JP2009019808A - Refrigerator and method for preventing dew condensation in refrigerator - Google Patents

Refrigerator and method for preventing dew condensation in refrigerator Download PDF

Info

Publication number
JP2009019808A
JP2009019808A JP2007182234A JP2007182234A JP2009019808A JP 2009019808 A JP2009019808 A JP 2009019808A JP 2007182234 A JP2007182234 A JP 2007182234A JP 2007182234 A JP2007182234 A JP 2007182234A JP 2009019808 A JP2009019808 A JP 2009019808A
Authority
JP
Japan
Prior art keywords
refrigerator
temperature
energization
refrigeration cycle
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007182234A
Other languages
Japanese (ja)
Other versions
JP2009019808A5 (en
Inventor
Hideya Sato
秀也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Industries Ltd
Original Assignee
Daiwa Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Industries Ltd filed Critical Daiwa Industries Ltd
Priority to JP2007182234A priority Critical patent/JP2009019808A/en
Publication of JP2009019808A publication Critical patent/JP2009019808A/en
Publication of JP2009019808A5 publication Critical patent/JP2009019808A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent dew condensation in a refrigerator without providing a humidity sensor and a heater. <P>SOLUTION: When outside air temperature is lower than current carrying start temperature T<SB>L</SB>and a compressor 9 remains stopped over regulated stop time t<SB>S</SB>, a defrosting heater 14 attached to an evaporator 6 is energized and heated to raise temperature T in the refrigerator, and the operation of the compressor 9 is prompted by temperature rise. Since the defrosting heater 14 is provided to the evaporator 6, it is not necessary to separately provide a heater. Since the energization heating or disconnection of the defrosting heater 14 is determined according to the outside air temperature and temperature T in the refrigerator, stop time of the compressor 9, and energization time to the defrosting heater 14, it is not necessary to measure and control humidity by the humidity sensor. Therefore, simple and inexpensive control structure can be achieved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、冷蔵庫の冷蔵室内に結露が生じないようにするための結露防止方法、及び、その結露防止方法を適用した冷蔵庫に関する。   The present invention relates to a condensation prevention method for preventing condensation from occurring in a refrigerator compartment of a refrigerator, and a refrigerator to which the condensation prevention method is applied.

一般的な冷蔵庫を図1から図3に示して説明すると、この冷蔵庫は庫内が冷凍室3、冷蔵室4等のように冷却温度の異なる複数の区画から構成されている。これらの各室の間には隔壁5が設けられ、この隔壁5によって温度の異なる双方の冷気が直接混じり合わないように隔離している(図1及び図2参照)。   A general refrigerator will be described with reference to FIGS. 1 to 3. This refrigerator is composed of a plurality of compartments having different cooling temperatures such as a freezer compartment 3 and a refrigerator compartment 4. A partition wall 5 is provided between the chambers, and the partition wall 5 separates both cold airs having different temperatures from each other so as not to be mixed directly (see FIGS. 1 and 2).

通常、その冷凍室3はマイナス20℃程度、冷蔵室4は3〜10℃程度に保たれているので、両室3、4間には20℃以上の温度差が生じている。このため、冷凍室3の冷気によって冷却された隔壁5の冷蔵室4等側の壁面5a(つまり、相対的に温度が高い壁面側)には、冷蔵室4等の冷気に含まれる水分が凝縮して結露しやすい。このような結露は、冷蔵室4と設定温度が近い野菜室等と冷凍室3との間の隔壁5にも生じやすい。
この結露は、冷蔵室4内等においてカビや雑菌の繁殖を引き起こす等、衛生上問題がある。
Usually, the freezer compartment 3 is kept at about minus 20 ° C. and the refrigerator compartment 4 is kept at about 3-10 ° C., so that a temperature difference of 20 ° C. or more is generated between the two chambers 3, 4. For this reason, moisture contained in the cold air in the refrigerator compartment 4 or the like is condensed on the wall surface 5a on the side of the refrigerator compartment 4 or the like of the partition wall 5 cooled by the cold air in the freezer compartment 3 (that is, the wall surface side having a relatively high temperature). And condensing easily. Such condensation is likely to occur also in the partition wall 5 between the freezer compartment 3 and the vegetable compartment or the like whose set temperature is close to that of the refrigerator compartment 4.
This dew has a hygienic problem such as causing the growth of mold and various germs in the refrigerator compartment 4 and the like.

上記冷気に含まれる水分量(湿度)は、図3に示す冷蔵庫の圧縮機9、蒸発器6等の冷凍サイクルの運転又は停止とともに変動する。
つまり、上記冷凍サイクルが運転すると蒸発器6が冷却され、その蒸発器6に上記冷気中の水分が結露又は結霜して上記冷気が除湿される一方で、冷却サイクルが停止すると上記結露等が気化して上記冷気中に放出され、上記冷気が加湿される。この冷却サイクルの停止時における加湿は、その停止時間が長いほど上記結露等の気化が進むので、その加湿の度合いが一層高まることとなる。
そのため、隔壁5の壁面5aにおける結露は、上記冷却サイクルが長時間停止して上記加湿の度合いが高まった際に生じやすい。
The amount of moisture (humidity) contained in the cold air varies with the operation or stop of the refrigeration cycle such as the compressor 9 and the evaporator 6 of the refrigerator shown in FIG.
That is, when the refrigeration cycle is operated, the evaporator 6 is cooled, and moisture in the cold air is condensed or defrosted on the evaporator 6 to dehumidify the cold air. It vaporizes and is discharged into the cold air, and the cold air is humidified. As for the humidification when the cooling cycle is stopped, the longer the stop time is, the more vaporization such as condensation occurs, so that the degree of humidification is further increased.
Therefore, condensation on the wall surface 5a of the partition wall 5 is likely to occur when the cooling cycle is stopped for a long time and the degree of humidification is increased.

この結露を防止するため、図6に示すように、この冷蔵庫の扉2の下面2aに湿度センサ18を設けるとともに、その湿度センサ18付近に加温ヒータ19及び加温ヒータ制御スイッチ20を設ける構成が提案されている。この湿度センサ18での測定値が予め決めたしきい値を超えた際にこの下面2aに結露が発生したものと判断し、加温ヒータ19を通電加熱することによって、庫内の冷気と外気の温度差によって生じた結露を気化して解消する(特許文献1の段落0005〜0014参照)。
特開平8−338679号公報
In order to prevent this dew condensation, as shown in FIG. 6, a humidity sensor 18 is provided on the lower surface 2 a of the refrigerator door 2, and a heating heater 19 and a heating heater control switch 20 are provided in the vicinity of the humidity sensor 18. Has been proposed. When the measured value of the humidity sensor 18 exceeds a predetermined threshold value, it is determined that condensation has occurred on the lower surface 2a, and the warming heater 19 is energized and heated, whereby the cool air and the outside air in the refrigerator are heated. The condensation caused by the temperature difference is vaporized and eliminated (see paragraphs 0005 to 0014 of Patent Document 1).
JP-A-8-338679

上記の従来の隔壁(庫内)の結露防止方法は、結露発生の検出及び解消手段として湿度センサ及び加温ヒータ等を設ける必要があるため、部品点数が増加してコストが嵩むという問題がある。
また、この湿度センサは結露によって濡れたり、加温ヒータによって乾燥したりを繰り返すので、その際、湿度センサに埃等が付着し、湿度測定の精度が低下しやすい。そのため、定期的にこの湿度センサ表面をきれいにするためのメンテナンスを行う必要がある。
The above conventional method for preventing dew condensation on the partition wall (inside the cabinet) has a problem that the number of parts increases and the cost increases because it is necessary to provide a humidity sensor, a heating heater, etc. as means for detecting and eliminating the occurrence of dew condensation. .
Further, since this humidity sensor is repeatedly wetted by condensation or dried by a heating heater, dust or the like adheres to the humidity sensor at this time, and the accuracy of humidity measurement tends to be lowered. For this reason, it is necessary to periodically perform maintenance to clean the surface of the humidity sensor.

