WO2019162998A1 - Absolute encoder - Google Patents

Absolute encoder Download PDF

Info

Publication number
WO2019162998A1
WO2019162998A1 PCT/JP2018/006018 JP2018006018W WO2019162998A1 WO 2019162998 A1 WO2019162998 A1 WO 2019162998A1 JP 2018006018 W JP2018006018 W JP 2018006018W WO 2019162998 A1 WO2019162998 A1 WO 2019162998A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
receiving element
light receiving
resin
optical scale
Prior art date
Application number
PCT/JP2018/006018
Other languages
French (fr)
Japanese (ja)
Inventor
琢也 野口
勇治 久保
秀 多久島
茂雄 神保
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880003297.3A priority Critical patent/CN110392820B/en
Priority to JP2018540177A priority patent/JP6407502B1/en
Priority to PCT/JP2018/006018 priority patent/WO2019162998A1/en
Priority to KR1020197004840A priority patent/KR102037786B1/en
Priority to TW108103126A priority patent/TWI660159B/en
Publication of WO2019162998A1 publication Critical patent/WO2019162998A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34776Absolute encoders with analogue or digital scales
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses

Definitions

  • the present invention relates to an absolute encoder that detects an absolute rotation angle of a measurement object.
  • ⁇ An absolute encoder is one of the rotary encoders that detects the absolute rotation angle of the measurement object.
  • the absolute encoder is an encoder that calculates an absolute rotation angle of the optical scale based on an optical signal reflected by an optical pattern on the optical scale and incident on a light receiving element.
  • this absolute encoder when an unnecessary light beam other than the light beam used for the calculation of the absolute rotation angle is incident on the light receiving element, the detection accuracy of the absolute rotation angle is lowered. Therefore, it is desirable to remove the unnecessary light beam.
  • a light source, a photodetector, and a light source slit are enclosed in a package, and a light-shielding portion is formed at one end of the light source slit.
  • the optical encoder of Patent Document 1 prevents unnecessary light from traveling at the light shielding portion.
  • Patent Document 1 which is the above-described conventional technique, it is not possible to suppress a decrease in angle detection accuracy due to multiple reflection between the package and the optical scale.
  • the multiple reflection between the package and the optical scale is a phenomenon in which the light beam emitted from the light source is reflected by the optical scale, then reflected by the surface of the package, and further reflected by the optical scale.
  • the detection accuracy is lowered by the multiple reflected light entering the photodetector. Since the light amount and the light beam pattern change according to the rotation of the optical scale, it is difficult to remove the light beam by the multiple reflection by the arithmetic unit. For this reason, in patent document 1, there existed a problem that the absolute rotation angle of a measuring object could not be detected accurately.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an absolute encoder that can accurately detect the absolute rotation angle of a measurement object.
  • the absolute encoder of the present invention receives an optical scale having an optical pattern, a light emitting element that irradiates light to the optical scale, and reflected light from the optical scale. And a control unit that calculates an absolute rotation angle of the optical scale based on a signal output from the light receiving element according to reflected light. Also, the absolute encoder of the present invention is exposed to the module package on the surface facing the optical scale of the light-transmitting resin and has an intermediate position between the center of the light emitting surface of the light emitting element and the center of the light receiving surface of the light receiving element. A light-shielding part is provided.
  • the absolute encoder according to the present invention has an effect that the absolute rotation angle of the measurement object can be accurately detected.
  • FIG. 3 is a top view showing the configuration of the module package according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration of an angle calculation unit provided in the absolute encoder according to the first embodiment.
  • FIG. 3 is a diagram illustrating a waveform example of a signal detected by the light receiving element of the module package according to the first embodiment.
  • the figure which shows the waveform example of the signal detected with the light receiving element of the module package of a comparative example The figure for demonstrating the arrangement position of light-shielding resin with which the module package concerning Embodiment 1 is provided.
  • the figure for demonstrating the 3rd example of the stray light which the module package of a comparative example generates The figure for demonstrating the dimensional relationship of the component with which the module package concerning Embodiment 1 is provided.
  • FIG. 1 is a diagram showing a configuration of an absolute encoder according to the first embodiment of the present invention.
  • the absolute encoder 1 is a device that detects a rotation angle of a rotating body that is a measurement object, and includes an optical scale 2, a module package 300, and a control unit 4.
  • the rotation angle detected by the absolute encoder 1 is an absolute rotation angle.
  • the upper surface of the module package 300 that is the surface facing the optical scale 2 is illustrated on the lower side, and the bottom surface of the module package 300 is illustrated on the upper side.
  • the optical scale 2 is connected to a rotating shaft 5 provided in a rotating device such as a motor, and rotates according to the rotation of the rotating shaft 5.
  • the optical scale 2 is configured using a disk-shaped member.
  • the optical scale 2 includes, on the upper surface of a disk-shaped member, a reflective portion 201 that is a line pattern indicating “bright” of light and dark, and a non-reflective portion 202 that is a line pattern indicating “dark”. Are provided with optical patterns 200 arranged alternately.
  • the reflection portion 201 is a portion that reflects light rays from the light emitting element 31 described later
  • the non-reflection portion 202 is a portion that absorbs or scatters light rays from the light emitting element 31.
  • a plurality of reflecting portions 201 are arranged in a direction from the center portion of the disk-shaped member toward the outer peripheral portion.
  • a plurality of non-reflective portions 202 are arranged in a direction from the center portion of the disk-shaped member toward the outer peripheral portion.
  • the plurality of reflecting portions 201 and the plurality of non-reflecting portions 202 are arranged such that one end of the line shape faces the center of the optical pattern 200 and the other end faces the outside direction of the optical pattern 200.
  • the non-reflecting part 202 is disposed between the reflecting parts 201, and the reflecting part 201 is disposed between the non-reflecting parts 202.
  • the reflecting portions 201 and the non-reflecting portions 202 are alternately arranged so that the reflecting portions 201 and the non-reflecting portions 202 are arranged in a radial pattern within the annular region of the outer peripheral portion of the disk-shaped member.
  • the reflection part 201 and the non-reflection part 202 have various dimensional widths. In other words, the reflecting portions 201 are arranged at various intervals, and the non-reflecting portions 202 are arranged at various intervals.
  • the optical pattern 200 is a pattern in which the reflecting portion 201 and the non-reflecting portion 202 are arranged at various intervals, when the rotating optical pattern 200 is irradiated with light, reflection and non-reflection of the light are reflected. It repeats according to the arrangement
  • the reflection unit 201 and the non-reflection unit 202 function to modulate a light intensity distribution projected on the light receiving element 32 described later.
  • the optical scale 2 is provided with only one track having the optical pattern 200 composed of the reflecting portion 201 and the non-reflecting portion 202.
  • the reflecting part 201 and the non-reflecting part 202 are arranged at intervals that characterize the rotation angle of the optical scale 2.
  • the optical scale 2 has the optical pattern 200 unique to the rotation angle.
  • a pseudo-random code pattern such as an M series is used for the arrangement pattern of the reflection unit 201 and the non-reflection unit 202.
  • the optical scale 2 is formed from, for example, a metal base material such as stainless steel.
  • the non-reflective portion 202 is formed on the surface of the metal substrate by a plating technique or the like, and the reflective portion 201 is formed by mirror-finishing the metal substrate portion.
  • the optical pattern 200 may be formed by any method as long as the reflective portion 201 and the non-reflective portion 202 can be formed.
  • the module package 300 is a light projecting / receiving module including a light emitting element 31 having a light projecting function and a light receiving element 32 having a light receiving function.
  • the module package 300 is disposed above the optical pattern 200 so as to face the optical pattern 200.
  • the module package 300 detects the light reflected from the optical pattern 200 and incident on the light receiving element 32 out of the light emitted from the light emitting element 31, and outputs a signal corresponding to the detected light to the control unit 4. .
  • the control unit 4 is connected to the light receiving element 32 on the downstream side of the light receiving element 32.
  • the control unit 4 includes an angle calculation unit 41 and a light emission amount adjustment unit 42.
  • the angle calculation unit 41 calculates the absolute rotation angle of the optical scale 2 based on a signal output from the light receiving element 32 included in the module package 300.
  • the absolute rotation angle calculated by the angle calculation unit 41 corresponds to the rotation position of the rotary shaft 5.
  • the angle calculation unit 41 calculates the rotational position of the rotary shaft 5 based on the signal corresponding to the encoded optical pattern 200.
  • the angle calculation unit 41 outputs an absolute rotation angle indicating position data of the rotary shaft 5 to the external device as position data.
  • the light emission amount adjustment unit 42 adjusts the light emission amount of the light emitted from the light emitting element 31 based on the signal output from the light receiving element 32.
  • the angle calculation unit 41 calculates the absolute rotation angle from the signal corresponding to the light beam incident on the light receiving element 32.
  • the control unit 4 may perform rotation control of the measurement object based on the absolute rotation angle. Since the absolute encoder 1 does not need to integrate the pulse signals output from the light receiving element 32, it does not need to return to the origin when the power is turned on, and can be started up quickly.
  • FIG. 2 is a cross-sectional view illustrating the configuration of the module package according to the first embodiment.
  • FIG. 3 is a top view showing the configuration of the module package according to the first embodiment. 2 and 3 illustrate a configuration of a module package 300A that is an example of the module package 300.
  • FIG. 2 is a cross-sectional view illustrating the configuration of the module package according to the first embodiment.
  • FIG. 3 is a top view showing the configuration of the module package according to the first embodiment. 2 and 3 illustrate a configuration of a module package 300A that is an example of the module package 300.
  • FIG. 2 the upper surface of the module package 300A, which is the surface facing the optical pattern 200, is illustrated on the lower side, and the bottom surface of the module package 300A is illustrated on the upper side. Also, in FIGS. 9 to 11 and FIGS. 15 to 18 to be described later, the upper surface of the module package is illustrated on the lower side, and the bottom surface of the module package is illustrated on the upper side. Further, in FIG. 2, the package substrate 30A and the light transmissive resin 33A are not hatched. Also, in FIGS. 9 to 11 and FIGS. 15 to 18 to be described later, hatching of the package substrate and the light transmitting resin is omitted. FIG. 3 is a top view of the module package 300A, but hatching is added to clarify the correspondence with the cross-sectional view of FIG.
  • the module package 300A includes a package substrate 30A, a light emitting element 31, a light receiving element 32, a light transmissive resin 33A, and a light shielding resin 34A that is a light shielding portion.
  • the direction in which the upper surface and the bottom surface of the package substrate 30A are arranged may be referred to as a horizontal direction, and the direction perpendicular to the upper surface and the bottom surface of the package substrate 30A may be referred to as a vertical direction.
  • the package substrate 30A is a substrate on which the light emitting element 31 and the light receiving element 32 are mounted, and is connected to an encoder substrate (not shown).
  • the encoder board is a board that executes various processes on the rear side of the module package 300A, and the control unit 4 is disposed on the encoder board. Specifically, the encoder board has a processing circuit that executes the processing of the control unit 4.
  • the upper surface of the package substrate 30A has a rectangular shape, and terminals are provided on all of these four sides. Each terminal is connected to the encoder board.
  • an end face through hole or a back electrode is applied for the terminals provided on the package substrate 30A.
  • the package substrate 30A has a rectangular upper surface, and the light emitting element 31 and the light receiving element 32 are arranged on the rectangular upper surface.
  • the package substrate 30A is preferably composed of a substrate similar to the encoder substrate.
  • the encoder board is composed of a glass epoxy board, for example. In this case, it is desirable that the package substrate 30A is also formed of a glass epoxy substrate.
  • the light emitting element 31 is an element that emits light, and irradiates the optical scale 2 with light.
  • a near infrared point light source LED Light Emitting Diode
  • the light emitting element 31 has a light emitting surface 310 disposed on the upper surface thereof, and emits light from the light emitting surface 310.
  • the light emitting element 31 is bonded to the package substrate 30A so that the light emitting surface 310 is in the horizontal direction.
  • the light receiving element 32 is an element that receives light, and receives reflected light from the optical scale 2.
  • an imaging device such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor configured by a set of pixels arranged in one dimension is applied.
  • the light receiving element 32 has a light receiving surface 320 disposed on the upper surface thereof, and receives light on the light receiving surface 320.
  • the light receiving element 32 is bonded to the package substrate 30A so that the light receiving surface 320 is in the horizontal direction.
  • the light receiving element 32 outputs a signal corresponding to the reflected light from the optical scale 2. Specifically, the light receiving element 32 converts light received by the light receiving surface 320 into an analog voltage signal, and further converts the analog voltage signal into an A / D (Analog-to-Digital) conversion built in the light receiving element 32. The signal is converted into a digital signal by the device and output to the control unit 4 at the subsequent stage. Here, the illustration of the A / D converter is omitted.
  • the signal output from the A / D converter to the control unit 4 is a signal corresponding to the light reflected by the optical scale 2 and received by the light receiving element 32. Therefore, the signal received by the control unit 4 corresponds to the rotational position of the optical scale 2.
  • the light transmissive resin 33A is formed so as to cover the upper surface of the package substrate 30A. Therefore, the bottom surface and the top surface of the light transmissive resin 33A are rectangular.
  • the light transmissive resin 33 ⁇ / b> A covers the light emitting element 31 and the light receiving element 32 on the package substrate 30 ⁇ / b> A in order to protect the light emitting element 31 and the light receiving element 32.
  • the light transmissive resin 33A is made of, for example, an epoxy resin in order to match the linear expansion coefficient with the package substrate 30A.
  • the light-shielding resin 34A is a member for suppressing the progression of stray light, which is an unnecessary light beam, and is made of an epoxy resin or the like, similar to the light-transmitting resin 33A.
  • the stray light that is an unnecessary light beam is light that is not desired to be incident on the light receiving element 32.
  • An example of unnecessary light is light that is Fresnel-reflected at the interface between the light-transmitting resin 33A and the outside.
  • the light shielding resin 34 ⁇ / b> A absorbs or scatters light that is not desired to be incident on the light receiving element 32 among the light emitted from the light emitting element 31.
  • Light absorbed or scattered by the light shielding resin 34A is emitted from the light emitting element 31, light emitted from the light emitting element 31 and reflected in the light transmissive resin 33A, and emitted from the light emitting element 31. This is light that has been multiple-reflected between the package substrate 30 ⁇ / b> A and the optical scale 2.
  • the light shielding resin 34A has a plate shape, and is disposed between the light emitting element 31 and the light receiving element 32 so that the front surface and the back surface of the plate are in the vertical direction. Specifically, the light shielding resin 34A is disposed so as to divide the region where the light emitting element 31 is disposed from the region where the light receiving element 32 is disposed. That is, as shown in FIGS. 2 and 3, the left side region 420 of the light transmissive resin 33A in which the light emitting element 31 is disposed and the right side region 421 of the light transmissive resin 33A in which the light receiving element 32 is disposed.
  • the light shielding resin 34 ⁇ / b> A is arranged so that is divided.
  • a light shielding resin 34A is formed on the package substrate 30A so that the light transmissive resin 33A on the light emitting element 31 side and the light transmissive resin 33A on the light receiving element 32 side are not connected.
  • the first horizontal surface of the light shielding resin 34A is in the same plane as the upper surface of the light transmissive resin 33A
  • the second horizontal surface of the light shielding resin 34A is the light transmissive resin. The case where it exists in the same surface as the bottom face of 33A is shown. Since the first horizontal surface of the light shielding resin 34A is in the same plane as the upper surface of the light transmissive resin 33A, the light shielding resin 34A is exposed on the upper surface of the module package 300A. In other words, the light shielding resin 34A is exposed from the light transmissive resin 33A on the surface of the light transmissive resin 33A facing the optical scale 2.
  • a light blocking resin 34 ⁇ / b> A is arranged so as not to block light rays that are desired to be incident on the light receiving element 32 among light rays emitted from the light emitting element 31 to the optical pattern 200. That is, the light shielding resin 34A is disposed so that the path of the light beam that is desired to enter the light receiving element 32 does not pass through the light shielding resin 34A. In the module package 300A, the light shielding resin 34A is disposed so that the front surface and the back surface of the plate-shaped light shielding resin 34A are perpendicular to the upper surface of the package substrate 30A.
  • a glass epoxy substrate transmits a part of light such as near infrared rays. For this reason, when a glass epoxy substrate is applied to the package substrate 30A, the light emitted from the light emitting element 31 is reflected directly or within the light transmissive resin 33A and is transmitted to the package substrate 30A, and is not necessary for the light receiving element 32. May reach as a light beam. In such a case, a black glass epoxy substrate may be applied to the package substrate 30A. In addition, applying a metal film, black resist, or a combination of these to the surface of the glass-epoxy substrate to prevent unwanted rays from entering the glass-epoxy substrate or preventing the light from propagating in the glass-epoxy substrate. It is effective in preventing. Note that a method using another material may be applied as long as the same effect as the method using these materials can be obtained.
  • FIG. 4 is a block diagram illustrating a configuration of an angle calculation unit included in the absolute encoder according to the first embodiment.
  • the angle calculation unit 41 includes a light amount distribution correction unit 411, an edge detection unit 412, a rough detection unit 413, a high accuracy detection unit 414, and a rotation angle detection unit 415.
  • the signal output from the light receiving element 32 is sent to the light quantity distribution correction unit 411.
  • the light quantity distribution correction unit 411 receives a signal from the light receiving element 32.
  • the waveform of the signal input to the light amount distribution correction unit 411 by the light receiving element 32 is, for example, a waveform as shown in FIG. 5 with the horizontal axis representing the pixel position and the vertical axis representing the signal intensity.
  • FIG. 5 is a diagram illustrating a waveform example of a signal received from the light receiving element by the angle calculation unit of the absolute encoder according to the first embodiment.
  • the horizontal axis of the graph shown in FIG. 5 is the pixel, and the vertical axis is the signal intensity.
  • the horizontal axis is the pixel and the vertical axis is the signal intensity, as in the graph of FIG.
  • the level 1 signal 14 corresponds to the pattern at the reflecting portion 201 of the optical scale 2
  • the level 0 signal 15 corresponds to the pattern at the non-reflecting portion 202 of the optical scale 2.
  • the signal intensity of the level 1 signal 14 and the level 0 signal 15 is non-uniform for each pixel due to the influence of the light amount distribution of the light emitting element 31 itself and the gain variation of each pixel of the light receiving element 32. Therefore, the light amount distribution correction unit 411 corrects the distribution in which the maximum value of the signal intensity is not uniform to the distribution in which the maximum value of the signal intensity is uniform.
  • the light quantity distribution correction unit 411 here corrects the signal intensity shown in FIG. 5 to the signal intensity shown in FIG.
  • FIG. 6 is a diagram showing the waveform shown in FIG. 5 corrected to a uniform distribution.
  • the light quantity distribution correction unit 411 corrects the level 1 signal 14 and the level 0 signal 15 so that the maximum value of the signal intensity for each pixel becomes uniform.
  • the light amount distribution correction unit 411 corrects the waveform of the signal so that the level 1 signal 14 is the same for each pixel and the level 0 signal 15 is the same for each pixel.
  • the corrected waveform is illustrated as a corrected waveform 16.
  • the correction method by the light amount distribution correction unit 411 may be any method as long as the light amount distribution is uniform.
  • the light quantity distribution correction unit 411 sends the corrected waveform 16 to the edge detection unit 412.
  • the edge detection unit 412 calculates, for each edge, a pixel value whose signal intensity matches a preset threshold level 17 based on the corrected waveform 16.
  • the edge detection unit 412 sends the calculated pixel value to the rough detection unit 413 as an edge pixel value.
  • the coarse detection unit 413 decodes a bit pattern projected on the light receiving element 32 in the optical pattern 200 of the optical scale 2 based on the edge pixel value, and calculates a rough absolute rotation angle.
  • the rough absolute rotation angle calculation method will be described with reference to FIG.
  • FIG. 7 is a diagram for explaining a method of calculating a rough absolute rotation angle from the waveform shown in FIG.
  • a bit string corresponding to the corrected waveform 16 is indicated by a bit string 18.
  • the coarse detection unit 413 converts the corrected waveform 16 into a bit string 18 of “1” or “0” as shown in FIG. 7 based on the edge position indicated by the edge pixel value. Further, the coarse detection unit 413 refers to a lookup table 19 stored in advance in a memory (not shown) provided in the control unit 4 and obtains a rough absolute rotation angle 100 from a code that matches the bit string 18.
  • the lookup table 19 is a table that stores a bit string corresponding to the optical pattern 200.
  • the coarse detector 413 sends the coarse absolute rotation angle 100 to the high accuracy detector 414.
  • the high accuracy detection unit 414 calculates the phase shift amount of the pattern projected on the light receiving element 32 with high accuracy based on the rough absolute rotation angle 100.
  • the coarse absolute rotation angle 100 obtained by the coarse detection unit 413 is the absolute rotation angle 100 in units of bits of the optical scale 2. For this reason, the high-accuracy detection unit 414 calculates a fine absolute rotation angle by detecting the phase shift amount from the reference pixel, which is a reference pixel, to the position of the nearest edge pixel.
  • FIG. 8 is a diagram for explaining a method of calculating a fine absolute rotation angle from the rough absolute rotation angle described in FIG.
  • the high accuracy detection unit 414 detects the phase shift amount 20 from the reference pixel 21 to the edge pixel position 22 that is the position of the edge pixel closest to the reference pixel 21.
  • the reference pixel 21 is a pixel used as a reference when calculating a fine absolute rotation angle, and may be any pixel.
  • the phase shift amount 20 corresponds to the difference between the position of the reference pixel 21 and the edge pixel position 22.
  • the high accuracy detection unit 414 sends the coarse absolute rotation angle 100 and the phase shift amount 20 to the rotation angle detection unit 415.
  • the rotation angle detection unit 415 calculates an absolute rotation angle finer than the 1-bit unit of the optical scale 2 based on the phase shift amount 20. Specifically, the rotation angle detection unit 415 adds the coarse absolute rotation angle 100 calculated by the coarse detection unit 413 and the phase shift amount 20 calculated by the high accuracy detection unit 414 to obtain a fine absolute rotation angle. calculate. The rotation angle detection unit 415 outputs the calculated fine absolute rotation angle to the external device as position data.
  • the absolute encoder 1 receives the light beam reflected by the optical pattern 200 of the optical scale 2 among the light beams emitted from the light emitting element 31, and receives the absolute rotation angle from the light amount distribution pattern of the received light. Is detected.
  • the absolute rotation angle since an error is superimposed on the absolute rotation angle, it is necessary to suppress stray light, which is an unnecessary light beam, in order to detect the absolute rotation angle with high accuracy. This stray light is an unnecessary light beam and causes the absolute rotation angle detection accuracy to deteriorate.
  • the stray light path that deteriorates the detection accuracy of the absolute rotation angle will be described.
  • the path of the light beam that has undergone multiple reflection in the module package of the comparative example will be described.
  • FIG. 9 is a diagram for explaining an example of stray light generated by the module package of the comparative example.
  • the stray light generated in the module package 300X of the comparative example will be described.
  • FIG. 9 shows a cross-sectional view of the module package 300X of the comparative example.
  • the module package 300X of the comparative example includes a package substrate 30X similar to the package substrate 30A, a light emitting element 31X similar to the light emitting element 31, a light receiving element 32X similar to the light receiving element 32, and light similar to the light transmitting resin 33A. Transparent resin 33X.
  • the light emitting element 31X has a light emitting surface 310X similar to the light emitting surface 310, and the light receiving element 32X has a light receiving surface 320X similar to the light receiving surface 320.
  • the module package 300X of the comparative example does not include the light shielding resin 34A.
  • FIG. 9 shows an example of a light beam emitted from the light emitting element 31X and reflected into the light receiving element 32X after being reflected in the module package 300X of the comparative example. Since the light emitting element 31X is an isotropic diffusion light source, the light beam is emitted in all directions. Thereby, the light beam emitted from the light emitting element 31X proceeds in various directions. For this reason, when there is no light shielding resin 34A, as shown in FIG. 9, in the module package 300X, there is a light ray incident on the light receiving element 32X after repeating Fresnel reflection at the interface of the light transmitting resin 33X.
  • the light beam is Fresnel-reflected on the upper surface and the side surface of the light transmissive resin 33X, and a part of the Fresnel-reflected light beam enters the light receiving surface 320X.
  • stray light other than the desired light is incident on the light receiving surface 320X, and the detection accuracy of the absolute rotation angle is deteriorated.
  • the light shielding resin 34A is divided so that the region 420 where the light emitting element 31 is arranged and the region 421 where the light receiving element 32 is arranged are divided. Is installed.
  • the light shielding resin 34A is arranged in the module package 300A, the light emitted from the light emitting element 31 is changed from the left area 420 on the light emitting element 31 side to the right area on the light receiving element 32 side. Entry to 421 can be prevented. Therefore, stray light that is a part of the light beam reflected by the light transmissive resin 33 ⁇ / b> A can be prevented from entering the light receiving surface 320.
  • FIG. 10 is a diagram for explaining the path of light rays in the module package according to the first embodiment. 10 shows a cross-sectional view of a module package 300B that is an example of the module package 300.
