG. 10 shows a case where the refrigerator compartment temperature Ti is acquired in step S6 and the energization coefficient kt is calculated in step S7.
  • the acquisition timing of the refrigerator compartment temperature Ti and the calculation timing of the energization coefficient kt are illustrated in FIG. It is not limited to the case shown in FIG.
  • the acquisition timing of the refrigerator compartment temperature Ti and the calculation timing of the energization coefficient kt may be any timing as long as it is from the acquisition of the outside air temperature To to the calculation of the corrected energization rate DRa.
  • the control cycle shown in the procedure of FIG. 10 is too long, a change and deviation of the surrounding environment may occur.
  • the cycle is preferably within 1 minute.
  • the heater control means 66 calculates the reference energization rate DRrer according to the procedure shown in FIG. 10 and then multiplies the reference energization rate DRref by the energization coefficient kt as the energization rate output to the heater 18. To calculate. Since the energization coefficient kt increases in accordance with the decrease in the refrigerator compartment temperature Ti, the energization rate to the heater 18 is suppressed from becoming larger than necessary. As a result, the power consumption of the refrigerator-freezer 100 can be reduced.
  • the outside air temperature was constant at 30 ° C., and the relative humidity was constant at 75% RH.
  • a refrigerator-freezer having an overall rated internal volume of 517 liters and a refrigerator compartment 1 having a rated internal volume of 277 liters was used.
  • a heater having a power of 11.1 W was used as the heater 18.
  • the temperature mass made from brass was installed in the shelf 13 of the refrigerator compartment 1, and the temperature mass was installed also in the freezer compartment 4.
  • FIG. 11 is a graph showing a temperature change from the start of power-on when the outside air temperature is 30 ° C. and the relative humidity is 75% RH in the heater energization control according to Embodiment 1 of the present invention.
  • FIG. 12 is a graph showing a temperature change from the start of power-on when the outside air temperature is 30 ° C. and the relative humidity is 75% RH in the heater energization control of the comparative example.
  • the power consumption is not marked.
  • a waveform 201 indicates a time change of power consumption of the refrigerator-freezer.
  • the rotation speed of the compressor 51 and the fan 55 is increased so that the refrigeration cycle control means 65 cools the interior quickly.
  • the refrigerator-freezer since the refrigerator-freezer operates the compressor 51 and the fan 55 to perform the cooling operation after the power is turned on, the refrigerator compartment temperature 203, the refrigerator compartment temperature 204, and the refrigerator compartment temperature 205 are Each temperature decreases with time.
  • the compressor 51 and the fan 55 temporarily stop operating.
  • the compressor 51 and the fan 55 resume operation, and the waveform of each temperature is disturbed.
  • the compressor 51 and the fan 55 stably operate at a low rotation speed, and the temperatures of the refrigerator compartment temperature 203, the refrigerator compartment temperature 204, and the freezer compartment mass 205 are stabilized.
  • each temperature of the refrigerator compartment temperature 203, the refrigerator compartment temperature 204, and the freezer compartment temperature 205 changes transiently from the start of power-on to the refrigerator-freezer during the period TP1, and during periods TP3 to TP5. Then it will be stable.
  • a waveform 301 indicating a time change in power consumption of the refrigerator-freezer shows the same change as the waveform 201.
  • the temperature changes of the refrigerator compartment temperature 303, the refrigerator compartment mass 304, and the refrigerator compartment mass 305 shown in FIG. 12 are the temperature changes of the refrigerator compartment temperature 203, the temperature 204, and the temperature 205 shown in FIG. There is a similar trend.
  • the refrigerator compartment temperature 203 is slightly higher than the temperature 204 in the period TP1. This is because the refrigerating room temperature sensor 72 is installed at a position where the cold air blown out from the side of the refrigerating room 1 (in the Y-axis arrow direction shown in FIG. 8) does not directly hit, whereas the refrigerating room mass Because it hits directly. Since these temperature differences are small, it can be seen that the refrigerator temperature sensor 72 can detect the temperature of the storage compartment of the refrigerator compartment 1 more accurately.
  • the surface temperature of the partition plate 9 is compared in the period TP1 in which the temperature in the storage changes transiently.
  • the surface temperature 202 of the partition plate 9 is constant around 35 ° C.
  • the surface temperature 302 of the partition plate rises to 47.8 ° C. This is because, in the comparative example, the heater is energized at a reference energization rate of a constant value as the energization rate even when the refrigerator compartment is not sufficiently cooled as in the period TP1.
  • the broken lines shown in FIGS. 11 and 12 indicate that the temperature is 35 ° C.
  • the corrected energization rate DRa obtained by multiplying the reference energization rate DRref by the energization coefficient Kt reflecting the temperature difference ⁇ T between the outside air temperature To and the refrigerator temperature Ti. Is used. Therefore, the energization rate gradually increases from the start of power-on of the refrigerator-freezer 100, and as described above, the heater 18 is energized at an energization rate proportional to the temperature difference ⁇ T. As a result, as shown in FIG.
  • the surface temperature 202 of the partition plate 9 changes from the initial stage of the period TP1 at a temperature that is not different from the stable period of the periods TP3 to TP5. Yes. Further, since the dew point temperature when the outside air temperature is 30 ° C. and the relative humidity is 75% RH is about 25 ° C., the surface of the partition plate 9 is also dewed by the heater energization control of the first embodiment. It never happened.
  • FIG. 13 is a diagram showing temporal changes in the refrigerator temperature, the energization coefficient, the reference energization rate, and the corrected energization rate in the heater energization control according to Embodiment 1 of the present invention.
  • the power consumption and the energization rate are not marked.
  • the temperature difference ⁇ T between the outside air temperature To and the refrigerating room temperature 203 increases from 0 as the refrigerating room temperature 203 decreases since the power supply to the refrigerator 100 is turned on. It grows upward from the time the power is turned on.
  • the reference energization rate DRref is determined by the outside air temperature To and the outside air humidity Mo, it is stable at a constant value during the period TP1 to TP5.
  • the corrected energization rate DRa is obtained by multiplying the energization factor kt by the reference energization rate DRref, it rises linearly in the period TP1. Since the refrigerator compartment temperature 203 reaches the refrigerator compartment target temperature Ts at the end of the period TP1, the reference energization rate DRref and the corrected energization rate DRa become the same value, and the energization rate to the heater 18 becomes the reference energization rate DRref. Will continue.
  • Table 2 is a table
  • the first embodiment is improved by about 2% compared to the comparative example. This is due to the reduction in the current supply rate to the heater 18 as can be seen from the waveform of the correction current supply rate DRa in the period TP1 in FIG.
  • the first embodiment when comparing the cooling speed of the temperature 204 and 304 of the refrigerator compartment, for example, the time until the temperature reaches 30 ° C. to 3 ° C., the first embodiment is compared. Compared to the example, an improvement of about 3 minutes was observed.
  • test results comparing the heater energization control of the first embodiment and the heater energization control of the comparative example when the outside air temperature is 30 ° C. and the relative humidity is 55% RH will be described.
  • Other test conditions are the same as those described with reference to FIGS. 11 and 12, and thus detailed description thereof is omitted.
  • the reference energization rate was calculated to be 22% from the outside air temperature of 30 ° C. and the relative humidity of 55% RH.
  • FIG. 14 is a graph showing a temperature change from the start of power-on when the outside air temperature is 30 ° C. and the relative humidity is 55% RH in the heater energization control according to Embodiment 1 of the present invention.
  • FIG. 15 is a diagram showing each temperature waveform at power-on in the case of the heater energization control of the comparative example when the outside air temperature is 30 ° C. and the outside air humidity is 55% RH.
  • FIG. 14 shows temporal changes in the power consumption waveform 211 of the refrigerator-freezer of Embodiment 1, the surface temperature 212 of the partition plate 9, the refrigerator compartment temperature 213, the refrigerator compartment temperature 214, and the refrigerator compartment temperature 215.
  • FIG. 15 shows temporal changes in the power consumption waveform 311, the partition plate surface temperature 312, the refrigerator compartment temperature 313, the refrigerator compartment temperature 314, and the refrigerator compartment temperature 315 of the comparative refrigerator-freezer.
  • the broken lines shown in FIGS. 14 and 15 are lines indicating a temperature of about 24 ° C.
  • the structure of the partition plate 9 has been described with reference to FIGS. 1 and 3, but the structure of the partition plate 9 is not limited to the structure described in the first embodiment.
  • the heater 18 may not be provided inside the partition plate 9.
  • the heater 18 may be provided on at least one of the surfaces facing the left door 7 and the right door 8 when the double door is closed.
  • at least one of the left door gasket 22 and the right door gasket 23 may be provided with a heater 18. Even in these cases, the heater energization control of the first embodiment can be applied, and the same effect as the first embodiment can be obtained.
  • the corrected energization rate DRa is smaller than the reference energization rate DRref.
  • the power failure time is short, the temperature increase in the refrigerator compartment is not large, so the corrected energization rate DRa is equal to the reference energization rate DRref.
  • the corrected energization rate DRa becomes a value smaller than the reference energization rate DRref.
  • the reference energization rate DRref approaches.
  • the assumed situation (c) when the energization of the heater 18 is resumed, the temperature of the refrigerating room temperature becomes closer to room temperature as the time during which power is not supplied is longer, similar to the power failure time in the assumed situation (b). Therefore, the corrected energization rate DRa in the assumed situation (c) is controlled in the same manner as in the assumed situation (b) according to the length of time during which no power is supplied. By controlling the energization rate according to these assumed situations, it is possible to reduce the power consumption.
  • the energization coefficient kt calculated by Expression (3) is used for the period TP ⁇ b> 1 from when the power is turned on until the refrigerator temperature reaches the refrigerator temperature target temperature has been described.
  • Expression (3) may be applied for a predetermined time from the start.
  • the energization coefficient kt is set to a constant value of 1 after a predetermined time has elapsed.
  • a user purchases a refrigerator-freezer, when a food whose temperature has increased to near room temperature is put into a new refrigerator-freezer, the food whose temperature has increased may be placed near the refrigerator compartment temperature sensor 72.
  • a user may put the pan containing the cooked food in the refrigerator compartment 1 with high temperature. In such a case, it is conceivable that the temperature detected by the refrigerating room temperature sensor 72 is less likely to decrease than the average temperature of the refrigerating room 1.
  • the memory 61 stores, as a predetermined time, several hours until the object to be cooled is stored in the refrigerating room and reaches the refrigerating target temperature from a state where the temperature of the refrigerating room is high.
  • the predetermined time may be registered in the memory 61 in advance, or the predetermined time stored in the memory 61 may be updated.
  • the heater control means 66 uses the energization coefficient kt calculated by the equation (3) until a predetermined time elapses after the temperature of the refrigerator compartment is high, and sets the energization coefficient kt to a constant value 1 after the elapse of the predetermined time. . It is assumed that the memory 61 stores a reference temperature for determining whether or not the temperature of the refrigerator compartment is high.
  • the heater energization control according to the first embodiment is not limited to the case of replacing the refrigerator / freezer and the case where a high-temperature cooling object is stored in the refrigerator compartment, but also when the door opening time of the refrigerator compartment 1 is long. Explain that is valid.
  • the conventional heater is energized. Since the control energizes the heater at a constant reference energization rate, the surface temperature of the partition plate tends to increase.
  • the left door 7 or the right door 8 of the refrigerator compartment 1 is opened for a long time by taking in and out food, and the refrigerator compartment temperature sensor 72 is higher than the stable refrigerator compartment temperature.
  • the energization coefficient kt becomes a smaller value than when it is stable. Therefore, the corrected energization rate DRa shown in Expression (1) is smaller than the reference energization rate DRref. As a result, the power consumption of the refrigerator-freezer can be reduced and energy saving can be achieved.
  • the refrigeration cycle control means 65 may stop the rotation of the fan 55.
  • chamber rises by the natural convection by the temperature difference of the cool air in a store
  • the energization coefficient kt decreases as the temperature of the refrigerator compartment increases, so that the corrected energization rate DRa decreases.
  • the power consumption of the refrigerator / freezer is improved compared to the conventional case.
  • the partition plate 9 rotates and becomes along the standing wall 15. Most are exposed to the open air. Therefore, it is considered that the surface temperature of the partition plate 9 increases when the left door 7 is opened compared to when the right door 8 is opened.
  • the refrigerator compartment temperature since the cold air in the refrigerator compartment 1 is exchanged with the outside air, the refrigerator compartment temperature also rises, and in the heater energization control of the first embodiment, the corrected energization rate DRa is set in accordance with the rise of the refrigerator compartment temperature. descend.
  • the power consumption of the refrigerator-freezer is improved as compared with the conventional case.
  • the refrigerator temperature rises and the corrected energization rate DRa decreases, so that the power consumption of the refrigerator-freezer is improved as compared with the conventional case.
  • the heater control means 66 changes the energization coefficient kt with the change of the refrigerator compartment temperature, the power consumption is as large as when the power is turned on. It is thought that the reduction effect cannot be obtained. Therefore, when the refrigerator compartment temperature reaches the refrigerator compartment target temperature after the power supply to the refrigerator-freezer body is turned on, the refrigerator compartment temperature is stabilized without greatly fluctuating thereafter, so the energization coefficient kt is set to a constant value of 1. Also good. This will be described with reference to FIG. 13.
  • the heater control means 66 calculates the energization coefficient kt for the equation (1) using the equation (3) in the period TP1, and the energization coefficient after the elapse of the period TP1. kt may be set to 1. After the elapse of the period TP1, the heater control means 66 energizes the heater 18 at the reference energization rate DRref.
  • the heater energization control of the first embodiment may be performed by setting a threshold value for the opening time of the door of the refrigerator compartment 1.
  • the opening time of the door of the refrigerator compartment 1 is set as a threshold value, for example, the time for the refrigerator compartment temperature Ti to rise about 10 ° C.
  • the threshold is, for example, 10 minutes.
  • a sensor for detecting the open / closed state of the door of the refrigerator compartment 1 is provided in the refrigerator 100, and the heater control means 66 has a timer function. When the door opening time is equal to or greater than the threshold, the heater control unit 66 uses the energization coefficient kt calculated by Equation (3).
  • the heater control means 66 sets the energization coefficient kt to a constant value. Set to 1. When the door opening time is less than the threshold value, the heater control means 66 energizes the heater 18 at the reference energization rate DRref.
  • the threshold value does not correspond to any outside air temperature To. Therefore, when the door opening time exceeds the threshold, the forced time for forcibly using the energization coefficient kt calculated by Equation (3) is set in consideration of the amplitude of the outside air temperature To. Good.
  • the heater control unit 66 uses the energization coefficient kt calculated by Expression (3) until the forced time elapses after the door is closed, and after the forced time has elapsed, The energization coefficient kt is set to a constant value of 1. After the forced time has elapsed, the heater control means 66 energizes the heater 18 at the reference energization rate DRref.
  • the heater energization control may be performed by setting a threshold value for the refrigerating room temperature Ti, without being limited to setting the threshold value for the door opening time.
  • the threshold value is 10 ° C., for example.
  • the heater control means 66 uses the energization coefficient kt calculated by Equation (3) when the refrigerator compartment temperature Ti rises above the threshold, and when the refrigerator compartment temperature Ti falls to a value below the threshold, the energization coefficient. Set kt to 1.
  • the heater control means 66 energizes the heater 18 at the reference energization rate DRref. Even if the opening time of the door becomes long, the surface of the partition plate 9 can be prevented from condensing and the power consumption of the heater 18 can be reduced. As a result, energy saving of the refrigerator-freezer 100 can be achieved.
  • the refrigerating room target temperature Ts is not limited to the temperature set by the user, and the user may select one temperature setting value from a plurality of temperature setting values.
  • a temperature operation panel (not shown) is provided in the refrigerator-freezer 100, and the user operates the temperature operation panel to set one temperature from three types of temperature setting values of weak, medium and strong as the refrigerator compartment target temperature Ts. A set value may be selected.
  • the minimum energization rate DRmin may be set. For example, when a high-temperature object to be cooled such as a pan containing a heat-treated object is placed in the vicinity of the refrigerator compartment temperature sensor 72, the temperature difference ⁇ T between the outside air temperature To and the refrigerator compartment temperature Ti becomes small. The corrected energization rate DRa calculated from (1) and equation (3) is reduced. In this case, the surface temperature of the partition plate 9 may be lowered to a temperature lower than the dew condensation temperature. Therefore, assuming that the refrigerator compartment temperature Ti rises rapidly, the minimum energization rate DRmin is set. The memory 61 stores the minimum energization rate DRmin.
  • the minimum energization rate DRmin is set to a value of about 10 to 20% of the reference energization rate DRref.
  • the heater control means 66 energizes the heater 18 at the minimum energization rate DRmin when the energization rate DR calculated from the equations (1) and (3) becomes smaller than the minimum energization rate DRmin.
  • the surface temperature of the partition plate 9 can be prevented from dropping to a temperature lower than the dew condensation temperature.
  • the refrigerator-freezer 100 calculates a conduction coefficient kt from the outside air temperature To, the refrigeration room temperature Ti, and the refrigeration room target temperature Ts, and a corrected conduction ratio DRa obtained by multiplying the conduction ratio kt by the reference conduction ratio DRref.
  • the heater 18 of the partition plate 9 is energized.
  • the corrected energization rate DRa reflecting the outside air temperature To, the refrigerating room temperature Ti, and the refrigerating room target temperature Ts is used for the heater energization control, so that the surface temperature of the partition plate 9 is lower than the dew condensation preventing temperature. Is also suppressed from becoming unnecessarily large. Therefore, it is possible to prevent the partition plate 9 from being dewed, to suppress unnecessary power consumption of the heater 18, and to reduce the power consumption of the refrigerator-freezer 100. As a result, energy saving of the refrigerator-freezer 100 can be achieved.
  • the heater control means 66 uses Equation (3) for calculating the energization coefficient kt in Equation (1). Since the energization coefficient kt increases in accordance with the decrease in the refrigerator compartment temperature Ti, the energization rate to the heater 18 is suppressed from becoming larger than necessary. As a result, the power consumption of the refrigerator-freezer 100 can be reduced.
  • Embodiment 2 a correction coefficient is added to the calculation of the corrected energization rate DRa described in the first embodiment.
  • differences from the refrigerator-freezer described in the first embodiment will be described in detail, and a detailed description of the same configuration and operation as in the first embodiment will be omitted.
  • the heater control means 66 of the second embodiment calculates the corrected energization rate DRa from the equation (4).
  • the correction energization rate DRa of the second embodiment is obtained by multiplying the right side of the calculation expression shown in Expression (1) by the correction coefficient kv.
  • the partition plate 9 is long in the vertical direction (Z-axis arrow direction) of the left door 7 and the right door 8 of the refrigerator compartment 1, and the heater 18 is provided therein. It is conceivable that the surface temperature is not uniform. As a factor that the surface temperature of the partition plate 9 does not become uniform, for example, the depth of the refrigerator compartment 1 is considered to be small. As another factor, it is conceivable that a fan that circulates the air inside the refrigerator compartment 1 is attached to the refrigerator compartment 1 separately from the fan 55.
  • the temperature near the center where the cold air supplied from the back of the refrigerator compartment 1 directly hits the partition plate 9 is lowered, and the temperatures at the upper end and the lower end are higher than those near the center. Tend to be higher.
  • a fan that circulates the air inside the refrigerator compartment 1 is attached to the refrigerator compartment 1, the temperature of the part of the partition plate 9 where the cold air sent out by the fan directly hits tends to be lower than the temperature of the other parts. .
  • the heater control means 66 increases the correction energization rate DRa by multiplying the reference energization rate DRref of Expression (1) by a correction coefficient kv having a value greater than 1.
  • the memory 61 stores a correction coefficient kv at which the minimum temperature at the surface temperature of the partition plate 9 is equal to or higher than the dew point temperature.
  • the heater control unit 66 selects the correction coefficient kv depending on the outside air temperature To. Also good.
  • the memory 61 stores information in which the outside air temperature To is grouped into a plurality of temperature zones and a plurality of correction coefficients kv are set corresponding to the plurality of temperature zones.
  • the heater control means 66 selects a correction coefficient kv corresponding to the outside air temperature To from a plurality of correction coefficients kv, and energizes the heater 18 at the correction energization rate DRa calculated from the equation (4).
  • the refrigerator-freezer 100 of the second embodiment energizes the heater 18 with a correction energization rate DRa obtained by multiplying the reference energization rate DRref by a correction factor kv and an energization factor kt larger than 1 as the energization rate of the heater 18. is there.
  • the correction coefficient kv having a value greater than 1 is multiplied by the reference energization rate DRref, so that the average over the entire surface of the partition plate 9 is obtained.
  • the temperature lower than the temperature is suppressed from becoming lower than the dew condensation temperature. As a result, condensation on the surface of the partition plate 9 can be prevented.
  • Embodiment 3 FIG.
  • heater energization control is performed according to a set temperature selected by the user from a plurality of set temperatures as the refrigerating room target temperature Ts.
  • a different point from the refrigerator-freezer demonstrated in Embodiment 1 is demonstrated in detail, and the detailed description about the structure and operation
  • FIG. 16 is a functional block diagram showing an example of the control unit of the refrigerator-freezer according to Embodiment 3 of the present invention.
  • the refrigerator-freezer 100 according to the third embodiment is provided with a temperature operation panel 80 that is used when the user sets the refrigerator compartment target temperature Ts.
  • the user can select one temperature setting rank from the plurality of temperature setting ranks for the refrigerator compartment target temperature Ts by operating the temperature operation panel 80.
  • the refrigeration cycle control means 65 sets the refrigerator compartment target temperature to the refrigerator compartment target temperature corresponding to the temperature setting rank selected by the user.
  • the temperature Ts is set to control the refrigeration cycle.
  • the heater control means 66 calculates the energization coefficient kt from Formula (5) according to the temperature setting rank selected by the user.
  • the fixed value is, for example, a temperature difference between the strongly set refrigerator compartment target temperature Ts and the weakly set refrigerator compartment target temperature Ts.
  • the fixed value is 6.
  • the denominator term of the energization coefficient kt is “outside air temperature To ⁇ refrigeration room target temperature Ts”, whereas in the third embodiment, the user can set one temperature from a plurality of temperature setting ranks.
  • the energization coefficient kt is determined according to the equation (5).
  • the heater control means 66 uses the energization coefficient kt calculated by the equation (5) even if the refrigerator compartment temperature Ti reaches the refrigerator compartment target temperature Ts.
  • the corrected energization rate DRa is the refrigerating room target temperature indicated by the temperature setting rank selected by the user according to the equations (1) and (5).
  • Ts is set as a parameter. For example, when the selected temperature setting rank is a strong setting, the refrigerator compartment target temperature Ts is 0 ° C.
  • the heater control unit 66 performs the energization in the equation (1) when the user performs an operation of selecting the temperature setting rank.
  • the coefficient kt may be changed to the energization coefficient kt calculated by Expression (5).
  • FIG. 17 is a diagram showing a time transition of the energization rate of the heater in the refrigerator-freezer according to Embodiment 3 of the present invention.
  • the horizontal axis in FIG. 17 is time t, and the vertical axis is the corrected energization rate DRa.
  • a time t0 shown in FIG. 17 is a time when the refrigerator-freezer 100 is started to be turned on.
  • Time t1 is the time when the refrigerator compartment temperature Ti reaches the refrigerator compartment target temperature Ts.
  • the energization coefficient kt shown in the equation (5) changes with time from time t0.
  • the slope of the corrected energization rate DRa from time t0 to time t1 varies depending on the temperature setting rank from time t0.
  • the energization coefficient kt becomes a constant value
  • the corrected energization rate DRa becomes constant.
  • the strongly set corrected energization rate DRa is the largest and the weakly set corrected energization rate DRa is the smallest.
  • the corrected energization rate DRa after the temperature of the refrigerator compartment temperature Ti is stabilized differs for each temperature setting rank.
  • FIG. 17 shows that when the refrigeration room temperature Ti becomes stable in accordance with the refrigeration room target temperature Ts, the energization rate is constant in any temperature setting rank, but the energization rate differs for each temperature setting rank. .
  • the numerator and the denominator of the formula (5) are the same in the case of medium setting. That is, in the case of the medium setting, the corrected energization rate DRa becomes the reference energization rate DRref after time t1.
  • the corrected energization rate DRa is larger than the reference energization rate DRref.
  • the corrected energization rate DRa becomes a value smaller than the reference energization rate DRref.
  • the third embodiment has been described based on the first embodiment, the second embodiment may be applied to the third embodiment.
  • the refrigerator-freezer 100 uses the energization coefficient kt calculated by the equation (5) as the corrected energization rate DRa of the heater 18.
  • the lower the refrigerating room target temperature Ts the larger the inclination of the energization rate until the refrigerating room temperature Ti becomes stable. It can be maintained at a large value. Even if the refrigerating room temperature Ti rapidly decreases, the inclination of the energization rate of the heater 18 is large, so that it is possible to prevent condensation on the surface of the partition plate 9. Even if the refrigerator compartment temperature Ti is set to a low temperature, since the energization rate of the heater 18 is large, it is possible to prevent condensation on the surface of the partition plate 9 when the user opens and closes the door of the refrigerator compartment 1. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Refrigerator Housings (AREA)

