JP2013070078A - Reflection type sensor - Google Patents

Reflection type sensor Download PDF

Info

Publication number
JP2013070078A
JP2013070078A JP2012255406A JP2012255406A JP2013070078A JP 2013070078 A JP2013070078 A JP 2013070078A JP 2012255406 A JP2012255406 A JP 2012255406A JP 2012255406 A JP2012255406 A JP 2012255406A JP 2013070078 A JP2013070078 A JP 2013070078A
Authority
JP
Japan
Prior art keywords
light
light receiving
emitting element
light emitting
boundary surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012255406A
Other languages
Japanese (ja)
Inventor
Masahiko Igaki
正彦 井垣
Akio Atsuta
暁生 熱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012255406A priority Critical patent/JP2013070078A/en
Publication of JP2013070078A publication Critical patent/JP2013070078A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/941Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated using an optical detector
    • H03K2217/94102Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated using an optical detector characterised by the type of activation
    • H03K2217/94108Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated using an optical detector characterised by the type of activation making use of reflection

Abstract

PROBLEM TO BE SOLVED: To provide a reflection type sensor that can totally reflect divergent light from a light source at the boundary surface with the outside of a package without any light shielding means, thereby preventing the divergent light from entering a light receiving element.SOLUTION: A light beam L0 is a light beam group out of light beams emitted from a light emitting element 23, which is refracted and passes at a boundary surface 53, is reflected at a reflection scale 21 and is guided to a light receiving area S2, and this optical path is effective light to obtain a sensor signal. A light beam La is a light beam which is totally reflected at the boundary surface 53 and propagates in a package. This light beam La is noise light irrelevant to sensor signal light, and a light beam which should not be received. When the light beam La enters a light receiving area S2, S/N of the sensor signal is reduced. Furthermore, a light beam Lb passes through the boundary surface 53 and emits to the outside without reaching the reflection scale 21, and thus it does not substantially affect the precision or the like. The light receiving area S2 is determined on the basis of a light emission area S1 of the light emitting element 23 so that an unnecessary light beam La is not incident to the light receiving area S2 of a light receiving element 24.

Description

本発明は、発光素子から投光される光を測定対象物に投射し、反射光を受光素子で受光して、その光量変化によって測定対象物の変位を検知する反射型センサに関するものである。   The present invention relates to a reflective sensor that projects light projected from a light emitting element onto a measurement object, receives reflected light with a light receiving element, and detects displacement of the measurement object based on a change in the amount of light.

図23は従来の反射型エンコーダの斜視図、図24はそのXZ断面図、図25はX軸である変位検出軸と直交するYZ断面図を示している。LEDチップから成る発光素子1からの放射光線のうちの反射スケール2からの反射光線を、信号処理回路を内蔵したフォトICチップから成る受光素子3で受光する。発光素子1及び受光素子3の半導体素子はプリント基板4上にダイボンディングされ、更に透光性の樹脂5と透明ガラス基板6による透明部材で覆われている。これらの発光素子1、受光素子3、基板4、樹脂5、透明ガラス基板6により検出ヘッド7が構成されている。一方、反射スケール2は反射スケール基材8と反射層9と反射層10を含む反射層形成部11から成り、このような反射型エンコーダは例えば特許文献1に開示されている。   FIG. 23 is a perspective view of a conventional reflective encoder, FIG. 24 is an XZ sectional view thereof, and FIG. 25 is a YZ sectional view orthogonal to a displacement detection axis which is an X axis. Of the radiated light from the light emitting element 1 composed of LED chips, the reflected light from the reflection scale 2 is received by the light receiving element 3 composed of a photo IC chip incorporating a signal processing circuit. The semiconductor elements of the light emitting element 1 and the light receiving element 3 are die-bonded on the printed circuit board 4 and further covered with a transparent member made of a translucent resin 5 and a transparent glass substrate 6. The light emitting element 1, the light receiving element 3, the substrate 4, the resin 5, and the transparent glass substrate 6 constitute a detection head 7. On the other hand, the reflective scale 2 includes a reflective layer forming portion 11 including a reflective scale substrate 8, a reflective layer 9, and a reflective layer 10. Such a reflective encoder is disclosed in Patent Document 1, for example.

図26は特許文献2に開示された従来の他の反射型エンコーダの検出ヘッド部の斜視図、図27は断面図である。基板12上には、所定形状の回路パターン12aが形成され、回路パターン12aには、発光領域13aを有する発光素子13、受光領域14aを有し信号処理回路を内蔵した受光素子14がダイボンディングされている。そして、発光素子13、受光素子14の各端子はワイヤ15により接続されている。   26 is a perspective view of a detection head portion of another conventional reflective encoder disclosed in Patent Document 2, and FIG. 27 is a cross-sectional view. A circuit pattern 12a having a predetermined shape is formed on the substrate 12, and a light-emitting element 13 having a light-emitting area 13a and a light-receiving element 14 having a light-receiving area 14a and incorporating a signal processing circuit are die-bonded to the circuit pattern 12a. ing. The terminals of the light emitting element 13 and the light receiving element 14 are connected by a wire 15.

発光素子13、受光素子14、ワイヤ15は透明樹脂材で形成した包囲部材16、透明ガラス基板17によって覆われている。包囲部材16は図27に示すように、最低でも発光素子13、受光素子14の部品の高さ以上が必要で、更にワイヤ15のループ高さ、光半導体部品の基板12への接合代を考慮して、包囲部材16の厚みが決定されている。   The light emitting element 13, the light receiving element 14, and the wire 15 are covered with an enclosing member 16 and a transparent glass substrate 17 formed of a transparent resin material. As shown in FIG. 27, the surrounding member 16 needs to be at least as high as the height of the components of the light emitting element 13 and the light receiving element 14, and further considers the loop height of the wire 15 and the joining margin of the optical semiconductor component to the substrate 12. Thus, the thickness of the surrounding member 16 is determined.

図26、図27に示すように、発光素子13と受光素子14のほぼ中間位置には遮光壁18が形成され、この遮光壁18の直下には回路パターン12aが配置されている。図27に示すように、遮光壁18は幅Wのきり通しの溝に遮光性の樹脂を充填して形成され、遮光樹脂充填前の溝の深さは、包囲部材16と透明ガラス基板17の厚みよりも若干浅くされ、基板12上の回路パターン12aが保護されている。   As shown in FIGS. 26 and 27, a light shielding wall 18 is formed at a substantially intermediate position between the light emitting element 13 and the light receiving element 14, and a circuit pattern 12 a is disposed immediately below the light shielding wall 18. As shown in FIG. 27, the light shielding wall 18 is formed by filling a light-blocking resin into a groove having a width W, and the depth of the groove before filling the light-shielding resin is determined between the surrounding member 16 and the transparent glass substrate 17. The circuit pattern 12a on the substrate 12 is protected by being slightly shallower than the thickness.

この遮光壁18を設けることにより、発光素子13の発光領域13aから放射された光が、包囲部材16の内部を伝搬して受光素子14の受光領域14aに入射することが防止されている。   By providing the light shielding wall 18, light emitted from the light emitting region 13 a of the light emitting element 13 is prevented from propagating through the surrounding member 16 and entering the light receiving region 14 a of the light receiving element 14.

また、このような発光素子13、受光素子14間の遮光手段については、汎用的に用いられる反射型センサや反射型フォトインタラプタ等において、様々な方法が提案され、例えば特許文献3〜5に開示されている。   For such light-shielding means between the light-emitting element 13 and the light-receiving element 14, various methods have been proposed for reflection-type sensors, reflection-type photointerrupters, and the like that are used for general purposes. Has been.

特開2003−337052号公報JP 2003-337052 A 特開2004−6753号公報JP 2004-6753 A 特開2000−277796号公報JP 2000-277796 A 特許3782489号公報Japanese Patent No. 3782489 特許3261280号公報Japanese Patent No. 3261280

従来の反射型エンコーダや反射型センサにおける光半導体パッケージにおいては、次のような問題がある。例えば、図25において、角度θ1に含まれる光線は、発光素子1の発光領域から反射スケール2を介して受光素子3の受光領域に導かれる有効光線である。この場合に、発光素子1の最大強度を示す主光線軸a1からθ2の角度で大きく傾いていると、傾いた光線を中心とした角度範囲θ1の光線は、発光素子1が放出する全放射光線の内のごく僅かである。従って、殆どの光線は無効な成分となり、光の利用効率が極めて悪いという問題がある。   Conventional optical semiconductor packages in reflective encoders and sensors have the following problems. For example, in FIG. 25, the light beam included in the angle θ1 is an effective light beam that is guided from the light emitting region of the light emitting device 1 to the light receiving region of the light receiving device 3 via the reflection scale 2. In this case, when the light emitting element 1 is greatly inclined at an angle of θ2 from the principal ray axis a1 indicating the maximum intensity, the light ray in the angle range θ1 centered on the inclined light ray is the total radiation ray emitted by the light emitting element 1. Very few of them. Therefore, most of the light rays are ineffective components, and there is a problem that the light use efficiency is extremely poor.