  • the module package 300B includes a package substrate 30B, a light emitting element 31, a light receiving element 32, a light transmissive resin 33A, and a light shielding resin 34B as a light shielding part.
  • a groove is provided in the package substrate 30B, and a part of the light shielding resin 34B is inserted.
  • the light shielding resin 34B is formed of the same member as the light shielding resin 34A.
  • the light beam emitted from the light emitting element 31 travels in various directions.
  • the light beam is reflected by the upper surface and the side surface of the light transmitting resin 33A in the region 401 on the left side of the region where the light blocking resin 34B is disposed.
  • a region 401 on the left side of the region where the light shielding resin 34B is disposed is a region where the light emitting element 31 is disposed in the light transmitting resin 33A.
  • the light beam irradiated to the light shielding resin 34B is absorbed or scattered by the light shielding resin 34B.
  • the light beam emitted from the light emitting element 31 is blocked by the light blocking resin 34B. Accordingly, stray light does not enter the region 402 on the right side of the region where the light blocking resin 34B is disposed in the light transmitting resin 33A.
  • a region 402 on the right side of the region where the light shielding resin 34B is disposed is a region where the light receiving element 32 is disposed in the light transmitting resin 33A.
  • the light shielding resin 34B is arranged in the module package 300B, it is possible to prevent the light emitted from the light emitting element 31 from entering the right region 402 from the left region 401. Therefore, stray light that is a part of the light beam reflected by the light transmissive resin 33 ⁇ / b> A can be prevented from entering the light receiving surface 320.
  • the module package 300B is configured such that the light shielding resin 34B enters the package substrate 30B so that no gap is generated between the light shielding resin 34B and the package substrate 30B. Note that a slight gap may be formed between the light-shielding resin 34B and the package substrate 30B. Even in this case, the effect of suppressing unnecessary light hardly changes.
  • the light emitting element 31 and the light receiving element 32 are mounted on the package substrate 30B, and the upper surface side of the package substrate 30B is molded with the light transmissive resin 33A. Thereafter, a groove is formed between the light emitting element 31 and the light receiving element 32 by cutting the light transmitting resin 33A and the package substrate 30B. Specifically, a groove is dug in the vertical direction by dicing or the like in a region between the light emitting element 31 and the light receiving element 32 in the light transmitting resin 33A. And this groove
  • the light shielding resin 34B can be molded into the module package 300B by embedding the light shielding resin 34B in the groove. As described above, the light-shielding resin 34B is disposed in the region where the package substrate 30B is dug and the region where the light-transmitting resin 33A is dug. Note that the manufacturing method is not limited as long as the module package 300B includes the light-transmitting resin 33A and the light-shielding resin 34B.
  • the module package 300X of the comparative example when the module package 300X of the comparative example is applied, there may be a case where light beams that are multiple-reflected between the module package 300X and the optical pattern 200 enter the light receiving element 32X.
  • the module package 300 ⁇ / b> B light beams that are multiple-reflected between the module package 300 ⁇ / b> B and the optical pattern 200 do not enter the light receiving element 32.
  • FIG. 11 is a diagram for explaining how the module package according to the first embodiment prevents the multiple reflected light from entering the light receiving element.
  • a light path between the module package 300B and the optical scale 2 will be described.
  • FIG. 11 shows a cross-sectional view of the module package 300B.
  • a part of the light beam emitted from the light emitting element 31 is reflected by the reflecting portion 201 of the optical pattern 200 provided in the optical scale 2, and then sent to the surface of the light transmissive resin 33A of the module package 300B.
  • the light beam sent to the surface of the light transmissive resin 33A is absorbed or scattered by the light shielding resin 34B. Thereby, in the module package 300B, the light beam sent to the surface of the light transmissive resin 33A does not travel again to the reflecting portion 201 of the optical pattern 200.
  • the module package 300X of the comparative example that is, when there is no light shielding resin 34B, a part of the light beam emitted from the light emitting element 31X is reflected by the reflecting portion 201 of the optical pattern 200 provided in the optical scale 2, and then Reflected by the surface of the light transmissive resin 33X of the module package 300X. Further, the light beam reflected by the surface of the light transmissive resin 33X is reflected by the reflecting portion 201 of the optical pattern 200 and enters the light receiving element 32X. As described above, an unnecessary light path may occur due to multiple reflection between the module package 300X of the comparative example and the optical scale 2.
  • the light ray path indicated by a solid line is a normal light ray path 901 necessary for detecting the absolute rotation angle
  • the light ray path indicated by a broken line is an unnecessary light ray path 902.
  • the light beam in the light beam path 901 is incident on the light receiving element 32 after being reflected at the position P ⁇ b> 52 of the optical scale 2.
  • the light beam in the light path 902 is reflected at the position P51 of the optical scale 2 and then reflected by the light transmissive resin 33X. And is incident on the light receiving element 32X.
  • the position P52 where the light beam traveling along the normal light beam path 901 is reflected by the optical scale 2 and the positions P51 and P53 where the unnecessary light beam traveling along the light beam path 902 is reflected by the optical scale 2 are optical
  • the position of the radial scale 2 is different.
  • the waveform corresponding to the light beam reflected at the position P52 is an ideal waveform, whereas the waveform corresponding to the light beam reflected at the positions P51 and P53 is deviated from the ideal waveform. .
  • the waveform of the signal when only the light beam of the regular light beam path 901 is received is a light beam signal detected by the light receiving element 32 of the module package 300A or the module package 300B of the first embodiment.
  • the waveform of the signal when receiving both the light beam of the regular light path 901 and the light beam of the non-regular light path 902 is a signal of the light beam detected by the light receiving element 32X of the module package 300X of the comparative example.
  • FIG. 12 is a diagram illustrating a waveform example of a signal detected by the light receiving element of the module package according to the first embodiment.
  • FIG. 13 is a diagram illustrating a waveform example of a signal detected by the light receiving element of the module package of the comparative example.
  • the waveform of the signal shown in FIG. 12 is a waveform 71 when the light receiving element 32 of the module package 300A or the module package 300B receives only the light beam of the regular light beam path 901.
  • the waveform of the signal shown in FIG. 13 is a waveform 72 when the light receiving element 32X of the module package 300X receives both of the regular ray path 901 and the irregular ray path 902.
  • the waveform 71 shown in FIG. 12 is an ideal waveform based on the rays of the regular ray path 901
  • the waveform 72 shown in FIG. 13 is a distorted waveform 71 shown in FIG.
  • the waveform 71 shown in FIG. 12 becomes a distorted waveform like the waveform 72 shown in FIG.
  • the signal corresponding to the unnecessary light beam in the light beam path 902 changes according to the reflection position on the optical pattern 200. That is, since the optical pattern 200 has various patterns arranged for each position, a signal corresponding to an unnecessary light beam in the light beam path 902 generates various signals for each light irradiation position on the optical pattern 200. . As described above, the unnecessary light beam reflected by the optical pattern 200 is affected variously for each rotation position of the optical pattern 200. On the other hand, the unnecessary light beam reflected in the light transmissive resin 33 ⁇ / b> A is always a constant amount regardless of the optical pattern 200. Therefore, the unnecessary light beam reflected by the optical pattern 200 is more difficult to correct than the unnecessary light beam reflected in the light transmissive resin 33A.
  • the unnecessary light beam reflected by the optical pattern 200 changes the influence for each reflection position corresponding to the absolute rotation angle. Therefore, it is unnecessary only by correction when the absolute encoder 1 is shipped. The effect of light cannot be removed.
  • an unnecessary light beam path 902 passes through an intermediate position between the light emitting surface 310 of the light emitting element 31 and the light receiving surface 320 of the light receiving element 32. Therefore, the light shielding resin 34B of the module package 300B is disposed at an intermediate position between the light emitting surface 310 and the light receiving surface 320. As a result, after the light beam in the light path 902 is reflected by the optical scale 2, it is irradiated to the light shielding resin 34B exposed on the upper surface of the light transmissive resin 33A and absorbed or scattered by the light shielding resin 34B.
  • the light beam in the light beam path 902 is not reflected by the upper surface of the package substrate 30B, so that the light beam in the light beam path 902 is not irradiated onto the optical scale 2. Accordingly, since the light beam in the light beam path 902 is not reflected by the optical scale 2, the light beam in the light beam path 902 is not irradiated on the light receiving surface 320.
  • the light shielding resin 34A of the module package 300A may be disposed at an intermediate position between the light emitting surface 310 and the light receiving surface 320.
  • FIG. 14 is a diagram for explaining an arrangement position of the light shielding resin provided in the module package according to the first embodiment.
  • the arrangement position of the light shielding resin 34A when the module package 300A is viewed from the upper surface is the same as the arrangement position of the light shielding resin 34B when the module package 300B is viewed from the upper surface. Therefore, here, the arrangement position of the light shielding resin 34B in the module package 300B will be described.
  • FIG. 14 is a top view of the module package 300B, but is hatched to clarify the correspondence with the cross-sectional view of FIG.
  • the light shielding resin 34 ⁇ / b> B is disposed so as to pass through an intermediate position between the center of the light emitting surface 310 and the center of the light receiving surface 320.
  • the light blocking resin 34B is made so that the distance from the center of the light blocking resin 34B to the center of the light emitting surface 310 is the same as the distance from the center of the light blocking resin 34B to the center of the light receiving surface 320. Be placed.
  • the center of the light-shielding resin 34B is arranged at the intermediate position between the light emitting surface 310 and the light receiving surface 320 has been described, but at the intermediate position between the light emitting surface 310 and the light receiving surface 320, The light-shielding resin 34B only needs to be present. Therefore, the center of the light shielding resin 34 ⁇ / b> B may be shifted from the intermediate position between the light emitting surface 310 and the light receiving surface 320.
  • the light beam reflected by the optical pattern 200 may be reflected multiple times between the light receiving element 32X and the light transmitting resin 33X and may enter the light receiving element 32X.
  • FIG. 15 is a diagram for explaining a third example of stray light generated by the module package of the comparative example.
  • a case where the light beam reflected by the optical pattern 200 undergoes multiple reflections between the light receiving element 32X and the light transmissive resin 33X will be described.
  • FIG. 15 shows a cross-sectional view of the module package 300X of the comparative example.
  • the light beam emitted from the light emitting element 31X is reflected by the optical scale 2 and then irradiated to the light receiving element 32X.
  • a part of the light beam irradiated to the light receiving element 32X is reflected around the light receiving surface 320X or the light receiving surface 320X itself.
  • the light receiving surface 320X itself reflects the light beam because the light receiving surface 320X is made of a reflective material.
  • the light beam reflected around the light receiving surface 320X or the light receiving surface 320X itself is reflected by Fresnel reflection on the surface of the light-transmitting resin 33X and travels again toward the light receiving element 32X.
  • the position P52 where the light beam traveling in the normal light beam path 901 is reflected by the optical scale 2 and the position P54 where the unnecessary light beam traveling in the non-normal light beam path 903 is reflected by the optical scale 2 are the optical scale 2 Is shifted in the radial direction of the optical pattern 200 included in the optical pattern 200. That is, the position P54 is shifted from the position P52 in the radial direction of the rotary shaft 5.
  • the optical path length until reaching the light receiving element 32X differs between the light path 901 and the light path 903. Therefore, the magnification rate of the bit pattern of the optical scale 2 when reaching the light receiving element 32X is different between the light path 901 and the light path 903. Accordingly, when the light receiving element 32X receives both the light beam in the light beam path 901 and the light beam in the light beam path 903, the light amount distribution received by the light receiving element 32X is distorted. In other words, when the light receiving element 32X receives the light beam in the light path 903, distortion occurs in the light amount distribution when the light receiving element 32X receives only the light beam in the light path 901. For this reason, when the light receiving element 32X receives the light beam in the light beam path 903, an error occurs in the detection accuracy of the absolute rotation angle.
  • the angle of the light incident on the light receiving element 32X becomes closer to the vertical, so that unnecessary light easily enters the light receiving element 32X. Therefore, as the module package 300X is separated from the optical scale 2, multiple reflection between the light receiving element 32X and the light transmissive resin 33X is more likely to occur.
  • FIG. 16 is a diagram for explaining a dimensional relationship of components included in the module package according to the first embodiment.
  • the module package 300B and the optical scale 2 are arranged at positions that are separated by an allowable maximum distance.
  • the distance from the upper surface of the module package 300B to the optical scale 2 is a distance L1
  • the distance from the center of the light emitting surface 310 to the end surface on the light emitting element 31 side of the light receiving element 32 is a distance L2.
  • the angle ⁇ 1 of the light ray incident on the end face of the light receiving element 32 on the light emitting element 31 side is determined by the distance L1 and the distance L2.
  • the angle ⁇ 1 is calculated using the angle ⁇ x
  • the angle ⁇ x is calculated using the distances L1 and L0.
  • the distance L0 is calculated from the distances L1, L2, and L3. Therefore, the angle ⁇ 1 is calculated using the distances L1, L2, and L3.
  • the distance from the end of the light receiving element 32 on the light emitting element 31 side to the end of the light receiving surface 320 opposite to the light emitting element 31 is defined as a distance L4.
  • the end of the light receiving element 32 on the light emitting element 31 side is a side end surface extending in the vertical direction
  • the end of the light receiving surface 320 opposite to the light emitting element 31 is the vertical of the member having the light receiving surface 320. It is a side end surface extending in the direction.
  • Lx 2 ⁇ tan ⁇ 1 ⁇ L3, where Lx is the distance between the first incident position on the light emitting element 31 side of the light receiving element 32 in the light beam path 903 and the second incident position.
  • the light incident first on the light emitting element 31 side end of the light receiving element 32 through the light beam path 903 deviates from the light receiving surface 320.
  • the second incidence of the light incident on the right side of the end of the light receiving element 32 on the light emitting element 31 side also deviates from the light receiving surface 320.
  • the module package 300 ⁇ / b> B is configured to satisfy the formula (1), so that unnecessary light rays can be prevented from entering the light receiving element 32.
  • the distance L1 may be a distance from the upper surface of the module package 300B to the optical pattern 200.
  • the control unit 4 can be realized by a control circuit, that is, a processor and a memory.
  • the processor is a CPU (Central Processing Unit) or the like.
  • the memory is RAM (Random Access Memory) or ROM (Read Only Memory).
  • the control unit 4 is realized by the processor reading and executing a program stored in the memory. This program can be said to cause a computer to execute the procedure or method of the control unit 4.
  • the memory is also used as a temporary memory when the processor executes various processes.
  • control unit 4 may be realized by dedicated hardware. Further, part of the functions of the control unit 4 may be realized by dedicated hardware, and part of the functions may be realized by software or firmware.
  • the light shielding resin 34B described with reference to FIGS. 10 and 16 is not limited to being disposed at an intermediate position between the center of the light emitting surface 310 and the center of the light receiving surface 320, and may be disposed in another region. .
  • the entire light emitting element 31 and light receiving element 32 mounted on the package substrate 30A are covered with the light transmissive resin 33A, and light shielding is performed between the light emitting element 31 and the light receiving element 32.
  • 34A is provided.
  • the entire light emitting element 31 and light receiving element 32 mounted on the package substrate 30B are covered with a light transmissive resin 33A, and a light shielding resin 34B is provided between the light emitting element 31 and the light receiving element 32.
  • the module packages 300A and 300B can remove unnecessary light directly incident on the light receiving element 32 from the light emitting element 31 with the light shielding resins 34A and 34B, so that the absolute rotation angle can be detected with high accuracy. It becomes.
  • the module package 300A since the light shielding resin 34A is provided at an intermediate position between the center of the light emitting surface 310 of the light emitting element 31 and the center of the light receiving surface 320 of the light receiving element 32, the light transmitting resin 33A and Unnecessary light rays due to multiple reflection with the optical scale 2 can be suppressed.
  • the module package 300B since the light shielding resin 34B is provided at an intermediate position between the center of the light emitting surface 310 of the light emitting element 31 and the center of the light receiving surface 320 of the light receiving element 32, the light transmitting resin 33A. And unnecessary light rays due to multiple reflection between the optical scale 2 can be suppressed. Therefore, the module packages 300A and 300B can detect the absolute rotation angle with high accuracy.
  • module packages 300A and 300B are configured to satisfy the above-described formula (1), it is possible to suppress unnecessary light rays from entering the light receiving element 32. Therefore, the module packages 300A and 300B can detect the absolute rotation angle with high accuracy.
  • the package substrates 30A and 30B are made of glass epoxy substrates, and the light transmitting resin 33A and the light shielding resins 34A and 34B are both made of epoxy resin, it is possible to suppress cracks and the like at the time of temperature change. it can. Thereby, the reliability of the module packages 300A and 300B can be improved.
  • the module packages 300A and 300B have the light shielding resin 34A at an intermediate position between the center of the light emitting surface 310 included in the light emitting element 31 and the center of the light receiving surface 320 included in the light receiving element 32. , 34B, the absolute rotation angle of the measurement object can be detected with high accuracy.
  • Embodiment 2 a second embodiment of the present invention will be described with reference to FIGS.
  • the light beam reflected by the light transmitting resin is incident on the light receiving surface 320 of the light receiving element 32 by inclining the upper surface of the light transmitting resin with respect to the light receiving surface 320 of the light receiving element 32. Suppress.
  • FIG. 17 is a diagram illustrating a first configuration example of the module package according to the second embodiment. 17, components that achieve the same functions as those of the module package 300A of the first embodiment shown in FIG. 2 or the module package 300B of the first embodiment shown in FIG. 10 are denoted by the same reference numerals. The overlapping description is omitted.
  • the module package 300C of the second embodiment includes a package substrate 30B, a light emitting element 31, a light receiving element 32, a light transmissive resin 33C, and a light shielding resin 34C as a light shielding part. As described above, the module package 300C includes the light transmissive resin 33C instead of the light transmissive resin 33A.
  • the light-shielding resin 34C has a shorter vertical length than the light-shielding resins 34A and 34B, but the other configurations are the same.
  • the light transmissive resin 33C is formed using the same member as the light transmissive resin 33A, and the shape is different from that of the light transmissive resin 33A.
  • the light transmissive resin 33C covers the entire light emitting element 31 and light receiving element 32 on the package substrate 30B in the same manner as the light transmissive resin 33A.
  • the light transmissive resin 33C has a region 403 on the left side of the region where the light shielding resin 34C is arranged and a region 404 on the right side of the region where the light shielding resin 34C is arranged.
  • the upper surface of the light transmissive resin 33C in the region 403 is the upper surface 150
  • the upper surface of the light transmissive resin 33C in the region 404 is the upper surface 151.
  • the first horizontal surface of the light shielding resin 34C is in the same plane as the upper surface 150 of the light transmissive resin 33C in the region 403. Further, the second horizontal surface of the light shielding resin 34C is in contact with the package substrate 30B inside the package substrate 30B.
  • the gradient is formed on the upper surface 151 of the light transmitting resin 33C.
  • the upper surface 151 on the light receiving element 32 side is not parallel to the light receiving surface 320 in the same plane as the upper surface of the light receiving element 32 but is inclined.
  • the thickness of the light transmissive resin 33C in the region 404 is gradually increased from the end on the light shielding resin 34C side to the end on the opposite side of the light shielding resin 34C.
  • the thickness of the light transmissive resin 33C in the region 404 at the end on the light shielding resin 34C side is the same as the thickness of the light transmissive resin 33C in the region 403.
  • the angle formed between the upper surface 150 and the upper surface 151 is the angle ⁇ 2.
  • the gradient angle of the upper surface 151 is the angle ⁇ 2.
  • the absolute encoder 1 of the second embodiment has the same basic configuration as the absolute encoder 1 of the first embodiment, but the shape of the light-transmitting resin 33C in the region 404 is light-transmitting resin. It is different from the shape in the region 402 of 33A.
  • the light beam path 903 of the unnecessary light beam and the normal light beam path 901 have substantially the same incident angle to the light receiving element 32X.
  • an angle at which an unnecessary light beam is Fresnel-reflected on the upper surface of the light transmitting resin 33X and is incident on the light receiving element 32X is substantially the same as an angle at which a normal light beam is incident on the light receiving element 32X. Therefore, in the second embodiment, the upper surface 151 that reflects unnecessary light as it enters the light is inclined from the horizontal direction. Thus, the upper surface 151 is provided with a gradient so that unnecessary light rays are reflected at a wide reflection angle.
  • the light beam reflected by the light receiving element 32 is Fresnel-reflected by the upper surface 151 of the light transmissive resin 33C, but the angle of the reflected light beam is the angle ⁇ 2 that is the gradient angle of the upper surface 151. Tilt. For this reason, unnecessary light beams reflected by the light receiving element 32 and the upper surface 151 are less likely to enter the light receiving surface 320 of the light receiving element 32. As the angle ⁇ 2 that is the gradient angle is larger, unnecessary light rays due to multiple reflection between the light receiving element 32 and the light transmitting resin 33C are less likely to enter the light receiving surface 320.
  • the thinner the light transmissive resin 33C in the region 403 can be made.
  • the thickness of the light transmissive resin 33C can be reduced as compared with the light transmissive resin 33A of the first embodiment.
  • the module package 300C may include a package substrate 30A instead of the package substrate 30B.
  • the light transmissive resin 33C may be applied to the module package 300A.
  • the module package 300A includes a light transmitting resin 33C instead of the light transmitting resin 33A, and includes a light blocking resin 34C instead of the light blocking resin 34A.
  • FIG. 18 is a diagram illustrating a second configuration example of the module package according to the second embodiment.
  • constituent elements that achieve the same functions as those of the module package 300 ⁇ / b> C shown in FIG. 17 are denoted by the same reference numerals, and redundant description is omitted.
  • the module package 300D includes a package substrate 30B, a light emitting element 31, a light receiving element 32, a light transmitting resin 33D, and a light blocking resin 34C as a light blocking portion. As described above, the module package 300D includes the light transmissive resin 33D instead of the light transmissive resin 33C.
  • the light transmissive resin 33D is formed using the same member as the light transmissive resin 33C, and the shape is different from that of the light transmissive resin 33C.
  • the light transmissive resin 33D covers the entire light emitting element 31 and light receiving element 32 on the package substrate 30B in the same manner as the light transmissive resin 33C.
  • the light transmitting resin 33D has a region 405 on the left side of the region where the light shielding resin 34C is disposed and a region 406 on the right side of the region where the light shielding resin 34C is disposed.
  • the upper surface of the light transmissive resin 33D in the region 405 is the upper surface 152
  • the upper surface of the light transmissive resin 33D in the region 406 is the upper surface 153.
  • a region 406 is a region similar to the region 404
  • an upper surface 153 is a surface similar to the upper surface 151.
  • the upper surface 152 of the light transmissive resin 33D is not parallel to the light receiving surface 320 in the same plane as the upper surface of the light receiving element 32, but is inclined. Specifically, the thickness of the light transmissive resin 33D in the region 405 gradually decreases from the end on the light shielding resin 34C side toward the end opposite to the light shielding resin 34C side. .
  • the thickness of the light transmitting resin 33D at the end of the region 405 on the light shielding resin 34C side is the same as the thickness of the region 406 at the end of the light shielding resin 34C side.
  • the angle formed between the bottom surface of the light transmissive resin 33D and the top surface 152 is an angle ⁇ 2
  • the angle formed between the bottom surface of the light transmissive resin 33D and the top surface 153 is an angle ⁇ 2.
  • the gradient angle of the upper surfaces 152 and 153 is the angle ⁇ 2.
  • the light transmissive resins 33C and 33D are reflected after the light rays are reflected by the light receiving element 32.
  • the Fresnel reflection is performed on the upper surfaces 151 and 153, the light is reflected by being inclined by an angle ⁇ 2 that is a gradient angle. For this reason, it is difficult for the unnecessary reflected light beam to enter the light receiving surface 320.
  • the module packages 300C and 300D can detect the absolute rotation angle with high accuracy. Further, since the thickness of the light transmissive resins 33C and 33D can be reduced, it is possible to reduce the material cost when manufacturing the module packages 300C and 300D, and to realize the detection of the absolute rotation angle at a low cost. It becomes possible.
  • the module package 300D may include a package substrate 30A instead of the package substrate 30B.
  • the light transmissive resin 33D may be applied to the module package 300A.
  • the module package 300A includes a light-transmitting resin 33D instead of the light-transmitting resin 33A, and includes a light-blocking resin 34C instead of the light-blocking resin 34A.
  • the light shielding resin 34 ⁇ / b> C described in FIGS. 17 and 18 is not limited to being disposed at an intermediate position between the center of the light emitting surface 310 and the center of the light receiving surface 320, and may be disposed in another region. .
  • the absolute encoder 1 is a rotary encoder that detects a rotation angle
  • the absolute encoder 1 can also be applied to a linear encoder that detects a linear movement amount. is there.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

