JP2013067857A - Cu-Mn ALLOY SPUTTERING TARGET MATERIAL, AND THIN FILM TRANSISTOR WIRING AND THIN FILM TRANSISTOR USING THE SAME - Google Patents

Cu-Mn ALLOY SPUTTERING TARGET MATERIAL, AND THIN FILM TRANSISTOR WIRING AND THIN FILM TRANSISTOR USING THE SAME Download PDF

Info

Publication number
JP2013067857A
JP2013067857A JP2012197037A JP2012197037A JP2013067857A JP 2013067857 A JP2013067857 A JP 2013067857A JP 2012197037 A JP2012197037 A JP 2012197037A JP 2012197037 A JP2012197037 A JP 2012197037A JP 2013067857 A JP2013067857 A JP 2013067857A
Authority
JP
Japan
Prior art keywords
film
alloy
target material
sputtering target
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012197037A
Other languages
Japanese (ja)
Inventor
Noriyuki Tatsumi
憲之 辰巳
Koshiro Ueda
孝史郎 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2012197037A priority Critical patent/JP2013067857A/en
Publication of JP2013067857A publication Critical patent/JP2013067857A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Abstract

PROBLEM TO BE SOLVED: To form a Cu-Mn alloy film having high barrier property.SOLUTION: The Cu-Mn alloy sputtering target material 10 is used for forming wiring of a semiconductor element, and comprised of a Cu-Mn alloy containing Mn whose concentration is 8-30 atomic% and inevitable impurities. The average crystal grain size of the Cu-Mn alloy is 10-50 μm.

Description

本発明は、Cu−Mn合金スパッタリングターゲット材、それを用いて形成されたCu−Mn合金膜を有する薄膜トランジスタ配線及び薄膜トランジスタに関する。   The present invention relates to a Cu—Mn alloy sputtering target material, a thin film transistor wiring having a Cu—Mn alloy film formed using the Cu—Mn alloy sputtering target material, and a thin film transistor.

近年、液晶パネルの大画面化や高精細化が進んでいる。パネルメーカーでは、更なる臨場感を求めてスーパーハイビジョン(高画角化)や裸眼3Dパネルの実現を目指している。これにしたがい、液晶パネルに用いられる薄膜トランジスタ(TFT:Thin Film Transistor)についても、現行のアモルファスシリコン(α−Si)半導体を用いたものから、高移動度による高速動作が可能で、閾値電圧のバラツキが少なく、駆動電流均一性に優れた酸化物半導体を用いたTFTの開発が、急ピッチで進められている。酸化物半導体としては、酸化インジウムガリウム亜鉛(InGaZnO:以下、IGZOとも記載する)や酸化亜鉛(ZnO)等の材料の研究が進められており、これらの材質に適した配線電極材料の検討が必要となっている。   In recent years, liquid crystal panels have been increased in screen size and definition. Panel manufacturers are seeking to realize super high vision (high angle of view) and autostereoscopic 3D panels in search of even greater realism. Accordingly, thin film transistors (TFTs) used in liquid crystal panels are also capable of high-speed operation with high mobility from those using current amorphous silicon (α-Si) semiconductors, and variation in threshold voltage. The development of TFTs using oxide semiconductors that are small in number and have excellent drive current uniformity is being promoted at a rapid pace. As oxide semiconductors, materials such as indium gallium zinc oxide (InGaZnO: hereinafter also referred to as IGZO) and zinc oxide (ZnO) are being researched, and it is necessary to examine wiring electrode materials suitable for these materials. It has become.

配線電極材料について、α−Si系TFTの例でその動向をみると、動作速度を高速化するため、従来のアルミニウム(Al)配線よりも低抵抗の銅(Cu)配線への切り替えが進んでいる。一方で、Al配線やCu配線等のメタル配線とα−Si半導体との界面には、拡散バリア膜となるモリブデン(Mo)膜やチタン(Ti)膜が使用されてきたが、MoやTiには材料コストが高いという課題があった。そこで、液晶パネルの製造コスト低減のため、代替となる合金や製造プロセスが検討されている。   Looking at trends in wiring electrode materials in the example of α-Si TFTs, switching to copper (Cu) wiring with lower resistance than conventional aluminum (Al) wiring has progressed in order to increase the operating speed. Yes. On the other hand, a molybdenum (Mo) film or titanium (Ti) film serving as a diffusion barrier film has been used at the interface between metal wiring such as Al wiring or Cu wiring and an α-Si semiconductor. Had the problem of high material costs. Therefore, alternative alloys and manufacturing processes are being studied to reduce the manufacturing cost of liquid crystal panels.

例えば特許文献1,2及び非特許文献1には、銅−マンガン(Cu−Mn)合金をα−Si系TFTの全ての電極(ソース−ドレイン及びゲート)に適用することが開示され、その有効性が実証されている。   For example, Patent Documents 1 and 2 and Non-Patent Document 1 disclose that a copper-manganese (Cu-Mn) alloy is applied to all electrodes (source-drain and gate) of an α-Si-based TFT. Sex has been demonstrated.

また、非特許文献2には、テトラエトキシシラン(TEOS)ガスを用いたプラズマCVD(Chemical Vapor Deposition)により成膜した酸化シリコン(SiO2)膜上に、スパッタリングにより成膜したCu−Mn合金膜について開示されている。係る構成においては、熱処理によりCu−Mn合金膜中のMnがSiO2膜の界面に移動し、SiO2膜から拡散した酸素(O)と反応してMnの酸化膜からなる拡散バリア膜が形成される。非特許文献2では、拡散バリア膜の形成にあたり、熱処理温度、熱処理時間及びMnの濃度と、拡散バリア膜の厚さとの関係について検討しており、これによれば、Mnの濃度が高いほど拡散バリア膜の厚さが増加し、30原子%以上の添加量で拡散バリア膜の成長が飽和する。係る結果については、合金の融点が低下していく間は添加元素の拡散係数が増加するという一般的な傾向に一致するとの考察がなされている。Cu−Mn合金の融点は、Mn濃度が30原子%付近で最小を示す。したがって、Mnの濃度が30原子%まではCu−Mn合金膜中のMnの拡散係数は増加し、拡散バリア膜の成長が促進される。一方、Mnの濃度が30原子%を超えると、添加元素の供給量が充分であってもMnの拡散係数は減少傾向となり、拡散バリア膜の成長が飽和する。 Non-Patent Document 2 discloses a Cu—Mn alloy film formed by sputtering on a silicon oxide (SiO 2 ) film formed by plasma CVD (Chemical Vapor Deposition) using tetraethoxysilane (TEOS) gas. Is disclosed. In such a configuration, Mn in the Cu—Mn alloy film moves to the interface of the SiO 2 film by heat treatment and reacts with oxygen (O) diffused from the SiO 2 film to form a diffusion barrier film made of an oxide film of Mn. Is done. Non-Patent Document 2 examines the relationship between the heat treatment temperature, the heat treatment time, the concentration of Mn, and the thickness of the diffusion barrier film in the formation of the diffusion barrier film. The thickness of the barrier film increases, and the growth of the diffusion barrier film is saturated at an addition amount of 30 atomic% or more. It has been considered that such a result agrees with the general tendency that the diffusion coefficient of the additive element increases while the melting point of the alloy decreases. The melting point of the Cu—Mn alloy shows the minimum when the Mn concentration is around 30 atomic%. Therefore, when the Mn concentration is up to 30 atomic%, the diffusion coefficient of Mn in the Cu—Mn alloy film increases and the growth of the diffusion barrier film is promoted. On the other hand, when the concentration of Mn exceeds 30 atomic%, the diffusion coefficient of Mn tends to decrease even if the supply amount of the additive element is sufficient, and the growth of the diffusion barrier film is saturated.

また、非特許文献3には、Cu−4原子%Mn合金膜をIGZO系TFTに採用し、良好な結果が得られた旨が開示されている。すなわち、IGZO膜上に、スパッタリングによりCu−4原子%Mn合金膜を成膜し、一般的なTFTの製造プロセス温度に近い250℃で熱処理を行う。これにより、合金膜の界面に酸化マンガン(MnOx)膜を形成し、合金膜中のCuがIGZO膜中へ拡散することを抑制する。非特許文献3によれば、係る積層膜においては良好なオーミック特性が得られ、接触抵抗が10-4Ωcmと充分低い値が得られたとある。また、電極の加工性についても、ウェットエッチングにより良好な結果が得られている。具体的には、硝酸系のエッチャントを使用しており、Cu−4原子%Mn合金膜とIGZO膜とのエッチングレートの選択比は10:1であるとされている。 Non-Patent Document 3 discloses that a Cu-4 atomic% Mn alloy film was adopted for an IGZO-based TFT, and good results were obtained. That is, a Cu-4 atomic% Mn alloy film is formed on the IGZO film by sputtering, and heat treatment is performed at 250 ° C., which is close to a general TFT manufacturing process temperature. Thereby, a manganese oxide (MnOx) film is formed at the interface of the alloy film, and Cu in the alloy film is prevented from diffusing into the IGZO film. According to Non-Patent Document 3, it is said that good ohmic characteristics were obtained in such a laminated film, and a sufficiently low value of contact resistance of 10 −4 Ωcm was obtained. In addition, good results have been obtained by wet etching in terms of electrode processability. Specifically, a nitric acid-based etchant is used, and the etching rate selection ratio between the Cu-4 atomic% Mn alloy film and the IGZO film is 10: 1.