この図25の一部を拡大して示す図28において、パッケージ内の発光素子1と受光素子3間の光線の作用に注目すると、発光素子1から出射し、透明ガラス基板6の表面部6aにおいて反射した光線Lで代表されるような光線パスが存在する。角度θ3が臨界角(=θi)を超えた場合には、光線Lは全反射して受光素子3に入射することになり、大きなバイアス成分の光となって、センサ信号に重畳してしまうという問題が発生する。   In FIG. 28 showing a part of FIG. 25 in an enlarged manner, when attention is paid to the action of light rays between the light-emitting element 1 and the light-receiving element 3 in the package, the light is emitted from the light-emitting element 1 and on the surface portion 6 a of the transparent glass substrate 6. There is a ray path as typified by the reflected ray L. When the angle θ3 exceeds the critical angle (= θi), the light beam L is totally reflected and enters the light receiving element 3, and becomes a large bias component light and is superimposed on the sensor signal. A problem occurs.

このような場合には、有効反射光線が僅かで、一方でバイアス成分の光線が大きいという関係から、センサ信号の実質的なS/Nは大きく低下する。有効光線を拡大するためには、レンズを用いて有効光線を得ることができるが、レンズを用いると、レンズの光軸と発光素子1、受光素子3の位置ずれによりセンサとしての特性がばらついてしまうことになる。   In such a case, the substantial S / N of the sensor signal is greatly reduced due to the fact that the effective reflected light is small and the bias component light is large. In order to expand the effective light beam, the effective light beam can be obtained by using a lens. However, when the lens is used, the characteristics of the sensor vary due to the positional deviation between the optical axis of the lens and the light emitting element 1 and the light receiving element 3. It will end up.

また、受光素子3の受光面積を拡大する手段が容易に考えられるが、同時に透明ガラス基板6の表面部6aからの全反射光も多く受光してしまうことになり、センサ信号として実質的なS/Nの改善効果は殆どない。また、検出ヘッド7全体が大きくなってしまい、更にコストアップにもつながり経済的な不利がある。   Although a means for enlarging the light receiving area of the light receiving element 3 can be considered easily, a large amount of totally reflected light from the surface portion 6a of the transparent glass substrate 6 is received at the same time, and a substantial S as a sensor signal is received. There is almost no improvement effect of / N. Further, the entire detection head 7 becomes large, which further increases costs and has an economical disadvantage.

受光素子3に届く僅かな光量を補うために、発光素子1の発光量を増大させることも容易に考えられるが、この場合には消費電力の増大と発光素子1に過剰な電流を流すことになり、発光素子1の寿命が短くなるという問題が生ずる。更に、信号処理回路内で信号増幅する手段も考えられるが、この方法も電気ノイズ成分が増大してしまい、実質的に有効な手段とならず、位置検出精度に影響を与え、好ましくない。   In order to compensate for the slight amount of light reaching the light receiving element 3, it is easy to increase the light emission amount of the light emitting element 1. In this case, however, the power consumption increases and an excessive current flows to the light emitting element 1. Thus, there arises a problem that the life of the light emitting element 1 is shortened. Furthermore, a means for amplifying the signal in the signal processing circuit is also conceivable. However, this method also increases the electric noise component, which is not a practically effective means and affects the position detection accuracy, which is not preferable.

上述のレンズの採用、受光面積の拡大、発光素子1の光量アップ、そして受光素子3上の信号回路部での信号増幅率の向上等の何れの手段も、大幅な特性改善には至らないか、或いは特性のばらつきが大きくなる。   Does any of the above measures such as adoption of the lens, enlargement of the light receiving area, increase of the light quantity of the light emitting element 1, and improvement of the signal amplification factor in the signal circuit section on the light receiving element 3 lead to significant improvement in characteristics? Or, variation in characteristics becomes large.

次に、図26、図27の遮光手段を用いる方法は、上述した従来技術における課題の1つであったバイアス成分の光を防止したもので、その改善効果は大きい。しかし、これらの遮光手段を用いた場合において、図29のグラフ図に示すようにアナログ出力の反射型センサの出力電圧Vは、反射型センサと被測定対象となる反射試料との距離Gに対応して、変化する。   Next, the method using the light shielding means of FIGS. 26 and 27 prevents the light of the bias component, which is one of the problems in the above-described prior art, and has a great improvement effect. However, when these light shielding means are used, as shown in the graph of FIG. 29, the output voltage V of the analog output reflection type sensor corresponds to the distance G between the reflection type sensor and the reflection sample to be measured. Change.

即ち、個々の反射型センサは、発光素子13、受光素子14の実装位置及びこれらの中間に配設される遮光壁18の位置ばらつき、或いは受光感度のばらつきによって、図27に示す反射試料までの距離dに対する出力電圧Vは等しくならない。つまり、固体差により得られる出力電圧は、図29の縦軸に示すようにv1、v2、v3のようなばらついた値となる。   That is, the individual reflection type sensors have different positions up to the reflection sample shown in FIG. 27 depending on the mounting position of the light emitting element 13 and the light receiving element 14 and the variation in the position of the light shielding wall 18 disposed between them or the variation in the light receiving sensitivity. The output voltage V with respect to the distance d is not equal. That is, the output voltage obtained by the individual difference is a variable value such as v1, v2, and v3 as shown by the vertical axis in FIG.

また、距離G1以下の領域で使用した場合には、反射型センサと反射試料との距離感度が高くなるために、このような近接距離領域での使用は実用上避けなければならず、その分だけ余分な空間領域を必要とすることになる。   In addition, when used in an area of distance G1 or less, the distance sensitivity between the reflective sensor and the reflective sample is increased, so use in such a close distance area must be avoided in practice. Only an extra space area will be required.

更に、発光素子13と受光素子14の中間位置に遮光手段としての遮光体を配設することになるので、発光素子13と受光素子14の間隔を必然的に広げなければならず、素子の実装面積が増大し、反射型センサの小型化の妨げとなる。また、遮光手段を用いることでのコストアップも避けられない。   Furthermore, since a light-shielding body as a light-shielding means is disposed at an intermediate position between the light-emitting element 13 and the light-receiving element 14, the interval between the light-emitting element 13 and the light-receiving element 14 must be increased, and the mounting of the element The area increases and hinders downsizing of the reflective sensor. In addition, an increase in cost due to the use of the light shielding means is inevitable.

本発明の目的は、上述の課題を解消し、遮光手段を使用せずに光源からの発散光がパッケージの外界との境界面で全反射して、受光素子に入射することを防止する反射型センサを提供することにある。   The object of the present invention is to solve the above-mentioned problems, and to prevent the diverging light from the light source from being totally reflected at the boundary surface with the outside of the package without using the light shielding means and to be incident on the light receiving element. It is to provide a sensor.

本発明の他の目的は、被測定対象からの有効反射光線の光強度を増加することで、センサ信号としてのS/Nの向上を図る反射型センサを提供することにある。   Another object of the present invention is to provide a reflective sensor that improves the S / N as a sensor signal by increasing the light intensity of an effective reflected light beam from the object to be measured.

本発明の更に他の目的は、被測定物との近接距離領域での信号特性を改善し、特性のばらつきが少ない安定した品質と信頼性を確保する反射型センサを提供することにある。   Still another object of the present invention is to provide a reflective sensor that improves signal characteristics in a close distance region with a device under test and ensures stable quality and reliability with little variation in characteristics.

上記目的を達成するための本発明に係る反射型センサの技術的特徴は、基板上に配設した発光素子と受光素子とを透明部材で覆った反射型センサであって、前記発光素子から出射した光線のうち、前記透明部材の外界との境界面で全反射して前記透明部材内に戻る光線よりも前記発光素子寄りに前記受光素子による受光領域を設けたことにある。   In order to achieve the above object, the technical feature of the reflective sensor according to the present invention is a reflective sensor in which a light emitting element and a light receiving element disposed on a substrate are covered with a transparent member, and is emitted from the light emitting element. Among the light rays, a light receiving region by the light receiving element is provided closer to the light emitting element than a light ray that is totally reflected at the boundary surface with the outside of the transparent member and returns into the transparent member.

また、本発明に係る反射型センサの技術的特徴は、基板上に発光素子と受光素子を並置して透明部材で覆った反射型センサであって、前記基板に平行な外界との境界面を有する前記透明部材の屈折率をNi、外界の媒質の屈折率をNo、前記発光素子の発光領域から前記境界面までの距離をD1、前記受光素子の受光領域から前記境界面までの距離をD2としたとき、
R=D1/tan{sin−1(No/Ni)}+D2/tan{sin−1(No/Ni)}上記式で決定する半径Rの前記発光領域を中心とする円の内側に、前記受光領域を配置したことにある。
The technical feature of the reflective sensor according to the present invention is a reflective sensor in which a light-emitting element and a light-receiving element are juxtaposed on a substrate and covered with a transparent member, and a boundary surface between the substrate and the outside world is defined. The transparent member has a refractive index Ni, an external medium refractive index No, a distance from the light emitting region of the light emitting element to the boundary surface D1, and a distance from the light receiving region of the light receiving element to the boundary surface D2. When
R = D1 / tan {sin −1 (No / Ni)} + D2 / tan {sin −1 (No / Ni)} The light reception is located inside a circle centered on the light emitting region of radius R determined by the above formula. The area is arranged.