This absolute encoder comprises: an optical scale having an optical pattern; a module package (300B) in which a light-emission element (31) for irradiating light onto the optical scale and a light-reception element (32) for receiving reflected light from the optical scale are covered by a light-transmitting resin (33A); and a control unit for calculating the absolute rotation angle of the optical scale on the basis of a signal output by the light-reception element (32) according to the reflected light. The module package (300B) has light-blocking resin (34B) disposed so as to be exposed at the surface of the light-transmitting resin (33A) facing the optical scale and pass through the intermediate position between the center of the light emission surface (310) of the light-emitting element (31) and the center of the light reception surface (320) of the light-reception element (32).

Description

アブソリュートエンコーダAbsolute encoder
 本発明は、測定対象物の絶対回転角度を検出するアブソリュートエンコーダに関する。 The present invention relates to an absolute encoder that detects an absolute rotation angle of a measurement object.
 測定対象物の絶対回転角度を検出するロータリーエンコーダの1つに、アブソリュートエンコーダがある。アブソリュートエンコーダは、光学式スケール上の光学パターンで反射されて受光素子に入射した光信号に基づいて、光学式スケールの絶対回転角度を算出するエンコーダである。このアブソリュートエンコーダでは、絶対回転角度の演算に用いる光線以外の不要な光線が受光素子に入射すると、絶対回転角度の検出精度が低下してしまうので、不要な光線を除去することが望まれる。 ¡An absolute encoder is one of the rotary encoders that detects the absolute rotation angle of the measurement object. The absolute encoder is an encoder that calculates an absolute rotation angle of the optical scale based on an optical signal reflected by an optical pattern on the optical scale and incident on a light receiving element. In this absolute encoder, when an unnecessary light beam other than the light beam used for the calculation of the absolute rotation angle is incident on the light receiving element, the detection accuracy of the absolute rotation angle is lowered. Therefore, it is desirable to remove the unnecessary light beam.
 特許文献1の光学式エンコーダは、光源と、光検出器と、光源スリットとがパッケージに封入されており、光源スリットの一端に遮光部が形成されている。この構成により、特許文献1の光学式エンコーダは、遮光部で不要な光線の進行を防止している。 In the optical encoder of Patent Document 1, a light source, a photodetector, and a light source slit are enclosed in a package, and a light-shielding portion is formed at one end of the light source slit. With this configuration, the optical encoder of Patent Document 1 prevents unnecessary light from traveling at the light shielding portion.
特開2007-333667号公報JP 2007-333667 A
 しかしながら、上記従来の技術である特許文献1では、パッケージと光学式スケールとの間の多重反射に起因する角度検出精度の低下を抑制できない。パッケージと光学式スケールとの間の多重反射は、光源から出射した光線が、光学式スケールで反射された後、パッケージの表面で反射され、さらに光学式スケールで反射される現象である。この多重反射した光が光検出器に入射することで検出精度が低下する。多重反射による光線は、光学式スケールの回転に応じて光線量および光線のパターンが変わるので、演算装置によって除去することが困難である。このため、特許文献1では、測定対象物の絶対回転角度を精度良く検出することができないという問題があった。 However, in Patent Document 1, which is the above-described conventional technique, it is not possible to suppress a decrease in angle detection accuracy due to multiple reflection between the package and the optical scale. The multiple reflection between the package and the optical scale is a phenomenon in which the light beam emitted from the light source is reflected by the optical scale, then reflected by the surface of the package, and further reflected by the optical scale. The detection accuracy is lowered by the multiple reflected light entering the photodetector. Since the light amount and the light beam pattern change according to the rotation of the optical scale, it is difficult to remove the light beam by the multiple reflection by the arithmetic unit. For this reason, in patent document 1, there existed a problem that the absolute rotation angle of a measuring object could not be detected accurately.
 本発明は、上記に鑑みてなされたものであって、測定対象物の絶対回転角度を精度良く検出することができるアブソリュートエンコーダを得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain an absolute encoder that can accurately detect the absolute rotation angle of a measurement object.
 上述した課題を解決し、目的を達成するために、本発明のアブソリュートエンコーダは、光学パターンを有する光学式スケールと、光学式スケールに光を照射する発光素子および光学式スケールからの反射光を受光する受光素子を光透過性樹脂で覆ったモジュールパッケージと、受光素子が反射光に応じて出力する信号に基づいて、光学式スケールの絶対回転角度を演算する制御部と、を備えている。また、本発明のアブソリュートエンコーダは、モジュールパッケージに、光透過性樹脂の光学式スケールに対向する面で露出し且つ発光素子の発光面の中心と、受光素子の受光面の中心との中間位置を通る遮光部が配置されている。 In order to solve the above-described problems and achieve the object, the absolute encoder of the present invention receives an optical scale having an optical pattern, a light emitting element that irradiates light to the optical scale, and reflected light from the optical scale. And a control unit that calculates an absolute rotation angle of the optical scale based on a signal output from the light receiving element according to reflected light. Also, the absolute encoder of the present invention is exposed to the module package on the surface facing the optical scale of the light-transmitting resin and has an intermediate position between the center of the light emitting surface of the light emitting element and the center of the light receiving surface of the light receiving element. A light-shielding part is provided.
 本発明にかかるアブソリュートエンコーダは、測定対象物の絶対回転角度を精度良く検出することができるという効果を奏する。 The absolute encoder according to the present invention has an effect that the absolute rotation angle of the measurement object can be accurately detected.
本発明の実施の形態1にかかるアブソリュートエンコーダの構成を示す図The figure which shows the structure of the absolute encoder concerning Embodiment 1 of this invention. 実施の形態1にかかるモジュールパッケージの構成を示す断面図Sectional drawing which shows the structure of the module package concerning Embodiment 1. 実施の形態1にかかるモジュールパッケージの構成を示す上面図FIG. 3 is a top view showing the configuration of the module package according to the first embodiment. 実施の形態1にかかるアブソリュートエンコーダが備える角度演算部の構成を示すブロック図FIG. 2 is a block diagram showing a configuration of an angle calculation unit provided in the absolute encoder according to the first embodiment. 実施の形態1にかかるアブソリュートエンコーダの角度演算部が受光素子から受付ける信号の波形例を示す図The figure which shows the example of a waveform of the signal which the angle calculating part of the absolute encoder concerning Embodiment 1 receives from a light receiving element. 図5に示した波形が均一な分布に補正されたものを示す図The figure which shows what the waveform shown in FIG. 5 was correct | amended by uniform distribution 図6に示した波形から粗い絶対回転角度を算出する方法を説明するための図The figure for demonstrating the method of calculating a rough absolute rotation angle from the waveform shown in FIG. 図7で説明した粗い絶対回転角度から細かい絶対回転角度を算出する方法を説明するための図The figure for demonstrating the method of calculating a fine absolute rotation angle from the rough absolute rotation angle demonstrated in FIG. 比較例のモジュールパッケージが発生させる迷光の例を説明するための図The figure for demonstrating the example of the stray light which the module package of a comparative example generates 実施の形態1にかかるモジュールパッケージ内での光線の進路を説明するための図The figure for demonstrating the course of the light ray in the module package concerning Embodiment 1 実施の形態1にかかるモジュールパッケージが受光素子への多重反射光の入射を防止する様子を説明するための図The figure for demonstrating a mode that the module package concerning Embodiment 1 prevents incidence | injection of the multiple reflected light to a light receiving element. 実施の形態1にかかるモジュールパッケージの受光素子で検出される信号の波形例を示す図FIG. 3 is a diagram illustrating a waveform example of a signal detected by the light receiving element of the module package according to the first embodiment. 比較例のモジュールパッケージの受光素子で検出される信号の波形例を示す図The figure which shows the waveform example of the signal detected with the light receiving element of the module package of a comparative example 実施の形態1にかかるモジュールパッケージが備える遮光性樹脂の配置位置を説明するための図The figure for demonstrating the arrangement position of light-shielding resin with which the module package concerning Embodiment 1 is provided. 比較例のモジュールパッケージが発生させる迷光の第3例を説明するための図The figure for demonstrating the 3rd example of the stray light which the module package of a comparative example generates 実施の形態1にかかるモジュールパッケージが備える構成要素の寸法関係を説明するための図The figure for demonstrating the dimensional relationship of the component with which the module package concerning Embodiment 1 is provided. 実施の形態2にかかるモジュールパッケージの第1の構成例を示す図The figure which shows the 1st structural example of the module package concerning Embodiment 2. FIG. 実施の形態2にかかるモジュールパッケージの第2の構成例を示す図The figure which shows the 2nd structural example of the module package concerning Embodiment 2. FIG.
 以下に、本発明の実施の形態にかかるアブソリュートエンコーダを図面に基づいて詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。 Hereinafter, an absolute encoder according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to these embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかるアブソリュートエンコーダの構成を示す図である。アブソリュートエンコーダ1は、測定対象物である回転体の回転角度を検出する装置であり、光学式スケール2と、モジュールパッケージ300と、制御部4とを備えている。アブソリュートエンコーダ1が検出する回転角度は、絶対回転角度である。なお、図1では、光学式スケール2に対向する側の面であるモジュールパッケージ300の上面を下側に図示し、モジュールパッケージ300の底面を上側に図示している。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of an absolute encoder according to the first embodiment of the present invention. The absolute encoder 1 is a device that detects a rotation angle of a rotating body that is a measurement object, and includes an optical scale 2, a module package 300, and a control unit 4. The rotation angle detected by the absolute encoder 1 is an absolute rotation angle. In FIG. 1, the upper surface of the module package 300 that is the surface facing the optical scale 2 is illustrated on the lower side, and the bottom surface of the module package 300 is illustrated on the upper side.
 光学式スケール2は、モーター等の回転装置が備える回転シャフト5に連結されており、回転シャフト5の回転に応じて回転する。光学式スケール2は、円板状の部材を用いて構成されている。光学式スケール2は、円板状の部材の上面に、明暗のうちの「明」を示すライン状のパターンである反射部201と、「暗」を示すライン状のパターンである非反射部202とが、交互に配置された光学パターン200を備えている。 The optical scale 2 is connected to a rotating shaft 5 provided in a rotating device such as a motor, and rotates according to the rotation of the rotating shaft 5. The optical scale 2 is configured using a disk-shaped member. The optical scale 2 includes, on the upper surface of a disk-shaped member, a reflective portion 201 that is a line pattern indicating “bright” of light and dark, and a non-reflective portion 202 that is a line pattern indicating “dark”. Are provided with optical patterns 200 arranged alternately.
 反射部201は、後述する発光素子31からの光線を反射する部分であり、非反射部202は、発光素子31からの光線を吸収または散乱する部分である。反射部201は、円板状の部材の中心部から外周部に向かう方向に複数本が配置されている。また、非反射部202は、円板状の部材の中心部から外周部に向かう方向に複数本が配置されている。換言すると、複数本の反射部201および複数本の非反射部202は、ライン状の一端が光学パターン200の中心を向き、他端が光学パターン200の外側方向に向くよう配置されている。 The reflection portion 201 is a portion that reflects light rays from the light emitting element 31 described later, and the non-reflection portion 202 is a portion that absorbs or scatters light rays from the light emitting element 31. A plurality of reflecting portions 201 are arranged in a direction from the center portion of the disk-shaped member toward the outer peripheral portion. A plurality of non-reflective portions 202 are arranged in a direction from the center portion of the disk-shaped member toward the outer peripheral portion. In other words, the plurality of reflecting portions 201 and the plurality of non-reflecting portions 202 are arranged such that one end of the line shape faces the center of the optical pattern 200 and the other end faces the outside direction of the optical pattern 200.
 非反射部202は、反射部201の間に配置されており、反射部201は、非反射部202の間に配置されている。光学式スケール2では、円板状の部材の外周部の環状領域内で、反射部201および非反射部202が放射線状に並ぶよう反射部201と非反射部202とが交互に配置されている。反射部201および非反射部202は、種々の寸法幅を有している。換言すると、反射部201は、種々の間隔で並べられ、非反射部202は、種々の間隔で並べられている。 The non-reflecting part 202 is disposed between the reflecting parts 201, and the reflecting part 201 is disposed between the non-reflecting parts 202. In the optical scale 2, the reflecting portions 201 and the non-reflecting portions 202 are alternately arranged so that the reflecting portions 201 and the non-reflecting portions 202 are arranged in a radial pattern within the annular region of the outer peripheral portion of the disk-shaped member. . The reflection part 201 and the non-reflection part 202 have various dimensional widths. In other words, the reflecting portions 201 are arranged at various intervals, and the non-reflecting portions 202 are arranged at various intervals.
 光学パターン200は、反射部201および非反射部202が種々の間隔で配置されたパターンであるので、回転している光学パターン200に光線が照射されると、光線の反射と非反射とが反射部201および非反射部202の配置間隔に応じて繰り返される。これにより、反射部201および非反射部202は、後述する受光素子32上に投影される光強度分布を変調するように機能する。 Since the optical pattern 200 is a pattern in which the reflecting portion 201 and the non-reflecting portion 202 are arranged at various intervals, when the rotating optical pattern 200 is irradiated with light, reflection and non-reflection of the light are reflected. It repeats according to the arrangement | positioning space | interval of the part 201 and the non-reflective part 202. FIG. Thereby, the reflection unit 201 and the non-reflection unit 202 function to modulate a light intensity distribution projected on the light receiving element 32 described later.
 光学式スケール2には、反射部201および非反射部202で構成される光学パターン200を有するトラックが1本だけ設けられる。反射部201および非反射部202は、光学式スケール2の回転角度を特徴づける間隔で配置される。このように、光学式スケール2は、回転角度固有の光学パターン200を有している。反射部201および非反射部202の配置パターンには、例えば、M系列といった疑似ランダム符号パターンが使用される。 The optical scale 2 is provided with only one track having the optical pattern 200 composed of the reflecting portion 201 and the non-reflecting portion 202. The reflecting part 201 and the non-reflecting part 202 are arranged at intervals that characterize the rotation angle of the optical scale 2. As described above, the optical scale 2 has the optical pattern 200 unique to the rotation angle. For the arrangement pattern of the reflection unit 201 and the non-reflection unit 202, for example, a pseudo-random code pattern such as an M series is used.
 光学式スケール2は、例えば、ステンレス等の金属基材から形成される。光学パターン200が形成される際には、金属基材の表面にメッキ技術等によって非反射部202が形成され、金属基材部が鏡面仕上げされることによって反射部201が形成される。なお、反射部201および非反射部202が形成できる方法であれば、何れの方法によって光学パターン200が形成されてもよい。 The optical scale 2 is formed from, for example, a metal base material such as stainless steel. When the optical pattern 200 is formed, the non-reflective portion 202 is formed on the surface of the metal substrate by a plating technique or the like, and the reflective portion 201 is formed by mirror-finishing the metal substrate portion. The optical pattern 200 may be formed by any method as long as the reflective portion 201 and the non-reflective portion 202 can be formed.
 モジュールパッケージ300は、投光機能である発光素子31および受光機能である受光素子32を備えた投受光モジュールである。モジュールパッケージ300は、光学パターン200の上側に、光学パターン200に対向するよう配置される。モジュールパッケージ300は、発光素子31から出射された光のうち、光学パターン200で反射されて受光素子32に入射してくる光を検出し、検出した光に対応する信号を制御部4へ出力する。 The module package 300 is a light projecting / receiving module including a light emitting element 31 having a light projecting function and a light receiving element 32 having a light receiving function. The module package 300 is disposed above the optical pattern 200 so as to face the optical pattern 200. The module package 300 detects the light reflected from the optical pattern 200 and incident on the light receiving element 32 out of the light emitted from the light emitting element 31, and outputs a signal corresponding to the detected light to the control unit 4. .
 制御部4は、受光素子32よりも後段側で受光素子32に接続されている。制御部4は、角度演算部41と、発光量調整部42とを備えている。角度演算部41は、モジュールパッケージ300が備える受光素子32から出力される信号に基づいて、光学式スケール2の絶対回転角度を演算する。角度演算部41が算出する絶対回転角度は、回転シャフト5の回転位置に対応している。このように、角度演算部41は、コード化された光学パターン200に対応する信号に基づいて、回転シャフト5の回転位置を演算する。角度演算部41は、回転シャフト5の位置データを示す絶対回転角度を位置データとして外部装置に出力する。発光量調整部42は、受光素子32から出力される信号に基づいて、発光素子31が出射する光の発光量を調整する。 The control unit 4 is connected to the light receiving element 32 on the downstream side of the light receiving element 32. The control unit 4 includes an angle calculation unit 41 and a light emission amount adjustment unit 42. The angle calculation unit 41 calculates the absolute rotation angle of the optical scale 2 based on a signal output from the light receiving element 32 included in the module package 300. The absolute rotation angle calculated by the angle calculation unit 41 corresponds to the rotation position of the rotary shaft 5. Thus, the angle calculation unit 41 calculates the rotational position of the rotary shaft 5 based on the signal corresponding to the encoded optical pattern 200. The angle calculation unit 41 outputs an absolute rotation angle indicating position data of the rotary shaft 5 to the external device as position data. The light emission amount adjustment unit 42 adjusts the light emission amount of the light emitted from the light emitting element 31 based on the signal output from the light receiving element 32.
 このように、アブソリュートエンコーダ1は、角度演算部41が、受光素子32に入射した光線に対応する信号から絶対回転角度を演算する。なお、制御部4は、絶対回転角度に基づいて、測定対象物の回転制御を行ってもよい。アブソリュートエンコーダ1は、受光素子32から出力されるパルス信号の積算をする必要がないので、電源投入時に原点への復帰動作が不要であり、迅速に立ち上げることが可能である。 Thus, in the absolute encoder 1, the angle calculation unit 41 calculates the absolute rotation angle from the signal corresponding to the light beam incident on the light receiving element 32. Note that the control unit 4 may perform rotation control of the measurement object based on the absolute rotation angle. Since the absolute encoder 1 does not need to integrate the pulse signals output from the light receiving element 32, it does not need to return to the origin when the power is turned on, and can be started up quickly.
 図2は、実施の形態1にかかるモジュールパッケージの構成を示す断面図である。また、図3は、実施の形態1にかかるモジュールパッケージの構成を示す上面図である。図2および図3では、モジュールパッケージ300の一例であるモジュールパッケージ300Aの構成を図示している。 FIG. 2 is a cross-sectional view illustrating the configuration of the module package according to the first embodiment. FIG. 3 is a top view showing the configuration of the module package according to the first embodiment. 2 and 3 illustrate a configuration of a module package 300A that is an example of the module package 300. FIG.
 なお、図2では、光学パターン200に対向する面であるモジュールパッケージ300Aの上面を下側に図示し、モジュールパッケージ300Aの底面を上側に図示している。また、後述する図9から図11、図15から図18でも、モジュールパッケージの上面を下側に図示し、モジュールパッケージの底面を上側に図示している。また、図2では、パッケージ基板30Aおよび光透過性樹脂33Aのハッチングを省略している。また、後述する図9から図11、図15から図18でも、パッケージ基板および光透過性樹脂のハッチングを省略している。また、図3は、モジュールパッケージ300Aの上面図であるが、図2の断面図との対応を明確にするためハッチングを付してある。 In FIG. 2, the upper surface of the module package 300A, which is the surface facing the optical pattern 200, is illustrated on the lower side, and the bottom surface of the module package 300A is illustrated on the upper side. Also, in FIGS. 9 to 11 and FIGS. 15 to 18 to be described later, the upper surface of the module package is illustrated on the lower side, and the bottom surface of the module package is illustrated on the upper side. Further, in FIG. 2, the package substrate 30A and the light transmissive resin 33A are not hatched. Also, in FIGS. 9 to 11 and FIGS. 15 to 18 to be described later, hatching of the package substrate and the light transmitting resin is omitted. FIG. 3 is a top view of the module package 300A, but hatching is added to clarify the correspondence with the cross-sectional view of FIG.
 モジュールパッケージ300Aは、パッケージ基板30Aと、発光素子31と、受光素子32と、光透過性樹脂33Aと、遮光部である遮光性樹脂34Aとを有している。なお、以下の説明では、説明の便宜上、パッケージ基板30Aの上面および底面が配置される方向を水平方向といい、パッケージ基板30Aの上面および底面に垂直な方向を鉛直方向という場合がある。 The module package 300A includes a package substrate 30A, a light emitting element 31, a light receiving element 32, a light transmissive resin 33A, and a light shielding resin 34A that is a light shielding portion. In the following description, for convenience of explanation, the direction in which the upper surface and the bottom surface of the package substrate 30A are arranged may be referred to as a horizontal direction, and the direction perpendicular to the upper surface and the bottom surface of the package substrate 30A may be referred to as a vertical direction.
 パッケージ基板30Aは、発光素子31および受光素子32が実装される基板であり、図示しないエンコーダ基板に接続されている。エンコーダ基板は、モジュールパッケージ300Aよりも後段側で種々の処理を実行する基板であり、制御部4が配置されている。具体的には、エンコーダ基板は、制御部4の処理を実行する処理回路を有している。なお、パッケージ基板30Aの上面は、矩形状であり、この4辺の全てに端子が設けられている。そして、各端子が、エンコーダ基板に接続されている。パッケージ基板30Aに設けられる端子には、端面スルーホールまたは裏面電極等が適用される。パッケージ基板30Aの4辺の全てに端子が設けられることにより、発光素子31および受光素子32の実装精度が向上する。 The package substrate 30A is a substrate on which the light emitting element 31 and the light receiving element 32 are mounted, and is connected to an encoder substrate (not shown). The encoder board is a board that executes various processes on the rear side of the module package 300A, and the control unit 4 is disposed on the encoder board. Specifically, the encoder board has a processing circuit that executes the processing of the control unit 4. Note that the upper surface of the package substrate 30A has a rectangular shape, and terminals are provided on all of these four sides. Each terminal is connected to the encoder board. For the terminals provided on the package substrate 30A, an end face through hole or a back electrode is applied. By providing the terminals on all four sides of the package substrate 30A, the mounting accuracy of the light emitting element 31 and the light receiving element 32 is improved.
 パッケージ基板30Aは、矩形状の上面を有しており、矩形状の上面に発光素子31および受光素子32が配置されている。パッケージ基板30Aは、エンコーダ基板と同様の基板で構成されることが望ましい。エンコーダ基板は、例えば、ガラエポ基板で構成されている。この場合、パッケージ基板30Aもガラエポ基板で構成されることが望ましい。 The package substrate 30A has a rectangular upper surface, and the light emitting element 31 and the light receiving element 32 are arranged on the rectangular upper surface. The package substrate 30A is preferably composed of a substrate similar to the encoder substrate. The encoder board is composed of a glass epoxy board, for example. In this case, it is desirable that the package substrate 30A is also formed of a glass epoxy substrate.
 発光素子31は、光を出射する素子であり、光学式スケール2に光を照射する。発光素子31には、例えば近赤外の点光源LED(Light Emitting Diode)が適用される。発光素子31は、その上面に発光面310が配置されており、発光面310から光を出射する。発光素子31は、発光面310が水平方向となるよう、パッケージ基板30Aに接合されている。 The light emitting element 31 is an element that emits light, and irradiates the optical scale 2 with light. For example, a near infrared point light source LED (Light Emitting Diode) is applied to the light emitting element 31. The light emitting element 31 has a light emitting surface 310 disposed on the upper surface thereof, and emits light from the light emitting surface 310. The light emitting element 31 is bonded to the package substrate 30A so that the light emitting surface 310 is in the horizontal direction.
 受光素子32は、光を受光する素子であり、光学式スケール2からの反射光を受光する。受光素子32には、例えば1次元に配列した画素の集合で構成された、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサまたはCCD(Charge Coupled Device)イメージセンサといった撮像デバイスが適用される。受光素子32は、その上面に受光面320が配置されており、受光面320で光を受光する。受光素子32は、受光面320が水平方向となるよう、パッケージ基板30Aに接合されている。 The light receiving element 32 is an element that receives light, and receives reflected light from the optical scale 2. For the light receiving element 32, for example, an imaging device such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor configured by a set of pixels arranged in one dimension is applied. The light receiving element 32 has a light receiving surface 320 disposed on the upper surface thereof, and receives light on the light receiving surface 320. The light receiving element 32 is bonded to the package substrate 30A so that the light receiving surface 320 is in the horizontal direction.
 受光素子32は、光学式スケール2からの反射光に応じた信号を出力する。具体的には、受光素子32は、受光面320で受光した光をアナログの電圧信号に変換し、さらにアナログの電圧信号を受光素子32に内蔵されたA/D(Analog-to-Digital)変換器でデジタルの信号に変換し、後段の制御部4へ出力する。なお、ここでは、A/D変換器の図示を省略している。A/D変換器が、制御部4に出力する信号は、光学式スケール2で反射されて受光素子32が受光した光に対応する信号である。したがって、制御部4が受信する信号は、光学式スケール2の回転位置に対応している。 The light receiving element 32 outputs a signal corresponding to the reflected light from the optical scale 2. Specifically, the light receiving element 32 converts light received by the light receiving surface 320 into an analog voltage signal, and further converts the analog voltage signal into an A / D (Analog-to-Digital) conversion built in the light receiving element 32. The signal is converted into a digital signal by the device and output to the control unit 4 at the subsequent stage. Here, the illustration of the A / D converter is omitted. The signal output from the A / D converter to the control unit 4 is a signal corresponding to the light reflected by the optical scale 2 and received by the light receiving element 32. Therefore, the signal received by the control unit 4 corresponds to the rotational position of the optical scale 2.