この上記湿度センサ及び加温ヒータの取り付け位置は扉の下面に限定されず、例えば、冷蔵室内の隔壁に設けることもできる。この加温ヒータでこの隔壁を暖めることによって、この隔壁における結露を解消し得る。
しかしながら、このようにこの加温ヒータを冷凍室と冷蔵室との間の隔壁に設ける場合、冷蔵室の天井高が限られているため、この冷蔵室に嵩高い食品等を保存する際、隔壁(加温ヒータ)と食品等とを近接して置かざるを得ないことがある。この場合、加温ヒータで隔壁を加熱すると、その隔壁(加温ヒータ)からの輻射によって食品等が直接暖められ、その鮮度を損なう恐れがある。
The mounting position of the humidity sensor and the heating heater is not limited to the lower surface of the door, and can be provided, for example, on a partition wall in the refrigerator compartment. By heating the partition with the heating heater, condensation on the partition can be eliminated.
However, when the heating heater is provided in the partition wall between the freezer compartment and the refrigerator compartment in this way, the ceiling height of the refrigerator compartment is limited, so when storing bulky food or the like in the refrigerator compartment, (Heating heater) and food etc. may have to be placed close to each other. In this case, if the partition wall is heated by the heating heater, the food or the like is directly warmed by radiation from the partition wall (heating heater), and the freshness may be impaired.

そこで、この発明は、湿度センサや加温ヒータ等を設けることなく、庫内の結露を防止し得るようにすることを課題とする。   In view of this, an object of the present invention is to prevent condensation in the cabinet without providing a humidity sensor, a heating heater, or the like.

上記の課題を解決するため、この発明は、外気温度が通電開始温度を下回った時に蒸発器の除霜ヒータを通電加熱して、冷蔵室内の温度を冷凍サイクルが運転を開始する温度まで昇温し、この冷凍サイクルの運転を促すようにしたのである。   In order to solve the above problems, the present invention increases the temperature in the refrigerator compartment to the temperature at which the refrigeration cycle starts operation by energizing and heating the defrost heater of the evaporator when the outside air temperature falls below the energization start temperature. However, the operation of this refrigeration cycle is encouraged.

この通電開始温度とは、冷凍サイクルが停止した後、冷蔵室内が徐々に暖まって冷凍サイクルが運転を開始するまでに庫内(隔壁)に結露が生じない外気温度のことをいう。この通電開始温度は、冷蔵庫の断熱性等を考慮して実験等によって適宜に設定する。
上記外気温度がこの通電開始温度よりも高い場合は、冷凍サイクルの停止の時に、この外気によって庫内が冷凍サイクルの運転を開始する温度まで暖められるため、停止しているこの冷凍サイクルの運転が促される。
その一方で、上記外気温度がこの通電開始温度よりも低い場合は、冷凍サイクルの停止の時にこの外気によって庫内が冷凍サイクルの運転を開始する温度までなかなか暖められない。そのため、この冷凍サイクルが長時間に亘って停止したままの状態となる。その結果、上述したように、その停止の間に上記蒸発器の結露等が気化して相対湿度が高まるので、その冷蔵室内において結露が生じやすくなる。
その場合、停止した状態のこの冷凍サイクルを運転させることにより、冷蔵室内の冷気中の水分が再び蒸発器に結露又は結霜して除去されるため、相対湿度が低下し、上記隔壁への結露が防止される。
The energization start temperature is an outside air temperature at which dew condensation does not occur in the interior (partition wall) until the refrigeration chamber is gradually warmed and the refrigeration cycle starts operation after the refrigeration cycle is stopped. This energization start temperature is appropriately set by experiments or the like in consideration of the heat insulating property of the refrigerator.
When the outside air temperature is higher than the energization start temperature, when the refrigeration cycle is stopped, the outside air warms up to a temperature at which the inside of the refrigerator starts the refrigeration cycle. Prompted.
On the other hand, if the outside air temperature is lower than the energization start temperature, the outside air cannot be easily warmed to the temperature at which the inside of the refrigerator starts the refrigeration cycle when the refrigeration cycle is stopped. Therefore, this refrigeration cycle remains stopped for a long time. As a result, as described above, dew condensation or the like of the evaporator is vaporized during the stop and the relative humidity is increased, so that dew condensation is likely to occur in the refrigerator compartment.
In that case, by operating this refrigeration cycle in a stopped state, moisture in the cold air in the refrigerator compartment is again condensed or defrosted on the evaporator, so that the relative humidity is reduced and the condensation on the partition wall is reduced. Is prevented.

この発明に用いられる除霜ヒータは、蒸発器の除霜用として設けられているものであって、その設置位置は食品等を保管している冷蔵室内からは隔離されている。そのため、この除霜ヒータに通電加熱した時に、この除霜ヒータからの輻射によって食品等が直接暖められるおそれは低い。
この除霜ヒータを通電加熱すると、それによって庫内温度が上昇するので、その温度上昇によって冷凍サイクルの運転が促される。この冷凍サイクルが運転すると、庫内の冷気中の水分が冷却された蒸発器に結露してその冷気が除湿されるので、その庫内における結露が回避され得る。
The defrosting heater used in the present invention is provided for defrosting the evaporator, and its installation position is isolated from the refrigerating room storing food and the like. Therefore, when this defrost heater is energized and heated, there is a low possibility that the food or the like is directly warmed by radiation from the defrost heater.
When the defrost heater is heated by energization, the internal temperature rises thereby, and the operation of the refrigeration cycle is promoted by the temperature rise. When this refrigeration cycle is operated, moisture in the cold air in the warehouse is condensed on the cooled evaporator, and the cold air is dehumidified, so that condensation in the warehouse can be avoided.

この発明の構成としては、庫内が冷凍室と冷蔵室に区画され、その両室を冷凍サイクルによって冷却し、その冷凍サイクルは庫内温度計で測定した庫内温度に基づき運転又は停止され、その冷凍サイクルの停止時に、冷凍サイクルの蒸発器の除霜を行う冷蔵庫の上記冷蔵室の結露防止方法において、この冷凍サイクルの停止時において、外気温度が上記蒸発器の除霜ヒータへの通電開始温度を下回った時に、この除霜ヒータを通電加熱し、上記冷凍サイクルが運転を開始する温度まで上記庫内を昇温し、この冷凍サイクルの運転を促すようにすることができる。   As a configuration of this invention, the interior of the refrigerator is divided into a freezer compartment and a refrigerator compartment, both chambers are cooled by a refrigeration cycle, and the refrigeration cycle is operated or stopped based on the interior temperature measured by the interior thermometer, In the method for preventing dew condensation in the refrigerator compartment of the refrigerator that defrosts the evaporator of the refrigeration cycle when the refrigeration cycle is stopped, when the refrigeration cycle is stopped, the outside air temperature starts to energize the defrost heater of the evaporator When the temperature falls below, the defrost heater can be energized and heated to raise the temperature of the inside of the refrigerator to a temperature at which the refrigeration cycle starts operation, thereby prompting the operation of the refrigeration cycle.