Abstract

This refrigeration appliance has a box-shaped body having a storage chamber, double doors that cover an opening in the box-shaped body, a partition plate that blocks infiltration of outside air into the storage chamber when the double doors are closed, an outside-air temperature sensor that detects the temperature of the outside air, an outside-air humidity sensor that detects the humidity of the outside air, a refrigeration-chamber temperature sensor that detects the temperature inside the storage chamber as the temperature of a refrigeration chamber, a heater that prevents condensation on the partition plate, and a heater control means that controls transmission of electricity to the heater on the basis of a reference electricity transmission ratio calculated from the temperature of the outside air and the humidity of the outside air. The heater control means calculates an electricity transmission coefficient from the temperature of the outside air, the temperature of the refrigeration chamber, and a target temperature of the refrigeration chamber, and controls the heater using a corrected electricity transmission ratio obtained by multiplying the calculated electricity transmission coefficient by the reference electricity transmission ratio.

Description

冷凍冷蔵庫Freezer refrigerator
 本発明は、両開き扉を備えた冷凍冷蔵庫に関する。 The present invention relates to a refrigerator with a double door.
 従来、最上段に冷蔵室を持つワークトップ型の冷蔵庫が知られている。このような冷蔵庫には、冷蔵室に両開き式の扉が設けられ、左扉と右扉との隙間から冷蔵室に外気が侵入するのを防止する仕切板が設けられたものがある。 Conventionally, a work top type refrigerator having a refrigerator compartment at the top is known. Some refrigerators are provided with double doors in the refrigerator compartment and provided with a partition plate that prevents outside air from entering the refrigerator compartment through a gap between the left door and the right door.
 冷蔵室の扉が閉められた状態で、仕切板は冷蔵室の扉のガスケットと密着することで冷蔵室を外気と遮断している。仕切板は、庫内側の面から冷却されるため熱伝導により庫外側の表面温度が低下し、庫外側の表面が結露してしまう。多くの冷蔵庫には、庫外側表面の結露を防止するために、仕切板の内部にヒータが設けられている。 In the state that the door of the refrigerator compartment is closed, the partition plate is in close contact with the gasket of the door of the refrigerator compartment to block the refrigerator compartment from the outside air. Since a partition plate is cooled from the surface inside a store | warehouse | chamber, the surface temperature outside a store | warehouse | chamber falls by heat conduction, and the surface outside a store | warehouse will dew condensation. In many refrigerators, a heater is provided inside the partition plate in order to prevent condensation on the outer surface of the refrigerator.
 ヒータが仕切板を加熱する際、結露対策に限ってヒータに供給する電力量を多くしてしまうと、冷蔵庫の消費電力量が大きくなり電気代が高くなってしまう。また、定性的には仕切板から冷蔵室へ移動する熱も多くなり、冷蔵室の冷却を妨げてしまうこともある。 When the heater heats the partition plate, if the amount of power supplied to the heater is increased only for dew condensation measures, the power consumption of the refrigerator increases and the electricity cost increases. In addition, qualitatively, the heat that moves from the partition plate to the refrigerator compartment increases, which may interfere with cooling of the refrigerator compartment.
 仕切板に設けられたヒータの通電制御の一例として、外気温度と冷蔵室の庫内温度との温度差Δtに対して、ヒータへの入力電力PをP=α×Δtの式で算出して制御する冷蔵庫が知られている(例えば、特許文献1参照)。 As an example of energization control of the heater provided in the partition plate, the input power P to the heater is calculated by the equation P = α × Δt with respect to the temperature difference Δt between the outside air temperature and the inside temperature of the refrigerator compartment. The refrigerator to control is known (for example, refer to patent documents 1).
 別のヒータ通電制御を行う冷蔵庫の一例が、特許文献2に開示されている。特許文献2の冷蔵庫は、外気温度に応じて、仕切板が結露しない基準通電率および基準湿度が予め設定され、外気湿度が基準湿度より高い場合、ヒータ通電率を基準通電率より高くし、外気湿度が基準湿度より低い場合、ヒータ通電率を基準通電率より低くする。 An example of a refrigerator that performs another heater energization control is disclosed in Patent Document 2. In the refrigerator of Patent Document 2, when the reference energization rate and the reference humidity at which the partition plate does not condense are set in advance according to the outside air temperature, and the outside air humidity is higher than the reference humidity, the heater energization rate is set higher than the reference energization rate. When the humidity is lower than the reference humidity, the heater energization rate is set lower than the reference energization rate.
特開2004-353972号公報JP 2004-353972 A 特開2013-72595号公報JP 2013-72595 A
 特許文献1に開示された冷蔵庫は、冷蔵室の温度が設定温度で安定していることが前提になっており、冷蔵室の温度が外気温度に近い場合、無駄に電力を消費してしまうおそれがある。冷蔵室の温度が外気温度に近いほど高くなる場合として、例えば、冷蔵庫の設置後に電源が投入されるとき、長時間の停電から電源が復旧するとき、扉が長時間開放されたときなどである。 The refrigerator disclosed in Patent Document 1 is based on the premise that the temperature of the refrigerator compartment is stable at the set temperature, and if the temperature of the refrigerator compartment is close to the outside air temperature, there is a risk of consuming power wastefully. There is. Examples of cases where the temperature of the refrigerator compartment becomes higher as the outside air temperature is higher are, for example, when the power is turned on after the refrigerator is installed, when the power is restored from a long power failure, or when the door is opened for a long time. .
 特許文献2に開示された冷蔵庫も、冷蔵室の温度が設定温度近くであるか否かが考慮されておらず、冷蔵室の温度が外気温度に近いほど高い場合、冷蔵室が設定温度まで冷却されるまでの過渡期において、無駄に電力を消費してしまうおそれがある。 The refrigerator disclosed in Patent Document 2 also does not consider whether or not the temperature of the refrigerator compartment is close to the set temperature, and when the temperature of the refrigerator compartment is higher as it is closer to the outside air temperature, the refrigerator compartment is cooled to the preset temperature. In the transition period until it is done, there is a risk of consuming power wastefully.
 本発明は、上記のような課題を解決するためになされたもので、消費電力量を低減できる冷凍冷蔵庫を提供するものである。 The present invention has been made to solve the above-described problems, and provides a refrigerator-freezer capable of reducing power consumption.
 本発明に係る冷凍冷蔵庫は、貯蔵室を有する箱体と、前記箱体の開口部を覆う両開き扉と、前記両開き扉が閉じた状態で前記貯蔵室への外気の浸入を防ぐ仕切板と、外気温度を検出する外気温度センサと、外気湿度を検出する外気湿度センサと、前記貯蔵室内の温度を冷蔵室温度として検出する冷蔵室温度センサと、前記仕切板の結露を防止するヒータと、前記外気温度および前記外気湿度から算出される基準通電率に基づいて前記ヒータへの通電を制御するヒータ制御手段と、を有し、前記ヒータ制御手段は、前記外気温度、前記冷蔵室温度および冷蔵室目標温度から通電係数を算出し、算出した通電係数を前記基準通電率に乗算した補正通電率を用いて前記ヒータを制御するものである。 The refrigerator-freezer according to the present invention includes a box having a storage room, a double door that covers the opening of the box, and a partition plate that prevents the outside air from entering the storage room in a state where the double door is closed, An outside air temperature sensor for detecting outside air temperature, an outside air humidity sensor for detecting outside air humidity, a refrigerating room temperature sensor for detecting a temperature in the storage room as a refrigerating room temperature, a heater for preventing dew condensation on the partition plate, Heater control means for controlling energization to the heater based on a reference energization ratio calculated from the outside air temperature and the outside air humidity, and the heater control means includes the outside air temperature, the refrigerating room temperature, and the refrigerating room. An energization coefficient is calculated from a target temperature, and the heater is controlled using a corrected energization rate obtained by multiplying the calculated energization coefficient by the reference energization rate.
 本発明によれば、外気温度、冷蔵室温度および冷蔵室目標温度を反映した補正通電率がヒータ通電制御に用いられるため、仕切板の表面温度が結露防止温度よりも必要以上に大きくなることが抑制される。そのため、ヒータの無駄な電力消費が抑制され、冷凍冷蔵庫の消費電力量を低減できる。 According to the present invention, since the corrected energization rate reflecting the outside air temperature, the refrigerator temperature, and the refrigerator compartment target temperature is used for the heater energization control, the surface temperature of the partition plate may be larger than necessary than the dew condensation prevention temperature. It is suppressed. Therefore, useless power consumption of the heater is suppressed, and the power consumption of the refrigerator-freezer can be reduced.
本発明の実施の形態1に係る冷凍冷蔵庫の一構成例を示す外観正面図である。It is an external appearance front view which shows the example of 1 structure of the refrigerator-freezer which concerns on Embodiment 1 of this invention. 図1に示した冷凍冷蔵庫の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerator-freezer shown in FIG. 図1に示すA-A線の断面図である。FIG. 2 is a cross-sectional view taken along line AA shown in FIG. 図2に示した制御部の機能ブロック図である。FIG. 3 is a functional block diagram of a control unit shown in FIG. 2. 外気温度および相対湿度から基準通電率を求める算出式を示すグラフである。It is a graph which shows the calculation formula which calculates | requires a reference | standard energization rate from external temperature and relative humidity. 外気温度および相対湿度から基準通電率を求める算出式を示すグラフである。It is a graph which shows the calculation formula which calculates | requires a reference | standard energization rate from external temperature and relative humidity. 図1に示した冷蔵室内への外気からの熱移動を示すモデル図である。It is a model figure which shows the heat transfer from the outside air to the refrigerator compartment shown in FIG. 図1に示した冷蔵室内部の全体の冷気の流速分布を示す図である。It is a figure which shows the flow-velocity distribution of the whole cold air inside the refrigerator compartment shown in FIG. 図8に示した冷蔵室内部のうち、最上段棚における冷気の流速分布を示す拡大図である。It is an enlarged view which shows the flow velocity distribution of the cold air in the uppermost shelf among the inside of the refrigerator compartment shown in FIG. 図4に示したヒータ制御手段が実行するヒータ通電制御の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of the heater energization control which the heater control means shown in FIG. 4 performs. 本発明の実施の形態1に係るヒータ通電制御において、外気温度が30℃であり、相対湿度が75%RHである場合に電源投入開始からの温度変化を示すグラフである。In heater energization control concerning Embodiment 1 of the present invention, when outside temperature is 30 ° C and relative humidity is 75% RH, it is a graph which shows temperature change from a power-on start. 比較例のヒータ通電制御において、外気温度が30℃であり、相対湿度が75%RHである場合に電源投入開始からの温度変化を示すグラフである。In the heater energization control of a comparative example, it is a graph which shows the temperature change from power-on start, when outside temperature is 30 degreeC and relative humidity is 75% RH. 本発明の実施の形態1に係るヒータ通電制御において、冷蔵室温度、通電係数、基準通電率および補正通電率の時間変化を示す図である。In heater energization control concerning Embodiment 1 of the present invention, it is a figure showing time change of refrigerator temperature, energization coefficient, standard energization rate, and correction energization rate. 本発明の実施の形態1に係るヒータ通電制御において、外気温度が30℃であり、相対湿度が55%RHの場合に電源投入開始からの温度変化を示すグラフである。In heater energization control concerning Embodiment 1 of the present invention, when outside temperature is 30 ° C and relative humidity is 55% RH, it is a graph which shows a temperature change from power-on start. 比較例のヒータ通電制御において、外気温度30℃、外気湿度55%RHの場合の電源投入時の各温度波形を示す図である。In heater energization control of a comparative example, it is a figure which shows each temperature waveform at the time of power activation in the case of 30 degreeC outside temperature and 55% RH outside temperature. 本発明の実施の形態3に係る冷凍冷蔵庫の制御部の構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of the control part of the refrigerator-freezer which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る冷凍冷蔵庫において、ヒータの通電率の時間推移を示す図である。In the refrigerator-freezer which concerns on Embodiment 3 of this invention, it is a figure which shows the time transition of the electricity supply rate of a heater.
実施の形態1.
 本実施の形態1の冷凍冷蔵庫の構成を説明する。図1は、本発明の実施の形態1に係る冷凍冷蔵庫の一構成例を示す外観正面図である。図2は、図1に示した冷凍冷蔵庫の冷媒回路図である。
Embodiment 1 FIG.
The structure of the refrigerator-freezer of this Embodiment 1 is demonstrated. FIG. 1 is an external front view showing a configuration example of a refrigerator-freezer according to Embodiment 1 of the present invention. FIG. 2 is a refrigerant circuit diagram of the refrigerator-freezer shown in FIG.
 図1に示すように、冷凍冷蔵庫100は、箱体100Aを備え、貯蔵室として、冷蔵室1、製氷室2、小型冷凍室3、冷凍室4および野菜室5を有する。図1に示す構成例では、冷凍冷蔵庫100の本体の最上部に冷蔵室1が設けられ、冷蔵室1の下方(Z軸矢印の反対方向)に製氷室2および小型冷凍室3が並列に設けられている。製氷室2および小型冷凍室3の下には、冷凍室4が配置され、冷凍室4の下に野菜室5が配置されている。本実施の形態1では、複数の貯蔵室を有する箱体100Aのうち、貯蔵室が冷蔵室1である場合について説明する。 As shown in FIG. 1, the refrigerator-freezer 100 includes a box 100A, and has a refrigerator room 1, an ice making room 2, a small freezer room 3, a freezer room 4, and a vegetable room 5 as storage rooms. In the configuration example shown in FIG. 1, the refrigerator compartment 1 is provided at the top of the main body of the refrigerator 100, and the ice making chamber 2 and the small refrigerator compartment 3 are provided in parallel below the refrigerator compartment 1 (in the direction opposite to the Z-axis arrow). It has been. A freezer room 4 is arranged under the ice making room 2 and the small freezer room 3, and a vegetable room 5 is arranged under the freezer room 4. In this Embodiment 1, the case where a storage room is the refrigerator compartment 1 among the boxes 100A which have a some storage room is demonstrated.
 冷凍冷蔵庫100は、冷蔵室1の開口部を覆う両開き扉を有する。両開き扉は、冷蔵室1の開口部を開閉する左扉7および右扉8で構成される。冷蔵室1には、両開き扉が閉じた状態で外気の浸入を防ぐ仕切板9が設けられている。仕切板9の上下方向(Z軸矢印方向)の長さは図1に示した冷蔵室1の上下方向の長さと同等である。冷凍冷蔵庫100は両開き扉を有していればよく、これらの貯蔵室の配置は図1に示す構成に限定されない。 The refrigerator-freezer 100 has a double door that covers the opening of the refrigerator compartment 1. The double door is composed of a left door 7 and a right door 8 that open and close the opening of the refrigerator compartment 1. The refrigerator compartment 1 is provided with a partition plate 9 that prevents intrusion of outside air when the double door is closed. The length in the vertical direction (Z-axis arrow direction) of the partition plate 9 is equal to the length in the vertical direction of the refrigerator compartment 1 shown in FIG. The refrigerator-freezer 100 should just have a double door, and arrangement | positioning of these store rooms is not limited to the structure shown in FIG.
 図2に示すように、冷凍冷蔵庫100は、ヒータ18、圧縮機51、凝縮器52、減圧装置53、蒸発器54、ファン55、ダンパ装置56および制御部60を有する。圧縮機51、凝縮器52、減圧装置53および蒸発器54が冷媒配管で接続され、冷媒が循環する冷媒回路57が構成される。 2, the refrigerator-freezer 100 includes a heater 18, a compressor 51, a condenser 52, a decompression device 53, an evaporator 54, a fan 55, a damper device 56, and a control unit 60. The compressor 51, the condenser 52, the decompression device 53, and the evaporator 54 are connected by refrigerant piping, and the refrigerant circuit 57 in which a refrigerant circulates is comprised.
 圧縮機51は、冷媒を圧縮して吐出し、冷媒を冷媒回路57に循環させる。圧縮機51は、例えば、容量を可変できるインバータ型圧縮機である。凝縮器52は、冷媒に外気と熱交換させる熱交換器である。凝縮器52は、例えば、冷媒から熱を奪って冷凍冷蔵庫100の外部に放出させる凝縮パイプである。凝縮パイプは、冷凍冷蔵庫100の筐体側面に設けられている。減圧装置53は、冷媒を減圧して膨張させる。減圧装置53は、例えば、キャピラリーチューブである。蒸発器54は、冷媒に庫内の空気と熱交換させる熱交換器である。ファン55は、蒸発器54において冷媒と熱交換することで冷却された空気を冷蔵室1および冷凍室4等に供給する。ファン55は、例えば、プロペラファンである。ダンパ装置56は、バッフルの開度を変えることで、冷蔵室1および冷凍室4等に供給される冷気の供給量を調節する。ヒータ18は、図1に示す仕切板9に設けられ、仕切板9の表面が結露することを防止する。 The compressor 51 compresses and discharges the refrigerant, and circulates the refrigerant in the refrigerant circuit 57. The compressor 51 is, for example, an inverter type compressor whose capacity can be varied. The condenser 52 is a heat exchanger that causes the refrigerant to exchange heat with the outside air. The condenser 52 is, for example, a condensing pipe that takes heat from the refrigerant and releases it to the outside of the refrigerator-freezer 100. The condensation pipe is provided on the side surface of the refrigerator refrigerator 100. The decompression device 53 decompresses and expands the refrigerant. The decompression device 53 is, for example, a capillary tube. The evaporator 54 is a heat exchanger that causes the refrigerant to exchange heat with the air in the warehouse. The fan 55 supplies air cooled by exchanging heat with the refrigerant in the evaporator 54 to the refrigerator compartment 1 and the freezer compartment 4. The fan 55 is, for example, a propeller fan. The damper device 56 adjusts the amount of cold air supplied to the refrigerator compartment 1 and the freezer compartment 4 by changing the opening of the baffle. The heater 18 is provided on the partition plate 9 shown in FIG. 1 and prevents the surface of the partition plate 9 from condensing.
 また、冷凍冷蔵庫100は、冷蔵室1および冷凍室4等の温度制御、ならびにヒータ18の通電制御等のために、複数のセンサを有する。具体的には、冷凍冷蔵庫100は、冷凍室温度センサ71、冷蔵室温度センサ72、外気温度センサ73および外気湿度センサ74を有する。冷凍室温度センサ71は、冷凍室4に設けられ、冷凍室温度Tfを検出する。冷蔵室温度センサ72は、冷蔵室1に設けられ、冷蔵室温度Tiを検出する。外気温度センサ73は、冷凍冷蔵庫100の周囲環境として外気温度Toを検出する。外気湿度センサ74は、冷凍冷蔵庫100の周囲環境として外気湿度Moを検出する。外気温度センサ73および外気湿度センサ74は、例えば、左扉7の図に示さない上側ヒンジ部に設けられている。冷蔵室温度センサ72は、冷蔵室1の温度管理だけでなく、ヒータ18への通電を最適に行うための仕切板9の表面の温度補償の役目を果たす。 Moreover, the refrigerator-freezer 100 has a plurality of sensors for temperature control of the refrigerator compartment 1 and the freezer compartment 4 and the like and for energization control of the heater 18. Specifically, the refrigerator-freezer 100 includes a freezer temperature sensor 71, a refrigerator temperature sensor 72, an outside air temperature sensor 73, and an outside air humidity sensor 74. The freezer compartment temperature sensor 71 is provided in the freezer compartment 4 and detects the freezer compartment temperature Tf. The refrigerator compartment temperature sensor 72 is provided in the refrigerator compartment 1 and detects the refrigerator compartment temperature Ti. The outside air temperature sensor 73 detects the outside air temperature To as the surrounding environment of the refrigerator-freezer 100. The outside air humidity sensor 74 detects the outside air humidity Mo as the surrounding environment of the refrigerator-freezer 100. The outside air temperature sensor 73 and the outside air humidity sensor 74 are provided, for example, in an upper hinge portion (not shown) of the left door 7. The refrigerator compartment temperature sensor 72 serves not only for temperature management of the refrigerator compartment 1 but also for temperature compensation of the surface of the partition plate 9 for optimally energizing the heater 18.
 なお、冷凍室温度センサ71は、冷凍物の貯蔵室の温度を検出できる位置であればよく、設置位置は限定されない。冷蔵室温度センサ72は、冷蔵物の温度を検出できる位置であればよく、設置位置は限定されない。外気温度センサ73は、周囲環境として外気温度Toを検出できれば、設置場所は限定されない。外気湿度センサ74は、周囲環境として外気湿度Moを検出できれば、設置場所は限定されない。 The freezer temperature sensor 71 is not limited as long as it is a position that can detect the temperature of the frozen storage room. The refrigerating room temperature sensor 72 may be a position where the temperature of the refrigerating object can be detected, and the installation position is not limited. As long as the outside air temperature sensor 73 can detect the outside air temperature To as an ambient environment, the installation location is not limited. As long as the outside air humidity sensor 74 can detect the outside air humidity Mo as an ambient environment, the installation location is not limited.
 ただし、外気温度センサ73および外気湿度センサ74の設置場所は、冷凍冷蔵庫100の運転の影響を受けない場所であることが望ましい。例えば、冷凍冷蔵庫100が運転中、筐体側面に固定された凝縮パイプ(不図示)の温度が高くなるため、外気温度センサ73および外気湿度センサ74は、凝縮パイプからの放熱の影響を受けない位置に設置するのが望ましい。例えば、外気温度センサ73および外気湿度センサ74の設置場所が左扉7または右扉8の上側ヒンジ部である場合、凝縮パイプ(不図示)の熱の影響を受けない。 However, the installation location of the outside air temperature sensor 73 and the outside air humidity sensor 74 is preferably a place that is not affected by the operation of the refrigerator-freezer 100. For example, since the temperature of the condensation pipe (not shown) fixed to the side surface of the casing becomes high during the operation of the refrigerator 100, the outside air temperature sensor 73 and the outside air humidity sensor 74 are not affected by the heat radiation from the condensation pipe. It is desirable to install in the position. For example, when the installation location of the outside air temperature sensor 73 and the outside air humidity sensor 74 is the upper hinge portion of the left door 7 or the right door 8, it is not affected by the heat of the condensation pipe (not shown).
 図3は、図1に示すA-A線の断面図である。仕切板9を境界にして、図3の上側(Y軸矢印方向)が庫内側であり、図3の下側(Y軸矢印と反対方向)が庫外側である。仕切板9は、水平面(XY平面)の断面が長方形の直方体である。図1に示した左扉7の庫内側には左扉内板10が設けられ、右扉8の庫内側には右扉内板11が設けられている。左扉内板10には、庫内側に立ち壁15が設けられている。右扉内板11には、庫内側に立ち壁16が設けられている。 FIG. 3 is a cross-sectional view taken along line AA shown in FIG. With the partition plate 9 as a boundary, the upper side (in the direction of the Y-axis arrow) in FIG. 3 is the inside of the cabinet, and the lower side in FIG. 3 (the direction opposite to the Y-axis arrow) is the outside of the cabinet. The partition plate 9 is a rectangular parallelepiped having a rectangular horizontal plane (XY plane). A left door inner plate 10 is provided on the inner side of the left door 7 shown in FIG. 1, and a right door inner plate 11 is provided on the inner side of the right door 8. The left door inner plate 10 is provided with a standing wall 15 on the inner side. The right door inner plate 11 is provided with a standing wall 16 on the inner side.
 冷蔵室1の両開き扉が閉状態である場合、図3に示すように、仕切板9は、立ち壁15と立ち壁16との間に位置する。仕切板9は左扉7にヒンジ機構(不図示)で取り付けられている。仕切板9はヒンジ機構の軸(Z軸矢印方向に平行)に対して回転できる構成である。 When the double door of the refrigerator compartment 1 is in a closed state, the partition plate 9 is located between the standing wall 15 and the standing wall 16 as shown in FIG. The partition plate 9 is attached to the left door 7 by a hinge mechanism (not shown). The partition plate 9 is configured to be rotatable with respect to the axis of the hinge mechanism (parallel to the Z-axis arrow direction).
 仕切板9は、板金部材17、ヒータ18および断熱材19を有する。図3に示すように、仕切板9の庫外側の表面に、両端が庫内側に折り曲げられた板金部材17が取り付けられている。板金部材17の庫内側にヒータ18が配置されている。アルミ箔14がヒータ18を覆って板金部材17に糊付けまたは両面テープで貼り付けられているため、ヒータ18は板金部材17に固定されている。 The partition plate 9 includes a sheet metal member 17, a heater 18, and a heat insulating material 19. As shown in FIG. 3, a sheet metal member 17 having both ends bent to the inner side is attached to the outer surface of the partition plate 9. A heater 18 is disposed inside the sheet metal member 17. Since the aluminum foil 14 covers the heater 18 and is glued or attached to the sheet metal member 17 with double-sided tape, the heater 18 is fixed to the sheet metal member 17.