特開2010−050112号公報JP 2010-050112 A 特開2008−261895号公報JP 2008-261895 A

大西 順雄、外1名、"大型TFT液晶パネルのゲート電極とソース・ドレイン電極を共にCu配線にするCu−Mn合金プロセス技術を東北大が開発≪訂正あり≫"、[online]、2008年9月9日、日経BP社「Tech-On!」、[2011年5月11日検索]、インターネット<URL:http://techon.nikkeibp.co.jp/article/NEWS/20080909/157714>Juno Onishi, 1 other person, "Tohoku University develops Cu-Mn alloy process technology that makes both the gate electrode and the source / drain electrode of a large TFT liquid crystal panel Cu wiring" << corrected >>, [online], 2008 September 9, Nikkei BP “Tech-On!” [Search May 11, 2011], Internet <URL: http://techon.nikkeibp.co.jp/article/NEWS/20080909/157714> M.Haneda, J.Iijima, and J.koike,"Growth behavior of self-formed barrier at Cu-Mn/SiO2 interface at 250-450℃,"APPLIED PHYSICS LETTERS 90.252107(2007)M. Haneda, J. Iijima, and J. koike, "Growth behavior of self-formed barrier at Cu-Mn / SiO2 interface at 250-450 ℃," APPLIED PHYSICS LETTERS 90.252107 (2007) Pilsang Yun, Junichi Koike,"Microstructure Analysis and Electrical Properties of Cu-Mn Electrode for Back-Channel Etching a-IGZO TFT,"17th International Display Workshops(IDW'10),pp.1873-1876Pilsang Yun, Junichi Koike, "Microstructure Analysis and Electrical Properties of Cu-Mn Electrode for Back-Channel Etching a-IGZO TFT," 17th International Display Workshops (IDW'10), pp. 1873-1876

本発明者等は、上記の非特許文献3の結果を検証すべく、上記に倣ってIGZO系TFTを製作した。電極構造は、低抵抗の純Cu膜をCu−Mn合金のバリア膜で挟んだCu−Mn/Cu/Cu−Mn構造のスパッタリング積層膜とした。また、ソース−ドレイン電極上にはSiO2膜からなる保護膜を形成した。その結果、充分な拡散バリア性が得られた非特許文献3と異なり、IGZO膜中へのCuの拡散が原因と思われる素子特性のバラツキがみられた。また、SiO2保護膜を形成する際の純Cu膜の酸化が原因と思われる配線の抵抗値の上昇がみられ、耐酸化性も不充分であった。係る結果から、より高い拡散バリア性及び酸化バリア性(耐酸化性)を有するCu−Mn合金膜を得ることが急務の課題である。 In order to verify the result of Non-Patent Document 3, the present inventors manufactured an IGZO-based TFT according to the above. The electrode structure was a Cu-Mn / Cu / Cu-Mn structure sputtering laminated film in which a low-resistance pure Cu film was sandwiched between Cu-Mn alloy barrier films. A protective film made of a SiO 2 film was formed on the source-drain electrodes. As a result, unlike Non-Patent Document 3 in which sufficient diffusion barrier properties were obtained, variation in element characteristics that was considered to be caused by diffusion of Cu into the IGZO film was observed. In addition, the resistance value of the wiring increased due to oxidation of the pure Cu film when forming the SiO 2 protective film, and the oxidation resistance was insufficient. From such a result, it is an urgent task to obtain a Cu—Mn alloy film having higher diffusion barrier properties and oxidation barrier properties (oxidation resistance).

本発明の目的は、高いバリア性を有するCu−Mn合金膜を形成することができるCu−Mn合金スパッタリングターゲット材、それを用いた薄膜トランジスタ配線及び薄膜トランジスタを提供することである。   An object of the present invention is to provide a Cu—Mn alloy sputtering target material capable of forming a Cu—Mn alloy film having high barrier properties, a thin film transistor wiring and a thin film transistor using the same.

本発明の第1の態様によれば、半導体素子の配線の形成に用いられるCu−Mn合金スパッタリングターゲット材であって、濃度が8原子%以上30原子%以下のMnと、不可避的不純物とを含むCu−Mn合金からなり、前記Cu−Mn合金の平均結晶粒径が10μm以上50μm以下であるCu−Mn合金スパッタリングターゲット材が提供される。   According to the first aspect of the present invention, there is provided a Cu—Mn alloy sputtering target material used for forming a wiring of a semiconductor element, wherein Mn has a concentration of 8 atomic% or more and 30 atomic% or less, and unavoidable impurities. There is provided a Cu—Mn alloy sputtering target material comprising a Cu—Mn alloy, wherein the Cu—Mn alloy has an average crystal grain size of 10 μm or more and 50 μm or less.

本発明の第2の態様によれば、Cu−Mn合金膜と、純Cu膜と、Cu−Mn合金膜と、がこの順に形成された積層構造を基板上に有し、前記Cu−Mn合金膜の少なくとも一方は、第1の態様に記載のCu−Mn合金スパッタリングターゲット材を用いて形成され、濃度が8原子%以上30原子%以下のMnと、不可避的不純物とを含むCu−Mn合金からなる薄膜トランジスタ配線が提供される。   According to the second aspect of the present invention, the Cu—Mn alloy film, the pure Cu film, and the Cu—Mn alloy film are formed on the substrate in this order. At least one of the films is formed using the Cu—Mn alloy sputtering target material described in the first embodiment, and includes a Cu—Mn alloy having a concentration of 8 atomic% to 30 atomic% and unavoidable impurities. A thin film transistor wiring comprising:

本発明の第3の態様によれば、前記Mnの濃度が8原子%以上30原子%以下である前記Cu−Mn合金膜中の前記Mnの濃度の標準偏差が0.05原子%未満である第2の態様に記載の薄膜トランジスタ配線が提供される。   According to the third aspect of the present invention, the standard deviation of the Mn concentration in the Cu—Mn alloy film in which the Mn concentration is 8 atomic% or more and 30 atomic% or less is less than 0.05 atomic%. A thin film transistor wiring according to the second aspect is provided.

本発明の第4の態様によれば、第2又は第3の態様に記載の薄膜トランジスタ配線が、InGaZnO膜から構成される酸化物半導体を介して前記基板上に形成されている薄膜トランジスタが提供される。   According to a fourth aspect of the present invention, there is provided a thin film transistor in which the thin film transistor wiring according to the second or third aspect is formed on the substrate via an oxide semiconductor composed of an InGaZnO film. .

本発明によれば、高いバリア性を有するCu−Mn合金膜を形成することができる。   According to the present invention, a Cu—Mn alloy film having high barrier properties can be formed.

本発明の一実施形態に係るCu−Mn合金スパッタリングターゲット材が装着されたスパッタリング装置の縦断面図である。It is a longitudinal cross-sectional view of the sputtering device with which the Cu-Mn alloy sputtering target material which concerns on one Embodiment of this invention was mounted | worn. 本発明の一実施形態に係る薄膜トランジスタの概略断面図である。It is a schematic sectional drawing of the thin-film transistor which concerns on one Embodiment of this invention. 本発明の実施例1〜12及び比較例1〜7に係る評価サンプルの説明図であって、(a)はCu−Mn/Cu/Cu−Mn積層膜がブロック状に複数個形成された評価サンプルの平面図であり、(b)はCu−Mn/Cu/Cu−Mn積層膜の1ブロックを示す斜視図である。It is explanatory drawing of the evaluation sample which concerns on Examples 1-12 of this invention, and Comparative Examples 1-7, Comprising: (a) is evaluation by which multiple Cu-Mn / Cu / Cu-Mn laminated film was formed in block shape It is a top view of a sample, (b) is a perspective view which shows 1 block of a Cu-Mn / Cu / Cu-Mn laminated film. 本発明の実施例1〜12及び比較例1〜7に係る評価サンプルのシート抵抗を示すグラフである。It is a graph which shows the sheet resistance of the evaluation sample which concerns on Examples 1-12 of this invention, and Comparative Examples 1-7. 本発明の実施例1,4,7,10及び12〜15並びに比較例8〜17に係る評価サンプルの平面図である。It is a top view of the evaluation sample which concerns on Example 1, 4, 7, 10, 12-15 of this invention, and Comparative Examples 8-17.

上述のように、非特許文献3にしたがって、スパッタリングにより形成されるCu−Mn合金膜を含む配線をIGZO系TFTに適用したところ、IGZO膜に対して充分な拡散バリア性が得られなかった。つまり、TFT基板内の領域によってはCu−Mn合金膜中のCuがIGZO膜中に拡散してしまい、素子特性にバラツキが生じてしまった。また、配線上にSiO2膜からなる保護膜を形成する際、Cu−Mn合金膜の下層の純Cu膜に対して充分な酸化バリア性(耐酸化性)が得られず、純Cu膜が酸化されて配線の抵抗値が上がってしまった。 As described above, according to Non-Patent Document 3, when a wiring including a Cu—Mn alloy film formed by sputtering was applied to an IGZO-based TFT, a sufficient diffusion barrier property was not obtained for the IGZO film. That is, depending on the region in the TFT substrate, Cu in the Cu—Mn alloy film diffuses into the IGZO film, resulting in variations in element characteristics. Further, when forming a protective film made of a SiO 2 film on the wiring, sufficient oxidation barrier properties (oxidation resistance) cannot be obtained with respect to the pure Cu film below the Cu—Mn alloy film, and the pure Cu film It was oxidized and the resistance value of the wiring rose.

本発明者等は、TFT基板内で素子特性にバラツキがあったことから、拡散バリア性の不足はCu−Mn合金膜中の基板内でのMnの濃度ムラによるものと推測した。つまり、IGZO膜上のCu−Mn合金膜に熱処理を施してMnOxを形成する際、TFT基板内のMnの濃度の低い部分ではMnOxが形成されるまでにCuがIGZO膜中に拡散してしまうと考えた。また、酸化バリア性が不足していることから、Cu−Mn合金膜中のMnの濃度の適正化が必要であると考えた。   The inventors of the present invention presumed that the lack of diffusion barrier properties was due to uneven Mn concentration in the substrate in the Cu-Mn alloy film because of variations in device characteristics within the TFT substrate. That is, when heat-treating the Cu—Mn alloy film on the IGZO film to form MnOx, Cu diffuses into the IGZO film before the MnOx is formed in the portion of the TFT substrate where the Mn concentration is low. I thought. Moreover, since the oxidation barrier property was insufficient, it was considered necessary to optimize the concentration of Mn in the Cu—Mn alloy film.

係る考察を基に、本発明者等は、Cu−Mn合金膜のIGZO膜に対する拡散バリア性及び純Cu膜に対する酸化バリア性を向上させるべく、Cu−Mn合金膜の形成に用いるスパッタリングターゲット材の組成及び結晶構造等の諸特性を検討することから開始し、鋭意研究を重ねた。その結果、Cu−Mn合金スパッタリングターゲット材中の結晶粒径と、これを用いて成膜されたCu−Mn合金膜中のMnの濃度ムラとの間には、相関関係があることを見いだした。また、充分な酸化バリア性を得るために必要なMnの濃度の適正値についても知見を得た。   Based on such considerations, the present inventors have developed a sputtering target material used for forming a Cu-Mn alloy film in order to improve the diffusion barrier property of the Cu-Mn alloy film with respect to the IGZO film and the oxidation barrier property with respect to the pure Cu film. We began by studying various properties such as composition and crystal structure, and conducted extensive research. As a result, it has been found that there is a correlation between the crystal grain size in the Cu—Mn alloy sputtering target material and the Mn concentration unevenness in the Cu—Mn alloy film formed using this. . Moreover, knowledge was also acquired about the appropriate value of the density | concentration of Mn required in order to obtain sufficient oxidation barrier property.

本発明は、発明者等が見いだした上記知見に基づくものである。   The present invention is based on the above findings found by the inventors.