この結露防止方法においては、上記除霜ヒータの通電加熱が、上記冷凍サイクルが予め決められた所定時間を超えて停止したままの状態となった時に初めて開始されるようにすることもできる。   In this dew condensation prevention method, the energization heating of the defrost heater can be started only when the refrigeration cycle has been stopped for a predetermined time.

この所定時間とは、この冷凍サイクルの停止状態が継続した時に、この冷凍サイクルの蒸発器への結露が気化することによって庫内に結露が生じ得る程度まで加湿されるまでの時間のことをいう。
この冷蔵庫の庫内は、上述したように外気によって暖められてその温度が上昇し、その上昇速度は外気温度や、その冷蔵庫の内容量や断熱性能等によって異なる。そのため、冷蔵庫ごとに外気温度に対する庫内温度の上昇の度合いを実験等で評価し、冷蔵庫の断熱構造を考慮して、その機種ごとに上記所定時間を適宜決定する。
The predetermined time refers to the time until the refrigeration cycle is humidified to such an extent that dew condensation on the evaporator evaporates and the dew condensation can occur in the refrigerator when the refrigeration cycle is stopped. .
As described above, the inside of the refrigerator is warmed by the outside air to increase its temperature, and the rising speed varies depending on the outside air temperature, the internal capacity of the refrigerator, the heat insulating performance, and the like. Therefore, for each refrigerator, the degree of increase in the internal temperature with respect to the outside air temperature is evaluated by experiments and the like, and the predetermined time is appropriately determined for each model in consideration of the heat insulating structure of the refrigerator.

この所定時間を経過した際に、除霜ヒータを通電加熱することによって庫内温度が上昇する。そのため、それに伴い冷凍サイクルの運転が促され、冷却された蒸発器に結露することによって庫内の冷気が除湿されるので、その庫内の結露が回避され得る。   When this predetermined time has passed, the internal temperature rises by energizing and heating the defrost heater. Therefore, the operation of the refrigeration cycle is promoted accordingly, and dew is condensed in the cooled evaporator, thereby dehumidifying the cool air in the warehouse, so that condensation in the warehouse can be avoided.

この除霜ヒータの通電加熱は、上記外気温度が通電終了温度を上回った時に終了するようにすることができる。   The energization heating of the defrost heater can be terminated when the outside air temperature exceeds the energization end temperature.

外気温度が上昇してその外気温によって庫内が暖められるようになれば、除霜ヒータによって庫内を暖める必要はなくなる。その必要が無くなる外気温度が通電終了温度であって、その温度になれば、除霜ヒータの通電を終了する。この通電終了温度も冷蔵庫の断熱性等を考慮して実験等によって適宜に設定する。
このため、外気温度が通電開始温度よりも低い場合は、その外気温によって冷蔵庫の庫内が暖められにくいので、上記除霜ヒータへの通電加熱によってこの庫内を暖め、外気温度がこの通電終了温度よりも高い場合には、この外気によってこの庫内が暖められて、結露前の冷凍サイクルの運転を促す。
If the outside air temperature rises and the inside is warmed by the outside air temperature, it is not necessary to warm the inside by the defrost heater. When the outside air temperature at which the necessity is eliminated is the energization end temperature, and when that temperature is reached, energization of the defrost heater is terminated. This energization end temperature is also set as appropriate through experiments and the like in consideration of the heat insulation of the refrigerator.
For this reason, when the outside air temperature is lower than the energization start temperature, the inside of the refrigerator is difficult to be warmed by the outside air temperature, so the inside of the refrigerator is warmed by energization heating to the defrost heater, and the outside air temperature ends this energization. When the temperature is higher than the temperature, the outside air warms the inside of the cabinet and prompts operation of the refrigeration cycle before dew condensation.

この除霜ヒータの通電加熱に関しては、この除霜ヒータの通電加熱を開始してからの経過時間を測定し、この経過時間が規定通電時間に達した時にこの通電加熱を終了するようにすることができる。   Regarding the electric heating of the defrost heater, the elapsed time after starting the electric heating of the defrost heater is measured, and the electric heating is terminated when the elapsed time reaches the specified energization time. Can do.

この規定通電時間とは、上記除霜ヒータを通電加熱した時に、その通電加熱を連続的に行うことが許容される最大時間のことをいう。
このように規定通電時間を設けた理由としては、この除霜ヒータを長時間に亘って通電加熱し続けると冷蔵庫の庫内温度が上昇して庫内の食品等の鮮度を劣化させるおそれがあるのとともに、この通電加熱を長時間行うと多くの電力を無駄に消費するためである。
この庫内温度の上昇速度は、冷蔵庫の内容量、除霜ヒータの出力等によって変わり得るので、上記規定通電時間は実験等の結果を参考にして冷蔵庫の断熱特性も考慮に入れた上で機種ごとに設定する。
The specified energization time refers to a maximum time during which the energization heating is permitted when the defrost heater is energized and heated.
The reason for providing the specified energization time as described above is that if the defrost heater is continuously energized and heated for a long time, the internal temperature of the refrigerator rises and the freshness of food in the refrigerator may be deteriorated. In addition, if this energization heating is performed for a long time, a large amount of electric power is wasted.
The rate of temperature rise can vary depending on the refrigerator capacity, the output of the defrost heater, etc., so the specified energizing time is based on the heat insulation characteristics of the refrigerator taking into account the results of experiments etc. Set for each.

また、上記除霜ヒータの通電加熱は、この通電加熱を開始した後に、上記規定通電時間に達する前に上記外気温度が通電終了温度に達した時にこの通電加熱を終了するようにすることもできる。   In addition, the energization heating of the defrosting heater can be terminated when the outside air temperature reaches the energization end temperature after starting the energization heating and before reaching the specified energization time. .

この除霜ヒータによる通電加熱は、庫内を暖めることによって冷凍サイクルの運転を促すのが目的であるところ、上記外気温度が通電終了温度よりも高くなると、この通電加熱を行わなくとも外気によって庫内が暖められ得るためである。   The purpose of the energization heating by the defrost heater is to promote the operation of the refrigeration cycle by warming the inside of the chamber. However, if the outside air temperature becomes higher than the energization end temperature, the outside air can store the outside air without performing the energization heating. This is because the inside can be warmed.

さらに、上記除霜ヒータの通電加熱は、この通電加熱を開始した後に、上記規定通電時間に達する前に上記冷凍サイクルの運転が再開された時にこの通電加熱を終了するようにすることもできる。   Furthermore, the energization heating of the defrosting heater can be ended when the operation of the refrigeration cycle is resumed after the energization heating is started and before the specified energization time is reached.

この除霜ヒータによる通電加熱は、上述のように冷凍サイクルの運転を促すのが目的であるところ、庫内温度計で測定した庫内温度が、上記冷凍サイクルが運転を開始する温度まで暖まれば、もはやこの除霜ヒータによる通電加熱を行う必要はないからである。   The purpose of the energization heating by the defrost heater is to promote the operation of the refrigeration cycle as described above, and the internal temperature measured by the internal thermometer is warmed to the temperature at which the refrigeration cycle starts operating. This is because it is no longer necessary to perform energization heating with this defrost heater.