 また、仕切板9において、板金部材17およびヒータ18よりも庫内側に、断熱材19が配置されている。断熱材19はヒータ18の熱が庫内側に伝導することを抑制する。断熱材19は背面(Y軸矢印方向の面)および側面(X軸矢印方向の面およびX軸矢印と反対方向の面)が庫内側樹脂部材20で覆われている。そして、板金部材17と断熱材19との間に嵌め込まれた庫外側樹脂部材28が、庫内側樹脂部材20の側面の一部を覆う構成である。 Further, in the partition plate 9, a heat insulating material 19 is arranged on the inner side than the sheet metal member 17 and the heater 18. The heat insulating material 19 suppresses the heat of the heater 18 from being conducted to the inside of the cabinet. The back surface (surface in the direction of the Y-axis arrow) and the side surface (surface in the direction of the X-axis arrow and surface in the direction opposite to the X-axis arrow) of the heat insulating material 19 are covered with the internal resin member 20. Then, the outside resin member 28 fitted between the sheet metal member 17 and the heat insulating material 19 covers a part of the side surface of the inside resin member 20.
 左扉内板10の溝部24に左扉ガスケット22が嵌め込まれている。右扉内板11の溝部24に右扉ガスケット23が嵌め込まれている。図3に示すように冷蔵室1の両開き扉が閉状態で、左扉ガスケット22および右扉ガスケット23のそれぞれは、仕切板9の板金部材17と対向する位置に磁石25を備えている。冷蔵室1の両開き扉が閉状態において、板金部材17が磁力で磁石25に引きつけられることで、左扉ガスケット22および右扉ガスケット23が仕切板9の板金部材17と密着し、庫外から冷蔵室1への外気の侵入を遮断する。 The left door gasket 22 is fitted in the groove portion 24 of the left door inner plate 10. A right door gasket 23 is fitted in the groove 24 of the right door inner plate 11. As shown in FIG. 3, each of the left door gasket 22 and the right door gasket 23 includes a magnet 25 at a position facing the sheet metal member 17 of the partition plate 9 when the double door of the refrigerator compartment 1 is closed. When the double door of the refrigerator compartment 1 is closed, the sheet metal member 17 is attracted to the magnet 25 by magnetic force, so that the left door gasket 22 and the right door gasket 23 are in close contact with the sheet metal member 17 of the partition plate 9, and refrigeration is performed from outside the refrigerator. Block the outside air from entering the chamber 1.
 また、左扉内板10の仕切板9側には、パッキン29が設けられている。右扉内板11の仕切板9側には、右扉ガスケット23の一部が立ち壁16に沿うように庫内側に突出している。パッキン29および右扉ガスケット23の突出部分は、ヒータ18から仕切板9の周囲への熱漏洩を抑制する。 Further, a packing 29 is provided on the partition plate 9 side of the left door inner plate 10. On the partition plate 9 side of the right door inner plate 11, a part of the right door gasket 23 protrudes inside the cabinet so as to follow the standing wall 16. The protruding portions of the packing 29 and the right door gasket 23 suppress heat leakage from the heater 18 to the periphery of the partition plate 9.
 ユーザが左扉7を開けると、仕切板9は、仕切板9の上端に設けられた溝形状に冷蔵室1の天面に設置されたガイド部品の突起が引っ掛かる。そのため、仕切板9は、左扉7のヒンジ機構(不図示)の軸を中心に反時計回りに回転し、立ち壁15に沿って立ち壁15と一体になる。一方、ユーザが左扉7を閉めると、仕切板9は、仕切板9の上端に設けられた溝形状に冷蔵室1の天面に設置されたガイド部品の突起が引っ掛かる。そのため、仕切板9は、立ち壁15から引き離されるように、左扉7のヒンジ機構(不図示)の軸を中心に時計回りに回転する。その結果、仕切板9、左扉内板10および右扉内板11は、図3に示した状態になる。このようにして、仕切板9は、両開き扉が閉状態である場合に、冷蔵室1の左扉7および右扉8の間から外気が冷蔵室1に侵入することを防止する役目を果たす。 When the user opens the left door 7, the projection of the guide component installed on the top surface of the refrigerator compartment 1 is hooked on the partition plate 9 in the groove shape provided at the upper end of the partition plate 9. Therefore, the partition plate 9 rotates counterclockwise around the axis of the hinge mechanism (not shown) of the left door 7 and is integrated with the standing wall 15 along the standing wall 15. On the other hand, when the user closes the left door 7, the projection of the guide component installed on the top surface of the refrigerator compartment 1 is hooked on the partition plate 9 in the groove shape provided at the upper end of the partition plate 9. Therefore, the partition plate 9 rotates clockwise about the axis of the hinge mechanism (not shown) of the left door 7 so as to be separated from the standing wall 15. As a result, the partition plate 9, the left door inner plate 10, and the right door inner plate 11 are in the state shown in FIG. In this way, the partition plate 9 serves to prevent outside air from entering the refrigerator compartment 1 from between the left door 7 and the right door 8 of the refrigerator compartment 1 when the double doors are closed.
 次に、制御部60の構成を説明する。図4は、図2に示した制御部の機能ブロック図である。制御部60は、例えば、マイクロコンピュータである。図2に示すように、制御部60は、プログラムを記憶するメモリ61と、プログラムにしたがって処理を実行するCPU(Central Processing Unit)62とを有する。図4に示すように、制御部60は、冷凍サイクル制御手段65と、ヒータ制御手段66とを有する。CPU62がプログラムを実行することで、冷凍サイクル制御手段65およびヒータ制御手段66が冷凍冷蔵庫100に構成される。 Next, the configuration of the control unit 60 will be described. FIG. 4 is a functional block diagram of the control unit shown in FIG. The control unit 60 is, for example, a microcomputer. As illustrated in FIG. 2, the control unit 60 includes a memory 61 that stores a program, and a CPU (Central Processing Unit) 62 that executes processing according to the program. As shown in FIG. 4, the control unit 60 includes a refrigeration cycle control means 65 and a heater control means 66. When the CPU 62 executes the program, the refrigeration cycle control means 65 and the heater control means 66 are configured in the refrigeration refrigerator 100.
 冷凍サイクル制御手段65は、冷凍室温度Tf、冷蔵室温度Ti、冷凍室目標温度および冷蔵室目標温度Tsに基づいて冷媒回路57の冷凍サイクルを制御する。具体的には、冷凍サイクル制御手段65は、冷凍室温度Tfが冷凍室目標温度に一致するように、圧縮機51の回転数を制御する。また、冷凍サイクル制御手段65は、冷蔵室温度Tiが冷蔵室目標温度Tsに一致するように、ファン55の回転数とダンパ装置56のバッフルの開度とを制御する。冷蔵室目標温度Tsはメモリ61に記憶されている。 The refrigeration cycle control means 65 controls the refrigeration cycle of the refrigerant circuit 57 based on the freezer compartment temperature Tf, the refrigerator compartment temperature Ti, the freezer compartment target temperature, and the refrigerator compartment target temperature Ts. Specifically, the refrigeration cycle control means 65 controls the rotation speed of the compressor 51 so that the freezer compartment temperature Tf matches the freezer compartment target temperature. The refrigeration cycle control means 65 controls the rotation speed of the fan 55 and the opening degree of the baffle of the damper device 56 so that the refrigerator compartment temperature Ti matches the refrigerator compartment target temperature Ts. The refrigerator compartment target temperature Ts is stored in the memory 61.
 ヒータ制御手段66は、外気温度Toおよび外気湿度Moから算出される基準通電率DRrefに基づいてヒータ18への通電率を制御する。通電率は、ヒータ18に定格電流で通電する時間の割合を示す。例えば、時間10秒のうち、5秒通電する場合の通電率は、(5[s]/10[s])×100%=50%となる。基準通電率DRrefは仕切板9の表面に露が付かない通電率である。基準通電率DRrefは、外気温度Toと外気の相対湿度Mrhとから後述の算出式を用いて算出される。相対湿度Mrhは、決められた空気線図を基に外気温度Toおよび外気湿度Moから求まる。外気温度Toおよび外気湿度Moから相対湿度Mrhを算出する式が、メモリ61が記憶するプログラムに登録されている。 The heater control means 66 controls the energization rate to the heater 18 based on the reference energization rate DRref calculated from the outside air temperature To and the outside air humidity Mo. The energization rate indicates the ratio of the time during which the heater 18 is energized with the rated current. For example, the energization rate when energizing for 5 seconds out of the time 10 seconds is (5 [s] / 10 [s]) × 100% = 50%. The reference energization rate DRref is an energization rate at which the surface of the partition plate 9 is not dewed. The reference energization rate DRref is calculated from the outside air temperature To and the outside air relative humidity Mrh using a calculation formula described later. The relative humidity Mrh is obtained from the outside air temperature To and the outside air humidity Mo based on the determined air diagram. An equation for calculating the relative humidity Mrh from the outside air temperature To and the outside air humidity Mo is registered in a program stored in the memory 61.
 基準通電率DRrefについて説明する。図5および図6は、外気温度および相対湿度から基準通電率を求める算出式を示すグラフである。基準通電率DRrefは、例えば、図5に示すように、外気温度Toをパラメータとする算出式PF1~PF3が設定されている。図5に示す例では、外気温度To≦20℃以下、20℃<外気温度To≦30℃、30<外気温度To≦40℃の3つの温度帯の場合を示す。基準通電率DRrefは、各算出式PF1~PF3にしたがって、相対湿度Mrhが上昇すると線形的に上昇する。 The reference energization rate DRref will be described. 5 and 6 are graphs showing calculation formulas for obtaining the reference energization rate from the outside air temperature and the relative humidity. For example, as shown in FIG. 5, calculation formulas PF1 to PF3 using the outside air temperature To as a parameter are set for the reference energization rate DRref. The example shown in FIG. 5 shows the case of three temperature zones where the outside air temperature To ≦ 20 ° C. or less, 20 ° C. <outside air temperature To ≦ 30 ° C., and 30 <outside air temperature To ≦ 40 ° C. The reference energization rate DRref increases linearly as the relative humidity Mrh increases according to the calculation formulas PF1 to PF3.
 また、図6は、基準通電率DRrefについて、別の算出式を示すグラフである。図6に示すように、基準通電率DRrefは、外気温度Toをパラメータとする算出式LF1~LF3が設定されている。図6についても、図5と同様に、温度帯が3つの場合を示す。基準通電率DRrefは、各算出式LF1~LF3にしたがって、相対湿度Mrhが上昇すると対数的に上昇する。 FIG. 6 is a graph showing another calculation formula for the reference energization rate DRref. As shown in FIG. 6, the calculation ratios LF1 to LF3 using the outside air temperature To as a parameter are set for the reference energization rate DRref. FIG. 6 also shows a case where there are three temperature zones, as in FIG. The reference energization rate DRref increases logarithmically as the relative humidity Mrh increases according to the calculation formulas LF1 to LF3.
 図5に示す算出式PF1~PF3および図6に示すLF1~LF3は例であり、基準通電率DRrefの算出式は、仕切板9の素材の熱伝導率および仕切板9の厚さ等の構造、ヒータ18の定格ワット数および庫内設定温度などによって決まる。検出される外気温度Toがどの温度帯に属するかによって決定される算出式に、外気温度Toおよび外気湿度Moから算出された相対湿度Mrhが代入されることで、基準通電率DRrefが算出される。どの条件でどの算出式が最適であるかが予め開発試験などで決められており、算出式決定手順はメモリ61が記憶するプログラムに登録されている。 The calculation formulas PF1 to PF3 shown in FIG. 5 and LF1 to LF3 shown in FIG. 6 are examples. The calculation formula for the reference energization rate DRref is a structure such as the thermal conductivity of the material of the partition plate 9 and the thickness of the partition plate 9. It is determined by the rated wattage of the heater 18 and the set temperature in the cabinet. The reference energization rate DRref is calculated by substituting the relative humidity Mrh calculated from the outside air temperature To and the outside air humidity Mo into a calculation formula determined depending on which temperature zone the detected outside air temperature To belongs to. . Which calculation formula is optimal under which condition is determined in advance by a development test or the like, and the calculation formula determination procedure is registered in a program stored in the memory 61.
 例えば、図5に示す算出式PF1~PF3は、基準通電率DRref=A×Mrh+Bで表される。この式において、AおよびBの係数は外気温度Toの温度帯毎に設定される。また、図6に示す算出式LF1~LF3は、自然対数をlnの記号で表すと、基準通電率DRref=C×lnMrh+Dで表される。CおよびDの係数は外気温度Toの温度帯毎に設定される。これらの係数は、予め開発試験などで決定され、メモリ61が記憶するプログラムに登録されている。 For example, the calculation formulas PF1 to PF3 shown in FIG. 5 are represented by the reference energization rate DRref = A × Mrh + B. In this equation, the coefficients A and B are set for each temperature zone of the outside air temperature To. In addition, the calculation formulas LF1 to LF3 shown in FIG. 6 are expressed by the reference energization rate DRref = C × lnMrh + D when the natural logarithm is represented by the symbol ln. The coefficients of C and D are set for each temperature range of the outside air temperature To. These coefficients are determined in advance by a development test or the like and registered in a program stored in the memory 61.
 なお、本実施の形態1では、図5および図6に示すように、算出式を決めるための温度帯が3つの場合で説明したが、温度帯は3つに限らない。また、本実施の形態1では、温度帯の幅が10℃以上の場合で説明したが、温度帯の幅は10℃に限らず、10℃よりも小さい5℃等の値にして、温度帯の幅を細分化してもよい。 In the first embodiment, as shown in FIG. 5 and FIG. 6, the case where there are three temperature zones for determining the calculation formula has been described, but the temperature zone is not limited to three. In the first embodiment, the case where the temperature zone width is 10 ° C. or more has been described. However, the temperature zone width is not limited to 10 ° C., and the temperature zone is set to a value such as 5 ° C. smaller than 10 ° C. The width may be subdivided.
 本実施の形態1では、ヒータ制御手段66は、上記のようにして基準通電率DRrerを算出した後、ヒータ18に出力する補正通電率DRaとして、式(1)に示すように、基準通電率DRrefに通電係数ktを乗算して算出する。 In the first embodiment, the heater control means 66 calculates the reference energization rate DRrer as described above, and then calculates the reference energization rate DRa to be output to the heater 18 as shown in Expression (1). Calculated by multiplying DRref by the energization coefficient kt.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)における通電係数ktを説明する前に、仕切板9を通過する、庫外から庫内への入熱について説明する。図7は、図1に示した冷蔵室内への外気からの熱移動を示すモデル図である。図7において、αoは庫外側熱伝達率[W/(m・K)]であり、αiは庫内側熱伝達率[W/(m・K)]である。λは仕切板9の熱伝導率[W/(m・K)]であり、dは仕切板9の厚さ[m]である。ここでは、入熱モデルを簡便に考え、仕切板9を通過する単位面積当たりの熱移動量(熱流束)q[W/m]は、図7が示す熱移動から、式(2)によって算出される。式(2)においては、外気温度Toおよび冷蔵室温度Tiの単位をケルビン[K]としている。 Before explaining the energization coefficient kt in the equation (1), heat input from the outside to the inside through the partition plate 9 will be explained. FIG. 7 is a model diagram showing heat transfer from the outside air into the refrigerator compartment shown in FIG. In FIG. 7, αo is the outside heat transfer coefficient [W / (m 2 · K)], and αi is the inside heat transfer coefficient [W / (m 2 · K)]. λ is the thermal conductivity [W / (m · K)] of the partition plate 9, and d is the thickness [m] of the partition plate 9. Here, the heat input model is simply considered, and the heat transfer amount (heat flux) q [W / m 2 ] per unit area passing through the partition plate 9 is calculated from the heat transfer shown in FIG. Calculated. In the equation (2), the unit of the outside air temperature To and the refrigerator compartment temperature Ti is Kelvin [K].
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)の右辺のうち、(To-Ti)項の前項は熱通過係数と称されるものである。仕切板9の熱伝導率は、本来、図3に示した板金部材17の熱伝導率、断熱材19の熱伝導率および庫内側樹脂部材20の熱伝導率から算出される。ここでは、簡略的に仕切板9を1つの部材として扱い、仕切板9の熱伝導率をλとしている。 Of the right side of Equation (2), the previous term of the (To-Ti) term is called the heat transfer coefficient. The thermal conductivity of the partition plate 9 is originally calculated from the thermal conductivity of the sheet metal member 17 shown in FIG. 3, the thermal conductivity of the heat insulating material 19, and the thermal conductivity of the internal resin member 20. Here, the partition plate 9 is simply treated as one member, and the thermal conductivity of the partition plate 9 is λ.
 また、入熱モデルを厳密に3次元的に考える場合、仕切板9の側面の外側から冷蔵室1に回り込むヒートブリッジの影響も考慮しなければならない。本実施の形態1では、仕切板9の側面が樹脂で覆われているため、仕切板9の側面の外側のヒートブリッジの影響による熱移動量は熱移動量qに対して小さいと考えられる。そのため、ここでは、入熱モデルを簡便に2次元的な熱移動として考える。また、熱伝導率λは、板金部材17、断熱材19および庫内側樹脂部材20等の各部材の素材によって決まる物性値とみなせる。そのため、熱伝導率λは、冷凍冷蔵庫100の運転の影響、例えば、凝縮パイプによる熱影響およびヒータ18の通電時の熱影響などで変化はしない。 In addition, when the heat input model is strictly considered three-dimensionally, it is necessary to consider the influence of a heat bridge that goes into the refrigerator compartment 1 from the outside of the side surface of the partition plate 9. In this Embodiment 1, since the side surface of the partition plate 9 is covered with resin, it is considered that the heat transfer amount due to the influence of the heat bridge outside the side surface of the partition plate 9 is smaller than the heat transfer amount q. Therefore, here, the heat input model is simply considered as a two-dimensional heat transfer. The thermal conductivity λ can be regarded as a physical property value determined by the material of each member such as the sheet metal member 17, the heat insulating material 19, and the internal resin member 20. Therefore, the thermal conductivity λ does not change due to the influence of the operation of the refrigerator / freezer 100, for example, the thermal influence due to the condensation pipe and the thermal influence when the heater 18 is energized.
 庫外側の熱伝達率αoについては、仕切板9表面の空気流速に依存されると推察されるが、冷凍冷蔵庫100が設置される環境での風速は小さいと想定される。また、仕切板9の表面の一部は外気に露出しているが、仕切板9は、左扉7と右扉8との間の狭い隙間の奥に配置されているため、冷凍冷蔵庫100の周囲の風速の影響も受けにくい。一方、ヒータ18の発熱に起因して仕切板9の表面付近の空気が暖められると、仕切板9の表面付近の空気と外気とに温度差が生じ、温度差で生じる自然対流による空気流れが想定される。しかし、ヒータ18が通電されることで生じる空気流れを考慮しても、熱伝達率αoは3~4[W/(m・K)]程度と小さく、冷凍冷蔵庫100が運転中であっても熱伝達率αoの変化は小さいので、熱伝導率αoは固定値と考えることができる。 The heat transfer coefficient αo on the outside of the box is assumed to depend on the air flow rate on the surface of the partition plate 9, but it is assumed that the wind speed in the environment where the refrigerator-freezer 100 is installed is small. In addition, although a part of the surface of the partition plate 9 is exposed to the outside air, the partition plate 9 is disposed in the back of the narrow gap between the left door 7 and the right door 8. Less susceptible to ambient wind speeds. On the other hand, when the air near the surface of the partition plate 9 is warmed due to the heat generated by the heater 18, a temperature difference occurs between the air near the surface of the partition plate 9 and the outside air, and the air flow due to natural convection caused by the temperature difference is generated. is assumed. However, even when the air flow generated by energizing the heater 18 is taken into consideration, the heat transfer coefficient αo is as small as about 3 to 4 [W / (m 2 · K)], and the refrigerator / freezer 100 is in operation. However, since the change in the heat transfer coefficient αo is small, the heat conductivity αo can be considered as a fixed value.
 また、庫内側の熱伝達率αiについては、冷蔵室1における風速がファン55の回転数により変化すると考えられる。しかし、通常、冷蔵室1の吹出口の風速は、冷気の吹出し風路および吹出し口形状にも依存するが、最大でも3[m/s]程度である。また、両開き扉が閉状態では、冷蔵室1内において、仕切板9の側面に立ち壁15および16が配置されている。そのため、立ち壁15および16が吹出し口からの冷気の障害物になって、仕切板9への風当たりが弱くなると想定される。さらに、食品などが冷蔵室1の棚に置かれている場合、食品が吹出し口からの冷気の障害物になって、仕切板9への風当たりがさらに弱くなると想定される。そのため、庫内側の仕切板9への風速は0[m/s]に近似した値となる。 In addition, regarding the heat transfer coefficient αi inside the refrigerator, it is considered that the wind speed in the refrigerator compartment 1 changes depending on the rotation speed of the fan 55. However, normally, the wind speed at the outlet of the refrigerator compartment 1 is about 3 [m / s] at the maximum, although it depends on the cool air outlet and the shape of the outlet. When the double door is closed, the standing walls 15 and 16 are arranged on the side surface of the partition plate 9 in the refrigerator compartment 1. Therefore, it is assumed that the standing walls 15 and 16 become obstacles to cool air from the outlet, and the wind against the partition plate 9 is weakened. Further, when food or the like is placed on the shelf of the refrigerator compartment 1, it is assumed that the food becomes an obstacle to cool air from the outlet, and the air contact with the partition plate 9 is further weakened. Therefore, the wind speed to the partition plate 9 inside the warehouse becomes a value approximated to 0 [m / s].
 これらの想定事項から、仕切板9における入熱モデルは、式(2)に近似したものになる。 From these assumptions, the heat input model in the partition plate 9 is approximated to Equation (2).
 次に、本実施の形態1の冷凍冷蔵庫100における冷蔵室の風速分布の解析結果を説明する。解析に用いた冷蔵室1の内容積は271リットルである。また、ファン55の直径はφ120mmであり、ファン55の回転数は2000rpmである。図8は、図1に示した冷蔵室内部の全体の冷気の流速分布を示す図である。図9は、図8に示した冷蔵室内部のうち、最上段棚における冷気の流速分布を示す拡大図である。 Next, the analysis result of the wind speed distribution in the refrigerator compartment in the refrigerator-freezer 100 of the first embodiment will be described. The internal volume of the refrigerator compartment 1 used for the analysis is 271 liters. The diameter of the fan 55 is φ120 mm, and the rotational speed of the fan 55 is 2000 rpm. FIG. 8 is a diagram showing the flow velocity distribution of the entire cool air inside the refrigerator compartment shown in FIG. FIG. 9 is an enlarged view showing the flow velocity distribution of the cool air in the uppermost shelf in the inside of the refrigerator compartment shown in FIG.
 図8および図9において、図の左側(Y軸矢印と反対方向)が冷凍冷蔵庫100の正面側であり、図の右側(Y軸矢印方向)が冷凍冷蔵庫100の背面側である。図8および図9において、図の左端は、図3に示した仕切板9の背面(Y軸矢印方向の側面)に位置している。図8および図9は、冷蔵室1の内部における流速分布の解析結果として、流速の大きさを風速等高線で描画したものである。 8 and 9, the left side of the figure (in the direction opposite to the Y-axis arrow) is the front side of the refrigerator-freezer 100, and the right side of the figure (in the direction of the Y-axis arrow) is the back side of the refrigerator-freezer 100. 8 and 9, the left end of the figure is located on the back surface (side surface in the Y-axis arrow direction) of the partition plate 9 shown in FIG. FIG. 8 and FIG. 9 depict the magnitude of the flow velocity as a wind speed contour line as an analysis result of the flow velocity distribution inside the refrigerator compartment 1.
 図8および図9では、冷凍冷蔵庫100の庫内において、棚13および扉ポケット12を破線で示し、風速等高線35~38を実線で示している。図8および図9に示す風速等高線35の風速は0.1[m/s]である。図9において、風速等高線36の風速は0.2[m/s]であり、風速等高線37の風速は0.3[m/s]であり、風速等高線38の風速は0.4[m/s]である。図9に示す風速等高線38の内部には、風速が0.4[m/s]より大きい箇所があるが、図9では、風速0.4[m/s]より大きい風速等高線を示すことを省略している。 8 and 9, in the refrigerator 100, the shelves 13 and the door pockets 12 are indicated by broken lines, and the wind speed contour lines 35 to 38 are indicated by solid lines. The wind speed of the wind speed contour line 35 shown in FIGS. 8 and 9 is 0.1 [m / s]. In FIG. 9, the wind speed of the wind speed contour line 36 is 0.2 [m / s], the wind speed of the wind speed contour line 37 is 0.3 [m / s], and the wind speed of the wind speed contour line 38 is 0.4 [m / s]. s]. The wind speed contour line 38 shown in FIG. 9 has a portion where the wind speed is larger than 0.4 [m / s]. In FIG. 9, the wind speed contour line larger than 0.4 [m / s] is shown. Omitted.
 図8に破線で示すように、冷蔵室1の背面側には、冷気が流通する吹出し風路39と、冷蔵室1の複数の棚13に配置された複数の吹出し口30~34と、冷蔵室1を流通した冷気が蒸発器54に戻る戻り口40とが設けられている。冷却器として機能する蒸発器54により冷却された冷気は、ファン55により蒸発器54から吹出し風路39を経由し、吹出し口30~34から冷蔵室1内に流入する。吹出し口30~34の風速の数値解析結果を、表1に示す。表1では、ファン55の回転数は2000rpmである。 As shown by a broken line in FIG. 8, on the back side of the refrigerator compartment 1, an outlet air passage 39 through which cold air flows, a plurality of outlets 30 to 34 arranged on a plurality of shelves 13 in the refrigerator compartment 1, A return port 40 through which the cold air flowing through the chamber 1 returns to the evaporator 54 is provided. The cold air cooled by the evaporator 54 functioning as a cooler flows from the evaporator 54 through the blowout air passage 39 by the fan 55 and flows into the refrigerator compartment 1 from the blowout ports 30 to 34. Table 1 shows the numerical analysis results of the wind speed at the outlets 30 to 34. In Table 1, the rotation speed of the fan 55 is 2000 rpm.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1を参照すると、吹出し口30~34のうち、吹出し口30の風速が最も大きい。その理由を説明する。冷蔵室1の最上段の棚13は冷凍冷蔵庫100の最上面からの熱漏洩により、他の棚13に比べて温度が上昇しやすい傾向がある。複数の棚13で区切られる各貯蔵室の温度分布を均等にするために、最上段の棚13での風量が多くなるように吹出し口30の断面積が他の吹出し口31~34の断面積よりも大きい。また、吹出し口30は、吹出し風路39の末端近くに位置しているため、吹出し風路39の末端で折り返された冷気も加わるため、風速が大きくなる傾向がある。 Referring to Table 1, out of the outlets 30 to 34, the outlet 30 has the highest wind speed. The reason will be explained. The uppermost shelf 13 of the refrigerator compartment 1 tends to rise in temperature compared to the other shelves 13 due to heat leakage from the uppermost surface of the refrigerator 100. In order to make the temperature distribution in each storage room divided by the plurality of shelves 13 uniform, the cross-sectional area of the air outlet 30 is increased so that the air volume at the uppermost shelf 13 is increased. Bigger than. Further, since the blowout port 30 is located near the end of the blowout air passage 39, cold air that is folded back at the end of the blowout air passage 39 is also added, and thus the wind speed tends to increase.