本発明に係る反射型センサによれば、次に列挙するような効果が得られる。
(1)発光素子と受光素子の間の遮光部材が不要となるので、発光素子と受光素子を近接して実装することが可能で、実装面積が削減され小型化され、遮光手段に起因していた特性のばらつきがなくなる。
(2)遮光機能形成工程が減少され、更にパッケージが小型化になることで生産効率が大幅に向上し、製造コストが削減でき、品質及び信頼性が大幅に向上する。
(3)発光素子と受光素子を近接して実装することにより、発光素子からの光線の内、光軸近傍の発光光線を受光することができるので、センサ信号のS/Nが向上する。また、光の利用効率が向上し、発光素子の駆動電流が少なくなり、低消費電力に効果がある。
(4)遮光手段を用いていた従来方式に比べて、ギャップ特性が大幅に向上し、被測定対象物に近接した状態でも有効なセンサ信号が得られる。
According to the reflective sensor of the present invention, the following effects can be obtained.
(1) Since a light-shielding member between the light-emitting element and the light-receiving element is not required, the light-emitting element and the light-receiving element can be mounted close to each other, the mounting area is reduced, the size is reduced, and the light-shielding means is used. Variations in characteristics are eliminated.
(2) Since the number of steps for forming the light shielding function is reduced and the package is further downsized, the production efficiency is greatly improved, the manufacturing cost can be reduced, and the quality and reliability are greatly improved.
(3) By mounting the light emitting element and the light receiving element close to each other, it is possible to receive the emitted light beam in the vicinity of the optical axis among the light beams from the light emitting element, so that the S / N of the sensor signal is improved. In addition, the light use efficiency is improved, the driving current of the light emitting element is reduced, and low power consumption is effective.
(4) Compared with the conventional method using the light shielding means, the gap characteristics are greatly improved, and an effective sensor signal can be obtained even in the state of being close to the object to be measured.

実施例1の反射型エンコーダの概略構成図である。1 is a schematic configuration diagram of a reflective encoder according to Embodiment 1. FIG. 反射スケールの接合前の断面図である。It is sectional drawing before joining of a reflective scale. 反射スケールの断面図である。It is sectional drawing of a reflection scale. 検出ヘッドの主要部品の平面図である。It is a top view of the main components of a detection head. 電流狭窄型発光素子の説明図である。It is explanatory drawing of a current confinement type light emitting element. 反射型エンコーダの信号処理回路図である。It is a signal processing circuit diagram of a reflective encoder. 光線光路の説明図である。It is explanatory drawing of a light beam path. 光線からの距離に対するPL断面での照度分布図と照度グラフ図である。It is the illumination intensity distribution figure in PL section with respect to the distance from a light ray, and an illumination intensity graph figure. シミュレーションモデルの断面図である。It is sectional drawing of a simulation model. 照度分布図である。It is an illuminance distribution diagram. 反射型エンコーダのギャップの違いによる光路の説明図である。It is explanatory drawing of the optical path by the difference in the gap of a reflective encoder. 発光素子のギャップをパラメータとした場合の照度のグラフ図である。It is a graph of the illumination intensity when the gap of a light emitting element is used as a parameter. 内部反射光と有効光の関係のグラフ図である。It is a graph of the relationship between internally reflected light and effective light. 実施例の反射型エンコーダのギャップ特性と従来方式のギャップ特性を比較したグラフ図である。It is the graph which compared the gap characteristic of the reflective encoder of an Example, and the gap characteristic of a conventional system. 実施例2のシュミレーションモデルの断面図である。It is sectional drawing of the simulation model of Example 2. FIG. 照度分布図である。It is an illuminance distribution diagram. 実施例3のシュミレーションモデルの断面図である。6 is a cross-sectional view of a simulation model of Example 3. FIG. 光路の説明図である。It is explanatory drawing of an optical path. 照度分布図である。It is an illuminance distribution diagram. 実施例4のシュミレーションモデルの断面図である。6 is a cross-sectional view of a simulation model of Example 4. FIG. 照度分布図である。It is an illuminance distribution diagram. 実施例5の照度分布図である。FIG. 10 is an illuminance distribution diagram of Example 5. 従来の反射型エンコーダの斜視図である。It is a perspective view of the conventional reflective encoder. そのXZ断面図である。It is the XZ sectional view. そのYZ断面図である。It is the YZ sectional view. 別の従来の反射型エンコーダの斜視図である。It is a perspective view of another conventional reflective encoder. その断面図である。FIG. 図25の一部を拡大した断面図である。It is sectional drawing to which a part of FIG. 25 was expanded. 別の従来の反射型エンコーダのギャップに対する出力電圧のグラフ図である。It is a graph of the output voltage with respect to the gap of another conventional reflective encoder.

本発明を図1〜図22に図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiment shown in FIGS.

図1は実施例の概略構成図であり、等間隔の格子が形成された反射スケール21は、移動する被測定対象物に固定され、格子配列方向であるX軸方向に移動可能であり、この反射スケール21に対向して、検出ヘッド22が配置されている。   FIG. 1 is a schematic configuration diagram of the embodiment. A reflection scale 21 on which a lattice with equal intervals is formed is fixed to a moving object to be measured and is movable in the X-axis direction that is a lattice arrangement direction. A detection head 22 is arranged facing the reflection scale 21.

検出ヘッド22は、LEDチップから成る発光素子23、受光部分としてフォトダイオードアレイを有する受光素子24、信号処理回路部25を内蔵したフォトICチップ26から成る半導体素子、及びそれらを実装した基板27等により構成されている。   The detection head 22 includes a light emitting element 23 composed of an LED chip, a light receiving element 24 having a photodiode array as a light receiving portion, a semiconductor element composed of a photo IC chip 26 incorporating a signal processing circuit unit 25, a substrate 27 on which these are mounted, and the like. It is comprised by.

反射スケール21は図2に示すように、パターン形成シート31と反射層形成部シート32から構成されている。パターン形成シート31は例えば工業用写真製版フィルム用の透明なPETフィルムであって、0.1〜0.2mm程度の厚みを有し、工業用写真製版フィルムの乳剤層により露光・現像工程を経て必要なパターンが形成されている。パターン形成シート31の基材部31a上には、光吸収部分の非反射部31bと光線透過部31cから成るパターンが交互に設けられている。   As shown in FIG. 2, the reflective scale 21 includes a pattern forming sheet 31 and a reflective layer forming portion sheet 32. The pattern forming sheet 31 is, for example, a transparent PET film for industrial photoengraving film, has a thickness of about 0.1 to 0.2 mm, and is subjected to an exposure / development process by the emulsion layer of the industrial photoengraving film. Necessary patterns are formed. On the base material portion 31a of the pattern forming sheet 31, a pattern composed of the non-reflecting portion 31b and the light transmitting portion 31c of the light absorbing portion is alternately provided.

一方、反射層形成シート32では、基材であるPETフィルムから成る反射層32aの下面に、蒸着膜から成る反射層32bが形成されている。反射スケール21はこれらのパターン形成シート31と反射層形成シート32とを、図3に示すように透明な接着剤から成る接着層33により接合した構造とされている。   On the other hand, in the reflection layer forming sheet 32, a reflection layer 32b made of a vapor deposition film is formed on the lower surface of the reflection layer 32a made of a PET film as a base material. The reflective scale 21 has a structure in which the pattern forming sheet 31 and the reflective layer forming sheet 32 are joined together by an adhesive layer 33 made of a transparent adhesive as shown in FIG.

図4は検出ヘッド22の主要部品である発光素子23と受光素子24の平面図である。発光素子23は電流狭窄構造を有している点発光LEDであり、有効発光領域S1はφ80μm程度の円形発光窓を有し、発光波長は650nmの赤色LEDである。   FIG. 4 is a plan view of the light emitting element 23 and the light receiving element 24 which are main components of the detection head 22. The light emitting element 23 is a point light emitting LED having a current confinement structure, the effective light emitting region S1 is a red LED having a circular light emitting window of about φ80 μm and an emission wavelength of 650 nm.

発光素子23からの光が直接受光素子24の受光領域に入射することを防止する1つの対策として、発光素子23としてエピタキシャル成長により形成した通常のLEDチップを使用せずに、電流狭窄型のLEDチップを使用している。図5に示すように、(a)に示す通常のLEDチップTと、(b)に示す電流狭窄型の発光素子23とでは出射する光の強度分布が全く異なり、通常のLEDチップTでは、横方向に出射する光の量が多く、受光領域に直接光が入射する可能性が高い。これに対して、電流狭窄型の発光素子23では、光線を前方の一方向に集中して出射し、受光領域に直接光が入射する可能性は低い。   As one countermeasure for preventing light from the light emitting element 23 from directly entering the light receiving region of the light receiving element 24, a current confining type LED chip is used without using a normal LED chip formed by epitaxial growth as the light emitting element 23. Is used. As shown in FIG. 5, the intensity distribution of the emitted light is completely different between the normal LED chip T shown in (a) and the current confinement type light emitting element 23 shown in (b). In the normal LED chip T, The amount of light emitted in the lateral direction is large, and there is a high possibility that the light is directly incident on the light receiving region. On the other hand, in the current confinement type light emitting element 23, it is unlikely that the light is concentrated and emitted in one forward direction and the light is directly incident on the light receiving region.