<本発明の一実施形態>
(1)Cu−Mn合金スパッタリングターゲット材
以下に、本発明の一実施形態に係る銅−マンガン(Cu−Mn)合金スパッタリングターゲット材10(後述の図1を参照)について説明する。Cu−Mn合金スパッタリングターゲット材10は、例えば所定の外径と厚さとを備える円板型に形成され、各種半導体素子の配線の形成等に用いられるよう構成される。
<One Embodiment of the Present Invention>
(1) Cu-Mn Alloy Sputtering Target Material Hereinafter, a copper-manganese (Cu-Mn) alloy sputtering target material 10 (see FIG. 1 described later) according to an embodiment of the present invention will be described. The Cu—Mn alloy sputtering target material 10 is formed in a disk shape having a predetermined outer diameter and thickness, for example, and is configured to be used for forming wirings of various semiconductor elements.

Cu−Mn合金スパッタリングターゲット材10を構成するCu−Mn合金は、純度が共に3N(99.9%)以上の無酸素銅(OFC:Oxygen-Free Copper)と純マンガン(Mn)とが所定比率で配合された合金である。すなわち、Cu−Mn合金スパッタリングターゲット材10は、例えば濃度が8原子%以上30原子%以下のMnと、不可避的不純物とを含むCu−Mn合金からなる。   The Cu—Mn alloy constituting the Cu—Mn alloy sputtering target material 10 has a predetermined ratio of oxygen-free copper (OFC) having a purity of 3N (99.9%) or more and pure manganese (Mn). It is an alloy blended with. That is, the Cu—Mn alloy sputtering target material 10 is made of, for example, a Cu—Mn alloy containing Mn having a concentration of 8 atomic% to 30 atomic% and unavoidable impurities.

上記所定濃度のMnを含むCu−Mn合金スパッタリングターゲット材10を用いると、係る濃度と略同等の濃度のMnを含むCu−Mn合金膜が成膜される。Cu−Mn合金膜中のMnの濃度が上記所定値以上、つまり、例えば8%以上となることで、例えば後述するTFT配線の積層構造において、Cu−Mn合金膜の下層となる純Cu膜等に対して充分な酸化バリア性を得ることができる。また、Cu−Mn合金膜中のMnの濃度が上記所定値以下、つまり、例えば30%以下となることで、例えば上記積層構造において、IGZO膜や純Cu膜等のCu−Mn合金膜と接する膜中にMnが拡散することを抑制できる。   When the Cu—Mn alloy sputtering target material 10 containing the predetermined concentration of Mn is used, a Cu—Mn alloy film containing Mn at a concentration substantially equal to the concentration is formed. When the concentration of Mn in the Cu-Mn alloy film is equal to or higher than the predetermined value, that is, 8% or higher, for example, a pure Cu film that is a lower layer of the Cu-Mn alloy film in a laminated structure of TFT wiring described later, etc. Sufficient oxidation barrier properties can be obtained. In addition, when the concentration of Mn in the Cu—Mn alloy film is equal to or less than the predetermined value, that is, 30% or less, for example, in the laminated structure, the Cu—Mn alloy film such as an IGZO film or a pure Cu film is in contact. Mn can be prevented from diffusing into the film.

また、Cu−Mn合金スパッタリングターゲット材10を構成するCu−Mn合金は、その平均結晶粒径が例えば10μm以上50μm以下に調整されている。   Further, the Cu—Mn alloy constituting the Cu—Mn alloy sputtering target material 10 has an average crystal grain size adjusted to, for example, 10 μm or more and 50 μm or less.

本発明者等が見いだした上述の結晶粒径とMnの濃度ムラとの相関関係によれば、Cu−Mn合金スパッタリングターゲット材10中の結晶粒径が微細になるほど、Cu−Mn合金スパッタリングターゲット材10を用いて成膜したCu−Mn合金膜中のMnの濃度ムラが低減し、TFT基板面内のMnの濃度の均一性が向上する。よって、上記のように、平均結晶粒径を例えば50μm以下とすることで、より均一なCu−Mn合金膜を形成することができ、素子特性のバラツキを低減することができる。   According to the correlation between the crystal grain size and the Mn concentration unevenness found by the present inventors, the smaller the crystal grain size in the Cu-Mn alloy sputtering target material 10 is, the Cu-Mn alloy sputtering target material becomes. 10 is reduced in Mn concentration unevenness in the Cu—Mn alloy film formed using No. 10, and the uniformity of the Mn concentration in the TFT substrate surface is improved. Therefore, as described above, by setting the average crystal grain size to, for example, 50 μm or less, a more uniform Cu—Mn alloy film can be formed, and variations in device characteristics can be reduced.

以上のようにCu−Mn合金スパッタリングターゲット材10を構成することで、係るCu−Mn合金スパッタリングターゲット材10を用いて、高い拡散バリア性及び酸化バリア性を有するCu−Mn合金膜を形成することができる。   By forming the Cu—Mn alloy sputtering target material 10 as described above, a Cu—Mn alloy film having high diffusion barrier properties and oxidation barrier properties is formed using the Cu—Mn alloy sputtering target material 10. Can do.

Cu−Mn合金スパッタリングターゲット材10を構成するCu−Mn合金は、上述のTFTで拡散バリア膜として用いられるMoやTi等に比べて材料コストが安い。上記構成により、Cu−Mn合金スパッタリングターゲット材10をTFTの製造に好適に適用することができ、例えばバリア膜等をCu−Mn合金膜から構成することができるので、TFTや液晶パネルの製造コストの大幅な低減を図ることができる。   The Cu—Mn alloy constituting the Cu—Mn alloy sputtering target material 10 has a lower material cost than Mo or Ti used as a diffusion barrier film in the above-described TFT. With the above configuration, the Cu—Mn alloy sputtering target material 10 can be suitably applied to the production of TFTs. For example, the barrier film or the like can be constituted of a Cu—Mn alloy film. Can be greatly reduced.

(2)Cu−Mn合金スパッタリングターゲット材の製造方法
次に、本発明の一実施形態に係るCu−Mn合金スパッタリングターゲット材10の製造方法について説明する。
(2) Manufacturing method of Cu-Mn alloy sputtering target material Next, the manufacturing method of the Cu-Mn alloy sputtering target material 10 which concerns on one Embodiment of this invention is demonstrated.

まず、純度が共に3N(99.9%)以上の無酸素銅と純Mnとを所定比率で配合し、例えば1100℃以上1200℃以下の温度で溶解し鋳造して、例えば濃度が8原子%以上30原子%以下のMnと、不可避的不純物とを含むCu−Mn合金のインゴットを形成する。   First, oxygen-free copper having a purity of 3N (99.9%) or more and pure Mn are blended at a predetermined ratio, and melted and cast at a temperature of, for example, 1100 ° C. or more and 1200 ° C. or less. A Cu—Mn alloy ingot containing Mn of 30 atomic% or less and unavoidable impurities is formed.

次に、このインゴットを例えば800℃以上900℃以下の温度で熱間鍛造した後、例えば50%以上70%以下の加工度となるよう冷間圧延を行う。ここで、加工度とは、圧延によるインゴットの厚さの減少率((圧延後のインゴットの厚さ/圧延前のインゴットの厚さ)×100(%))である。   Next, this ingot is hot forged at a temperature of, for example, 800 ° C. or more and 900 ° C. or less, and then cold-rolled so as to have a workability of, for example, 50% or more and 70% or less. Here, the workability is a reduction rate of the thickness of the ingot by rolling ((thickness of the ingot after rolling / thickness of the ingot before rolling) × 100 (%)).

続いて、冷間圧延後のインゴットに対し、700℃以上900℃以下の温度で熱処理を施し、インゴットを構成するCu−Mn合金の再結晶化を図る。   Subsequently, the ingot after cold rolling is heat-treated at a temperature of 700 ° C. or higher and 900 ° C. or lower to recrystallize the Cu—Mn alloy constituting the ingot.

ここで、冷間圧延の加工度と、その後の熱処理の温度とを所定の組み合わせとすることで、Cu−Mn合金中の結晶粒径を調整することができる。このとき、熱処理の温度が高いと結晶粒径が粗大化する。具体的には、冷間圧延の加工度と熱処理の温度との組み合わせを上記のそれぞれの範囲内から選択し、例えば10μm以上50μm以下の微細結晶粒からなるCu−Mn合金を得る。   Here, the crystal grain size in the Cu—Mn alloy can be adjusted by setting the cold rolling workability and the temperature of the subsequent heat treatment to a predetermined combination. At this time, if the heat treatment temperature is high, the crystal grain size becomes coarse. Specifically, a combination of the cold rolling workability and the heat treatment temperature is selected from the above ranges, and a Cu—Mn alloy composed of fine crystal grains of, for example, 10 μm or more and 50 μm or less is obtained.

その後、上記所定の結晶構造となったインゴットに鏡面研磨等の機械加工を施して、例えば所定の外径及び厚さを備える円板型に成形する。   Thereafter, the ingot having the predetermined crystal structure is subjected to machining such as mirror polishing, and is formed into a disk shape having a predetermined outer diameter and thickness, for example.

以上により、Cu−Mn合金スパッタリングターゲット材10が製造される。   Thus, the Cu—Mn alloy sputtering target material 10 is manufactured.

(3)Cu−Mn合金スパッタリングターゲット材を用いた成膜方法
次に、本発明の一実施形態に係るCu−Mn合金スパッタリングターゲット材10を用いたスパッタリングにより、Cu−Mn合金膜を成膜する方法について、図1を用いて説明する。
(3) Film forming method using Cu—Mn alloy sputtering target material Next, a Cu—Mn alloy film is formed by sputtering using the Cu—Mn alloy sputtering target material 10 according to an embodiment of the present invention. The method will be described with reference to FIG.

図1は、本発明の一実施形態に係るCu−Mn合金スパッタリングターゲット材10が装着されたスパッタリング装置20の縦断面図である。なお、図1に示すスパッタリング装置20はあくまでも一例であって、Cu−Mn合金スパッタリングターゲット材10は、この他、種々のタイプのスパッタリング装置に装着して用いることができる。   FIG. 1 is a longitudinal sectional view of a sputtering apparatus 20 equipped with a Cu—Mn alloy sputtering target material 10 according to an embodiment of the present invention. Note that the sputtering apparatus 20 illustrated in FIG. 1 is merely an example, and the Cu—Mn alloy sputtering target material 10 can be used by being mounted on various types of sputtering apparatuses.