 解析結果から、図8および図9の左端に示す仕切板9の背面付近の風速は、冷蔵室1内のどの高さでも、0[m/s]に近似した値であることがわかる。そのため、式(2)において、庫内側の熱伝導率αiも、庫外側の熱伝導率αoと同様に、3~4[W/(m・K)]程度と小さいと考えられる。また、庫内側の熱伝導率αiは、冷凍冷蔵庫100の運転状態、例えば、ファン55の回転数が変化しても、ほとんど変化しないものと考えられる。 From the analysis results, it can be seen that the wind speed in the vicinity of the rear surface of the partition plate 9 shown at the left end of FIGS. 8 and 9 is a value approximate to 0 [m / s] at any height in the refrigerator compartment 1. Therefore, in equation (2), the thermal conductivity αi inside the warehouse is considered to be as small as about 3 to 4 [W / (m 2 · K)], similarly to the thermal conductivity αo outside the warehouse. Further, it is considered that the thermal conductivity αi inside the refrigerator hardly changes even when the operation state of the refrigerator-freezer 100, for example, the rotation speed of the fan 55 changes.
 上述したことから、外気温度Toおよび外気湿度Moを含む周囲環境が安定し、ヒータ18の通電率が変化しなければ、式(2)における熱通過係数は、冷凍冷蔵庫100の運転中において、固定値、または、ほとんど変化しない値とみなされる。その結果、仕切板9を通過する熱流束qは、庫外の外気温度Toと庫内の冷蔵室温度Tiとの温度差ΔTに比例する。 From the above, if the ambient environment including the outside air temperature To and the outside air humidity Mo is stable and the energization rate of the heater 18 does not change, the heat passage coefficient in the equation (2) is fixed during the operation of the refrigerator 100. It is considered a value or a value that hardly changes. As a result, the heat flux q passing through the partition plate 9 is proportional to the temperature difference ΔT between the outside air temperature To outside the compartment and the refrigerator compartment temperature Ti inside the compartment.
 仕切板9の表面に露が付かないようにするには、表面温度を露点以上にすればよい。仕切板9を通過する熱流束qが外気温度Toと冷蔵室温度Tiとの温度差ΔTに比例するので、温度差ΔTに比例してヒータ18への通電を制御すれば、仕切板9の表面温度が結露しない温度に保たれることが原理的にわかる。つまり、式(1)における通電係数ktは、外気温度Toと冷蔵室温度Tiとの温度差ΔTに比例する値に設定すればよい。本実施の形態1では、ヒータ制御手段66は、式(3)にしたがって通電係数ktを算出する。 In order to prevent dew on the surface of the partition plate 9, the surface temperature may be set to a dew point or higher. Since the heat flux q passing through the partition plate 9 is proportional to the temperature difference ΔT between the outside air temperature To and the refrigerating chamber temperature Ti, if the energization to the heater 18 is controlled in proportion to the temperature difference ΔT, the surface of the partition plate 9 It can be seen in principle that the temperature is kept at a temperature that does not condense. That is, the energization coefficient kt in equation (1) may be set to a value proportional to the temperature difference ΔT between the outside air temperature To and the refrigerating room temperature Ti. In the first embodiment, the heater control means 66 calculates the energization coefficient kt according to the equation (3).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(3)において、分子が外気温度Toと冷蔵室温度Tiとの温度差ΔTであり、分母は外気温度Toと冷蔵室目標温度Tsとの温度差になっている。冷蔵室目標温度Tsは、例えば、3℃として設定される固定値である。ヒータ制御手段66は、式(3)にしたがって、通電係数ktを設定する。 In Equation (3), the numerator is the temperature difference ΔT between the outside air temperature To and the refrigerator compartment temperature Ti, and the denominator is the temperature difference between the outside air temperature To and the refrigerator compartment target temperature Ts. The refrigerator compartment target temperature Ts is a fixed value set as 3 ° C., for example. The heater control means 66 sets the energization coefficient kt according to equation (3).
 冷蔵室温度Tiが高い場合、例えば、冷凍冷蔵庫100の設置後、電源投入開始の直後では、冷蔵室温度Tiが外気温度Toと同じなっている。例えば、外気温度Toが30℃と検出され、冷蔵室温度Tiも30℃と検出された場合、仕切板9を通過する熱流束qも0となるので、ヒータ18による仕切板9の加熱は不要となる。この場合、式(3)において外気温度Toと冷蔵室温度Tiとの温度差ΔTが0となり、ヒータ制御手段66は、通電係数ktを0と算出する。その結果、ヒータ制御手段66は、式(1)から、補正通電率DRaを0%と算出する。 When the refrigerator compartment temperature Ti is high, for example, immediately after the refrigerator-freezer 100 is installed and immediately after the power is turned on, the refrigerator compartment temperature Ti is the same as the outside air temperature To. For example, when the outside air temperature To is detected as 30 ° C. and the refrigerating room temperature Ti is also detected as 30 ° C., the heat flux q passing through the partition plate 9 is also 0, so heating of the partition plate 9 by the heater 18 is unnecessary. It becomes. In this case, in Equation (3), the temperature difference ΔT between the outside air temperature To and the refrigerating room temperature Ti is 0, and the heater control unit 66 calculates the energization coefficient kt as 0. As a result, the heater control means 66 calculates the corrected energization rate DRa as 0% from the equation (1).
 冷凍冷蔵庫100への電源投入後、冷凍冷蔵庫100が運転することで、冷蔵室温度Tiが次第に低下する。冷蔵室温度Tiが冷蔵室目標温度Tsに到達すると、式(3)の右辺における分子の値と分母の値が同じになり、ヒータ制御手段66は、通電係数ktを1と算出する。その結果、式(1)において、補正通電率DRaは基準通電率DRrefと同じになり、ヒータ制御手段66は、補正通電率DRaとして、基準通電率DRrefを算出する。 After the power supply to the freezer 100 is turned on, the refrigerator temperature 100 gradually decreases as the refrigerator 100 is operated. When the refrigerator compartment temperature Ti reaches the refrigerator compartment target temperature Ts, the value of the numerator and the value of the denominator on the right side of the equation (3) become the same, and the heater control means 66 calculates the energization coefficient kt as 1. As a result, in equation (1), the corrected energization rate DRa becomes the same as the reference energization rate DRref, and the heater control unit 66 calculates the reference energization rate DRref as the corrected energization rate DRa.
 その後、冷蔵室温度Tiが冷蔵室目標温度Tsよりも低くなる場合がある。この場合、通電係数ktが1よりも大きくなり、補正通電率DRaが基準通電率DRrefよりも大きくなる。そのため、補正通電率DRaの上限値として基準通電率DRrefが設定されている。これにより、ヒータ18に必要以上の通電を行うことを防ぐことができる。 Thereafter, the refrigerator compartment temperature Ti may become lower than the refrigerator compartment target temperature Ts. In this case, the energization coefficient kt is greater than 1, and the corrected energization rate DRa is greater than the reference energization rate DRref. Therefore, the reference energization rate DRref is set as the upper limit value of the corrected energization rate DRa. Thereby, it is possible to prevent the heater 18 from being energized more than necessary.
 式(3)に示すように、通電係数ktは、外気温度Toと冷蔵室温度Tiとの温度差ΔTの関数となっている。そのため、ヒータ制御手段66が温度差ΔTを一定の周期で算出して更新することで、周囲環境が安定し、かつ電源投入から冷蔵室温度Tiが直線的に下がっていくような場合、リニアに補正通電率DRaが変化する。そのため、冷蔵室温度Tiの変化に対して、ヒータ18の通電率を最適に制御することができる。 As shown in Equation (3), the energization coefficient kt is a function of the temperature difference ΔT between the outside air temperature To and the refrigerator temperature Ti. Therefore, when the heater control means 66 calculates and updates the temperature difference ΔT at a constant cycle, the ambient environment is stabilized, and the refrigerator compartment temperature Ti decreases linearly from the power-on, the linearity is reduced. The corrected energization rate DRa changes. Therefore, the energization rate of the heater 18 can be optimally controlled with respect to the change in the refrigerator compartment temperature Ti.
 また、周囲環境が安定しない状況でも、式(3)に示すように、周囲環境に合わせて通電係数ktも変化するため、通電係数ktの変化に対応して補正通電率DRaも変化する。そのため、周囲環境の変化に対して、ヒータ18の通電率を最適に制御することができる。 Also, even in a situation where the surrounding environment is not stable, as shown in Expression (3), the energization coefficient kt also changes in accordance with the surrounding environment, so that the corrected energization rate DRa also changes corresponding to the change in the energization coefficient kt. Therefore, the energization rate of the heater 18 can be optimally controlled with respect to changes in the surrounding environment.
 次に、ヒータ制御手段66が実行するヒータ通電制御の手順を説明する。図10は、図4に示したヒータ制御手段が実行するヒータ通電制御の手順の一例を示すフローチャートである。 Next, the heater energization control procedure executed by the heater control means 66 will be described. FIG. 10 is a flowchart showing an example of a heater energization control procedure executed by the heater control means shown in FIG.
 ヒータ制御手段66は、外気温度センサ73から外気温度Toを取得すると(ステップS1)、外気温度Toを基に、基準通電率DRrefを算出する算出式を決定する(ステップS2)。図10では、算出式の選択肢として、図5に示した算出式PF1~PF3の場合を示しているが、算出式の選択肢は、図5に示した算出式PF1~PF3に限らず、図6に示した算出式LF1~LF3であってもよい。ヒータ制御手段66は、ステップS3において、算出式を決定すると、外気湿度センサ74から外気湿度Moを取得する(ステップS4)。そして、ヒータ制御手段66は、ステップS3で決定した算出式と、外気温度Toおよび外気湿度Moから算出した相対湿度Mrhとを用いて、基準通電率DRrefを算出する(ステップS5)。 When the heater control means 66 acquires the outside air temperature To from the outside air temperature sensor 73 (step S1), the heater controller 66 determines a calculation formula for calculating the reference energization rate DRref based on the outside air temperature To (step S2). In FIG. 10, the calculation formulas PF1 to PF3 shown in FIG. 5 are shown as calculation formula options. However, the calculation formula options are not limited to the calculation formulas PF1 to PF3 shown in FIG. The calculation formulas LF1 to LF3 shown in FIG. When the heater control means 66 determines the calculation formula in step S3, the heater control means 66 acquires the outside air humidity Mo from the outside air humidity sensor 74 (step S4). Then, the heater control means 66 calculates the reference energization rate DRref using the calculation formula determined in step S3 and the relative humidity Mrh calculated from the outside air temperature To and the outside air humidity Mo (step S5).
 続いて、ヒータ制御手段66は、冷蔵室温度センサ72から冷蔵室温度Tiを取得すると(ステップS6)、式(3)と、外気温度To、冷蔵室温度Tiおよび冷蔵室目標温度Tsとを用いて通電係数ktを算出する(ステップS7)。ヒータ制御手段66は、式(1)にしたがって、基準通電率DRrefに通電係数ktを乗算して補正通電率DRaを算出する(ステップS8)。ヒータ制御手段66は、算出した補正通電率DRaにしたがってヒータ18に通電する(ステップS9)。 Subsequently, when the heater control means 66 acquires the refrigeration room temperature Ti from the refrigeration room temperature sensor 72 (step S6), the heater control means 66 uses the equation (3) and the outside air temperature To, the refrigeration room temperature Ti, and the refrigeration room target temperature Ts. The energization coefficient kt is calculated (step S7). The heater control means 66 calculates the corrected energization rate DRa by multiplying the energization coefficient kt by the reference energization rate DRref according to the equation (1) (step S8). The heater control means 66 energizes the heater 18 according to the calculated corrected energization rate DRa (step S9).
 なお、図10では、ステップS6で冷蔵室温度Tiを取得し、ステップS7で通電係数ktを算出する場合を示しているが、冷蔵室温度Tiの取得タイミングおよび通電係数ktの算出タイミングは、図10に示す場合に限らない。冷蔵室温度Tiの取得タイミングおよび通電係数ktの算出タイミングは、外気温度Toの取得から補正通電率DRaの算出までの間であれば、いずれのタイミングでもよい。また、図10の手順に示す制御周期は、長すぎると、周囲環境の変化とずれが生じてしまう場合があるため、例えば、1分以内の周期であることが望ましい。 FIG. 10 shows a case where the refrigerator compartment temperature Ti is acquired in step S6 and the energization coefficient kt is calculated in step S7. However, the acquisition timing of the refrigerator compartment temperature Ti and the calculation timing of the energization coefficient kt are illustrated in FIG. It is not limited to the case shown in FIG. The acquisition timing of the refrigerator compartment temperature Ti and the calculation timing of the energization coefficient kt may be any timing as long as it is from the acquisition of the outside air temperature To to the calculation of the corrected energization rate DRa. Further, if the control cycle shown in the procedure of FIG. 10 is too long, a change and deviation of the surrounding environment may occur. For example, the cycle is preferably within 1 minute.
 本実施の形態1では、ヒータ制御手段66は、図10に示した手順にしたがって、基準通電率DRrerを算出した後、ヒータ18に出力する通電率として、基準通電率DRrefに通電係数ktを乗算して算出する。冷蔵室温度Tiの低下に合わせて通電係数ktが上昇するため、ヒータ18への通電率が必要以上に大きくなることが抑制される。その結果、冷凍冷蔵庫100の消費電力量を低減できる。 In the first embodiment, the heater control means 66 calculates the reference energization rate DRrer according to the procedure shown in FIG. 10 and then multiplies the reference energization rate DRref by the energization coefficient kt as the energization rate output to the heater 18. To calculate. Since the energization coefficient kt increases in accordance with the decrease in the refrigerator compartment temperature Ti, the energization rate to the heater 18 is suppressed from becoming larger than necessary. As a result, the power consumption of the refrigerator-freezer 100 can be reduced.
 次に、本実施の形態1のヒータ通電制御と比較例のヒータ通電制御とを比較する試験の結果について説明する。 Next, the results of a test comparing the heater energization control of the first embodiment and the heater energization control of the comparative example will be described.
 本試験の条件について説明する。外気温度は30℃で一定とし、相対湿度は75%RHで一定とした。試験には、全体の定格内容積が517リットル、冷蔵室1の定格内容積が277リットルの冷凍冷蔵庫を使用した。ヒータ18として電力が11.1Wのヒータを使用した。庫内には食品は置かず、各貯蔵室の扉の開閉も行わない。また、真鍮製の温度マスを冷蔵室1の棚13に設置し、冷凍室4にも温度マスを設置した。 Explain the conditions for this test. The outside air temperature was constant at 30 ° C., and the relative humidity was constant at 75% RH. In the test, a refrigerator-freezer having an overall rated internal volume of 517 liters and a refrigerator compartment 1 having a rated internal volume of 277 liters was used. A heater having a power of 11.1 W was used as the heater 18. There is no food in the cabinet, and the doors of each storage room are not opened or closed. Moreover, the temperature mass made from brass was installed in the shelf 13 of the refrigerator compartment 1, and the temperature mass was installed also in the freezer compartment 4.
 本試験では、2つのヒータ通電制御において、冷蔵室温度Tiの過渡的状態を比較するため、温度マスおよび仕切板9の表面温度が外気温度と同じ30℃の状態で冷凍冷蔵庫に電源を投入し、電源投入時に温度測定を開始した。また、本試験では、基準通電率として、外気温度30℃および相対湿度75%RHから算出される54%を用いた。比較例では、冷凍冷蔵庫の電源投入開始から一定値の基準通電率がヒータに通電される。 In this test, in order to compare the transient state of the refrigerator compartment temperature Ti in the two heater energization controls, the power supply to the refrigerator-freezer was turned on with the temperature mass and the surface temperature of the partition plate 9 being 30 ° C., the same as the outside air temperature. The temperature measurement was started when the power was turned on. In this test, 54% calculated from an outside air temperature of 30 ° C. and a relative humidity of 75% RH was used as the reference energization rate. In the comparative example, a constant reference energization rate is energized to the heater from the start of power-on of the refrigerator-freezer.
 図11は、本発明の実施の形態1に係るヒータ通電制御において、外気温度が30℃であり、相対湿度が75%RHである場合に電源投入開始からの温度変化を示すグラフである。図12は、比較例のヒータ通電制御において、外気温度が30℃であり、相対湿度が75%RHである場合に電源投入開始からの温度変化を示すグラフである。図11および図12では、消費電力について目盛りを付すことを省略している。 FIG. 11 is a graph showing a temperature change from the start of power-on when the outside air temperature is 30 ° C. and the relative humidity is 75% RH in the heater energization control according to Embodiment 1 of the present invention. FIG. 12 is a graph showing a temperature change from the start of power-on when the outside air temperature is 30 ° C. and the relative humidity is 75% RH in the heater energization control of the comparative example. In FIG. 11 and FIG. 12, the power consumption is not marked.
 図11において、波形201は、冷凍冷蔵庫の消費電力の時間変化を示す。波形201の期間TP1では、電源投入開始から初期段階であるため、冷凍サイクル制御手段65が庫内を早く冷やすために、圧縮機51およびファン55の回転数を大きくしている。期間TP1では、冷凍冷蔵庫は、電源が投入されてから圧縮機51およびファン55を稼働して冷却運転を行うため、冷蔵室温度203、冷蔵室マスの温度204、および冷凍室マスの温度205の各温度は時間経過に伴って低下していく。庫内の温度が目標温度まで低下すると、圧縮機51およびファン55が一旦、運転を停止する。期間TP2で、圧縮機51およびファン55が運転を再開し、各温度の波形が乱れる。その後、期間TP3~TP5にかけて、圧縮機51およびファン55が低い回転数で安定動作し、冷蔵室温度203、冷蔵室マスの温度204、および冷凍室マスの温度205の各温度は安定する。 In FIG. 11, a waveform 201 indicates a time change of power consumption of the refrigerator-freezer. In the period TP1 of the waveform 201, since it is an initial stage from the start of power-on, the rotation speed of the compressor 51 and the fan 55 is increased so that the refrigeration cycle control means 65 cools the interior quickly. In the period TP1, since the refrigerator-freezer operates the compressor 51 and the fan 55 to perform the cooling operation after the power is turned on, the refrigerator compartment temperature 203, the refrigerator compartment temperature 204, and the refrigerator compartment temperature 205 are Each temperature decreases with time. When the internal temperature drops to the target temperature, the compressor 51 and the fan 55 temporarily stop operating. During the period TP2, the compressor 51 and the fan 55 resume operation, and the waveform of each temperature is disturbed. Thereafter, over a period TP3 to TP5, the compressor 51 and the fan 55 stably operate at a low rotation speed, and the temperatures of the refrigerator compartment temperature 203, the refrigerator compartment temperature 204, and the freezer compartment mass 205 are stabilized.
 このように、冷蔵室温度203、冷蔵室マスの温度204、および冷凍室マスの温度205の各温度は、期間TP1では、冷凍冷蔵庫への電源投入開始から過渡的に変化し、期間TP3~TP5では、安定する。図12の比較例を参照すると、冷凍冷蔵庫の消費電力の時間変化を示す波形301は波形201と同様な変化を示す。また、図12に示す、冷蔵室温度303、冷蔵室マスの温度304、および冷凍室マスの温度305の温度変化は、図11に示した冷蔵室温度203、温度204および温度205の温度変化と同様な傾向がある。 Thus, each temperature of the refrigerator compartment temperature 203, the refrigerator compartment temperature 204, and the freezer compartment temperature 205 changes transiently from the start of power-on to the refrigerator-freezer during the period TP1, and during periods TP3 to TP5. Then it will be stable. Referring to the comparative example in FIG. 12, a waveform 301 indicating a time change in power consumption of the refrigerator-freezer shows the same change as the waveform 201. Further, the temperature changes of the refrigerator compartment temperature 303, the refrigerator compartment mass 304, and the refrigerator compartment mass 305 shown in FIG. 12 are the temperature changes of the refrigerator compartment temperature 203, the temperature 204, and the temperature 205 shown in FIG. There is a similar trend.
 図11に示すグラフを参照し、冷蔵室温度203と冷蔵室マスの温度204とを比較すると、期間TP1において、冷蔵室温度203の方が温度204よりも少し高めに推移している。これは、冷蔵室1の奧側(図8に示したY軸矢印方向)から吹き出される冷気が直接当たらない位置に冷蔵室温度センサ72が設置されているのに対し、冷蔵室マスは冷気が直接当たるからである。これらの温度差が小さいことから、冷蔵室温度センサ72は、冷蔵室1の貯蔵室の温度をより的確に検知できていることがわかる。 Referring to the graph shown in FIG. 11, comparing the refrigerator compartment temperature 203 with the refrigerator compartment temperature 204, the refrigerator compartment temperature 203 is slightly higher than the temperature 204 in the period TP1. This is because the refrigerating room temperature sensor 72 is installed at a position where the cold air blown out from the side of the refrigerating room 1 (in the Y-axis arrow direction shown in FIG. 8) does not directly hit, whereas the refrigerating room mass Because it hits directly. Since these temperature differences are small, it can be seen that the refrigerator temperature sensor 72 can detect the temperature of the storage compartment of the refrigerator compartment 1 more accurately.
 図11および図12を参照して、庫内の温度が過渡的に変化する期間TP1において、仕切板9の表面温度を比較してみる。図11では、仕切板9の表面温度202が35℃付近で一定である。これに対し、図12の比較例では、仕切板の表面温度302が47.8℃まで上昇している。これは、比較例では、期間TP1のように冷蔵室が十分に冷えていない状態でも、通電率として一定値の基準通電率でヒータを通電しているからである。図11および図12に示す破線は温度が35℃であることを示す。 Referring to FIG. 11 and FIG. 12, the surface temperature of the partition plate 9 is compared in the period TP1 in which the temperature in the storage changes transiently. In FIG. 11, the surface temperature 202 of the partition plate 9 is constant around 35 ° C. On the other hand, in the comparative example of FIG. 12, the surface temperature 302 of the partition plate rises to 47.8 ° C. This is because, in the comparative example, the heater is energized at a reference energization rate of a constant value as the energization rate even when the refrigerator compartment is not sufficiently cooled as in the period TP1. The broken lines shown in FIGS. 11 and 12 indicate that the temperature is 35 ° C.
 本実施の形態1のヒータ通電制御では、ヒータ18への通電率として、外気温度Toと冷蔵室温度Tiとの温度差ΔTを反映した通電係数Ktを基準通電率DRrefに乗算した補正通電率DRaを用いている。そのため、冷凍冷蔵庫100の電源投入開始から少しずつ通電率が大きくなり、上述したように、ヒータ18は、温度差ΔTに比例する通電率で通電される。その結果、図11に示すように、仕切板9の表面温度202と破線とを比較すると、表面温度202は、期間TP1の初期段階から期間TP3~TP5の安定時と変わらない温度で推移している。また、外気温度が30℃であり、相対湿度が75%RHであるときの露点温度は約25℃であるため、本実施の形態1のヒータ通電制御でも、仕切板9の表面に露が付くことはなかった。 In the heater energization control according to the first embodiment, as the energization rate to the heater 18, the corrected energization rate DRa obtained by multiplying the reference energization rate DRref by the energization coefficient Kt reflecting the temperature difference ΔT between the outside air temperature To and the refrigerator temperature Ti. Is used. Therefore, the energization rate gradually increases from the start of power-on of the refrigerator-freezer 100, and as described above, the heater 18 is energized at an energization rate proportional to the temperature difference ΔT. As a result, as shown in FIG. 11, when the surface temperature 202 of the partition plate 9 is compared with the broken line, the surface temperature 202 changes from the initial stage of the period TP1 at a temperature that is not different from the stable period of the periods TP3 to TP5. Yes. Further, since the dew point temperature when the outside air temperature is 30 ° C. and the relative humidity is 75% RH is about 25 ° C., the surface of the partition plate 9 is also dewed by the heater energization control of the first embodiment. It never happened.
 ここで、本実施の形態1のヒータ通電制御について、図11に示した冷蔵室温度203の変化に対する、通電係数kt、基準通電率DRrefおよび補正通電率DRaの変化について説明する。図13は、本発明の実施の形態1に係るヒータ通電制御において、冷蔵室温度、通電係数、基準通電率および補正通電率の時間変化を示す図である。図13では、消費電力および通電率について目盛りを付すことを省略している。 Here, with respect to the heater energization control of the first embodiment, changes in the energization coefficient kt, the reference energization rate DRref, and the corrected energization rate DRa with respect to the change in the refrigerator temperature 203 shown in FIG. 11 will be described. FIG. 13 is a diagram showing temporal changes in the refrigerator temperature, the energization coefficient, the reference energization rate, and the corrected energization rate in the heater energization control according to Embodiment 1 of the present invention. In FIG. 13, the power consumption and the energization rate are not marked.