図4に示すように、発光素子23の近傍にはフォトICチップ26が配置されている。フォトICチップ26は発光素子23に近い側に配設された受光素子24による受光領域S2と信号処理回路部25から成る。受光領域S2には水平方向に、受光素子24として16個のフォトダイオード24a、24b、24c、24d、・・・・、24m、24n、24o、24pが等間隔に配列されている。   As shown in FIG. 4, a photo IC chip 26 is disposed in the vicinity of the light emitting element 23. The photo IC chip 26 includes a light receiving region S2 formed by a light receiving element 24 disposed on the side close to the light emitting element 23 and a signal processing circuit unit 25. In the light receiving region S2, 16 photodiodes 24a, 24b, 24c, 24d,..., 24m, 24n, 24o, 24p are arranged at equal intervals as the light receiving element 24 in the horizontal direction.

フォトダイオード24a、24e、24i、24mは電気的に接続されていて、この組をa相、フォトダイオード24b、24f、24j、24nの組をb相、以下同様にc相、d相としている。   The photodiodes 24a, 24e, 24i, and 24m are electrically connected, and this set is referred to as a phase, the set of photodiodes 24b, 24f, 24j, and 24n is referred to as b phase, and so on.

a相、b相、c相、d相の各フォトダイオード群は光を受けると、その光量に応じた光電流を出力する。反射スケール21の移動と共にa相〜d相のフォトダイオード群はa相を基準に、b相は90度、c相は180度、d相は270度の位相関係で変動する電流が出力される。   When each of the a-phase, b-phase, c-phase, and d-phase photodiode groups receives light, it outputs a photocurrent corresponding to the amount of light. As the reflection scale 21 moves, the a-phase to d-phase photodiode group outputs a current that varies with a phase relationship of 90 degrees for the b-phase, 180 degrees for the c-phase, and 270 degrees for the d-phase. .

フォトICチップ26上の信号処理回路部25では、この出力電流を電流電圧変換器で電圧値に変換した後に、差動増幅器によりそれぞれa相とc相の差動成分、及びb相とd相の差動成分を求め、90°位相のずれたA、B相変位出力信号を出力する。   In the signal processing circuit unit 25 on the photo IC chip 26, the output current is converted into a voltage value by a current-voltage converter, and thereafter, differential components of a phase and c phase and b phase and d phase are respectively obtained by a differential amplifier. Are obtained, and A and B phase displacement output signals having a 90 ° phase shift are output.

図6はその信号処理回路部25を示し、発光素子23の発光回路41、アナログ信号処理部42により構成されている。アナログ信号処理部42からのA、B相のアナログ信号を基に、反射スケール21の移動量を算出して測定対象物の位置を求める位置演算部43が設けられている。   FIG. 6 shows the signal processing circuit unit 25, which includes a light emitting circuit 41 of the light emitting element 23 and an analog signal processing unit 42. Based on the A and B phase analog signals from the analog signal processing unit 42, a position calculation unit 43 is provided that calculates the amount of movement of the reflection scale 21 to obtain the position of the measurement object.

初段増幅器44、45、46、47は、a相、b相、c相、d相の各フォトダイオード群で発生したフォト電流を電流電圧変換するためのI/V増幅器であり、Vf1の電位を基準として、V1、V2、V3、V4の電位を発生する。   The first stage amplifiers 44, 45, 46 and 47 are I / V amplifiers for current-voltage conversion of photocurrents generated in the photodiode groups of the a-phase, b-phase, c-phase and d-phase, and the potential of Vf1 is changed. As a reference, potentials V1, V2, V3, and V4 are generated.

a相とc相のフォトダイオード群から、出力V1とV3の差動を求める差動出力増幅器48により、Vf2をバイアス電位としたA相信号を得る。同様に、b相とd相のフォトダイオード群から出力V2とV4を差動出力増幅器49により差動増幅してB相信号を得ている。   From the a-phase and c-phase photodiode groups, an A-phase signal with Vf2 as a bias potential is obtained by a differential output amplifier 48 that obtains the difference between the outputs V1 and V3. Similarly, the outputs V2 and V4 are differentially amplified by the differential output amplifier 49 from the b-phase and d-phase photodiode groups to obtain a B-phase signal.

アナログ信号処理部42からの出力信号VA、VBは、交流成分Va、Vbにそれぞれ直流成分Vf2を重畳し、位置演算部43に出力する。位置演算部43はA相(VA=Va+Vf2)又はB相(VB=Vb+Vf2)の出力信号から、信号のピークを計数して、反射スケール21からの反射回折光により受光領域S2上に形成された干渉縞の通過した本数を得る。干渉縞のピッチに計数した本数を乗ずれば、反射スケール21の移動量が算出される。   The output signals VA and VB from the analog signal processing unit 42 are superimposed on the AC components Va and Vb, respectively, and output to the position calculation unit 43. The position calculation unit 43 counts the signal peak from the output signal of the A phase (VA = Va + Vf2) or B phase (VB = Vb + Vf2), and is formed on the light receiving region S2 by the reflected diffracted light from the reflection scale 21. Get the number of interference fringes. By multiplying the pitch of the interference fringes by the counted number, the amount of movement of the reflection scale 21 is calculated.

更に、A相及びB相の出力信号の交流成分に基づいて、A相とB相間の位相角を算出することによって、干渉縞ピッチ以下の移動量の算出ができる。   Furthermore, by calculating the phase angle between the A phase and the B phase based on the AC component of the output signals of the A phase and the B phase, it is possible to calculate the amount of movement below the interference fringe pitch.

図7は図1に示すS平面でカットした状態における光線の光路の説明図である。検出ヘッド22は発光素子23、受光素子24の他に、基板27と発光素子23と受光素子24を覆うように封止した透光性の封止樹脂51と、この封止樹脂51上に配設された透明ガラス52から成っている。封止樹脂51と透明ガラス52は、屈折率がほぼ同じ値であるので、光学的には実質的に一体的な部材と見倣すことができ、これらの間の境界線は無視できる。   FIG. 7 is an explanatory diagram of an optical path of a light beam in a state cut by the S plane shown in FIG. In addition to the light emitting element 23 and the light receiving element 24, the detection head 22 is disposed on the substrate 27, a light-transmitting sealing resin 51 sealed so as to cover the light emitting element 23 and the light receiving element 24, and the sealing resin 51. The transparent glass 52 is provided. Since the sealing resin 51 and the transparent glass 52 have substantially the same refractive index, they can be regarded as optically substantially integrated members, and the boundary line between them can be ignored.

発光素子23からの発散光線により平板状の反射スケール21は照射され、反射スケール21からの反射回折光により、フォトICチップ26の受光領域S2上に干渉縞が形成される。   The flat reflective scale 21 is irradiated with the divergent light from the light emitting element 23, and the interference fringes are formed on the light receiving region S 2 of the photo IC chip 26 by the reflected diffracted light from the reflective scale 21.

図7に示すように、検出ヘッド22と反射スケール21はギャップGを隔てて配置されている。反射スケール21のピッチをPsとすると、ピッチPsの2倍の周期(Pf=2×Ps)の干渉縞が受光領域S2上に形成される。反射スケール21の移動に伴う干渉縞の移動を、先に説明した信号処理回路部25により変位信号としてA相、B相のアナログ信号を得る。   As shown in FIG. 7, the detection head 22 and the reflection scale 21 are arranged with a gap G therebetween. Assuming that the pitch of the reflection scale 21 is Ps, interference fringes having a period (Pf = 2 × Ps) twice the pitch Ps are formed on the light receiving region S2. The movement of the interference fringes accompanying the movement of the reflection scale 21 is obtained as A-phase and B-phase analog signals as displacement signals by the signal processing circuit unit 25 described above.

図7は発光素子23から放射される光線のうち、本実施例に関係する代表的な光線L0、La、Lbを示している。光線L0は発光素子23から出射した光線のうち、境界面53で屈折して透過し反射スケール21で反射し、最後に受光領域S2に導かれる光線群を示していて、この光路がセンサ信号を得るための有効光となる。   FIG. 7 shows representative light rays L0, La, and Lb related to the present embodiment among the light rays emitted from the light emitting element 23. FIG. The light beam L0 indicates a group of light beams that are refracted and transmitted by the boundary surface 53 and reflected by the reflection scale 21 among the light beams emitted from the light emitting element 23, and finally guided to the light receiving region S2. It becomes effective light to obtain.