図1に示すように、スパッタリング装置20は、真空チャンバ21を備えている。真空チャンバ21内の上部には基板保持部22sが設けられ、成膜対象となる基板Sが、成膜される面を下方に向けて保持される。真空チャンバ21内の底部にはターゲット保持部22tが設けられ、例えばCu−Mn合金スパッタリングターゲット材10が、基板Sの被成膜面と対向するよう、スパッタ面を上方に向けて保持される。なお、スパッタリング装置20内に複数の基板Sを保持して、これら基板Sを一括処理、或いは連続処理してもよい。   As shown in FIG. 1, the sputtering apparatus 20 includes a vacuum chamber 21. A substrate holding part 22s is provided in the upper part of the vacuum chamber 21, and the substrate S to be deposited is held with the surface to be deposited facing downward. A target holding portion 22t is provided at the bottom of the vacuum chamber 21, and for example, the Cu—Mn alloy sputtering target material 10 is held with the sputtering surface facing upward so as to face the film formation surface of the substrate S. Note that a plurality of substrates S may be held in the sputtering apparatus 20 and these substrates S may be collectively processed or continuously processed.

また、真空チャンバ21の一方の壁面にはガス供給管23fが接続され、ガス供給管23fと対向する他方の壁面にはガス排気管23vが接続されている。ガス供給管23fには、アルゴン(Ar)ガス等の不活性ガスを真空チャンバ21内に供給する図示しないガス供給系が接続されている。ガス排気管23vには、Arガス等の真空チャンバ21内の雰囲気を排気する図示しないガス排気系が接続されている。   A gas supply pipe 23f is connected to one wall surface of the vacuum chamber 21, and a gas exhaust pipe 23v is connected to the other wall surface facing the gas supply pipe 23f. A gas supply system (not shown) for supplying an inert gas such as argon (Ar) gas into the vacuum chamber 21 is connected to the gas supply pipe 23f. A gas exhaust system (not shown) for exhausting the atmosphere in the vacuum chamber 21 of Ar gas or the like is connected to the gas exhaust pipe 23v.

係るスパッタリング装置20にて基板Sへの成膜を行う際は、Arガス等を真空チャンバ21内に供給し、Cu−Mn合金スパッタリングターゲット材10にアース接続し、基板Sに正の高電圧が印加されるよう、真空チャンバ21に対してDC放電電力を投入する。   When film formation on the substrate S is performed by the sputtering apparatus 20, Ar gas or the like is supplied into the vacuum chamber 21 and connected to the ground with the Cu—Mn alloy sputtering target material 10, so that a positive high voltage is applied to the substrate S. DC discharge power is applied to the vacuum chamber 21 so that it is applied.

これにより、主にCu−Mn合金スパッタリングターゲット材10と基板Sとの間にプラズマが生成され、プラスのアルゴン(Ar+)イオンGが、Cu−Mn合金スパッタリングターゲット材10のスパッタ面に衝突する。Ar+イオンGの衝突により、Cu−Mn合金スパッタリングターゲット材10から叩き出されたCu及びMnのスパッタ粒子Pが基板Sの被成膜面へと堆積されていき、基板S上には、Cu−Mn合金スパッタリングターゲット材10と略同等のMnの濃度を有するCu−Mn合金膜Mが形成される。すなわち、Cu−Mn合金膜Mは、例えば濃度が8原子%以上30原子%以下のMnと、不可避的不純物とを含む。 Thereby, plasma is mainly generated between the Cu—Mn alloy sputtering target material 10 and the substrate S, and positive argon (Ar + ) ions G collide with the sputtering surface of the Cu—Mn alloy sputtering target material 10. . Due to the collision of Ar + ions G, Cu and Mn sputtered particles P knocked out of the Cu—Mn alloy sputtering target material 10 are deposited on the film formation surface of the substrate S, and on the substrate S, Cu A Cu—Mn alloy film M having a concentration of Mn substantially equal to that of the —Mn alloy sputtering target material 10 is formed. That is, the Cu—Mn alloy film M includes, for example, Mn having a concentration of 8 atomic% or more and 30 atomic% or less and unavoidable impurities.

また、このとき、上述したように、Cu−Mn合金スパッタリングターゲット材10中の平均結晶粒径は10μm以上50μm以下と微細であるので、Cu−Mn合金膜M中のMnの濃度の標準偏差が例えば0.05原子%未満と、Mnの濃度ムラが少なく良好な均一性を有するCu−Mn合金膜Mが形成される。本発明者等によれば、ときにプラズマに異常放電を生じさせる粗大な結晶粒とは異なり、微細結晶粒にはプラズマの安定性を阻害する要因が少ない。よって、より安定した均一なプラズマが保たれることで、形成されるCu−Mn合金膜M中のMnの濃度の均一性が向上するものと推察される。   At this time, as described above, since the average crystal grain size in the Cu—Mn alloy sputtering target material 10 is as fine as 10 μm or more and 50 μm or less, the standard deviation of the Mn concentration in the Cu—Mn alloy film M is small. For example, a Cu—Mn alloy film M having good uniformity with less Mn concentration unevenness is formed at less than 0.05 atomic%. According to the inventors, unlike coarse crystal grains that sometimes cause abnormal discharge in plasma, fine crystal grains have few factors that hinder plasma stability. Therefore, it is presumed that the uniformity of Mn concentration in the formed Cu-Mn alloy film M is improved by maintaining a more stable and uniform plasma.

以上、本実施形態によれば、Cu−Mn合金スパッタリングターゲット材10を用い、高い拡散バリア性及び酸化バリア性を有するCu−Mn合金膜を形成することができる。このようにCu−Mn合金膜Mが形成された基板Sは、例えば所望の配線パターンにCu−Mn合金膜Mをパターニングして配線が形成された後、TFTをはじめとする各種の半導体素子として利用される。   As described above, according to this embodiment, a Cu—Mn alloy film having high diffusion barrier properties and oxidation barrier properties can be formed using the Cu—Mn alloy sputtering target material 10. The substrate S on which the Cu—Mn alloy film M is formed in this manner is used as various semiconductor elements including TFTs after the wiring is formed by patterning the Cu—Mn alloy film M in a desired wiring pattern, for example. Used.

(4)薄膜トランジスタの構造
Cu−Mn合金スパッタリングターゲット材10を用いて形成したCu−Mn合金膜は、上述のように、例えばInGaZnOより構成されるIGZO膜を備える薄膜トランジスタ(TFT:Thin Film Transistor)配線として適用することが可能である。以下に、その一例として、薄膜トランジスタとしてのIGZO系TFT30の構造について、図2を用いて説明する。図2は、本実施形態に係るIGZO系TFT30の概略断面図である。
(4) Structure of Thin Film Transistor As described above, the Cu—Mn alloy film formed using the Cu—Mn alloy sputtering target material 10 is a thin film transistor (TFT) wiring including an IGZO film made of, for example, InGaZnO. It is possible to apply as As an example, the structure of an IGZO TFT 30 as a thin film transistor will be described below with reference to FIG. FIG. 2 is a schematic cross-sectional view of the IGZO TFT 30 according to this embodiment.

図2に示すように、IGZO系TFT30は、例えばガラス基板31と、ガラス基板31上に形成されたゲート電極32と、ゲート電極32上のソース電極35S及びドレイン電極35D(以下、ソース−ドレイン電極35S,35Dともいう)と、を備える。これらの電極32,35S,35Dは例えば素子ごとに形成され、ガラス基板31は例えば素子ごとに矩形形状等に切り出されている。或いは、ガラス基板31は、複数のIGZO系TFT30がアレイ状に配列されて切り出されていてもよい。   As shown in FIG. 2, the IGZO TFT 30 includes, for example, a glass substrate 31, a gate electrode 32 formed on the glass substrate 31, a source electrode 35S and a drain electrode 35D on the gate electrode 32 (hereinafter, source-drain electrodes). 35S, 35D). These electrodes 32, 35S, and 35D are formed for each element, for example, and the glass substrate 31 is cut into a rectangular shape for each element, for example. Alternatively, the glass substrate 31 may be cut out by arranging a plurality of IGZO TFTs 30 in an array.

ゲート電極32には、例えば図示しないゲート配線が接続され、ゲート電極32上には、ゲート絶縁膜33を介して、所定パターンに成形された酸化物半導体としてのチャネル部34が形成されている。ゲート絶縁膜33は、例えば窒化シリコン(SiN)又は酸化シリコン(SiO2)等からなる。また、チャネル部34は、例えばInGaZnO4を原料として、スパッタリング等により形成された酸化インジウムガリウム亜鉛(InGaZnO:IGZO)膜からなる。 For example, a gate wiring (not shown) is connected to the gate electrode 32, and a channel portion 34 as an oxide semiconductor formed in a predetermined pattern is formed on the gate electrode 32 via a gate insulating film 33. The gate insulating film 33 is made of, for example, silicon nitride (SiN) or silicon oxide (SiO 2 ). The channel portion 34 is made of an indium gallium zinc oxide (InGaZnO: IGZO) film formed by sputtering or the like using, for example, InGaZnO 4 as a raw material.

チャネル部34上には、チャネル部34が備えるバックチャネル34bを挟んで所定パターンに成形されたソース−ドレイン電極35S,35Dが形成されている。ソース−ドレイン電極35S,35Dには、図示しないソース−ドレイン配線が接続されている。ソース−ドレイン配線には、外部と電気信号をやり取りする図示しない電極パッドが形成されている。   On the channel part 34, source-drain electrodes 35S and 35D are formed in a predetermined pattern with a back channel 34b included in the channel part 34 interposed therebetween. A source-drain wiring (not shown) is connected to the source-drain electrodes 35S, 35D. An electrode pad (not shown) for exchanging electrical signals with the outside is formed on the source-drain wiring.

主に、ソース−ドレイン電極35S,35D、ソース−ドレイン配線、及び電極パッド等により、本実施形態に係る薄膜トランジスタ(TFT)配線が構成される。   The thin film transistor (TFT) wiring according to this embodiment is mainly configured by the source-drain electrodes 35S and 35D, the source-drain wiring, the electrode pad, and the like.

ソース−ドレイン電極35S,35Dを含むTFT配線は、ガラス基板31側から順に、Cu−Mn合金膜としての下部バリア膜35bと、純Cu膜としての中間膜35mと、Cu−Mn合金膜としての上部バリア膜35tと、がこの順に積層された積層構造を有する。   The TFT wiring including the source-drain electrodes 35S and 35D is composed of a lower barrier film 35b as a Cu—Mn alloy film, an intermediate film 35m as a pure Cu film, and a Cu—Mn alloy film in this order from the glass substrate 31 side. The upper barrier film 35t and the upper barrier film 35t are stacked in this order.

下部バリア膜35b及び上部バリア膜35tは、いずれか一方あるいは両方が上述のCu−Mn合金スパッタターゲット材10を用いて形成され、例えば濃度が8原子%以上30原子%以下、係る濃度の標準偏差が例えば0.05原子%未満のMnと、不可避的不純物とを含むCu−Mn合金からなる。また、下部バリア膜35b及び上部バリア膜35tは、例えば膜厚が50nm以上100nm以下に形成されている。   One or both of the lower barrier film 35b and the upper barrier film 35t are formed using the above-described Cu—Mn alloy sputter target material 10, and the concentration is, for example, 8 atomic% or more and 30 atomic% or less. Is made of a Cu—Mn alloy containing, for example, less than 0.05 atomic% of Mn and inevitable impurities. The lower barrier film 35b and the upper barrier film 35t are formed to have a film thickness of, for example, 50 nm or more and 100 nm or less.