この通電終了温度は、通電開始温度よりも若干高め(数℃)に設定される。上述したように、この除霜ヒータによる通電加熱は、外気温度が低下して通電開始温度を下回った時に行われ得る一方で、この外気温度が上昇して通電終了温度を上回った時に終了する。
このため、この除霜ヒータが通電加熱されるためには、通電開始温度よりも通電終了温度が高いことが不可欠であって、この通電加熱が安定して行われるためには両温度があまり近接せず上述したように数℃程度離れていることが好ましい。
This energization end temperature is set slightly higher (several degrees Celsius) than the energization start temperature. As described above, the energization heating by the defrost heater can be performed when the outside air temperature decreases and falls below the energization start temperature, and ends when the outside air temperature rises and exceeds the energization end temperature.
For this reason, in order for this defrost heater to be energized and heated, it is essential that the energization end temperature is higher than the energization start temperature, and in order for this energization heating to be performed stably, both temperatures are too close. However, as described above, it is preferably about several degrees C.

この両温度が近接(例えば、両者の差がほとんど無い場合)していると、外気温度が通電開始温度に達してこの除霜ヒータが通電加熱された場合であっても、この外気温度の変動(測定誤差による測定値の揺らぎ)によって、測定された外気温度が短時間で通電終了温度に達することがある。
このような場合、加熱が十分なされないままこの除霜ヒータの通電が終了するという問題が生じる。
If these two temperatures are close to each other (for example, when there is almost no difference between them), even if the outside air temperature reaches the energization start temperature and the defrost heater is energized and heated, the variation in the outside air temperature The measured outside temperature may reach the energization end temperature in a short time due to (fluctuation of measured value due to measurement error).
In such a case, there arises a problem that energization of the defrosting heater is terminated without sufficient heating.

この場合は、例えば、通電開始温度を20℃、及び、通電終了温度を23℃として両者に3℃程度の温度差を設ければ、この温度差の幅で外気温度が変動することはほとんど無いので、上述の問題は回避され得る。
この通電開始温度及び通電終了温度の具体値については、冷蔵庫の内容量や断熱構造等を考慮した実験等の結果を参考にして適宜変更し得る。
In this case, for example, if the energization start temperature is 20 ° C. and the energization end temperature is 23 ° C. and a temperature difference of about 3 ° C. is provided, the outside air temperature hardly fluctuates within the range of this temperature difference. Thus, the above problem can be avoided.
The specific values of the energization start temperature and the energization end temperature can be appropriately changed with reference to the results of experiments and the like that take into account the internal capacity of the refrigerator, the heat insulation structure, and the like.

この除霜ヒータによる通電加熱は、上記外気温度が通電終了温度を上回った時、通電加熱を開始してからの経過時間が規定通電時間に達した時、上記規定通電時間に達する前に上記冷凍サイクルの運転が再開された時、のいずれかの時に終了するようにすることもできる。   The energization heating by the defrost heater is performed when the outside air temperature exceeds the energization end temperature, when the elapsed time from the start of energization heating reaches the specified energization time, and before the specified energization time is reached, It can also be terminated at any time when cycle operation is resumed.

このいずれかに該当すれば、冷凍サイクルの運転が開始され、あるいは、開始が促されるため、もはや除霜ヒータの通電加熱により冷蔵室内を暖める必要が無いためである。   If either of these conditions is met, the operation of the refrigeration cycle is started or the start of the refrigeration cycle is started, so that it is no longer necessary to warm the refrigerator compartment by energization heating of the defrost heater.

また、この結露防止方法を冷蔵庫の運転制御に適用することもできる。
この冷蔵庫の使用の際に冷蔵庫内の隔壁に結露が生じないので、この冷蔵庫内の衛生が保たれるとともに、除霜ヒータが食品等から隔離された位置に設けられているのでこの除霜ヒータによって食品等が直接暖められてその鮮度が劣化するのを回避できる。
Moreover, this dew condensation prevention method can also be applied to refrigerator operation control.
Since dew condensation does not occur on the partition wall in the refrigerator when the refrigerator is used, the sanitation in the refrigerator is maintained and the defrost heater is provided at a position isolated from the food etc. Therefore, it is possible to avoid the food being directly warmed and its freshness being deteriorated.

この発明によると、冷蔵室内の結露を防止するにあたり湿度センサ及び加温ヒータを用いず、蒸発器の除霜ヒータを用いるようにしたので、その構成をシンプルかつ安価なものとし得る。   According to this invention, in order to prevent dew condensation in the refrigerator compartment, the humidity sensor and the heating heater are not used, but the defrosting heater of the evaporator is used. Therefore, the configuration can be made simple and inexpensive.

この結露防止方法によって結露防止運転の制御を行う冷蔵庫の断面図を図1から図3に示して説明する。
この冷蔵庫は、その構造は一般的な冷蔵庫とほぼ同じであって、箱体1とその箱体1の開口部に設けられた扉2によってその外形が構成されている(図1参照)。箱体1は冷凍室3と冷蔵室4に区画され、両室3、4の間は隔壁5で隔てられている(図2参照)。この冷凍室3及び冷蔵室4の上部には、蒸発器6、庫内ファン7及び庫内ファンモータ8、圧縮機9、凝縮器10、凝縮ファン11等の冷凍サイクル関連機器が配置されている(図3参照)。この蒸発器6、圧縮機9、凝縮器10等から構成される冷凍サイクルの運転によって、この冷凍室3及び冷蔵室4を冷却する。
A cross-sectional view of a refrigerator that controls the dew condensation prevention operation by this dew condensation prevention method will be described with reference to FIGS.
This refrigerator has substantially the same structure as a general refrigerator, and its outer shape is configured by a box 1 and a door 2 provided at an opening of the box 1 (see FIG. 1). The box 1 is divided into a freezer compartment 3 and a refrigerator compartment 4, and the compartments 3 and 4 are separated by a partition wall 5 (see FIG. 2). In the upper part of the freezer compartment 3 and the refrigerator compartment 4, refrigeration cycle-related devices such as an evaporator 6, an internal fan 7, an internal fan motor 8, a compressor 9, a condenser 10, and a condensing fan 11 are arranged. (See FIG. 3). The freezer compartment 3 and the refrigerator compartment 4 are cooled by the operation of the refrigerating cycle including the evaporator 6, the compressor 9, the condenser 10, and the like.

上記冷凍サイクルの運転によって蒸発器6の周りに発生した冷気は、庫内ファン7の送風によって冷凍室3内に吐出される(同図中の矢印f)。その冷気の一部は隔壁5に形成された冷気流入路12を通って冷蔵室4内に送り込まれ、冷気流出路13を通って蒸発器6付近に戻される(同図中の矢印f)。   The cold air generated around the evaporator 6 by the operation of the refrigeration cycle is discharged into the freezer compartment 3 by the blowing of the internal fan 7 (arrow f in the figure). A part of the cold air is sent into the refrigerating chamber 4 through the cold air inflow passage 12 formed in the partition wall 5, and returned to the vicinity of the evaporator 6 through the cold air outflow passage 13 (arrow f in the figure).

この蒸発器6には、この蒸発器6に付着した霜を融解するための除霜ヒータ14と、この蒸発器6の温度を測定するための蒸発器温度センサ15が設けられている。   The evaporator 6 is provided with a defrost heater 14 for melting frost attached to the evaporator 6 and an evaporator temperature sensor 15 for measuring the temperature of the evaporator 6.