一方、光線Laは発光素子23から出射して境界面53で全反射してパッケージ内を伝搬する光線を示している。この光線Laは先に示した光線L0のセンサ信号に対応する有効光に対して、センサ信号光とは無関係なノイズ光であり、受光すべきでない光線であり、この光線Laが受光領域S2に入射すると、センサ信号のS/Nが低下してしまうことになる。また、光線Lbは境界面53を通過し反射スケール21に至ることなく、外方に出射してしまうので、測定精度等に対する影響は殆どない。   On the other hand, a light beam La is a light beam that is emitted from the light emitting element 23 and totally reflected by the boundary surface 53 and propagates in the package. The light beam La is noise light that is not related to the sensor signal light and is not to be received with respect to the effective light corresponding to the sensor signal of the light beam L0 described above. When incident, the S / N of the sensor signal will decrease. In addition, the light beam Lb is emitted outward without passing through the boundary surface 53 and reaching the reflection scale 21, so that there is almost no influence on the measurement accuracy and the like.

本実施例では、不要な光線Laが受光素子24に入射しないように、発光素子23の発光領域S1を基準位置にして、受光素子24の受光領域S2の位置を決定している。   In this embodiment, the position of the light receiving region S2 of the light receiving element 24 is determined using the light emitting region S1 of the light emitting element 23 as a reference position so that unnecessary light beam La does not enter the light receiving element 24.

図8は受光領域S2を含む広い平面を図7に示すPL断面において、境界面53からの反射光線の照度分布をシミュレーションした結果を示している。このシミュレーションでは、反射スケール21からの有効光線成分が、観察平面(PL断面)に重畳しないように、反射スケール21を取り除いている。   FIG. 8 shows the result of simulating the illuminance distribution of the reflected light from the boundary surface 53 on the PL cross section shown in FIG. 7 on a wide plane including the light receiving region S2. In this simulation, the reflection scale 21 is removed so that the effective light component from the reflection scale 21 does not overlap the observation plane (PL cross section).

図8(a)において、照度分布中央の白抜きの四角で示した位置に発光領域S1が位置し、その左側の受光領域S2に対応する位置が点線で示されている。この照度分布図において、白色部である輪帯状の明部は境界面53からの反射光線により照度の高い部分を示し、黒色部である暗部は照度が低いことを示している。特に、高い照度を示す領域が、発光素子23の発光領域S1を中心として輪帯状に分布している。   In FIG. 8A, the light emitting area S1 is located at the position indicated by the white square in the center of the illuminance distribution, and the position corresponding to the left light receiving area S2 is indicated by a dotted line. In this illuminance distribution diagram, a ring-shaped bright portion which is a white portion indicates a portion where the illuminance is high due to a reflected light from the boundary surface 53, and a dark portion which is a black portion indicates that the illuminance is low. In particular, a region exhibiting high illuminance is distributed in a ring shape around the light emitting region S1 of the light emitting element 23.

図8(b)は発光素子23及び受光素子24のそれぞれの中心を含むXZでの照度プロファイルを示している。この照度プロファイルから発光領域S1を基準とした半径Riの内側領域においては低照度領域が存在し、この領域に受光領域S2を配置することにより、遮光手段を用いることなく、不要な光線の影響を受けないセンサ信号を得ることが可能となる。このように、従来のような遮光手段を用いずに、上記の低照度領域に受光領域S2を設置して、被測定対象物からの有効反射光線を高いS/Nで得ることができる。   FIG. 8B shows an illuminance profile in XZ including the centers of the light emitting element 23 and the light receiving element 24. From this illuminance profile, there is a low illuminance area in the inner area of the radius Ri with the light emitting area S1 as a reference. By arranging the light receiving area S2 in this area, the influence of unnecessary light rays can be avoided without using a light shielding means. It is possible to obtain a sensor signal that is not received. Thus, without using a conventional light shielding means, the light receiving region S2 can be installed in the low illuminance region, and an effective reflected light beam from the object to be measured can be obtained with a high S / N.

なお、図8(b)において、境界面53での高強度の全反射光が形成する輪帯領域を避け、その内側(<Ri)だけでなく、高強度の反射光による高照度領域の外側(>Ro)に受光領域S2を配置することも可能である。   In FIG. 8B, avoid the annular zone formed by the high-intensity total reflection light at the boundary surface 53, and not only inside (<Ri) but also outside the high-illuminance region by the high-intensity reflection light. It is also possible to arrange the light receiving region S2 at (> Ro).

受光領域S2の配置条件をパッケージ主要寸法から数式化する。図7における封止樹脂51の屈折率をNi、パッケージ外界の屈折率をNo、発光領域S1から境界面53までの距離をD1、受光領域S2から境界面53までの距離をD2、全反射領域の半径をRmaxとする。半径Rmaxは式(1)のように、境界面53において臨界角を超えて反射する全反射光線が、照射する位置を発光領域S1の基準とした半径位置で決定される。
Rmax=D1/tan{sin−1(No/Ni)}+D2tan{sin−1(No/Ni)}・・・(1)
この半径Rmaxで、照度は最大値を示すので,受光領域S2の配置条件としてはその照度ピーク位置よりも内側の位置をとる。反射光の強度レベルが全反射光強度の15%前後を閾値として配置可能は領域を決定すると、受光領域S2の配置可能な円領域の半径Riは式(2)となる。
Ri≒Rmax×0.85 ・・・(2)
一方、有効光線L0に注視すると、この有効光線L0は図7に対する角度θ0で最大強度を示す主光線から傾いているので、その分だけ有効な反射光線強度は低い値となる。反射スケール21からの有効光としてより強度を得ようとすれば、発光素子23の主光線軸により近い光線を使うことが有利である。そのためには、受光領域S2を発光領域S1に近接させることによって、角度θ0の値を小さくすることができるので、センサ信号のS/Nの向上につながる。
The arrangement condition of the light receiving region S2 is expressed by the package main dimensions. In FIG. 7, the refractive index of the sealing resin 51 is Ni, the refractive index of the package external environment is No, the distance from the light emitting region S1 to the boundary surface 53 is D1, the distance from the light receiving region S2 to the boundary surface 53 is D2, and the total reflection region Let Rmax be the radius. The radius Rmax is determined by the radial position with the position where the total reflected light beam reflected at the boundary surface 53 exceeding the critical angle is irradiated as the reference of the light emitting region S1, as shown in the equation (1).
Rmax = D1 / tan {sin -1 (No / Ni)} + D2tan {sin -1 (No / Ni)} ··· (1)
Since the illuminance shows the maximum value at the radius Rmax, the arrangement condition of the light receiving region S2 is a position inside the illuminance peak position. If the area where the intensity level of the reflected light can be arranged with a threshold value of about 15% of the total reflected light intensity is determined, the radius Ri of the circular area where the light receiving area S2 can be arranged is expressed by Expression (2).
Ri≈Rmax × 0.85 (2)
On the other hand, when paying attention to the effective ray L0, the effective ray L0 is inclined from the principal ray having the maximum intensity at an angle θ0 with respect to FIG. In order to obtain more intensity as effective light from the reflection scale 21, it is advantageous to use light rays closer to the principal ray axis of the light emitting element 23. For this purpose, the value of the angle θ0 can be reduced by bringing the light receiving region S2 close to the light emitting region S1, leading to an improvement in the S / N of the sensor signal.

このように、本実施例において適用した手段は、上記の理由から発光領域S1と受光領域S2を極力近接して配置し、かつ高照度領域を示す輪帯領域を避けて半径Riに収まるように、次のような条件を定めている。(a)発光素子23、受光素子24に対する境界面53の高さD1、D2、(b)受光素子24の実装位置、(c)受光素子24上における受光領域S2の配置、(d)受光領域S2の形状、受光面積、及び(e)境界面53の材質の屈折率を適宜に決定する。   As described above, the means applied in the present embodiment is arranged so that the light emitting region S1 and the light receiving region S2 are arranged as close as possible for the above reasons, and within the radius Ri while avoiding the annular region indicating the high illuminance region. The following conditions are established. (A) Height D1 and D2 of the boundary surface 53 with respect to the light emitting element 23 and the light receiving element 24, (b) mounting position of the light receiving element 24, (c) arrangement of the light receiving region S2 on the light receiving element 24, (d) light receiving region The shape of S2, the light receiving area, and (e) the refractive index of the material of the boundary surface 53 are appropriately determined.

なお、本実施例での具体的な数値例としては、D1=D2=0.70mm、Ni=1.54(エポキシ樹脂)、No=1.00(空気)であり、これらの値からRi≒1.05mmとなる。また、受光領域S2の形状は矩形形状0.5×1.0mm、発光素子23と受光素子24のチップ間隔は0.2mmである。   As specific numerical examples in this embodiment, D1 = D2 = 0.70 mm, Ni = 1.54 (epoxy resin), No = 1.00 (air), and Ri≈ 1.05 mm. The light receiving region S2 has a rectangular shape of 0.5 × 1.0 mm, and the chip interval between the light emitting element 23 and the light receiving element 24 is 0.2 mm.