 光透過性樹脂33Aは、パッケージ基板30Aの上面を覆うよう形成されている。したがって、光透過性樹脂33Aの底面および上面は、矩形状をなしている。光透過性樹脂33Aは、発光素子31および受光素子32を保護するために、パッケージ基板30A上の発光素子31および受光素子32を覆っている。光透過性樹脂33Aは、パッケージ基板30Aと線膨張係数を合わせるために、例えばエポキシ系樹脂で構成されている。 The light transmissive resin 33A is formed so as to cover the upper surface of the package substrate 30A. Therefore, the bottom surface and the top surface of the light transmissive resin 33A are rectangular. The light transmissive resin 33 </ b> A covers the light emitting element 31 and the light receiving element 32 on the package substrate 30 </ b> A in order to protect the light emitting element 31 and the light receiving element 32. The light transmissive resin 33A is made of, for example, an epoxy resin in order to match the linear expansion coefficient with the package substrate 30A.
 遮光性樹脂34Aは、不要な光線である迷光の進行を抑制するための部材であり、光透過性樹脂33Aと同様にエポキシ系樹脂などで構成されている。不要な光線である迷光は、受光素子32に入射させたくない光である。不要な光線の例は、光透過性樹脂33Aと外部との界面でフレネル反射された光である。遮光性樹脂34Aは、発光素子31から出射された光のうち、受光素子32に入射させたくない光を吸収または散乱する。遮光性樹脂34Aが、吸収または散乱する光は、発光素子31から出射された光と、発光素子31から出射されて光透過性樹脂33A内で反射された光と、発光素子31から出射されてパッケージ基板30Aと光学式スケール2との間で多重反射された光とである。 The light-shielding resin 34A is a member for suppressing the progression of stray light, which is an unnecessary light beam, and is made of an epoxy resin or the like, similar to the light-transmitting resin 33A. The stray light that is an unnecessary light beam is light that is not desired to be incident on the light receiving element 32. An example of unnecessary light is light that is Fresnel-reflected at the interface between the light-transmitting resin 33A and the outside. The light shielding resin 34 </ b> A absorbs or scatters light that is not desired to be incident on the light receiving element 32 among the light emitted from the light emitting element 31. Light absorbed or scattered by the light shielding resin 34A is emitted from the light emitting element 31, light emitted from the light emitting element 31 and reflected in the light transmissive resin 33A, and emitted from the light emitting element 31. This is light that has been multiple-reflected between the package substrate 30 </ b> A and the optical scale 2.
 遮光性樹脂34Aは、板状の形状を有しており、板状のおもて面および裏面が鉛直方向となるよう、発光素子31と受光素子32との間に配置されている。具体的には、発光素子31が配置されている領域と、受光素子32が配置されている領域とを分断するよう、遮光性樹脂34Aは配置されている。すなわち、図2および図3に示すように、発光素子31が配置されている光透過性樹脂33Aの左側の領域420と、受光素子32が配置されている光透過性樹脂33Aの右側の領域421とが分断されるよう、遮光性樹脂34Aが配置される。この場合において、発光素子31側の光透過性樹脂33Aと、受光素子32側の光透過性樹脂33Aとが繋がらないよう、パッケージ基板30A上に遮光性樹脂34Aを形成しておく。図2では、遮光性樹脂34Aの水平方向の第1の面が、光透過性樹脂33Aの上面と同じ面内であり、かつ遮光性樹脂34Aの水平方向の第2の面が光透過性樹脂33Aの底面と同じ面内である場合を示している。遮光性樹脂34Aの水平方向の第1の面が、光透過性樹脂33Aの上面と同じ面内であるので、モジュールパッケージ300Aの上面では、遮光性樹脂34Aが露出している。換言すると、遮光性樹脂34Aは、光透過性樹脂33Aの光学式スケール2に対向する面で光透過性樹脂33Aから露出している。 The light shielding resin 34A has a plate shape, and is disposed between the light emitting element 31 and the light receiving element 32 so that the front surface and the back surface of the plate are in the vertical direction. Specifically, the light shielding resin 34A is disposed so as to divide the region where the light emitting element 31 is disposed from the region where the light receiving element 32 is disposed. That is, as shown in FIGS. 2 and 3, the left side region 420 of the light transmissive resin 33A in which the light emitting element 31 is disposed and the right side region 421 of the light transmissive resin 33A in which the light receiving element 32 is disposed. The light shielding resin 34 </ b> A is arranged so that is divided. In this case, a light shielding resin 34A is formed on the package substrate 30A so that the light transmissive resin 33A on the light emitting element 31 side and the light transmissive resin 33A on the light receiving element 32 side are not connected. In FIG. 2, the first horizontal surface of the light shielding resin 34A is in the same plane as the upper surface of the light transmissive resin 33A, and the second horizontal surface of the light shielding resin 34A is the light transmissive resin. The case where it exists in the same surface as the bottom face of 33A is shown. Since the first horizontal surface of the light shielding resin 34A is in the same plane as the upper surface of the light transmissive resin 33A, the light shielding resin 34A is exposed on the upper surface of the module package 300A. In other words, the light shielding resin 34A is exposed from the light transmissive resin 33A on the surface of the light transmissive resin 33A facing the optical scale 2.
 なお、発光素子31が光学パターン200に出射した光線のうち受光素子32に入射させたい光線までも遮光しないよう、遮光性樹脂34Aを配置しておく。すなわち、受光素子32に入射させたい光線の経路が、遮光性樹脂34Aを通らないよう、遮光性樹脂34Aを配置しておく。モジュールパッケージ300Aでは、板状の遮光性樹脂34Aのおもて面および裏面が、パッケージ基板30Aの上面に垂直となるよう、遮光性樹脂34Aを配置しておく。 It should be noted that a light blocking resin 34 </ b> A is arranged so as not to block light rays that are desired to be incident on the light receiving element 32 among light rays emitted from the light emitting element 31 to the optical pattern 200. That is, the light shielding resin 34A is disposed so that the path of the light beam that is desired to enter the light receiving element 32 does not pass through the light shielding resin 34A. In the module package 300A, the light shielding resin 34A is disposed so that the front surface and the back surface of the plate-shaped light shielding resin 34A are perpendicular to the upper surface of the package substrate 30A.
 ところで、ガラエポ基板は近赤外線等の光の一部を透過させることが知られている。このため、パッケージ基板30Aにガラエポ基板が適用される場合、発光素子31から出射された光線が、直接、または光透過性樹脂33A内で反射されて、パッケージ基板30Aに伝わり、受光素子32に不要な光線として到達する可能性がある。このような場合があるので、パッケージ基板30Aには、黒色ガラエポ基板が適用されてもよい。また、ガラエポ基板内に光線が入射しないよう、またはガラエポ基板内で光線が伝播しないよう、ガラエポ基板の表面に金属膜、黒色レジスト、またはこれらの組み合わせを適用することが、不要な光線の到達を防止するうえで効果的である。なお、これらの材料を用いた方法と同様の効果が得られる方法であれば、他の材料を用いた方法が適用されてもよい。 By the way, it is known that a glass epoxy substrate transmits a part of light such as near infrared rays. For this reason, when a glass epoxy substrate is applied to the package substrate 30A, the light emitted from the light emitting element 31 is reflected directly or within the light transmissive resin 33A and is transmitted to the package substrate 30A, and is not necessary for the light receiving element 32. May reach as a light beam. In such a case, a black glass epoxy substrate may be applied to the package substrate 30A. In addition, applying a metal film, black resist, or a combination of these to the surface of the glass-epoxy substrate to prevent unwanted rays from entering the glass-epoxy substrate or preventing the light from propagating in the glass-epoxy substrate. It is effective in preventing. Note that a method using another material may be applied as long as the same effect as the method using these materials can be obtained.
 ここで、角度演算部41の構成について説明する。図4は、実施の形態1にかかるアブソリュートエンコーダが備える角度演算部の構成を示すブロック図である。角度演算部41は、光量分布補正部411と、エッジ検出部412と、粗検出部413と、高精度検出部414と、回転角度検出部415とを備えている。 Here, the configuration of the angle calculation unit 41 will be described. FIG. 4 is a block diagram illustrating a configuration of an angle calculation unit included in the absolute encoder according to the first embodiment. The angle calculation unit 41 includes a light amount distribution correction unit 411, an edge detection unit 412, a rough detection unit 413, a high accuracy detection unit 414, and a rotation angle detection unit 415.
 受光素子32から出力された信号は、光量分布補正部411に送られる。これにより、光量分布補正部411は、受光素子32からの信号を受付ける。受光素子32が光量分布補正部411に入力する信号の波形は、例えば、横軸を画素の位置、縦軸を信号強度とする図5に示すような波形である。 The signal output from the light receiving element 32 is sent to the light quantity distribution correction unit 411. Thereby, the light quantity distribution correction unit 411 receives a signal from the light receiving element 32. The waveform of the signal input to the light amount distribution correction unit 411 by the light receiving element 32 is, for example, a waveform as shown in FIG. 5 with the horizontal axis representing the pixel position and the vertical axis representing the signal intensity.
 図5は、実施の形態1にかかるアブソリュートエンコーダの角度演算部が受光素子から受付ける信号の波形例を示す図である。図5に示すグラフの横軸は画素であり、縦軸は信号強度である。なお、後述する図6から図8、図12および図13に示すグラフも、図5のグラフと同様に横軸が画素であり、縦軸が信号強度である。 FIG. 5 is a diagram illustrating a waveform example of a signal received from the light receiving element by the angle calculation unit of the absolute encoder according to the first embodiment. The horizontal axis of the graph shown in FIG. 5 is the pixel, and the vertical axis is the signal intensity. In the graphs shown in FIGS. 6 to 8, 12 and 13 to be described later, the horizontal axis is the pixel and the vertical axis is the signal intensity, as in the graph of FIG.
 図5におけるレベル1の信号14は、光学式スケール2の反射部201でのパターンに対応し、レベル0の信号15は、光学式スケール2の非反射部202でのパターンに対応している。 5, the level 1 signal 14 corresponds to the pattern at the reflecting portion 201 of the optical scale 2, and the level 0 signal 15 corresponds to the pattern at the non-reflecting portion 202 of the optical scale 2.
 発光素子31自体の光量分布、および受光素子32の各画素のゲインばらつき等の影響によって、レベル1の信号14およびレベル0の信号15は、画素毎に信号強度が不均一となる。そこで、光量分布補正部411は、信号強度の極大値が不均一な分布を、信号強度の極大値が均一な分布に補正する。ここでの光量分布補正部411は、図5に示す信号強度を、図6に示す信号強度に補正する。 The signal intensity of the level 1 signal 14 and the level 0 signal 15 is non-uniform for each pixel due to the influence of the light amount distribution of the light emitting element 31 itself and the gain variation of each pixel of the light receiving element 32. Therefore, the light amount distribution correction unit 411 corrects the distribution in which the maximum value of the signal intensity is not uniform to the distribution in which the maximum value of the signal intensity is uniform. The light quantity distribution correction unit 411 here corrects the signal intensity shown in FIG. 5 to the signal intensity shown in FIG.
 図6は、図5に示した波形が均一な分布に補正されたものを示す図である。図6に示すように、光量分布補正部411は、画素毎の信号強度の極大値が均一となるよう、レベル1の信号14およびレベル0の信号15を補正する。換言すると、光量分布補正部411は、レベル1の信号14が各画素で同じになり、且つレベル0の信号15が各画素で同じになるよう信号の波形を補正する。図6では、補正後の波形を補正後波形16として図示している。 FIG. 6 is a diagram showing the waveform shown in FIG. 5 corrected to a uniform distribution. As shown in FIG. 6, the light quantity distribution correction unit 411 corrects the level 1 signal 14 and the level 0 signal 15 so that the maximum value of the signal intensity for each pixel becomes uniform. In other words, the light amount distribution correction unit 411 corrects the waveform of the signal so that the level 1 signal 14 is the same for each pixel and the level 0 signal 15 is the same for each pixel. In FIG. 6, the corrected waveform is illustrated as a corrected waveform 16.
 なお、光量分布補正部411による補正方法は、光量分布を均一にする方法であれば、その方法は何れの方法であってもよい。光量分布補正部411は、補正後波形16をエッジ検出部412に送る。 The correction method by the light amount distribution correction unit 411 may be any method as long as the light amount distribution is uniform. The light quantity distribution correction unit 411 sends the corrected waveform 16 to the edge detection unit 412.
 エッジ検出部412は、補正後波形16に基づいて、予め設定しておいた閾値レベル17に信号強度が一致する画素値をエッジ毎に算出する。エッジ検出部412は、算出した画素値をエッジ画素値として粗検出部413に送る。 The edge detection unit 412 calculates, for each edge, a pixel value whose signal intensity matches a preset threshold level 17 based on the corrected waveform 16. The edge detection unit 412 sends the calculated pixel value to the rough detection unit 413 as an edge pixel value.
 粗検出部413は、エッジ画素値に基づいて、光学式スケール2の光学パターン200のうち、受光素子32上に投影されるビットパターンをデコードし、粗い絶対回転角度を算出する。ここで、図7を用いて粗い絶対回転角度の算出方法について説明する。 The coarse detection unit 413 decodes a bit pattern projected on the light receiving element 32 in the optical pattern 200 of the optical scale 2 based on the edge pixel value, and calculates a rough absolute rotation angle. Here, the rough absolute rotation angle calculation method will be described with reference to FIG.
 図7は、図6に示した波形から粗い絶対回転角度を算出する方法を説明するための図である。図7では、補正後波形16に対応するビット列を、ビット列18で示している。粗検出部413は、エッジ画素値が示すエッジの位置に基づいて、補正後波形16を図7に示すように「1」または「0」のビット列18に変換する。さらに、粗検出部413は、制御部4が備える図示しないメモリ内に予め保存されているルックアップテーブル19を参照し、ビット列18に一致するコードから粗い絶対回転角度100を求める。ルックアップテーブル19は、光学パターン200に対応するビット列を格納するテーブルである。粗検出部413は、粗い絶対回転角度100を高精度検出部414に送る。 FIG. 7 is a diagram for explaining a method of calculating a rough absolute rotation angle from the waveform shown in FIG. In FIG. 7, a bit string corresponding to the corrected waveform 16 is indicated by a bit string 18. The coarse detection unit 413 converts the corrected waveform 16 into a bit string 18 of “1” or “0” as shown in FIG. 7 based on the edge position indicated by the edge pixel value. Further, the coarse detection unit 413 refers to a lookup table 19 stored in advance in a memory (not shown) provided in the control unit 4 and obtains a rough absolute rotation angle 100 from a code that matches the bit string 18. The lookup table 19 is a table that stores a bit string corresponding to the optical pattern 200. The coarse detector 413 sends the coarse absolute rotation angle 100 to the high accuracy detector 414.
 高精度検出部414は、粗い絶対回転角度100に基づいて、受光素子32上に投影されるパターンの位相ずれ量を高精度に演算する。粗検出部413が求めた粗い絶対回転角度100は、光学式スケール2のビット単位の絶対回転角度100となる。このため、高精度検出部414は、基準となる画素である基準画素から最も近いエッジ画素の位置までの位相ずれ量を検出することで、細かい絶対回転角度を算出する。 The high accuracy detection unit 414 calculates the phase shift amount of the pattern projected on the light receiving element 32 with high accuracy based on the rough absolute rotation angle 100. The coarse absolute rotation angle 100 obtained by the coarse detection unit 413 is the absolute rotation angle 100 in units of bits of the optical scale 2. For this reason, the high-accuracy detection unit 414 calculates a fine absolute rotation angle by detecting the phase shift amount from the reference pixel, which is a reference pixel, to the position of the nearest edge pixel.
 図8は、図7で説明した粗い絶対回転角度から細かい絶対回転角度を算出する方法を説明するための図である。高精度検出部414は、図8に示すように、基準画素21から、基準画素21に最も近いエッジ画素の位置であるエッジ画素位置22までの位相ずれ量20を検出する。基準画素21は、細かい絶対回転角度を算出する際に基準とする画素であり、何れの画素であってもよい。位相ずれ量20は、基準画素21の位置とエッジ画素位置22との差に対応している。高精度検出部414は、粗い絶対回転角度100および位相ずれ量20を回転角度検出部415に送る。 FIG. 8 is a diagram for explaining a method of calculating a fine absolute rotation angle from the rough absolute rotation angle described in FIG. As shown in FIG. 8, the high accuracy detection unit 414 detects the phase shift amount 20 from the reference pixel 21 to the edge pixel position 22 that is the position of the edge pixel closest to the reference pixel 21. The reference pixel 21 is a pixel used as a reference when calculating a fine absolute rotation angle, and may be any pixel. The phase shift amount 20 corresponds to the difference between the position of the reference pixel 21 and the edge pixel position 22. The high accuracy detection unit 414 sends the coarse absolute rotation angle 100 and the phase shift amount 20 to the rotation angle detection unit 415.
 回転角度検出部415は、位相ずれ量20に基づいて、光学式スケール2の1ビット単位よりも細かい絶対回転角度を算出する。具体的には、回転角度検出部415は、粗検出部413が算出した粗い絶対回転角度100と、高精度検出部414が算出した位相ずれ量20とを足しあわせることによって、細かい絶対回転角度を算出する。回転角度検出部415は、算出した細かい絶対回転角度を位置データとして外部装置に出力する。 The rotation angle detection unit 415 calculates an absolute rotation angle finer than the 1-bit unit of the optical scale 2 based on the phase shift amount 20. Specifically, the rotation angle detection unit 415 adds the coarse absolute rotation angle 100 calculated by the coarse detection unit 413 and the phase shift amount 20 calculated by the high accuracy detection unit 414 to obtain a fine absolute rotation angle. calculate. The rotation angle detection unit 415 outputs the calculated fine absolute rotation angle to the external device as position data.
 このように、アブソリュートエンコーダ1は、発光素子31から出射した光線のうち、光学式スケール2の光学パターン200で反射した光線を受光素子32で受光し、受光した光の光量分布パターンから絶対回転角度を検出する。このとき、不要な光線である迷光が受光素子32に入射すると、受光素子32が受光する光線の信号品質が低下し、エッジ検出部412が検出するエッジ画素位置22に誤差が重畳する。このため、絶対回転角度に誤差が重畳してしまうので、高精度に絶対回転角度を検出するためには不要な光線である迷光を抑制する必要がある。この迷光は、不要な光線であり、絶対回転角度の検出精度を悪化させる原因となる。 As described above, the absolute encoder 1 receives the light beam reflected by the optical pattern 200 of the optical scale 2 among the light beams emitted from the light emitting element 31, and receives the absolute rotation angle from the light amount distribution pattern of the received light. Is detected. At this time, if stray light, which is an unnecessary light beam, enters the light receiving element 32, the signal quality of the light beam received by the light receiving element 32 deteriorates, and an error is superimposed on the edge pixel position 22 detected by the edge detection unit 412. For this reason, since an error is superimposed on the absolute rotation angle, it is necessary to suppress stray light, which is an unnecessary light beam, in order to detect the absolute rotation angle with high accuracy. This stray light is an unnecessary light beam and causes the absolute rotation angle detection accuracy to deteriorate.
 ここで、絶対回転角度の検出精度を悪化させる迷光経路について説明する。ここでは、迷光経路のうち比較例のモジュールパッケージ内で多重反射した光線の経路について説明する。 Here, the stray light path that deteriorates the detection accuracy of the absolute rotation angle will be described. Here, of the stray light path, the path of the light beam that has undergone multiple reflection in the module package of the comparative example will be described.
 図9は、比較例のモジュールパッケージが発生させる迷光の例を説明するための図である。ここでは、比較例のモジュールパッケージ300X内で発生する迷光について説明する。図9では、比較例のモジュールパッケージ300Xの断面図を示している。 FIG. 9 is a diagram for explaining an example of stray light generated by the module package of the comparative example. Here, the stray light generated in the module package 300X of the comparative example will be described. FIG. 9 shows a cross-sectional view of the module package 300X of the comparative example.
 比較例のモジュールパッケージ300Xは、パッケージ基板30Aと同様のパッケージ基板30Xと、発光素子31と同様の発光素子31Xと、受光素子32と同様の受光素子32Xと、光透過性樹脂33Aと同様の光透過性樹脂33Xとを有している。また、発光素子31Xが発光面310と同様の発光面310Xを有し、受光素子32Xが受光面320と同様の受光面320Xを有している。また、比較例のモジュールパッケージ300Xは、遮光性樹脂34Aを備えていない。 The module package 300X of the comparative example includes a package substrate 30X similar to the package substrate 30A, a light emitting element 31X similar to the light emitting element 31, a light receiving element 32X similar to the light receiving element 32, and light similar to the light transmitting resin 33A. Transparent resin 33X. The light emitting element 31X has a light emitting surface 310X similar to the light emitting surface 310, and the light receiving element 32X has a light receiving surface 320X similar to the light receiving surface 320. Further, the module package 300X of the comparative example does not include the light shielding resin 34A.
 図9では、発光素子31Xから出射した光線が、比較例のモジュールパッケージ300X内で反射をして受光素子32Xに入射する光線の例を示している。発光素子31Xは、等方拡散光源であるので、光線は全方位に出射される。これにより、発光素子31Xから出射された光線は、種々の方向に進んでいく。このため、遮光性樹脂34Aが無い場合、図9に示すように、モジュールパッケージ300X内では、光透過性樹脂33Xの界面でフレネル反射を繰り返した後に、受光素子32Xに入射する光線が存在する。すなわち、光透過性樹脂33X内では、光透過性樹脂33Xの上面および側面で光線がフレネル反射され、フレネル反射された光線の一部が、受光面320Xに入射する。これにより、受光面320Xには、所望する光以外の迷光が入射し、絶対回転角度の検出精度を悪化させる。 FIG. 9 shows an example of a light beam emitted from the light emitting element 31X and reflected into the light receiving element 32X after being reflected in the module package 300X of the comparative example. Since the light emitting element 31X is an isotropic diffusion light source, the light beam is emitted in all directions. Thereby, the light beam emitted from the light emitting element 31X proceeds in various directions. For this reason, when there is no light shielding resin 34A, as shown in FIG. 9, in the module package 300X, there is a light ray incident on the light receiving element 32X after repeating Fresnel reflection at the interface of the light transmitting resin 33X. That is, in the light transmissive resin 33X, the light beam is Fresnel-reflected on the upper surface and the side surface of the light transmissive resin 33X, and a part of the Fresnel-reflected light beam enters the light receiving surface 320X. As a result, stray light other than the desired light is incident on the light receiving surface 320X, and the detection accuracy of the absolute rotation angle is deteriorated.
 そこで、実施の形態1では、図2に示したようにモジュールパッケージ300Aにおいて、発光素子31が配置される領域420と受光素子32が配置される領域421が分割されるように、遮光性樹脂34Aが設置される。 Therefore, in the first embodiment, as shown in FIG. 2, in the module package 300A, the light shielding resin 34A is divided so that the region 420 where the light emitting element 31 is arranged and the region 421 where the light receiving element 32 is arranged are divided. Is installed.
 このように、モジュールパッケージ300A内に遮光性樹脂34Aが配置されているので、発光素子31から出射された光が、発光素子31側である左側の領域420から受光素子32側である右側の領域421に進入することを防止できる。したがって、光透過性樹脂33Aで反射された光線の一部である迷光が受光面320に入射することを防止できる。 Thus, since the light shielding resin 34A is arranged in the module package 300A, the light emitted from the light emitting element 31 is changed from the left area 420 on the light emitting element 31 side to the right area on the light receiving element 32 side. Entry to 421 can be prevented. Therefore, stray light that is a part of the light beam reflected by the light transmissive resin 33 </ b> A can be prevented from entering the light receiving surface 320.
 図10は、実施の形態1にかかるモジュールパッケージ内での光線の進路を説明するための図である。なお、図10では、モジュールパッケージ300の一例であるモジュールパッケージ300Bの断面図を示している。モジュールパッケージ300Bは、パッケージ基板30Bと、発光素子31と、受光素子32と、光透過性樹脂33Aと、遮光部である遮光性樹脂34Bとを有している。パッケージ基板30Bには溝が設けられており、遮光性樹脂34Bの一部が挿入されている。遮光性樹脂34Bは、遮光性樹脂34Aと同様の部材で形成されている。 FIG. 10 is a diagram for explaining the path of light rays in the module package according to the first embodiment. 10 shows a cross-sectional view of a module package 300B that is an example of the module package 300. The module package 300B includes a package substrate 30B, a light emitting element 31, a light receiving element 32, a light transmissive resin 33A, and a light shielding resin 34B as a light shielding part. A groove is provided in the package substrate 30B, and a part of the light shielding resin 34B is inserted. The light shielding resin 34B is formed of the same member as the light shielding resin 34A.
 モジュールパッケージ300Bでは、発光素子31から出射された光線は、種々の方向に進んでいく。この場合において、光透過性樹脂33A内では、遮光性樹脂34Bの配置されている領域よりも左側の領域401で、光透過性樹脂33Aの上面および側面で光線が反射される。遮光性樹脂34Bの配置されている領域よりも左側の領域401は、光透過性樹脂33A内のうち、発光素子31が配置されている領域である。 In the module package 300B, the light beam emitted from the light emitting element 31 travels in various directions. In this case, in the light transmitting resin 33A, the light beam is reflected by the upper surface and the side surface of the light transmitting resin 33A in the region 401 on the left side of the region where the light blocking resin 34B is disposed. A region 401 on the left side of the region where the light shielding resin 34B is disposed is a region where the light emitting element 31 is disposed in the light transmitting resin 33A.
 また、遮光性樹脂34Bに照射された光線は、遮光性樹脂34Bで吸収または散乱される。換言すると、発光素子31から出射された光線は、遮光性樹脂34Bで遮られる。これにより、光透過性樹脂33A内のうち、遮光性樹脂34Bの配置されている領域よりも右側の領域402には、迷光が侵入しない。遮光性樹脂34Bの配置されている領域よりも右側の領域402は、光透過性樹脂33A内のうち、受光素子32が配置されている領域である。 Further, the light beam irradiated to the light shielding resin 34B is absorbed or scattered by the light shielding resin 34B. In other words, the light beam emitted from the light emitting element 31 is blocked by the light blocking resin 34B. Accordingly, stray light does not enter the region 402 on the right side of the region where the light blocking resin 34B is disposed in the light transmitting resin 33A. A region 402 on the right side of the region where the light shielding resin 34B is disposed is a region where the light receiving element 32 is disposed in the light transmitting resin 33A.
 このように、モジュールパッケージ300B内に遮光性樹脂34Bが配置されているので、発光素子31から出射された光が、左側の領域401から右側の領域402に進入することを防止できる。したがって、光透過性樹脂33Aで反射された光線の一部である迷光が受光面320に入射することを防止できる。 Thus, since the light shielding resin 34B is arranged in the module package 300B, it is possible to prevent the light emitted from the light emitting element 31 from entering the right region 402 from the left region 401. Therefore, stray light that is a part of the light beam reflected by the light transmissive resin 33 </ b> A can be prevented from entering the light receiving surface 320.
 モジュールパッケージ300Bでは、遮光性樹脂34Bと、パッケージ基板30Bとの間に隙間が生じないよう、遮光性樹脂34Bがパッケージ基板30Bに入り込むよう構成されることが望ましい。なお、遮光性樹脂34Bとパッケージ基板30Bとの間には、若干の隙間が生じてもよく、この場合であっても、不要な光線を抑制する効果はほとんど変らない。 It is desirable that the module package 300B is configured such that the light shielding resin 34B enters the package substrate 30B so that no gap is generated between the light shielding resin 34B and the package substrate 30B. Note that a slight gap may be formed between the light-shielding resin 34B and the package substrate 30B. Even in this case, the effect of suppressing unnecessary light hardly changes.