さらに、箱体1の外側面には外気温度センサ16、冷蔵室4内には庫内温度センサ17が設けられ、これらのセンサで外気温度、庫内温度をそれぞれ測定する。   Further, an outside air temperature sensor 16 is provided on the outer surface of the box 1 and an inside temperature sensor 17 is provided in the refrigerator compartment 4, and the outside air temperature and the inside temperature are respectively measured by these sensors.

この冷蔵庫の運転パターンを図4に示して説明する。
この冷蔵庫は、冷却運転又は除霜運転のいずれかの運転モードによってその運転制御を行う。
The operation pattern of this refrigerator will be described with reference to FIG.
This refrigerator performs its operation control according to an operation mode of either a cooling operation or a defrosting operation.

上記冷却運転は、庫内温度センサ17で測定した庫内温度Tが設定温度T±3℃の温度範囲に収まるように、圧縮機9及び庫内ファン7等の冷凍サイクルを適宜運転又は停止してその温度調節を行っている。この冷却運転の間、除霜ヒータ14は停止状態となっている。
この設定温度Tは一般的な冷蔵庫とほぼ同じく、マイナス5℃から10℃の範囲で適宜調節し得る。
In the cooling operation, the refrigeration cycles such as the compressor 9 and the internal fan 7 are appropriately operated or stopped so that the internal temperature T measured by the internal temperature sensor 17 falls within the temperature range of the set temperature T S ± 3 ° C. The temperature is adjusted. During this cooling operation, the defrost heater 14 is in a stopped state.
The set temperature T S is substantially like the typical refrigerator may appropriately adjusted in the range of 10 ° C. from minus 5 ° C..

また上記除霜運転は、圧縮機9及び庫内ファン7等の冷凍サイクルを停止するとともに除霜ヒータ14を通電加熱して蒸発器6への着霜を融解し、この除霜が完了したら除霜ヒータ14への通電を停止する。この通電を停止した後そのまま放置して、蒸発器6の表面から霜の融解水を滴り落とす水切り(図4参照)を行う。   In the defrosting operation, the refrigeration cycle of the compressor 9 and the internal fan 7 is stopped and the defrost heater 14 is energized and heated to melt the frost on the evaporator 6. The energization to the frost heater 14 is stopped. After this energization is stopped, it is left as it is, and draining is performed by dripping molten water of frost from the surface of the evaporator 6 (see FIG. 4).

上記水切り後、冷却運転を行う際には、まず圧縮機9を運転し(同図中の「冷凍サイクル予備運転」を参照)、それに遅延して庫内ファン7を回転する。このように庫内ファン7を回転するタイミングを、圧縮機9を運転するタイミングよりも遅延させる理由は、上記水切り後は蒸発器6がまだ熱を帯びていることがあり、この段階ですぐに庫内ファン7を回転すると、蒸発器6近傍の暖気を冷凍室3及び冷蔵室4に送り込んでしまうおそれがあるためである。   When the cooling operation is performed after draining, the compressor 9 is first operated (see “refrigeration cycle preliminary operation” in the figure), and the internal fan 7 is rotated with a delay. The reason for delaying the timing of rotating the internal fan 7 in this way from the timing of operating the compressor 9 is that the evaporator 6 may still be heated after draining, and immediately at this stage This is because if the internal fan 7 is rotated, the warm air in the vicinity of the evaporator 6 may be sent to the freezer compartment 3 and the refrigerator compartment 4.

次に、この結露防止運転の制御フローを図5に示して説明する。   Next, the control flow of this dew condensation prevention operation will be described with reference to FIG.

この制御フローは、まず外気温度が通電開始温度Tの20℃以下かどうかについてのチェックを行い、20℃以下の場合に次のステップに進む(同図のS1)。外気温度が20℃以上であればこの外気によって冷蔵室4内が暖められて冷凍サイクル(圧縮機9等)が運転し得るので、この結露防止運転による制御を必要としないためである。 In this control flow, a check is first made as to whether or not the outside air temperature is 20 ° C. or less of the energization start temperature TL , and if it is 20 ° C. or less, the process proceeds to the next step (S1 in the figure). This is because if the outside air temperature is 20 ° C. or higher, the inside of the refrigerator compartment 4 can be warmed by the outside air and the refrigeration cycle (compressor 9 or the like) can be operated, so that control by this dew condensation prevention operation is not required.

次に、圧縮機9等の冷凍サイクルの運転又は停止状態のチェックを行い、停止している場合は次のステップに進む(同図のS2)。この圧縮機9が運転していれば既に蒸発器6は冷却されているので、この結露防止運転を行う必要がないためである。   Next, the operation of the refrigeration cycle of the compressor 9 or the like is checked, and if it is stopped, the process proceeds to the next step (S2 in the figure). This is because if the compressor 9 is in operation, the evaporator 6 has already been cooled, and it is not necessary to perform this dew condensation prevention operation.

上記S1及びS2の両条件に適合する場合、結露防止制御モードが設定される(同図のS3)。この結露防止制御モードは、後に除霜ヒータ14に通電加熱する前段階の準備モードであって、このモード設定と同時に圧縮機9の停止時間の計測が開始される。   When both the conditions of S1 and S2 are met, the dew condensation prevention control mode is set (S3 in the figure). This dew condensation prevention control mode is a preparatory mode before energizing and heating the defrosting heater 14 later, and measurement of the stop time of the compressor 9 is started simultaneously with this mode setting.

次に、外気温度センサ16、蒸発器温度センサ15、及び、庫内ファンモータ8の動作チェックを行い、正常動作が確認できれば次のステップに進む(同図のS4)。異常がある場合は、結露防止制御モードを解除して(同図のS5)、この制御フローを終了する。この各センサ類等に異常があると、正しい結露防止運転の制御ができないためである。   Next, the operation of the outside air temperature sensor 16, the evaporator temperature sensor 15, and the internal fan motor 8 is checked, and if normal operation can be confirmed, the process proceeds to the next step (S4 in the figure). If there is an abnormality, the condensation prevention control mode is canceled (S5 in the figure), and this control flow is terminated. This is because, if there is an abnormality in each of these sensors or the like, it is impossible to correctly control the condensation prevention operation.

この外気温度センサ16で外気温度の測定を行い、この測定結果が通電終了温度Tである23℃よりも低い場合は次のステップに進む(同図のS6)。この測定結果が23℃以上の場合は、外気によって冷蔵室4内が暖められるため、この結露防止運転による制御を行う必要がないと判断し、結露防止制御モードを解除(同図のS5)してこの制御フローを終了する。 The outside air temperature sensor 16 perform measurement of outside air temperature, if the measurement result is lower than 23 ° C. is energized termination temperature T U goes to a next step (S6 in FIG). If this measurement result is 23 ° C. or higher, the inside of the refrigerator compartment 4 is warmed by the outside air, so it is determined that there is no need to perform control by this dew condensation prevention operation, and the dew condensation prevention control mode is canceled (S5 in the figure). This control flow is finished.

次に、圧縮機9の運転又は停止状態のチェックを行い、停止状態が継続している場合に次のステップに進む(同図のS7)。この圧縮機9の運転又は停止は、庫内温度センサ17で測定した庫内温度が設定温度T±3℃の温度範囲に収まるように行われる。例えば、この設定温度Tを4℃とした場合、1℃から7℃の温度範囲に収まるように温度調節が行われる。 Next, the operation or stop state of the compressor 9 is checked, and if the stop state continues, the process proceeds to the next step (S7 in the figure). The compressor 9 is operated or stopped so that the internal temperature measured by the internal temperature sensor 17 falls within the temperature range of the set temperature T S ± 3 ° C. For example, when the set temperature T S and 4 ° C., the temperature adjustment is performed to fit the temperature range of 7 ° C. from 1 ° C..