図9は先に示したシミュレーションモデルの断面図で、図10は反射スケール21からの有効反射光と境界面53からの反射光とを重畳させて、観察平面PLでの照度分布図を示している。高照度領域の輪帯内に反射スケール21のスケールパターンが投影され、センサ信号が高いS/Nで得られることが分かる。   FIG. 9 is a cross-sectional view of the simulation model described above, and FIG. 10 shows an illuminance distribution diagram on the observation plane PL by superimposing the effective reflected light from the reflection scale 21 and the reflected light from the boundary surface 53. Yes. It can be seen that the scale pattern of the reflective scale 21 is projected into the annular zone in the high illuminance region, and the sensor signal is obtained with a high S / N.

図11においては、本実施例での反射スケール21と検出ヘッド22とのギャップGについて、(a)G=1.5mm、(b)1.0mm、(c)0.5mm、(d)0.2mmの値に設置した場合の光路を示している。(a)〜(d)何れの状態においても、境界面53における全反射光線は受光領域S2に入射していないので、良好なS/Nのセンサ信号が得られている。   In FIG. 11, (a) G = 1.5 mm, (b) 1.0 mm, (c) 0.5 mm, (d) 0 for the gap G between the reflective scale 21 and the detection head 22 in this embodiment. The optical path when installed at a value of 2 mm is shown. In any of the states (a) to (d), since the totally reflected light beam at the boundary surface 53 is not incident on the light receiving region S2, a good S / N sensor signal is obtained.

図12は発光領域S1と受光素子24を結ぶライン上の照度分布を示している。横軸は発光素子23の位置を原点として、受光素子24方向の距離を示している。ライン上の照度分布について、(1)反射スケールからの有効光、(2)境界面53からの反射光及び全反射光について2種類をプロットしたものである。それぞれ、反射スケール21と検出ヘッド22とのギャップGをパラメータとした結果を示している。   FIG. 12 shows the illuminance distribution on the line connecting the light emitting region S1 and the light receiving element 24. FIG. The horizontal axis indicates the distance in the direction of the light receiving element 24 with the position of the light emitting element 23 as the origin. Two types of illuminance distribution on the line are plotted: (1) effective light from the reflection scale, (2) reflected light from the boundary surface 53, and total reflected light. The results are shown with the gap G between the reflection scale 21 and the detection head 22 as a parameter.

距離の自乗則から、ギャップGの値が大きくなるにつれて、有効反射光による照度は低下する。一方、境界面53からの反射、全反射光は当然のことながら、反射スケール21のギャップパラメータとは無関係で、ギャップGの変化に対して変化することはない。   From the square of distance, the illuminance due to the effective reflected light decreases as the value of the gap G increases. On the other hand, the reflection from the boundary surface 53 and the total reflection light are naturally independent of the gap parameter of the reflection scale 21 and do not change with respect to the change in the gap G.

図13は図12の結果から、センサ信号の光学的なS/Nをこれまでと同様に「有効光/ノイズ光」で表し、ギャップ変化をパラメータとしてそのS/Nの変動を示している。ここで注目すべき特性として、従来の遮光手段を用いた反射型センサでは、G=0.2mmにおいては、有効光線が遮光手段によって蹴られてしまうために、実用上は利用可能な領域ではない。本実施例での反射型センサでは、この近接ギャップ領域において、極めて高い光学的なS/Nでセンサ信号が得られることが分かる。また、G=2.0mmにおいても、S/N値として、3以上の値が得られているので、有効信号が得られるギャップ変動の有効範囲が広いことが分かる。   FIG. 13 shows the optical S / N of the sensor signal as “effective light / noise light” in the same manner as before, and shows the fluctuation of the S / N with the gap change as a parameter from the result of FIG. As a characteristic to be noted here, in the reflection type sensor using the conventional light shielding means, the effective light beam is kicked by the light shielding means at G = 0.2 mm, so that it is not a practically usable region. . It can be seen that the sensor signal can be obtained with a very high optical S / N in the proximity gap region in the reflective sensor of this embodiment. In addition, even when G = 2.0 mm, since an S / N value of 3 or more is obtained, it can be seen that the effective range of gap fluctuation in which an effective signal is obtained is wide.

図14はこのような従来の遮光手段を用いた反射型センサのギャップ特性と本実施例でのギャップ特性の違いを示している。図14(a)の従来例のグラフ図を見ると、従来では近接ギャップ領域で使用した場合には、反射型センサと反射試料との距離感度が高くなる。従って、このような近接距離領域での使用は実用上避けなければならず、その分だけ余分な空間領域を必要としている。   FIG. 14 shows the difference between the gap characteristics of the reflective sensor using such a conventional light shielding means and the gap characteristics in this embodiment. Looking at the graph of the conventional example in FIG. 14A, the distance sensitivity between the reflective sensor and the reflective sample is high when the conventional gap region is used. Therefore, the use in such a close distance area must be avoided in practice, and an extra space area is required accordingly.

しかし、図14(b)に示す本実施例による反射型センサでは、受発光間の素子間隔が詰められ、発光素子23の光軸近傍の光線が利用されているために、光の利用効率が従来方式よりも改善されている。従来方式での遮光手段に起因して発生する蹴られ特性がないので、近接ギャップ領域での有効信号範囲が広がり、取付公差が緩和される。また、近接ギャップでの利用が可能なため、小型化、省スペース化に有利な特性となっている。   However, in the reflection type sensor according to the present embodiment shown in FIG. 14B, the element interval between light receiving and emitting is reduced, and the light rays near the optical axis of the light emitting element 23 are used. This is an improvement over the conventional method. Since there is no kicking characteristic that occurs due to the light shielding means in the conventional method, the effective signal range in the proximity gap region is widened, and the mounting tolerance is relaxed. In addition, since it can be used in the proximity gap, it is advantageous for miniaturization and space saving.

本実施例1は、反射型エンコーダにおいて、遮光手段を用いることなく、高いS/Nのセンサ信号を得ることが可能となり、反射スケール21と検出ヘッド22の近接ギャップ領域での特性が大幅に改善される。また、発光素子23と受光素子24とを従来に比べて近接実装することで光の利用効率が改善し、発光素子23の消費電流が削減できる。更に、小型化に寄与し、品質の安定と低価格化も同時に実施できる。   In the first embodiment, it is possible to obtain a high S / N sensor signal without using a light shielding unit in the reflective encoder, and the characteristics in the close gap region between the reflective scale 21 and the detection head 22 are greatly improved. Is done. Further, the light use efficiency is improved by mounting the light emitting element 23 and the light receiving element 24 closer than the conventional one, and the current consumption of the light emitting element 23 can be reduced. In addition, it contributes to downsizing and can simultaneously achieve stable quality and lower prices.

図15は実施例2のシュミレーションモデルの断面図であり、先の実施例1に対して境界面53の高さを大きくして、全反射光による高照度領域を示す輪帯半径Rmaxを大きくしている。具体的には、D1=D2=0.90mm、Ni=1.54(エポキシ樹脂)、No=1.00(空気)であり、これらの値からRi≒1.45mmとなる。   FIG. 15 is a cross-sectional view of the simulation model of the second embodiment. The height of the boundary surface 53 is larger than that of the first embodiment, and the annular radius Rmax indicating the high illuminance region by total reflected light is increased. ing. Specifically, D1 = D2 = 0.90 mm, Ni = 1.54 (epoxy resin), and No = 1.00 (air). From these values, Ri≈1.45 mm.

その結果、図16の照度分布図で示すように、配置可能な許容円が拡大し、先の実施例1の場合よりも受光領域S2の受光部面積については大きくすることが可能となる。例えば、この場合には矩形形状で、0.7×1.4mm程度まで拡大できる。   As a result, as shown in the illuminance distribution diagram of FIG. 16, the allowable circle that can be arranged is enlarged, and the light receiving area of the light receiving region S2 can be made larger than in the case of the first embodiment. For example, in this case, it is rectangular and can be enlarged to about 0.7 × 1.4 mm.

図17は実施例3のシュミレーションモデルの断面図であり、先の実施例1に対して境界面53の高さについて、発光素子23側の高さD1と受光素子24側の高さD2の値を異なる値にしている。具体的には、D1=0.3mm、D2=0.7mm、Ni=1.54(エポキシ樹脂)、No=1.00(空気)であり、これらの値からRi≒0.85mmとなる。   FIG. 17 is a cross-sectional view of the simulation model of Example 3. Regarding the height of the boundary surface 53 with respect to Example 1, the values of the height D1 on the light emitting element 23 side and the height D2 on the light receiving element 24 side are shown. Have different values. Specifically, D1 = 0.3 mm, D2 = 0.7 mm, Ni = 1.54 (epoxy resin), and No = 1.00 (air). From these values, Ri≈0.85 mm.

この実施例3では、発光素子23の上部0.3mmの高さまで封止樹脂51、透明ガラス52により覆われているが、更にその上部はφ0.6mm、深さ0.4mmの円柱形での肉抜き形状となっている。   In Example 3, the upper part of the light emitting element 23 is covered with the sealing resin 51 and the transparent glass 52 up to a height of 0.3 mm, and the upper part is a cylindrical shape having a diameter of 0.6 mm and a depth of 0.4 mm. It has a cut-out shape.