 図13に示すように、冷凍冷蔵庫100への電源投入から冷蔵室温度203が低下するにつれて、外気温度Toと冷蔵室温度203との温度差ΔTが0から大きくなっていくため、通電係数ktは電源投入時から右肩上がりに大きくなっていく。一方、基準通電率DRrefは、外気温度Toおよび外気湿度Moで決まるので、期間TP1~TP5の間、一定の数値で安定している。 As shown in FIG. 13, the temperature difference ΔT between the outside air temperature To and the refrigerating room temperature 203 increases from 0 as the refrigerating room temperature 203 decreases since the power supply to the refrigerator 100 is turned on. It grows upward from the time the power is turned on. On the other hand, since the reference energization rate DRref is determined by the outside air temperature To and the outside air humidity Mo, it is stable at a constant value during the period TP1 to TP5.
 補正通電率DRaは、基準通電率DRrefに通電係数ktを乗算したものなので、期間TP1では、直線的に右肩上がりに上昇する。期間TP1が終わるころに、冷蔵室温度203が冷蔵室目標温度Tsに到達するため、基準通電率DRrefと補正通電率DRaとが同じ値になり、ヒータへ18への通電率が基準通電率DRrefで継続される。 Since the corrected energization rate DRa is obtained by multiplying the energization factor kt by the reference energization rate DRref, it rises linearly in the period TP1. Since the refrigerator compartment temperature 203 reaches the refrigerator compartment target temperature Ts at the end of the period TP1, the reference energization rate DRref and the corrected energization rate DRa become the same value, and the energization rate to the heater 18 becomes the reference energization rate DRref. Will continue.
 次に、冷凍冷蔵庫の消費電力について、本実施の形態1のヒータ通電制御と比較例のヒータ通電制御との試験結果を説明する。表2は、図11および図12に示す期間TP1における、冷凍冷蔵庫の消費電力および消費電力量を示す表である。 Next, the test results of the heater energization control of the first embodiment and the heater energization control of the comparative example will be described for the power consumption of the refrigerator-freezer. Table 2 is a table | surface which shows the power consumption and power consumption of a refrigerator-freezer in the period TP1 shown to FIG. 11 and FIG.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2の消費電力量に注目すると、本実施の形態1が、比較例に比べて、約2%改善していることがわかる。これは、図13において、期間TP1の補正通電率DRaの波形を見てわかるように、ヒータ18への通電率低減によるものである。 Focusing on the power consumption in Table 2, it can be seen that the first embodiment is improved by about 2% compared to the comparative example. This is due to the reduction in the current supply rate to the heater 18 as can be seen from the waveform of the correction current supply rate DRa in the period TP1 in FIG.
 また、図11および図12を参照して、冷蔵室マスの温度204および304の冷却スピード、例えば、温度が30℃から3℃に到達するまでの時間を比較すると、本実施の形態1は比較例に比べて、約3分の改善が見られた。 Further, referring to FIG. 11 and FIG. 12, when comparing the cooling speed of the temperature 204 and 304 of the refrigerator compartment, for example, the time until the temperature reaches 30 ° C. to 3 ° C., the first embodiment is compared. Compared to the example, an improvement of about 3 minutes was observed.
 次に、外気温度が30℃であり、相対湿度が55%RHの場合について、本実施の形態1のヒータ通電制御と比較例のヒータ通電制御とを比較した試験結果を説明する。他の試験条件は図11および図12で説明した条件と同じであるため、その詳細な説明を省略する。本試験では、外気温度30℃および相対湿度55%RHから基準通電率は22%と算出された。 Next, test results comparing the heater energization control of the first embodiment and the heater energization control of the comparative example when the outside air temperature is 30 ° C. and the relative humidity is 55% RH will be described. Other test conditions are the same as those described with reference to FIGS. 11 and 12, and thus detailed description thereof is omitted. In this test, the reference energization rate was calculated to be 22% from the outside air temperature of 30 ° C. and the relative humidity of 55% RH.
 図14は、本発明の実施の形態1に係るヒータ通電制御において、外気温度が30℃であり、相対湿度が55%RHの場合に電源投入開始からの温度変化を示すグラフである。図15は、比較例のヒータ通電制御において、外気温度30℃、外気湿度55%RHの場合の電源投入時の各温度波形を示す図である。 FIG. 14 is a graph showing a temperature change from the start of power-on when the outside air temperature is 30 ° C. and the relative humidity is 55% RH in the heater energization control according to Embodiment 1 of the present invention. FIG. 15 is a diagram showing each temperature waveform at power-on in the case of the heater energization control of the comparative example when the outside air temperature is 30 ° C. and the outside air humidity is 55% RH.
 図14は、本実施の形態1の冷凍冷蔵庫の消費電力の波形211、仕切板9の表面温度212、冷蔵室温度213、冷蔵室マスの温度214および冷凍室マスの温度215の時間変化を示す。図15は、比較例の冷凍冷蔵庫の消費電力の波形311、仕切板の表面温度312、冷蔵室温度313、冷蔵室マスの温度314および冷凍室マスの温度315の時間変化を示す。図14および図15に示す破線は約24℃の温度を示す線である。 FIG. 14 shows temporal changes in the power consumption waveform 211 of the refrigerator-freezer of Embodiment 1, the surface temperature 212 of the partition plate 9, the refrigerator compartment temperature 213, the refrigerator compartment temperature 214, and the refrigerator compartment temperature 215. . FIG. 15 shows temporal changes in the power consumption waveform 311, the partition plate surface temperature 312, the refrigerator compartment temperature 313, the refrigerator compartment temperature 314, and the refrigerator compartment temperature 315 of the comparative refrigerator-freezer. The broken lines shown in FIGS. 14 and 15 are lines indicating a temperature of about 24 ° C.
 図14および図15において、期間TP1に注目する。図14に示すように、比較例のヒータ通電制御では、仕切板の表面温度312が36.3℃まで上昇した後、低下している。その後の期間TP2においても、仕切板の表面温度312は少し上下している。これに対して、本実施の形態1のヒータ通電制御では、仕切板9の表面温度212は、電源投入後に一時的に30℃を超えるが、少しずつ低下し、期間TP2には、期間TP3以降の安定時と同等の温度になる。また、本試験の条件での露点は約20℃であるが、本実施の形態1のヒータ通電制御において、仕切板9の表面に露が付くことは認められなかった。本試験においても、本実施の形態1のヒータ通電制御の消費電力量について、図11および図12を参照して説明した試験結果と同程度の低減効果が確認できた。 14 and 15, pay attention to the period TP1. As shown in FIG. 14, in the heater energization control of the comparative example, the surface temperature 312 of the partition plate rises to 36.3 ° C. and then decreases. Also in the subsequent period TP2, the surface temperature 312 of the partition plate slightly rises and falls. On the other hand, in the heater energization control according to the first embodiment, the surface temperature 212 of the partition plate 9 temporarily exceeds 30 ° C. after the power is turned on, but gradually decreases. It becomes the same temperature as when it is stable. Further, although the dew point under the conditions of this test is about 20 ° C., in the heater energization control of the first embodiment, no dew was found on the surface of the partition plate 9. Also in this test, the reduction effect comparable to the test result demonstrated with reference to FIG. 11 and FIG. 12 about the power consumption of heater energization control of this Embodiment 1 has been confirmed.
 なお、本実施の形態1では、図1および図3を参照して仕切板9の構造を説明したが、仕切板9の構造は本実施の形態1で説明した構造に限定されない。ヒータ18が仕切板9の内部に設けられていなくてもよい。例えば、両開き扉が閉状態で、左扉7および右扉8が対向する面のうち、少なくとも一方の面にヒータ18が設けられていてもよい。また、左扉ガスケット22および右扉ガスケット23のうち、少なくとも一方にヒータ18が設けられていてもよい。これらの場合でも、本実施の形態1のヒータ通電制御を適用することができ、本実施の形態1と同様な効果が得られる。 In the first embodiment, the structure of the partition plate 9 has been described with reference to FIGS. 1 and 3, but the structure of the partition plate 9 is not limited to the structure described in the first embodiment. The heater 18 may not be provided inside the partition plate 9. For example, the heater 18 may be provided on at least one of the surfaces facing the left door 7 and the right door 8 when the double door is closed. Further, at least one of the left door gasket 22 and the right door gasket 23 may be provided with a heater 18. Even in these cases, the heater energization control of the first embodiment can be applied, and the same effect as the first embodiment can be obtained.
 冷凍冷蔵庫に対する電源投入のタイミングとして、(a)買い替えなどによる据付初期での電源投入、(b)停電から電源供給再開時の電源再投入、(c)ユーザの都合による電源再投入の3通りが想定される。ユーザの都合とは、例えば、冷凍冷蔵庫の移動、および故障した場合の修理対応などである。これらの想定状況のうち、いずれの想定状況においても、本実施の形態1のヒータ通電制御が有効であることを説明する。 There are three timings for turning on the power to the refrigerator-freezer: (a) turning on power at the initial stage of installation by replacement, (b) turning on power again when power supply resumes after a power failure, and (c) turning on power for the convenience of the user. is assumed. The user's convenience is, for example, the movement of the refrigerator-freezer and the repair response in the event of failure. It will be described that the heater energization control according to the first embodiment is effective in any of the assumed situations.
 想定状況(a)の場合、電源投入前から冷蔵室温度が室温に近い高い温度になっているため、補正通電率DRaが基準通電率DRrefよりも小さい値になる。想定状況(b)の場合において、停電時間が短いと冷蔵室温度の上昇は大きくないので、補正通電率DRaは基準通電率DRrefと同等になる。一方、想定状況(b)の場合において、停電時間が長いと冷蔵室温度の上昇が大きくなるため、補正通電率DRaは、基準通電率DRrefよりも小さい値になるが、冷蔵室温度の低下に伴って基準通電率DRrefに近づく。想定状況(c)の場合、ヒータ18への通電再開時において、想定状況(b)の場合の停電時間と同様に、電源が供給されない時間が長いほど冷蔵室温度の温度が室温に近くなる。そのため、想定状況(c)の場合の補正通電率DRaは、電源が供給されない時間の長さにしたがって、想定状況(b)の場合と同様に制御される。これらの想定状況に応じて通電率が制御されることで、消費電力量の低減を図ることができる。 In the assumed situation (a), since the temperature of the refrigerator compartment is close to room temperature before the power is turned on, the corrected energization rate DRa is smaller than the reference energization rate DRref. In the case of the assumed situation (b), if the power failure time is short, the temperature increase in the refrigerator compartment is not large, so the corrected energization rate DRa is equal to the reference energization rate DRref. On the other hand, in the case of the assumed situation (b), if the power failure time is long, the increase in the temperature of the refrigerating room increases, so the corrected energization rate DRa becomes a value smaller than the reference energization rate DRref. Along with this, the reference energization rate DRref approaches. In the assumed situation (c), when the energization of the heater 18 is resumed, the temperature of the refrigerating room temperature becomes closer to room temperature as the time during which power is not supplied is longer, similar to the power failure time in the assumed situation (b). Therefore, the corrected energization rate DRa in the assumed situation (c) is controlled in the same manner as in the assumed situation (b) according to the length of time during which no power is supplied. By controlling the energization rate according to these assumed situations, it is possible to reduce the power consumption.
 また、図13を参照して、電源投入から冷蔵室温度が冷蔵室目標温度に到達するまでの期間TP1に、式(3)で算出される通電係数ktを用いる場合を説明したが、電源投入開始から所定時間、式(3)を適用してもよい。この場合、所定時間経過後は、通電係数ktを一定値の1に設定する。例えば、ユーザが冷凍冷蔵庫を買い替えた際、室温近くまで温度が高くなった食品を新しい冷凍冷蔵庫に入れるとき、温度の高くなった食品を冷蔵室温度センサ72の近くに置く場合がある。また、ユーザは、加熱調理した物が入った鍋を、高温のまま冷蔵室1に入れる場合がある。このような場合、冷蔵室温度センサ72が検知する温度が、冷蔵室1の平均的な温度に比べて、下がりにくくなることが考えられる。 In addition, with reference to FIG. 13, the case where the energization coefficient kt calculated by Expression (3) is used for the period TP <b> 1 from when the power is turned on until the refrigerator temperature reaches the refrigerator temperature target temperature has been described. Expression (3) may be applied for a predetermined time from the start. In this case, the energization coefficient kt is set to a constant value of 1 after a predetermined time has elapsed. For example, when a user purchases a refrigerator-freezer, when a food whose temperature has increased to near room temperature is put into a new refrigerator-freezer, the food whose temperature has increased may be placed near the refrigerator compartment temperature sensor 72. Moreover, a user may put the pan containing the cooked food in the refrigerator compartment 1 with high temperature. In such a case, it is conceivable that the temperature detected by the refrigerating room temperature sensor 72 is less likely to decrease than the average temperature of the refrigerating room 1.
 そこで、冷却対象物が冷蔵室に収納される時間を含み、冷蔵室の温度が高い状態から冷蔵目標温度に到達するまでの数時間を、所定時間としてメモリ61が記憶する。所定時間はメモリ61に予め登録されていてもよく、メモリ61が記憶する所定時間が更新されるようにしてもよい。ヒータ制御手段66は、冷蔵室の温度が高い状態から所定時間経過するまでは式(3)で算出される通電係数ktを用い、所定時間経過後、通電係数ktを一定値の1に設定する。なお、冷蔵室の温度が高い状態であるか否かを判定する基準温度をメモリ61が記憶しているものとする。 Therefore, the memory 61 stores, as a predetermined time, several hours until the object to be cooled is stored in the refrigerating room and reaches the refrigerating target temperature from a state where the temperature of the refrigerating room is high. The predetermined time may be registered in the memory 61 in advance, or the predetermined time stored in the memory 61 may be updated. The heater control means 66 uses the energization coefficient kt calculated by the equation (3) until a predetermined time elapses after the temperature of the refrigerator compartment is high, and sets the energization coefficient kt to a constant value 1 after the elapse of the predetermined time. . It is assumed that the memory 61 stores a reference temperature for determining whether or not the temperature of the refrigerator compartment is high.
 次に、冷凍冷蔵庫を買い替える場合、および高温の冷却対象物が冷蔵室に収納される場合に限らず、冷蔵室1の扉の開放時間が長い場合にも、本実施の形態1のヒータ通電制御が有効であることを説明する。 Next, the heater energization control according to the first embodiment is not limited to the case of replacing the refrigerator / freezer and the case where a high-temperature cooling object is stored in the refrigerator compartment, but also when the door opening time of the refrigerator compartment 1 is long. Explain that is valid.
 冷蔵室の左扉および右扉のうち、どちらの扉が開放されるかによって、仕切板の表面温度の変化に差があるが、冷蔵室の扉を長い時間、開放した場合、従来のヒータ通電制御は一定の基準通電率でヒータに通電するため、仕切板の表面温度は上昇する傾向がある。これに対して、本実施の形態1では、食品の出し入れなどで冷蔵室1の左扉7または右扉8が長時間、開放され、冷蔵室温度センサ72が安定時の冷蔵室温度よりも高い温度を検出すると、通電係数ktが安定時よりも小さい値になる。そのため、式(1)に示す補正通電率DRaが基準通電率DRrefよりも小さい値になる。その結果、冷凍冷蔵庫の消費電力量が低減し、省エネルギー化を図ることができる。 Depending on which one of the left and right doors of the refrigerator compartment is opened, there is a difference in the surface temperature of the partition plate. However, if the refrigerator door is opened for a long time, the conventional heater is energized. Since the control energizes the heater at a constant reference energization rate, the surface temperature of the partition plate tends to increase. On the other hand, in this Embodiment 1, the left door 7 or the right door 8 of the refrigerator compartment 1 is opened for a long time by taking in and out food, and the refrigerator compartment temperature sensor 72 is higher than the stable refrigerator compartment temperature. When the temperature is detected, the energization coefficient kt becomes a smaller value than when it is stable. Therefore, the corrected energization rate DRa shown in Expression (1) is smaller than the reference energization rate DRref. As a result, the power consumption of the refrigerator-freezer can be reduced and energy saving can be achieved.
 例えば、図3を参照して説明したように、左扉7に仕切板9が取り付けられた構成において、左扉7が閉じて右扉8が開放されている場合を考える。冷蔵室1の扉が長時間、開放されると、冷蔵室1に冷気を供給しても無駄になるので、冷凍サイクル制御手段65はファン55の回転を停止することがある。また、庫内の冷気と外気との温度差による自然対流で庫内の温度が上昇する。その結果、仕切板9の背面の表面温度が上昇する。従来、上述したように、ヒータへの通電率は基準通電率のままで変化しないため、仕切板の表面温度はさらに上昇する。これに対して、本実施の形態1のヒータ通電制御では、冷蔵室温度の上昇に合わせて通電係数ktが小さくなるので、補正通電率DRaが低下する。その結果、冷凍冷蔵庫の消費電力量が、従来に比べて改善する。 For example, as described with reference to FIG. 3, let us consider a case where the left door 7 is closed and the right door 8 is opened in a configuration in which the partition plate 9 is attached to the left door 7. If the door of the refrigerator compartment 1 is opened for a long time, even if cold air is supplied to the refrigerator compartment 1, it becomes useless, so the refrigeration cycle control means 65 may stop the rotation of the fan 55. Moreover, the temperature in a store | warehouse | chamber rises by the natural convection by the temperature difference of the cool air in a store | chamber, and external air. As a result, the surface temperature of the back surface of the partition plate 9 increases. Conventionally, as described above, since the energization rate to the heater remains the reference energization rate and does not change, the surface temperature of the partition plate further increases. On the other hand, in the heater energization control according to the first embodiment, the energization coefficient kt decreases as the temperature of the refrigerator compartment increases, so that the corrected energization rate DRa decreases. As a result, the power consumption of the refrigerator / freezer is improved compared to the conventional case.
 一方、右扉8が閉じて左扉7が開放されている場合、図3を参照して説明したように、仕切板9が回転して立ち壁15に沿う状態になるが、仕切板9の大部分が外気に露出する。そのため、右扉8が開放される場合に比べて、左扉7が開放される場合の方が、仕切板9の表面温度が上昇すると考えられる。この場合、冷蔵室1内の冷気と外気との入れ替えが発生するので、冷蔵室温度も上昇し、本実施の形態1のヒータ通電制御では、冷蔵室温度の上昇に合わせて補正通電率DRaが低下する。その結果、右扉8が開放される場合と同様に、冷凍冷蔵庫の消費電力量が従来に比べて改善する。左扉7および右扉8の両方の扉が開放された場合にも、冷蔵室温度が上昇し、補正通電率DRaが低下するため、冷凍冷蔵庫の消費電力量が従来に比べて改善する。 On the other hand, when the right door 8 is closed and the left door 7 is opened, as described with reference to FIG. 3, the partition plate 9 rotates and becomes along the standing wall 15. Most are exposed to the open air. Therefore, it is considered that the surface temperature of the partition plate 9 increases when the left door 7 is opened compared to when the right door 8 is opened. In this case, since the cold air in the refrigerator compartment 1 is exchanged with the outside air, the refrigerator compartment temperature also rises, and in the heater energization control of the first embodiment, the corrected energization rate DRa is set in accordance with the rise of the refrigerator compartment temperature. descend. As a result, similarly to the case where the right door 8 is opened, the power consumption of the refrigerator-freezer is improved as compared with the conventional case. Even when both the left door 7 and the right door 8 are opened, the refrigerator temperature rises and the corrected energization rate DRa decreases, so that the power consumption of the refrigerator-freezer is improved as compared with the conventional case.
 ただし、冷蔵室の扉の開放時間が数分程度である場合、ヒータ制御手段66が冷蔵室温度の変化に伴って通電係数ktを変化させても、消費電力量について、電源投入時ほどの大きな低減効果が得られないと考えられる。そこで、冷凍冷蔵庫本体への電源投入から冷蔵室温度が冷蔵室目標温度に到達すると、その後は、冷蔵室温度が大きく変動せず安定するので、通電係数ktを一定値である1に設定してもよい。このことを、図13を参照して説明すると、ヒータ制御手段66は、式(1)について、期間TP1では式(3)を用いて通電係数ktを算出し、期間TP1の経過後では通電係数ktを1に設定してもよい。期間TP1の経過後では、ヒータ制御手段66は基準通電率DRrefでヒータ18に通電することになる。 However, when the opening time of the refrigerator compartment door is about several minutes, even if the heater control means 66 changes the energization coefficient kt with the change of the refrigerator compartment temperature, the power consumption is as large as when the power is turned on. It is thought that the reduction effect cannot be obtained. Therefore, when the refrigerator compartment temperature reaches the refrigerator compartment target temperature after the power supply to the refrigerator-freezer body is turned on, the refrigerator compartment temperature is stabilized without greatly fluctuating thereafter, so the energization coefficient kt is set to a constant value of 1. Also good. This will be described with reference to FIG. 13. The heater control means 66 calculates the energization coefficient kt for the equation (1) using the equation (3) in the period TP1, and the energization coefficient after the elapse of the period TP1. kt may be set to 1. After the elapse of the period TP1, the heater control means 66 energizes the heater 18 at the reference energization rate DRref.
 また、冷蔵室1の扉の開放時間に閾値を設定して、本実施の形態1のヒータ通電制御を行ってもよい。冷蔵室1の扉の開放時間が、例えば、冷蔵室温度Tiが10℃程度上昇する時間を、閾値として設定する。閾値は、例えば、10分である。冷凍冷蔵庫100に冷蔵室1の扉の開閉状態を検知するセンサが設けられ、ヒータ制御手段66がタイマー機能を備えている。ヒータ制御手段66は、扉の開放時間が閾値以上である場合、式(3)で算出される通電係数ktを使用し、扉の開放時間が閾値未満である場合、通電係数ktを一定値の1に設定する。扉の開放時間が閾値未満では、ヒータ制御手段66は基準通電率DRrefでヒータ18に通電することになる。 Further, the heater energization control of the first embodiment may be performed by setting a threshold value for the opening time of the door of the refrigerator compartment 1. The opening time of the door of the refrigerator compartment 1 is set as a threshold value, for example, the time for the refrigerator compartment temperature Ti to rise about 10 ° C. The threshold is, for example, 10 minutes. A sensor for detecting the open / closed state of the door of the refrigerator compartment 1 is provided in the refrigerator 100, and the heater control means 66 has a timer function. When the door opening time is equal to or greater than the threshold, the heater control unit 66 uses the energization coefficient kt calculated by Equation (3). When the door opening time is less than the threshold, the heater control means 66 sets the energization coefficient kt to a constant value. Set to 1. When the door opening time is less than the threshold value, the heater control means 66 energizes the heater 18 at the reference energization rate DRref.
 ただし、扉の開放時の冷蔵室温度Tiの時間変化は外気温度Toにも依存するため、閾値はどの外気温度Toにも対応しているわけではない。そのため、扉の開放時間が閾値を超えた場合、外気温度Toの温度の振り幅を考慮して、式(3)で算出される通電係数ktを強制的に使用する強制時間を設定してもよい。ヒータ制御手段66は、扉の開放時間が閾値以上である場合、扉が閉じてから強制時間が経過するまで式(3)で算出される通電係数ktを使用し、強制時間が経過した後、通電係数ktを一定値の1に設定する。強制時間経過後、ヒータ制御手段66は基準通電率DRrefでヒータ18に通電することになる。 However, since the time change of the refrigerator compartment temperature Ti when the door is opened depends on the outside air temperature To, the threshold value does not correspond to any outside air temperature To. Therefore, when the door opening time exceeds the threshold, the forced time for forcibly using the energization coefficient kt calculated by Equation (3) is set in consideration of the amplitude of the outside air temperature To. Good. When the opening time of the door is equal to or greater than the threshold, the heater control unit 66 uses the energization coefficient kt calculated by Expression (3) until the forced time elapses after the door is closed, and after the forced time has elapsed, The energization coefficient kt is set to a constant value of 1. After the forced time has elapsed, the heater control means 66 energizes the heater 18 at the reference energization rate DRref.