中間膜35mは、例えば純度が3N(99.9%)以上の無酸素銅を原料として、スパッタリング等により形成された純Cuからなる。また、中間膜35mは、例えば膜厚が200nm以上300nm以下に形成されている。   The intermediate film 35m is made of pure Cu formed by sputtering or the like using, for example, oxygen-free copper having a purity of 3N (99.9%) or more as a raw material. Further, the intermediate film 35m is formed with a film thickness of, for example, 200 nm or more and 300 nm or less.

このように、低抵抗の純Cuからなる中間膜35mを、Cu−Mn合金からなるバリア膜35b,35tで挟んだ構造とすることで、ソース−ドレイン電極35S,35DやTFT配線の抵抗を抑えることができる。また、形成したCu−Mn/Cu/Cu−Mn積層膜に熱処理を施すことで、チャネル部34と下部バリア膜35bとの界面(IGZO膜/Cu−Mn合金膜)に酸化マンガン(MnOx)膜が形成され、例えば下部バリア膜35bの拡散バリア性を高めることができる。   Thus, the resistance of the source-drain electrodes 35S and 35D and the TFT wiring is suppressed by adopting a structure in which the intermediate film 35m made of low-resistance pure Cu is sandwiched between the barrier films 35b and 35t made of a Cu—Mn alloy. be able to. Further, a heat treatment is performed on the formed Cu—Mn / Cu / Cu—Mn laminated film, so that a manganese oxide (MnOx) film is formed at the interface (IGZO film / Cu—Mn alloy film) between the channel portion 34 and the lower barrier film 35 b. For example, the diffusion barrier property of the lower barrier film 35b can be enhanced.

また、ガラス基板31上の略全面には、ソース−ドレイン電極35S,35D及び露出したバックチャネル34bを覆って保護膜36が形成されている。   A protective film 36 is formed on the substantially entire surface of the glass substrate 31 so as to cover the source-drain electrodes 35S and 35D and the exposed back channel 34b.

保護膜36は、例えばプラズマCVD等により形成されたSiO2からなり、例えば、一酸化二窒素(N2O)ガス等の酸化ガスと、水素(H2)及び水素バランスとしてモノシラン(SiH4)ガスを用いて成膜する。 The protective film 36 is made of, for example, SiO 2 formed by plasma CVD or the like, for example, an oxidizing gas such as dinitrogen monoxide (N 2 O) gas, and monosilane (SiH 4 ) as hydrogen (H 2 ) and hydrogen balance. A film is formed using a gas.

ここで、予めN2Oガスのみのプラズマ照射による前処理を施し、チャネル部34のIGZO膜中の酸素を飽和させた後、N2OとSiH4/H2ガスによるSiO2膜を生成することにより、チャネル部34のIGZO膜中の酸素欠損量を良好な半導体特性を得るための適度なものとすることができる。 Here, pre-treatment by plasma irradiation with only N 2 O gas is performed in advance to saturate oxygen in the IGZO film of the channel portion 34, and then an SiO 2 film is formed by N 2 O and SiH 4 / H 2 gas. As a result, the amount of oxygen vacancies in the IGZO film of the channel portion 34 can be made appropriate for obtaining good semiconductor characteristics.

しかしながら、上記手法による保護膜36の形成時には、ソース−ドレイン電極35S,35D等の配線も酸化雰囲気に曝されることとなる。このため、上述のように、非特許文献3の記載に基づき製作したIGZO系TFTにおいては、純Cuからなる中間膜の酸化が原因とみられる配線の抵抗値の上昇が生じてしまった。   However, when the protective film 36 is formed by the above method, wirings such as the source-drain electrodes 35S and 35D are also exposed to the oxidizing atmosphere. For this reason, as described above, in the IGZO TFT manufactured based on the description of Non-Patent Document 3, the resistance value of the wiring, which is considered to be caused by the oxidation of the intermediate film made of pure Cu, has been increased.

そこで、本実施形態では、上部バリア膜35tや下部バリア膜35bのMnの濃度を例えば8原子%以上としている。これにより、例えば上部バリア膜35tの酸化バリア性(耐酸化性)が向上し、N2Oガスのプラズマ等の酸化雰囲気中で、下層である中間膜35mを構成する純Cuの酸化を抑制することができる。 Therefore, in the present embodiment, the Mn concentration in the upper barrier film 35t and the lower barrier film 35b is set to 8 atomic% or more, for example. Thereby, for example, the oxidation barrier property (oxidation resistance) of the upper barrier film 35t is improved, and the oxidation of pure Cu constituting the lower intermediate film 35m is suppressed in an oxidizing atmosphere such as plasma of N 2 O gas. be able to.

また、本実施形態では、上部バリア膜35tや下部バリア膜35bのMnの濃度を例えば30原子%以下としている。これにより、チャネル部34を構成するIGZO膜や、純Cu膜としての中間膜35m等、バリア膜35t,35bと接する膜へのMnの拡散を抑制することができる。   In the present embodiment, the Mn concentration in the upper barrier film 35t and the lower barrier film 35b is set to 30 atomic% or less, for example. Thereby, it is possible to suppress the diffusion of Mn into the film in contact with the barrier films 35t and 35b, such as the IGZO film constituting the channel portion 34 and the intermediate film 35m as a pure Cu film.

また、本実施形態では、上部バリア膜35tや下部バリア膜35bの形成に用いるCu−Mn合金スパッタリングターゲット材10は、例えば平均結晶粒径が10μm以上50μm以下のCu−Mn合金からなる。これにより、例えば下部バリア膜35b中のMnの濃度の均一性が向上し、ガラス基板31上の略全面において下部バリア膜35bの拡散バリア性が向上する。すなわち、熱処理によりMnOx膜を形成する際、下部バリア膜35bの下層のチャネル部34へのCuの拡散をガラス基板31上の略全面において抑制することができる。よって、IGZO系TFT30の素子特性のバラツキを低減することができ、IGZO系TFT30や液晶パネルの製造歩留まりを向上させることができる。   In this embodiment, the Cu—Mn alloy sputtering target material 10 used for forming the upper barrier film 35t and the lower barrier film 35b is made of, for example, a Cu—Mn alloy having an average crystal grain size of 10 μm to 50 μm. Thereby, for example, the uniformity of the concentration of Mn in the lower barrier film 35b is improved, and the diffusion barrier property of the lower barrier film 35b is improved over substantially the entire surface of the glass substrate 31. That is, when the MnOx film is formed by the heat treatment, the diffusion of Cu to the channel part 34 below the lower barrier film 35b can be suppressed over substantially the entire surface of the glass substrate 31. Therefore, variation in element characteristics of the IGZO TFT 30 can be reduced, and the manufacturing yield of the IGZO TFT 30 and the liquid crystal panel can be improved.

なお、Cu−Mn合金スパッタリングターゲット材10を用いて形成可能なTFTの構成は、上記に記載のものに限られない。例えば、上記とは異なる膜構成を有するIGZO系TFTや、ZnO系TFT、或いはα−Si系TFT等にもCu−Mn合金スパッタリングターゲット材10を用いることができる。また、TFTのみならず、Si太陽電池素子等のSi半導体を用いた各種の半導体素子にCu−Mn合金スパッタリングターゲット材10を適用可能である。   In addition, the structure of TFT which can be formed using the Cu-Mn alloy sputtering target material 10 is not restricted to the above-mentioned thing. For example, the Cu—Mn alloy sputtering target material 10 can be used for an IGZO-based TFT, a ZnO-based TFT, an α-Si-based TFT, or the like having a film configuration different from the above. Moreover, the Cu-Mn alloy sputtering target material 10 is applicable not only to TFT but also to various semiconductor elements using Si semiconductor such as Si solar cell element.

以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, It can change variously in the range which does not deviate from the summary.

本発明の実施例に係るCu−Mn合金膜における酸化バリア性及び拡散バリア性の評価結果について、以下に説明する。   The evaluation results of the oxidation barrier property and the diffusion barrier property in the Cu—Mn alloy film according to the example of the present invention will be described below.

(1)酸化バリア性の評価
以下の表1を参照しながら、酸化バリア性の評価に係る実施例1〜12について比較例1〜7と共に説明する。
(1) Evaluation of oxidation barrier properties Examples 1 to 12 relating to the evaluation of oxidation barrier properties are described together with Comparative Examples 1 to 7 with reference to Table 1 below.

Figure 2013067857
Figure 2013067857

(評価サンプルの製作)
まず、図3に示す実施例1〜12及び比較例1〜7に係る評価サンプルを以下の手順で製作した。図3は、実施例1〜12及び比較例1〜7に係る評価サンプルの説明図であって、(a)はCu−Mn/Cu/Cu−Mn積層膜がブロック状に複数個形成された評価サンプルの平面図であり、(b)はCu−Mn/Cu/Cu−Mn積層膜の1ブロックを示す斜視図である。
(Production of evaluation samples)
First, evaluation samples according to Examples 1 to 12 and Comparative Examples 1 to 7 shown in FIG. 3 were produced according to the following procedure. FIG. 3 is an explanatory diagram of evaluation samples according to Examples 1 to 12 and Comparative Examples 1 to 7, in which (a) shows a plurality of Cu—Mn / Cu / Cu—Mn laminated films formed in a block shape. It is a top view of an evaluation sample, (b) is a perspective view which shows 1 block of a Cu-Mn / Cu / Cu-Mn laminated film.

50mm角のガラス基板51上に、InGaZnO4スパッタリングターゲット材を用い、スパッタリングにより30nmの厚さにIGZO膜54を形成した。 An IGZO film 54 having a thickness of 30 nm was formed on a 50 mm square glass substrate 51 by sputtering using an InGaZnO 4 sputtering target material.

次に、3mm角の開口部を2mm間隔で100マス(縦10マス×横10マス)有するメタルマスク(図示せず)を、IGZO膜54の形成されたガラス基板51上に保持した状態で、Cu−Mn合金膜55b、純Cu膜55m、Cu−Mn合金膜55tをこの順に積層し、Cu−Mn/Cu/Cu−Mn積層膜を3mm角のブロック状に100個、IGZO膜54上に形成した。   Next, in a state where a metal mask (not shown) having openings of 3 mm square and 100 squares (10 vertical and 10 horizontal) at intervals of 2 mm is held on the glass substrate 51 on which the IGZO film 54 is formed, A Cu-Mn alloy film 55b, a pure Cu film 55m, and a Cu-Mn alloy film 55t are laminated in this order, and 100 Cu-Mn / Cu / Cu-Mn laminated films in a 3 mm square block shape are formed on the IGZO film 54. Formed.