 モジュールパッケージ300Bが製造される際には、例えば、パッケージ基板30Bに発光素子31および受光素子32が実装され、光透過性樹脂33Aでパッケージ基板30Bの上面側がモールドされる。この後、光透過性樹脂33Aおよびパッケージ基板30Bへの切削等によって発光素子31と受光素子32との間に溝が形成される。具体的には、光透過性樹脂33Aのうち発光素子31と受光素子32との間の領域にダイシング等によって鉛直方向に溝が掘り込まれる。そして、この溝がパッケージ基板30B内の途中まで鉛直方向にさらに掘り込まれる。光透過性樹脂33Aに溝が形成された後に、この溝に遮光性樹脂34Bが埋め込まれることによって、モジュールパッケージ300B内に遮光性樹脂34Bを成型することができる。このように、遮光性樹脂34Bは、パッケージ基板30Bが掘り込まれた領域および光透過性樹脂33Aが掘り込まれた領域に配置されている。なお、モジュールパッケージ300Bは、光透過性樹脂33Aおよび遮光性樹脂34Bを有していれば、製造方法は限定されない。 When the module package 300B is manufactured, for example, the light emitting element 31 and the light receiving element 32 are mounted on the package substrate 30B, and the upper surface side of the package substrate 30B is molded with the light transmissive resin 33A. Thereafter, a groove is formed between the light emitting element 31 and the light receiving element 32 by cutting the light transmitting resin 33A and the package substrate 30B. Specifically, a groove is dug in the vertical direction by dicing or the like in a region between the light emitting element 31 and the light receiving element 32 in the light transmitting resin 33A. And this groove | channel is further dug in the perpendicular direction to the middle in the package substrate 30B. After the groove is formed in the light transmitting resin 33A, the light shielding resin 34B can be molded into the module package 300B by embedding the light shielding resin 34B in the groove. As described above, the light-shielding resin 34B is disposed in the region where the package substrate 30B is dug and the region where the light-transmitting resin 33A is dug. Note that the manufacturing method is not limited as long as the module package 300B includes the light-transmitting resin 33A and the light-shielding resin 34B.
 ところで、比較例のモジュールパッケージ300Xが適用された場合、モジュールパッケージ300Xと光学パターン200との間で多重反射された光線が受光素子32Xに入射する場合がある。一方、モジュールパッケージ300Bでは、モジュールパッケージ300Bと光学パターン200との間で多重反射された光線が受光素子32に入射することはない。 By the way, when the module package 300X of the comparative example is applied, there may be a case where light beams that are multiple-reflected between the module package 300X and the optical pattern 200 enter the light receiving element 32X. On the other hand, in the module package 300 </ b> B, light beams that are multiple-reflected between the module package 300 </ b> B and the optical pattern 200 do not enter the light receiving element 32.
 図11は、実施の形態1にかかるモジュールパッケージが受光素子への多重反射光の入射を防止する様子を説明するための図である。ここでは、モジュールパッケージ300Bと光学式スケール2との間の光線経路について説明する。図11では、モジュールパッケージ300Bの断面図を示している。 FIG. 11 is a diagram for explaining how the module package according to the first embodiment prevents the multiple reflected light from entering the light receiving element. Here, a light path between the module package 300B and the optical scale 2 will be described. FIG. 11 shows a cross-sectional view of the module package 300B.
 発光素子31から出射した光線の一部は、光学式スケール2が備える光学パターン200の反射部201で反射し、その後、モジュールパッケージ300Bの光透過性樹脂33Aの表面に送られる。そして、光透過性樹脂33Aの表面に送られてきた光線は、遮光性樹脂34Bで吸収または散乱される。これにより、モジュールパッケージ300Bでは、光透過性樹脂33Aの表面に送られてきた光線が再び光学パターン200の反射部201に進むことはない。 A part of the light beam emitted from the light emitting element 31 is reflected by the reflecting portion 201 of the optical pattern 200 provided in the optical scale 2, and then sent to the surface of the light transmissive resin 33A of the module package 300B. The light beam sent to the surface of the light transmissive resin 33A is absorbed or scattered by the light shielding resin 34B. Thereby, in the module package 300B, the light beam sent to the surface of the light transmissive resin 33A does not travel again to the reflecting portion 201 of the optical pattern 200.
 比較例のモジュールパッケージ300Xの場合、すなわち、遮光性樹脂34Bがない場合、発光素子31Xから出射した光線の一部は、光学式スケール2が備える光学パターン200の反射部201で反射し、その後、モジュールパッケージ300Xの光透過性樹脂33Xの表面で反射する。さらに、光透過性樹脂33Xの表面で反射した光線は、光学パターン200の反射部201で反射して受光素子32Xに入射する。このように、比較例のモジュールパッケージ300Xと光学式スケール2との間の多重反射によって不要な光線の経路が発生する場合がある。 In the case of the module package 300X of the comparative example, that is, when there is no light shielding resin 34B, a part of the light beam emitted from the light emitting element 31X is reflected by the reflecting portion 201 of the optical pattern 200 provided in the optical scale 2, and then Reflected by the surface of the light transmissive resin 33X of the module package 300X. Further, the light beam reflected by the surface of the light transmissive resin 33X is reflected by the reflecting portion 201 of the optical pattern 200 and enters the light receiving element 32X. As described above, an unnecessary light path may occur due to multiple reflection between the module package 300X of the comparative example and the optical scale 2.
 図11において実線で示す光線の経路は、絶対回転角度の検出に必要な正規の光線経路901であり、破線で示す光線の経路は、不要な光線の光線経路902である。モジュールパッケージ300Bの場合、光線経路901の光線は、光学式スケール2の位置P52で反射された後、受光素子32に入射する。一方、図9に示した比較例のモジュールパッケージ300Xの場合、光線経路902の光線は、光学式スケール2の位置P51で反射された後、光透過性樹脂33Xで反射され、さらに光学式スケール2の位置P53で反射されて、受光素子32Xに入射する。この場合において、正規の光線経路901を進む光線が光学式スケール2で反射される位置P52と、光線経路902を進む不要な光線が光学式スケール2で反射される位置P51,P53とは、光学式スケール2のラジアル方向の位置が異なる。そして、位置P52で反射された光線に対応する波形が理想的な波形であるのに対して、位置P51,P53で反射された光線に対応する波形は、理想的な波形からずれを生じている。これは、ラジアル位置の異なる2点である位置P51,P53を通過したパターンが受光素子32Xに入射するためであり、この結果、光学式スケール2上での位置に依存した不要な光線が発生する。このため、受光素子32Xが、位置P51,P53で反射された光線を受光すると、受光素子32Xが検出する信号の波形が、理想的な波形に対して歪んだ波形となる。 In FIG. 11, the light ray path indicated by a solid line is a normal light ray path 901 necessary for detecting the absolute rotation angle, and the light ray path indicated by a broken line is an unnecessary light ray path 902. In the case of the module package 300 </ b> B, the light beam in the light beam path 901 is incident on the light receiving element 32 after being reflected at the position P <b> 52 of the optical scale 2. On the other hand, in the case of the module package 300X of the comparative example shown in FIG. 9, the light beam in the light path 902 is reflected at the position P51 of the optical scale 2 and then reflected by the light transmissive resin 33X. And is incident on the light receiving element 32X. In this case, the position P52 where the light beam traveling along the normal light beam path 901 is reflected by the optical scale 2 and the positions P51 and P53 where the unnecessary light beam traveling along the light beam path 902 is reflected by the optical scale 2 are optical The position of the radial scale 2 is different. The waveform corresponding to the light beam reflected at the position P52 is an ideal waveform, whereas the waveform corresponding to the light beam reflected at the positions P51 and P53 is deviated from the ideal waveform. . This is because the pattern that has passed through the two positions P51 and P53 having different radial positions is incident on the light receiving element 32X. As a result, an unnecessary light beam depending on the position on the optical scale 2 is generated. . For this reason, when the light receiving element 32X receives the light beam reflected at the positions P51 and P53, the waveform of the signal detected by the light receiving element 32X becomes a distorted waveform with respect to the ideal waveform.
 ここで、正規の光線経路901の光線のみを受光した場合の信号の波形と、正規の光線経路901の光線および非正規の光線経路902の光線の両方を受光した場合の信号の波形と、の比較について説明する。 Here, a waveform of a signal when only the light ray of the normal light ray path 901 is received, and a waveform of a signal when both the light ray of the normal light ray path 901 and the light ray of the non-normal light ray path 902 are received, The comparison will be described.
 正規の光線経路901の光線のみを受光した場合の信号の波形は、実施の形態1のモジュールパッケージ300Aまたはモジュールパッケージ300Bの受光素子32で検出される光線の信号である。一方、正規の光線経路901の光線および非正規の光線経路902の光線の両方を受光した場合の信号の波形は、比較例のモジュールパッケージ300Xの受光素子32Xで検出される光線の信号である。 The waveform of the signal when only the light beam of the regular light beam path 901 is received is a light beam signal detected by the light receiving element 32 of the module package 300A or the module package 300B of the first embodiment. On the other hand, the waveform of the signal when receiving both the light beam of the regular light path 901 and the light beam of the non-regular light path 902 is a signal of the light beam detected by the light receiving element 32X of the module package 300X of the comparative example.
 図12は、実施の形態1にかかるモジュールパッケージの受光素子で検出される信号の波形例を示す図である。図13は、比較例のモジュールパッケージの受光素子で検出される信号の波形例を示す図である。 FIG. 12 is a diagram illustrating a waveform example of a signal detected by the light receiving element of the module package according to the first embodiment. FIG. 13 is a diagram illustrating a waveform example of a signal detected by the light receiving element of the module package of the comparative example.
 図12に示す信号の波形は、モジュールパッケージ300Aまたはモジュールパッケージ300Bの受光素子32が、正規の光線経路901の光線のみを受光した場合の波形71である。また、図13に示す信号の波形は、モジュールパッケージ300Xの受光素子32Xが、正規の光線経路901および非正規の光線経路902の両方の光線を受光した場合の波形72である。図12に示す波形71が、正規の光線経路901の光線に基づく理想的な波形であるのに対して、図13に示す波形72は、図12に示す波形71が、歪んだものである。このように、正規の光線経路901の光線に対して光線経路902の不要な光線が重畳すると、図12に示す波形71が、図13に示す波形72のように歪んだ波形となる。 The waveform of the signal shown in FIG. 12 is a waveform 71 when the light receiving element 32 of the module package 300A or the module package 300B receives only the light beam of the regular light beam path 901. The waveform of the signal shown in FIG. 13 is a waveform 72 when the light receiving element 32X of the module package 300X receives both of the regular ray path 901 and the irregular ray path 902. The waveform 71 shown in FIG. 12 is an ideal waveform based on the rays of the regular ray path 901, whereas the waveform 72 shown in FIG. 13 is a distorted waveform 71 shown in FIG. As described above, when an unnecessary ray in the ray path 902 is superimposed on the ray in the regular ray path 901, the waveform 71 shown in FIG. 12 becomes a distorted waveform like the waveform 72 shown in FIG.
 光線経路902の不要な光線に対応する信号は、光学パターン200上での反射位置に応じて変化する。すなわち、光学パターン200は、位置毎に種々のパターンが配置されたものなので、光線経路902の不要な光線に対応する信号は、光学パターン200への光線の照射位置毎に種々の信号を発生させる。このように、光学パターン200で反射された不要な光線は、光学パターン200の回転位置毎に種々の影響を受ける。一方、光透過性樹脂33A内で反射された不要な光線は、光学パターン200とは関係なく常に一定量である。したがって、光学パターン200で反射された不要な光線は、光透過性樹脂33A内で反射された不要な光線よりも補正が困難である。 The signal corresponding to the unnecessary light beam in the light beam path 902 changes according to the reflection position on the optical pattern 200. That is, since the optical pattern 200 has various patterns arranged for each position, a signal corresponding to an unnecessary light beam in the light beam path 902 generates various signals for each light irradiation position on the optical pattern 200. . As described above, the unnecessary light beam reflected by the optical pattern 200 is affected variously for each rotation position of the optical pattern 200. On the other hand, the unnecessary light beam reflected in the light transmissive resin 33 </ b> A is always a constant amount regardless of the optical pattern 200. Therefore, the unnecessary light beam reflected by the optical pattern 200 is more difficult to correct than the unnecessary light beam reflected in the light transmissive resin 33A.
 このように、光学パターン200で反射された不要な光線は、絶対回転角度に対応する反射の位置毎に、影響を変化させてしまうので、アブソリュートエンコーダ1を出荷する際の補正だけでは、不要な光線による影響を除去することができない。 As described above, the unnecessary light beam reflected by the optical pattern 200 changes the influence for each reflection position corresponding to the absolute rotation angle. Therefore, it is unnecessary only by correction when the absolute encoder 1 is shipped. The effect of light cannot be removed.
 モジュールパッケージ300Bの場合、不要な光線の光線経路902は、発光素子31の発光面310と、受光素子32の受光面320との中間位置を通る。そこで、モジュールパッケージ300Bの遮光性樹脂34Bを発光面310と受光面320との中間位置に配置しておく。これにより、光線経路902の光線が、光学式スケール2で反射された後、光透過性樹脂33Aの上面で露出している遮光性樹脂34Bに照射され、遮光性樹脂34Bで吸収または散乱する。これにより、光線経路902の光線は、パッケージ基板30Bの上面で反射されることが無いので、光線経路902の光線が光学式スケール2に照射されることがない。したがって、光線経路902の光線が光学式スケール2で反射されることが無いので、光線経路902の光線が受光面320に照射されることがない。なお、モジュールパッケージ300Aの遮光性樹脂34Aを発光面310と受光面320との中間位置に配置しておいてもよい。 In the case of the module package 300 </ b> B, an unnecessary light beam path 902 passes through an intermediate position between the light emitting surface 310 of the light emitting element 31 and the light receiving surface 320 of the light receiving element 32. Therefore, the light shielding resin 34B of the module package 300B is disposed at an intermediate position between the light emitting surface 310 and the light receiving surface 320. As a result, after the light beam in the light path 902 is reflected by the optical scale 2, it is irradiated to the light shielding resin 34B exposed on the upper surface of the light transmissive resin 33A and absorbed or scattered by the light shielding resin 34B. As a result, the light beam in the light beam path 902 is not reflected by the upper surface of the package substrate 30B, so that the light beam in the light beam path 902 is not irradiated onto the optical scale 2. Accordingly, since the light beam in the light beam path 902 is not reflected by the optical scale 2, the light beam in the light beam path 902 is not irradiated on the light receiving surface 320. The light shielding resin 34A of the module package 300A may be disposed at an intermediate position between the light emitting surface 310 and the light receiving surface 320.
 ここで、遮光性樹脂34A,34Bの配置位置を具体的に説明する。図14は、実施の形態1にかかるモジュールパッケージが備える遮光性樹脂の配置位置を説明するための図である。モジュールパッケージ300Aを上面から見た場合の遮光性樹脂34Aの配置位置と、モジュールパッケージ300Bを上面から見た場合の遮光性樹脂34Bの配置位置とは同様である。したがって、ここでは、モジュールパッケージ300Bにおける遮光性樹脂34Bの配置位置について説明する。 Here, the arrangement positions of the light shielding resins 34A and 34B will be specifically described. FIG. 14 is a diagram for explaining an arrangement position of the light shielding resin provided in the module package according to the first embodiment. The arrangement position of the light shielding resin 34A when the module package 300A is viewed from the upper surface is the same as the arrangement position of the light shielding resin 34B when the module package 300B is viewed from the upper surface. Therefore, here, the arrangement position of the light shielding resin 34B in the module package 300B will be described.
 なお、図14は、モジュールパッケージ300Bの上面図であるが、図10の断面図との対応を明確にするためハッチングを付してある。図14に示すように、モジュールパッケージ300Bでは、遮光性樹脂34Bが発光面310の中心と受光面320の中心との中間位置を通るよう配置されている。具体的には、遮光性樹脂34Bの中心から発光面310の中心までの距離と、遮光性樹脂34Bの中心から受光面320の中心までの距離と、が同じになるよう、遮光性樹脂34Bが配置される。 Note that FIG. 14 is a top view of the module package 300B, but is hatched to clarify the correspondence with the cross-sectional view of FIG. As shown in FIG. 14, in the module package 300 </ b> B, the light shielding resin 34 </ b> B is disposed so as to pass through an intermediate position between the center of the light emitting surface 310 and the center of the light receiving surface 320. Specifically, the light blocking resin 34B is made so that the distance from the center of the light blocking resin 34B to the center of the light emitting surface 310 is the same as the distance from the center of the light blocking resin 34B to the center of the light receiving surface 320. Be placed.
 なお、ここでは、発光面310と受光面320との中間位置に、遮光性樹脂34Bの中心がくるように構成される場合について説明したが、発光面310と受光面320との中間位置に、遮光性樹脂34Bが存在していればよい。したがって、遮光性樹脂34Bの中心は発光面310と受光面320との中間位置からずれていてもよい。 Here, the case where the center of the light-shielding resin 34B is arranged at the intermediate position between the light emitting surface 310 and the light receiving surface 320 has been described, but at the intermediate position between the light emitting surface 310 and the light receiving surface 320, The light-shielding resin 34B only needs to be present. Therefore, the center of the light shielding resin 34 </ b> B may be shifted from the intermediate position between the light emitting surface 310 and the light receiving surface 320.
 比較例のモジュールパッケージ300Xが適用された場合、光学パターン200で反射された光線が、受光素子32Xと光透過性樹脂33Xとの間で多重反射されて受光素子32Xに入射する場合がある。 When the module package 300X of the comparative example is applied, the light beam reflected by the optical pattern 200 may be reflected multiple times between the light receiving element 32X and the light transmitting resin 33X and may enter the light receiving element 32X.
 図15は、比較例のモジュールパッケージが発生させる迷光の第3例を説明するための図である。ここでは、光学パターン200で反射された光線が、受光素子32Xと光透過性樹脂33Xとの間で多重反射する場合について説明する。図15では、比較例のモジュールパッケージ300Xの断面図を示している。 FIG. 15 is a diagram for explaining a third example of stray light generated by the module package of the comparative example. Here, a case where the light beam reflected by the optical pattern 200 undergoes multiple reflections between the light receiving element 32X and the light transmissive resin 33X will be described. FIG. 15 shows a cross-sectional view of the module package 300X of the comparative example.
 図15に示すように、比較例のモジュールパッケージ300Xが適用された場合、発光素子31Xから出射した光線は、光学式スケール2で反射し、その後、受光素子32Xに照射される。受光素子32Xに照射される光線の一部は、受光面320Xの周辺または受光面320X自体で反射される。受光面320X自体で光線が反射されるのは、受光面320Xが、反射性材料を用いて構成されているからである。 As shown in FIG. 15, when the module package 300X of the comparative example is applied, the light beam emitted from the light emitting element 31X is reflected by the optical scale 2 and then irradiated to the light receiving element 32X. A part of the light beam irradiated to the light receiving element 32X is reflected around the light receiving surface 320X or the light receiving surface 320X itself. The light receiving surface 320X itself reflects the light beam because the light receiving surface 320X is made of a reflective material.
 受光面320Xの周辺または受光面320X自体で反射された光線は、光透過性樹脂33Xの表面でフレネル反射によって反射され、再び受光素子32Xに向かう。正規の光線経路901を進む光線が光学式スケール2で反射される位置P52と、非正規な光線経路903を進む不要な光線が光学式スケール2で反射される位置P54とは、光学式スケール2が備える光学パターン200のラジアル方向にずれている。すなわち位置P54は、位置P52から回転シャフト5のラジアル方向にずれている。 The light beam reflected around the light receiving surface 320X or the light receiving surface 320X itself is reflected by Fresnel reflection on the surface of the light-transmitting resin 33X and travels again toward the light receiving element 32X. The position P52 where the light beam traveling in the normal light beam path 901 is reflected by the optical scale 2 and the position P54 where the unnecessary light beam traveling in the non-normal light beam path 903 is reflected by the optical scale 2 are the optical scale 2 Is shifted in the radial direction of the optical pattern 200 included in the optical pattern 200. That is, the position P54 is shifted from the position P52 in the radial direction of the rotary shaft 5.
 このため、受光素子32Xに到達するまでの光路長が、光線経路901と光線経路903とで異なる。したがって、受光素子32Xに到達したときの光学式スケール2のビットパターンの拡大率が光線経路901と光線経路903とで異なる。したがって、受光素子32Xが光線経路901の光線と、光線経路903の光線との両方を受光すると、受光素子32Xで受光した光量分布に歪みが発生する。換言すると、受光素子32Xが光線経路903の光線を受光することによって、受光素子32Xが光線経路901の光線だけを受光した場合の光量分布に対して歪みが発生する。このため、受光素子32Xが光線経路903の光線を受光すると、絶対回転角度の検出精度に誤差が生じる。 Therefore, the optical path length until reaching the light receiving element 32X differs between the light path 901 and the light path 903. Therefore, the magnification rate of the bit pattern of the optical scale 2 when reaching the light receiving element 32X is different between the light path 901 and the light path 903. Accordingly, when the light receiving element 32X receives both the light beam in the light beam path 901 and the light beam in the light beam path 903, the light amount distribution received by the light receiving element 32X is distorted. In other words, when the light receiving element 32X receives the light beam in the light path 903, distortion occurs in the light amount distribution when the light receiving element 32X receives only the light beam in the light path 901. For this reason, when the light receiving element 32X receives the light beam in the light beam path 903, an error occurs in the detection accuracy of the absolute rotation angle.
 モジュールパッケージ300Xと光学式スケール2との相対的な距離が遠いほど、受光素子32Xに入射する光線の角度が垂直に近くなるので、不要な光線が受光素子32Xに入射しやすくなる。したがって、モジュールパッケージ300Xと光学式スケール2とが離れているほど、受光素子32Xと光透過性樹脂33Xとの間の多重反射が発生しやすくなる。 As the relative distance between the module package 300X and the optical scale 2 increases, the angle of the light incident on the light receiving element 32X becomes closer to the vertical, so that unnecessary light easily enters the light receiving element 32X. Therefore, as the module package 300X is separated from the optical scale 2, multiple reflection between the light receiving element 32X and the light transmissive resin 33X is more likely to occur.
 実施の形態1では、モジュールパッケージ300A,300Bが備える構成要素の寸法関係を調整しておくことによって、光線経路903の不要な光線が受光素子32に入射することを抑制する。なお、モジュールパッケージ300Aが備える構成要素の寸法関係と、モジュールパッケージ300Bが備える構成要素の寸法関係とは同様である。したがって、ここでは、モジュールパッケージ300Bが備える構成要素の寸法関係について説明する。 In the first embodiment, by adjusting the dimensional relationship of the components included in the module packages 300A and 300B, unnecessary light rays in the light ray path 903 are prevented from entering the light receiving element 32. Note that the dimensional relationship between the components included in the module package 300A and the dimensional relationship between the components included in the module package 300B are the same. Therefore, here, the dimensional relationship of the components included in the module package 300B will be described.
 図16は、実施の形態1にかかるモジュールパッケージが備える構成要素の寸法関係を説明するための図である。モジュールパッケージ300Bと光学式スケール2とが、許容される最大距離だけ遠ざかった位置に配置される場合を考える。モジュールパッケージ300Bの上面から光学式スケール2までの距離を距離L1とし、発光面310の中心から受光素子32の発光素子31側の端面までの距離を距離L2とする。この場合、距離L1および距離L2によって、受光素子32の発光素子31側の端面に入射する光線の角度θ1が決まる。この場合において、光透過性樹脂33Aの屈折率n1と、光透過性樹脂33Aと光学式スケール2との間の空気の屈折率nxと、がスネルの法則に適用されたうえで角度θ1が算出される。スネルの法則によると、空気側から光透過性樹脂33Aへ入射する光線の角度を角度θxとした場合、n1×sinθ1=nx×sinθxとなる。また、光透過性樹脂33Aから空気側への光線の出射点と、空気側から光透過性樹脂33Aへの光線の入射点との間の距離を距離L0とすると、tanθx=L0/(2×L1)である。このように、角度θ1は、角度θxを用いて算出され、角度θxは、距離L1,L0を用いて算出される。受光素子32の上面と同じ面内の受光面320から光透過性樹脂33Aの上面までの距離を距離L3とすると、距離L0は、距離L1,L2,L3から算出される。したがって、角度θ1は、距離L1,L2,L3を用いて算出される。 FIG. 16 is a diagram for explaining a dimensional relationship of components included in the module package according to the first embodiment. Consider a case where the module package 300B and the optical scale 2 are arranged at positions that are separated by an allowable maximum distance. The distance from the upper surface of the module package 300B to the optical scale 2 is a distance L1, and the distance from the center of the light emitting surface 310 to the end surface on the light emitting element 31 side of the light receiving element 32 is a distance L2. In this case, the angle θ1 of the light ray incident on the end face of the light receiving element 32 on the light emitting element 31 side is determined by the distance L1 and the distance L2. In this case, the angle θ1 is calculated after the refractive index n1 of the light-transmitting resin 33A and the refractive index nx of air between the light-transmitting resin 33A and the optical scale 2 are applied to Snell's law. Is done. According to Snell's law, when the angle of the light ray incident on the light transmitting resin 33A from the air side is the angle θx, n1 × sin θ1 = nx × sin θx. Further, when the distance between the light emission point from the light transmitting resin 33A to the air side and the light incident point from the air side to the light transmitting resin 33A is a distance L0, tanθx = L0 / (2 × L1). Thus, the angle θ1 is calculated using the angle θx, and the angle θx is calculated using the distances L1 and L0. When the distance from the light receiving surface 320 in the same plane as the upper surface of the light receiving element 32 to the upper surface of the light transmitting resin 33A is a distance L3, the distance L0 is calculated from the distances L1, L2, and L3. Therefore, the angle θ1 is calculated using the distances L1, L2, and L3.
 また、受光素子32の発光素子31側の端部から受光面320の発光素子31側とは逆側の端部までの距離を距離L4とする。なお、受光素子32の発光素子31側の端部は、鉛直方向に延びる側端面であり、受光面320の発光素子31側とは逆側の端部は、受光面320を有した部材の鉛直方向に延びる側端面である。 Further, the distance from the end of the light receiving element 32 on the light emitting element 31 side to the end of the light receiving surface 320 opposite to the light emitting element 31 is defined as a distance L4. The end of the light receiving element 32 on the light emitting element 31 side is a side end surface extending in the vertical direction, and the end of the light receiving surface 320 opposite to the light emitting element 31 is the vertical of the member having the light receiving surface 320. It is a side end surface extending in the direction.