 また、扉の開放時間に閾値を設定する場合に限らず、冷蔵室温度Tiに閾値を設定して、ヒータ通電制御を行ってもよい。閾値は、例えば、10℃である。この場合、ヒータ制御手段66は、冷蔵室温度Tiが閾値以上に上昇すると、式(3)で算出される通電係数ktを使用し、冷蔵室温度Tiが閾値未満の値まで下がると、通電係数ktを1に設定する。冷蔵室温度Tiが閾値よりも低くなると、ヒータ制御手段66は基準通電率DRrefでヒータ18に通電することになる。扉の開放時間が長くなっても、仕切板9の表面が結露するのを防ぐとともに、ヒータ18の消費電力量を低減できる。その結果、冷凍冷蔵庫100の省エネルギー化を図ることができる。 Further, the heater energization control may be performed by setting a threshold value for the refrigerating room temperature Ti, without being limited to setting the threshold value for the door opening time. The threshold value is 10 ° C., for example. In this case, the heater control means 66 uses the energization coefficient kt calculated by Equation (3) when the refrigerator compartment temperature Ti rises above the threshold, and when the refrigerator compartment temperature Ti falls to a value below the threshold, the energization coefficient. Set kt to 1. When the refrigerator compartment temperature Ti becomes lower than the threshold value, the heater control means 66 energizes the heater 18 at the reference energization rate DRref. Even if the opening time of the door becomes long, the surface of the partition plate 9 can be prevented from condensing and the power consumption of the heater 18 can be reduced. As a result, energy saving of the refrigerator-freezer 100 can be achieved.
 なお、冷蔵室目標温度Tsは、ユーザが設定する温度に限らず、複数の温度設定値からユーザが1つの温度設定値を選択できるようにしてもよい。例えば、図に示さない温度操作パネルが冷凍冷蔵庫100に設けられ、ユーザが温度操作パネルを操作して、冷蔵室目標温度Tsとして、弱、中および強の3種類の温度設定値から1つの温度設定値を選択してもよい。 Note that the refrigerating room target temperature Ts is not limited to the temperature set by the user, and the user may select one temperature setting value from a plurality of temperature setting values. For example, a temperature operation panel (not shown) is provided in the refrigerator-freezer 100, and the user operates the temperature operation panel to set one temperature from three types of temperature setting values of weak, medium and strong as the refrigerator compartment target temperature Ts. A set value may be selected.
 また、本実施の形態1のヒータ通電制御において、最低通電率DRminを設定してもよい。例えば、加熱処理した物が入った鍋など、高温の冷却対象物が冷蔵室温度センサ72の近傍に置かれた場合、外気温度Toと冷蔵室温度Tiとの温度差ΔTが小さくなるため、式(1)および式(3)から算出される補正通電率DRaが低下してしまう。この場合、仕切板9の表面温度が結露温度よりも低い温度まで下がってしまう場合がある。そこで、冷蔵室温度Tiが急激に上昇する場合を想定し、最低通電率DRminを設定する。メモリ61が最低通電率DRminを記憶する。最低通電率DRminは、例えば、基準通電率DRrefの10~20%程度の値に設定される。ヒータ制御手段66は、式(1)および式(3)から算出される通電率DRが最低通電率DRminより小さくなった場合、最低通電率DRminでヒータ18を通電する。その結果、仕切板9の表面温度が結露温度よりも低い温度まで下がってしまうことを防げる。 In the heater energization control according to the first embodiment, the minimum energization rate DRmin may be set. For example, when a high-temperature object to be cooled such as a pan containing a heat-treated object is placed in the vicinity of the refrigerator compartment temperature sensor 72, the temperature difference ΔT between the outside air temperature To and the refrigerator compartment temperature Ti becomes small. The corrected energization rate DRa calculated from (1) and equation (3) is reduced. In this case, the surface temperature of the partition plate 9 may be lowered to a temperature lower than the dew condensation temperature. Therefore, assuming that the refrigerator compartment temperature Ti rises rapidly, the minimum energization rate DRmin is set. The memory 61 stores the minimum energization rate DRmin. For example, the minimum energization rate DRmin is set to a value of about 10 to 20% of the reference energization rate DRref. The heater control means 66 energizes the heater 18 at the minimum energization rate DRmin when the energization rate DR calculated from the equations (1) and (3) becomes smaller than the minimum energization rate DRmin. As a result, the surface temperature of the partition plate 9 can be prevented from dropping to a temperature lower than the dew condensation temperature.
 本実施の形態1の冷凍冷蔵庫100は、外気温度To、冷蔵室温度Tiおよび冷蔵室目標温度Tsから通電係数ktを算出し、通電係数ktを基準通電率DRrefに乗算した補正通電率DRaで、仕切板9のヒータ18に通電する。 The refrigerator-freezer 100 according to the first embodiment calculates a conduction coefficient kt from the outside air temperature To, the refrigeration room temperature Ti, and the refrigeration room target temperature Ts, and a corrected conduction ratio DRa obtained by multiplying the conduction ratio kt by the reference conduction ratio DRref. The heater 18 of the partition plate 9 is energized.
 本実施の形態1によれば、外気温度To、冷蔵室温度Tiおよび冷蔵室目標温度Tsを反映した補正通電率DRaがヒータ通電制御に用いられるため、仕切板9の表面温度が結露防止温度よりも必要以上に大きくなることが抑制される。そのため、仕切板9に露が付くことを防ぐとともに、ヒータ18の無駄な電力消費が抑制され、冷凍冷蔵庫100の消費電力量を低減できる。その結果、冷凍冷蔵庫100の省エネルギー化を図ることができる。 According to the first embodiment, the corrected energization rate DRa reflecting the outside air temperature To, the refrigerating room temperature Ti, and the refrigerating room target temperature Ts is used for the heater energization control, so that the surface temperature of the partition plate 9 is lower than the dew condensation preventing temperature. Is also suppressed from becoming unnecessarily large. Therefore, it is possible to prevent the partition plate 9 from being dewed, to suppress unnecessary power consumption of the heater 18, and to reduce the power consumption of the refrigerator-freezer 100. As a result, energy saving of the refrigerator-freezer 100 can be achieved.
 本実施の形態1では、ヒータ制御手段66は、式(1)における通電係数ktの算出に式(3)を用いている。冷蔵室温度Tiの低下に合わせて通電係数ktが上昇するため、ヒータ18への通電率が必要以上に大きくなることが抑制される。その結果、冷凍冷蔵庫100の消費電力量を低減できる。 In the first embodiment, the heater control means 66 uses Equation (3) for calculating the energization coefficient kt in Equation (1). Since the energization coefficient kt increases in accordance with the decrease in the refrigerator compartment temperature Ti, the energization rate to the heater 18 is suppressed from becoming larger than necessary. As a result, the power consumption of the refrigerator-freezer 100 can be reduced.
実施の形態2.
 実施の形態2は、実施の形態1で説明した補正通電率DRaの算出に補正係数を追加するものである。本実施の形態2では、実施の形態1で説明した冷凍冷蔵庫と異なる点を詳細に説明し、実施の形態1と同様な構成および動作についての詳細な説明を省略する。
Embodiment 2. FIG.
In the second embodiment, a correction coefficient is added to the calculation of the corrected energization rate DRa described in the first embodiment. In the second embodiment, differences from the refrigerator-freezer described in the first embodiment will be described in detail, and a detailed description of the same configuration and operation as in the first embodiment will be omitted.
 本実施の形態2のヒータ制御手段66は、式(4)から補正通電率DRaを算出する。式(4)に示すように、本実施の形態2の補正通電率DRaは、式(1)に示した算出式の右辺に補正係数kvを乗算したものである。 The heater control means 66 of the second embodiment calculates the corrected energization rate DRa from the equation (4). As shown in Expression (4), the correction energization rate DRa of the second embodiment is obtained by multiplying the right side of the calculation expression shown in Expression (1) by the correction coefficient kv.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 図1に示したように、仕切板9は、冷蔵室1の左扉7および右扉8の上下方向(Z軸矢印方向)の長さが長く、内部にヒータ18が設けられていても、表面の温度が均等でない場合が考えられる。仕切板9の表面温度が均等にならない要因として、例えば、冷蔵室1の奥行きの長さが小さいことが考えられる。また、別の要因として、ファン55とは別に、冷蔵室1の内部の空気を循環させるファンが冷蔵室1に取り付けられていることが考えられる。 As shown in FIG. 1, the partition plate 9 is long in the vertical direction (Z-axis arrow direction) of the left door 7 and the right door 8 of the refrigerator compartment 1, and the heater 18 is provided therein. It is conceivable that the surface temperature is not uniform. As a factor that the surface temperature of the partition plate 9 does not become uniform, for example, the depth of the refrigerator compartment 1 is considered to be small. As another factor, it is conceivable that a fan that circulates the air inside the refrigerator compartment 1 is attached to the refrigerator compartment 1 separately from the fan 55.
 冷蔵室1の奥行きの長さが小さい場合、仕切板9において、冷蔵室1の背面から供給される冷気が直接当たる中央付近の温度が下がり、上端部および下端部の温度は中央付近よりも温度が高くなる傾向がある。冷蔵室1の内部の空気を循環させるファンが冷蔵室1に取り付けられている場合、仕切板9において、ファンが送り出す冷気が直接に当たる部分の温度が他の部分の温度よりも低くなる傾向がある。 When the depth of the refrigerator compartment 1 is small, the temperature near the center where the cold air supplied from the back of the refrigerator compartment 1 directly hits the partition plate 9 is lowered, and the temperatures at the upper end and the lower end are higher than those near the center. Tend to be higher. When a fan that circulates the air inside the refrigerator compartment 1 is attached to the refrigerator compartment 1, the temperature of the part of the partition plate 9 where the cold air sent out by the fan directly hits tends to be lower than the temperature of the other parts. .
 このような構成の場合、ヒータ制御手段66は、1より大きい値を持つ補正係数kvを、式(1)の基準通電率DRrefに乗算することで、補正通電率DRaを増大させる。仕切板9の表面温度における最低温度が露点温度以上になる補正係数kvを、メモリ61が記憶している。 In such a configuration, the heater control means 66 increases the correction energization rate DRa by multiplying the reference energization rate DRref of Expression (1) by a correction coefficient kv having a value greater than 1. The memory 61 stores a correction coefficient kv at which the minimum temperature at the surface temperature of the partition plate 9 is equal to or higher than the dew point temperature.
 なお、本実施の形態2では、冷凍冷蔵庫100の構成に依存して補正係数kvを設定する場合を説明したが、ヒータ制御手段66は、外気温度Toに依存して補正係数kvを選択してもよい。例えば、外気温度Toが複数の温度帯にグループ分けされ、複数の温度帯に対応して複数の補正係数kvが設定された情報を、メモリ61が記憶している。ヒータ制御手段66は、複数の補正係数kvから、外気温度Toに対応する補正係数kvを選択し、式(4)から算出される補正通電率DRaでヒータ18を通電する。 In the second embodiment, the case where the correction coefficient kv is set depending on the configuration of the refrigerator 100 has been described. However, the heater control unit 66 selects the correction coefficient kv depending on the outside air temperature To. Also good. For example, the memory 61 stores information in which the outside air temperature To is grouped into a plurality of temperature zones and a plurality of correction coefficients kv are set corresponding to the plurality of temperature zones. The heater control means 66 selects a correction coefficient kv corresponding to the outside air temperature To from a plurality of correction coefficients kv, and energizes the heater 18 at the correction energization rate DRa calculated from the equation (4).
 本実施の形態2の冷凍冷蔵庫100は、ヒータ18への通電率として、1より大きい補正係数kvと通電係数ktとを基準通電率DRrefに乗算した補正通電率DRaでヒータ18に通電するものである。本実施の形態2によれば、仕切板9の表面温度が均等でない場合、1より大きい値を持つ補正係数kvが基準通電率DRrefに乗算されることで、仕切板9の表面全体において、平均温度よりも低温の部分が結露温度よりも低くなることが抑制される。その結果、仕切板9の表面が結露することを防げる。 The refrigerator-freezer 100 of the second embodiment energizes the heater 18 with a correction energization rate DRa obtained by multiplying the reference energization rate DRref by a correction factor kv and an energization factor kt larger than 1 as the energization rate of the heater 18. is there. According to the second embodiment, when the surface temperature of the partition plate 9 is not uniform, the correction coefficient kv having a value greater than 1 is multiplied by the reference energization rate DRref, so that the average over the entire surface of the partition plate 9 is obtained. The temperature lower than the temperature is suppressed from becoming lower than the dew condensation temperature. As a result, condensation on the surface of the partition plate 9 can be prevented.
実施の形態3.
 本実施の形態3は、冷蔵室目標温度Tsとして、複数の設定温度からユーザが選択した設定温度にしたがって、ヒータ通電制御を行うものである。本実施の形態3では、実施の形態1で説明した冷凍冷蔵庫と異なる点を詳細に説明し、実施の形態1と同様な構成および動作についての詳細な説明を省略する。
Embodiment 3 FIG.
In the third embodiment, heater energization control is performed according to a set temperature selected by the user from a plurality of set temperatures as the refrigerating room target temperature Ts. In this Embodiment 3, a different point from the refrigerator-freezer demonstrated in Embodiment 1 is demonstrated in detail, and the detailed description about the structure and operation | movement similar to Embodiment 1 is abbreviate | omitted.
 図16は、本発明の実施の形態3に係る冷凍冷蔵庫の制御部の一例を示す機能ブロック図である。本実施の形態3の冷凍冷蔵庫100には、ユーザが冷蔵室目標温度Tsを設定する際に用いられる温度操作パネル80が設けられている。ユーザは、温度操作パネル80を操作して、冷蔵室目標温度Tsについて、複数の温度設定ランクから1つの温度設定ランクを選択することができる。ユーザが選択できる温度設定ランクとして、例えば、冷蔵室目標温度Ts=0℃の強設定と、冷蔵室目標温度Ts=3℃の中設定と、冷蔵室目標温度Ts=6℃の弱設定とがある。 FIG. 16 is a functional block diagram showing an example of the control unit of the refrigerator-freezer according to Embodiment 3 of the present invention. The refrigerator-freezer 100 according to the third embodiment is provided with a temperature operation panel 80 that is used when the user sets the refrigerator compartment target temperature Ts. The user can select one temperature setting rank from the plurality of temperature setting ranks for the refrigerator compartment target temperature Ts by operating the temperature operation panel 80. As the temperature setting rank that can be selected by the user, for example, a strong setting of the refrigerator compartment target temperature Ts = 0 ° C., a medium setting of the refrigerator compartment target temperature Ts = 3 ° C., and a weak setting of the refrigerator compartment target temperature Ts = 6 ° C. is there.
 本実施の形態3では、ユーザが複数の温度設定ランクから1つの温度設定ランクを選択すると、冷凍サイクル制御手段65は、冷蔵室目標温度に、ユーザが選択した温度設定ランクに対応する冷蔵室目標温度Tsを設定して冷凍サイクルを制御する。また、ヒータ制御手段66は、ユーザが選択した温度設定ランクにしたがって、式(5)から通電係数ktを算出する。固定値は、例えば、強設定の冷蔵室目標温度Tsと弱設定の冷蔵室目標温度Tsとの温度差である。ここでは、固定値は6となる。 In the third embodiment, when the user selects one temperature setting rank from a plurality of temperature setting ranks, the refrigeration cycle control means 65 sets the refrigerator compartment target temperature to the refrigerator compartment target temperature corresponding to the temperature setting rank selected by the user. The temperature Ts is set to control the refrigeration cycle. Moreover, the heater control means 66 calculates the energization coefficient kt from Formula (5) according to the temperature setting rank selected by the user. The fixed value is, for example, a temperature difference between the strongly set refrigerator compartment target temperature Ts and the weakly set refrigerator compartment target temperature Ts. Here, the fixed value is 6.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 実施の形態1では、通電係数ktの分母の項が「外気温度To-冷蔵室目標温度Ts」としていたのに対し、本実施の形態3では、ユーザが複数の温度設定ランクから1つの温度設定ランクを選択すると、式(5)にしたがって、通電係数ktが決定される。また、本実施の形態3では、ヒータ制御手段66は、冷蔵室温度Tiが冷蔵室目標温度Tsに到達しても、式(5)で算出される通電係数ktを使用する。この場合、冷蔵室温度Tiが冷蔵室目標温度Tsに到達した後も、補正通電率DRaが、式(1)および式(5)にしたがって、ユーザが選択した温度設定ランクが示す冷蔵室目標温度Tsをパラメータとして設定される。例えば、選択された温度設定ランクが強設定である場合、冷蔵室目標温度Tsは0℃である。 In the first embodiment, the denominator term of the energization coefficient kt is “outside air temperature To−refrigeration room target temperature Ts”, whereas in the third embodiment, the user can set one temperature from a plurality of temperature setting ranks. When the rank is selected, the energization coefficient kt is determined according to the equation (5). In the third embodiment, the heater control means 66 uses the energization coefficient kt calculated by the equation (5) even if the refrigerator compartment temperature Ti reaches the refrigerator compartment target temperature Ts. In this case, even after the refrigerating room temperature Ti reaches the refrigerating room target temperature Ts, the corrected energization rate DRa is the refrigerating room target temperature indicated by the temperature setting rank selected by the user according to the equations (1) and (5). Ts is set as a parameter. For example, when the selected temperature setting rank is a strong setting, the refrigerator compartment target temperature Ts is 0 ° C.
 ヒータ制御手段66は、式(3)で算出される通電係数ktを用いてヒータ通電制御を行っているときに、ユーザが温度設定ランクを選択する操作を行った場合、式(1)における通電係数ktを、式(5)で算出される通電係数ktに変更してもよい。 When the heater performs the heater energization control using the energization coefficient kt calculated by the equation (3), the heater control unit 66 performs the energization in the equation (1) when the user performs an operation of selecting the temperature setting rank. The coefficient kt may be changed to the energization coefficient kt calculated by Expression (5).
 図17は、本発明の実施の形態3に係る冷凍冷蔵庫において、ヒータの通電率の時間推移を示す図である。図17の横軸は時間tであり、縦軸は補正通電率DRaである。図17に示す時間t0は、冷凍冷蔵庫100に電源投入が開始された時間である。時間t1は冷蔵室温度Tiが冷蔵室目標温度Tsに到達した時間である。 FIG. 17 is a diagram showing a time transition of the energization rate of the heater in the refrigerator-freezer according to Embodiment 3 of the present invention. The horizontal axis in FIG. 17 is time t, and the vertical axis is the corrected energization rate DRa. A time t0 shown in FIG. 17 is a time when the refrigerator-freezer 100 is started to be turned on. Time t1 is the time when the refrigerator compartment temperature Ti reaches the refrigerator compartment target temperature Ts.
 図17に示すように、温度設定ランク毎に、時間t0から時間経過に伴って、式(5)で示す通電係数ktが変化する。時間t0から時間t1までの補正通電率DRaの傾きは、時間t0から温度設定ランクによって異なる。冷蔵室目標温度Tsが低いほど、時間t0から時間t1までの傾きが大きい。これは、冷蔵室目標温度Tsが低いほど、式(5)の分母が小さくなるためである。 As shown in FIG. 17, for each temperature setting rank, the energization coefficient kt shown in the equation (5) changes with time from time t0. The slope of the corrected energization rate DRa from time t0 to time t1 varies depending on the temperature setting rank from time t0. The lower the refrigerator compartment target temperature Ts, the greater the slope from time t0 to time t1. This is because the denominator of equation (5) becomes smaller as the refrigerator compartment target temperature Ts is lower.
 冷蔵室温度Tiが時間t1で冷蔵室目標温度Tsに到達する時間t1以降では、通電係数ktは一定値になり、補正通電率DRaは一定になる。図17を参照すると、いずれの温度設定ランクも、時間t1以降の補正通電率DRaは傾き=0の直線で表されている。時間t1以降において、温度設定ランク間で補正通電率DRaを比較すると、強設定の補正通電率DRaが最も大きく、弱設定の補正通電率DRaが最も小さい。冷蔵室温度Tiの温度が安定した後の補正通電率DRaが温度設定ランク毎に異なっている。図17は、冷蔵室温度Tiが冷蔵室目標温度Tsに一致して安定になると、いずれの温度設定ランクも通電率が一定になるが、温度設定ランク毎に通電率が異なることを示している。 After the time t1 when the refrigerating room temperature Ti reaches the refrigerating room target temperature Ts at time t1, the energization coefficient kt becomes a constant value, and the corrected energization rate DRa becomes constant. Referring to FIG. 17, in any temperature setting rank, the corrected energization rate DRa after time t1 is represented by a straight line with a slope = 0. When the corrected energization rate DRa is compared between the temperature setting ranks after the time t1, the strongly set corrected energization rate DRa is the largest and the weakly set corrected energization rate DRa is the smallest. The corrected energization rate DRa after the temperature of the refrigerator compartment temperature Ti is stabilized differs for each temperature setting rank. FIG. 17 shows that when the refrigeration room temperature Ti becomes stable in accordance with the refrigeration room target temperature Ts, the energization rate is constant in any temperature setting rank, but the energization rate differs for each temperature setting rank. .
 ここで、冷蔵室温度Tiが冷蔵室目標温度Tsに到達した後、温度設定ランク毎に通電率が異なる理由を説明する。冷蔵室温度Tiが冷蔵室目標温度Tsに到達した後、中設定の場合、式(5)の分子と分母とが同じになる。つまり、中設定の場合、時間t1以降、補正通電率DRaは基準通電率DRrefとなる。一方、強設定の場合、時間t1以降、式(5)において、分母よりも分子が大きくなるため、補正通電率DRaは基準通電率DRrefよりも大きい値になる。さらに、弱設定の場合、時間t1以降、式(5)において、分子よりも分母が大きくなるため、補正通電率DRaは基準通電率DRrefよりも小さい値になる。 Here, the reason why the energization rate differs for each temperature setting rank after the refrigerator compartment temperature Ti has reached the refrigerator compartment target temperature Ts will be described. After the refrigerating room temperature Ti reaches the refrigerating room target temperature Ts, the numerator and the denominator of the formula (5) are the same in the case of medium setting. That is, in the case of the medium setting, the corrected energization rate DRa becomes the reference energization rate DRref after time t1. On the other hand, in the case of the strong setting, since the numerator is larger than the denominator in the equation (5) after the time t1, the corrected energization rate DRa is larger than the reference energization rate DRref. Further, in the case of weak setting, since the denominator is larger than the numerator in the equation (5) after the time t1, the corrected energization rate DRa becomes a value smaller than the reference energization rate DRref.
 なお、本実施の形態3では、実施の形態1をベースに説明したが、本実施の形態3に実施の形態2を適用してもよい。 Although the third embodiment has been described based on the first embodiment, the second embodiment may be applied to the third embodiment.
 本実施の形態3の冷凍冷蔵庫100は、ヒータ18の補正通電率DRaに、式(5)で算出される通電係数ktを使用するものである。本実施の形態3によれば、冷蔵室目標温度Tsが低いほど、冷蔵室温度Tiが安定するまでの通電率の傾きを大きくすることができ、冷蔵室温度Tiが安定した後も通電率を大きい値で維持することができる。冷蔵室温度Tiが急激に低下しても、ヒータ18の通電率の傾きが大きいので、仕切板9の表面に結露が生じてしまうことを防げる。冷蔵室温度Tiが低い温度に設定されていても、ヒータ18の通電率が大きいので、ユーザが冷蔵室1の扉を開閉したときに、仕切板9の表面に結露が生じてしまうことを防げる。 The refrigerator-freezer 100 according to the third embodiment uses the energization coefficient kt calculated by the equation (5) as the corrected energization rate DRa of the heater 18. According to the third embodiment, the lower the refrigerating room target temperature Ts, the larger the inclination of the energization rate until the refrigerating room temperature Ti becomes stable. It can be maintained at a large value. Even if the refrigerating room temperature Ti rapidly decreases, the inclination of the energization rate of the heater 18 is large, so that it is possible to prevent condensation on the surface of the partition plate 9. Even if the refrigerator compartment temperature Ti is set to a low temperature, since the energization rate of the heater 18 is large, it is possible to prevent condensation on the surface of the partition plate 9 when the user opens and closes the door of the refrigerator compartment 1. .
 1 冷蔵室、2 製氷室、3 小型冷凍室、4 冷凍室、5 野菜室、7 左扉、8 右扉、9 仕切板、10 左扉内板、11 右扉内板、12 扉ポケット、13 棚、14 アルミ箔、15、16 立ち壁、17 板金部材、18 ヒータ、19 断熱材、20 庫内側樹脂部材、22 左扉ガスケット、23 右扉ガスケット、24 溝部、25 磁石、28 庫外側樹脂部材、29 パッキン、30~34 吹出し口、35~38 風速等高線、39 吹出し風路、40 戻り口、51 圧縮機、52 凝縮器、53 減圧装置、54 蒸発器、55 ファン、56 ダンパ装置、57 冷媒回路、60 制御部、61 メモリ、62 CPU、65 冷凍サイクル制御手段、66 ヒータ制御手段、71 冷凍室温度センサ、72 冷蔵室温度センサ、73 外気温度センサ、74 外気湿度センサ、80 温度操作パネル、100 冷凍冷蔵庫、100A 箱体、201、211 波形、301、311 波形。 1 cold room, 2 ice making room, 3 small freezer room, 4 freezer room, 5 vegetable room, 7 left door, 8 right door, 9 partition plate, 10 left door inner plate, 11 right door inner plate, 12 door pocket, 13 Shelf, 14 Aluminum foil, 15, 16 Standing wall, 17 Sheet metal member, 18 Heater, 19 Heat insulation, 20 Inside resin member, 22 Left door gasket, 23 Right door gasket, 24 Groove, 25 Magnet, 28 Outside resin member , 29 packing, 30-34 outlet, 35-38 wind speed contour, 39 outlet, 40 return port, 51 compressor, 52 condenser, 53 decompressor, 54 evaporator, 55 fan, 56 damper device, 57 refrigerant Circuit, 60 control unit, 61 memory, 62 CPU, 65 refrigeration cycle control means, 66 heater control means, 71 freezer temperature sensor, 2 refrigerating compartment temperature sensor, 73 outside air temperature sensor, 74 outdoor air humidity sensor, 80 temperature control panel 100 refrigerator, 100A box, 201, 211 waveforms 301, 311 waveform.