上下のCu−Mn合金膜55t,55bはいずれも、純度が共に3Nの無酸素銅及び純Mnを原料として、上述の実施形態と略同様の手順で製作された外径が100mm、厚さが5mmの円板型のCu−Mn合金スパッタリングターゲット材を用い、上述の実施形態と同様の手法のスパッタリングにより50nmの厚さに形成した。ただし、表1に示すように、実施例1〜12及び比較例1〜7に係る評価サンプルごとに、Mnの濃度及びCu−Mn合金中の平均結晶粒径が異なるCu−Mn合金スパッタリングターゲット材を用意し、これを用いて各評価サンプルの成膜を行った。   Both the upper and lower Cu—Mn alloy films 55t and 55b are made of oxygen-free copper having a purity of 3N and pure Mn as raw materials, and the outer diameter is 100 mm and the thickness is substantially the same as that of the above-described embodiment. A 5 mm disc-shaped Cu—Mn alloy sputtering target material was used and formed to a thickness of 50 nm by sputtering in the same manner as in the above embodiment. However, as shown in Table 1, for each of the evaluation samples according to Examples 1 to 12 and Comparative Examples 1 to 7, a Cu—Mn alloy sputtering target material in which the concentration of Mn and the average crystal grain size in the Cu—Mn alloy are different. Was prepared, and each evaluation sample was formed into a film using this.

Cu−Mn合金中の上記平均結晶粒径は、上述のように、インゴットの冷間圧延時の加工度と、その後の熱処理時の温度とを適宜、所定の組み合わせとすることで調整した。具体例を挙げると、Mnの濃度が13.9原子%に調整された実施例4においては、加工度を55%とし熱処理の温度を750℃として、40μmの平均結晶粒径を得た。   As described above, the average crystal grain size in the Cu-Mn alloy was adjusted by appropriately combining the degree of processing during cold rolling of the ingot and the temperature during subsequent heat treatment. As a specific example, in Example 4 in which the Mn concentration was adjusted to 13.9 atomic%, the degree of processing was 55%, the temperature of heat treatment was 750 ° C., and an average crystal grain size of 40 μm was obtained.

純Cu膜55mは、純度が3Nの無酸素銅スパッタリングターゲット材を用い、スパッタリングにより300nmの厚さに形成した。IGZO膜54を含む各膜のスパッタリング時の成膜条件を表2に示す。   The pure Cu film 55m was formed to a thickness of 300 nm by sputtering using an oxygen-free copper sputtering target material having a purity of 3N. Table 2 shows the film formation conditions during sputtering of each film including the IGZO film 54.

Figure 2013067857
Figure 2013067857

次に、CVD装置を用い、図3に示す評価サンプルそれぞれをN2Oガスのプラズマに曝した。このとき、30nmの厚さのIGZO膜中に酸素を十分飽和させるため、N2Oガスのプラズマによる曝露時間を1分間とした。その他のプラズマ条件を表3に示す。 Next, each of the evaluation samples shown in FIG. 3 was exposed to N 2 O gas plasma using a CVD apparatus. At this time, in order to sufficiently saturate oxygen in the IGZO film having a thickness of 30 nm, the exposure time by plasma of N 2 O gas was set to 1 minute. Other plasma conditions are shown in Table 3.

Figure 2013067857
Figure 2013067857

(シート抵抗の測定)
続いて、上記のように製作した実施例1〜12及び比較例1〜7に係る評価サンプルそれぞれについて、各評価サンプルが備えるCu−Mn/Cu/Cu−Mn積層膜のシート抵抗を測定した。測定方法には、3mm角の各積層膜の4隅付近に電極の針を当てて行うファン・デル・パウ(van der Pauw)法を用いた。測定結果を上記の表1に示す。また、表1に示す測定結果をグラフ化したものを図4に示す。図4は、Cu−Mn合金スパッタリングターゲット材中に含まれるMnの濃度と、これにより形成されるCu−Mn/Cu/Cu−Mn積層膜のシート抵抗との関係を示すグラフである。図4の横軸はCu−Mn合金スパッタリングターゲット材中に含まれるMnの濃度(原子%)であり、縦軸は対応するCu−Mn/Cu/Cu−Mn積層膜のシート抵抗(mΩ/□)である。
(Sheet resistance measurement)
Subsequently, for each of the evaluation samples according to Examples 1 to 12 and Comparative Examples 1 to 7 manufactured as described above, the sheet resistance of the Cu—Mn / Cu / Cu—Mn multilayer film included in each evaluation sample was measured. As a measuring method, a van der Pauw method in which electrode needles were applied near the four corners of each 3 mm square laminated film was used. The measurement results are shown in Table 1 above. Further, FIG. 4 shows a graph of the measurement results shown in Table 1. FIG. 4 is a graph showing the relationship between the concentration of Mn contained in the Cu—Mn alloy sputtering target material and the sheet resistance of the Cu—Mn / Cu / Cu—Mn laminated film formed thereby. The horizontal axis of FIG. 4 is the concentration (atomic%) of Mn contained in the Cu—Mn alloy sputtering target material, and the vertical axis is the sheet resistance (mΩ / □) of the corresponding Cu—Mn / Cu / Cu—Mn laminated film. ).

表1及び図4に示すように、Cu−Mn合金スパッタリングターゲット材中のMnの濃度が、実施例1〜12のように8原子%以上30原子%以下の範囲内では、形成される積層膜のシート抵抗は略70mΩ/□の一定値を示した。しかし、比較例1及び2のように、Mnの濃度が8原子%未満では、シート抵抗が急激に上昇した。また、比較例3〜7のように、Mnの濃度が30原子%を超えた場合もシート抵抗の上昇がみられた。   As shown in Table 1 and FIG. 4, when the concentration of Mn in the Cu—Mn alloy sputtering target material is in the range of 8 atomic% or more and 30 atomic% or less as in Examples 1 to 12, a laminated film is formed. The sheet resistance was a constant value of approximately 70 mΩ / □. However, as in Comparative Examples 1 and 2, when the Mn concentration was less than 8 atomic%, the sheet resistance increased rapidly. Further, as in Comparative Examples 3 to 7, an increase in sheet resistance was also observed when the Mn concentration exceeded 30 atomic%.

Mnの濃度が8原子%未満におけるこのようなシート抵抗の上昇は、形成されるCu−Mn合金膜55tの酸化バリア性が低く、純Cu膜55mが酸化して高抵抗化してしまったことによると考えられる。また、Mnの濃度が30原子%を超えた場合のシート抵抗の上昇は、Cu−Mn合金膜55t,55b中のMnが純Cu膜55m中へ拡散して、純Cu膜55mが高抵抗化してしまったことによると考えられる。係るMnの拡散は、下層のIGZO膜54に対しても起こっていると考えられる。   Such an increase in sheet resistance when the Mn concentration is less than 8 atomic% is due to the fact that the formed Cu—Mn alloy film 55t has a low oxidation barrier property, and the pure Cu film 55m is oxidized to increase its resistance. it is conceivable that. Further, when the Mn concentration exceeds 30 atomic%, the increase in sheet resistance is caused by the diffusion of Mn in the Cu—Mn alloy films 55t and 55b into the pure Cu film 55m, and the pure Cu film 55m having a high resistance. This is probably due to the fact that It is considered that such Mn diffusion occurs also in the underlying IGZO film 54.

以上の結果から、Cu−Mn合金スパッタリングターゲット材を構成するCu−Mn合金が、8原子%以上30原子%以下のMnの濃度を有していれば、良好な酸化バリア性を備えるCu−Mn合金膜を形成できることが分かった。   From the above results, if the Cu-Mn alloy constituting the Cu-Mn alloy sputtering target material has a concentration of Mn of 8 atomic% or more and 30 atomic% or less, Cu-Mn having a good oxidation barrier property. It was found that an alloy film can be formed.

(2)拡散バリア性の評価
次に、以下の表4を参照しながら、拡散バリア性の評価に係る実施例1,4,7,10及び12〜15について比較例8〜17と共に説明する。
(2) Evaluation of Diffusion Barrier Properties Next, Examples 1, 4, 7, 10 and 12 to 15 related to the evaluation of diffusion barrier properties will be described together with Comparative Examples 8 to 17 with reference to Table 4 below.

Figure 2013067857
Figure 2013067857

(評価サンプルの製作)
まず、図5に示す実施例1,4,7,10及び12〜15並びに比較例8〜17に係る評価サンプルを以下の手順で製作した。図5は、実施例1,4,7,10及び12〜15並びに比較例8〜17に係る評価サンプルの平面図である。
(Production of evaluation samples)
First, evaluation samples according to Examples 1, 4, 7, 10, and 12 to 15 and Comparative Examples 8 to 17 shown in FIG. FIG. 5 is a plan view of evaluation samples according to Examples 1, 4, 7, 10, and 12-15 and Comparative Examples 8-17.

3mm角の開口部を2mm間隔で100マス(縦10マス×横10マス)有するメタルマスク(図示せず)を、50mm角のガラス基板61上に保持した状態で、Cu−Mn合金膜65をガラス基板61上に直接成膜し、Cu−Mn合金の単膜を3mm角のブロック状に100個、形成した。   In a state where a metal mask (not shown) having 3 mm square openings at 2 mm intervals with 100 squares (vertical 10 squares × horizontal 10 squares) is held on a 50 mm square glass substrate 61, the Cu—Mn alloy film 65 is formed. The film was directly formed on the glass substrate 61, and 100 single films of Cu-Mn alloy were formed in a 3 mm square block shape.

Cu−Mn合金膜65は、上記酸化バリア性の評価時と同様の原料及び手順で製作された外径が100mm、厚さが5mmの円板型のCu−Mn合金スパッタリングターゲット材を用い、上記表2のCu−Mn合金膜と同一条件のスパッタリングにより、膜厚のみ上記と異なる500nmの厚さに形成した。ただし、表4に示すように、実施例1,4,7,10及び12〜15並びに比較例8〜17に係る評価サンプルごとに、Mnの濃度及びCu−Mn合金中の平均結晶粒径が異なるCu−Mn合金スパッタリングターゲット材を用意し、これを用いて各評価サンプルの成膜を行った。   The Cu—Mn alloy film 65 is a disc-shaped Cu—Mn alloy sputtering target material having an outer diameter of 100 mm and a thickness of 5 mm manufactured by the same raw materials and procedures as in the evaluation of the oxidation barrier property. By sputtering under the same conditions as the Cu—Mn alloy film in Table 2, only the film thickness was formed to a thickness of 500 nm different from the above. However, as shown in Table 4, for each of the evaluation samples according to Examples 1, 4, 7, 10, and 12 to 15 and Comparative Examples 8 to 17, the concentration of Mn and the average crystal grain size in the Cu—Mn alloy are Different Cu—Mn alloy sputtering target materials were prepared, and each evaluation sample was formed using this.