 受光素子32の発光素子31側の端部に光線経路903で最初に入射した位置と、2度目に入射した位置との距離をLxとすると、Lx=2×tanθ1×L3となる。 Lx = 2 × tan θ1 × L3, where Lx is the distance between the first incident position on the light emitting element 31 side of the light receiving element 32 in the light beam path 903 and the second incident position.
 ここで、Lx>L4となれば、受光素子32の発光素子31側の端部に光線経路903で最初に入射した光は、2度目の入射は受光面320から外れる。また、受光素子32の発光素子31側の端部よりも右側に入射した光の2度目の入射も受光面320から外れる。 Here, if Lx> L4, the light incident first on the light emitting element 31 side end of the light receiving element 32 through the light beam path 903 deviates from the light receiving surface 320. Further, the second incidence of the light incident on the right side of the end of the light receiving element 32 on the light emitting element 31 side also deviates from the light receiving surface 320.
 そのため、
 2×tanθ1×L3>L4・・・(1)
 の関係が成立すれば、受光素子32と光透過性樹脂33Aとの間で多重反射した光が受光面320に入射することを防ぐことができる。なお、上述したように、角度θ1は、距離L1,L2,L3を用いて算出できるので、上述の(1)の関係は、
 (L2/L1)×L3>L4・・・(2)
 に書き換えることができる。
for that reason,
2 x tan θ1 x L3> L4 (1)
If this relationship is established, it is possible to prevent light that has been multiple-reflected between the light receiving element 32 and the light transmitting resin 33A from entering the light receiving surface 320. As described above, since the angle θ1 can be calculated using the distances L1, L2, and L3, the relationship (1) described above is
(L2 / L1) × L3> L4 (2)
Can be rewritten.
 モジュールパッケージ300Bは、式(1)を満たすように構成されることで、不要な光線が受光素子32に入射することを抑制することができる。なお、距離L1は、モジュールパッケージ300Bの上面から光学パターン200までの距離であってもよい。 The module package 300 </ b> B is configured to satisfy the formula (1), so that unnecessary light rays can be prevented from entering the light receiving element 32. The distance L1 may be a distance from the upper surface of the module package 300B to the optical pattern 200.
 ここで、制御部4のハードウェア構成について説明する。制御部4は、制御回路、すなわちプロセッサおよびメモリにより実現することができる。プロセッサは、CPU(Central Processing Unit)などである。メモリは、RAM(Random Access Memory)またはROM(Read Only Memory)などである。 Here, the hardware configuration of the control unit 4 will be described. The control unit 4 can be realized by a control circuit, that is, a processor and a memory. The processor is a CPU (Central Processing Unit) or the like. The memory is RAM (Random Access Memory) or ROM (Read Only Memory).
 制御部4は、プロセッサが、メモリで記憶されているプログラムを読み出して実行することにより実現される。このプログラムは、制御部4の手順または方法をコンピュータに実行させるものであるともいえる。メモリは、プロセッサが各種処理を実行する際の一時メモリとしても使用される。 The control unit 4 is realized by the processor reading and executing a program stored in the memory. This program can be said to cause a computer to execute the procedure or method of the control unit 4. The memory is also used as a temporary memory when the processor executes various processes.
 また、制御部4を専用のハードウェアで実現してもよい。また、制御部4の機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。 Further, the control unit 4 may be realized by dedicated hardware. Further, part of the functions of the control unit 4 may be realized by dedicated hardware, and part of the functions may be realized by software or firmware.
 なお、図10および図16で説明した、遮光性樹脂34Bは、発光面310の中心と受光面320の中心との中間位置に配置される場合に限らず、他の領域に配置されてもよい。 The light shielding resin 34B described with reference to FIGS. 10 and 16 is not limited to being disposed at an intermediate position between the center of the light emitting surface 310 and the center of the light receiving surface 320, and may be disposed in another region. .
 このように、実施の形態1のモジュールパッケージ300Aでは、パッケージ基板30Aに実装した発光素子31および受光素子32の全体を光透過性樹脂33Aで覆い、発光素子31と受光素子32との間に遮光性樹脂34Aを設けている。同様に、モジュールパッケージ300Bでは、パッケージ基板30Bに実装した発光素子31および受光素子32の全体を光透過性樹脂33Aで覆い、発光素子31と受光素子32との間に遮光性樹脂34Bを設けている。したがって、モジュールパッケージ300A,300Bは、発光素子31から直接受光素子32に入射する不要な光線を遮光性樹脂34A,34Bによって除去することができるので、高精度に絶対回転角度を検出することが可能となる。 As described above, in the module package 300A of the first embodiment, the entire light emitting element 31 and light receiving element 32 mounted on the package substrate 30A are covered with the light transmissive resin 33A, and light shielding is performed between the light emitting element 31 and the light receiving element 32. 34A is provided. Similarly, in the module package 300B, the entire light emitting element 31 and light receiving element 32 mounted on the package substrate 30B are covered with a light transmissive resin 33A, and a light shielding resin 34B is provided between the light emitting element 31 and the light receiving element 32. Yes. Therefore, the module packages 300A and 300B can remove unnecessary light directly incident on the light receiving element 32 from the light emitting element 31 with the light shielding resins 34A and 34B, so that the absolute rotation angle can be detected with high accuracy. It becomes.
 また、モジュールパッケージ300Aでは、発光素子31の発光面310の中心と、受光素子32の受光面320の中心との中間位置に、遮光性樹脂34Aが設けられているので、光透過性樹脂33Aと光学式スケール2との間の多重反射による不要な光線を抑制することができる。同様に、モジュールパッケージ300Bでは、発光素子31の発光面310の中心と、受光素子32の受光面320の中心との中間位置に、遮光性樹脂34Bが設けられているので、光透過性樹脂33Aと光学式スケール2との間の多重反射による不要な光線を抑制することができる。したがって、モジュールパッケージ300A,300Bは、高精度に絶対回転角度を検出することが可能となる。 In the module package 300A, since the light shielding resin 34A is provided at an intermediate position between the center of the light emitting surface 310 of the light emitting element 31 and the center of the light receiving surface 320 of the light receiving element 32, the light transmitting resin 33A and Unnecessary light rays due to multiple reflection with the optical scale 2 can be suppressed. Similarly, in the module package 300B, since the light shielding resin 34B is provided at an intermediate position between the center of the light emitting surface 310 of the light emitting element 31 and the center of the light receiving surface 320 of the light receiving element 32, the light transmitting resin 33A. And unnecessary light rays due to multiple reflection between the optical scale 2 can be suppressed. Therefore, the module packages 300A and 300B can detect the absolute rotation angle with high accuracy.
 また、モジュールパッケージ300A,300Bが、上述した式(1)を満たすように構成されているので、不要な光線が受光素子32に入射することを抑制することができる。したがって、モジュールパッケージ300A,300Bは、高精度に絶対回転角度を検出することが可能となる。 Further, since the module packages 300A and 300B are configured to satisfy the above-described formula (1), it is possible to suppress unnecessary light rays from entering the light receiving element 32. Therefore, the module packages 300A and 300B can detect the absolute rotation angle with high accuracy.
 また、パッケージ基板30A,30Bが、ガラエポ基板で構成され、光透過性樹脂33Aおよび遮光性樹脂34A,34Bが共にエポキシ系樹脂で構成されているので、温度変化時のクラックなどを抑制することができる。これにより、モジュールパッケージ300A,300Bの信頼性を高めることが可能となる。 Further, since the package substrates 30A and 30B are made of glass epoxy substrates, and the light transmitting resin 33A and the light shielding resins 34A and 34B are both made of epoxy resin, it is possible to suppress cracks and the like at the time of temperature change. it can. Thereby, the reliability of the module packages 300A and 300B can be improved.
 このように実施の形態1によれば、モジュールパッケージ300A,300Bが、発光素子31が備える発光面310の中心と、受光素子32が備える受光面320の中心と、の中間位置に遮光性樹脂34A,34Bを有するので、測定対象物の絶対回転角度を精度良く検出することが可能となる。 As described above, according to the first embodiment, the module packages 300A and 300B have the light shielding resin 34A at an intermediate position between the center of the light emitting surface 310 included in the light emitting element 31 and the center of the light receiving surface 320 included in the light receiving element 32. , 34B, the absolute rotation angle of the measurement object can be detected with high accuracy.
実施の形態2.
 つぎに、図17および図18を用いてこの発明の実施の形態2について説明する。実施の形態2では、光透過性樹脂の上面を受光素子32の受光面320に対して傾斜させることによって、光透過性樹脂で反射された光線が受光素子32の受光面320に入射することを抑制する。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, the light beam reflected by the light transmitting resin is incident on the light receiving surface 320 of the light receiving element 32 by inclining the upper surface of the light transmitting resin with respect to the light receiving surface 320 of the light receiving element 32. Suppress.
 図17は、実施の形態2にかかるモジュールパッケージの第1の構成例を示す図である。図17の各構成要素のうち図2に示す実施の形態1のモジュールパッケージ300Aまたは図10に示す実施の形態1のモジュールパッケージ300Bと同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。 FIG. 17 is a diagram illustrating a first configuration example of the module package according to the second embodiment. 17, components that achieve the same functions as those of the module package 300A of the first embodiment shown in FIG. 2 or the module package 300B of the first embodiment shown in FIG. 10 are denoted by the same reference numerals. The overlapping description is omitted.
 実施の形態2のモジュールパッケージ300Cは、パッケージ基板30Bと、発光素子31と、受光素子32と、光透過性樹脂33Cと、遮光部である遮光性樹脂34Cとを有している。このように、モジュールパッケージ300Cは、光透過性樹脂33Aの代わりに光透過性樹脂33Cを備えている。 The module package 300C of the second embodiment includes a package substrate 30B, a light emitting element 31, a light receiving element 32, a light transmissive resin 33C, and a light shielding resin 34C as a light shielding part. As described above, the module package 300C includes the light transmissive resin 33C instead of the light transmissive resin 33A.
 遮光性樹脂34Cは、遮光性樹脂34A,34Bと比較して、鉛直方向の長さが短いが、その他の構成は同じである。光透過性樹脂33Cは、光透過性樹脂33Aと同様の部材を用いて形成されており、光透過性樹脂33Aとは形状が異なる。光透過性樹脂33Cは、光透過性樹脂33Aと同様に、パッケージ基板30B上の発光素子31および受光素子32の全体を覆っている。 The light-shielding resin 34C has a shorter vertical length than the light-shielding resins 34A and 34B, but the other configurations are the same. The light transmissive resin 33C is formed using the same member as the light transmissive resin 33A, and the shape is different from that of the light transmissive resin 33A. The light transmissive resin 33C covers the entire light emitting element 31 and light receiving element 32 on the package substrate 30B in the same manner as the light transmissive resin 33A.
 光透過性樹脂33Cは、遮光性樹脂34Cの配置されている領域よりも左側の領域403と、遮光性樹脂34Cの配置されている領域よりも右側の領域404とを有している。領域403における光透過性樹脂33Cの上面が上面150であり、領域404における光透過性樹脂33Cの上面が上面151である。 The light transmissive resin 33C has a region 403 on the left side of the region where the light shielding resin 34C is arranged and a region 404 on the right side of the region where the light shielding resin 34C is arranged. The upper surface of the light transmissive resin 33C in the region 403 is the upper surface 150, and the upper surface of the light transmissive resin 33C in the region 404 is the upper surface 151.
 遮光性樹脂34Cの水平方向の第1の面は、領域403における光透過性樹脂33Cの上面150と同じ面内である。また、遮光性樹脂34Cの水平方向の第2の面は、パッケージ基板30Bの内部でパッケージ基板30Bに接している。 The first horizontal surface of the light shielding resin 34C is in the same plane as the upper surface 150 of the light transmissive resin 33C in the region 403. Further, the second horizontal surface of the light shielding resin 34C is in contact with the package substrate 30B inside the package substrate 30B.
 実施の形態1では、光透過性樹脂33Aの光学式スケール2側の面である上面がフラットな形状である場合について説明したが、実施の形態2では、光透過性樹脂33Cの上面151に勾配が設けられている。モジュールパッケージ300Cでは、光透過性樹脂33Cの上面のうち、受光素子32側の上面151が、受光素子32の上面と同一面内の受光面320に対して平行でなく傾いている。具体的には、領域404の光透過性樹脂33Cは、遮光性樹脂34C側の端部から遮光性樹脂34Cとは反対側の端部に向かって層の厚さが少しずつ厚くなっている。領域404の光透過性樹脂33Cは、遮光性樹脂34C側の端部での厚さが、領域403の光透過性樹脂33Cの厚さと同じである。モジュールパッケージ300Cでは、上面150と上面151とのなす角度が、角度θ2である。換言すると、上面151の勾配角度は、角度θ2である。 In the first embodiment, the case where the upper surface of the light transmitting resin 33A on the optical scale 2 side has a flat shape has been described. However, in the second embodiment, the gradient is formed on the upper surface 151 of the light transmitting resin 33C. Is provided. In the module package 300C, among the upper surfaces of the light transmissive resin 33C, the upper surface 151 on the light receiving element 32 side is not parallel to the light receiving surface 320 in the same plane as the upper surface of the light receiving element 32 but is inclined. Specifically, the thickness of the light transmissive resin 33C in the region 404 is gradually increased from the end on the light shielding resin 34C side to the end on the opposite side of the light shielding resin 34C. The thickness of the light transmissive resin 33C in the region 404 at the end on the light shielding resin 34C side is the same as the thickness of the light transmissive resin 33C in the region 403. In the module package 300C, the angle formed between the upper surface 150 and the upper surface 151 is the angle θ2. In other words, the gradient angle of the upper surface 151 is the angle θ2.
 このように、実施の形態2のアブソリュートエンコーダ1は、実施の形態1のアブソリュートエンコーダ1と、基本的な構成は同じであるが、光透過性樹脂33Cの領域404における形状が、光透過性樹脂33Aの領域402における形状と異なっている。 As described above, the absolute encoder 1 of the second embodiment has the same basic configuration as the absolute encoder 1 of the first embodiment, but the shape of the light-transmitting resin 33C in the region 404 is light-transmitting resin. It is different from the shape in the region 402 of 33A.
 図15に示したように、比較例のモジュールパッケージ300Xでは、光学式スケール2からの不要な光線が受光素子32Xに入射する。この場合において、不要な光線の光線経路903と、正規の光線経路901とは、受光素子32Xへの入射角度が略同じである。具体的には、不要な光線が光透過性樹脂33Xの上面でフレネル反射されて受光素子32Xへ入射する角度と、正規な光線が受光素子32Xへ入射する角度とが略同じである。そこで、実施の形態2では、光線が入射してくるとともに不要な光線を反射させる上面151を、水平方向から傾けている。このように、上面151は、不要な光線が広い反射角度で反射されるよう勾配が設けられている。 As shown in FIG. 15, in the module package 300X of the comparative example, unnecessary light rays from the optical scale 2 are incident on the light receiving element 32X. In this case, the light beam path 903 of the unnecessary light beam and the normal light beam path 901 have substantially the same incident angle to the light receiving element 32X. Specifically, an angle at which an unnecessary light beam is Fresnel-reflected on the upper surface of the light transmitting resin 33X and is incident on the light receiving element 32X is substantially the same as an angle at which a normal light beam is incident on the light receiving element 32X. Therefore, in the second embodiment, the upper surface 151 that reflects unnecessary light as it enters the light is inclined from the horizontal direction. Thus, the upper surface 151 is provided with a gradient so that unnecessary light rays are reflected at a wide reflection angle.
 このような構成により、モジュールパッケージ300Cでは、受光素子32で反射した光線が、光透過性樹脂33Cの上面151でフレネル反射するが、上面151の勾配角度である角度θ2分だけ反射光線の角度が傾く。このため、受光素子32および上面151で反射された不要な光線が受光素子32の受光面320に入射しにくくなる。勾配角度である角度θ2が大きいほど、受光素子32と光透過性樹脂33Cとの間の多重反射による不要な光線は、受光面320に入射しにくくなる。したがって、角度θ2が大きいほど、領域403における光透過性樹脂33Cを薄くできる。このように、モジュールパッケージ300Cは、実施の形態1の光透過性樹脂33Aと比較して、光透過性樹脂33Cの厚さを薄くすることができる。 With such a configuration, in the module package 300C, the light beam reflected by the light receiving element 32 is Fresnel-reflected by the upper surface 151 of the light transmissive resin 33C, but the angle of the reflected light beam is the angle θ2 that is the gradient angle of the upper surface 151. Tilt. For this reason, unnecessary light beams reflected by the light receiving element 32 and the upper surface 151 are less likely to enter the light receiving surface 320 of the light receiving element 32. As the angle θ2 that is the gradient angle is larger, unnecessary light rays due to multiple reflection between the light receiving element 32 and the light transmitting resin 33C are less likely to enter the light receiving surface 320. Therefore, the larger the angle θ2, the thinner the light transmissive resin 33C in the region 403 can be made. As described above, in the module package 300C, the thickness of the light transmissive resin 33C can be reduced as compared with the light transmissive resin 33A of the first embodiment.
 なお、モジュールパッケージ300Cは、パッケージ基板30Bの代わりに、パッケージ基板30Aを備えていてもよい。換言すると、モジュールパッケージ300Aに光透過性樹脂33Cが適用されてもよい。この場合、モジュールパッケージ300Aが、光透過性樹脂33Aの代わりに光透過性樹脂33Cを備え、遮光性樹脂34Aの代わりに遮光性樹脂34Cを備える。 The module package 300C may include a package substrate 30A instead of the package substrate 30B. In other words, the light transmissive resin 33C may be applied to the module package 300A. In this case, the module package 300A includes a light transmitting resin 33C instead of the light transmitting resin 33A, and includes a light blocking resin 34C instead of the light blocking resin 34A.
 また、図17では、上面151に勾配を設ける場合について説明したが、上面150にも上面151と同様の勾配を設けてもよい。図18は、実施の形態2にかかるモジュールパッケージの第2の構成例を示す図である。図18の各構成要素のうち図17に示すモジュールパッケージ300Cと同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。 In FIG. 17, the case where the upper surface 151 is provided with a gradient has been described, but the upper surface 150 may be provided with the same gradient as the upper surface 151. FIG. 18 is a diagram illustrating a second configuration example of the module package according to the second embodiment. Among the constituent elements in FIG. 18, constituent elements that achieve the same functions as those of the module package 300 </ b> C shown in FIG. 17 are denoted by the same reference numerals, and redundant description is omitted.
 モジュールパッケージ300Dは、パッケージ基板30Bと、発光素子31と、受光素子32と、光透過性樹脂33Dと、遮光部である遮光性樹脂34Cとを有している。このように、モジュールパッケージ300Dは、光透過性樹脂33Cの代わりに光透過性樹脂33Dを備えている。 The module package 300D includes a package substrate 30B, a light emitting element 31, a light receiving element 32, a light transmitting resin 33D, and a light blocking resin 34C as a light blocking portion. As described above, the module package 300D includes the light transmissive resin 33D instead of the light transmissive resin 33C.
 光透過性樹脂33Dは、光透過性樹脂33Cと同様の部材を用いて形成されており、光透過性樹脂33Cとは形状が異なる。光透過性樹脂33Dは、光透過性樹脂33Cと同様に、パッケージ基板30B上の発光素子31および受光素子32の全体を覆っている。 The light transmissive resin 33D is formed using the same member as the light transmissive resin 33C, and the shape is different from that of the light transmissive resin 33C. The light transmissive resin 33D covers the entire light emitting element 31 and light receiving element 32 on the package substrate 30B in the same manner as the light transmissive resin 33C.
 光透過性樹脂33Dは、遮光性樹脂34Cの配置されている領域よりも左側の領域405と、遮光性樹脂34Cの配置されている領域よりも右側の領域406とを有している。領域405における光透過性樹脂33Dの上面が上面152であり、領域406における光透過性樹脂33Dの上面が上面153である。領域406は、領域404と同様の領域であり、上面153は、上面151と同様の面である。 The light transmitting resin 33D has a region 405 on the left side of the region where the light shielding resin 34C is disposed and a region 406 on the right side of the region where the light shielding resin 34C is disposed. The upper surface of the light transmissive resin 33D in the region 405 is the upper surface 152, and the upper surface of the light transmissive resin 33D in the region 406 is the upper surface 153. A region 406 is a region similar to the region 404, and an upper surface 153 is a surface similar to the upper surface 151.
 モジュールパッケージ300Dは、光透過性樹脂33Dの上面152が、受光素子32の上面と同一面内の受光面320に対して平行でなく傾いている。具体的には、領域405の光透過性樹脂33Dは、遮光性樹脂34C側の端部から遮光性樹脂34C側とは反対側の端部に向かって層の厚さが少しずつ薄くなっている。 In the module package 300D, the upper surface 152 of the light transmissive resin 33D is not parallel to the light receiving surface 320 in the same plane as the upper surface of the light receiving element 32, but is inclined. Specifically, the thickness of the light transmissive resin 33D in the region 405 gradually decreases from the end on the light shielding resin 34C side toward the end opposite to the light shielding resin 34C side. .
 光透過性樹脂33Dは、領域405の遮光性樹脂34C側の端部での厚さが、領域406の遮光性樹脂34C側の端部での厚さと同じである。そして、モジュールパッケージ300Dでは、光透過性樹脂33Dの底面と上面152とのなす角度が角度θ2であり、光透過性樹脂33Dの底面と上面153とのなす角度が角度θ2である。換言すると、上面152,153の勾配角度は、角度θ2である。 The thickness of the light transmitting resin 33D at the end of the region 405 on the light shielding resin 34C side is the same as the thickness of the region 406 at the end of the light shielding resin 34C side. In the module package 300D, the angle formed between the bottom surface of the light transmissive resin 33D and the top surface 152 is an angle θ2, and the angle formed between the bottom surface of the light transmissive resin 33D and the top surface 153 is an angle θ2. In other words, the gradient angle of the upper surfaces 152 and 153 is the angle θ2.
 このように実施の形態2では、光透過性樹脂33C,33Dの受光素子32側の上面151,153に勾配を設けたので、光線が、受光素子32で反射した後に光透過性樹脂33C,33Dの上面151,153でフレネル反射する際に、勾配角度である角度θ2分だけ傾いて反射する。このため、多重反射された不要な光線が受光面320に入射しにくくなる。この結果、モジュールパッケージ300C,300Dは、高精度に絶対回転角度を検出することが可能となる。また、光透過性樹脂33C,33Dの厚さを薄くできるので、モジュールパッケージ300C,300Dを作製する際の材料費を削減することが可能となり、低コストで絶対回転角度の検出を実現することが可能となる。 As described above, in the second embodiment, since the slopes are provided on the upper surfaces 151 and 153 of the light transmissive resins 33C and 33D on the light receiving element 32 side, the light transmissive resins 33C and 33D are reflected after the light rays are reflected by the light receiving element 32. When the Fresnel reflection is performed on the upper surfaces 151 and 153, the light is reflected by being inclined by an angle θ2 that is a gradient angle. For this reason, it is difficult for the unnecessary reflected light beam to enter the light receiving surface 320. As a result, the module packages 300C and 300D can detect the absolute rotation angle with high accuracy. Further, since the thickness of the light transmissive resins 33C and 33D can be reduced, it is possible to reduce the material cost when manufacturing the module packages 300C and 300D, and to realize the detection of the absolute rotation angle at a low cost. It becomes possible.
 なお、モジュールパッケージ300Dは、パッケージ基板30Bの代わりに、パッケージ基板30Aを備えていてもよい。換言すると、モジュールパッケージ300Aに光透過性樹脂33Dが適用されてもよい。この場合、モジュールパッケージ300Aが、光透過性樹脂33Aの代わりに光透過性樹脂33Dを備え、遮光性樹脂34Aの代わりに遮光性樹脂34Cを備える。 The module package 300D may include a package substrate 30A instead of the package substrate 30B. In other words, the light transmissive resin 33D may be applied to the module package 300A. In this case, the module package 300A includes a light-transmitting resin 33D instead of the light-transmitting resin 33A, and includes a light-blocking resin 34C instead of the light-blocking resin 34A.
 また、図17および図18で説明した、遮光性樹脂34Cは、発光面310の中心と受光面320の中心との中間位置に配置される場合に限らず、他の領域に配置されてもよい。 Further, the light shielding resin 34 </ b> C described in FIGS. 17 and 18 is not limited to being disposed at an intermediate position between the center of the light emitting surface 310 and the center of the light receiving surface 320, and may be disposed in another region. .
 このように実施の形態2によれば、光透過性樹脂33C,33Dの上面151,153が傾斜しているので、光透過性樹脂33C,33Dの上面151,153で反射された不要な光線が受光面320に入射しにくくなる。したがって、測定対象物の絶対回転角度を精度良く検出することが可能となる。 As described above, according to the second embodiment, since the upper surfaces 151 and 153 of the light transmitting resins 33C and 33D are inclined, unnecessary light rays reflected by the upper surfaces 151 and 153 of the light transmitting resins 33C and 33D are reflected. It becomes difficult to enter the light receiving surface 320. Therefore, it is possible to accurately detect the absolute rotation angle of the measurement object.
 なお、実施の形態1,2では、アブソリュートエンコーダ1が、回転角度を検出するロータリーエンコーダである場合について説明したが、アブソリュートエンコーダ1は、直線的な移動量を検出するリニアエンコーダにも適用可能である。 Although the first and second embodiments have described the case where the absolute encoder 1 is a rotary encoder that detects a rotation angle, the absolute encoder 1 can also be applied to a linear encoder that detects a linear movement amount. is there.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 アブソリュートエンコーダ、2 光学式スケール、4 制御部、5 回転シャフト、19 ルックアップテーブル、30A,30B パッケージ基板、31,31X 発光素子、32,32X 受光素子、33A,33C,33D,33X 光透過性樹脂、34A,34B,34C 遮光性樹脂、41 角度演算部、42 発光量調整部、150~153 上面、200 光学パターン、201 反射部、202 非反射部、300,300A,300B,300X モジュールパッケージ、310,310X 発光面、320,320X 受光面、411 光量分布補正部、412 エッジ検出部、413 粗検出部、414 高精度検出部、415 回転角度検出部、901~903 光線経路。 1 Absolute encoder, 2 Optical scale, 4 Control unit, 5 Rotating shaft, 19 Look-up table, 30A, 30B Package substrate, 31, 31X Light emitting element, 32, 32X Light receiving element, 33A, 33C, 33D, 33X Light transmission Resin, 34A, 34B, 34C light-shielding resin, 41 angle calculation unit, 42 light emission amount adjustment unit, 150-153 top surface, 200 optical pattern, 201 reflection unit, 202 non-reflection unit, 300, 300A, 300B, 300X module package, 310, 310X light emitting surface, 320, 320X light receiving surface, 411 light quantity distribution correction unit, 412 edge detection unit, 413 coarse detection unit, 414 high precision detection unit, 415 rotation angle detection unit, 901-903 ray path.