Claims (6)

  1.  貯蔵室を有する箱体と、
     前記箱体の開口部を覆う両開き扉と、
     前記両開き扉が閉じた状態で前記貯蔵室への外気の浸入を防ぐ仕切板と、
     外気温度を検出する外気温度センサと、
     外気湿度を検出する外気湿度センサと、
     前記貯蔵室内の温度を冷蔵室温度として検出する冷蔵室温度センサと、
     前記仕切板の結露を防止するヒータと、
     前記外気温度および前記外気湿度から算出される基準通電率に基づいて前記ヒータへの通電を制御するヒータ制御手段と、を有し、
     前記ヒータ制御手段は、
     前記外気温度、前記冷蔵室温度および冷蔵室目標温度から通電係数を算出し、算出した通電係数を前記基準通電率に乗算した補正通電率を用いて前記ヒータを制御する
     冷凍冷蔵庫。
    A box having a storage room;
    A double door that covers the opening of the box,
    A partition plate that prevents intrusion of outside air into the storage chamber with the double door closed;
    An outside temperature sensor for detecting the outside temperature;
    An outside air humidity sensor for detecting outside air humidity;
    A refrigerator temperature sensor for detecting the temperature in the storage chamber as a refrigerator temperature;
    A heater for preventing condensation of the partition plate;
    Heater control means for controlling energization to the heater based on a reference energization rate calculated from the outside air temperature and the outside air humidity;
    The heater control means includes
    A refrigerator-freezer that calculates an energization coefficient from the outside air temperature, the refrigerating room temperature, and a refrigerating room target temperature, and controls the heater using a corrected energization ratio obtained by multiplying the calculated energization coefficient by the reference energization ratio.
  2.  前記ヒータ制御手段は、
     前記冷蔵室温度が前記冷蔵室目標温度であるとき、前記基準通電率で前記ヒータに通電する、請求項1に記載の冷凍冷蔵庫。
    The heater control means includes
    The refrigerator-freezer according to claim 1, wherein the heater is energized at the reference energization rate when the refrigerator compartment temperature is the refrigerator compartment target temperature.
  3.  前記ヒータ制御手段は、
     前記冷蔵室温度が閾値以上のとき、前記補正通電率で前記ヒータに通電し、前記冷蔵室温度が前記閾値以上から前記閾値未満へ下がると、前記基準通電率で前記ヒータに通電する、請求項1または2に記載の冷凍冷蔵庫。
    The heater control means includes
    The heater is energized at the corrected energization rate when the refrigerator temperature is equal to or higher than a threshold value, and the heater is energized at the reference energization rate when the refrigerator temperature falls from the threshold value to less than the threshold value. The refrigerator-freezer according to 1 or 2.
  4.  前記ヒータ制御手段は、
     前記補正通電率として、1より大きい補正係数と前記通電係数とを前記基準通電率に乗算した値で前記ヒータに通電する、請求項1~3のいずれか1項に記載の冷凍冷蔵庫。
    The heater control means includes
    The refrigerator-freezer according to any one of claims 1 to 3, wherein the heater is energized with a value obtained by multiplying the reference energization ratio by a correction coefficient greater than 1 and the energization coefficient as the correction energization ratio.
  5.  前記ヒータ制御手段は、
     通電係数=(外気温度-冷蔵室温度)/(外気温度-冷蔵室目標温度)
     で表される算出式を用いて前記補正通電率を算出する、請求項1~4のいずれか1項に記載の冷凍冷蔵庫。
    The heater control means includes
    Energization coefficient = (outside air temperature-refrigerator compartment temperature) / (outside air temperature-refrigerator compartment target temperature)
    The refrigerator-freezer according to any one of claims 1 to 4, wherein the corrected energization rate is calculated using a calculation formula represented by:
  6.  前記ヒータ制御手段は、
     通電係数=(外気温度-冷蔵室温度)/{外気温度-(固定値-冷蔵室目標温度)}
     で表される算出式を用いて前記補正通電率を算出する、請求項1~4のいずれか1項に記載の冷凍冷蔵庫。
    The heater control means includes
    Energization coefficient = (outside air temperature-refrigerator compartment temperature) / {outside air temperature-(fixed value-refrigerator compartment target temperature)}
    The refrigerator-freezer according to any one of claims 1 to 4, wherein the corrected energization rate is calculated using a calculation formula represented by:
PCT/JP2018/014104 2018-04-02 2018-04-02 Refrigeration appliance WO2019193626A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/014104 WO2019193626A1 (en) 2018-04-02 2018-04-02 Refrigeration appliance
JP2020512114A JP6972310B2 (en) 2018-04-02 2018-04-02 Freezer refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/014104 WO2019193626A1 (en) 2018-04-02 2018-04-02 Refrigeration appliance