このうち、実施例1,4,7,10及び12については、上述の酸化バリア性の評価において、これらと番号の重複する実施例と同様の条件で製作されたCu−Mn合金スパッタリングターゲット材を用いて成膜した。すなわち、上記と同様、Mnの濃度が13.9原子%の実施例4においては、加工度を55%とし熱処理の温度を750℃として、40μmの平均結晶粒径を得た。   Among these, in Examples 1, 4, 7, 10 and 12, in the evaluation of the oxidation barrier property described above, the Cu—Mn alloy sputtering target material manufactured under the same conditions as those of the example having the same number as these were used. Used to form a film. That is, in the same manner as described above, in Example 4 where the Mn concentration was 13.9 atomic%, the average crystal grain size of 40 μm was obtained at a processing degree of 55% and a heat treatment temperature of 750 ° C.

また、比較例8〜17については、それぞれが実施例1,4,7,10及び12〜15のいずれかと同等のMnの濃度を備え、平均結晶粒径については所定値から外れる値となるCu−Mn合金スパッタリングターゲット材を用いて成膜した。具体例を挙げると、実施例4と同等の13.9原子%のMnの濃度を備える比較例11においては、加工度を55%とし熱処理の温度を870℃として、70μmの平均結晶粒径を得た。   Moreover, about Comparative Examples 8-17, each is provided with the density | concentration of Mn equivalent to any of Example 1, 4, 7, 10, and 12-15, and it becomes the value which remove | deviates from a predetermined value about an average crystal grain diameter. A film was formed using a -Mn alloy sputtering target material. As a specific example, in Comparative Example 11 having a Mn concentration of 13.9 atomic% equivalent to that in Example 4, the degree of processing was 55%, the heat treatment temperature was 870 ° C., and the average grain size was 70 μm. Obtained.

(Mnの濃度の測定)
続いて、上記のように製作した実施例1,4,7,10及び12〜15並びに比較例8〜17に係る評価サンプルそれぞれについて、各評価サンプルが備えるCu−Mn合金膜65のMnの濃度を100ブロック全てについて測定し、Mnの濃度の平均値及び標準偏差を求めた。測定方法には、エネルギー分散型X線分光法(Energy-Dispersive X-ray spectroscopy)を用いた。測定結果を上記の表4に示す。
(Measurement of Mn concentration)
Subsequently, for each of the evaluation samples according to Examples 1, 4, 7, 10, and 12 to 15 and Comparative Examples 8 to 17 manufactured as described above, the Mn concentration of the Cu—Mn alloy film 65 included in each evaluation sample Were measured for all 100 blocks, and the average value and standard deviation of the Mn concentration were determined. As a measuring method, energy-dispersive X-ray spectroscopy was used. The measurement results are shown in Table 4 above.

表4に示すように、平均結晶粒径が50μm以下のCu−Mn合金スパッタリングターゲット材を用いてCu−Mn合金膜65を形成した評価サンプルでは、Cu−Mn合金膜65中のMnの濃度の標準偏差は概ね0.05原子%より小さいという結果であった。また、平均結晶粒径が微細であるほど膜中のMnの濃度の標準偏差は小さかった。   As shown in Table 4, in the evaluation sample in which the Cu—Mn alloy film 65 is formed using a Cu—Mn alloy sputtering target material having an average crystal grain size of 50 μm or less, the Mn concentration in the Cu—Mn alloy film 65 is The standard deviation was generally less than 0.05 atomic%. The standard deviation of the Mn concentration in the film was smaller as the average crystal grain size was finer.

標準偏差σに対し、統計学上、測定値の99.7%が含まれるとされる平均値±3σの範囲でみると、本実施例においては、平均結晶粒径が50μm以下で3σは±0.15原子%未満となっており、充分に小さなバラツキといえる。   In terms of the standard deviation σ, in the range of an average value ± 3σ, which is statistically included 99.7% of the measured value, in this example, the average crystal grain size is 50 μm or less and 3σ is ± It is less than 0.15 atomic%, which is a sufficiently small variation.

以上の結果から、Cu−Mn合金スパッタリングターゲット材を構成するCu−Mn合金が、10μm以上50μm以下の平均結晶粒径を有していれば、Mnの濃度の均一性が良好なCu−Mn合金膜を形成でき、Cu−Mn合金膜の略全域において良好な拡散バリア性が得られることが分かった。   From the above results, if the Cu—Mn alloy constituting the Cu—Mn alloy sputtering target material has an average crystal grain size of 10 μm or more and 50 μm or less, the Cu—Mn alloy having good uniformity of Mn concentration. It was found that a film can be formed and good diffusion barrier properties can be obtained over substantially the entire area of the Cu—Mn alloy film.

10 Cu−Mn合金スパッタリングターゲット材
20 スパッタリング装置
30 IGZO系TFT(薄膜トランジスタ)
31 ガラス基板
32 ゲート電極
33 ゲート絶縁膜
34 チャネル部(酸化物半導体)
35b 下部バリア膜(Cu−Mn合金膜)
35D ドレイン電極
35m 中間膜(純Cu膜)
35S ソース電極
35t 上部バリア膜(Cu−Mn合金膜)
36 保護膜
10 Cu-Mn alloy sputtering target material 20 Sputtering device 30 IGZO TFT (thin film transistor)
31 Glass substrate 32 Gate electrode 33 Gate insulating film 34 Channel part (oxide semiconductor)
35b Lower barrier film (Cu-Mn alloy film)
35D Drain electrode 35m Intermediate film (pure Cu film)
35S source electrode 35t Upper barrier film (Cu-Mn alloy film)
36 Protective film

Claims (4)

半導体素子の配線の形成に用いられるCu−Mn合金スパッタリングターゲット材であって、
濃度が8原子%以上30原子%以下のMnと、不可避的不純物とを含むCu−Mn合金からなり、
前記Cu−Mn合金の平均結晶粒径が10μm以上50μm以下である
ことを特徴とするCu−Mn合金スパッタリングターゲット材。
A Cu-Mn alloy sputtering target material used for forming a wiring of a semiconductor element,
A Cu—Mn alloy containing Mn having a concentration of 8 atomic% to 30 atomic% and unavoidable impurities,
A Cu—Mn alloy sputtering target material, wherein the Cu—Mn alloy has an average crystal grain size of 10 μm or more and 50 μm or less.
Cu−Mn合金膜と、純Cu膜と、Cu−Mn合金膜と、がこの順に形成された積層構造を基板上に有し、
前記Cu−Mn合金膜の少なくとも一方は、
請求項1に記載のCu−Mn合金スパッタリングターゲット材を用いて形成され、
濃度が8原子%以上30原子%以下のMnと、不可避的不純物とを含むCu−Mn合金からなる
ことを特徴とする薄膜トランジスタ配線。
The substrate has a laminated structure in which a Cu-Mn alloy film, a pure Cu film, and a Cu-Mn alloy film are formed in this order,
At least one of the Cu-Mn alloy films is
It is formed using the Cu-Mn alloy sputtering target material according to claim 1,
A thin film transistor wiring comprising a Cu-Mn alloy containing Mn at a concentration of 8 atomic% to 30 atomic% and unavoidable impurities.
前記Mnの濃度が8原子%以上30原子%以下である前記Cu−Mn合金膜中の前記Mnの濃度の標準偏差が0.05原子%未満である
ことを特徴とする請求項2に記載の薄膜トランジスタ配線。
3. The standard deviation of the Mn concentration in the Cu—Mn alloy film having a Mn concentration of 8 atomic% to 30 atomic% is less than 0.05 atomic%. Thin film transistor wiring.
請求項2又は3に記載の薄膜トランジスタ配線が、InGaZnO膜から構成される酸化物半導体を介して前記基板上に形成されている
ことを特徴とする薄膜トランジスタ。
4. The thin film transistor according to claim 2, wherein the thin film transistor wiring is formed on the substrate through an oxide semiconductor composed of an InGaZnO film.
JP2012197037A 2011-09-09 2012-09-07 Cu-Mn ALLOY SPUTTERING TARGET MATERIAL, AND THIN FILM TRANSISTOR WIRING AND THIN FILM TRANSISTOR USING THE SAME Pending JP2013067857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012197037A JP2013067857A (en) 2011-09-09 2012-09-07 Cu-Mn ALLOY SPUTTERING TARGET MATERIAL, AND THIN FILM TRANSISTOR WIRING AND THIN FILM TRANSISTOR USING THE SAME

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011196992 2011-09-09
JP2011196992 2011-09-09
JP2012197037A JP2013067857A (en) 2011-09-09 2012-09-07 Cu-Mn ALLOY SPUTTERING TARGET MATERIAL, AND THIN FILM TRANSISTOR WIRING AND THIN FILM TRANSISTOR USING THE SAME

Publications (1)

Publication Number Publication Date
JP2013067857A true JP2013067857A (en) 2013-04-18

Family

ID=47924051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012197037A Pending JP2013067857A (en) 2011-09-09 2012-09-07 Cu-Mn ALLOY SPUTTERING TARGET MATERIAL, AND THIN FILM TRANSISTOR WIRING AND THIN FILM TRANSISTOR USING THE SAME

Country Status (3)

Country Link
JP (1) JP2013067857A (en)
KR (1) KR101323151B1 (en)
CN (1) CN102994952A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187046A1 (en) * 2012-06-14 2013-12-19 パナソニック株式会社 Thin film transistor
JP2015007280A (en) * 2013-05-31 2015-01-15 日立金属株式会社 Cu-Mn ALLOY FILM AND Cu-Mn ALLOY SPUTTERING GATE MATERIAL AND METHOD FOR FORMING Cu-Mn ALLOY FILM
JP2015179815A (en) * 2013-11-29 2015-10-08 株式会社半導体エネルギー研究所 semiconductor device
JP6019507B2 (en) * 2013-12-10 2016-11-02 株式会社Joled THIN FILM TRANSISTOR SUBSTRATE AND METHOD FOR PRODUCING THIN FILM TRANSISTOR SUBSTRATE
JP6082912B2 (en) * 2013-10-03 2017-02-22 株式会社Joled Method for manufacturing thin film transistor substrate
WO2019075204A1 (en) * 2017-10-13 2019-04-18 Honeywell International Inc. Copper manganese sputtering target
JP2021512221A (en) * 2018-02-01 2021-05-13 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Method for forming a copper alloy sputtering target having a miniaturized shape and fine structure