この制御フローの実行中に庫内温度Tが上記温度範囲を上回った場合、圧縮機9が運転状態となって冷却運転が再開される。この場合は、この結露防止運転による制御を行う必要がないと判断し、結露防止制御モードを解除し(同図のS5)してこの制御フローを終了する。
この設定温度T及び上記温度範囲の幅(上記の±3℃)は適宜調節し得る。
If the internal temperature T exceeds the above temperature range during the execution of this control flow, the compressor 9 enters the operating state and the cooling operation is resumed. In this case, it is determined that there is no need to perform the control by the dew condensation prevention operation, the dew condensation prevention control mode is canceled (S5 in the figure), and this control flow is ended.
The set temperature T S and the width of the temperature range (above ± 3 ° C.) can be adjusted as appropriate.

次に、除霜運転の運転又は停止状態のチェックを行い、この除霜運転の停止状態が継続している場合に次のステップに進む(同図のS8)。この除霜運転は、この結露防止運転の制御フローとは別の制御によって独立して行われ、蒸発器温度センサ15で測定した蒸発器6の温度が所定温度よりも低い場合に除霜ヒータ14を通電加熱して除霜を行うものである。
この除霜運転が行われることによって除霜ヒータ14が通電加熱されて、この結露防止運転と同じ効果が得られるので、除霜運転が開始された場合には、結露防止制御モードを解除(同図のS5)してこの制御フローを終了する。
Next, the operation of the defrosting operation or the stop state is checked, and when the stop state of the defrosting operation is continued, the process proceeds to the next step (S8 in the figure). This defrosting operation is performed independently by control different from the control flow of this dew condensation prevention operation, and when the temperature of the evaporator 6 measured by the evaporator temperature sensor 15 is lower than a predetermined temperature, the defrosting heater 14 is operated. Is defrosted by energization heating.
By performing this defrosting operation, the defrost heater 14 is energized and heated, and the same effect as this dew condensation prevention operation is obtained. Therefore, when the defrost operation is started, the dew condensation prevention control mode is canceled (same as above). This control flow is finished in S5).

次に、この結露防止制御モードの設定とともに開始した、圧縮機9の停止時間が規定停止時間tに達した場合(この例では25分間)(同図のS9)、冷蔵室4内に結露が生じる恐れがあると判断して、除霜ヒータ14を通電加熱するとともにその除霜ヒータ14の通電時間を計測するタイムリミッタをスタートする(同図のS10)。 It was then started with setting the dew condensation preventing control mode, when the stop time of the compressor 9 has reached a predetermined stop time t S (25 minutes in this example) (S9 in FIG.), Condensation in the refrigerating compartment 4 When the defrost heater 14 is energized and heated, a time limiter that measures the energization time of the defrost heater 14 is started (S10 in the figure).

このタイムリミッタでの計測時間が規定通電時間tを超えた場合(この例では、20分)(同図のS11)、除霜ヒータ14の通電を停止するとともに結露防止制御モードを解除し(同図のS12)、この制御フローを終了する。これは、除霜ヒータ14での加熱時間がこれ以上長くなると、庫内の食品等に悪影響を及ぼすおそれがあり、また、消費電力の無駄にもなるからである。 In this case the measured time of the time the limiter exceeds a specified energization time t H (in this example, 20 minutes) (S11 in FIG.), To release the anti-condensation control mode stops the energization of the defrost heater 14 ( The control flow is ended in S12) of FIG. This is because if the heating time in the defrosting heater 14 is longer than this, there is a risk of adversely affecting food in the cabinet, and power consumption is wasted.

次に、蒸発器温度センサ15で測定した蒸発器温度が、除霜復帰温度TUP以上かどうか判断する(同図のS13)。この除霜復帰温度TUPは上述の除霜運転の制御フロー(この結露防止運転とは別の独立した制御フロー)において予め決められている温度であって、例えば9℃とすることができる。上記蒸発器温度がこの除霜復帰温度TUPに達した際にはこの蒸発器6が十分暖まっており、圧縮機9が速やかに運転を再開し得る状態となっているので、除霜ヒータ14の通電を停止するとともに結露防止制御モードを解除し(同図のS12)、この制御フローを終了する。 Next, it is determined whether or not the evaporator temperature measured by the evaporator temperature sensor 15 is equal to or higher than the defrost return temperature T UP (S13 in the figure). The defrost return temperature T UP is a predetermined temperature in the control flow of the above-described defrost operation (an independent control flow different from this dew condensation prevention operation), and can be set to 9 ° C., for example. When the evaporator temperature reaches the defrosting return temperature T UP , the evaporator 6 is sufficiently warm and the compressor 9 is in a state where the operation can be resumed quickly. And the dew condensation prevention control mode is canceled (S12 in the figure), and this control flow ends.

次に、外気温度センサ16、蒸発器温度センサ15、及び、庫内ファンモータ8の各センサ類等の動作チェックを行い、異常がなければ次のステップに進む(同図のS14)。異常がある場合は、除霜ヒータ14の通電を停止するとともに結露防止制御モードを解除し(同図のS15)、この制御フローを終了する。この各センサ類等に異常があると正しい結露防止運転の制御ができないためである。   Next, an operation check of each sensor of the outside air temperature sensor 16, the evaporator temperature sensor 15, and the internal fan motor 8 is performed, and if there is no abnormality, the process proceeds to the next step (S14 in the figure). If there is an abnormality, the energization of the defrosting heater 14 is stopped and the dew condensation prevention control mode is canceled (S15 in the figure), and this control flow is ended. This is because if the sensors are abnormal, correct dew condensation prevention operation cannot be controlled.

この外気温度センサ16で外気温度の測定を行い、この測定結果が通電終了温度Tの23℃よりも低い場合は次のステップに進む(同図のS16)。この測定結果が23℃以上の場合は、外気によって冷蔵室4内が暖められるため、この結露防止運転による制御を行う必要がないと判断し、除霜ヒータ14の通電を停止するとともに結露防止制御モードを解除し(同図のS15)、この制御フローを終了する。 The outside air temperature sensor 16 perform measurement of outside air temperature, if the measurement result is lower than 23 ° C. energization end temperature T U goes to the next step (S16 in the same figure). If this measurement result is 23 ° C. or higher, the inside of the refrigerator compartment 4 is warmed by the outside air, so it is determined that it is not necessary to perform control by this dew condensation prevention operation, and the energization of the defrost heater 14 is stopped and the dew condensation prevention control is performed. The mode is canceled (S15 in the figure), and this control flow is ended.

さらに、圧縮機9の運転又は停止状態のチェックを行い、停止状態が継続している場合には、除霜ヒータ14を通電加熱した状態のままこのループ(同図のS11→S13→S14→S16→S17→S11→・・・)内で各判定を継続して行う。   Further, the operation or stop state of the compressor 9 is checked, and when the stop state continues, this loop (S11 → S13 → S14 → S16 in the figure) remains in a state where the defrost heater 14 is energized and heated. (→ S17 → S11 →...) Each determination is continued.