Publications (1)

Publication Number Publication Date
WO2019193626A1 true WO2019193626A1 (en) 2019-10-10

Family

ID=68100632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014104 WO2019193626A1 (en) 2018-04-02 2018-04-02 Refrigeration appliance

Country Status (2)

Country Link
JP (1) JP6972310B2 (en)
WO (1) WO2019193626A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332249A (en) * 1997-05-29 1998-12-15 Matsushita Refrig Co Ltd Refrigerator
JP2008057919A (en) * 2006-09-01 2008-03-13 Hitachi Appliances Inc Refrigerator
CN202024567U (en) * 2011-04-21 2011-11-02 海尔集团公司 Control device for anti-condensation heating wire
JP2013072595A (en) * 2011-09-28 2013-04-22 Hitachi Appliances Inc Refrigerator and freezer
KR20140093331A (en) * 2013-01-14 2014-07-28 위니아만도 주식회사 Method for preventing dew formation of refrigerator
CN104880016A (en) * 2015-05-26 2015-09-02 青岛海尔股份有限公司 Cold storage refrigeration device and anti-condensation method and system thereof
JP2016020796A (en) * 2014-07-16 2016-02-04 日立アプライアンス株式会社 refrigerator
WO2017029782A1 (en) * 2015-08-20 2017-02-23 パナソニックIpマネジメント株式会社 Refrigerator
JP2017187233A (en) * 2016-04-06 2017-10-12 東芝ライフスタイル株式会社 refrigerator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332249A (en) * 1997-05-29 1998-12-15 Matsushita Refrig Co Ltd Refrigerator
JP2008057919A (en) * 2006-09-01 2008-03-13 Hitachi Appliances Inc Refrigerator
CN202024567U (en) * 2011-04-21 2011-11-02 海尔集团公司 Control device for anti-condensation heating wire
JP2013072595A (en) * 2011-09-28 2013-04-22 Hitachi Appliances Inc Refrigerator and freezer
KR20140093331A (en) * 2013-01-14 2014-07-28 위니아만도 주식회사 Method for preventing dew formation of refrigerator
JP2016020796A (en) * 2014-07-16 2016-02-04 日立アプライアンス株式会社 refrigerator
CN104880016A (en) * 2015-05-26 2015-09-02 青岛海尔股份有限公司 Cold storage refrigeration device and anti-condensation method and system thereof
WO2017029782A1 (en) * 2015-08-20 2017-02-23 パナソニックIpマネジメント株式会社 Refrigerator
JP2017187233A (en) * 2016-04-06 2017-10-12 東芝ライフスタイル株式会社 refrigerator

Also Published As

Publication number Publication date
JP6972310B2 (en) 2021-11-24
JPWO2019193626A1 (en) 2021-02-12

Similar Documents

Publication Publication Date Title
JP4954484B2 (en) Cooling storage
JP5402779B2 (en) refrigerator
JP6611905B2 (en) refrigerator
WO2009113308A1 (en) Refrigerator
EP2267387A1 (en) Refrigerator
JP6097922B2 (en) refrigerator
JP2018009787A (en) refrigerator
WO2015019740A1 (en) Refrigerator
KR101687237B1 (en) Refrigerator and controlling method thereof
AU2015410544B2 (en) Refrigerator
JP2008175437A (en) Refrigerator
JP3942688B2 (en) refrigerator
WO2019193626A1 (en) Refrigeration appliance
JP4367564B2 (en) refrigerator
US10429863B2 (en) Systems and methods for refrigerator control
JP2019191841A (en) Temperature controller for warm/cold storage
JP6956900B2 (en) refrigerator
CN210320818U (en) Refrigerating chamber of refrigerator
JP6987156B2 (en) Refrigerator, refrigerator control method and program
JP4767065B2 (en) Commercial refrigerator
JP7321946B2 (en) refrigerator
EP0715236B1 (en) Method of obtaining a temperature value for use in controlling the temperature of refrigerator
JP2008070041A (en) Refrigerator
US11415358B1 (en) Adaptive perimeter heating in refrigerator and freezer units
KR100480886B1 (en) Thermostatic control method the inside of the refrigerator according to the open air sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512114

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913647

Country of ref document: EP

Kind code of ref document: A1