Claims (5)

  1.  光学パターンを有する光学式スケールと、
     前記光学式スケールに光を照射する発光素子および前記光学式スケールからの反射光を受光する受光素子を光透過性樹脂で覆ったモジュールパッケージと、
     前記受光素子が前記反射光に応じて出力する信号に基づいて、前記光学式スケールの絶対回転角度を演算する制御部と、
     を備え、
     前記モジュールパッケージには、
     前記光透過性樹脂の前記光学式スケールに対向する面で露出し且つ前記発光素子の発光面の中心と、前記受光素子の受光面の中心との中間位置を通る遮光部が配置されている、
     ことを特徴とするアブソリュートエンコーダ。
    An optical scale having an optical pattern;
    A light emitting element that emits light to the optical scale and a module package in which a light receiving element that receives reflected light from the optical scale is covered with a light-transmitting resin;
    A controller that calculates an absolute rotation angle of the optical scale based on a signal output by the light receiving element according to the reflected light;
    With
    The module package includes
    A light-shielding portion that is exposed on a surface of the light-transmitting resin that faces the optical scale and that passes through an intermediate position between the center of the light-emitting surface of the light-emitting element and the center of the light-receiving surface of the light-receiving element is disposed;
    An absolute encoder characterized by this.
  2.  前記モジュールパッケージは、前記発光素子および前記受光素子が実装されるパッケージ基板をさらに有し、
     前記遮光部は、前記パッケージ基板が掘り込まれた領域および前記光透過性樹脂が掘り込まれた領域に配置されている、
     ことを特徴とする請求項1に記載のアブソリュートエンコーダ。
    The module package further includes a package substrate on which the light emitting element and the light receiving element are mounted.
    The light shielding portion is disposed in a region where the package substrate is dug and a region where the light transmitting resin is dug,
    The absolute encoder according to claim 1.
  3.  前記パッケージ基板は、ガラエポ基板であり、
     前記光透過性樹脂および前記遮光部は、エポキシ系樹脂である、
     ことを特徴とする請求項2に記載のアブソリュートエンコーダ。
    The package substrate is a glass epoxy substrate,
    The light transmissive resin and the light shielding part are epoxy resins,
    The absolute encoder according to claim 2.
  4.  光学パターンを有する光学式スケールと、
     前記光学式スケールに光を照射する発光素子および前記光学式スケールからの反射光を受光する受光素子を光透過性樹脂で覆ったモジュールパッケージと、
     前記受光素子が前記反射光に応じて出力する信号に基づいて、前記光学式スケールの絶対回転角度を演算する制御部と、
     を備え、
     前記モジュールパッケージは、
     前記受光素子の前記発光素子側の端部に照射される光線の角度をθ1とし、前記受光素子の受光面から前記光透過性樹脂の上面までの距離をL3とし、前記受光素子の前記発光素子側の端部から前記受光面の前記発光素子側とは反対側の端部までの距離をL4とした場合に、2×tanθ1×L3>L4が成り立つように形成されている、
     ことを特徴とするアブソリュートエンコーダ。
    An optical scale having an optical pattern;
    A light emitting element that emits light to the optical scale and a module package in which a light receiving element that receives reflected light from the optical scale is covered with a light-transmitting resin;
    A controller that calculates an absolute rotation angle of the optical scale based on a signal output by the light receiving element according to the reflected light;
    With
    The module package is
    The angle of the light beam applied to the end of the light receiving element on the light emitting element side is θ1, the distance from the light receiving surface of the light receiving element to the upper surface of the light transmitting resin is L3, and the light emitting element of the light receiving element 2 × tan θ1 × L3> L4 is established when the distance from the end on the side to the end of the light receiving surface opposite to the light emitting element side is L4.
    An absolute encoder characterized by this.
  5.  光学パターンを有する光学式スケールと、
     前記光学式スケールに光を照射する発光素子および前記光学式スケールからの反射光を受光する受光素子を光透過性樹脂で覆ったモジュールパッケージと、
     前記受光素子が前記反射光に応じて出力する信号に基づいて、前記光学式スケールの絶対回転角度を演算する制御部と、
     を備え、
     前記光透過性樹脂は、前記光学式スケールに対向する面である上面が、前記受光素子の受光面に対して傾斜している、
     ことを特徴とするアブソリュートエンコーダ。
    An optical scale having an optical pattern;
    A light emitting element that emits light to the optical scale and a module package in which a light receiving element that receives reflected light from the optical scale is covered with a light-transmitting resin;
    A controller that calculates an absolute rotation angle of the optical scale based on a signal output by the light receiving element according to the reflected light;
    With
    The light transmissive resin has an upper surface that is a surface facing the optical scale inclined with respect to the light receiving surface of the light receiving element.
    An absolute encoder characterized by this.
PCT/JP2018/006018 2018-02-20 2018-02-20 Absolute encoder WO2019162998A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880003297.3A CN110392820B (en) 2018-02-20 2018-02-20 Absolute encoder
JP2018540177A JP6407502B1 (en) 2018-02-20 2018-02-20 Absolute encoder
PCT/JP2018/006018 WO2019162998A1 (en) 2018-02-20 2018-02-20 Absolute encoder
KR1020197004840A KR102037786B1 (en) 2018-02-20 2018-02-20 Absolute encoder
TW108103126A TWI660159B (en) 2018-02-20 2019-01-28 Absolute encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006018 WO2019162998A1 (en) 2018-02-20 2018-02-20 Absolute encoder