図18は実施例3の有効反射光と内部全反射光の光路図である。受光領域S2は全反射光が入射しない位置に配置されている。   FIG. 18 is an optical path diagram of the effective reflection light and the total internal reflection light of Example 3. The light receiving region S2 is disposed at a position where the totally reflected light does not enter.

図19の照度分布図で示すように、配置可能な許容円は縮小し、先の実施例1、2のように許容円の内部に受光領域S2を配置することが困難になる。しかし、この場合にはこの円の外側に受光領域S2を配置することで、実施例1、2と同様の効果が得られる。   As shown in the illuminance distribution diagram of FIG. 19, the allowable circle that can be arranged is reduced, and it becomes difficult to arrange the light receiving region S2 inside the allowable circle as in the first and second embodiments. However, in this case, the same effect as in the first and second embodiments can be obtained by arranging the light receiving region S2 outside the circle.

実装面積が大きくなるために、小型化には不利な構成ではあるが、受光素子24上の受光領域S2の配置位置の自由度が上がり、受光部サイズも制約が少ない。このような点では、実施例1、2での許容円の内側に配置する場合には、不可能な配置が可能となる。   Since the mounting area is large, the configuration is disadvantageous for downsizing, but the degree of freedom of the arrangement position of the light receiving region S2 on the light receiving element 24 is increased, and the size of the light receiving portion is less limited. In such a point, when it is arranged inside the allowable circle in the first and second embodiments, an impossible arrangement is possible.

図20は実施例4のシュミレーションモデルの断面図であり、先の実施例3と同様に境界面53の高さについて、発光素子23側の高さD1と受光素子24側の高さD2の値を異なる値にしている。具体的には、D1=0.3mm、D2=0.7mm、Ni=1.54(エポキシ樹脂)、No=1.00(空気)であり、これらの値からRi≒0.85mmとなる。   FIG. 20 is a cross-sectional view of the simulation model of the fourth embodiment. As in the third embodiment, the height of the boundary surface 53 is a value of the height D1 on the light emitting element 23 side and the height D2 on the light receiving element 24 side. Have different values. Specifically, D1 = 0.3 mm, D2 = 0.7 mm, Ni = 1.54 (epoxy resin), and No = 1.00 (air). From these values, Ri≈0.85 mm.

図21の照度分布図で示すように、この場合は複雑な照度分布となるが、点線で示した位置に受光領域S2を配置することで、実施例1と同等の効果が得られる。   As shown in the illuminance distribution diagram of FIG. 21, in this case, the illuminance distribution is complicated. However, by arranging the light receiving region S2 at the position indicated by the dotted line, the same effect as in the first embodiment can be obtained.

図22は実施例5の照度分布図であり、先の実施例1に対して受光領域S2の受光形状を変更したものである。境界面53の高さについて、発光素子23側の高さD1と、受光素子24側の高さD2の値を同じ値にした場合のモデルによっている。具体的には、D1=0.7mm、D2=0.7mm、Ni=1.54(エポキシ樹脂)、No=1.00(空気)であり、これらの値からRi≒1.05mmとなる。   FIG. 22 is an illuminance distribution diagram of the fifth embodiment, in which the light receiving shape of the light receiving region S2 is changed with respect to the first embodiment. The height of the boundary surface 53 is based on a model in which the height D1 on the light emitting element 23 side and the height D2 on the light receiving element 24 side are set to the same value. Specifically, D1 = 0.7 mm, D2 = 0.7 mm, Ni = 1.54 (epoxy resin), and No = 1.00 (air). From these values, Ri≈1.05 mm.

この半径Riよりも内側に、光領域を最大限有効に受光領域S2を配置する場合に、許容円に沿うような扇形或いは円弧状に受光領域S2の形状を形成している。これにより、実質的に反射スケール21からの有効な反射光線をより多く受光領域S2に取り込むことができる。その結果として、センサ信号のS/Nを向上することが可能となる。   When the light receiving area S2 is arranged as effectively as possible within the radius Ri, the shape of the light receiving area S2 is formed in a fan shape or an arc shape along an allowable circle. Thereby, substantially more effective reflected rays from the reflection scale 21 can be taken into the light receiving region S2. As a result, the S / N of the sensor signal can be improved.

また、本実施例における境界面53の面形状は様々な変形が考えられるが、境界面53の面形状によらず、境界面53での全反射光が受光領域S2に入射しないように、発光素子23に対する受光素子24の位置と境界面53の高さを変更することもできる。   In addition, although the surface shape of the boundary surface 53 in this embodiment can be variously modified, the light emission is performed so that the totally reflected light from the boundary surface 53 does not enter the light receiving region S2 regardless of the surface shape of the boundary surface 53. The position of the light receiving element 24 relative to the element 23 and the height of the boundary surface 53 can also be changed.

実施例に関する上述の説明では、主に反射型エンコーダの場合について説明したが、反射式フォトインタラプタ等に対しても実質的に適用可能である。   In the above description of the embodiment, the case of the reflective encoder has been mainly described. However, the present invention can be substantially applied to a reflective photointerrupter or the like.

21 反射スケール
22 検出ヘッド
23 発光素子
24 受光素子
25 信号処理回路部
26 フォトICチップ
27 基板
51 封止樹脂
52 透明ガラス
53 境界面
S1 発光領域
S2 受光領域
DESCRIPTION OF SYMBOLS 21 Reflective scale 22 Detection head 23 Light emitting element 24 Light receiving element 25 Signal processing circuit part 26 Photo IC chip 27 Substrate 51 Sealing resin 52 Transparent glass 53 Interface surface S1 Light emitting area S2 Light receiving area

上記目的を達成するための本発明に係る反射型センサは、基板と、該基板の上に設けられ光を発する発光領域を有する発光素子と、前記基板の上に設けられ前記発光素子から出射し反射試料で反射した光を受光する受光領域を有する受光素子と、前記発光素子及び前記受光素子の両者を封止する透光部とを有する反射型センサにおいて、前記透光部は、樹脂から成り前記発光素子と前記受光素子の両者を封止する透明樹脂部と、前記透明樹脂部の上に形成された透明ガラスとを含んでおり、前記受光領域は、前記発光素子から出射し前記透光部と外界との境界面で全反射した光が照射する領域よりも前記発光素子に近い位置に設けられていることを特徴としている。また、ここで、前記透明樹脂部の屈折率と前記透明ガラスの屈折率とがほぼ同じであることが望ましい。
また、本発明に係る別側面の反射型センサは、基板上に配設した発光素子と受光素子とを透明部材で覆った反射型センサであって、前記受光素子は、前記発光素子から出射した光線のうち前記透明部材の外界との境界面で全反射して前記基板側に戻る光線よりも前記発光素子側に配置されていることを特徴としている。
In order to achieve the above object, a reflective sensor according to the present invention includes a substrate, a light-emitting element provided on the substrate and having a light-emitting region that emits light, and a light-emitting element provided on the substrate and emitted from the light-emitting element. In a reflective sensor having a light receiving element having a light receiving region for receiving light reflected by a reflective sample and a light transmitting part for sealing both the light emitting element and the light receiving element, the light transmitting part is made of resin. A transparent resin part that seals both the light emitting element and the light receiving element; and a transparent glass formed on the transparent resin part. The light receiving region is emitted from the light emitting element and transmits the light. It is characterized by being provided at a position closer to the light emitting element than a region irradiated with light totally reflected at the boundary surface between the portion and the outside . Here, it is desirable that the refractive index of the transparent resin portion and the refractive index of the transparent glass are substantially the same.
The reflective sensor according to another aspect of the present invention is a reflective sensor in which a light emitting element and a light receiving element disposed on a substrate are covered with a transparent member, and the light receiving element is emitted from the light emitting element. It is characterized in that the light beam is disposed on the light emitting element side of the light beam that is totally reflected at the boundary surface with the outside of the transparent member and returns to the substrate side.

また、本発明に係る装置は、被測定対象物と、該被測定対象物に固定されたスケールと、前記スケールに光を照射する発光素子及び前記スケールからの光を受光する受光素子とを含む前述の反射型センサと、を備えることを特徴としている。The apparatus according to the present invention includes an object to be measured, a scale fixed to the object to be measured, a light emitting element that emits light to the scale, and a light receiving element that receives light from the scale. And a reflection type sensor as described above.

本発明に係る反射型センサによれば、次に列挙するような効果が得られる。
発光素子と受光素子の間の遮光部材が不要となるので、発光素子と受光素子を近接して実装することが可能で、実装面積が削減され小型化され、遮光手段に起因していた特性のばらつきがなくなる
遮光手段を用いていた従来方式に比べて、ギャップ特性が大幅に向上し、被測定対象物に近接した状態でも有効なセンサ信号が得られる。
According to the reflective sensor of the present invention, the following effects can be obtained.
Since a light-shielding member between the light-emitting element and the light-receiving element is not required, the light-emitting element and the light-receiving element can be mounted close to each other, the mounting area is reduced and the size is reduced, and the characteristics caused by the light-shielding means are reduced. There is no variation .
Compared to the conventional method using the light shielding means, the gap characteristics are greatly improved, and an effective sensor signal can be obtained even in the state of being close to the object to be measured.