この制御フローにおいて行われる各判定の判定条件は適宜変更し得る。
例えば、冷蔵室4内に水分量の多い食品を保存すると、この冷蔵室4内の相対湿度が高くなり結露が発生しやすい。
その場合、通電開始温度T(上記では「20℃以下」)と通電終了温度T(上記では「23℃以上」)の一方あるいは両方を数℃程度高めに設定する。このようにすれば、結露防止制御モードが設定されやすく、又は、解除されにくくなるのとともに、除霜ヒータ14の通電加熱がされやすくなる。そのため、冷蔵庫内の結露が効果的に防止できる。
The determination conditions for each determination performed in this control flow can be changed as appropriate.
For example, when food with a large amount of water is stored in the refrigerator compartment 4, the relative humidity in the refrigerator compartment 4 becomes high and condensation tends to occur.
In this case, one or both of the energization start temperature T L (“20 ° C. or lower” above) and the energization end temperature T U (“23 ° C. or higher” above) are set higher by about several degrees C. In this way, the dew condensation prevention control mode is easily set or is not easily released, and the defrosting heater 14 is easily energized and heated. Therefore, condensation in the refrigerator can be effectively prevented.

また、除霜ヒータ14を通電加熱するまでの圧縮機9の停止時間(規定停止時間t)(上記では「25分」)を短めに設定することもできる。このようにすれば、外気温度判定条件を変更した場合と同様に、結露防止制御モードの設定及び除霜ヒータ14の通電加熱が速やかになされるので、上記結露が効果的に防止できる。 Further, the stop time (specified stop time t S ) (“25 minutes” in the above) of the compressor 9 until the defrost heater 14 is energized and heated can be set shorter. In this way, as in the case where the outside air temperature determination condition is changed, the setting of the dew condensation prevention control mode and the energization heating of the defrost heater 14 are performed quickly, so that the dew condensation can be effectively prevented.

上記実施例は、庫内が、隔壁5によって、冷凍室3と冷蔵室4の2室に区画されたものであったが、庫内が、冷凍室3と、冷蔵室4と冷却温度が近い野菜室やチルド室等とに区画されている冷蔵庫であれば、この発明を採用することができることは勿論である。   In the above embodiment, the inside of the refrigerator was partitioned into two chambers, the freezer compartment 3 and the refrigerator compartment 4, by the partition wall 5, but the inside of the refrigerator was close to the freezer compartment 3, the refrigerator compartment 4, and the cooling temperature. It goes without saying that the present invention can be adopted if the refrigerator is partitioned into a vegetable room, a chilled room, or the like.

この発明に係る冷蔵庫の外観正面図External view of the refrigerator according to the present invention この発明に係る冷蔵庫の正面断面図Front sectional view of the refrigerator according to the present invention この発明に係る冷蔵庫の図1におけるA−A断面図AA sectional view in FIG. 1 of the refrigerator according to the present invention. この発明に係る制御モードの制御パターンを示す図The figure which shows the control pattern of the control mode which concerns on this invention この発明に係る制御モードにおけるフローチャートを示す図The figure which shows the flowchart in the control mode which concerns on this invention 従来技術に係る冷蔵庫の結露防止装置を示す斜視図The perspective view which shows the dew condensation prevention apparatus of the refrigerator concerning a prior art

符号の説明Explanation of symbols

1 箱体
2 扉
3 冷凍室
4 冷蔵室
5 隔壁
5a 壁面
6 蒸発器
7 庫内ファン
8 庫内ファンモータ
9 圧縮機
10 凝縮器
11 凝縮器ファン
12 冷気流入路
13 冷気流出路
14 除霜ヒータ
15 蒸発器温度センサ
16 外気温度センタ
17 庫内温度センサ
18 湿度センサ
19 加温ヒータ
20 加温ヒータ制御スイッチ
T 庫内温度
設定温度
通電開始温度
通電終了温度
UP 除霜復帰温度
規定通電時間
規定停止時間
DESCRIPTION OF SYMBOLS 1 Box body 2 Door 3 Freezer compartment 4 Refrigerating compartment 5 Bulkhead 5a Wall surface 6 Evaporator 7 In-compartment fan 8 In-compartment fan motor 9 Compressor 10 Condenser 11 Condenser fan 12 Cold air inflow path 13 Cold air outflow path 14 Defrost heater 15 evaporator temperature sensor 16 outside air temperature center in 17-compartment temperature sensor 18 humidity sensor 19 heating heater 20 heating the heater control switch T box temperature T S the set temperature T L energization start temperature T U application end temperature T UP defrost recovery temperature t H specified energization time t S specified stop time

Claims (7)

庫内が、冷凍室(3)と冷蔵室(4)に隔壁(5)で区画され、その両室(3、4)が冷凍サイクルによって冷却され、その冷凍サイクルは庫内温度に基づき運転又は停止され、その冷凍サイクルの停止時に、除霜ヒータ(14)を通電加熱して冷凍サイクルの蒸発器の除霜を行う冷蔵庫の上記冷蔵室内の結露防止方法であって、
上記除霜ヒータ(14)への通電加熱による除霜を行わない冷凍サイクルの停止時において、外気温度が上記蒸発器(6)の除霜ヒータ(14)への通電開始温度(T)を下回った時に、上記除霜ヒータ(14)を通電加熱し、上記冷凍サイクルが運転を開始する温度まで上記庫内を昇温し、この冷凍サイクルの運転を促すようにしたことを特徴とする冷蔵庫の冷蔵室内の結露防止方法。
The inside of the refrigerator is divided into a freezer compartment (3) and a refrigerator compartment (4) by a partition wall (5), both chambers (3, 4) are cooled by a refrigeration cycle, and the refrigeration cycle is operated or operated based on the internal temperature. When the refrigeration cycle is stopped, the defrost heater (14) is energized and heated to defrost the evaporator of the refrigeration cycle.
When the refrigeration cycle in which defrosting is not performed by energization heating to the defrost heater (14) is stopped, the outside air temperature is set to the energization start temperature (T L ) to the defrost heater (14) of the evaporator (6). When the temperature falls below, the defrost heater (14) is energized and heated, and the inside of the refrigerator is heated to a temperature at which the refrigeration cycle starts to operate, thereby urging the operation of the refrigeration cycle. Condensation prevention method in refrigerated room.
上記除霜ヒータ(14)の通電加熱が、上記冷凍サイクルが予め決められた所定時間を超えて停止したままの状態となった時に初めて開始されるようにしたことを特徴とする請求項1に記載の冷蔵庫の冷蔵室内の結露防止方法。   The energization heating of the defrosting heater (14) is started for the first time when the refrigeration cycle has been stopped for a predetermined time. The method for preventing dew condensation in the refrigerator compartment of the refrigerator. 上記除霜ヒータ(14)の通電加熱が、上記外気温度が通電終了温度(T)を上回った時に終了するようにしたことを特徴とする請求項1又は2に記載の冷蔵庫の冷蔵室内の結露防止方法。 The energization heating of the defrost heater (14) is finished when the outside air temperature exceeds the energization end temperature (T U ). Condensation prevention method. 上記除霜ヒータ(14)の通電加熱を開始してからの経過時間を測定し、この経過時間が規定通電時間(t)に達した時にもこの通電加熱を終了するようにしたことを特徴とする請求項1又は2に記載の冷蔵庫の冷蔵室内の結露防止方法。 The elapsed time from the start of energization heating of the defrosting heater (14) is measured, and this energization heating is also terminated when this elapsed time reaches the specified energization time (t H ). The dew condensation prevention method in the refrigerator compartment of the refrigerator of Claim 1 or 2. 上記除霜ヒータ(14)の通電加熱を開始した後に、上記規定通電時間(t)に達する前に上記冷凍サイクルの運転が再開された時にこの通電加熱を終了するようにしたことを特徴とする請求項1又は2に記載の冷蔵庫の冷蔵室内の結露防止方法。 After starting the energization heating of the defrosting heater (14), the energization heating is terminated when the operation of the refrigeration cycle is resumed before reaching the specified energization time (t H ). The dew condensation prevention method in the refrigerator compartment of the refrigerator of Claim 1 or 2 to do. 上記除霜ヒータ(14)の通電加熱を開始した後に、上記外気温度が通電終了温度(T)を上回った時、通電加熱を開始してからの経過時間が規定通電時間(t)に達した時、上記規定通電時間(t)に達する前に上記冷凍サイクルの運転が再開された時、のいずれかの時にこの通電加熱を終了するようにしたことを特徴とする請求項1又は2に記載の冷蔵庫の冷蔵室内の結露防止方法。 After the energization heating of the defrost heater (14) is started, when the outside air temperature exceeds the energization end temperature (T U ), the elapsed time from the start of the energization heating becomes the specified energization time (t H ). 2. When the operation of the refrigeration cycle is restarted before reaching the specified energization time (t H ), the energization heating is terminated at any time. 3. A method of preventing dew condensation in the refrigerator compartment of the refrigerator according to 2. 請求項1から6のいずれかに記載の結露防止方法で冷蔵室内の結露防止運転の制御を行うようにしたことを特徴とする冷蔵庫。   A refrigerator characterized in that the condensation prevention operation in the refrigerator compartment is controlled by the condensation prevention method according to any one of claims 1 to 6.
JP2007182234A 2007-07-11 2007-07-11 Refrigerator and method for preventing dew condensation in refrigerator Pending JP2009019808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007182234A JP2009019808A (en) 2007-07-11 2007-07-11 Refrigerator and method for preventing dew condensation in refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007182234A JP2009019808A (en) 2007-07-11 2007-07-11 Refrigerator and method for preventing dew condensation in refrigerator