Publications (1)

Publication Number Publication Date
WO2019162998A1 true WO2019162998A1 (en) 2019-08-29

Family

ID=63855176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006018 WO2019162998A1 (en) 2018-02-20 2018-02-20 Absolute encoder

Country Status (5)

Country Link
JP (1) JP6407502B1 (en)
KR (1) KR102037786B1 (en)
CN (1) CN110392820B (en)
TW (1) TWI660159B (en)
WO (1) WO2019162998A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181669A1 (en) * 2022-03-25 2023-09-28 浜松ホトニクス株式会社 Optical module for encoder, encoder, and method for manufacturing optical module for encoder

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6639750B1 (en) * 2019-04-11 2020-02-05 三菱電機株式会社 Encoder
WO2020246159A1 (en) * 2019-06-04 2020-12-10 株式会社村田製作所 Random number generation device
JP7012057B2 (en) * 2019-11-07 2022-01-27 キヤノンプレシジョン株式会社 Reflective sensor and optical encoder equipped with it

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206952A (en) * 2001-01-11 2002-07-26 Nippon Telegr & Teleph Corp <Ntt> Encoder
JP2004006753A (en) * 2002-04-05 2004-01-08 Canon Inc Package for optical semiconductor
JP2012194162A (en) * 2011-03-18 2012-10-11 Ricoh Co Ltd Optical functional device and optical encoder, and optical scanner, image forming apparatus, and electronic instrument using them
JP2013070078A (en) * 2012-11-21 2013-04-18 Canon Inc Reflection type sensor
JP2014086549A (en) * 2012-10-23 2014-05-12 Stanley Electric Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP2015090300A (en) * 2013-11-05 2015-05-11 株式会社安川電機 Encoder, motor with encoder, and servo system
JP2015137955A (en) * 2014-01-23 2015-07-30 三菱電機株式会社 absolute encoder
JP2015200568A (en) * 2014-04-08 2015-11-12 キヤノン株式会社 Optical encoder and device with the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1151361C (en) * 1996-05-20 2004-05-26 松下电器产业株式会社 Optical encoder and position detecting method
US6972402B2 (en) * 2002-06-03 2005-12-06 Mitsubishi Denki Kabushiki Kaisha Photoelectric rotary encoder
JP2006038572A (en) * 2004-07-26 2006-02-09 Sharp Corp Reflection type encoder and electronic apparatus using this reflection type encoder
US7495583B2 (en) * 2006-04-14 2009-02-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Flat-top reflection-based optical encoders
JP2007333667A (en) 2006-06-19 2007-12-27 Olympus Corp Optical encoder
US8035079B2 (en) * 2007-04-10 2011-10-11 Olympus Corporation Optical encoder
JP5399526B2 (en) * 2011-06-29 2014-01-29 シャープ株式会社 Optical distance measuring device and electronic device
JP5399525B2 (en) * 2011-06-29 2014-01-29 シャープ株式会社 Optical distance measuring device and electronic device
WO2014013621A1 (en) * 2012-07-20 2014-01-23 株式会社安川電機 Optical encoder, motor provided with encoder, and servo system
CN104718434A (en) * 2013-03-11 2015-06-17 株式会社安川电机 Encoder, motor with encoder, and servo system
JP6566635B2 (en) * 2014-12-10 2019-08-28 キヤノン株式会社 Optical device and image forming apparatus including the same
JP2019165031A (en) * 2016-06-16 2019-09-26 株式会社村田製作所 Optical sensor and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206952A (en) * 2001-01-11 2002-07-26 Nippon Telegr & Teleph Corp <Ntt> Encoder
JP2004006753A (en) * 2002-04-05 2004-01-08 Canon Inc Package for optical semiconductor
JP2012194162A (en) * 2011-03-18 2012-10-11 Ricoh Co Ltd Optical functional device and optical encoder, and optical scanner, image forming apparatus, and electronic instrument using them
JP2014086549A (en) * 2012-10-23 2014-05-12 Stanley Electric Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP2013070078A (en) * 2012-11-21 2013-04-18 Canon Inc Reflection type sensor
JP2015090300A (en) * 2013-11-05 2015-05-11 株式会社安川電機 Encoder, motor with encoder, and servo system
JP2015137955A (en) * 2014-01-23 2015-07-30 三菱電機株式会社 absolute encoder
JP2015200568A (en) * 2014-04-08 2015-11-12 キヤノン株式会社 Optical encoder and device with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181669A1 (en) * 2022-03-25 2023-09-28 浜松ホトニクス株式会社 Optical module for encoder, encoder, and method for manufacturing optical module for encoder

Also Published As

Publication number Publication date
CN110392820B (en) 2020-05-01
KR20190102172A (en) 2019-09-03
KR102037786B1 (en) 2019-10-29
TWI660159B (en) 2019-05-21
JP6407502B1 (en) 2018-10-17
TW201934963A (en) 2019-09-01
JPWO2019162998A1 (en) 2020-04-02
CN110392820A (en) 2019-10-29

Similar Documents

Publication Publication Date Title
JP6407502B1 (en) Absolute encoder
US7358481B2 (en) Reflective encoder with three-dimensional code carrier
US7304294B2 (en) Reflective encoder with reduced background noise
US7309855B2 (en) Reflective encoder with light shield and electronic device using such reflective encoder
EP1574826A1 (en) Optical displacement-measuring instrument
US7784694B2 (en) Reflective encoder with lens on code strip
TWI664398B (en) Optical rotary encoder
JP6552052B2 (en) Toner adhesion amount sensor
JP6639750B1 (en) Encoder
JP2005156549A (en) Optical encoder
WO2018163424A1 (en) Absolute encoder
JP7248504B2 (en) optical encoder
US20070120048A1 (en) Reflective encoder module
JP4466083B2 (en) Ranging light source and ranging device
JP4999596B2 (en) Reflective photo sensor
JP7102058B2 (en) Photoelectric encoder
KR101227125B1 (en) Optical encoder and displacement measurement method using the same
JP5278276B2 (en) Ranging light source and ranging device using the same
US20180113007A1 (en) Reflective absolute encoder sensor
JP2002013949A (en) Absolute type encoder
JP4006377B2 (en) Optical encoder and its signal stabilization method
JP2005300306A (en) Optical displacement measurement apparatus
KR20200117387A (en) Apparatus and method for processing signal of lidar sensor
KR20200117388A (en) Apparatus and method for enhancing distance detection accuracy of lidar sensor
WO2007132602A1 (en) Optical encoder and motor with encoder

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018540177

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197004840

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907086

Country of ref document: EP

Kind code of ref document: A1