Claims (7)

基板上に配設した発光素子と受光素子とを透明部材で覆った反射型センサであって、前記発光素子から出射した光線のうち、前記透明部材の外界との境界面で全反射して前記透明部材内に戻る光線よりも前記発光素子側に前記受光素子による受光領域を設けたことを特徴とする反射型センサ。   A reflective sensor in which a light-emitting element and a light-receiving element disposed on a substrate are covered with a transparent member, and the light emitted from the light-emitting element is totally reflected at the boundary surface with the outside of the transparent member, and A reflection type sensor, wherein a light receiving region by the light receiving element is provided on the light emitting element side with respect to a light beam returning into the transparent member. 前記発光素子は電流狭窄構造のLEDとしたことを特徴とする請求項1に記載の反射型センサ。   The reflective sensor according to claim 1, wherein the light emitting element is an LED having a current confinement structure. 前記透明部材は透明樹脂と透明ガラスとを併設したことを特徴とする請求項1に記載の反射型センサ。   The reflective sensor according to claim 1, wherein the transparent member is provided with a transparent resin and a transparent glass. 前記境界面の前記発光素子と前記受光素子の中間位置に段差を設けたことを特徴とする請求項1に記載の反射型センサ。   The reflective sensor according to claim 1, wherein a step is provided at an intermediate position between the light emitting element and the light receiving element on the boundary surface. 前記受光領域の形状を扇形又は円弧形状としたことを特徴とする請求項1に記載の反射型センサ。   The reflective sensor according to claim 1, wherein the shape of the light receiving region is a sector shape or an arc shape. 基板上に発光素子と受光素子を並置して透明部材で覆った反射型センサであって、前記基板に平行な外界との境界面を有する前記透明部材の屈折率をNi、外界の媒質の屈折率をNo、前記発光素子の発光領域から前記境界面までの距離をD1、前記受光素子の受光領域から前記境界面までの距離をD2としたとき、
R=D1/tan{sin−1(No/Ni)}+D2/tan{sin−1(No/Ni)}上記式で決定する半径Rの前記発光領域を中心とする円の内側に、前記受光領域を配置したことを特徴とする反射型センサ。
A reflective sensor in which a light-emitting element and a light-receiving element are juxtaposed on a substrate and covered with a transparent member, the refractive index of the transparent member having a boundary surface with the external world parallel to the substrate being Ni, and the refractive index of the medium of the external world When the rate is No, the distance from the light emitting region of the light emitting element to the boundary surface is D1, and the distance from the light receiving region of the light receiving element to the boundary surface is D2,
R = D1 / tan {sin −1 (No / Ni)} + D2 / tan {sin −1 (No / Ni)} The light reception is located inside a circle centered on the light emitting region of radius R determined by the above formula. A reflective sensor characterized in that a region is arranged.
前記受光素子は受光部分をフォトダイオードアレイとし、複数の初段増幅器と差動増幅器から成る信号処理部と共にフォトICにより構成したことを特徴とする請求項6に記載の反射型センサ。   7. The reflection type sensor according to claim 6, wherein the light receiving element has a light receiving portion as a photodiode array, and is constituted by a photo IC together with a signal processing unit including a plurality of first-stage amplifiers and differential amplifiers.
JP2012255406A 2012-11-21 2012-11-21 Reflection type sensor Pending JP2013070078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012255406A JP2013070078A (en) 2012-11-21 2012-11-21 Reflection type sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012255406A JP2013070078A (en) 2012-11-21 2012-11-21 Reflection type sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006197041A Division JP2008028025A (en) 2006-07-19 2006-07-19 Reflecting sensor

Publications (1)

Publication Number Publication Date
JP2013070078A true JP2013070078A (en) 2013-04-18

Family

ID=48475319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012255406A Pending JP2013070078A (en) 2012-11-21 2012-11-21 Reflection type sensor

Country Status (1)

Country Link
JP (1) JP2013070078A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019162998A1 (en) * 2018-02-20 2019-08-29 三菱電機株式会社 Absolute encoder
JP2019211312A (en) * 2018-06-04 2019-12-12 コーデンシ株式会社 Reflection type optical sensor and reflection type encoder using the same
JP2019211311A (en) * 2018-06-04 2019-12-12 コーデンシ株式会社 Reflection type optical sensor and reflection type encoder using the same
EP3819599A1 (en) 2019-11-07 2021-05-12 Canon Precision Inc. Reflection type sensor and optical encoder having the same
WO2023181670A1 (en) * 2022-03-25 2023-09-28 浜松ホトニクス株式会社 Optical module for encoder and reflection-type encoder

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276684A (en) * 1985-09-30 1987-04-08 Toshiba Corp Reflected-light type light-coupled semiconductor device
JPS6285479A (en) * 1985-10-11 1987-04-18 Toshiba Corp Semiconductor composite photo receiving and emitting device
JPH01262661A (en) * 1988-04-13 1989-10-19 Nec Corp Solid-state image sensing device
JP2004006753A (en) * 2002-04-05 2004-01-08 Canon Inc Package for optical semiconductor
JP2005057058A (en) * 2003-08-05 2005-03-03 Sanyo Electric Co Ltd Solid-state imaging device
JP2005156549A (en) * 2003-11-05 2005-06-16 Sendai Nikon:Kk Optical encoder
JP2005317878A (en) * 2004-04-30 2005-11-10 Citizen Electronics Co Ltd Photo-reflector device and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276684A (en) * 1985-09-30 1987-04-08 Toshiba Corp Reflected-light type light-coupled semiconductor device
JPS6285479A (en) * 1985-10-11 1987-04-18 Toshiba Corp Semiconductor composite photo receiving and emitting device
JPH01262661A (en) * 1988-04-13 1989-10-19 Nec Corp Solid-state image sensing device
JP2004006753A (en) * 2002-04-05 2004-01-08 Canon Inc Package for optical semiconductor
JP2005057058A (en) * 2003-08-05 2005-03-03 Sanyo Electric Co Ltd Solid-state imaging device
JP2005156549A (en) * 2003-11-05 2005-06-16 Sendai Nikon:Kk Optical encoder
JP2005317878A (en) * 2004-04-30 2005-11-10 Citizen Electronics Co Ltd Photo-reflector device and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019162998A1 (en) * 2018-02-20 2019-08-29 三菱電機株式会社 Absolute encoder
JP2019211312A (en) * 2018-06-04 2019-12-12 コーデンシ株式会社 Reflection type optical sensor and reflection type encoder using the same
JP2019211311A (en) * 2018-06-04 2019-12-12 コーデンシ株式会社 Reflection type optical sensor and reflection type encoder using the same
JP7054914B2 (en) 2018-06-04 2022-04-15 コーデンシ株式会社 Reflective optical sensor and reflective encoder using it
EP3819599A1 (en) 2019-11-07 2021-05-12 Canon Precision Inc. Reflection type sensor and optical encoder having the same
JP2021076452A (en) * 2019-11-07 2021-05-20 キヤノンプレシジョン株式会社 Reflection type sensor and optical encoder including the same
US11268833B2 (en) 2019-11-07 2022-03-08 Canon Precision Inc. Reflection type sensor and optical encoder having the same
WO2023181670A1 (en) * 2022-03-25 2023-09-28 浜松ホトニクス株式会社 Optical module for encoder and reflection-type encoder

Similar Documents

Publication Publication Date Title
JP2008028025A (en) Reflecting sensor
JP4021382B2 (en) Optical encoder, method of manufacturing the same, and optical lens module
KR101659549B1 (en) Light sensor
US9618370B2 (en) Optical encoder and apparatus provided therewith
JP4416544B2 (en) Optical displacement measuring device
US8035079B2 (en) Optical encoder
US9383231B2 (en) Photoelectric encoder having an interference pattern signal processing unit detects the pseudo-random data of the absolute pattern of an absolute scale
JP2008051764A (en) Range finding sensor, and electronic device having sensor mounted
JP2013070078A (en) Reflection type sensor
US9013710B2 (en) Optical position-measuring device
JP2010230409A (en) Optical encoder
JP3963885B2 (en) Reflective optical encoder sensor head
JP5420715B2 (en) Reflective optical encoder
US9097561B2 (en) Position transducer
JP2010048833A (en) Photoelectric encoder
JP2018040620A (en) Displacement measurement device and displacement measurement method
JP4999595B2 (en) Reflective photo sensor
JP4999596B2 (en) Reflective photo sensor
JP2005049345A (en) Optical displacement sensor
JP2013239578A (en) Photoelectronic sensor
JP2007327822A (en) Optical encoder and electronic device using the same
JP2006078376A (en) Optical displacement sensor
JP2010223629A (en) Optical encoder
JP4372566B2 (en) Photoelectric encoder
JP2010002324A (en) Optical encoder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140212