Publications (2)

Publication Number Publication Date
JP2009019808A true JP2009019808A (en) 2009-01-29
JP2009019808A5 JP2009019808A5 (en) 2010-08-19

Family

ID=40359604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007182234A Pending JP2009019808A (en) 2007-07-11 2007-07-11 Refrigerator and method for preventing dew condensation in refrigerator

Country Status (1)

Country Link
JP (1) JP2009019808A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286140A (en) * 2009-06-09 2010-12-24 Hoshizaki Electric Co Ltd Cooling storage
CN103033013A (en) * 2011-09-28 2013-04-10 日立空调·家用电器株式会社 Refrigerator and ice locker
WO2014079716A1 (en) * 2012-11-21 2014-05-30 BSH Bosch und Siemens Hausgeräte GmbH Refrigerator having a refrigeration compartment
CN105444490A (en) * 2015-12-16 2016-03-30 惠而浦(中国)股份有限公司 Energy-saving refrigerator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135442A (en) * 1976-05-06 1977-11-12 Daiwa Reiki Kougiyou Kk Cooling operation controlling device for refrigeration apparatus or others
JPH06229659A (en) * 1993-01-29 1994-08-19 Sanyo Electric Co Ltd Low temperature device
JPH0798170A (en) * 1993-09-30 1995-04-11 Sharp Corp Frrezer and refrigerator
JPH08210750A (en) * 1995-02-03 1996-08-20 Toshiba Corp Refrigerator
JPH08338679A (en) * 1995-06-14 1996-12-24 Toshiba Corp Refrigerator
JP2001091123A (en) * 1999-09-27 2001-04-06 Toshiba Corp Refrigerator
JP2003166776A (en) * 2001-11-30 2003-06-13 Mitsubishi Electric Corp Control device for refrigerator
JP2006071250A (en) * 2004-09-06 2006-03-16 Sharp Corp Refrigerator-freezer
JP2006105463A (en) * 2004-10-04 2006-04-20 Hoshizaki Electric Co Ltd Draining structure of cooling storage

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135442A (en) * 1976-05-06 1977-11-12 Daiwa Reiki Kougiyou Kk Cooling operation controlling device for refrigeration apparatus or others
JPH06229659A (en) * 1993-01-29 1994-08-19 Sanyo Electric Co Ltd Low temperature device
JPH0798170A (en) * 1993-09-30 1995-04-11 Sharp Corp Frrezer and refrigerator
JPH08210750A (en) * 1995-02-03 1996-08-20 Toshiba Corp Refrigerator
JPH08338679A (en) * 1995-06-14 1996-12-24 Toshiba Corp Refrigerator
JP2001091123A (en) * 1999-09-27 2001-04-06 Toshiba Corp Refrigerator
JP2003166776A (en) * 2001-11-30 2003-06-13 Mitsubishi Electric Corp Control device for refrigerator
JP2006071250A (en) * 2004-09-06 2006-03-16 Sharp Corp Refrigerator-freezer
JP2006105463A (en) * 2004-10-04 2006-04-20 Hoshizaki Electric Co Ltd Draining structure of cooling storage

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286140A (en) * 2009-06-09 2010-12-24 Hoshizaki Electric Co Ltd Cooling storage
CN103033013A (en) * 2011-09-28 2013-04-10 日立空调·家用电器株式会社 Refrigerator and ice locker
CN103033013B (en) * 2011-09-28 2015-04-01 日立空调·家用电器株式会社 Refrigerator and ice locker
WO2014079716A1 (en) * 2012-11-21 2014-05-30 BSH Bosch und Siemens Hausgeräte GmbH Refrigerator having a refrigeration compartment
GB2523686A (en) * 2012-11-21 2015-09-02 Bsh Hausgeraete Gmbh Refrigerator having a refrigeration compartment
CN105444490A (en) * 2015-12-16 2016-03-30 惠而浦(中国)股份有限公司 Energy-saving refrigerator

Similar Documents

Publication Publication Date Title
KR101100465B1 (en) Refrigerator
KR102241307B1 (en) Defrost device, refrigerator having the device and control method thereof
EP2520880B1 (en) Cooling box
TWI331203B (en)
US20140174100A1 (en) Refrigerator with no-frost freezer
JP2010002071A (en) Refrigerator
JP2008075964A (en) Defrosting device of cooling device
JP5854937B2 (en) refrigerator
JP2009036483A (en) Refrigerator and its defrosting method
JP2009019808A (en) Refrigerator and method for preventing dew condensation in refrigerator
JP2001147074A (en) Forced evaporation mechanism of defrost water
JP2002295958A (en) Drain treating device for cooling device
JP7059116B2 (en) Cool storage
JP4498261B2 (en) refrigerator
JP6270375B2 (en) refrigerator
JP5576668B2 (en) Cooling storage
JP6143458B2 (en) refrigerator
JP3874941B2 (en) refrigerator
JP2001263912A (en) Refrigerator
JP6837423B2 (en) refrigerator
JPH10205980A (en) Refrigerator
JP5931606B2 (en) refrigerator
JP5308241B2 (en) Cooling storage
JP5205218B2 (en) Cold storage
US20230266047A1 (en) Method for operating a domestic refrigerator, and domestic refrigerator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529