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158614A (en) * 1997-11-28 1999-06-15 Hitachi Metals Ltd Copper target for sputtering and its production
JP2005232509A (en) * 2004-02-18 2005-09-02 Mitsui Mining & Smelting Co Ltd METHOD FOR MANUFACTURING Mn ALLOY SPUTTERING TARGET, AND Mn ALLOY SPUTTERING TARGET MANUFACTURED THEREBY
WO2006025347A1 (en) * 2004-08-31 2006-03-09 National University Corporation Tohoku University Copper alloy and liquid-crystal display
JP2006322039A (en) * 2005-05-18 2006-11-30 Sumitomo Metal Mining Co Ltd Sputtering target
JP2007051351A (en) * 2005-08-19 2007-03-01 Mitsubishi Materials Corp Mn-CONTAINED COPPER ALLOY SPUTTERING TARGET WITH LESS OCCURRENCE OF PARTICLE
WO2007100125A1 (en) * 2006-02-28 2007-09-07 Advanced Interconnect Materials, Llc Semiconductor device, its manufacturing method, and sputtering target material for use in the method
WO2008041535A1 (en) * 2006-10-03 2008-04-10 Nippon Mining & Metals Co., Ltd. Cu-Mn ALLOY SPUTTERING TARGET AND SEMICONDUCTOR WIRING
WO2008044757A1 (en) * 2006-10-12 2008-04-17 Ulvac, Inc. Conductive film forming method, thin film transistor, panel with thin film transistor and thin film transistor manufacturing method
JP2009224705A (en) * 2008-03-18 2009-10-01 Toshiba Mobile Display Co Ltd Wiring forming method
US20110032467A1 (en) * 2004-08-31 2011-02-10 Tohoku University Copper alloy and liquid-crystal display device
JP2011077116A (en) * 2009-09-29 2011-04-14 Sharp Corp Wiring structure and display device having the same
JP2011091364A (en) * 2009-07-27 2011-05-06 Kobe Steel Ltd Wiring structure and method of manufacturing the same, as well as display apparatus with wiring structure
JP2011127160A (en) * 2009-12-16 2011-06-30 Hitachi Cable Ltd Sputtering target material
JP2011135061A (en) * 2009-11-27 2011-07-07 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4453845B2 (en) 2007-04-10 2010-04-21 国立大学法人東北大学 Liquid crystal display device and manufacturing method thereof
US8168532B2 (en) * 2007-11-14 2012-05-01 Fujitsu Limited Method of manufacturing a multilayer interconnection structure in a semiconductor device
JP5571887B2 (en) 2008-08-19 2014-08-13 アルティアム サービシズ リミテッド エルエルシー Liquid crystal display device and manufacturing method thereof
JP5580619B2 (en) * 2010-02-19 2014-08-27 株式会社神戸製鋼所 Thin film transistor substrate and display device

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158614A (en) * 1997-11-28 1999-06-15 Hitachi Metals Ltd Copper target for sputtering and its production
JP2005232509A (en) * 2004-02-18 2005-09-02 Mitsui Mining & Smelting Co Ltd METHOD FOR MANUFACTURING Mn ALLOY SPUTTERING TARGET, AND Mn ALLOY SPUTTERING TARGET MANUFACTURED THEREBY
US20110032467A1 (en) * 2004-08-31 2011-02-10 Tohoku University Copper alloy and liquid-crystal display device
US20070002239A1 (en) * 2004-08-31 2007-01-04 Junichi Koike Copper alloy and liquid-crystal display device
WO2006025347A1 (en) * 2004-08-31 2006-03-09 National University Corporation Tohoku University Copper alloy and liquid-crystal display
JP2006322039A (en) * 2005-05-18 2006-11-30 Sumitomo Metal Mining Co Ltd Sputtering target
US20090101495A1 (en) * 2005-08-19 2009-04-23 Mitsubishi Materials Corporation Mn-CONTAINING COPPER ALLOY SPUTTERING TARGET GENERATING FEW PARTICLES
JP2007051351A (en) * 2005-08-19 2007-03-01 Mitsubishi Materials Corp Mn-CONTAINED COPPER ALLOY SPUTTERING TARGET WITH LESS OCCURRENCE OF PARTICLE
WO2007100125A1 (en) * 2006-02-28 2007-09-07 Advanced Interconnect Materials, Llc Semiconductor device, its manufacturing method, and sputtering target material for use in the method
WO2008041535A1 (en) * 2006-10-03 2008-04-10 Nippon Mining & Metals Co., Ltd. Cu-Mn ALLOY SPUTTERING TARGET AND SEMICONDUCTOR WIRING
US20100013096A1 (en) * 2006-10-03 2010-01-21 Nippon Mining & Metals Co., Ltd. Cu-Mn Alloy Sputtering Target and Semiconductor Wiring
WO2008044757A1 (en) * 2006-10-12 2008-04-17 Ulvac, Inc. Conductive film forming method, thin film transistor, panel with thin film transistor and thin film transistor manufacturing method
JP2009224705A (en) * 2008-03-18 2009-10-01 Toshiba Mobile Display Co Ltd Wiring forming method
JP2011091364A (en) * 2009-07-27 2011-05-06 Kobe Steel Ltd Wiring structure and method of manufacturing the same, as well as display apparatus with wiring structure
JP2011077116A (en) * 2009-09-29 2011-04-14 Sharp Corp Wiring structure and display device having the same
JP2011135061A (en) * 2009-11-27 2011-07-07 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2011127160A (en) * 2009-12-16 2011-06-30 Hitachi Cable Ltd Sputtering target material

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187046A1 (en) * 2012-06-14 2013-12-19 パナソニック株式会社 Thin film transistor
JP2015007280A (en) * 2013-05-31 2015-01-15 日立金属株式会社 Cu-Mn ALLOY FILM AND Cu-Mn ALLOY SPUTTERING GATE MATERIAL AND METHOD FOR FORMING Cu-Mn ALLOY FILM
KR101609453B1 (en) 2013-05-31 2016-04-05 히타치 긴조쿠 가부시키가이샤 Cu-Mn ALLOY FILM AND Cu-Mn ALLOY SPUTTERING TARGET MATERIAL AND FILM FORMING METHOD OF Cu-Mn ALLOY FILM
JP6082912B2 (en) * 2013-10-03 2017-02-22 株式会社Joled Method for manufacturing thin film transistor substrate
US9627515B2 (en) 2013-10-03 2017-04-18 Joled Inc. Method of manufacturing thin-film transistor substrate
KR102306201B1 (en) * 2013-11-29 2021-09-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP2015179815A (en) * 2013-11-29 2015-10-08 株式会社半導体エネルギー研究所 semiconductor device
KR20160089520A (en) * 2013-11-29 2016-07-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP2019197922A (en) * 2013-11-29 2019-11-14 株式会社半導体エネルギー研究所 Semiconductor device
US11430817B2 (en) 2013-11-29 2022-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6019507B2 (en) * 2013-12-10 2016-11-02 株式会社Joled THIN FILM TRANSISTOR SUBSTRATE AND METHOD FOR PRODUCING THIN FILM TRANSISTOR SUBSTRATE
WO2019075204A1 (en) * 2017-10-13 2019-04-18 Honeywell International Inc. Copper manganese sputtering target
JP2020537046A (en) * 2017-10-13 2020-12-17 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Copper manganese sputtering target
US10760156B2 (en) 2017-10-13 2020-09-01 Honeywell International Inc. Copper manganese sputtering target
JP7297741B2 (en) 2017-10-13 2023-06-26 ハネウェル・インターナショナル・インコーポレーテッド copper manganese sputtering target
JP2021512221A (en) * 2018-02-01 2021-05-13 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Method for forming a copper alloy sputtering target having a miniaturized shape and fine structure
US11035036B2 (en) 2018-02-01 2021-06-15 Honeywell International Inc. Method of forming copper alloy sputtering targets with refined shape and microstructure
JP7426936B2 (en) 2018-02-01 2024-02-02 ハネウェル・インターナショナル・インコーポレーテッド Method for forming copper alloy sputtering target with refined shape and microstructure

Also Published As

Publication number Publication date
CN102994952A (en) 2013-03-27
KR20130028622A (en) 2013-03-19
KR101323151B1 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP2013067857A (en) Cu-Mn ALLOY SPUTTERING TARGET MATERIAL, AND THIN FILM TRANSISTOR WIRING AND THIN FILM TRANSISTOR USING THE SAME
JP5584436B2 (en) Method for manufacturing thin film transistor substrate
JP2013253309A (en) Cu-Mn ALLOY SPUTTERING TARGET, LAMINATED WIRING OF SEMICONDUCTOR ELEMENT USING THE SAME, AND METHOD FOR MANUFACTURING LAMINATED WIRING
CN102203916A (en) Sputtering target for forming thin film transistor wiring film
TWI580796B (en) Tantalum sputtering target and its manufacturing method
US20150171016A1 (en) Al alloy film for semiconductor device
JP5354781B2 (en) Thin film transistor having barrier layer as constituent layer and Cu alloy sputtering target used for sputtering film formation of said barrier layer
KR101515341B1 (en) Method for producing copper material for use as sputtering target
JP6475997B2 (en) Wiring film for flat panel display and Al alloy sputtering target
KR101289611B1 (en) Silicon device structure and sputtering target material used in forming the same
JP5491947B2 (en) Al alloy film for display devices
EP3795713A1 (en) Multilayer film and ag alloy sputtering target
TWI469357B (en) Thin film transistor substrate and display device
JP6091911B2 (en) Cu-Mn alloy sputtering target material, method for producing Cu-Mn alloy sputtering target material, and semiconductor element
JP2010238800A (en) Al ALLOY FILM FOR DISPLAY, THIN FILM TRANSISTOR SUBSTRATE AND DISPLAY
JP2012189725A (en) WIRING FILM AND ELECTRODE USING Ti ALLOY BARRIER METAL AND Ti ALLOY SPUTTERING TARGET
KR20120089835A (en) Sputtering target, semiconductor device and method for manufacturing the same
WO2011125802A1 (en) Wiring structure, display device and semiconductor device
JP2012189726A (en) WIRING FILM AND ELECTRODE USING Ti ALLOY BARRIER METAL AND Ti ALLOY SPUTTERING TARGET
KR20210011455A (en) Aluminum alloy target and its manufacturing method
JP2012109465A (en) Metal wiring film for display unit
TWI826799B (en) Metal wiring structure and method for manufacturing metal wiring structure
JP2013168582A (en) Method for forming thin film wiring and thin film wiring
JP2017092330A (en) Wiring film for device
US9518320B2 (en) Copper alloy sputtering target

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130614

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150901